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Abstract

As stated in our prior semester project ”Automation of the OST-RJ Examination Schedul-
ing”, December 2020, exam scheduling is a knownNP-complete problem. Finding the best
solution for such a problem is nearly impossible for a human and takes forever for a com-
puter. Computer-aided exam scheduling, or generally speaking problem-solving, takes ad-
vantage of trying many possible solutions in an automated way and combining it with
algorithms that help optimize the solving process. Testing the quality of a solution is car-
ried out based on several constraints and their assigned penalties and weights. Precisely
tailored mathematical calculations and carefully chosen algorithms are required for pro-
viding solutions that meet the requirements in a reasonable amount of time.

The version developed for the bachlor’s thesis expands the functionality of the exam
scheduler not only to cover the mandatory constraints but also to optimize the solution
based on availabilities, optimal distributions, and nice-to-have properties such as lunch
breaks. Furthermore, considerable improvements have been made to the user interface,
allowing the user to import data, control the solving process, visualize the exam schedule,
gain insights into the resulting solution, and manually modify the schedule to work with
the application hand in hand.

The software and its results are ready for a first pilot phase. Although some manual pre-
processing of the exam schedule is still required, scheduling becomes much more com-
fortable, reliable, and of much higher quality. The process of examination scheduling is
reduced from several weeks to an absolute minimum in the range of days or even hours.
Our comparison of automatically generated examination scheduleswithmanually created
ones shows at least equal if not better results.

Keywords: Exam Scheduling, Problem Solving, Constraint Programming, OptaPlanner,
NP-Completeness, Metaheuristics.
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Executive Summary

Asdescribed in our prior semester project ”Automation of theOST-RJExaminationSchedul-
ing”, December 2020, exam scheduling is known to be a challenging problem to solve.
Manual scheduling of the exams is executed in an enormous Excel file and takes several
weeks. The objective of the present bachelor project/thesis is to provide a fully functional
version of an automated, computer-aided exam scheduling solution.

In the exam scheduler’s current version, all rules defined as mandatory for an accept-
able solution by the customer and several rules for optimizing the resulting exam sched-
ule from the students’ point of view are implemented. The rules are defined using the
constraint solver OptaPlanner, an open-source library maintained by RedHat. The lists of
exams and students are uploaded as files, validated, and then imported, pre-processed,
scheduled, and finally exported as files or directly accessed via an API. A web applica-
tion provides functionalities such as the possibility of visualizing the resulting schedule,
manually setting specific exams, defining room availabilities, and getting insights into the
quality of the resulting exam schedule.

The current solution is ready for a first pilot phase. Although somemanual pre-processing
of the exam schedule is still required, scheduling becomes much more comfortable, reli-
able, and of much higher quality. The process of examination scheduling is reduced from
several weeks to an absoluteminimum in the range of days or even hours. Our comparison
of automatically generated examination schedules with manually created ones shows at
least equal if not better results.

For further enhancements of the developed solution, the end-users have to conduct in-
depth tests and document their findings. The constraint weights might need to be ad-
justed, and additional constraints or features in the web application to be added in order
for the exam scheduler to be fully production-ready. With the continuation of the project,
a fully automated scheduling process can be achieved and might even be expanded to
other schools. It promises significant improvements in the quality of the schedules and
the time and iterations it takes to create solid exam schedules.
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Chapter 1

Introduction

Roughly 250 exams involving up to 1,500 students take place on the OST campus in
Rapperswil-Jona each semester. Creating an examination schedule on this scale is not
an easy task. Many spatial and temporal constraints have to be considered in order to
find a solution that can be seen as a good and balanced examination schedule.

Until now, all exam timetables have been created manually by the examination planning
team. Exam scheduling by hand is not only complicated and tedious but also takes a lot
of time. Therefore, the examination planning team aims to automate this process with
the help of a software solution. The first step regarding an exam scheduler software has
already been taken. This bachelor thesis is a follow-up project of our semester project
“Automation of the OST-RJ Examination Scheduling”, in which we evaluated a constraint-
programming-based approach as the most promising one to tackle the exam scheduling
problem. We implemented the first version of the exam scheduler software, which uses
theOptaPlanner as a constraint solver underneath.With the result of our semester project,
we have shown that the software can generate examination schedules. Furthermore, we
have demonstrated the potential to generate better schedules than a human could create
by hand. However, the resulting problemmodel is not production-ready as it does not fully
meet all requirements yet [1].

1.1 Objective

This thesis has two primary objectives: First, we want to develop the existing exam sched-
uler further so that the examination planning team can use it productively. To achieve this
goal, we must improve the problem model by including the missing requirements and
implement some additional features to turn the application into a helpful instrument that
supports the examination planning team in their work. Tomake all features easily accessi-
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Chapter 1. Introduction 2

ble for the users, wemust provide a GUI. Finally, an interface between the exam scheduler
and the university’s computer system is needed, enabling the academic services depart-
ment to use the generated examination schedules with their administration tools.

The second objective is the evaluation of different optimization algorithms used by the
constraint solver (OptaPlanner) as well as the parameterization/weighting of our defined
cost functions. We want to examine its impact on the schedule quality, solving time, and
convergence behavior with the goal to choose the most efficient configuration that leads
to satisfying results.

1.2 Structure of the Thesis

The thesis is organized as follows:

Chapter 2 – Problem Analysis gives an overview of the domain and describes the state
and functionality of the exam scheduler developed during the previous semester project.
It also lists all constraints that have to be taken into account for an optimal examination
schedule. This list states which constraints the problem model already covers and which
are left to be implemented in this project.

Chapter 3 – Research describes the development of the cost function for an optimal
exam distribution. Moreover, it covers details regarding the refinement of the problem
model for the solver, and the literature research thatwas conducted regarding the different
optimization algorithms it can use.

Chapter 4 – Solution describes the key improvements of the exam scheduler, perfor-
mance optimizations made, application and UI design decisions, the data handling, the
applied quality assurances, and a detailed explanation of the score function.

Chapter 5 – Results presents and discusses the results of the bachelor’s thesis. The
score function is evaluated with the help of key performance indicators. It also provides
a comparison of a generated exam schedule with one made by a human.

Chapter 6 – Conclusion summarizes the outcome of the bachelor’s thesis. In addition,
an outlook for further possible improvements and features regarding the developed soft-
ware is given.



Chapter 2

Problem Analysis

2.1 Domain

The problem domain (Figure 2.1) is simple. Students take exams. For each exam, there is
precisely one examiner in charge. This person is responsible for the exam in general but
must not necessarily supervise the exam. Supervisors are not part of the problem domain
because they are usually selected after the examination schedule has been created. The
overall goal is to create an exam timetable that schedules all exams. The scheduling of
a single exam is represented by a timetable entry. It assigns a date and one or multiple
rooms for each exam.

Exam

-pdfeld: Integer
-durationInMinutes: Integer
-code: String
-name: String
-mode: String
-regularSemesters: RegularSemester[0..*]
-oraExam: Boolean
-computerRoomRequired: Boolean

Examiner

-name: String
-unavailablePeriods: DateTimeRange[0..*]

Student

-pid: Integer
-firstName: String
-lastName: String

Room

-nr: String
-capacity: Integer
-unavailablePeriods: DateTimeRange[0..*]
-airConditioned: Boolean
-computerRoom: Boolean

ExamTimetable

-examSession: DateRange
-dailyExaminationTime: TimeRange

TimetableEntry

-dateTime: DateTime

▲ is scheduled

1

1

occupies ▶

* 1..*

*

1

A room might be unavailable for
certain periods. No exam can take
place during these periods.

An examiner can block certain
periods during which no exams
he/she is responsible for can
take place.

is responsible for ▶
1

*

◀ takes

* *

«dataType»
TimeRange

-start: Time
-end: Time

«dataType»
DateRange

-start: Date
-end: Date

«dataType»
DateTimeRange

-start: DateTime
-end: DateTime

«dataType»
RegularSemester

-code: String
-name: String

Figure 2.1: Domain Model
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Chapter 2. Problem Analysis 4

A room might not be available for certain periods as it is used for other purposes. Exams
can only take place in available rooms. Similarly, an examiner in charge can block certain
time periods during which the exam must not take place.

Each exam is assigned to one or more regular semesters. The exam usually takes place
in these semesters. In other words, students usually write the exam in these semesters.
Each degree program has its own regular semesters. For instance, the full-time degree
program “Computer Science” has in total six regular semesters. Regular semesters are
used in order for the exams to be optimally distributed. Details regarding its impact are
discussed in section 5.3 [1].

2.2 Overview of the Existing Exam Scheduler Software

This section relates to the software developed in the semester project [1]. For readability
reasons, we omit all further references to it.

Software architecture: The container diagram (Figure 2.2) shows the high-level software
architecture. The core is an API application running Spring Boot, which provides the exam
scheduler capabilities. An Angular single-page application allows the user to interact with
the system. The single-page application, as well as the API documentation, is served by
the Spring Boot container. A PostgreSQL instance manages and stores the data.

Exam Scheduler
[Software System]

Exam Planer
[Person]

Plans the exams

Visits web page
[HTTPS]

Views exam schedules,
adds new data,

controls solving process

Web Application
[Container: Java, Spring MVC, Swagger]

Delivers the documentation and 
the Singel Page Application

Single Page Application
[Container: Angular (Typescript/HTML/SCSS)]

Provides functionality to visualize 
and manage the exam schedules

API Application
[Container: SpringBoot]

Provides exam scheduler 
capabilities with one ore more 

different solvers

Database
[Container: PostgreSQL]

Stores exam scheduler data

Delivers to the user's web browser

Makes API calls to
[JSON/HTTPS]

Reads from and writes to
[JPA]

Sends Updates
[JSON/WSS]

Figure 2.2: C4 – Container Diagram
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User interface: The user interface developed in the semester project (Figure 2.3) is lim-
ited in functionality. During the semester project, we mainly used it to visualize generated
examination schedules. Creating new exam timetables andmanaging the solving process
is only available via the web API. Alternatively, there is the possibility to use the web-based
OpenAPI documentation, which is not very user-friendly.

Figure 2.3: Old Exam Scheduler User Interface: All exams that take place in the school hall
(room 4.101) are visualized in an exam timetable.

Constraint solver: The exam scheduler uses a constraint solver to search for the best
possible examination schedule. In constraint programming, the problem is described in
a declarative manner using variables and relationships between them. Then a constraint
solver takes over the solution process [2]. In the case of the exam timetable problem, the
task is to allocate exams in time and space (rooms) respecting various constraints and
to satisfy a set of desirable objectives as well as possible.

The exam scheduler is explicitly designed to supportmultiple, different constraint solvers.
However, replacing or adding a constraint solver requires a lot of work as each one has
a different API and needs its specific problem model. In our semester project, we imple-
mented the OptaPlanner as a constraint solver. The capabilities of the current problem
model are described in section 2.3.

Data import and export: The input data is given as multiple Excel files. In the semester
project, we implemented a data import API that validates the input data and converts it
into the application data model. The generated examination schedules can be exported
as a CSV or JSON file.
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2.3 Constraints

At the very beginning, the examination planning team gave us a list of the constraints for
an optimal examination schedule. Together we have refined them based on the results
of our semester project. Below is an overview of all constraints. The constraints that we
already had implemented in the semester project are marked with a checkmark (�3).

We distinguish two types of constraints. Hard constraints are constraints that cannot be
broken. For example, a student cannot write two exams at the same time. If an exam
timetable fulfills all hard constraint we call it a feasible solution. The second type are soft
constraints. These constraint can be broken but should be fulfilled for an optimal solution.

Hard constraints:

�3 Students cannot have two exams at the same time.

�3 Students can only have two exams that take up to two hours or one exam that takes
more than two hours on the same day.

�3 Students need a break of at least two hours between exams.

�3 Examiner cannot have two exams at the same time.

�3 There can only be one exam in a room at a time.

�3 The room needs to have the capacity for at least two students more than registered.

�3 There has to be a break of at least 20 minutes between two exams.

� In summer, exams after lunch may only take place in rooms with air conditioning.

� Computer-based exams can only take place in computer rooms.

Soft constraints (sorted descending in priority):

� The exams of a regular semester should be distributed as evenly as possible over
the examination session.

�3 As few students as possible should have more than one exam on the same day.

� Exams of an individual student should be distributed as evenly as possible over the
examination session.

� The exams are distributed as evenly as possible over the examination period regard-
ing the grading time each examiner requires.

� Exams should not take place during the lunch break (12:30 to 12:50).

� Exams should take place in a single room if possible.
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Additional requirements:

�3 Exams take only place on week days.

� Exams take only place within the daily examination time.

� Some exams need to be fixed to a specific time slot and room.

� Examiners should have the possibility to block certain time slots.

� Rooms can be blocked during certain time slots.

� Exams should be split up into multiple rooms if the capacity of a room is too small.

An agile project development approach is applied to allow the customer to add additional
requirements later on in the process. As a result, the customer always stays in the loop.
If necessary, the customer then can intervene if something needs to be changed or was
forgotten in the initial specification.



Chapter 3

Research

3.1 Cost Function for Optimal Distribution of Exams

Half of the soft constraints are related to an optimal distribution of exams. Therefore, we
need a cost function that indicates how well a set of exams is distributed. This section
describes the development and verification of the cost function and the reasoning behind
it. As this cost function is crucial for a good examscheduler, we tested it thoroughly before
implementing the constraints based on it. The complete test results of the verification can
be found in the Appendix C.

For the sake of simplicity, we define a few concepts that are heavily used in this section
and form the basis of the cost function:

Definition 1. Each exam has a timestamp that indicates on what date and what time the
exam starts. A set of exams is called an examination schedule.

Definition 2. The distance between two exams is the absolute difference of the exams’
timestamp. It can be measured in any unit of time. The duration of the exams is ignored.

Definition 3. Each examination schedule with N ¥ 2 exams can be represented by a set
of distances that contains all distances between two successive exams. The exams’ order
implied by the term “successive” is given by the exam’s timestamp.

For instance, the examination schedule E with three exams can be represented by the set
D containing two distance, measured in hours:

E � t "2021-01-19T08:00" , "2021-01-20T08:00" , "2021-01-22T13:00" u

D � t24, 53u

8



Chapter 3. Research 9

3.1.1 Initial Approach

As a first approach, we used the variance of all distances between two successive exams.
However, we took the optimal distance as the mean. LetD be the distances representing
a given examination schedule, and T is the exam session’s duration in days. If |D| ¥ 1,
then we can calculate the optimal distance µ and the costs σ2 for the given examination
schedule. Note that we measured the distance in days. More precisely, we took only the
absolute difference of the exam’s date and truncated the time information.

µ � T � 1
|D| (3.1)

σ2 � 1
|D|
¸
dPD

pd� µq2 (3.2)

The test results in Figure 3.1 reveal that the initial cost function is not normalized. This
is a problem as we need to sum up the costs of multiple schedules. In that event, each
examination schedule should be equally weighted. Otherwise, exam timetableswithmuch
higher costs have an enormous impact, which is not desirable. To solve this issue, we need
to normalize the cost function.

Optimal D. [h] Costs Optimal D. [d] Costs
72.00 419.87 3.00 0.67 7 Good x x x x x x x
72.00 1979.10 3.00 3.33 7 No free days x x x x x x x
72.00 1293.17 3.00 2.83 7 Cluster x x x x x x x
72.00 569.20 3.00 1.00 7 Compact but good x x x x x x x
39.27 182.39 1.64 0.60 12 Good x x x x x x x x x x x x
39.27 471.32 1.64 1.01 12 Bad I x x x x x x x x x x x x
39.27 915.48 1.64 1.87 12 Bad II x x x x x x x x x x x x

432.00 46.69 18.00 0.00 2 Max spread x x
432.00 160934.69 18.00 289.00 2 No spread x x
432.00 129600.00 18.00 225.00 2 Good x x
108.00 2819.49 4.50 4.75 5 Compact but good x x x x x
108.00 245.49 4.50 0.25 5 Evenly spread all over x x x x x

0.00 0.00 0.00 0.00 1 Exam x
30.86 282.12 1.29 0.49 15 Exams x x x x x x x x x x x x x x x

x  Exam scheduled  No exam scheduled  Weekend

Distances in hours Distances in days Description Examination Schedule

Figure 3.1: Test Results of the Initial Cost Function: It shows the costs and the optimal
distance for different examination schedules, once measured in hours and once in days.

During the testing, we noticed that it is better to measure the distances between exams
in hours rather than in days. If an examination schedule has a certain amount of exams,
then it becomes inevitable that two exams take place on two consecutive days. At this
point, the exam’s start time becomes increasingly important for an even distribution of
exams.Measuring the distances in hours considers the starting time and therefore results
in better distinguishable scores, even for exam timetableswithmany exams.Moreover, we
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realized that the optimal distance µ is not realistic. For instance, the schedule “12 Good”
in Figure 3.1 has an optimal distance of about 40 h. However, a break so long between
every exam is impossible. The optimal distances are too large because we include the
weekends in calculating the optimal distance, but no exams can take place on weekends.

3.1.2 Improving the Cost Function in Four Iterations

1st Iteration: Normalization and Correction of Optimal Distance

The initial cost function (3.2) is in a way the variance of the distancesD � td1, ..., dnu that
represent an examination schedule. Consequently, we can use the coefficient of variation
to normalize the cost function. The coefficient of variation v is defined as the ratio of
the standard deviation σ to the mean µ. Since all distances are positive, we can define a
normalized coefficient of variation v� such that 0 ¤ v� ¤ 1 [3].

v � σ

µ
�

b
1
n

°
dPD pd� µq2
µ

(3.3)

v� � v?
n
� 1
n � µ

d¸
dPD

pd� µq2 (3.4)

The second problem is that we have unrealistic values for the optimal distances. To solve
this issue, we simply ignored the days on which no exams can be scheduled when calcu-
lating the optimal distance (3.5). All of this together results in the updated cost function:

LetD be the distances in hours representing a given examination schedule withN exams,
and T is the number of days on which exams can be scheduled. If |D| ¥ 1, then we can
calculate the optimal distance d̄ between two successive exams and the costs v� for the
given examination schedule.

d̄ � 24 � T � 1
N

(3.5)

v� � 1
|D| � d̄

d¸
dPD

pd� d̄q2 (3.6)

Figure 3.2 shows two unexpected behaviors of the updated cost function. We expected
all costs to be in the range r0; 1s. However, not all costs seem to be properly normalized.
Even more surprisingly, the costs for the examination schedule “7 Good” are now higher
than the cost for the examination schedule “7 No free days”.
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Optimal D. [h] Costs Optimal D. [h] Costs
72.00 419.87 48.00 0.267 7 Good x x x x x x x
72.00 1979.10 48.00 0.210 7 No free days x x x x x x x
72.00 1293.17 48.00 0.313 7 Cluster x x x x x x x
72.00 569.20 48.00 0.163 7 Compact but good x x x x x x x
39.27 182.39 28.00 0.193 12 Good x x x x x x x x x x x x
39.27 471.32 28.00 0.244 12 Bad I x x x x x x x x x x x x
39.27 915.48 28.00 0.350 12 Bad II x x x x x x x x x x x x

432.00 46.69 168.00 1.612 2 Max spread x x
432.00 160934.69 168.00 0.816 2 No spread x x
432.00 129600.00 168.00 0.571 2 Good x x
108.00 2819.49 67.20 0.232 5 Compact but good x x x x x
108.00 245.49 67.20 0.318 5 Evenly spread all over x x x x x

0.00 0.00 0.00 0.000 1 Exam x
30.86 282.12 22.40 0.224 15 Exams x x x x x x x x x x x x x x x

x  Exam scheduled  No exam scheduled  Weekend

Intial Aproach 1st Iteration Description Examination Schedule

Figure 3.2: Comparison of the Cost Function’s Results (Initial Approach vs. 1st Iteration)

2nd Iteration: Ignoring Distances Greater than the Optimal Distance

So far, the cost function aims to distribute the exams as evenly as possible. This goal
seems wrong, though, as most students would not mind if exams are farther apart than
the optimal distance. Hence, it seems natural to ignore all distances that are greater than
the optimal distance.

The reason that some costs are not normalized as expected is due to the fact that we
decreased the optimal distance, and so the enumerator in the cost function (3.6) gets too
small. Fortunately, this normalization problem goes awaywhen the distances greater than
the optimal distance are ignored.

Optimal D. [h] Costs Optimal D. [h] Costs
48.00 0.267 48.00 0.025 7 Good x x x x x x x
48.00 0.210 48.00 0.193 7 No free days x x x x x x x
48.00 0.313 48.00 0.111 7 Cluster x x x x x x x
48.00 0.163 48.00 0.073 7 Compact but good x x x x x x x
28.00 0.193 28.00 0.000 12 Good x x x x x x x x x x x x
28.00 0.244 28.00 0.055 12 Bad I x x x x x x x x x x x x
28.00 0.350 28.00 0.055 12 Bad II x x x x x x x x x x x x

168.00 1.612 168.00 0.000 2 Max spread x x
168.00 0.816 168.00 0.816 2 No spread x x
168.00 0.571 168.00 0.571 2 Good x x

67.20 0.232 67.20 0.133 5 Compact but good x x x x x
67.20 0.318 67.20 0.000 5 Evenly spread all over x x x x x

0.00 0.000 0.00 0.000 1 Exam x
22.40 0.224 22.40 0.000 15 Exams x x x x x x x x x x x x x x x

x  Exam scheduled  No exam scheduled  Weekend

1st Iteration 2nd Iteration Description Examination Schedule

Figure 3.3: Comparison of the Cost Function’s Results (1st Iteration vs. 2nd Iteration)

At first glance, the test results from the second iteration, shown in Figure 3.3, looks good.
Bad examination schedules have higher costs than good ones with the same amount of
exams. However, the costs of examination schedules with fewer exams tend to be higher
in general, which is a new normalization problem.
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For example, the examination schedule “2 Good” in Figure 3.3 is quite acceptable, but its
costs of 0.571 are ten times higher than the costs of the schedule “12 Bad I”. The costs of
exam timetables should be comparable independent of the number of exams.

3rd Iteration: Max Value for the Optimal Distance

Exam timetables with fewer exams have a higher optimal distance since the cost function
aims to distribute the exams as evenly as possible. The examination schedule “2 Good”
in Figure 3.3 has an optimal distance of 168 h, which is a lot. In our opinion, three nights
between two exams is sufficiently good. Therefore, we set a max value of 60 h for the
optimal distance. Note that we set it to 60 h and not 72 h to ensure that the max number
of nights between two exams is always exactly three. With 72 h, it would be four nights if
the first exam takes place in the afternoon.

With the upper limit for the optimal distance, we aimed to make examination schedules
with a different number of exams comparable. However, the third iteration test results,
shown in Figure 3.4, tell us that we achieved the desired goal only partly. The costs for
the schedule “2 Good” are now zero, and the costs for the schedules “2 No spread” and
“5 Compact but good” decreased in comparison to the second iteration. Nevertheless, all
other costs did not change at all because the upper limit of the optimal distance affects
only the costs of examination schedules whose actual optimal distance is below the limit.

Optimal D. [h] Costs Optimal D. [h] Costs
48.00 0.025 48.00 0.025 7 Good x x x x x x x
48.00 0.193 48.00 0.193 7 No free days x x x x x x x
48.00 0.111 48.00 0.111 7 Cluster x x x x x x x
48.00 0.073 48.00 0.073 7 Compact but good x x x x x x x
28.00 0.000 28.00 0.000 12 Good x x x x x x x x x x x x
28.00 0.055 28.00 0.055 12 Bad I x x x x x x x x x x x x
28.00 0.055 28.00 0.055 12 Bad II x x x x x x x x x x x x

168.00 0.000 60.00 0.000 2 Max spread x x
168.00 0.816 60.00 0.486 2 No spread x x
168.00 0.571 60.00 0.000 2 Good x x

67.20 0.133 60.00 0.100 5 Compact but good x x x x x
67.20 0.000 60.00 0.000 5 Evenly spread all over x x x x x

0.00 0.000 0.00 0.000 1 Exam x
22.40 0.000 22.40 0.000 15 Exams x x x x x x x x x x x x x x x

x  Exam scheduled  No exam scheduled  Weekend

2nd Iteration 3rd Iteration Description Examination Schedule

Figure 3.4: Comparison of the Cost Function’s Results (2nd Iteration vs. 3rd Iteration)

Iteration 4: Weighing the Costs According to the Number of Exams

Still, examination schedules with fewer exams have lower costs in general. Ideally, all
schedules with an optimal exam distribution have costs close to zero, and a worse distri-
bution should result in higher costs. Moreover, two examination schedules with an equally
good distribution should have similar costs, independent of the number of exams. From
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the previous iterations, we know that distributing the exams optimally becomes more dif-
ficult with more exams. Technically, it gets more challenging as the number of days on
which exams can be scheduled is limited. Therefore, we came up with the idea of adding
a weighting according to the ratio of the number of exams to the available time. With this
adjustment, we can define the final version of the cost function.

Definition 4. Let D be the distances in hours representing a given examination schedule
with N exams, and T the number of days on which exams can be scheduled. If |D| ¥
1, the optimal distance d̄ between two successive exams and the costs v� for the given
examination schedule can be calculated.

d̄ � minp24 � T � 1
N

, 60q (3.7)

D� � td P D|d ¤ d̄u (3.8)

v� � 1
|D| � d̄

d ¸
dPD�

pd� d̄q2 � N
T

(3.9)

For the verification, we created examination schedules with different numbers of exams
and put them in one of the three categories:

1. “good”

2. “bad”

3. “worst”

The exact definition of these categories is highly subjective and therefore not that relevant.
More importantly, though, is its order. For a group of examination scheduleswith the same
number of exams, we expect the schedules of the category “good” to have the lowest
score and the schedules of the category “worst” to have the highest score. The score of the
examination schedule with the category “bad” should be somewhere between. Besides,
the schedules of a the same category should have similar scores.

The column “4th Iteration” in Figure 3.5 shows the costs from the final cost function. For
a better comparison, the costs are multiplied by 1000. For a group of schedules with the
same amount of exams, the score ensures the same order as stated by the categories.
One can also see that schedules from the same category have a similar score:
“good”Ñ r0 : 8s, “bad”Ñ r23 : 58s, “worst”Ñ r66 : 100s
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3rd Iteration 4th Iteration
0 0 3 Exams (good)

141 28 3 Exams (bad)
424 85 3 Exams (worst)

0 0 4 Exams (good)
94 25 4 Exams (bad)

346 92 4 Exams (worst)
0 0 5 Exams (good)

87 29 5 Exams (bad)
300 100 5 Exams (worst)

0 0 6 Exams (good)
57 23 6 Exams (bad)

229 91 6 Exams (worst)
24 11 7 Exams (good)
83 39 7 Exams (bad)

167 78 7 Exams (worst)
0 0 8 Exams (good)

87 46 8 Exams (bad)
150 80 8 Exams (worst)

0 0 9 Exams (good)
89 54 9 Exams (bad)

118 71 9 Exams (worst)
12 8 10 Exams (good)
84 56 10 Exams (bad)

119 79 10 Exams (worst)
0 0 11 Exams (good)

79 58 11 Exams (bad)
94 69 11 Exams (worst)

0 0 12 Exams (good)
45 36 12 Exams (bad)
82 66 12 Exams (worst)

Examination 
Schedule

Costs

Figure 3.5: Comparison of the Cost Function’s Results (3rd Iteration vs. 4th Iteration)
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3.2 Preparing the Problem for a Constraint Solver

When trying to find a feasible solution for an examination schedule with a constraint plan-
ner such as the OptaPlanner, one can do many optimizations. These optimizations can
either be adjustments of the problem model or different choices of algorithms. This sec-
tion identifies the problem’s search space and explains what kind of solution can be found
at all. Moreover, it talks about how the OptaPlanner works internally and preparation work
needed for an efficient solving process.

3.2.1 Identifying the Search Space

Creating an examination schedule is an NP-complete problem [1]. To optimize the solving
process, we need to understand the search space and check what restrictions can reduce
it. To identify the search space, we take an actual input data set. This set has:

• 196 exams

• 20 rooms

• 405 possible time slots of 20 minutes each (15 days, 08:00 – 17:00)

• 1,322 students

• 9,139 exam registrations

If we only take a single exam into account, we have 405 time slots times 20 rooms result-
ing in 8,100 possible configurations.

timeSlots � rooms � possibleConfigurationsForASingleExam (3.10)

Note that we simplify the problem by assuming each exam takes place in precisely one
room. 8100 is already a significant number, but it would be attainable.

When looking at the entire data set, everything changes. Let T be a timeline with the same
number of slots as exams exist. We can now put every exam in any order in every position.
If we do this for each combination, we end up with 196! different configurations for T . 196!
is somewhere in the neighborhood of 5.08 � 10365, which is a massive number of options.
In comparison, the number of atoms in the universe is only somewhere between 1078 and
1082. Furthermore, do not forget that the different possible time slots, and the fact that
some exams take place in multiple rooms are excluded here.
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With the above-made calculations, we now have a rough understanding of how ample the
initial solution space is. In the following sections, we investigate how this solution space
can be reduced and what options we have to find a viable solution in a reasonable time.

3.2.2 Can we Find an Optimal Solution?

Based on the previously seen solution space, the question arises if we, or the OptaPlanner,
can find an optimal solution. Since the problem is NP-complete, the short answer is no,
most certainly not. The OptaPlanner team also tackled this question in their documenta-
tion and noted what other requirements there might be and what influence they have:

“

• Scale out: Large production data sets must not crash and have also good results.

• Optimize the right problem: The constraints must match the actual business needs.

• Available time: The solution must be found in time, before it becomes useless to
execute.

• Reliability: Every data set must have at least a decent result (better than a human
planner).

Given these requirements [...], it is usually impossible for anyone or anything to find the
optimal solution. Therefore, OptaPlanner focuses on finding the best solution in available
time. [...] The nature of NP-complete problems make scaling a prime concern. ” ([4])

Taking the huge solution space seen in the previous section, we know that there is no way
for the OptaPlanner to find an optimal solution. Therefore, the OptaPlanner uses different
algorithms, attempting to find a feasible solution in an acceptable time. We can configure
these algorithms to work best with our problem.

Before introducing the algorithms and its configurations, we look at some preparation
work that enables the algorithms to work as efficiently as possible.

3.2.3 Preparation Work

The OptaPlanner can do a lot on its own as soon as the problem model is defined. Never-
theless, there are many ways to help it perform more efficiently.

Reduce Problem Facts per Planning Entity

As a short recap; Planning entities are, as the name might suggest, the entities that need
to be planned. Problem facts are the possible values that can be assigned to a planning
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entity. In the case of the exam scheduler, the exams are the planning entities and the
rooms and time slots are the problem facts. In literature, the problem facts are also called
the domain, that gets assigned to a set of variables on the planning entity [5].

Without any particular configuration, every planning entity has the same problem facts at
its disposal. As seen in subsection 3.2.1, this results in 8,100 possible configurations per
exam. If we have some a priori knowledge, we can reduce this number by quite a bit.

For example, an exam that has 50 students needs a room with at least that capacity.
Therefore, we can remove all rooms that have a smaller capacity for this exam. In our
example, this wouldmean that wewould go from20 rooms down to three rooms. Applying
the previous calculation (Equation 3.10), we get 1,215 possible configurations. This result
is 85% less than what we had before. Suppose we now also remove all the timeslots in
the evening that are not a possible start time, as the exam would end after “work hours”.
In that case, we can reduce the possible solutions even further down to 945, which is only
12% of the initial solution space.

With the help of this preparation work, we can keep the OptaPlanner from testing assign-
ments that never result in a viable solution.

Selection Filtering During Runtime

Some assignments may be initially possible but turn out to be not viable based on the
solution state present. For situations like this, we have the option to add selection filters.
These filters take a selection and the current solution state and return whether the se-
lection is accepted or not. For example, a selection can be the assignment (move) of a
new room or time slot to an exam. If this selection is not acceptable based on the current
solution state, because the new room has not enough space, the filter will remove this
selection and even further reduce the solution space.

Weighting the Constraints

The examscheduler aims to find an examination schedule that fulfills all constraints listed
in section 2.3. For a feasible solution, all hard constraints must be fulfilled. On the other
hand, soft constraints should be fulfilled but can be broken if needed. So, overall hard
constraints have a higher priority than soft constraints. Moreover, the soft constraints are
prioritized amongst each other. Therefore, some constraints need to be weighted more
than others. Unfortunately, one can predict the impact of a weighting factor only to some
extent. This leads to the fact that the first try most likely will not be what we wanted.
That is why an initial educated guess of weights has to be made, which can be iteratively
adjusted to meet the expectations. In the end, the constraints are more or less single-
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handedly responsible for the quality of the solution. No matter what algorithms are used,
the solution will be bad if the constraints are poorly weighted.

Providing Additional Information about the Problem Model

To help a constraint solver fulfill its task, we can give it some extra information about
the problem model. The OptaPlanner gives us the possibility to specify the behavior of
the score resulting from the constraints via the initializingScoreTrend option [6].
For example, if we only have negative scores, we know that when assigning a value to a
previously unassigned variable, the score can only stay the same or get worse but never
get better. With this extra information, the solver gains many insights into the model. If a
configuration results in a score equal to the previous configuration score, the solver can
stop looking. If it would not have this information, every configuration had to be tested to
find the configuration which results in the best score.

Another possibility to help the OptaPlanner, respectively the underlying algorithms, is to
implement a difficultyComparatorClass [7]. This class defines a planning difficulty
for each planning entity. In the case of the exam scheduler, this difficulty could be, for
example, the number of students an exam has, the duration of the exam, or a combination
of both. With the help of this information, the OptaPlanner can start with the assignment
of the complex entities and focus on the "easier/simpler" ones later on.

Tweak Calculation Speed

Even with all the preparation work done, the process will only be as fast as the slowest
component. We have to make sure that this is not our code. With every changing variable,
all constraints are checked, and with them, all methods responsible for calculating the
score are executed. Any ineffective calculation in our code will immensely slow down the
solving process. Therefore, special attention needs to be paid that the calculations are
done efficiently. However, this is not the end. Optimizing the efficiency of the calculation
itself is not enough. Whenever possible, additional caching should be used, especially if
the calculations are executed many times with the same parameters.
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3.3 Algorithm-Evaluation for the OptaPlanner

This section evaluates the different types of algorithmsavailable for “solving”NP-complete
problems with the OptaPlanner. For the most promising algorithms, we go into depth on
how they work and how they compare to each other.

3.3.1 Exhaustive Search

Exhaustive search is the most simple kind of algorithms. As the name suggests, these
algorithms exhaust all possible solutions. As we discussed in subsection 3.2.1, there are
n! possible solutions and so the time complexity isOpn!q. The algorithmswill find the best
solution eventually but, unless the problem space is small, not in a matter of time that any
human being will ever be able to witness it.

At this point, we introduce two properties of an algorithm. Being complete, meaning that
the algorithm always finds a solution in a finite amount of time if one exists, and being
optimal, meaning that the algorithm always finds a global minimum/maximum [5].

Even though exhaustive search algorithms, such as brute force or branch and bound, are
complete and optimal, the time complexity is too bad. So, this approach can be discarded
right from the beginning.

3.3.2 Solving Process and its Phases

TheOptaPlanner solving process consists ofmultiple phases. Each of themuses different
algorithms. Usually, the first phase is the construction phase.

Construction Phase

In the construction phase, the task is to take an empty or partially assigned solution and
initialize all the variables with a value. Th OptaPlanner does this with the help of some
construction heuristics [8]. Construction heuristics do this job of assigning values to the
variables in a finite length of time. The resulting solution might violate hard constraints,
but it is found fast, optimally, in less than half a minute if the problem scale allows it [9].
The job of the local search or evolutionary phase is then to start improving this initial
solution.
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Local Search Phase

The local search phase always needs an initialized solution. That is why the construction
phase is executed preliminary. The local search phase runs, as the name suggests, one
or multiple local search algorithms.

Local search algorithms belong to the family of Metaheuristics. Sean Luke answers the
question “What is aMetaheuristics?” in his book “Essentials ofMetaheuristics” as follows:

A common but unfortunate name for any stochastic optimization algorithm
intended to be the last resort before giving up and using random or brute-force
search. Such algorithms are used for problems where you don’t know how to
find a good solution, but if shown a candidate solution, you can give it a grade.
([10])

For visualizing this concept, imagine “painting the Mona Lisa” is the problem and copy
printers are not available. Doing this, will take a tremendous amount of time, so we ease
the problem by only requiring that it needs to be recognizable by a human. With only 45
polygons layered on top of each other, one can create a rather impressive result, shown
in Figure 3.6.

Figure 3.6: Analogy of an Algorithm Trying to Find a Solution in Reasonable Time [10]

Local search algorithms aim to find the best possible solution, which means maximizing
the score or minimizing the penalty, respectively. The main handicap of such algorithms
is that theymay get stuck in a local maxima/minima. Local maxima/minima are solutions
where better solutions exist, but slightly changing the current solution always results in
a worse solution. There are many different algorithms, the main difference being how
they handle such situations. As opposed to a local maxima/minima, we have the global
maxima/minima, representing the best possible solution.
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Aswe have seen in subsection 3.2.1, the number of possible configurations (calledmoves)
for each state (called step) can get large. Thus, this number has to be limited in order for
the algorithm not to move too slowly. For that, we have to configure the possible-moves-
per-step forager of the OptaPlanner with a limit, namely the acceptedCountLimit [11].
Setting the limit very low results in a quick-stepping algorithm, meaning that only a few
moves are taken into account before selecting one. This has the drawback of not always
choosing the best option. Setting the limit very high, i.e. take a lot of moves into account,
improves the solution pick but decreases the step speed. This value has to be chosen
carefully depending on the selected algorithm. According to the OptaPlanner documenta-
tion, each step should take less than two seconds as a general guideline [12].

Evolutionary Phase

The evolutionary phase consists of one or multiple evolutionary algorithms. Evolutionary
algorithms also belong to the family of Metaheuristics. They operate on a population and
generate new states by mutating and crossing over those populations. We will not go into
details on those, as first, this type of algorithms does not suit our needs, and second,
OptaPlanner has, at the time of writing this, no support for them.

3.3.3 Algorithms in Construction Phase

This section talks about the algorithms used in the construction phase. The focus lies on
one particular algorithm, but alternatives and a variant are discussed as well.

First Fit Algorithm

The OptaPlanner uses in the default configuration the first fit algorithm. This algorithm
goes through all the planning entities one by one and assigns the best planning value(s)
available to it. Once a planning value is set, it is never changed again. The algorithm ends
when all planning entities are initialized.

Alternative Algorithms

The OptaPlanner also has some other algorithms available: weakest fit, strongest fit, allo-
cate entity from queue, allocate to value from queue, cheapest insertion, regret insertion,
and allocate from pool. We will not detail them, as they do not promise any improvement
over the first fit algorithm. The OptaPlanner documentation recommends using the first
fit algorithm for most cases.
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Decreasing Variants

A unique variation that can be applied to most named algorithms is the “decreasing” ver-
sion. In this version, the algorithm uses a list of exams that are sorted by their planning
difficulty. The difficulty is specified on the planning entity as described in section 3.2.3.

Using the first fit decreasing variant, the algorithm assigns the more difficult planning
entities first and ends with the “easy” ones.

3.3.4 Algorithms in Local Search Phase

This section talks about algorithms used in the local search phase andwhat relations they
have to each other (see Figure 3.7).

No Local Minima/Maxima 
Prevention

Hill Climbing / Steepest Ascent

Late Acceptance Hill Climbing Algorithm Step Counting Hill Climbing Algorithm

Tabu Search

Simulated Annealing Algorithm

Great Deluge Algorithm

Local Minima/Maxima 
Prevention

Figure 3.7: Metaheuristc Map with Dependencies

Hill Climbing/Steepest Ascent

The hill climbing algorithm is the simplest variant of a local search algorithm. It works by
taking the current state, adjusts a few variables, and compares the newly resulted score to
the score of the current state. If the score improves, this new solution gets the new state,
the old state gets discarded, and everything starts again. This algorithm is very memory
efficient as no knowledge about previous states is stored. However, if this algorithm lands
in a local maximum, it has no chance of ever getting out of it again. Stuart Russell and Pe-
ter Norvig nicely explain this in their book “Artificial Intelligence - A Modern Approach” [5]
as being the same as “trying to find the top of Mount Everest in a thick fog while suffering
from amnesia.”.
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For the hill climbing algorithm to always choose the steepest possible improvement, the
number of possible next-moves, acceptedCountLimit, must not be limited too much.
Hill climbing is neither complete nor optimal with the time complexity of Op8q [13].

Tabu Search Algorithm

The tabu search algorithm improves the hill climbing algorithm by maintaining a list of
recently visited states and forbids the algorithm to choose them again. This list has a
fixed size and is updated with every move [14, 15].

To explain tabu search, let us apply it to an example. We can think of local search as being
trapped in a maze. Every corner and hallway looks the same. This indistinguishability will
lead to cases where we visit the same spot over and over again without ever noticing it.
Now to help us navigate, we tie a rope around our waist and pull it behind us. Whenever we
come across a part of the rope, we know we have been here before. This rope represents
the tabu list in our search algorithm. To trace thewhole pathwe took, wewould need a rope
that is of infinite length (this represents the space complexity of the problem). Therefore,
we need to cut it into a finite length. With every step wemove forward, the end alsomoves,
and we lose some information about our path. Similar to the arcade game “Snake”. The
main challenge now is to choose the right length of the rope (the tabu list) [16].

The OptaPlanner calls this list length/size ...TabuSize or ...TabuRatio, where the
tabu list can be applied to (planning) entities, problem facts (called values in the Opta-
Planner configuration), moves, or combinations of all the three listed. Together with the
list size, same as in the hill climbing algorithm, the acceptedCountLimit, must not be
limited too hard. Else, it even can happen that the algorithm gets stuck in places where all
available moves are in the tabu list and are therefore forbidden to choose.

Tabu search is not limited to the hill climbing algorithm. It can be applied to every local
search algorithm.

Simulated Annealing Algorithm

Simulated annealing, or short SA, is amore advanced local search algorithm and is kind of
a combination of randomwalk (making every move completely random) and hill climbing.
It tries to solve the problem of getting stuck in a local maxima/minima by accepting some
moves that temporarily worsen the solution. Annealing comes from metallurgy and is the
process of tempering or hardening metals or glass by heating them up and then letting
them slowly cool off. Stuart Russell and Peter Norvig describe this as follows:
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To explain simulated annealing, we switch our point of view from hill climbing
to gradient descent (i.e., minimizing cost) and imagine the task of getting a
ping-pong ball into the deepest crevice in a bumpy surface. If we just let the
ball roll, it will come to rest at a local minimum. If we shake the surface, we can
bounce the ball out of the localminimum. The trick is to shake just hard enough
to bounce the ball out of local minima but not hard enough to dislodge it from
the global minimum. The simulated-annealing solution is to start by shaking
hard (i.e., at a high temperature) and then gradually reduce the intensity of the
shaking (i.e., lower the temperature). ([5])

Simulated annealing is a quite fast converging algorithm. By default, the first accepted
move is also the winning step. Therefore, the acceptedCountLimit should be kept
small. Accepted means that it either improves the score or passes a random check. If
we go back to the ping-pong ball example, the random check is a quick shake, and the
probability of selecting a “bad” move is relative to the shaking strength (the temperature).

When configuring the simulated annealing approach in the OptaPlanner, an initial maxi-
mum temperature (maximum shaking strength) is set. Throughout the solving process,
this temperature is reduced.

To prevent the algorithm from changing the same variables repeatedly without any real
improvement, simulated annealing can also be combined with the tabu search. However,
the tabu list size should be kept smaller than when using the tabu search with hill climbing
algorithm, as the acceptedCountLimit is also small.

Simulated annealing is not complete but gets close to being optimal. The worst-case
scenario is still a time complexity of Op8q as it is not guaranteed to find a global max-
imum/minimum. Nevertheless, in most cases, it performsmuch better than the hill climb-
ing algorithm [13].

Late Acceptance Hill Climbing Algorithm

Late acceptance hill climbing, or short LAHC, is a specialization of the hill climbing algo-
rithm discussed before. Instead of comparing the new state with the current state, late ac-
ceptance hill climbing compares the newstate to the state a number of steps back, namely
lateAcceptanceSize. This late acceptance tries to prevent it from ending up in local
minima/maxima. Similar to other algorithms before, the real challenge lies in configuring
the algorithm the right way. Here the number of steps back has to be configured. If chosen
too low, we end up with the default hill climbing algorithm (lateAcceptanceSize = 0).
If chosen too high, we end up with an algorithm that accepts every move and is therefore
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just a randomwalk. As this algorithm is also open for change, theacceptedCountLimit
is set low in order for it to move fast.

Based on two studies, late acceptance hill climbing often performs better by a small mar-
gin than simulated annealing on the problem of scheduling exams [17, 18].

Great Deluge Algorithm

Great deluge is very similar to simulated annealing. Instead of a temperature, it uses a
water level. The water level represents the minimal score a new solution needs to have to
be accepted. The first solution that is accepted is also chosen. After each step, the water
level is increased. As the level increases gradually, this algorithm hasmore time to escape
from a local maxima/minima.

Figure 3.8 demonstrates this behavior. The start point is chosen randomly. In step two,
the algorithm has found a local maxima, but because the water level is low enough, the
solution can go down hill (get worse) temporarily, for it to find a new ascending. This goes
on for the next steps until it finds the global maxima, i.e. the optimal solution, where it can
not go anywhere else. If the water level surpasses the best solution found, the search is
over. Finding the optimal solution/the goal state, is not guaranteed, but the chances are
much higher than with the hill climbing algorithm.
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Current Best Solution
STEP 1 - START
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Current Best Solution
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Current Best Solution
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Current Best Solution
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Figure 3.8: Process of the Great Deluge Algorithm Finding the Optimal Solution

As with any other algorithm discussed, finding a suitable configuration is the challenge.
In the case of great deluge, the initial water level (greatDelugeInitialWaterLevel)
and thewater level increment step (greatDelugeWaterLevelIncrement) needs to be
configured. The acceptedCountLimit is set low for the same reasons as in simulated
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annealing. Based on the same two studiesmentioned above, great deluge performsworse
than SA and LAHC [17, 18].

Step Counting Hill Climbing Algorithm

The step counting hill climbing algorithm, or short SCHC, is a variation of the late accep-
tance hill climbing algorithm. Instead of comparing the new score to the threshold score
xmoves before, SCHC selects a new threshold every xmoves and keeps this one for the
following xmoves. A visualization of the difference can be seen in Figure 3.9.

LAHC
Late Acceptance Hill Climbing
History Size: 3

SCHC
Step Counting Hill Climbing

Climb Size: 3

#1

#2

#3

#4

#5

#6

#7

#8

#9

Steps

Figure 3.9: Comparison of the Internal Workings of Step Counting Hill Climbing and Late
Acceptance Hill Climbing

For this version, the number of steps, namely the stepCountingHillClimbingSize,
have to be set. Everything else is identical to LAHC. Based on the same two studies men-
tioned above [17, 18], SCHC performs even better than LAHC.

3.3.5 Conclusion and Configurations Short List

A significant chunk of optimizations can be done by preparing the data model and supply-
ing the OptaPlanner with additional information regarding themodel. Those optimizations
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should be the first order of action; Adding the difficultyComparatorClass and an
initializingScoreTrend.

After that, suitable algorithms have to be chosen.We only discussed the twomost promis-
ing variants for the construction phase, which we are both going to test.

• First Fit Algorithm

• First Fit Decreasing (Decreasing Variants)

For the local search phase, more different options were covered. Based on the found re-
search and the suggestions of the OptaPlanner documentation, we are going to test:

• Simulated Annealing Algorithm

• Step Counting Hill Climbing Algorithm

The better configuration of both should also be tested in a second round, where a bit of
Tabu should be included. Furthermore, some tests regarding the acceptedCountLimit
have to be made to find a suitable configuration.
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Solution

This chapter describes all the enhancements and adjustments to the previous version of
the exam scheduler resulting from the semester project. It also tackles details regarding
performance optimizations, improvements of the UI, the integration into the university’s
IT system, and the quality assurance measures put in place.

4.1 Adjustments and Enhancements of the Exam Scheduler

This section explains in depth all the additional requirements that required someparticular
decisions and compromises.

4.1.1 Support for Multiple Rooms per Exam User Story:
D.1.6

Until now, the exam scheduler always assigned only one room to an exam. This strategy
works well as long as every exam does not have more students than the biggest room
has capacity. This assumption is not always fulfilled and also should not be enforced.
Therefore, the exam scheduler needed to be adapted to meet this requirement.

One can think of many different approaches to solving this problem. To give just a few
options:

1. Having a variable list of rooms for each exam that can be assigned

2. Creating virtual rooms that combine two or more rooms

3. Having a defined number of room slots for each exam that can be assigned

Option 1 is the most generic and flexible solution. The problem is that it is too flexible
for the OptaPlanner to be able to work with it. Furthermore, it would increase the solution
space exponentially for every additional possible room combination.

28
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Option 2 keeps the solution space for the room assignment linear but would have way
more possible rooms that can be assigned. This drawback would therefore increase the
base size of the solution space. Besides that, it would be complicated to keep track of the
room assignments inside those virtual rooms to prevent assigning the same room at the
same time to different exams.

Option 3, which we used in the end, combines both approaches’ benefits to some extent.
Each exam has a limited number of slots where a room can be assigned to. In our case,
we settled for four slots. When a room needs to be selected, all rooms except the already
assigned ones are possible. Removing an assignment is also a viable option as long as at
least one room is set for the exam. With this approach, the base solution space, meaning
the number of possible rooms, is kept small, and themaximum size is limited. As a further
improvement, we added the possibility to limit the number of room slots per exam. This
limitation is beneficial for controlling when splitting an exam into two rooms is desired
and when not. For example, an exam with 30 students should never be split up into two
rooms with a capacity of 20 people, when there are plenty of other rooms that can easily
contain 30 students. On the other hand, an examwith 240 students must be split into two
or even more rooms if the largest room’s capacity is insufficient.

For a human planner, these restrictions would suffice. However, the OptaPlanner works in
ways that it assigns new problem facts to the planning variables and checks afterward if
the score improved. If this is not the case, this solution is discarded. This way of solving
the problem is acceptable for most constraints, but when assigning rooms, this led to
instances where extra rooms were assigned that were not needed. For example, an exam
with 80 students could end up with three rooms assigned with capacities of 50, 20, and
40, respectively. This extra assignment was not only a problem for the final output, but
it was also a massive problem regarding finding an optimal solution. As long as a room
was assigned to an exam at a particular time, it could not be used for other exams due
to another hard constraint. A new constraint was needed that ensures that unused rooms
are released for assignment to other exams.

4.1.2 Optimal Exam Distribution for Regular Semesters and Students User Stories:
D.1.7, D.1.8

The implementation of the cost function for an optimal exam distribution is straightfor-
ward. ThemethodscalculateOptimalDistanceBetweenTwoExamsInTimeGrains
and calculateTotalCosts in Listing 4.1 correspond to the formulas in Definition 4.
However, using the cost function to build a constraint that ensures an optimal distribution
of exams for students, or within a regular semester, was more complicated than it initially
looked. The cost function indicates how well a set of exams is distributed overall. Hence,
the cost value is a good measure for the quality of an examination schedule. But it gives
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no information on how a single exam influences the costs. Giving the user the costs is like
telling whether the examination schedule is good or bad, but without any reason for the
cause. Ideally, the user can see which exams are responsible for a bad distribution. With
the OptaPlanner’s constraint stream API, the penalty for a bad distribution can be broken
down to the individual exams.

1 public class OptimalExamDistributionCostFunction {
2 // ...
3 private double calculateOptimalDistanceBetweenTwoExamsInTimeGrains() {
4 if (numberOfExams < 2) {
5 return 0;
6 }
7 double optimalDistanceInMinutes = ((double) ê

availableTimeForSchedulingInMinutes) / numberOfExams;
8 optimalDistanceInMinutes = Math.min(optimalDistanceInMinutes, ê

MAX_OPTIMAL_DISTANCE_IN_MINUTES);
9 return optimalDistanceInMinutes;

10 }
11

12 private double calculateTotalCosts(List<Exam> sortedExams) {
13 if (sortedExams.size() < 2) {
14 return 0;
15 }
16 double[] distances = getTimeGrainDistancesOfSuccessiveExams( ê

sortedExams);
17 // residual sum of squares
18 double rss = Arrays.stream(distances).parallel()
19 .filter(d -> d < optimalDistanceBetweenTwoExamsInTimeGrains)
20 .map(d -> (Math.pow(d - ê

optimalDistanceBetweenTwoExamsInTimeGrains, 2)))
21 .sum();
22 return (numberOfExams) / (distances.length * ê

optimalDistanceBetweenTwoExamsInTimeGrains * ê

availableDaysForScheduling) * Math.sqrt(rss);
23 }
24 // ...
25 }

Listing 4.1: OptimalExamDistributionCostFunction.java

In our first attempt we divided the costs for a set of exams by the number of exams. Soon,
we realized that this approach causes misleading information. A simple example best
points out the problem. For simplicity, only the scores of a single student are considered.
Figure 4.1 shows the student’s examination schedule. A human can easily tell that the first
week is stressful, whereas there are not many exams in the last week.
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Figure 4.1: Sample Examination Schedule with Seven Exams for One Student

Figure 4.2 shows the breakdownof costs. Each exam is punishedwith a score of-80soft
because the total costs are divided by the number of exams. This information seems
wrong as the exams in the second and third weeks are well distributed. Only the first week
is problematic.

Figure 4.2: Breakdown of Costs: Each exam is punished with the same penalty.

The second approach calculates the proportional cost for each exam. The updated break-
down of costs is shown in Figure 4.3. The second variant is a noticeable improvement.
The list contains only the exams of the first week as the exams in the second and third
weeks are fine. Furthermore, the exam “M_Bsys1” has the lowest score (-275 soft – high-
est penalty) as on the day before and on the day after another exam takes place another
exam.

Figure 4.3: Breakdown of Costs: Each exam is punished with the actual penalty.
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Note, the above-described problem was not about instructing the solver to do the right
thing but rather about giving the user the correct insights on the solution’s quality. The
breakdown of costs does not affect what solutions the solver finds in any way. The deci-
sion of which solution is better is solely based on the total score [19]. Moreover, the scores
in Figure 4.2 and Figure 4.3 are the weighted costs. The score function used to determine
the total score of a solution will be described in section 4.6.

It is worth looking at a crucial implementation detail for constraints based on the cost
function: The result of the cost function is a floating-point number. The OptaPlanner doc-
umentation recommends avoiding floating-point numbers in the score calculation. Arith-
metic with floating-point numbers can lead to incorrect decisions, especially in planning
problems. Decimals numbers, such as Java BigDecimal, is one alternative. However, the
OptaPlanner team has shown in experiments that using BigDecimal makes the score
calculation up to five times slower [20]. Therefore, we decided to multiply each cost value
by a factor of 1,000 and then cast it to an integer.

4.1.3 Manual Scheduling User Stories:
D.1.3, D.1.10,
D.1.16The user can manually schedule an exam by defining the date, time, and one or multiple

rooms as shown in Figure 4.4. During the solving process, manually scheduled exams
will not be moved. In other words, the solver does not change the provided scheduling
information by the user.

Figure 4.4: Dialog for Manually Scheduling an Exam: Despite the warning that the selected
room has not enough capacity, the user can still schedule the exam.
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Validation rules ensure that the user cannot schedule an exam outside the examination
session or the daily examination time, and that at least one room is provided. Moreover,
it is checked that the entered data is valid. Apart from these checks, no further validation
rules are in place. This design decision allows the user to override the solver’s choices
and break any constraint if needed. Manually scheduling an exam is a powerful feature,
and with great power comes great responsibility. To prevent an unintentional constraint
violation, the system updates the solution’s score on every change by the user . The user
can then check for any constraint violations related to the manually scheduled exam and
decide whether these are okay or not. Manual scheduling is always available, except while
the examination schedule is being solved.

Originally, the plan was to implement partial locking feature, such that the user can only
define the room or the date and time. Unfortunately, OptaPlanner does not yet support
this feature and the possible workarounds are too complex [21]. Therefore, we had to put
this feature on hold.

4.1.4 Unavailability Periods of Rooms User Story:
D.1.1

The user can define unavailability periods for rooms. A hard constraint ensures that no
exams are scheduled in unavailable rooms. Modifying the unavailability periods is always
possible, exceptwhile the examination schedule is being solved. Adding a newunavailabil-
ity period triggers a solution’s score update. Exams that are scheduled in an unavailable
room will then be penalized.

Figure 4.5: Dialog for Adding an Unavailability Period
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4.1.5 Consideration of Room Types and Daily Examination Time User Story:
D.1.9

There are two types of exams:

• paper-based exams

• computer-based exams

A computer-based exam can only take place in a computer room, and a paper-based
exam can only take place in a non-computer room. This requirement is a hard constraint,
and one could implement another OptaPlanner hard constraint to ensure it. However,
allowing only a subset of the available room is a relatively simple constraint. For such
simple constraints, one can make use of dynamic value range providers. A value range
provider is a property referencing a collection of the available values for a planning vari-
able or amethod that returns such a collection. The value range provider is annotatedwith
@ValueRangeProvider and can be on the planning entity class, such that each plan-
ning entity has its own value range provider. With this, unsuitable rooms can be filtered
out upfront. This way, the solver never assigns a value to a planning variable that would
violate a hard constraint.

Dynamic value range providers can also be used to ensure that exams take place within
the daily examination time. In this case, the value range provider for the starting time of
an exam only contains the start times whose end time (start time + exam duration) does
not exceed the daily examination end time.

4.1.6 Optional Constraint for Spring Semesters User Story:
D.1.24

The examination planning teamdifferentiates between the fall and spring semesterswhen
planning. In the spring semester, the examination session takes place in the summer.
Therefore, the examination planning teamplans exams in the afternoon only in roomswith
air conditioning. Since this constraint depends on the type of semester, it must be enabled
or disabled at run time. Figure 4.6 shows the option to enable or disable the constraint in
the user interface. The configuration is stored for each schedule in the database.

Figure 4.6: Slide Toggle for Optional Constraint
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Optional constraints can be implemented with a dynamic constraint configuration. The
Java annotation@ConstraintConfiguration defines a constraint configuration class
that contains the base scores for one or multiple constraints. At run time, a configuration
object is created based on the user settings, loaded from the database. This configuration
object is then used in the score calculation. In order to disable a constraint, the base score
is set to zero [22].

4.2 Runtime Performance Optimizations

Part of the challenge of this project was ensuring that the runtime performance of the
resulting application is high enough so that it is usable in the everyday life of an exam
scheduler, i.e., to plan the exams each semester.

We had several options to tackle this. The most effortless being to use the newest and
most optimized runtime environments and to add the proper parameters. These optimiza-
tions can already improve the performance by a lot if the project was created a while ago
and its versions are outdated. However, as this project is relatively new, the update did not
bring any ground-breaking improvements. In our case, the points with the most promising
improvement were optimizing the code itself and tweaking the solver configurations and
its algorithms. A deep dive into those two approaches follows in the subsequent sections.

4.2.1 Runtime Profiling

Even with the most powerful machine and the most optimized runtime environment, if
the code is inefficient, everything is inefficient. In our case, the application core is not the
bottleneck, as it is only used to load the timetable from and into the solver. The critical part
is the code that is executed by the solver. More specifically, the code that is executed by
the part of the solver that checks all the constraints. To find such code, we used a profiler
(VisualVM) to see which methods take how long to execute. Those methods can then be
optimized as much as possible.

Initial Run

The initial run (Figure 4.7/Figure 4.8) was executed with the application, with no alter-
ations of the code and no explicit focus on performance. It quickly became clear that the
TimeGrain class caused a performance bottleneck. The self-time, the time spent in a
method itself, accumulated over all methods in this class caused 27.9% of the total exe-
cution time.
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A second bottleneck in the applicationwas found in the examclass regarding the handling
of rooms. 6.6% of the accumulated self-execution time and 3.1% of the accumulated to-
tal time, being the sum of the self-time and all self-times of the methods called by this
method, was caused by checks regarding rooms.

Figure 4.7: First Profiling – Top 5 – Sorted by Self-Time (Total Execution Time: 1,050 sec-
onds = 17.5 minutes) – An extended, unfiltered version can be found in appendix E.1.

Figure 4.8: First Profiling – Top 5 – Sorted by Total-Time (Total Execution Time: 1,050
seconds = 17.5 minutes) – An extended, unfiltered version can be found in appendix E.1.

Tackling the Issues

Identifying the source of the bottleneck in the TimeGrain class was relatively straight-
forward. A TimeGrain was freshly created every time a new/different TimeGrain was
required. This on-demand creation created an enormous overhead in object creation and
garbage collecting unneeded/unused TimeGrains. A problem, easily solved by adding a
cache that is prefilled before starting the solving process. One important point tomention:
Adding a cache for classes used by the OptaPlanner must be done very carefully. Opta-
Planner can run highly in parallel and clones its object instances to avoid causing issues
across threads, entities, facts, and if configured, even nested properties of those. This
cloning can cause tremendous troubles if the cached classes contain any state. Luckily,
the TimeGrain is a value object and therefore wholly stateless.

Inefficient lookups and list operations mainly caused issues regarding the rooms. We
could mitigate those by replacing the underlying data structure and reducing the number
of operations it takes to generate the list.

Optimized Version

Based on the above-described performance improvements and the new feature additions
to the exam scheduler, a new performance profiling was made (Figure 4.9/figure 4.10).
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Figure 4.9: Final Profiling - Top 5 - Sorted by Self Time (Total Execution Time: 1,050 sec-
onds = 17.5 minutes) – An extended, unfiltered version can be found in appendix E.2.

Figure 4.10: Final Profiling - Top 5 - Sorted by Total Time (Total Execution Time: 1,050
seconds = 17.5 minutes) – An extended, unfiltered version can be found in appendix E.2.

We can quickly see that the self-time of the TimeGrain vanished completely, respec-
tively moved to the TimeGrainCache. Furthermore, we could reduce the self-time of
TimeGrain related operations from 27.9% down to 14.4%. Further reductions are hard to
achieve without spending an enormous amount of time to enhance date and time calcula-
tions, whichwouldmost likely end up in an entirely custom-made date, time, and date-time
class.

The room operations also lost some self-time, although not as significant as the time
grain operations. The new data structure and the more performant list creation reduced
the self-time from 50 seconds (17.5 minutes) to 45 seconds. Nothing significant on a
small scale, but expanding this to a typical solving time of 24 hours, its impact should not
be underrated.

When examining the resultsmore carefully (especially the extended version in section E.2),
a new player stands out – the OptimalExamDistributionCostFunction. This func-
tion is the new addition required by the constraints that a student and a regular semester
should have their exams as evenly distributed as possible. As this is a very computational
heavy process, not much can be done to improve its performance other than caching its
results, which is already done.

Thanks to the above-described improvements, the solver consistently keeps a score-
calculation speed above 1,000, which is recommended by the OptaPlanner team. The
score-calculation speed is a measurement that the OptaPlanner uses to describe the per-
formance of the constraints.

4.2.2 OptaPlanner Benchmarking

In section 3.3 we discussed the algorithms that are available to use and which features
they have.We have also created a shortlist of algorithms that seem to be themost promis-
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ing ones based on the research. Based on that, some test runs on our concrete problem
have to be made to compare those different algorithms. The OptaPlanner provides a tool
for that, which also generates a report in the end.

Configuration

As a starting point, wewanted to compare the different algorithms to the default algorithm
used by the OptaPlanner. Figuring out what the default algorithm is, was more difficult
than expected. As it turned out, the OptaPlanner team mentioned nowhere in their doc-
umentation which configurations are used by default. Therefore, our initial assumption
was that it uses the most basic one, the hill-climbing algorithm. It quickly transpired that
this was not the case, as running the benchmark with it was firstly tremendously slow and
secondarily resulted in no reasonable solutions. Therefore, the OptaPlanner source code
had to be consulted. In a deep-dive session, after figuring out the internals of the Opta-
Planner, a no-configuration fallback was found. It was the Late-Acceptance-Hill-Climbing
algorithm ([23]). This finding also explained the relatively good results we saw in our tests
where we did not configure any algorithm.

With this knowledge, we assembled a benchmark suite that compares:

• the default algorithm LAHC as a basis

• a reference version of the default algorithm LAHC where all configuration parame-
ters are defined manually

• a modified default algorithm LAHC version based on a remark by the OptaPlanner
team

• the default configuration but with SCHC instead of LAHC, as listed in the shortlist
(subsection 3.3.5)

• the SCHC version with the adjustment of the OptaPlanner team remark

• the simulated annealing algorithm, as listed in the shortlist (subsection 3.3.5)

• great deluge as a version that should perform slightly worse based on the research

The configuration file with all the details can be found in section F.2. Each test runs until
no new solution was found for four hours.
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Results

Figure 4.11: Benchmark Results (green highlighted: winning algorithm, orange (!): not 0hard,
gray numbers: ranks)

Looking at the results (Figure 4.11), we see that there is no huge difference between the
algorithms regarding score. Surprisingly, our manual configured copy and the default con-
figuration itself did not perform equally well. The OptaPlanner Team must have added
some additional special configuration that could not be straightforwardly found in the
source code. The Great-Deluge algorithm performed better than expected, but everything
else pretty much went as we thought based on the research. The ”winner” is the Step-
Counting-Hill-Climbing algorithm. This is the same result as the referenced papers sug-
gested. Eventhough, the default algorithm which lands on place two stopped much faster
(see Figure 4.12 - 5th (pink) vs last (salmon) bar) with a similar result, the OptaPlanner
chooses the score over the solving time when ranking the algorithms. If we check the
solving speed of the algorithms (Figure 4.13), we see that both algorithms behaved very
similarly, the SCHC version just found some extra solutions that reset the stopping time.
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Figure 4.12: Benchmark Results – Solving Time (Runs stop after no new solution was
found for four hours)

Figure 4.13: Benchmark Results – Algorithm Speed
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4.2.3 OptaPlanner Configuration and Algorithm Choice

Based on those results, we select the SCHCalgorithmas the best option for the production
version of the exam scheduler (Listing 4.2). Additional tweaking could bring some small
improvements, but the return on invest ratio is too small to further focus on that.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <solver xmlns="https://www.optaplanner.org/xsd/solver">
3 <moveThreadCount>AUTO</moveThreadCount>
4 <solutionClass>ch.ost.examscheduler.solvers.opta.domain.ExamTimetable</ ê
solutionClass>

5 <entityClass>ch.ost.examscheduler.solvers.opta.domain.Exam</entityClass ê
>

6 <scoreDirectorFactory>
7 <constraintProviderClass>ch.ost.examscheduler.solvers.opta.solver. ê
constraints.TimeTableConstraintProvider

8 </constraintProviderClass>
9 <constraintStreamImplType>DROOLS</constraintStreamImplType>

10 <initializingScoreTrend>ONLY_DOWN/ONLY_DOWN</initializingScoreTrend ê
>

11 </scoreDirectorFactory>
12 <constructionHeuristic>
13 <constructionHeuristicType>FIRST_FIT_DECREASING</ ê

constructionHeuristicType>
14 </constructionHeuristic>
15 <localSearch>
16 <unionMoveSelector>
17 <cacheType>PHASE</cacheType>
18 <changeMoveSelector>
19 <filterClass>ch.ost.examscheduler.solvers.opta.solver. ê

filters.AllRoomsUnassignedChangeMoveFilter
20 </filterClass>
21 </changeMoveSelector>
22 </unionMoveSelector>
23 <acceptor>
24 <stepCountingHillClimbingSize>400</stepCountingHillClimbingSize ê

>
25 </acceptor>
26 <forager>
27 <acceptedCountLimit>1</acceptedCountLimit>
28 </forager>
29 </localSearch>
30 </solver>

Listing 4.2: Exam Scheduler Solver Configuration
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4.3 Examination Schedule Visualization with Live Updates
User Story:
D.1.26

The visualization of examination schedules (Figure 4.14)was not only re-styled but also re-
ceived some additional features and performance optimization. However, the initial load-
ing of the exam timetable caused performance problems. An examination schedule con-
tains about 200 exams. Rendering all these items made the application unresponsive for
a noticeable time. To solve this issue, we outsourced the rendering of the visualization
into a separate background thread with the help of a web worker.

A significant improvement is live updates, enabled by a WebSocket between the client
and the server. If the solver finds a new solution, the scheduling information of the exams
and the updated score information are pushed to the client. The client then automatically
updates the examination schedule and the solution’s score. With this, the user does not
have to refresh the page to get the latest state during an active solving process.

Figure 4.14: Exam Scheduler User Interface: The visualization shows only the exams
scheduled in the school hall (room 4.101) as a corresponding room filter is activated.
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4.4 Data Import/Export and Integration
User Stories:
D.1.4, D.1.5,
D.1.13, D.1.18,
D.1.19

An interactive assistant (Figure 4.15) helps the user to create new examination schedules.
In three simple steps, the user is asked to provide all the information needed for a new
examination schedule.

Figure 4.15: Step Two of the Creation Wizard: The user is asked to define the examination
session and the daily examination time.

The data to be scheduled can be provided via the Excel files the examination planning
team is familiar with. Importing the data with Excel files is error-prone. Although, the exist-
ing import API detects most validation violations, the existing validation rules only check
the validity of a single row. In order to ensure all imported data is valid, we added addi-
tional validation rules that check the validity across multiple rows and even different files.
For instance, a validation rule is in place so that all exam identifiers must be unique. With
this, the user cannot accidentally provide two examswith the same id. Finding invalid data
in an Excel file is a bit cumbersome. It is like finding the needle in the haystack. To over-
come this problem, we point out the exact cell that is causing the problem, as shown in
Figure 4.16.
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Figure 4.16: Validation Details for Exams: The user can see the cells causing the problem.

A newly created examination schedule does not contain any exams yet. The user can
eithermanually schedule examsor start the solving process to plan all exams. Once a plan
becomes final, the user can lock it. Locked examination schedules are read-only to avoid
any unwanted changes. The user can export examination schedules as a spreadsheet or a
JSON file. The spreadsheet contains the schedule information in a human-readable form,
whereas the data in the JSON file is compatible with the administration software of the
university. So the generated examination schedules can be seamlessly processed further.
For example, in order for the students to see their examination plan in the university’s
administration tool.

4.5 Quality Assurance

To ensure the quality of our application, we have written around 840 tests for all classes
containing some logic. Integration tests are in place for the database queries, datamodel,
the Excel importer, WebSocket logic, and parts of the RESTAPI.We have not set an explicit
test coverage goal, as we strive for a close to 95% coverage of the solver logic and a
coverage as high as possible for the rest of the application. The solver currently has a line
test coverage of 94% and an overall line test coverage of 77%. Solver tests contain tests
regarding the individual entities and their functionality and exhaustive tests regarding the
individual constraints.

For the frontend, we have decided to do no UI tests, as the UI is not mission-critical, and
only test classes containing some core logic like Angular pipes. This restriction wasmade
due to the nature of UI tests being very time-consuming and having to be updated fre-
quently.

Detailed code-, test-, git- and CI/CD stats can be found in Appendix B
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4.6 Score Function

This section describes the score function used by the examscheduler to quantify the qual-
ity of a specific examination schedule. The higher the score, the better the solution. The
goal is to maximize the score function. Table 4.1 lists all constraints that we implemented
with the OptaPlanner. These constraints are the basis of the score function.

Table 4.1: All Implemented OptaPlanner Constraints of the Exam Scheduler with its Initial
Penalties (negative base scores) and Multipliers

ID Constraints Penalty1 Multiplier

1 Room related constraints

1.1 Room has two exams at the same time 1,000 hard 1 (none)

1.2 Room has no break between exams 1,000 hard 1 (none)

1.3 Exam is scheduled in unavailable room 1,000 hard 1 (none)

1.4 Room has not enough space 800 hard 1 (none)

1.5 Exam has no room assigned2 2,000 hard 1 (none)

1.6 Exam unnecessarily occupies rooms2 200 hard 1 (none)

2 Student related constraints

2.1 Students have two exams at the same time 20 hard # common students

2.2 Students have not enough break time between
exams on the same day

20 hard # common students

2.3 Students have too many exams on the same day 10 hard # students having too
many exams

2.4 Students have two exams on the same day 1,000 soft # students with 2
exams

3 Examiner related constraints

3.1 Examiner has two exams at the same time 800 hard 1 (none)

4 Time related constraints

4.1 Exam overlaps with lunch time 7,500 soft if fully: 2, else 1

5 Optimal exam distribution related constraints

5.1 Exams of a regular semester are not optimally
distributed

500 soft Cost for optimal exam
distribution

5.2 Exams of a student are not optimally distributed 10 soft Cost for optimal exam
distribution

1 In the score calculation penalties are treated as negative scores.
2 These constraints do not ensure business constraints, but are necessary due to the way we implemented
the support for scheduling an exam in multiple rooms.

Colors: Hard constraints Soft constraints
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Note that not all constraints listed in section 2.3 are ensured with the help of OptaPlanner
constraints. For instance, the constraint that computer-based exams can only take place
in computer rooms and paper-based exams cannot take place in computer rooms does
not need an OptaPlanner constraint. Instead, we filter the available rooms for each exam
upfront. This way, an exam can only be scheduled in an appropriate room.

TheOptaPlanner supports negative scores (penalties) and positive scores (rewards). Both
scoring techniques are based on constraints. When a constraint is activated as a negative
constraint is violated, or a positive constraint is fulfilled, it is called a constraint match [24].

Having only negative constraints (Table 4.1) comes with the advantage of a well-known
maximum of 0. A score consists of a “hard” and “soft” value because we implemented a
two level scoremodel. “ Hard constraints areweighted against other hard constraints. Soft
constraints areweighted against other soft constraints. Hard constraints always outweigh
soft constraints, regardless of their respective weights.” [25]

The total score of all hard constraints respective the total score of all soft constraints is
calculated according to Definition 5.

Definition 5. Let C be a set of constraints, sc the constraint base score, Mc the matches
of the constraint c P C , and wm the weight of the matchm P Mc. The total score S for the
given constraints C is calculated as follows:

S �
¸

c PC

¸
m PMc

wm � sc (4.1)

As an example, an examination schedule could have a score of 0hard/-7500soft. The
value 0hard indicates that no hard constraints are violated. Therefore, the score belongs
to a feasible examination schedule. Given the penalties in Table 4.1, we can further say that
the solution with a score of -82soft is quite good. However, the second interpretation is
vague as the input data is not specified in this example. To interpret the score of a solution
in a meaningful way, it must always be put into perspective with the original problem.

The cost calculation is part of the constraint definition and is implemented with the Opta-
Planner’s ConstraintStream API. Listing 4.3 shows the implementation for the constraint
“Students have two exams at the same time”. For this specific constraint, a constraint
match is associated with a pair of exams. The filters on line 9 and 12 only let exam pairs
through that violate the constraint. The remaining exam pairs are the constraint matches
and are penalized. The method call .penalize() on line 13 conceptually is the multipli-
cation of the constraint base score sc with the weight of the match wm from the mathe-
matical formula for the score calculation (Definition 5).
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The static fieldHardMulti.STUDENT_HAVE_TWO_EXAMS_AT_THE_SAME_TIMEon line
15 defines the constraint base score. The constraint match weight is calculated with the
function Exam::numberOfCommonStudents on line 17. We refer to the functions that
calculate the constraint match weights as the constraint multipliers.

1 public class StudentConstraints extends AbstractConstraints {
2 // ...
3 Constraint studentsHaveTwoExamsAtTheSameTime() {
4 return constraintFactory
5 // Two exams get grouped to a pair.
6 .fromUniquePair(Exam.class)
7 // This filter only lets through exam pairs
8 // whose exams overlap in time.
9 .filter(Exam::areOverlapping)

10 // This filter only lets through exam pairs
11 // whose exams have common students.
12 .filter(Exam::haveCommonStudents)
13 .penalize("Students have two exams at the same time",
14 // Constraint base score
15 HardMulti.STUDENT_HAVE_TWO_EXAMS_AT_THE_SAME_TIME
16 // Constraint multiplier
17 Exam::numberOfCommonStudents);
18 }
19 }

Listing 4.3: Implementation of the Constraint “Students have two exams at the same time”

4.6.1 Constraint Base Score

The constraint base score sc in Definition 5 is the parameter to weight the constraints
against each other. Finding optimal weighting parameters is an experimental process.
We started with an initial guess. We weighted the hard constraints that are physically
impossible or do not have an easy workaround slightly higher than the others. For the
soft constraints, we tried to chose the weighting parameters such that the priority of the
constraints according to section 2.3 is ensured.

Defining the base score for constraints with a multiplier is particularly tricky because the
constraint score depends on the multiplier which in turn depends on the input data. If
the exam scheduler is used with a much larger dataset adjustments on the weighting
parameters will probably be necessary. Within this project’s scope, the exam scheduler is
only intended to be used for the OST campus in Rapperswil-Jona. Therefore, we will not
further investigate this issue.

To come up with an initial guess for the base scores of constraints having multipliers, we
considered the maximal possible score of each constraint. Table 4.2 shows the underly-



Chapter 4. Solution 48

ing calculation. We choose the base score of each constraint in a way that the resulting
product of the base score and the scaling factor is the same for all constraints. For the con-
straints regarding an optimal distribution, the cost function is also included in the product.
With this approach, we wanted to avoid that the maximum score of one constraint is far
off compared to the other constraints, which would then always outweigh the constraints
havingmuch lower scores. As a next step, we wanted to fine tune the weighting. However,
since the test results were already satisfying with the initial setting, further adjustments
of the weights did not seem to be needed.

Table 4.2: Reasoning for Base Scores of Constraint having Multipliers
(Base scores of all constraints can be found in the column “Penalty” of Table 4.1.)

Constraint Base score Scaling Factor Cost Function Worst Case Product

Exam during lunch 7,500 200 Exams 1,500,000

Two exams on same day 10,000 1,500 Students 1,500,000

Distribution regular semesters 500 30 Regular semesters 100 1,500,000

Distribution students 10 1,500 Students 100 1,500,000

4.6.2 Constraint Multiplier

Using constraint multipliers has the advantage that we can define the score improvement
on a much more granular level. In other words, thanks to constraint multipliers the Opta-
Planner knows where it gets the most bang for its buck [26]. This is especially useful for
soft constraints as these constraints should be fulfilled but might be broken if necessary.

The effect is best illustrated with an example. Figure 4.17 shows an examination sched-
ule with four exams. The exam pairs (Exam A, Exam B) and (Exam C, Exam D) fulfill the
following conditions:

• Both exams of the pair take place on the same day.

• There is at least one student who writes both exams of the pair.

Therefore, each exam pair is a constraint match for the constraint “Students have more
than one examon the sameday”.Without a constraintmultiplier, both constraint violations
would receive the same penalty. However, the exam pair (Exam C, Exam D) has 40 times
more students. So, re-scheduling Exam C or Exam D instead of Exam A or Exam B could
increase the schedule quality formore students and should therefore be preferred. Thanks
to the constraint multiplier, this intent is ensured because the re-scheduling of Exam C or
Exam D instead of Exam A or Exam B improves the score significantly more.
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Exam A

Date: 2021-01-19

08:10 – 10:10

4.101

Time: 

Room:

Exam B

Date: 2021-01-19

13:10 – 14:10

4.101

Time: 

Room:

Number  of common students: 1

Exam C

Date: 2021-01-20

08:10 – 10:10

4.101

Time: 

Room:

Exam D

Date: 2021-01-20

13:10 – 14:10

4.101

Time: 

Room:

Number  of common students: 40

Figure 4.17: Sample Examination Schedule with Four Exams

4.6.3 Visualization of Solution Score User Story:
D.1.25

The solver uses the total score to decide whether a new solution is better than the current
best solution. However, a score like -13,020hard/-314,181soft is a black box for the
user. Without further insights, the user can barley say anything about the solution, except
that it is feasible or not. Therefore, the user interface provides two ways the user can use
to explorer the score:

• The constraint details (Figure 4.18) break down the score for each constraint and
list all exams that violates the constraint.

• The indictment details (Figure 4.19) point out all violated constraints for each exam.

Figure 4.18: Constraint Details: Two exams violate the constraint “Students have not
enough break time between exams on the same days”.

Figure 4.19: Indictment Details: The exam “Analysis 2b für Elektrotechnik” violates one
hard constraint and two soft constraints.
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Results

5.1 Test Setup

For testing the exam scheduler, we had to set up a test environment. For deploying a
version directly from the GitLab CI/CD pipeline, we used a Kubernetes cluster running on
the Azure cloud. The underlying server had 16 vCPUs @ 3.4 GHz running on an Intel Xeon
Platinum 8272CL and 32 GB ofmemory. All the tests running on thismachine led to a total
cost of CHF 300, which the IT department of the OST covered.

For runningmanual tests and the benchmarks, a second server was used. This server had
64 vCPUs @ 1.9 GHz running on an Intel Xeon X7550 and 64 GB of memory. This server
is located on-premise and did not cause any costs for us.

All comparisons shown in this chapter were always executed in the same environment to
not bias the results in any way. The presented results are based on the test sets described
in Table 5.1.

Table 5.1: Selected Test Sets for the Exam Scheduler

Test Set Exams Registrations Students Rooms1 Session2 Time

HS18 189 9,005 1,357 20 3 weeks (15 d) 08:10 – 17:10

FS21 187 7,791 1,191 20 3 weeks (15 d) 08:10 – 17:10
1 All rooms are always available throughout the whole examination session.
2 At the weekends no exams are scheduled.

50
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5.2 Key Performance Indicators (KPIs)

The constraint scores as shown in Figure 4.19 can be used to compare different solutions,
but they are kind of an abstract measure for the quality. Moreover, an actual examination
schedule has some exceptions that the problem model does not fully cover. For instance,
two examsmust take place in the same room at the same time. These exceptional exams
must be manually scheduled, resulting in some constraint violations. Although, in this
case, the violations are wanted, they still result in a penalty. Because of these two reasons,
the constraint scores are not the best measure to compare the quality of an examination
schedule generated by the exam scheduler with the one created by a human. To overcome
this issue, we want to define three KPIs:

1. Histogram of all student’s optimal exam distribution costs and the corresponding
cumulative frequency curve

2. The number of exams that fall into the lunch break (12:30 to 12:50)

3. The number of students that must write two exams on the same day.

The listed KPIs cover all soft constraints. The hard score is expected to be zero as the
examination schedule must be feasible. If there are any violations of hard constraints,
exceptions must justify them. Otherwise, the severity is pointed out.

5.3 Optimization for Regular Semesters is Counterproductive

Optimizing the exam distribution within a regular semester is supposed to optimize the
examination schedules of as many students as possible as within the regular semester,
most students take the exam. However, while working with the exam scheduler and ana-
lyzing the input data, we noticed that the allocation of a regular semester is sometimes
incorrect. Assigning a module/exam to a regular semester is not an easy task because of
the free module choice at the OST.

In traditional exam scheduling, the regular semesters help the (human) exam scheduler
to distribute the exams evenly. It is the only instrument to achieve balanced examination
schedules for students. However, the exam scheduler software has an additional con-
straint that ensures an optimal exam distribution for students. Therefore, the question
arises whether the optimization for regular semesters does really make a difference. To
answer this question, we carried out two test runs. In the first run, the optimization for
regular semesters was active, and in the second one, we disabled it.
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Figure 5.1 shows the histogram of the optimal exam distribution costs of all students. The
corresponding cumulative frequency curve is shown in Figure 5.2. The comparison of the
two test runs states that the optimization for regular semesters has a negative impact on
the optimal exam distribution for the students.

Figure 5.1: Histogram of Students’ Optimal Exam Distribution Costs (Test Set HS18)

Figure 5.2: Cumulative Frequency Curve of Students’ Optimal Exam Distribution Costs
(Test Set HS18)
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The constraints regarding anoptimal examdistribution for students and regular semesters
conflict with each other, resulting in worse examination schedules. Therefore, we entirely
disable the optimization regarding regular semesters. Removing the constraint from the
score calculation also brings a performance win as the computation for it is quite com-
putationally expensive.

5.4 Comparison with an Actual Examination Schedule

For the software to be used productively, it must generate examination schedules that are
at least as good as those created by a human planner. Therefore, we compare the actual
examination schedule “FS21” with a solution generated by the examination scheduler. For
the comparison, we created a new exam timetable and manually scheduled all exams
according to the Excel file containing the actual, human-made examination schedule.

5.4.1 Creating a Solution with the Exam Scheduler Software

To generate the FS2021 examination schedule, we could not simply import the data and
start the solving process as the actual schedule contains some exceptions that violate
constraints. Hence, we had to schedule these exams manually. Figure 5.3 shows the ini-
tialized exam timetable with 31 exceptional exams. Exams that run throughout the day are
reserved days for specific oral exams.

Figure 5.3: Initialized Examination Schedule “FS21”: 31 of 187 exams require manual
scheduling due to exceptions that violate constraints.

The manual initialization phase took us about two hours. Once all exceptional exams
were scheduled, we could start the automated solving process. After about 13 minutes,
the solver finished the construction phase, i.e., all exams are scheduled. Surprisingly, the
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found solution has no lower/worse hard score than the initialized schedule and is there-
fore a feasible solution. This is probably related to the fact that themost difficult plannable
exams are already scheduledmanually. Moreover, we enhance the construction heuristics
by defining a planning difficulty that considers the number of students and exam duration.
The most difficult exams are scheduled first.

After the construction phase, the local search phase started. Figure 5.4 shows the soft
score development during the local search phase. In the first 45 min, the solver made
the most significant improvement. Then for about three hours, the improvements were
minimal. However, after that period, the score improved quite a bit again. We stopped the
solving process after about ten hours as the solver had not found a better solution for
three hours.

Figure 5.4: Soft Score Development During the Local Search Phase of the Test Set FS21
on the Azure Cloud
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5.4.2 Generated versus Actual Schedule

Examining the actual examination schedule reveals that the constraint “Students have
too many exams on the same day.” is violated. The hard score for this constraint is -330.
Considering the base score of this constraint, one can say that it happens 33 times that
a student must write two exams on the same day, where one exam lasts longer than 120
minutes. Moreover, the minimum break time of two hours between exams for students
is not always guaranteed. According to the defined constraints, the actual examination
schedule is not a feasible solution. In contrast, the generated examination schedule is a
feasible solution as it does not violate any hard constraint.

We noticed that the hard constraint “Examiner has two exams at the same time.” is often
violated. As these violations are not exclusively due to exceptionally scheduled exams, it
should be considered to downgrade the constraint to a soft constraint.

Table 5.2 compares the soft constraints details of the actual and the generated exam
timetable. The generated examination schedule has a higher total score and performs
better regarding all soft constraints. Interestingly, there is not much of a difference in the
optimal exam distribution. However, in the other constraint, the generated examination
schedule has a significantly higher score.

Table 5.2: Actual vs. Generated Schedule for FS21 – Soft Score Constraint Details

Constraint
Soft Score

Actual Schedule Generated Schedule

Exams of a student are not optimally distributed. -520,234 -506,188
Exam overlaps with lunch time. -442,500 -168,000
Student have two exams on the same day. -246,000 -120,000

Total -1,208,734 -794,188

The histogram of all students’ optimal exam distribution costs (Figure 5.1) and the corre-
sponding cumulative frequency curve (Figure 5.2) reveal that in both exam timetables, the
optimal exam distribution is similar. However, in the generated solution, significantlymore
students have a schedule with zero costs. The costs for an optimal exam distribution are,
in general, slightly higher than the costs seen during the verification of the cost function in
section 3.1. The costs were lower because the examination schedules used to verify the
cost function do not contain days with two exams, whereas in a real data set it happens
that student must write two exams on the same day.
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Figure 5.5: Actual vs. Generated Schedule for FS21: Histogram of Students’ Optimal Exam
Distribution Costs

Figure 5.6: Actual vs. Generated Schedule for FS21: Cumulative Frequency Curve of Stu-
dents’ Optimal Exam Distribution Costs

Regarding students writing two exams on the same day, Table 5.3 contains precisely this
information. In the actual examination schedule, 215 students have to write two exams
on the same day. Whereas, in the generated schedule, the number could be significantly
reduced down to 149.
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Table 5.3: Actual vs. Generated Schedule for FS21 – Number of Students with Two Exams
on the Same Day

Number of Days with Tow Exams
Number of Students with Two Exams on Same Day

Actual Schedule Generated Schedule

1 186 131
2 27 17
3 2 1

Total 215 149

Finally, we count howmany exams overlap with the lunch break. In the actual examination
schedule, 12 of 187 exams entirely overlap with the lunchtime. In contrast, the generated
schedule has no exams that take place during the lunch break. When comparing the visu-
alization of both schedules (Figure 5.7 and Figure 5.8), one can clearly see that the actual
schedule also has more exams that start at 12:30 or start at 12:50. Note again, the exams
that last the whole day are blocked days for oral exams.

Figure 5.7: Visualization of the Actual Examination Schedule FS21



Chapter 5. Results 58

Figure 5.8: Visualization of the Generated Examination Schedule FS21

5.5 Comparison of Test Machines

Per default, the OptaPlanner runs in the reproducible mode. In this mode, two runs will
execute the same code in the same order [27]. Even multithreaded solving is reproducible
as long as the moveThreadCount is stable [28]. In order to max out the performance,
we enabled auto-detection for the possible move threads. Enabling this option results in
different solving processes across machines with different numbers of CPUs.

Figure 5.9 shows the comparison of the soft score development between the server on
the Azure cloud and the server at OST for the test set “FS21”. The solving process looks
quite different. The server on the Azure cloud is faster than the server at OST. However, if
the server at OST runs long enough, it will eventually find a similarly good solution. After
approximately 31 hours the server at OST found even a better solution than the solution
found by the server on the Azure cloud. If we had run the solving process on the Azure
cloud longer, the solver would probably have found a better solution as well.

Noticeable are the ups and downs of the score at the beginning of the test run on the
server at OST. This behavior is due to the fact the the first solutions were not feasible.
A solution with a higher hard score is always better, even if the soft score is drastically
worse than the soft score from the previous best solution.
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Figure 5.9: Soft Score Development During the Local Search Phase of the Test Set FS21
on the Azure Cloud and the Server at OST

5.6 Scalability

When discussing results, one may wonder how our solution scales regarding schedules
with much more students and exams. To answer this, we conducted a test run with an
input dataset of the size of the ETH Zurich:

• 15,000 students

• 700 exams

• 50’000 exam events / exam registrations

• exam durations between one and three hours (longest is 12 hours - neglected)

• exam session of 4 weeks of 6 days from 7 am to 7 pm (assumption)

• 30 rooms with the capacity for 300 students (assumption)

The exam registrations are more or less evenly distributed over all exams.

Compared to the dataset our solutionwas designed for, the newdataset contains 10-times
the number of students, 2.5-times the number of exams, and 6-times the number of exam
registrations. This averages to only ~ 3 exams per student per exam session. Students
at OST-RJ have, on average, ~ 6.5 exams per exam session – twice as many. When also
considering that the exam session at the ETH is 24 days, compared to the 15 days at OST,
it shows that the problem is a bit simpler.
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When running this dataset, the larger scale becomes clear very fast. The construction
phase, which usually takes around 10minutes, tookmore than one hour to complete. That
being said, an initial solution was found, and solution improvements came in quickly. As
the input dataset was created artificially, completing the test run would not have brought
any beneficial insights. The main goal was to test if the solver can handle a large-scale
dataset and if it is reasonable to apply the constraint solving approach to it. In-depth tests
and a real dataset are required conclusively to answer the question regarding the solu-
tion’s scalability, but the observed results look promising.

5.7 Outlook Constraint Solving

After spending so much time working with a constraint solver, we can paint a pretty good
picture of the current state of constraint solvers and how this field will develop. In the
current uprising of artificial intelligence in the form of neural networks, one may ask if
they will replace constraint solvers in the future. Taking neural networks as the answer to
everything is a bit superficial. Constraint solvers or metaheuristics, for that matter, come
into play when dealing with an ever-changing, unpredictable environment, like scheduling
exams of different durations, attendees, or requirements. Neuronal networks, on the other
hand,mimic the humanmind. They try to find patterns they then, later on, can apply to new,
unknown problems. Therefore a neural network will probably not be able to replace these
metaheuristics anytime soon, but a combination of both may be a promising approach.

Metaheuristics choose the next step by picking the best one out of a set of possible steps.
The larger the sets are, the slower the algorithm performs. The smaller the sets are, the
faster the algorithm performs, with the cost of not always choosing the best possible
next step. With the help of neural networks, the selection process could probably be en-
hanced. Let the neural network find patterns of changes or swaps that historically have
shown the most significant improvement. With something like that, the pick-quality could
be improved by a lot, without losing too much performance.

This is a hypothesis that we have come up with while working with a constraint solver. It
would need to be carefully tested, but could result in an enormous leap forward for the
field of constraint solving.
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Conclusion

In our semester project, we showed that the automation of examination timetable creation
for OST is possible. In our bachelor’s thesis project, we have now built the first big step
for making this idea become reality. The now enhanced exam scheduler can create us-
able exam schedules optimized for the students and includes a wide variety of additional
constraints to cover availabilities and particular exam requirements or room features. The
model is now ready for a first pilot phase.

As previously described, a comparison with a manually created exam schedule showed
that the exam scheduler can create equal or even better schedules than a human could
do, while reducing the time to create an exam schedule from several weeks to a few days
or even hours.

The powerful UI enables the (human) exam scheduler to create exam schedules with
many insights, while still keeping the flexibility to intervene and place particular exams
manually. The UI can even be used without the solver to create exam schedules. All of
this, without missing out on any of the validations and verifications. In-depth tests by the
end-user/customer are now required to make the software ultimately production-ready.

All that progress did not come without any obstacles: Missing test environments needed
to be organized and set up, formulas for measuring an exam distribution had to be found,
different algorithms had to be evaluated and compared to each other, missing documen-
tation and missing features had to be figured out and worked around. All while, in parallel,
designing and implementing a full-fledged frontend for controlling and visualizing every-
thing. Furthermore, running tests always took several hours before getting a usable result
and potentially determining that something was wrong and that it needed to be adapted
and rerun. Ultimately, we mastered everything and can proudly present the Automated
Exam Scheduler – Version 1.0.
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6.1 Features for Future Releases

Finishing the first version should not be the end of the exam scheduler’s journey. Some ex-
isting features or constraints may need some adjustment/refinement, or many additional
features may be added.

For example, replacing the regular semesters with the sample study plans could yield
much better results, or providing further KPIs can give the user an even better understand-
ing of the schedule on hand. The following is our extended but not exhaustive list of ideas
of further features to the exam scheduler:

• Replace regular semesters with sample study plans

• KPIs / further insights into the solution directly in the frontend

• Partial locking of exams (only room or only date and time)

• “Ghost-exams” that do not count for the validation

• Possibility to disable certain constraints for specific exams

• Possibility to adjust constraint weights from the UI directly

• Exporting schedules and import them for later use

• Unavailabilities for examiners

• Grouping of exams, for scheduling them at the same time

• Automatic oral exam planning

• Special handling of splitting exams to multiple available computer room

• Create snapshots and clones of schedules

• Expand the area of operation to other universities/campuses
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Guest Lecture “Automaten und
Sprachen”

Professor Dr. Andreas Müller gives lectures regarding theoretical computer science, in-
cluding NP-complete problems at the OST. As exam scheduling is also known to be an
NP-complete problem, Mr. Müller asked us if we are interested in giving a guest lecture
for the students to show them how NP-completeness can be found in the real world and
how it can be tackled.

Due to the COVID-19 pandemic, the lecture had to be held online. The presentation itself
was recorded, but the students had the chance to ask us questions afterward via the live
chat.

Figure A.1: Title Slide

This recordings of those lectures (held in German) can be found on YouTube via this links:

• “AutoSpr Online-Vorlesung 18. Mai 2021, 17:00-17:45”:
https://www.youtube.com/watch?v=OZ5te8HyJB4

• “AutoSpr: Online-Vorlesung 20. Mai 2021, 14:05-14:50”:
https://www.youtube.com/watch?v=j4mZBqXSBFI
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Appendix B

Code Stats

B.1 Lines of Code (LOC)

Table B.1: Lines of Code (LOC)

File Type Count LOC

java 170 7151

java (Test Code) 73 13715

kotlin 20 338

kotlin (Test Code) 12 1244

typescript 160 6009

typescript (Generated) 48 1205

scss 36 885

html 33 1529

Total (3.7 x of SA)552 (3.3 x of SA)32076

Figure B.1: Used Programming Languages

64



Appendix B. Code Stats 65

B.2 Test Coverage

Figure B.2: Passed Tests

Figure B.3: Test Coverage

B.3 Issues and CI/CD

• Issues: 112

• Total: 427 pipelines, Successful: 298 pipelines, Failed: 119 pipelines

Figure B.4: CI/CD Pipeline Chart
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Verification of Cost Function for
Optimal Exam Distribution

• Examination Schedules

• Test Results
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C.1 Examination Schedules

16.1.17 17.1.17 18.1.17 19.1.17 20.1.17 21.1.17 22.1.17 23.1.17 24.1.17 25.1.17 26.1.17 27.1.17 28.1.17 29.1.17 30.1.17 31.1.17 1.2.17 2.2.17 3.2.17
7 Good 12/00 Uhr 10/40 Uhr 9/00 Uhr 15/10 Uhr 8/00 Uhr 11/00 Uhr 10/30 Uhr
7 No free days 12/00 Uhr 10/40 Uhr 9/00 Uhr 15/10 Uhr 10/30 Uhr 10/30 Uhr 9/00 Uhr
7 No free days worse 14/00 Uhr 8/10 Uhr 14/00 Uhr 9/20 Uhr 14/00 Uhr 16/20 Uhr 10/20 Uhr
7 Cluster 8/10 Uhr 14/00 Uhr 14/00 Uhr 9/20 Uhr 14/00 Uhr 10/20 Uhr 16/20 Uhr
7 Cluster worse 14/00 Uhr 8/10 Uhr 14/00 Uhr 14/00 Uhr 9/20 Uhr 16/20 Uhr 10/20 Uhr
7 Compact but good 12/00 Uhr 10/40 Uhr 9/00 Uhr 15/10 Uhr 8/00 Uhr 11/00 Uhr 10/30 Uhr
7 Compact but good (slightly better) 12/00 Uhr 10/40 Uhr 9/00 Uhr 15/10 Uhr 8/00 Uhr 11/00 Uhr 10/30 Uhr
12 Good 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr
12 Bad I 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr
12 Bad II 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr 8/10 Uhr 14/00 Uhr
2 Max spread 8/10 Uhr 15/00 Uhr
2 No spread 8/10 Uhr 15/00 Uhr
5 Compact but good 12/00 Uhr 10/40 Uhr 9/00 Uhr 15/10 Uhr 8/00 Uhr
5 Evenly spread all over 12/00 Uhr 10/40 Uhr 9/00 Uhr 15/10 Uhr 8/00 Uhr
1 Reference 13/00 Uhr
15 Exams 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr 12/00 Uhr
1 Exam 8/00 Uhr
2 Exams 8/00 Uhr 8/00 Uhr
3 Exams (good) 8/00 Uhr 8/00 Uhr 8/00 Uhr
3 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr
3 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr
4 Exams (good) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
4 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
4 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
5 Exams (good) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
5 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
5 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
6 Exams (good) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
6 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
6 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
7 Exams (good) 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
7 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
7 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
8 Exams (good) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
8 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
8 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
9 Exams (good) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
9 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
9 Exams (worst) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
10 Exams (good) 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
10 Exams (bad) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
10 Exams (worst) 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr
11 Exams (good) 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 15/00 Uhr
11 Exams (bad) 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
11 Exams (worst) 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr
12 Exams (ok) 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
12 Exams (good) 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr
12 Exams (bad) 8/00 Uhr 14/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr 8/00 Uhr
12 Exams (worst) 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr 15/00 Uhr 8/00 Uhr

Description Examination Schedule
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C.2 Test Results

Optimal Distance [d] Costs Optimal Distance [h] Costs  [d]  [h] 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 1st Iteration 2nd Iteration 3rd Iteration 4th Iteration
7 Good 3.00 0.67 72.00 419.87 0.00 2.00 48.00 0.267 0.025 0.025 0.012 267 25 25 12
7 No free days 3.00 3.33 72.00 1979.10 11.00 2.00 48.00 0.210 0.193 0.193 0.090 210 193 193 90
7 No free days worse 3.00 3.33 72.00 2041.51 11.00 2.00 48.00 0.220 0.200 0.200 0.093 220 200 200 93
7 Cluster 3.00 2.83 72.00 1293.17 3.00 2.00 48.00 0.313 0.111 0.111 0.052 313 111 111 52
7 Cluster worse 3.00 2.83 72.00 2037.14 3.00 2.00 48.00 0.381 0.177 0.177 0.083 381 177 177 83
7 Compact but good 3.00 1.00 72.00 569.20 1.00 2.00 48.00 0.163 0.073 0.073 0.034 163 73 73 34
7 Compact but good (slightly better) 3.00 0.67 72.00 458.53 0.00 2.00 48.00 0.136 0.026 0.026 0.012 136 26 26 12
12 Good 1.64 0.60 39.27 182.39 0.00 1.17 28.00 0.193 0.000 0.000 0.000 193 0 0 0
12 Bad I 1.64 1.01 39.27 471.32 12.00 1.17 28.00 0.244 0.055 0.055 0.044 244 55 55 44
12 Bad II 1.64 1.87 39.27 915.48 12.00 1.17 28.00 0.350 0.055 0.055 0.044 350 55 55 44
2 Max spread 18.00 0.00 432.00 46.69 0.00 7.00 168.00 1.612 0.000 0.000 0.000 1612 0 0 0
2 No spread 18.00 289.00 432.00 160934.69 1.00 7.00 168.00 0.816 0.816 0.486 0.065 816 816 486 65
5 Compact but good 4.50 4.75 108.00 2819.49 0.00 2.80 67.20 0.232 0.133 0.100 0.033 232 133 100 33
5 Evenly spread all over 4.50 0.25 108.00 245.49 0.00 2.80 67.20 0.318 0.000 0.000 0.000 318 0 0 0
1 Reference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0 0 0 0
15 Exams 1.29 0.49 30.86 282.12 18.00 0.93 22.40 0.224 0.000 0.000 0.000 224 0 0 0
1 Exam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0 0 0 0
2 Exams 18.00 225.00 432.00 129600.00 0.00 7.00 168.00 0.571 0.571 0.000 0.000 571 571 0 0
3 Exams (good) 9.00 30.50 216.00 17568.00 0.00 4.67 112.00 0.192 0.192 0.000 0.000 192 192 0 0
3 Exams (bad) 9.00 49.00 216.00 28224.00 0.00 4.67 112.00 0.404 0.404 0.141 0.028 404 404 141 28
3 Exams (worst) 9.00 64.00 216.00 36864.00 3.00 4.67 112.00 0.556 0.556 0.424 0.085 556 556 424 85
4 Exams (good) 6.00 7.33 144.00 4224.00 0.00 3.50 84.00 0.082 0.067 0.000 0.000 82 67 0 0
4 Exams (bad) 6.00 13.67 144.00 7872.00 0.00 3.50 84.00 0.208 0.208 0.094 0.025 208 208 94 25
4 Exams (worst) 6.00 25.00 144.00 14400.00 6.00 3.50 84.00 0.412 0.412 0.346 0.092 412 412 346 92
5 Exams (good) 4.50 1.25 108.00 720.00 0.00 2.80 67.20 0.154 0.000 0.000 0.000 154 0 0 0
5 Exams (bad) 4.50 5.25 108.00 3024.00 0.00 2.80 67.20 0.125 0.124 0.087 0.029 125 124 87 29
5 Exams (worst) 4.50 12.25 108.00 7056.00 10.00 2.80 67.20 0.321 0.321 0.300 0.100 321 321 300 100
6 Exams (good) 3.60 0.28 86.40 161.28 0.00 2.33 56.00 0.225 0.000 0.000 0.000 225 0 0 0
6 Exams (bad) 3.60 2.12 86.40 1221.12 0.00 2.33 56.00 0.081 0.057 0.057 0.023 81 57 57 23
6 Exams (worst) 3.60 5.48 86.40 3156.48 10.00 2.33 56.00 0.236 0.229 0.229 0.091 236 229 229 91
7 Exams (good) 3.00 0.50 72.00 304.33 0.00 2.00 48.00 0.223 0.024 0.024 0.011 223 24 24 11
7 Exams (bad) 3.00 1.33 72.00 768.00 1.00 2.00 48.00 0.204 0.083 0.083 0.039 204 83 83 39
7 Exams (worst) 3.00 2.83 72.00 1632.00 10.00 2.00 48.00 0.186 0.167 0.167 0.078 186 167 167 78
8 Exams (good) 2.57 0.27 61.71 152.82 0.00 1.75 42.00 0.181 0.000 0.000 0.000 181 0 0 0
8 Exams (bad) 2.57 0.90 61.71 517.22 3.00 1.75 42.00 0.172 0.087 0.087 0.046 172 87 87 46
8 Exams (worst) 2.57 2.14 61.71 1234.29 13.00 1.75 42.00 0.181 0.150 0.150 0.080 181 150 150 80
9 Exams (good) 2.25 0.19 54.00 108.00 0.00 1.56 37.33 0.186 0.000 0.000 0.000 186 0 0 0
9 Exams (bad) 2.25 1.25 54.00 720.00 6.00 1.56 37.33 0.250 0.089 0.089 0.054 250 89 89 54
9 Exams (worst) 2.25 1.44 54.00 828.00 16.00 1.56 37.33 0.166 0.118 0.118 0.071 166 118 118 71
10 Exams (good) 2.00 0.44 48.00 165.78 0.00 1.40 33.60 0.192 0.012 0.012 0.008 192 12 12 8
10 Exams (bad) 2.00 1.89 48.00 1088.00 12.00 1.40 33.60 0.324 0.084 0.084 0.056 324 84 84 56
10 Exams (worst) 2.00 1.00 48.00 726.11 18.00 1.40 33.60 0.192 0.119 0.119 0.079 192 119 119 79
11 Exams (good) 1.80 0.56 43.20 171.78 0.00 1.27 30.55 0.194 0.000 0.000 0.000 194 0 0 0
11 Exams (bad) 1.80 1.68 43.20 1009.26 12.00 1.27 30.55 0.332 0.079 0.079 0.058 332 79 79 58
11 Exams (worst) 1.80 0.80 43.20 589.18 16.00 1.27 30.55 0.229 0.094 0.094 0.069 229 94 94 69
12 Exams (ok) 1.64 0.60 39.27 342.74 0.00 1.17 28.00 0.233 0.032 0.032 0.025 233 32 32 25
12 Exams (good) 1.64 0.60 39.27 158.49 0.00 1.17 28.00 0.186 0.000 0.000 0.000 186 0 0 0
12 Exams (bad) 1.64 0.64 39.27 377.85 9.00 1.17 28.00 0.217 0.045 0.045 0.036 217 45 45 36
12 Exams (worst) 1.64 0.67 39.27 567.30 15.00 1.17 28.00 0.248 0.082 0.082 0.066 248 82 82 66

Initial Approach Initial Approach Adhoc
 Variante

Description Corrected Optimal D. Costs from Iterations Costst from Iterations (scaled by 1000)
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User Stories

D.1 Completed Stories

D.1.1 Unavailable time periods of rooms

As an examination planner, I want to define the time periods a certain room is unavailable
so that no exams are scheduled in this room during these periods.

D.1.2 Consider AC in spring semesters

As an examination planner, I want to define whether I plan the exams for a spring semester
or a fall semester so that the exam scheduler considers the air conditioning for spring
semesters.

D.1.3 Schedule some exams manually in advance

As an examination planner, I want to schedule some exams manually before the sched-
uler starts planning all other exams so that exams that are too complicated to schedule
automatically or are special cases can be set by hand.

D.1.4 Support mulitple exam schedules for a semester

Asan examination planner, I want to createmultiple examschedules for the samesemester,
so that I can work on more than one schedule and compare them.

D.1.5 Support history of exam schedules

As an examination planner, I want to view previous exam schedules, e.g. from last year, so
that I can use that information the schedule the current exams.

69
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D.1.6 Support scheduling exams in multiple rooms

As an examination planner I want the application to be able to schedule exams in to mul-
tiple rooms if a single room has no space for all student so that I can schedule all exams
automatically.

Details

• An exam with up to 100 students can be scheduled into 1 room.

• An exam with more than 100 students can be scheduled into up to 2 rooms.

• An exam with more than 200 students can be scheduled into up to 3 rooms.

D.1.7 Distribute exams of regular semesters evenly

As an examination planner, I want the application to distribute the exams of a regular
semester as evenly as possible over the examination session so that I can optimize the
exam schedule for a regular semester.

D.1.8 Distribute exams of individual students evenly

As an examination planner, I want the application to distribute the exams of an individual
students as evenly as possible over the examination session so that I can optimize the
exam schedule for an individual semster.

D.1.9 Consider computer rooms

As an examination planner I want the application to be able to schedule exams that need
a computer in to a computer room so that I can schedule all exams automatically.

D.1.10 Schedule some exams on same time and in same room

As an examination planer, I want to define group of exams thatmust take place at the same
time and in the same room so that more exams can be scheduled and students can not
change information about the exam.

D.1.11 Avoid scheduling exams during lunch

As an examination planner, I want to avoid that exams are scheduled over noon so that
students can eat lunch at a proper lunch time
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D.1.12 Start/resume, stop/pause scheduler

As an examination planner, I want to stop the solving porcess so that I can continue it at a
later time.

D.1.13 Implement multiple timetables with corresponding data

As a user, I want to be able to create multiple exam schedules with different input data
sets.

D.1.14 Add overview page for listing all available exam schedules

As an examination planner, I want to have an overview of all exam schedules currently
present in the application to be able to access and manage them.

D.1.15 Implement basic score details view

As an examination planner, I want to see why the score is the score that it is, in order to
understand and adjust the solving process.

D.1.16 Add simple way to set a fixed room and dateTime to exam

As an examination planner, I want to be able to fix certain exams to a specific time and
room in advance.

D.1.17 Add possibility to start/stop solving in the frontend

Follow-up of subsection D.1.12

As an examination scheduler, I want to start and stop the solving process directly from the
front end.

D.1.18 Create Exam Schedule creation wizard

As an examination scheduler, I want to be able to create a new exam scheduler directly
from the front end.

D.1.19 Add option for exporting an exam schedule

As an examination planner, I want to export a solved schedule to JSON or CSV directly
from the frontend.
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D.1.20 Add option to search for an exam

As an examination planner, I want to search for specific exams, in order for me to verify
the end score.

D.1.21 Create exam details view

As an examination planner, I want to see the details of an exam (Name, description, time,
room, students, ...)

D.1.22 Add option to delete timetables

As an examination planner, I want to delete the timetables I created directly from the fron-
tend.

D.1.23 Lock/Unlock a timetable

As an exam scheduler I want to lock/unlock a timetable (make read-only).

D.1.24 Schedule exams in air conditioned room in summer

As an exam scheduler, I want the option to only schedule exams at the afternoon in air
conditioned rooms in summer.

D.1.25 Extract and show score details

As an exam scheduler, I want to get insight on the score details to better understand the
generated results.

D.1.26 Get notified / update solution if a new one is found

As an exam scheduler, I want to get notified in some way that a new solution is available.

D.1.27 Lock/Unlock a timetable

As an examination planer, I want to define group of exams thatmust take place at the same
time and in the same room so that more exams can be scheduled and students can not
change information about the exam.
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D.1.28 Restrict access to frontend and api for unauthorized users

As a university, I don’t want that any data, especially student specific data, can be accesses
by everyone. As an exam scheduler, I don’t want that everyone is able to adjust the data
without being authenticated.

D.2 Open / Partially implemented / Future Stories

D.2.1 Unavailable time periods for examiners

As an examination planner, I want to define the time periods a certain examiner is unavail-
able so that no of his/her exams are scheduled during these periods.

D.2.2 Distribute exams of a examiner evenly

As an examination planner, I want the application to distribute the exams of an examiner as
evenly as possible over the examination session so that I can optimize the exam schedule
for an examiner.

Will not be implemented, as it would result in a high negative impact. A fine granular defi-
nition would be necessary if this is a feature that is needed.

D.2.3 Add option to visualize exam schedule based on JSON file

Based on subsection D.1.19

As an examination planner, I want to visualize a previously exported schedule directly in
the frontend.

D.2.4 Add autocompletion

As an examination planner, I want to have auto-completion in the filter fields.

D.2.5 Add solving machine stats view

As an examination planner, I want to see the current stats of the solving machine, in order
for me to verify the correct operation.
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Runtime Profiling

This appendix shows the expanded view of the VisualVM profiling of the Exam Scheduler
application. It is seperated into Self Time and Total Time.

For visibility reasons and ease of comparison, the screenshots of the individual runs are
displayed on separate pages.
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E.1 Profiling Run 1 - Extended and Unfiltered

Figure E.1: Sorted by Self Time (Total Execution Time: 1,050 seconds = 17.5 minutes)

Figure E.2: Sorted by Total Time (Total Execution Time: 1,050 seconds = 17.5 minutes)
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E.2 Profiling Run Final - Extended and Unfiltered

Figure E.3: Sorted by Self Time (Total Execution Time: 1,050 seconds = 17.5 minutes)

Figure E.4: Sorted by Total Time (Total Execution Time: 1,050 seconds = 17.5 minutes)
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Benchmarking

F.1 Benchmark Configuration - Test Plan

Nr RESULT SCORE DURATION FOR RESULT unimprovedTimeSpentLimit constraintStreamImplType constructionHeuristicType localSearch acceptedCountLimit entityTabuRatio
1 6 hours BAVET FIRST_FIT HILL_CLIMBING 1000 -
2 6 hours BAVET FIRST_FIT TABU_SEARCH 1000 0.02
3 6 hours BAVET FIRST_FIT SIMULATED_ANNEALING 4 - SimulatedAnnealingStartingTemperature=200hard/400soft
4 6 hours BAVET FIRST_FIT LATE_ACCEPTANCE 1 - LateAcceptanceSize=400
5 6 hours BAVET FIRST_FIT GREAT_DELUGE 1 - GreatDelugeWaterLevelIncrementRatio=0.00000005
6 6 hours BAVET FIRST_FIT HILL_CLIMBING (step counting) 1 - StepCountingHillClimbingSize=400

TAG: benchmark-configuration-1
1 -11hard/-7785soft 43 min 15 min BAVET ENTITY_FROM_QUEUE (Default) LAHC 1 - LateAcceptanceSize=400
2 0hard/-2123soft 53 min 15 min BAVET ENTITY_FROM_QUEUE (Default) LAHC 4 - LateAcceptanceSize=400
3 ERROR - 15 min BAVET ENTITY_FROM_QUEUE (Default) SIMULATED_ANNEALING 4 - SimulatedAnnealingStartingTemperature=200hard/400soft
4 -33hard/-9908soft 56 min 15 min BAVET ENTITY_FROM_QUEUE (Default) GREAT_DELUGE 1 - GreatDelugeWaterLevelIncrementRatio=0.00000005
5 ERROR - 15 min BAVET ENTITY_FROM_QUEUE (Default) DEFAULT (LAHC) Default: 1 - LateAcceptanceSize=400

TAG: benchmark-configuration-2
1 -17hard/-8079soft 1h 3m 30 min BAVET ENTITY_FROM_QUEUE (Default) LAHC 1 - LateAcceptanceSize=400
2 0hard/-2446soft 1h 13m 30 min BAVET ENTITY_FROM_QUEUE (Default) LAHC 4 - LateAcceptanceSize=400
3 -3hard/-6304soft 1h 16m 30 min BAVET ENTITY_FROM_QUEUE (Default) SCHC 1 - StepCountingHillClimbingSize=400
4 ERROR 30 min BAVET ENTITY_FROM_QUEUE (Default) SIMULATED_ANNEALING 4 - SimulatedAnnealingStartingTemperature=200hard/400soft
5 ERROR 30 min BAVET ENTITY_FROM_QUEUE (Default) GREAT_DELUGE 1 - GreatDelugeWaterLevelIncrementRatio=0.00000005
6 0hard/-4168soft 1h 58m 30 min BAVET ENTITY_FROM_QUEUE (Default) DEFAULT (LAHC) Default: 1 - LateAcceptanceSize=400

TAG: benchmark-configuration-3
1 -1hard/-76082soft 2d 11h 59m 4 hours BAVET ENTITY_FROM_QUEUE (Default) SIMULATED_ANNEALING 4 - SimulatedAnnealingStartingTemperature=200hard/400soft
2 -45hard/-87649soft 4h 35m 4 hours BAVET ENTITY_FROM_QUEUE (Default) GREAT_DELUGE 1 - GreatDelugeWaterLevelIncrementRatio=0.00000005
3 -80hard/-80963soft 4h 57m 4 hours BAVET ENTITY_FROM_QUEUE (Default) LAHC 1 - LateAcceptanceSize=400
4 0hard/-66086soft 5h 30m 4 hours BAVET ENTITY_FROM_QUEUE (Default) LAHC 4 - LateAcceptanceSize=400
5 0hard/-63843soft 14h 2m 4 hours BAVET ENTITY_FROM_QUEUE (Default) SCHC 1 - StepCountingHillClimbingSize=400
6 -1hard/-61867soft 5h 34m 4 hours BAVET ENTITY_FROM_QUEUE (Default) SCHC 4 - StepCountingHillClimbingSize=400
7 0hard/-76924soft 6h 55m 4 hours BAVET ENTITY_FROM_QUEUE (Default) DEFAULT (LAHC) Default: 1 - LateAcceptanceSize=400

TAG: benchmark-configuration-4

Figure F.1: Benchmarking Test Plan

F.2 Benchmark Configuration
1 <?xml version="1.0" encoding="UTF-8"?>
2 <plannerBenchmark xmlns="https://www.optaplanner.org/xsd/benchmark"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="https://www.optaplanner.org/xsd/benchmark https://www.optaplanner.org/xsd/ ê

benchmark/benchmark.xsd">
5
6 <benchmarkDirectory>benchmark-data/results/exam-schedule</benchmarkDirectory>
7 <parallelBenchmarkCount>1</parallelBenchmarkCount>
8 <warmUpSecondsSpentLimit>30</warmUpSecondsSpentLimit>
9

10 <inheritedSolverBenchmark>
11 <solver>
12 <moveThreadCount>AUTO</moveThreadCount>
13 <solutionClass>ch.ost.examscheduler.solvers.opta.domain.ExamTimetable</solutionClass>
14 <entityClass>ch.ost.examscheduler.solvers.opta.domain.Exam</entityClass>
15 <scoreDirectorFactory>
16 <constraintProviderClass>
17 ch.ost.examscheduler.solvers.opta.solver.constraints.TimeTableConstraintProvider
18 </constraintProviderClass>
19 <constraintStreamImplType>DROOLS</constraintStreamImplType>
20 <initializingScoreTrend>ONLY_DOWN/ONLY_DOWN</initializingScoreTrend>
21 </scoreDirectorFactory>

77



Appendix F. Benchmarking 78

22 <termination>
23 <unimprovedHoursSpentLimit>4</unimprovedHoursSpentLimit>
24 </termination>
25 </solver>
26 <subSingleCount>1</subSingleCount> <!--number of times each single benchmark run is executed-->
27 </inheritedSolverBenchmark>
28
29 <solverBenchmark>
30 <name>Simulated Annealing</name>
31 <solver>
32 <constructionHeuristic/>
33 <localSearch>
34 <unionMoveSelector>
35 <cacheType>PHASE</cacheType>
36 <changeMoveSelector>
37 <filterClass>
38 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
39 </filterClass>
40 </changeMoveSelector>
41 </unionMoveSelector>
42 <acceptor>
43 <simulatedAnnealingStartingTemperature>200hard/400soft</simulatedAnnealingStartingTemperature ê

>
44 </acceptor>
45 <forager>
46 <acceptedCountLimit>4</acceptedCountLimit>
47 </forager>
48 </localSearch>
49 </solver>
50 </solverBenchmark>
51
52 <solverBenchmark>
53 <name>GREAT_DELUGE</name>
54 <solver>
55 <constructionHeuristic/>
56 <localSearch>
57 <unionMoveSelector>
58 <cacheType>PHASE</cacheType>
59 <changeMoveSelector>
60 <filterClass>
61 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
62 </filterClass>
63 </changeMoveSelector>
64 </unionMoveSelector>
65 <acceptor>
66 <greatDelugeWaterLevelIncrementRatio>0.00000005</greatDelugeWaterLevelIncrementRatio>
67 </acceptor>
68 <forager>
69 <acceptedCountLimit>1</acceptedCountLimit>
70 </forager>
71 </localSearch>
72 </solver>
73 </solverBenchmark>
74
75 <solverBenchmark>
76 <name>LAHC (Values from Default)</name>
77 <solver>
78 <constructionHeuristic/>
79 <localSearch>
80 <unionMoveSelector>
81 <cacheType>PHASE</cacheType>
82 <changeMoveSelector>
83 <filterClass>
84 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
85 </filterClass>
86 </changeMoveSelector>
87 </unionMoveSelector>
88 <acceptor>
89 <lateAcceptanceSize>400</lateAcceptanceSize>
90 </acceptor>
91 <forager>
92 <acceptedCountLimit>1</acceptedCountLimit>
93 </forager>
94 </localSearch>
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95 </solver>
96 </solverBenchmark>
97
98 <solverBenchmark>
99 <name>LAHC - Modified (Accepted Count Limit - 4)</name>

100 <solver>
101 <constructionHeuristic/>
102 <localSearch>
103 <unionMoveSelector>
104 <cacheType>PHASE</cacheType>
105 <changeMoveSelector>
106 <filterClass>
107 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
108 </filterClass>
109 </changeMoveSelector>
110 </unionMoveSelector>
111 <acceptor>
112 <lateAcceptanceSize>400</lateAcceptanceSize>
113 </acceptor>
114 <forager>
115 <acceptedCountLimit>4</acceptedCountLimit>
116 </forager>
117 </localSearch>
118 </solver>
119 </solverBenchmark>
120
121 <solverBenchmark>
122 <name>SCHC - (Accepted Count Limit - 1)</name>
123 <solver>
124 <constructionHeuristic/>
125 <localSearch>
126 <unionMoveSelector>
127 <cacheType>PHASE</cacheType>
128 <changeMoveSelector>
129 <filterClass>
130 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
131 </filterClass>
132 </changeMoveSelector>
133 </unionMoveSelector>
134 <acceptor>
135 <stepCountingHillClimbingSize>400</stepCountingHillClimbingSize>
136 </acceptor>
137 <forager>
138 <acceptedCountLimit>1</acceptedCountLimit>
139 </forager>
140 </localSearch>
141 </solver>
142 </solverBenchmark>
143
144 <solverBenchmark>
145 <name>SCHC - (Accepted Count Limit - 4)</name>
146 <solver>
147 <constructionHeuristic/>
148 <localSearch>
149 <unionMoveSelector>
150 <cacheType>PHASE</cacheType>
151 <changeMoveSelector>
152 <filterClass>
153 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
154 </filterClass>
155 </changeMoveSelector>
156 </unionMoveSelector>
157 <acceptor>
158 <stepCountingHillClimbingSize>400</stepCountingHillClimbingSize>
159 </acceptor>
160 <forager>
161 <acceptedCountLimit>4</acceptedCountLimit>
162 </forager>
163 </localSearch>
164 </solver>
165 </solverBenchmark>
166
167 <solverBenchmark>
168 <name>DEFAULT (LAHC)</name>
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169 <solver>
170 <constructionHeuristic/>
171 <localSearch>
172 <unionMoveSelector>
173 <cacheType>PHASE</cacheType>
174 <changeMoveSelector>
175 <filterClass>
176 ch.ost.examscheduler.solvers.opta.solver.filters.AllRoomsUnassignedChangeMoveFilter
177 </filterClass>
178 </changeMoveSelector>
179 </unionMoveSelector>
180 </localSearch>
181 </solver>
182 </solverBenchmark>
183 </plannerBenchmark>

Listing F.1: OptaPlanner Benchmark Configuration

F.3 Benchmark Details

Figure F.2: Benchmark Results – Hard Constraints
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Figure F.3: Benchmark Results – Soft Constraints



Glossary

Angular Angular is a TypeScript-based open-source web application framework led by
the Angular Team at Google and by a community of individuals and corporations.
https://angular.io/ 44

C4 model C4 model is a lean graphical notation technique for modelling the architecture
of software systems. It is based on a structural decomposition of a system into
containers and components and relies on existing modelling techniques such as
the Unified Modelling Language (UML) or Entity Relation Diagrams (ERD) for the
more detailed decomposition of the architectural building blocks. [Wikipedia] 84

Constraint Optimization Problem Constraint Optimization Problem [5] - Chapter 6 83

Late Acceptance Hill Climbing Late Acceptance Hill Climbing [17] 83

OST Eastern Switzerland University of Applied Sciences: In this document focused on
the campus Rapperswil-Jona. 84

Regular Semester A regular semester is the semester where an exam normally takes
place in. For example: The module “Objektorientiere Programmierung”, short OO, is
in the first semester of your IT-studies. Therefore the regular semester of the
module/exam OO is I1, which means “Informatik, 1. Semester” 4, 6

VisualVM VisualVM is a tool that provides a visual interface for viewing detailed
information about Java applications while they are running on a Java Virtual
Machine. [Wikipedia] 35
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Acronyms

GUI Graphical User Interface 2

LAHC [Late Acceptance Hill Climbing] 24, 26, 38

REST Representational State Transfer 44

SA Simulated Annealing 23, 26

SCHC [Constraint Optimization Problem] 26, 38, 41
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C4 Context, Containers, Components, and Code (See: C4 model) 4, 85

OST Eastern Switzerland University of Applied Sciences (See: OST) 1, 61
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