
Bachelor Thesis

Segment Routing Service Programming

Departement of Computer Science

OST - University of Applied Sciences

Campus Rapperswil-Jona

Spring Term 2021

Authors Julian Klaiber
Severin Dellsperger

Advisor Prof. Laurent Metzger
Project Partner Cisco EMEA represented by Francois Clad
External Co-Examiner Laurent Billas
Internal Co-Examiner Prof. Mirko Stocker

Abstract

In the last few years, the IT network domain has changed fundamentally. New approaches
and technologies were introduced, which has changed and is changing the future of this
area radically. The results are modern and dynamic networks that close the gap between
networks, applications, and end-users. It permits creating applications that work closely
with the underlying network and create a network that fulfills customer needs entirely.
Network services like firewall systems or intrusion detection/prevention systems have be-
come indispensable and are firmly anchored in computer networks. Nowadays, these ser-
vices are not to assume away yet have also a massive disadvantage: they are consumed in a
static manner. Service Programming is one of the outcomes in future networks and solves
the problem of static service consumption. It allows configuring the network dynamically
so that network services can process customer traffic according to their necessities. Follow-
ing network services can be placed universally in the network - the service programming
application will find the best services according to the traffic characteristics. Hence, net-
works with integrated service programming become more intelligent, economic and are
prepared for future needs.

This thesis is a follow-up thesis from the Service Chaining Path Calculation thesis writ-
ten in the autumn term of 2020, which introduced a way to calculate service chains in a
Segment Routing network. This bachelor thesis aimed to find a solution that can help pro-
gram so-called steering policies in the network to steer the traffic according to the needs
of the customer networks over the most suitable services. In order to achieve this goal, the
network protocol Segment Routing with the IPv6 data plane (SRv6) was used. The goal
was to deliver an application that can calculate and program the best suitable path accord-
ing to specified parameters from the customer. The application should react dynamically
to changes in the connected network and deliver consistently the best policy that fits the
altered topology. As a consequence, the user can always rely on the data on which he is
working. Hence, the application always had to know the present network topology and
has to be informed about network changes. An external system is used to get the actual
topology data; the system aggregates and processes all the topology information, which
can be used in so-called Segment Routing applications.

During the bachelor thesis, a complete Service Programming application could be devel-
oped. The application is developed entirely in a cloud-native way in order to be highly
scalable and available. The application consists of different services, which communicate
with each other over a dedicated messaging system. A polling service handles all the
update messages from the topology and informs the backend service automatically about
changes. The backend service uses the topology data to perform path calculations, deploy
policies to the underlying network, and deliver the topology data so that the frontend can
easily visualize the network and paths. The frontend was developed in collaboration with
the Institute for Networked Solutions and provides the customer an easy-to-use way to
create and manage policies over the backend.

ABC i

Management Summary

Initial Situation

In modern networks, network services are required to secure and enhance the data flow
between customer networks. However, the service handling, especially when several services
are included, has ever been driven by static manner. As a consequence, many services had to
be installed and maintained. Additionally, a service failure often implied also an outage in the
delivery of data. Thus, the effort and costs were extremely high, whereas the output was not
intuitive. This situation has changed now with the Segment Routing Service Programming
application. The application serves as an easy-to-use interface, which allows an operator to
create network rules naturally. These rules ensure that the traffic is steered through the most
suitable services in the network. So, it is straightforward to steer traffic through one or several
services according to the customer’s desire. A significant advantage of this solution is that
the services can be distributed in the network. The application will automatically find the
best services and influence the traffic to flow through them. Furthermore, it reacts to network
changes and adapts to these quickly. Outages caused by service failures are thus a thing of
the past. As a result, the application delivers a dynamic, enhanced, and cost-efficient solution
that is future-proof and is changing the service consumption of the future.

Figure 1: Our Vision

Procedure and Technology

In order to record all requirements in detail, all use cases were discussed with the project
partner. So, it was ensured that the features could be prioritized for the development phase.
In addition, various non-functional requirements are met so that the application would also
meet the high demands in production.

The non-functional requirements then led to an intensive architecture and prototype phase,
in which the basic architecture was thoroughly tested in a minimal application. That ensured
from the very beginning, that the design delivers what it promised and will meet the non-
functional requirements.

The most significant phase was the development phase, in which all features were devel-
oped and tested. In this phase, much research had to be done to determine, how exactly to
configure the network, so that the traffic is routed according to the defined parameters. In this
phase, two services were developed. One is the polling service, which was entirely developed
in Python and is responsible for the whole update strategy of the application. The other is the
backend service, which was also built in Python using the Django framework. The backend
has several functionalities: Data provision, path calculation and policy management.

ABC ii

Results

In this bachelor thesis, a comprehensive Segment Routing Service Programming application
could be developed.

The application allows the customer to manage the different policies from a central location.
The granular permission structure allows the customer to control: who is allowed to perform
and what activities. Constant manual adjustment of the various policies belongs to the past,
thanks to automatic recalculation and redeployment. With the ability to dynamically route
traffic through the various services, services such as a firewall or an intrusion detection/pre-
vention system can now be utilized better and centrally deployed in the network.

Figure 2: Customer Benefits

Through the standardized Application Programming Interface (API), all application functions
can be controlled; a frontend, like the one developed by the Institute for Networked Solutions,
can display the complete topology and inform the user dynamically about updates. The
application can be seamlessly integrated into a cloud environment due to its cloud-native
structure and can scale with the size of the network without any problems.

Outlook

During this thesis, a stable Service Programming application could be developed. In the fu-
ture, the focus might be on adding more metrics and advanced options. A particular emphasis
should be placed on the interaction with existing network automation solutions to integrate
the application perfectly into a customer network. The goal in the future should be to improve
the application and bring it to the next level. The explicit goal should be, that the application
can prove itself in a provider network.

ABC iii

Acknowledgments

We want to express our gratitude to the following people who have accompanied us during
this bachelor thesis:

Laurent Metzger We want to thank Laurent very much; as our supervising professor, he
always believed in us and helped us better understand the domain of Segment Routing.
Which further strengthened us to consolidate and educate ourselves in this field.

Francois Clad as our project partner and expert in Segment Routing deserves special thanks
for always taking time for questions and helping us with our concerns.

Ahmed Abdelsalam we would like to thank him very much for his support and swift help
with the Segment Routing Services. Without his preliminary work and the quick provi-
sion of a new Linux kernel, the services would not be operational.

Bruce McDougall we would like to thank him for his support with questions regarding the
external software system Jalapeño. Despite the time shift, he always found time for us.

Judith Manhart we would like to thank her very much for correcting our work and checking
the English grammar.

Sharon Moll as our study colleague, gets a special thanks again for proofreading our work
and his enormous knowledge about various software architectures and distributed sys-
tems.

ABC iv

Contents

Glossary and Abbreviations ix

Bibliography xiv

List of Figures xvi

List of Tables xix

I Technical Report 1

1 Introduction 2
1.1 General . 2

1.1.1 Thesis Structure . 2
1.2 Terms and Techniques . 3

1.2.1 Segment Routing over IPv6 (SRv6) . 3
1.2.2 Segment Routing Policy . 6
1.2.3 Explicit Path . 7
1.2.4 Automated Steering . 8

1.3 Aims and Objectives . 9
1.3.1 Problem . 9
1.3.2 Solution - Service Programming . 9

2 Results 12
2.1 Distinction . 12
2.2 Achievements . 12

2.2.1 View Topology . 12
2.2.2 CRUD Segment Routing Traffic Engineering Policy 13
2.2.3 Structure Data . 14
2.2.4 Define Service . 14
2.2.5 Calculate Paths . 14
2.2.6 Deploy Link Metric Algorithm Policy . 15
2.2.7 Login . 15
2.2.8 Manage Recalculations . 15
2.2.9 CRUD Roles and Users . 16
2.2.10 Handle Permissions . 16

2.3 Implementation . 16
2.3.1 Architecture . 16
2.3.2 Enabling / Disabling . 19

ADV v

Contents

2.3.3 Calculation and Preprocessing . 19
2.3.4 Policy Verification . 24
2.3.5 Policy Deployment . 28
2.3.6 Clustering . 30
2.3.7 Service Management . 32

3 Conclusion 34
3.1 Retrospective . 34

3.1.1 Use Cases . 34
3.1.2 Discussion . 37

3.2 Outlook . 38
3.2.1 Improvements . 38
3.2.2 Innovations . 39
3.2.3 Further Thoughts . 39

II Project Documentation 41

4 Requirement Specification 42
4.1 Use Cases . 42

4.1.1 Actors . 43
4.1.2 Use-Case-Diagram . 44
4.1.3 Use-Case-Description . 44

4.2 Non-Functional Requirements . 55
4.2.1 Functionality . 55
4.2.2 Usability . 55
4.2.3 Reliability . 56
4.2.4 Performance . 56
4.2.5 Scalability . 56
4.2.6 Maintability . 56
4.2.7 Traceability . 56

5 Domain Analysis 57
5.1 Domain Model . 57
5.2 Administrative Concepts . 58

5.2.1 Policy . 58
5.2.2 Node . 59
5.2.3 VRF . 59
5.2.4 Network . 59
5.2.5 Service . 59
5.2.6 Link . 59

6 Architecture and Design Specifications 60
6.1 General . 60
6.2 System Overview . 60

6.2.1 Design Goals . 62
6.2.2 Backend . 63
6.2.3 Polling . 63
6.2.4 Worker . 63
6.2.5 Frontend . 63
6.2.6 Messaging . 63
6.2.7 Caching . 63

ABC vi

Contents

6.2.8 Database . 64
6.3 12-Factor Methodology . 64
6.4 Technology Decisions . 68

6.4.1 Technology Stack . 68
6.4.2 Programming Language and Framework 69
6.4.3 Database . 70
6.4.4 Caching . 71
6.4.5 Messaging . 73
6.4.6 Graph Library . 75
6.4.7 Policy Deployment . 75

6.5 Messaging . 78
6.5.1 Service Communication . 78
6.5.2 Backend - Frontend Communication . 79
6.5.3 Message Format . 80

6.6 Policy Treatment . 81
6.6.1 Input Validation . 81
6.6.2 Policy Creation . 82
6.6.3 Policy Update . 83
6.6.4 Policy Deployment . 84
6.6.5 Policy Reversion . 86

6.7 Role Based Access Control . 86
6.8 Update Processing . 88

6.8.1 Polling Service Update Processing . 88
6.8.2 Backend Service Update Processing . 89

6.9 REST API . 90
6.9.1 General . 90
6.9.2 Query Parameters . 91
6.9.3 Actions . 91

6.10 Application Deployment . 92
6.10.1 Helm Chart . 93
6.10.2 Autoscaling . 94

6.11 Persistence . 95
6.11.1 Cache Persistence . 96
6.11.2 Database Persistence . 97

6.12 Packages and Classes . 98
6.12.1 Backend . 98
6.12.2 Polling . 101

7 Project Management 103
7.1 Project Management . 104
7.2 Scheduling . 104

7.2.1 Iteration Planning . 105
7.2.2 Estimates . 106
7.2.3 Time Evaluation . 107

7.3 Milestones . 107
7.4 Meetings . 108
7.5 Responsibilities . 108
7.6 Repositories . 109

7.6.1 SerPro Backend Repository . 109
7.6.2 SerPro Polling Repository . 110
7.6.3 SerPro Kubernetes Repository . 110

7.7 Infrastructure . 111

ABC vii

Contents

7.8 Development Concept . 111
7.8.1 Definition of Done . 111
7.8.2 Code Style Guidelines . 112
7.8.3 Development Workflow . 112

7.9 Development Environment . 113
7.10 Continuous Integration . 115
7.11 Code Metrics . 116
7.12 Risk Management . 117

7.12.1 Dealing with Risks . 119
7.12.2 Implications . 121

7.13 Exception Handling . 121
7.14 Logging . 122
7.15 Testing . 123

III Appendix 125

A Class Diagrams 127

B Test Protocols 128
B.1 System Tests . 128

C Metrics 132

ABC viii

Glossary and Abbreviations

Ansible IT Automation Framework. 76

API Application Programming Interface. ix, 14, 15, 18, 29, 34–38, see Application Program-
ming Interface

Application Programming Interface Programming interface into a software. Can be used
and extended by other software components. 14

ArangoDB Open-source graph database. 88

ASGI Asynchronous Server Gateway Interface. ix, see Asynchronous Server Gateway Inter-
face

BGP Border Gateway Protocol. ix, 8, 18, see Border Gateway Protocol

Border Gateway Protocol Exterior Gateway Protocol (EGP), which exchanges network infor-
mation between different autonomous system (mostly on the internet). 8

CD Continuous Delivery. ix, see Continuous Delivery

Celery Simple, high-available, fast and flexible Python-based task queue. 63, 78, 84

channels_rabbitmq Django Channels with RabbitMQ backing store. 74

CI Continuous Integration. ix, see Continuous Integration

Cisco DNA Center Software-defined Access Solution by Cisco. 30

Cisco IOS-XR Service Layer API IOS-XR protocol stack API which can be used over GRPC.
38

Cisco Network Service Orchestrator Network automation and orchestration tool. 38

DDoS Distributed Denial-of-Service. ix, see Distributed Denial-of-Service

Dijkstra Mathematical algorithm which solves the problem of the shortest path for a given
start-point. 20–23

Django REST Framework Django extension, which allows the development of web APIs. 69

django-redis Jazzband Django Redis. ix, 72, see Jazzband Django Redis

DRF Django REST Framework. ix, 69, see Django REST Framework

ECMP Equal-Cost Multi-Path Routing. ix, 7, 20, 30, 48, see Equal-Cost Multi-Path Routing

ADV ix

Glossary and Abbreviations

Egress Router The router where the packet exits the Segment Routing Domain. 5

Elasticsearch, Logstash and Kibana Stack out of different softwares, that enable log manage-
ment and monitoring. 67

ELK Elasticsearch, Logstash and Kibana. x, 67, see Elasticsearch, Logstash and Kibana

Equal-Cost Multi-Path Routing Strategy which enables forwarding packets on several best
paths with equal routing costs.. 7

Firewall Security system designed to prevent unauthorized access to network resources. 56

Floyd-Warshall All-pair shortest path in directed graph with weighted edges. 22

FW Firewall. x, 56, see Firewall

gRPC Modern, high-performance, scalable remote procedure call framework. 38, 75

Helm Package manager for Kubernetes, which allows to find, share and use software built
for Kubernetes.. 93

HTTP Hypertext Transfer Protocol. x, 60, see Hypertext Transfer Protocol

Hypertext Transfer Protocol De facto standard protocol which enables communication be-
tween browser and web server and is used for exchanging hypermedia documents like
HTML or JavaScript files. 60

IDS Intrusion Detection System. x, 10, 56, see Intrusion Detection System

IGP Interior Gateway Protocol. x, 14, 32, see Interior Gateway Protocol

Ingress Router The router where the packet enters the Segment Routing Domain and the
Segments are added . 5, 6

INS Institute for Networked Solutions. x, 12, 35, 63, see Institute for Networked Solutions

Institute for Networked Solutions Computer science institute at the University of Applied
Sciences of Eastern Switzerland. 12

Interior Gateway Protocol A type of routing protocol used to exchange network information
within an Autonomous System (AS). 14

Internet Protocol Version 6 Most recent version of the Internet Protocol (IP) which introduces
new techniques and capabilities. 3

Intrusion Detection System Monitoring system, that detects suspicious activities and creates
warning messages. 10

Intrusion Protection System Monitoring system, that detects suspicious activities and exe-
cutes protection mechanisms against these. 10

IPS Intrusion Protection System. x, 10, see Intrusion Protection System

IPv6 Internet Protocol Version 6. x, 3, 32, see Internet Protocol Version 6

IS-IS Intermediate System to Intermediate System. x, see Intermediate System to Intermediate
System

Jalapeño Software system developed by Cisco, which aggregates and processes the data of a
segment routing network. 18, 32, 36, 38, 60, 88, 101

ABC x

Glossary and Abbreviations

Jazzband Django Redis Full featured Redis cache and session backend for Django. 72

Johnson All-pair shortest path in directed graph with weighted edges. 22

JSON JavaScript Object Notation. xi, see JavaScript Object Notation

JSON Web Token Open industrie standard method for representing access tokens.. 15

JWT JSON Web Token. xi, 15, 36, 86, 87, 99, see JSON Web Token

Kafka Distributed event streaming platform. 38

Keda Kubernetes-based event driven autoscaler. 94

Kubernetes Open-source container orchestration system, which allows easy scaling and man-
agement of the deployed applications. 17, 92

LAN Local Area Network. xi, 59, see Local Area Network

Linux iptables Firewall included in the Linux operating system. 10

Local Area Network A network primarly spanned over a small geographic are. 59

Memcached Open-source in-memory key-value cache system. 72

micro segment A ultra-scale compressed Segment format with minimum MTU overhead. 32

Minimum Viable Product Version of a product which includes the customer’s minimum re-
quirements so that it can be used in production. 34

MPLS Multi Protocol Label Switching. xi, 3, see Multi Protocol Label Switching

Multi Protocol Label Switching Routing protocol which routes packets based on path labels
and not network addresses. 3

MVP Minimum Viable Product. xi, 34, 42, see Minimum Viable Product

NAPALM Network Automation and Programmability Abstraction Layer with Multivendor
support. xi, 76, see Network Automation and Programmability Abstraction Layer with
Multivendor support

NETCONF Protocol for writing and receiving network device configuration.. 75

Netmiko Python library for CLI connections to network devices. 76

Network Automation and Programmability Abstraction Layer with Multivendor support Easy-
to-use Python library that let the user interact with network devices. 76

Nornir Python automation framework. 76, 85

NSO Cisco Network Service Orchestrator. xi, 38, see Cisco Network Service Orchestrator

ORM Object-relational mapping. xi, see Object-relational mapping

OSPF Open Shortest Path First. xi, see Open Shortest Path First

Paramiko Simple and easy-to-use Python library for the SSH protoocl. 76

PE Provider Edge. xi, 22, 23, 48, 59, see Provider Edge

PEP8 Document providing guidelines and best practices for the Python programming lan-
guage. 112

ABC xi

Glossary and Abbreviations

PmQm Project and Quality Management. xii, see Project and Quality Management

Provider Edge Interface between end customer and service provider. 22

RabbitMQ High-available and high-scale message queue system. 74

RBAC Role-Based Access Control. xii, 86, see Role-Based Access Control

Redis Object Mapper Python data modeling with support for Redis cache. 72

REpresentational State Transfer Standardized architecture for providing data on the web. 14

Request for Comments Standard document from the Internet Engineering Task Force (IETF).
3

REST REpresentational State Transfer. xii, 14, 15, 18, 29, see REpresentational State Transfer

RFC Request for Comments. xii, 3, see Request for Comments

Role-Based Access Control Approach for restricting system access to authorized users.. 86

rom Redis Object Mapper. xii, 72, see Redis Object Mapper

SaltStack Automation and Configuration Management Framework. 76

SDN Software Defined Networking. xii, see Software Defined Networking

Segment Identifier A identifier for a Segment in Segment Routing. 3

Segment Routing Source-based routing protocol that enables new approaches and optimizes
traffic engineering, network protection and more. 2

Segment Routing aware services Services which can handle Segment Routing. 10

Segment Routing over IPv6 dataplane Source-based routing protocol over the IPv6 dataplane,
that enables new approaches and optimizes traffic engineering, network protection and
more. 3

Segment Routing over the Multi Protocol Label Switching (MPLS) dataplane Source-based
routing protocol over the MPLS dataplane, that enables new approaches and optimizes
traffic engineering, network protection and more. 3

Segment Routing Service Programming The name of this Bachelor thesis. 10

Segment Routing Traffic Engineering Influence and steer traffic according to own desire in
a Segment Routing Domain.. 48

SerChio Service Chaining Path Calculation. xii, 2, 9, 10, 12, 14, 17, 18, 20, 57, 68, 70–72, 88–90,
see Service Chaining Path Calculation

SerPro Segment Routing Service Programming. xii, 10, 16, 18, 19, 32, 38–40, 57, 60, 63, see
Segment Routing Service Programming

Service Chain Concatenation of different services. 2

Service Chaining Path Calculation The name of the preliminary thesis. 2

SID Segment Identifier. xii, 3, see Segment Identifier

Simple Network Management Protocol Protocol which allows devices to communicate even
when they are running on different hardware or software. 39

SNMP Simple Network Management Protocol. xii, 39, see Simple Network Management
Protocol

ABC xii

Glossary and Abbreviations

SQL Structured Query Language. xiii, see Structured Query Language

SR Segment Routing. xiii, 2, 3, see Segment Routing

SR-aware services Segment Routing aware services. xiii, 10, 11, 13, see Segment Routing
aware services

SR-MPLS Segment Routing over the Multi Protocol Label Switching (MPLS) dataplane. xiii,
3, see Segment Routing over the Multi Protocol Label Switching (MPLS) dataplane

SR-TE Segment Routing Traffic Engineering. xiii, 48, see Segment Routing Traffic Engineering

SRv6 Segment Routing over IPv6 dataplane. xiii, 3, 10, 14, 18, 28, 32, see Segment Routing
over IPv6 dataplane

Standard Output Default file descriptor where a process can write output to. 122

stdout Standard Output. xiii, 122, see Standard Output

streaming telemetry gRPC based push mechanism to send data from network devices to a
management system. 18

TE Traffic Engineering. xiii, 36, 49, see Traffic Engineering

TI-LFA Topology Independent Loop-Free Alternate. xiii, see Topology Independent Loop-
Free Alternate

Traffic Engineering Technique used to control and steer traffic to optimize the network uti-
lization and performance. 36

uSID micro segment. xiii, 32, see micro segment

Virtual Routing and Forwarding Virtual router which lives on a physical. Enables the coex-
istence of e.g. different customers on the same router. 59

VM Virtual Machine. xiii, see Virtual Machine

VNF Virtual Network Function. xiii, see Virtual Network Function

VRF Virtual Routing and Forwarding. xiii, 59, see Virtual Routing and Forwarding

WebSocket Communication protocl which uses the HTTP protocol to provide full-duplex
channels for communication. 29, 36, 73

YANG Yet Another Next Generation. xiii, 75, see Yet Another Next Generation

Yet Another Next Generation Data modeling language for network device configuration. 75

ABC xiii

Bibliography

[1] MIT OpenCourseWare. “6.046J / 18.410J Design and Analysis of Algorithms”. In: Lecture
11: All-Pairs Shortest Paths (2015). url: https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-
spring-2015/lecture-notes/MIT6_046JS15_lec11.pdf (visited on 06/05/2021).

[2] Clarence Filsfils et al. Segment Routing. Part 2. Independently published, 2019.

[3] Severin Dellsperger and Julian Klaiber. “Service Chaining Path Calculation”. Project
Thesis. Eastern University of Applied Sciences Switzerland, 2020. url: https://eprints.
ost.ch/id/eprint/912/.

[4] Wiggins Adam. The Twelve-Factor App. url: https://12factor.net/ (visited on 10/06/2020).

[5] Applying Evolutionary Requirements. url: https://www.craiglarman.com/wiki/downloads/
applying_uml/larman-ch5-applying-evolutionary-requirements.pdf (visited on
09/23/2020).

[6] boost C++ library implementation of shortest path algorithm. url: https://www.boost.org/
doc/libs/1_57_0/libs/graph/doc/dijkstra_shortest_paths.html (visited on
04/01/2021).

[7] Simon Brown. C4 Model. url: https://c4model.com/ (visited on 11/03/2020).

[8] Django’s cache framework. url: https://docs.djangoproject.com/en/3.2/topics/
cache/ (visited on 06/03/2021).

[9] Cloud Computing Foundation. Cloud Native. url: https://cncf.io/ (visited on 10/11/2020).

[10] graph-tool implementation of shortest path algorithm. url: https://graph-tool.skewed.
de/static/doc/topology.html#graph_tool.topology.shortest_path (visited on
04/01/2021).

[11] IETF Draft: Network Programming extension: SRv6 uSID instruction draft-filsfils-spring-net-
pgm-extension-srv6-usid-10. url: https://datatracker.ietf.org/doc/html/draft-
filsfils-spring-net-pgm-extension-srv6-usid-10 (visited on 06/10/2021).

[12] IETF Draft: Service Programming with Segment Routing draft-ietf-spring-sr-service-programming-
04. url: https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-
programming-04 (visited on 06/10/2021).

[13] IETF RFC4360 - BGP Extended Communities Attribute. url: https://datatracker.ietf.
org/doc/html/rfc4360 (visited on 06/11/2021).

[14] IETF RFC4741 - Network Configuration Protocol (NETCONF). url: https://datatracker.
ietf.org/doc/html/rfc6241 (visited on 06/03/2021).

ADV xiv

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/lecture-notes/MIT6_046JS15_lec11.pdf
https://eprints.ost.ch/id/eprint/912/
https://eprints.ost.ch/id/eprint/912/
https://12factor.net/
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch5-applying-evolutionary-requirements.pdf
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch5-applying-evolutionary-requirements.pdf
https://www.boost.org/doc/libs/1_57_0/libs/graph/doc/dijkstra_shortest_paths.html
https://www.boost.org/doc/libs/1_57_0/libs/graph/doc/dijkstra_shortest_paths.html
https://c4model.com/
https://docs.djangoproject.com/en/3.2/topics/cache/
https://docs.djangoproject.com/en/3.2/topics/cache/
https://cncf.io/
https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.shortest_path
https://graph-tool.skewed.de/static/doc/topology.html#graph_tool.topology.shortest_path
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-net-pgm-extension-srv6-usid-10
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-net-pgm-extension-srv6-usid-10
https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-04
https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-04
https://datatracker.ietf.org/doc/html/rfc4360
https://datatracker.ietf.org/doc/html/rfc4360
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241

Bibliography

[15] IETF RFC5512 - The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the
BGP Tunnel Encapsulation Attribute. url: https://datatracker.ietf.org/doc/html/
rfc5512 (visited on 06/11/2021).

[16] IETF RFC8200 - Internet Protocol, Version 6 (IPv6) Specification. url: https://datatracker.
ietf.org/doc/html/rfc8200 (visited on 06/10/2021).

[17] IETF RFC8402 - Segment Routing Architecture. url: https://datatracker.ietf.org/
doc/html/rfc8402 (visited on 06/10/2021).

[18] IETF RFC8754 - IPv6 Segment Routing Header (SRH). url: https://datatracker.ietf.
org/doc/html/rfc8754 (visited on 06/10/2021).

[19] IETF RFC8986 - Segment Routing over IPv6 (SRv6) Network Programming. url: https:
//datatracker.ietf.org/doc/html/rfc8986 (visited on 06/10/2021).

[20] Craig Larman. Applying Evolutionary Use Cases. url: https://www.craiglarman.com/
wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
(visited on 09/23/2020).

[21] Pickling Graph in graph-tool. url: https : / / graph - tool . skewed . de / static / doc /
quickstart.html?highlight=pickle#graph-i-o (visited on 02/28/2021).

[22] Programmability Configuration Guide for Cisco ASR 9000 Series Routers, IOS XR Release 6.4.x.
url: https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-
r6- 4/programmability/configuration/guide/b- programmability- cg- asr9000-
64x/b-programmability-cg-asr9000-64x_chapter_010.html (visited on 03/17/2021).

[23] Python static typing. url: https://docs.python.org/3/library/typing.html (visited
on 03/06/2021).

[24] Redis Publish/Subscribe. url: https://redis.io/topics/pubsub (visited on 06/13/2021).

[25] Redis Sentinel Documentation. url: https://redis.io/topics/sentinel (visited on
03/12/2021).

[26] Segment Routing Policy Architecture draft-ietf-spring-segment-routing-policy-13. url: https:
//datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-
13 (visited on 06/10/2021).

[27] Serializing Python Objects with pickle. url: https : / / docs. python. org / 3 / library /
pickle.html#module-pickle (visited on 03/28/2021).

ABC xv

https://datatracker.ietf.org/doc/html/rfc5512
https://datatracker.ietf.org/doc/html/rfc5512
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8402
https://datatracker.ietf.org/doc/html/rfc8402
https://datatracker.ietf.org/doc/html/rfc8754
https://datatracker.ietf.org/doc/html/rfc8754
https://datatracker.ietf.org/doc/html/rfc8986
https://datatracker.ietf.org/doc/html/rfc8986
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://graph-tool.skewed.de/static/doc/quickstart.html?highlight=pickle#graph-i-o
https://graph-tool.skewed.de/static/doc/quickstart.html?highlight=pickle#graph-i-o
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-4/programmability/configuration/guide/b-programmability-cg-asr9000-64x/b-programmability-cg-asr9000-64x_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-4/programmability/configuration/guide/b-programmability-cg-asr9000-64x/b-programmability-cg-asr9000-64x_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-4/programmability/configuration/guide/b-programmability-cg-asr9000-64x/b-programmability-cg-asr9000-64x_chapter_010.html
https://docs.python.org/3/library/typing.html
https://redis.io/topics/pubsub
https://redis.io/topics/sentinel
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-13
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-13
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-policy-13
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle

List of Figures

1 Our Vision . ii
2 Customer Benefits . iii

1.1 SRv6 Segment Structure . 4
1.2 SRv6 Path Traversal . 5
1.3 SRv6 Micro SID (uSID) . 6
1.4 Segment Routing Policies . 7
1.5 Explicit Path Policy . 7
1.6 Automated Steering . 9
1.7 Application Concept Overview . 11

2.1 Frontend Topology View . 13
2.2 Policy Create Form . 13
2.3 Clustered Result Example . 14
2.4 Admin Page Add Service . 14
2.5 Policy Deployment Example . 15
2.6 Frontend Login Page . 15
2.7 Policy Recalculation Example . 16
2.8 Admin Page Group Creation . 16
2.9 Abstract Architecture Overview . 17
2.10 Calculation Sub-Paths . 20
2.11 Previous Calculation Implementation . 21
2.12 Preprocessed Values . 22
2.13 Preprocessing Optimization . 23
2.14 Calculation Workflow . 24
2.15 Policy Error after Network Change . 25
2.16 Policy Result before Topology Change . 26
2.17 Policy Result after Topology Change . 27
2.18 Non-optimal Policy Result . 27
2.19 Better Policy Result . 28
2.20 Deployment Workflow . 29
2.21 Graph Visualization in Cisco DNA Center . 30
2.22 Clustered Graph Example . 30
2.23 Expanded Graph Example . 31
2.24 Highlight Sub-Paths in Graph . 31
2.25 Service Announcement Chain . 32

4.1 Use-Case-Diagram . 44

ADV xvi

List of Figures

5.1 Domain Model . 58

6.1 C4 System Landscape . 61
6.2 C4 Container Diagram . 62
6.3 Output Django Admin Site . 70
6.4 Redis Sentinel Failover . 72
6.5 Message Queue Functionality . 74
6.6 Nornir Stack . 77
6.7 Task Queue Functionality . 78
6.8 Backend Architecture Blueprint . 79
6.9 Frontend Architecture Blueprint . 80
6.10 Policy Creation . 83
6.11 Policy Update . 84
6.12 Policy Job Creation . 84
6.13 Policy Deployment . 85
6.14 Policy Result Handling . 86
6.15 Authentication Sequence Diagram . 87
6.16 User in engineer group . 88
6.17 User in readonly group . 88
6.18 Polling Service Data Update . 89
6.19 Backend Update Processing . 90
6.20 Backend API Root . 90
6.21 Kubernetes Deployment . 93
6.22 Cache Persistence Diagram . 96
6.23 Database Persistence Diagram . 97
6.24 Package Diagram Backend . 98
6.25 Class Diagram api . 99
6.26 Class Diagram authentication . 99
6.27 Class Diagram calculation . 99
6.28 Class Diagram deployment . 100
6.29 Class Diagram graph . 100
6.30 Class Diagram notification . 101
6.31 Class Diagram updatehandler . 101
6.32 Class Diagram Polling . 102

7.1 Project Timeline . 105
7.2 YouTrack Estimates . 107
7.3 Milestone Overview . 107
7.4 Development Workflow[3] . 113
7.5 Development Environment . 114
7.6 Development Environment Namespaces in Rancher 115
7.7 Pipeline Workflow . 116
7.8 Sonarqube Overview . 117
7.9 Risk Overview . 118
7.10 GitLab Coverage on Merge Request . 123

A.1 Class Diagram Backend API Complete . 127

B.1 System Testing Page 1 . 129
B.2 System Testing Page 2 . 130
B.3 System Testing Page 3 . 131

C.1 Sonar Lines of Code Backend Service . 132

ABC xvii

List of Figures

C.2 Sonar Lines of Code Polling Service . 133
C.3 Sonar Code Analysis Backend Service . 133
C.4 Sonar Code Analysis Polling Service . 134

ABC xviii

List of Tables

4.1 Use Cases Color Description . 42
4.2 Actor Description . 43
4.3 UC01: View Topology - Fully Dressed Description . 45
4.4 UC02: CRUD SR-TE Policy - Fully Dressed Description 49
4.5 UC03: Structure Data - Casual Description . 50
4.6 UC04: Define Service - Fully Dressed Description . 51
4.7 UC05: Calculate Paths - Fully Dressed Description 52
4.8 UC06: Deploy Link Metric Algorithm Policy - Fully Dressed Description 53
4.9 UC08: Manage Recalculations - Fully Dressed Description 54

6.1 Technologies . 69
6.2 Comparision Configuration Interfaces IOS-XR . 76
6.3 Message Format . 80
6.4 Group permissions . 88
6.5 API Action Description . 92
6.6 Helm chart description . 94

7.1 Version History Project Mangement . 103
7.2 Iteration Planning . 106
7.3 Milestone Description . 108
7.4 SerPro Backend Repository . 109
7.5 SerPro Polling Repository . 110
7.6 SerPro Kubernetes Repository . 111
7.7 Continuous Integration Stages . 115
7.8 Quality Attributes[3] . 117
7.9 Risk List . 119
7.10 Dealing with Risks . 120

ADV xix

List of Tables

Part I

Technical Report

ABC 1

Chapter 1

Introduction

1.1 General

This chapter contains an introduction to this thesis. It shows the essential techniques, con-
cepts, and terminology that are valuable to understand according to comprehend the content
of this thesis. The different elements are described as deep as necessary to understand the
mentioned concepts in this thesis. The appropriate sources, where more detailed knowledge
can be gathered, are linked respectively.

The different methods, especially the Segment Routing (SR) technology with all its advan-
tages and the term Service Chain were introduced in the preliminary thesis Service Chaining
Path Calculation (SerChio)[3]. It is assumed that the reader has a basic knowledge of the
mentioned technologies and methods. These points are not amplified, and it is recommended
to look at the previous thesis if the reader has no fundamental knowledge of these topics.

1.1.1 Thesis Structure

The thesis is structured into two parts. More detailed information can be found below.

Technical Report

The first part, the Technical Report, is composed of three chapters. The first chapter is the
Introduction. It introduces the reader to the whole topic and ensures that the basic under-
standing is given to follow the topic. Therefore, the most important terms and techniques are
described. The next chapter is the Results chapter. This chapter contains more detailed in-
formation about the Achievements, which enlists which results are accomplished during this
thesis. Furthermore, it includes the Implementation section. This part contains a description
of how the different approaches were realized. Thereby it concentrates on particular solutions
which are noteworthy. The last chapter is called Conclusion. Firstly, it gives the reader a Ret-
rospective of the thesis, which enlists a discussion about each use case. Secondly, it includes
an Outlook on how the thesis could be developed further or improved. It has to be mentioned
that all three chapters are directed to engineers in the field of computer science. Therefore, a
basic level is required to understand these mentioned concepts.

Project Documentation

The second part, the Project Documentation, includes the necessary information about how
the final result was achieved. Thereby, it concentrates not only on the technical but also on
the non-technical methods. The first chapter, the Requirement Specification, includes the doc-
umentation about the different requirements collected at the start of this project. This chapter

ADV 2

1.2. TERMS AND TECHNIQUES

is divided into functional requirements – use cases – and non-functional requirements. The
Domain Analysis, the subsequent chapter, introduces the reader to the domain and shows
the domain-specific elements. Following, the Architecture and Design Specifications show
the different characteristics of the application under development. It provides more infor-
mation about the architecture, the used technologies and mentions design-specific thoughts
and approaches. The seventh and last chapter includes information about the project man-
agement. Besides the scheduling, it included information about the milestones and iterations,
risk management, and development characteristics and decisions.

1.2 Terms and Techniques

There is no doubt, that services are needed in today’s networks. Nevertheless, the consump-
tion of network services was not straightforward and often not optimized in the past. Hence,
this should change in the future. The Segment Routing Service Programming should have a
significant influence on that behavior. This section introduces the necessary terms and pro-
vides more detailed information about the used techniques. This section is based on the
Segment Routing Architecture defined in RFC 8402W[17] and furthermore on the following
draft items and Request for Comments (RFC) documents:

1. IETF Draft: Service Programming with Segment Routing draft-ietf-spring-sr-service-
programming-04 [12]

2. RFC 8986W: Segment Routing over IPv6 (SRv6) Network Programming [19]

3. IETF Draft: Network Programming extension: SRv6 uSID instruction draft-filsfils-spring-
net-pgm-extension-srv6-usid-10 [11]

4. IETF Draft Segment Routing Policy Architecture draft-ietf-spring-segment-routing-policy-
13 [26]

1.2.1 Segment Routing over IPv6 (SRv6)

As mentioned in the preliminary thesis, SR can be used over the Multi Protocol Label Switch-
ing (MPLS) or the Internet Protocol Version 6 (IPv6) dataplane. If the IPv6 dataplane is used,
one is generally speaking about Segment Routing over IPv6 dataplane (SRv6)

The general idea of Segment Routing over the Multi Protocol Label Switching (MPLS) dat-
aplane (SR-MPLS) and SRv6 are the same. Nevertheless, SRv6 has some own characteristics,
which are important to understand. These different concepts are outlined in the specific sub-
sections below.

SRv6 SID Format

The first and probably most important point is that one Segment in SRv6 refers to one IPv6
address. The SRv6 Segment Identifier (SID) can be devided into three logical elements [19]:

Locator is used to route the packet to the appropriate node - this locator information has to
be distributed in the network to ensure connectivity.

Function which should be executed on the appropriate node - the appropriate node can iden-
tify the behavior which is bound to the function (more information can be found here:
https://datatracker.ietf.org/doc/html/rfc8986#section-4)

Arguments which give some additional information about the local behavior (function) which
should be processed on the appropriate node

ABC 3

https://tools.ietf.org/html/rfc8402
https://tools.ietf.org/html/rfc8986
https://datatracker.ietf.org/doc/html/rfc8986#section-4

1.2. TERMS AND TECHNIQUES

It is important to be mentioned, that the SRv6 Segment, like an IPv6 address, has a maximum
length of 128 bit. The length of the locator can be chosen freely and there is no need for
arguments. The structure of an SRv6 Segment can be seen in figure 1.1.

Figure 1.1: SRv6 Segment Structure

Segment Routing Header

In order to ensure that the IPv6 packets are steered through the desired path in a Segment
Routing Domain, they have to be supplemented with the appropriate segments. The Segment
List is added to the IPv6 header as soon as the packet enters the Segment Routing Domain.
For this purpose, the so-called Segment Routing Header was invented. The Segment Routing
Header, therefore, is built on the IPv6 Routing Extension Header [16, 18]. The structure of the
Segment Routing Header can be observed at listing 1.1.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| Last Entry | Flags | Tag |
+-+
| |
| Segment List[0] (128-bit IPv6 address) |
| |
| |
+-+
| |
| |

...
| |
| |
+-+
| |
| Segment List[n] (128-bit IPv6 address) |
| |
| |
+-+
// //
// Optional Type Length Value objects (variable) //
// //
+-+

Listing 1.1: Segment Routing Header

The delivery of a packet in a Segment Routing Domain can be simplified as follows: The
header includes the different Segments which should be completed during the path traversal
in the Segment List. The Segment, which should be executed first, corresponds to the last

ABC 4

1.2. TERMS AND TECHNIQUES

Segment List entry. In addition, the header includes the Segments Left field, which contains
the information, how many instructions still need to be executed. This field points to the last
Segment List entry at the beginning. As soon as the first Segment has been completed, this
value is decremented. Consequently, the field refers to the next Segment, which has to be
processed further. Next, the Active Segment is copied into the destination address field in the
IPv6 header. The packet is forwarded according to the destination address information to the
appropriate node. If the packet had received an intermediate node, the packet is redirected
according to its routing entries. As soon as the packet has reached the node, which is respon-
sible for the Active Segment, the instruction can be finished. This whole process can now be
repeated until no Segments are left. By these means, it can be ensured, that the packet takes
the desired path, which is encoded in the Segment Routing Header.

An example of this process is visualized in figure 1.2. The particular Active Segment re-
spective destination address of the packet is marked with the orange star. The Segments Left
counter can be found on the top right corner. The process starts after the packet has entered
the Segment Routing Domain. The Ingress Router assembles the packet with the relevant
Segment List. In this example, the packet should be steered via R2 to R4 and afterwards via
the shortest path to R10. Therefore, the first instruction is executed, and the packet is sent to
R2. There the Segment is completed, and the Segments Left field can be decremented. So, the
new Active Segment can be copied into the destination address field. Next, the packet can be
sent to R4. This process is repeated until the packet has reached the Egress Router R10 and
the packet can be forwarded outside of the Segment Routing Domain.

Figure 1.2: SRv6 Path Traversal

Micro SID

The introduction of the so-called SRv6 Micro SID, or short uSID, proposes a method to opti-
mize the usage of the Segment Routing Header. Instead of including duplicated information
into the Segment Routing Header multiple times, the duplicated information is only included
once. This method can be used if different standard behaviors are used. [11]

The figure 1.3 shows a uSID format. If it is compared to the figure 1.2 it stands out, that
the SRv6 uSID Block is only mentioned once and the three Segments are consilidate in one
single SRv6 uSID Carrier. The functionality is similar to the standard: The foremost uSID
represents the Active Segment. As soon as this instruction is completed, the uSID is removed
from the SRv6 uSID Carrier. So, the next uSID becomes active. This process is repeated until
no uSIDs are left. At this point, the packet has reached the destination router.

ABC 5

1.2. TERMS AND TECHNIQUES

Figure 1.3: SRv6 Micro SID (uSID)

1.2.2 Segment Routing Policy

� SR Policy Definition

An SR Policy is a framework that enables the instantiation of an ordered list of segments on a
node for implementing a source routing policy for the steering of traffic for a specific purpose (e.g.
for a specific SLA) from that node. [26]

As already mentioned, Segment Routing enables a new level of Traffic Engineering capabili-
ties. It allows steering traffic according to the operator’s desire and the packet characteristics
through the network. These operations are possible, because the state is always available in
the packet through the managed Segment List. In order for the packet to be associated with
the correct Segments, and therefore the correct path traversal is ensured, the concept of SR
Policies was introduced. An SR Policy can be seen as a configuration that ensures that packets
with matching options are assigned with the appropriate Segments.

A SR Policy is identified by tree elements [2, 26]:

• headend is the IPv4 or IPv6 address of the node where the policy is instantiated (the
Ingress Router)

• color is a numeric value to differentiate between different policies with same endpoint

• endpoint is the IPv4 or IPv6 address of the destination of the policy

It is possible to treat individual packets according to their characteristics differently with this
technique. Each policy is therefore unique by the introduced tuple (headend, color, end-
point). The figure 1.4 shows two different policies with different meanings. Both policies
are introduced on the headend R1. The green policy should steer packets according to the
minimal cost to the destination node R10. This policy is uniquely identifiable with the tuple
(R1, 10, R10), whereas the 10 is the numeric value for the intent of minimal cost. The second
policy, the pink one, can be recognized by its unique tuple constraint (R1, 20, R10). Its purpose
is to steer traffic over the minimum delay path to the destination router R10.

ABC 6

1.2. TERMS AND TECHNIQUES

Figure 1.4: Segment Routing Policies

1.2.3 Explicit Path

There are many ways to steer traffic in the field of Segment Routing. However, probably the
most basic one, which also is important for this thesis, is the Explicit Path method. A con-
figuration is applied on the headend, which tells which explicit Segments should be applied
to a packet. Therefore, the router adds this information to the appropriate packets. This
technique has the advantage that a path can be calculated externally and then be configured
on the headend. The router, at this point, does not know the intent behind this policy. It
simply executes the associated instructions. So, it is possible to craft the path manually and
without considerable effort, which a packet should take. Thereby not the whole path has to be
mentioned. Segment Routing takes care that the appropriate Segments existing in the packet
header are executed.

The figure 1.5 exemplifies this behavior. On the headend R1 an Explicit Path Policy was
instantiated. It ensures that the explicit path is taken care of. In the header, there are men-
tioned the Segments of the Router R4, R5, R7, R10. Therefore, Segment Routing ensures
automatically that the best Equal-Cost Multi-Path Routing (ECMP) path from the source to
the destination node is found. In this particular case, equality is shown between the first and
the last passage, whereas between R4 and R7, only one path is considered as the most suitable
one.

Figure 1.5: Explicit Path Policy

ABC 7

1.2. TERMS AND TECHNIQUES

1.2.4 Automated Steering

Automated Steering is another crucial concept, that is essential for steering traffic in a Seg-
ment Routing Domain. It is the solution, that allows to steer traffic automatically into SR
Policy based on the service route. Simplified, it is the technique for the headend to map the
traffic automatically with the correct policy. The policy then ensures the correct treatment and
steering according to its configuration. Like already mentioned, a Policy can be identified by
the unique tuple (headend, color, endpoint). The color is the concept to differentiate between
different policies with the same endpoint. Furthermore, it has another crucial functionality:
It provides the routes additional information into which policy the traffic has to be steered.
Thus, the color can be seen as the mapping between the policy and the traffic, which should
be processed. [2]

An example of colorized routes can be observed in listing 1.2. It shows the two routes
170.0.0.11/32 and 171.0.0.11/32 which were colorized with the color values 16 and 17. The
different colors can be identified with the syntax C:<color-value>.

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

Route Distinguisher: 10.10.10.10:1 (default for vrf VPN1)
*> 170.0.0.10/32 0.0.0.0 0 32768 ?
*>i170.0.0.11/32 2001:db8:bbbb::b C:16 0 100 0 ?
*> 171.0.0.10/32 0.0.0.0 0 32768 ?
*>i171.0.0.11/32 2001:db8:bbbb::b C:17 0 100 0 ?

Listing 1.2: Colorized Routes IOS-XR

In order that Automated Steering can work, a network route must have additional color in-
formation. This color information is an additional property connected to a route used to
characterize the network route. This particular color information is later used in the headend
to define the special steering treatment. Because each network route has to be colorized to en-
able the Automated Steering functionality, this configuration must be made on the destination
router, where the network is announced. As soon as the route is colorized, this information
is distributed in the network and made available for the potential headends. The distribution
of this information is made via Border Gateway Protocol (BGP) protocol. The color attribute
is specified by an extended community attribute in the BGP packet[13, 15] Once the headend
node receives the color information, the appropriate policies can be created, and the Auto-
mated Steering enforced. A process of this technique is visualized in figure 1.6.

ABC 8

1.3. AIMS AND OBJECTIVES

Figure 1.6: Automated Steering

1.3 Aims and Objectives

This section is intended to provide an introduction to the problem as well as the associated
solution.

1.3.1 Problem

The problem was already analyzed in the preliminary work SerChio. Therefore, the problem
is only discussed briefly again here. However, more attention should be paid to what has not
yet been achieved in the preliminary work and the problems that still need to be addressed.

The fundamental problem is that traffic, which should flow through defined services, can
only be configured by static intervention. This problem has already been discussed in the
preliminary work but still has not been solved completely. However, an essential so-called
service chain could already be calculated. This service chain has laid the foundation for this
continuing bachelor thesis.

A solution, that can enforce this service chain in the network and route the traffic accord-
ing to this service chain, has to be found. Moreover, this solution must not only steer the
traffic according to this service chain; it has to adapt the service chain to topology changes
automatically. That is the only way to ensure that traffic can always take the most suitable
route via the correct services.

1.3.2 Solution - Service Programming

The solution for the discussed problems is Service Programming. The term Service Pro-
gramming was first established in the book Segment Routing Part II - Traffic Engineering. Its
meaning can be summarized as follows: Service Programming is a solution to enforce traffic
to be steered and processed through network services on its path traversal from source to
destination. Because Service Programming is more intelligent, dynamic, and therefore more
enhanced than simple service chaining, it can be seen as its successor. Service Programming
aims to introduce a technique to program network paths with included network services like
a modern programming language. The path should be expressed with single instructions and
thus defined uniquely. Therefore, this very dynamic approach addresses the customer needs
of the future and aims to deliver a method to be as adaptable as possible.[2]

ABC 9

1.3. AIMS AND OBJECTIVES

Service Programming and Segment Routing

Segment Routing is the protocol that makes intelligent Service Programming possible. It is
the optimal approach on which a Service Programming solution can be based on. Thanks to
the instructions saved in the packet header, the Service Programming can be realized without
the need to start a completely new technique. The whole approach is based on the traffic
engineering and network programming approach defined in RFC 8986W, which allows to
specify the packet processing in the Segment List in the IPv6 header.[19] The need for that
solution is that a service can be assigned with a segment in order to be fully integrated into
the Segment Routing Domain. So, as soon as this happens, the Service Programming solution
can benefit from the powerful traffic engineering concepts of Segment Routing. Simplified,
criteria that must be ensured are: First, the packet must be steered to the service. This step
should be possible without any significant innovations. The second step is to ensure that
the service understands the segment and knows which instruction has to be executed. More
details about this current state can be found in section SR-aware Services.

SR-aware Services

In order that a service can be integrated into a Segment Routing Domain, the appropriate
service has to deal with Segments.[12] The exact functionality and implementation go beyond
this thesis. However, is has to be mentioned, that a few services are aware of the Segment
Routing technology. These services are called Segment Routing aware services (SR-aware
services) in this thesis. To introduce a complete Segment Routing Service Programming, the
solution has drawn a profit from the following SR-aware services:

• SERA stands for SEgment Routing aware firewall and extends the Linux iptables func-
tionalities to handle Segment Routing packets. More information can be found under
https://www.segment-routing.net/open-software/SERA/

• SR-aware Snort is an extended version of the well-known Intrusion Detection System
(IDS)/Intrusion Protection System (IPS) snort. More information can be found under
https://www.segment-routing.net/open-software/SR-Snort/

Concept

This thesis aims to develop an application to lay the foundation of Segment Routing Service
Programming and thus solve the discussed problems. This section provides more detailed
information, what general concepts and different techniques are applied to implement the
needed logic.

The Segment Routing Service Programming (SerPro) can be seen as the successor of the Ser-
Chio application. The results, which were found and discussed in the preliminary thesis, are
used to enhance the application in this thesis. The new application is predominantly based
on the calculation basics, which were found in the previous work. In order to implement a
future-proof solution, this thesis has to adapt the findings to the SRv6.

Furthermore, this thesis aims to enforce traffic engineering in the network. The goal is to
ensure that traffic flows over the programmed path that has been defined by a user in the
application. Thereby the packets should not only be steered from source to destination but,
furthermore, sent via the most suitable services in the network. The appropriate services
should process the packets and execute the necessary actions according to their configuration.
The previous thesis managed to find a solution for identifying the best service or the best
service chain.

ABC 10

https://tools.ietf.org/html/rfc8986
https://www.segment-routing.net/open-software/SERA/
https://www.segment-routing.net/open-software/SR-Snort/

1.3. AIMS AND OBJECTIVES

So, that packets can be processed by services on its path traversal SR-aware services have
to be used. The services are assigned with appropriate Segment information in order that the
application can handle network services. The service installation and configuration are not
part of this thesis. However, it is necessary to introduce a way to bridge the services in the
network to the application. As soon as the services are fully integrated within the Segment
Routing Domain and configured properly, a way should be found to steer traffic over these.

In order to ensure that the calculated best paths can be enforced in the network, the in-
troduced technique Automated Steering is used. The application has to guarantee that the
following tasks are included, so that the mechanic works:

1. The application has to ensure that the appropriate routes are extended with a color value
and that this information is distributed in the Segment Routing Domain. Therefore the
application has to change configuration aspects on the endpoints.

2. The application has to ensure that the path is programmed and enforced. Therefore,
the application has to create Segment Routing Policies with an Explicit Path and the
appropriate Color information. This way the traffic can be directed to the services with
their Segment information.

An overview of the different concepts and the functionality of the application can be found in
figure 1.7.

Figure 1.7: Application Concept Overview

ABC 11

Chapter 2

Results

This chapter is intended to show what could be achieved in this bachelor thesis. Therefore, a
clear delineation should show what has been developed in this thesis, what has not been devel-
oped by the authors, and what has already been developed in the preliminary work SerChio.
This delimitation can be found in section Distinction. In the following section Achievements,
the achievements will be discussed. Section Implementation gives then a technically more
intensive view of various aspects of the work.

2.1 Distinction

In order to avoid any misunderstandings when reading this work, this section will discuss
what has been developed and achieved and what has not.

The frontend mentioned several times in this thesis for completeness was developed in co-
operation with the Institute for Networked Solutions (INS) and is not part of this bachelor
thesis. Together with the advisor it was decided, that there was time-wise no room for the
frontend in this work. Due to the advisor’s wish to implement a frontend, it was determined
that the INS would do the complete development work. The two authors of this thesis would
hold joint sessions with the INS developers.

As this bachelor thesis continues the project work (SerChio) from the fall semester of 2020,
several aspects from this thesis have been adopted, adapted, and improved. Although this
thesis is a further development of the project work, it can occur that elements have been taken
over and not wholly redeveloped; for such elements, it was ensured that they were cited
correctly in the documentation.

2.2 Achievements

This section is intended to address the different achieved results. The different use cases will
be briefly addressed individually, and it will be shown what has been achieved. More infor-
mation about the implementation can be found in section 2.3. Different points are illustrated
with pictures of the frontend to make them more precise. That was not part of this bachelor
thesis (see Distinction) but is used to display the backends possibilities graphically.

2.2.1 View Topology

The authors of this bachelor thesis have worked intensively with the INS’s frontend develop-
ers to provide the customer with the result that is as intuitive as possible. The topology is

ADV 12

2.2. ACHIEVEMENTS

automatically adapted in case of updates, and the frontend is informed so, that it can load the
new topology automatically. That allows the user to have a well-rounded result and always to
be sure to see the latest topology. Through the additional linking with the various SR-aware
services, which are also displayed in the topology, customer success is reaching another level,
allowing a direct overview of what services are deployed in the network.

Figure 2.1: Frontend Topology View

2.2.2 CRUD Segment Routing Traffic Engineering Policy

Policies can be created and validated directly through the API. The frontend offers a modern
and simple form and communicates directly with the backend to give the user the right sug-
gestions for the different parameters. The frontend and backend validate all inputs. Policies
can also be edited after being created; various regulations have been made to allow the edits
only under some conditions. For example, policies that are in a deployed state may not be
changed before they are reverted. After creation, the policy is validated and created by the
backend. The user can then view the result directly via the frontend. The example result can
be seen in figure 2.3, and the policy create form in figure 2.2.

Figure 2.2: Policy Create Form

ABC 13

2.2. ACHIEVEMENTS

2.2.3 Structure Data

The backend should provide all data in a structured format so that the frontend can retrieve
these and use them without enormous logic. That is made possible by a standardized REpre-
sentational State Transfer (REST) Application Programming Interface (API) which the backend
provides.

For larger topologies, the policy results can quickly become confusing. Therefore, a clustering
approach was implemented which can display the topology in a minimized form. The back-
end should take over the complete logic. The frontend should only have to plug the nodes
and links together. Such a clustered topology can be seen in figure 2.3. More information
about the clustering can be found in section 2.3.6.

Figure 2.3: Clustered Result Example

2.2.4 Define Service

Services in the topology are detected by special Interior Gateway Protocol (IGP) prefixes so
called service prefixes and communicated to the application. The user gets the possibility to
link service instances with these service prefixes. The entire configuration of these service
instances happens directly in the admin portal and can only be done by authorized users.
Through this procedure, service prefixes can be easily created in the network. The application
then recognizes these prefixes. The user is thus allowed to define a service instance. All
service instances are immediately visible in the topology after creation and can be used for
policies. More about, on how the service prefixes are created can be found in section 2.3.7.

Figure 2.4: Admin Page Add Service

2.2.5 Calculate Paths

The complete calculation was adapted to the new segment routing protocol SRv6 compared
to the previous work SerChio. However, it was already noticed in the SerChio application
that the calculation can still be improved in terms of speed. Therefore, a preprocessing was
introduced, enabling the application to return the correct result to the user in the shortest
possible time. More information about the calculation and the preprocessing can be found in
section 2.3.3.

ABC 14

2.2. ACHIEVEMENTS

2.2.6 Deploy Link Metric Algorithm Policy

Created policies can be deployed to the routers via the frontend or directly via the REST API.
The whole deployment is controlled by a separate module which asynchronously outsources
the deployment jobs. The users are informed dynamically about the status of the job. For
example, in figure 2.5, a deployed policy can be seen with the message indicating that the
deployment was successful.

Figure 2.5: Policy Deployment Example

2.2.7 Login

Due to the requirement to deploy policies directly to the network, a solution had to be de-
veloped to deny access to unauthorized users. Developing an access system with JSON Web
Token (JWT) in the backend allows the frontend to deliver a login page that requests the JWT
from the backend and renews it before the token expires. Thus, unauthorized users will be
denied access to the application already at the login page. Furthermore, access to the admin
portal is already secured by using the Django framework. In addition, only specially autho-
rized users can log in to the admin portal, which increases further security. More information
can be found in section 6.7.

Figure 2.6: Frontend Login Page

2.2.8 Manage Recalculations

The application registers and controls all topology changes automatically. As soon as changes
that change the topology are detected (for example, a new node is added, or a link metric
is changed), the application checks all policies that could be affected. Affected policies are
automatically recalculated and communicated to the user. For example, in figure 2.7, a policy
can be seen set to a better path that has to be confirmed manually by the user.

ABC 15

2.3. IMPLEMENTATION

Figure 2.7: Policy Recalculation Example

2.2.9 CRUD Roles and Users

Using the Django framework in the backend service, the logic for user and group management
already existing in this framework could be adopted. Authorized users can manage groups
and users via the admin portal (see figure 2.8). By adding various additional permissions, the
existing permission system could be easily adapted and tailored to the needs of the SerPro
application.

Figure 2.8: Admin Page Group Creation

2.2.10 Handle Permissions

In order to allow only authorized users access to the functions permitted to them, a logic
was implemented in the backend which takes care of this function. This function is mainly
based on the user and group management of Django, which was already mentioned in section
CRUD Roles and Users.

2.3 Implementation

In the following sections, the most critical aspects of implementing the SerPro application will
be discussed in more detail. The basic approaches that have been used in this work will be
referred to. Technologies are not examined in detail in this section; these can be viewed in
section Technology Decisions.

2.3.1 Architecture

Since Segment Routing is nowadays mainly used in large networks, especially in provider
networks, the application must handle extremely large topologies and many users. Due to

ABC 16

2.3. IMPLEMENTATION

this fact, the application had to be scalable and highly available. Therefore, a cloud-native ap-
proach came to the fore, which was also used in the preliminary work SerChio. The goal was
to deploy the application on a Kubernetes cluster, allowing the application to scale quickly
and even allowing the possibility to activate autoscaling functions.

Figure 2.9 shows the complete architecture in a very abstract view. This abstraction makes
it relatively easy to show how the architecture roughly looks like and how the various ele-
ments interact.

Figure 2.9: Abstract Architecture Overview

Storage System

A storage system consisting of a Redis cluster and a PostgreSQL database was deployed. The
combination of cache and database has the advantage that the data stored in the cache is
available extremely quick. Data that needs to be persisted or is sensitive is stored on the
relational database. This combination has proven to be a very stable and fast solution during
the entire bachelor thesis. More on the reasons for this division can be found in section
Caching.

Messaging System

The messaging system is the foundation for ensuring that the application can be deployed
in a stable and scalable manner. The messaging system is used for complete communication

ABC 17

2.3. IMPLEMENTATION

between the different services. For example, updates, WebSocket messages, job tasks, or
job results are stored and transmitted over the message system. A RabbitMQ cluster was
deployed to ensure that this central element of the application is always available. Since
messages are now always stored in a queue, they can no longer be lost on the way between
services, which makes the entire communication much more stable and trustworthy. The
ability to consume messages in a controlled manner also provides the basis for scaling the
entire SerPro application.

Backend Service

The backend is the most critical service in the whole SerPro application. As the brain of the
application, it is responsible for all data delivery via an API. For this purpose, a standardized
REST API was implemented, making it as easy as possible for the frontend service to query
and change data.

In addition to the data provided, the backend is responsible for the entire calculation, ad-
ministration, and keeping updated all policies. Policies should be created as efficiently as
possible via the backend. These policies should be always up-to-date, so they must react to
changes in the network and be adapted accordingly. How this was implemented can be seen
in sections Calculation and Preprocessing and Policy Verification. In addition to the entire
policy treatment, the backend is also responsible for all notifications for the clients. It sends
update and status messages to all connected WebSockets, so that they can adapt dynamically
and withoud delay.

Polling Service

In order to continuously provide the whole application with the latest topology data, a dedi-
cated service had to be developed that fetches and processes the latest data from the external
software system Jalapeño.

Jalapeño, as an external system, integrates and processes all BGP link state messages and
streaming telemetry data from the Segment Routing network. This system was developed by
the project partner Cisco and provided for this bachelor thesis.

The polling service fetches the required data from the Jalapeño system, detects the changes
using various developed detection mechanisms, and then sends only the updates intended for
the backend to the messaging system via update messages. The polling service was already
developed and used in the preliminary work SerChio. However, that was converted entirely
to the new SRv6 and adapted to the new messaging system in the bachelor thesis.

Workers

The workers are responsible for the complete deployment of the different routers in the net-
work. The workers enable the backend to commission deployment jobs asynchronously. Due
to this asynchrony, the backend is not blocked, and the job is entirely outsourced to these
workers. All deployment jobs are placed directly from the backend into the messaging system
and picked up by the workers. With the autoscaling possibility on the Kubernetes cluster, the
workers can be automatically scaled up or down, depending on how many jobs there are in
the messaging system.

ABC 18

2.3. IMPLEMENTATION

Frontend Service

As already described in the Distinction, the frontend is not part of this bachelor thesis. How-
ever, for the sake of completeness and a better presentation, it is mentioned again here.

The frontend is responsible for the presentation of the data and functions provided by the
backend. The frontend provides the end-user with a graphical user interface that allows them
to use all the backend functionalities in a structured and straightforward way. The frontend
communicates via the REST API, which is provided by the backend. In addition to the reg-
ular API communication, the frontend offers the end customer the possibility to establish a
WebSocket connection with the backend. Through this WebSocket, the customer’s browser
can dynamically display messages and changes without delay.

2.3.2 Enabling / Disabling

Modern networks are very dynamic and can face a huge number of changes every day. Many
changes are planned, such as adding a new node, alternating a link, or network maintenance.
Some others are not planned, like outages caused by hardware faults, human errors, or similar
mistakes. Generally, networks are planned to survive many mutations in the network. There-
fore, the SerPro application should also be designed to handle these shifts in the network.

During the early development phase, it was considered that alternations in the network could
lead to problems in the application. Especially the removing of central elements like nodes
and services leads to faults in the application because the policies are directly related to such
components. Consequently, after the deletion of specific elements, the policies were related to
non-existing elements. This situation has lead to severe imperfections. Therefore a solution
had to be found to solve these problems and hence deal with changes of any kind.

A solution was found and implemented. The solution was to introduce an Enabling/Disabling
strategy. Instead of deleting an element in the application, the appropriate elements were dis-
abled. Hence, as soon as a remove message was received, the element was disabled. Logically,
also the opposite action has to be introduced. As soon as an add message about a known
element is received, the element can be re-enabled. This introduced logic is the fundament of
many further implementations and has a few considerable advantages:

• Disabling an element has no harmful impact on the application; the element is still
accessible but marked as disabled.

• It can be reacted very fast to network changes by masking the disabled elements.

• An enabling of an element is done almost instantly because the information is already
present in the system.

• Policies can automatically be verified with a validation check (see also chapter Policy
Verification)

• Instead of changing the maintained graph thoroughly, the calculation can be made on a
masked graph, which consists only of the enabled nodes.

2.3.3 Calculation and Preprocessing

This section primarily contains information about how the calculation can be done in an
optimized way. It includes information about the drawbacks of the previous application and
delivers an answer on how the disadvantages were improved in this thesis. It shows the most
critical concepts to give an understanding of how the implementation is done.

ABC 19

2.3. IMPLEMENTATION

General

The calculation of the most suitable paths is a crucial part of the application. It not only
should deliver a correct result, but it also has the requirement to do it within an affordable
time frame. During the previous work, a way to calculate the service chain and the appro-
priate paths was found and implemented. For more details, see the preliminary work SerChio.

The difficulty of the calculation lays in the structure of a complete path. A complete path
contains several sub-paths depending on the number of service instances in the path. So the
calculation has to analyze all sub-paths to decide if the whole path is the most suitable one. If,
for example, the path has only one service instance in it, it has to consider two sub-paths: The
first path goes from the start node to the service. The second sub-path runs from the service
node to the destination node. A similar example is illustrated in figure 2.10.

Figure 2.10: Calculation Sub-Paths

Previous Drawback

The problem of the previous calculation was the following: it calculated a whole shortest-path
with the help of Dijkstra for each sub-path. Therefore, it also calculated the exact ways for
paths, which finally were not appropriate because they lead over services, which are not the
most suitable ones. Consequently, these non-optimal paths were finally not considered in the
result. Indeed, this process was optimized by cancelling a path calculation if the path already
had a higher total cost than the current best one. However, it was overhead to calculate the
whole path information continuously.

Figure 2.11 serves as an example for this suboptimal behavior. The previous implementation
first calculated all ECMP paths for the dashed path and saved the result. Next, it calculated
all ECMP paths for the green path compared it to the current best path and noticed that the
path was worse. Therefore, the second calculation was fully processed, altought it was not
considered as suitable in the end. This was a major drawback which should be improved in
this thesis. Further information about how the problem was solved in the next section.

ABC 20

2.3. IMPLEMENTATION

Figure 2.11: Previous Calculation Implementation

Preprocessing

Besides implementing the calculation method in the previous project thesis, appropriate re-
search delivered the bottleneck of it. In addition, it delivered an idea on how to improve
the performance in the future. The answer to the problem could be found possibly with a
valuable and specific preprocessing. The preprocessing should help to improve the calcu-
lation efficiency. The idea behind this is straightforward: Before a calculation is triggered,
information relevant to the calculation should be collected, that could be reused later by the
calculations and thus enhance the calculation.

The first step was to identify which calculation-relevant characteristics should be calculated
in the preprocessing to improve the calculation later on. Usually, without preprocessing, the
Dijkstra shortest path algorithm calculates the shortest path between two edges. By inspecting
the algorithm, this process can be optimized: The preprocessing has to deliver a map contain-
ing the information of the shortest distance of a node and its preprocessor. As soon as the
mapping has been calculated, the algorithm can use this information to calculate the shortest
path efficiently. The shortest distance can be observed directly in the mapping table. The path
can be observed by following the preprocessor entries until the preprocessor is the start node.
[10] [6]

Figure 2.12 shows an example of this procedure.

ABC 21

2.3. IMPLEMENTATION

Figure 2.12: Preprocessed Values

After the preprocessed values could be identified, an approach had to be found to execute
the preprocessing. This process was related with research about possible algorithms. There
are algorithms, which calculate the all-pairs shortest paths. So, these algorithms calculate the
shortest path from each vertex to each other vertex in a graph. Johnson and Floyd-Warshall
are such algorithms, that could be considered for the preprocessing. However, it has been
shown that these algorithms do not have a smaller time complexity than execute different
shortest-path calculations with Dijkstra. [1]

Further, it was recognized that an all-pairs shortest path algorithm is a calculation overhead
because not every node could be a potential start node in a calculation. Especially in the
particular use case of the SerPro application, it was figured out that the Dijkstra approach
is faster than an all-pair shortest path algorithm. As already mentioned, the calculation of
the best service chain path has to be divided into sub-parts (compare figure 2.10). A start
node has to be a Provider Edge (PE) router or a node with a service trailed in these sub-parts.
Therefore, the preprocessing could be optimized with this insight: a preprocessing has only to
be calculated for each potential starter node. Because the number of starter nodes is smaller
than all vertices in the graph in a common provider network, the calculation with the Dijkstra
algorithm is more performant than calculating the all-pair shortest paths.

Regarding the example network in figure 2.13 it should be apparent that the mentioned in-
sight has a considerable advance. On the other hand the preprocessing without an optimiza-
tion would calculate all shortest paths for all routers in the shown network graph. Whereas
the optimized solution only calculated the necessary information for the possible start nodes.
The optimization averts the unnecessary calculation of the shortest distance information for
the intermediate nodes XR-3, XR-4, XR-5 which are not possible in the shown network.

ABC 22

2.3. IMPLEMENTATION

Figure 2.13: Preprocessing Optimization

So, it was decided to implement a preprocessing, which calculates the shortest distance and
the preprocessor information for each node of interest with the help of Dijkstra. Like men-
tioned before, possible starter nodes are regarded as these nodes of interest. Starter nodes in
our application are PE routers, which have at least one customer network attached, or nodes,
which have at least one service connected.

Obviously, the preprocessing has to be triggered as soon as the application is started and
the initial loading of the network information is done. Furthermore, the network can be al-
tered so that a new preprocessing is necessary to deliver the correct result once again after a
topology change.

A new message was introduced to address this and similar problems, which signals that
the altered information was carried over. The so-called finish message indicates that it is the
last message of a polling iteration and is structured like listing 2.1.

{
"type": "info",
"status": "finished",
"message": "polling iteration finished",
"data": {}

}

Listing 2.1: Finish Message

As soon as this message is retrieved, the backend service can check if new preprocessing is
necessary. The decision if a preprocessing is necessary depends on the changes since the last
finish message. If any changes are included that have influenced the network graph maintained
in the application, a new preprocessing execution is necessary. Otherwise, the preprocessed
information is still correct and doesn’t need to be changed. An example of an update that
triggers an adjustment in the graph is a link addition, whereas for example a change of the
router name does not change the graph behind the application. As soon as such a significant
change has happened, a flag is saved in the cache, indicating that a new preprocessing is
necessary. By saving the flag in the cache, it is also possible to detect changes in the network
if a backend instance would crash. This flag can be examined after the finish message. If it is
set, the preprocessing has to be executed. This mechanism ensures that the preprocessing is
only executed on demand – a further optimization step included in the application.

Calculation

The calculation could be optimized with the help of the introduced preprocessing method.
The workflow of a calculation is visualized in figure 2.14.

ABC 23

2.3. IMPLEMENTATION

As soon as a calculation is requested, the different input parameters are validated. Supposed
there is a non-viable input a ValidationError is returned. An example would be a destination
VRF with no export tag with the source VRF in common and hence no reachability.

If the input parameter is valid, the next step is to create all possible combinations of the
services. Like in the previous work, a combinatory approach is implemented with the help of
the Cartesian Product, which returns all possible service combinations.

Once all the service combinations were created, the actual calculation can be started. The
first step is to get the best service chain with the lowest possible total costs. This step is
fundamental because the preprocessed smallest cost information could be used to get the
service chain, which is the best one. It has to be mentioned that if several equal service chains
exist, the service chain is considered as the best one, which was found first.

Until this point, no shortest path calculation has occurred thanks to the intelligent prepro-
cessing strategy. However, the best service chain with its total cost has already been found.
The only missing part is the correct path from the source to the destination thtough the best
service combination. So, the subsequent step is to get the best path information out of the
service chain. The path can be calculated with the help of the shortest path calculation and
Dijkstra. Here it has to be mentioned, according to the exact amount of included services, at
least two shortest path calculations have to be executed (see 2.10). This process could also be
optimized thanks to the predecessor information, which was collected previously. Hence, the
actual paths do not have to be calculated but have to be looked up in the predecessor map.
As soon as this step is finished, the result can be returned.

Figure 2.14: Calculation Workflow

2.3.4 Policy Verification

General

The policy verification is a central part of the application. It allows to react and trigger the
correct handling after a change has occurred in the network. The goal is to verify the policies
and ensure that the policies have a correct status in the network and the application according
to the latest network situation.

Verification has, like the preprocessing, to be done after the network has converged. After the
finish message was received, the preprocessing has to be made to ensure that the calculation
data is up-to-date. More information about this process can be found in section Preprocess-
ing. After the preprocessing is done, the verification of the policies has to be executed. The

ABC 24

2.3. IMPLEMENTATION

verification is a complex process, which goes over different levels. The different stages are
outlined in the appropriate subsections.

A mechanism was introduced to decide which verification-relevant parts have changed since
the last finish message. As soon as a significant update message is processed, the information
is updated in the cache. Subsequently, the verifier can use checks if there have been any
changes of interest. It works similarly to the check if a preprocessing was necessary. If, for
example, a router name has changed, there is no need to verify the policies. However, if a
VRF was removed from a router, this action can heavily influence existing policies and have
to be examined thoroughly by the verification process.

Policy Validation

After a network change has happened, the appropriate policies have to be checked if the
changes influence their validity. If a policy is in a valid state, a network change could lead to
a defective state. In the case of an incorrect state, the verifier has to detect this defect, which
has to react accordingly: the policy has to be put in an error state. This task is included in
the application and will be triggered if there have been any changes, leading to error policies.
The verifier checks if the source, destination and service information are still correct to create
a valid policy. An example of a policy in an error state is shown in figure 2.15

Figure 2.15: Policy Error after Network Change

In addition, the reverse check is included in the application. As soon as a network change has
occurred, which reenables elements, the reverse check must be triggered. This investigation
has the task of checking if the policy can be put into a valid state again. So, if the procedure
can classify the whole policy data as correct, the policy can be reenabled and put into a valid
state again.

An example of such a case is the situation, if a router is reloaded. Once the router loses
its connection, the application is informed, and the node is disabled in the application. The
policy verifier check will detect automatically all policies that have installed this exact node
as a source or destination node. Consequently, these policies will be in an error state until the
node is enabled again. When the node is enabled again, the policies will be back in a valid
state if all other elements are accepted too.

Policy Recalculation

Besides the policy validation, which ensures the correct state of all the policies at any time, it
is also essential to always hold the correct result. This task is also included in the verification
process.

After the validation process is completed, the application detects automatically if there are
any policies to recalculate. So, if any major changes happen in the network, the application

ABC 25

2.3. IMPLEMENTATION

will react to these and recalculate automatically the affected policies. This has several positive
effects. The first positive point of the intuitive recalculation is that it ensures that the result of
each policy is always correct. Hence, this means the user can always observe the up-to-date
policy with the latest result information - including network path, total cost, and the correct
SID list. An example of this process is visualized in figure 2.16 and 2.17. A link failure between
XR-7 and XR-6 is detected immediately. The policy result is recalculated automatically, and
hence the correct up-to-date version presented to the user.

Figure 2.16: Policy Result before Topology Change

ABC 26

2.3. IMPLEMENTATION

Figure 2.17: Policy Result after Topology Change

The notification about better paths is another advantage of this recalculation logic. After a
topology change, the user can be notified about better path options. This status distinguishes
that a new service combination is found, which has a smaller total cost than the current one.
The user can now observe the changes and decide to accept the better path options. This case
indicates that the old service chain is not the best anymore, but it is still working. Such a
situation could happen if, for example, a new service is added to the network, which reduces
the total cost of the policy. An example of this case is shown in figure 2.18 and 2.19

Figure 2.18: Non-optimal Policy Result

ABC 27

2.3. IMPLEMENTATION

Figure 2.19: Better Policy Result

Thanks to this implemented logic, it is also possible to survive network outages. The appli-
cation finds automatically a possible path if there is any. If, for example, the most suitable
firewall system is disconnected, the next best firewall system is found automatically. The user
has, therefore, always a working result, if there is any. This step was even improved: if the
policy was deployed in the network and an outage influences the service, the better policy
will be calculated and redeployed automatically. This behavior is necessary to ensure that
traffic always gets the treatment, which the customer wants. It has to be mentioned that if the
customer likes to support this feature, the different systems have the same configuration. If,
for instance, the firewall system don’t have the same rules configured, this could lead to traffic
interruptions.

2.3.5 Policy Deployment

As already written in section 2.2.6, the created policies can also be written to the correct
routers. For this purpose, a completely separate module was developed in the backend ser-
vice. The complete process can be seen in figure 2.20. The individual steps are then briefly
explained below.

� Router Configuration

The entire policy configuration that is written to the routers is based on the automated
steering of SRv6. However, since various traffic engineering options are not yet publicly
available, we are forced not to publish the configuration in this thesis.

ABC 28

2.3. IMPLEMENTATION

Figure 2.20: Deployment Workflow

The individual numbers marked with a yellow circle in figure 2.20 are examined and described
in more detail below:

1. A customer can deploy a created policy via an explicit REST API action.

2. The backend service creates a job task to perform the full deployment asynchronously.
By offloading the deployment, the backend is no longer blocked and can continue its
work. Furthermore, the created job is stored in the messaging system and thus made
available to the worker.

3. Once a deployment job is created, the backend sends a WebSocket message to the client
that the policy deployment is being executed.

4. As soon as a job is in the dedicated queue in the messaging system, the worker is
informed and can pick up and start its job.

5. The worker now creates an inventory for the source and destination node, which it
needs to connect to the correct router. It also renders the respective config template for
the source and destination router. Once, it has rendered the config, the worker deploys
the config to the two routers.

6. Depending on the result of the deployment process, the worker sends a success or failure
message to a dedicated result queue in the messaging system.

7. As soon as a new result is available in the result queue, the backend is informed and
can process this result.

8. The backend now sends the user a processed result message via the WebSocket, allowing
the customer to see whether the deployment worked or not.

ABC 29

2.3. IMPLEMENTATION

2.3.6 Clustering

The former thesis proved that the best suitable paths can be quite complex and therefore badly
comprehensible. A severe difficulty was detected if the connected network was extensive and
there were not many services distributed. Therefore, it was decided that this problem should
be solved at the beginning of the bachelor thesis. So, a method should be implemented to
visualize the best available path in a more clear variant.

Similar to existing solutions it was observed to get inspiration on how to solve the prob-
lem. One solution, the Cisco DNA Center, implements a method to visualize graphs cleanly
and therefore, serves as a model for the searched clustering solution. Such an example visu-
alization can be observed in figure 2.21.

Figure 2.21: Graph Visualization in Cisco DNA Center

A clustering solution was introduced in this thesis, which visualizes the result path in a clean
way. It was possible to maintain a graph that contains a simple design and omits more de-
tailed information. Therefore, the intermediate nodes are consolidated into a cluster. The
reason behind such a graph is to get a fast overview of the result. Especially, the most suitable
service instances, which are included in the result could be detected effortlessly. Hence, the
users have the possibility to detect rapidly if they are satisfied with the represented result. An
example of such a graph representation can be observed in figure 2.22.

Moreover, the user also gets the chance to expand the graph and examine the entire graph.
This type of graph includes the information about each node and the connection between
them. It also visualizes the ECMP paths in a lucid form. So, a user can verify the full graph
from source to destination and track the paths the packet will take if the policy is deployed
into the network. An example of the entire graph is shown in figure 2.23.

Figure 2.22: Clustered Graph Example

ABC 30

2.3. IMPLEMENTATION

Figure 2.23: Expanded Graph Example

This difference between the two graphs not only helps the user to get a rapid or more detailed
view. But it also allows the user to identify a non optimized service placement. If the ser-
vices are not placed in strategic locations or the user has selected specific non-optimal service
instances, it could lead to unclear graphs. Mainly, the reason is acyclic graphs, which are
challenging to draw obviously. The clustering algorithm has therefore be improved to answer
this hurdle. The large graph was linked with the information about the different sub-graphs.
This addition helps to follow the paths better and highlight the different sub-paths. More in-
formation about the sub-paths can be found in section Calculation and Preprocessing whereas
the sub-path highlighting is visualized in figure 2.24.

Figure 2.24: Highlight Sub-Paths in Graph

ABC 31

2.3. IMPLEMENTATION

2.3.7 Service Management

General

The preliminary thesis revealed that the application has no information about the service
instances of the network. Therefore the connection between the application and the ser-
vice instances was completely manual driven and hence not optimal. Each service had to
be manually introduced, updated, and deleted. It was mentioned that an improved service
management technique should be introduced to maintain the existing service instances in the
application in a more dynamic way. Thus, this new service management technique should fo-
cus on adding, updating, and deleting of services in the network and should be as automized
as possible. In this bachelor thesis, an approach was introduced which takes care of these
requirements. Subsequently, the method is described in more detail.

Implementation

The idea was to introduce a solution that is backed by the existing tools and techniques.
Therefore, the best possible solution should operate with the help of the external software
tool Jalapeño and the help of the applied IGP protocol. The basic idea was simple: announce
the information over the IGP protocol and therefore make it available in the external system
Jalapeño. As soon as the information is available in the graph database, retrieve the data with
the help of the developed polling service and send it to the SerPro application. The significant
advantage of this solution is that the application is notified automatically if there have been
any changes. Hence, the solution should be able to identify new additions, updates, and also
deletions of these related service prefixes and react to them.

The solution and the needed steps can be described in a few lines. The simplified process
is visualized in figure 2.25.

Figure 2.25: Service Announcement Chain

1. First, the service has to be installed and configured. The service must be configured
with a special IPv6 prefix. These IPv6 prefix is later used as SRv6 micro segment (uSID)
and therefore make the service treatment possible. In addition, the polling service is
configured to retrieve these unique service prefixes and send them further to the backend
service. It is to mention that it makes sense to introduce a well-planned address scheme
for the different service prefixes announced in the network.

2. So that Segment Routing packets arrive at the service, the service prefix has to be reach-
able. Therefore, the router connected to the service must introduce a route to make the
service prefix reachable in the network. So, the next following step is to create a static
route to introduce reachability to the service.

3. In order that the service prefix is reachable in the whole network and also is available in
the external system Jalapeño the static route has to be redistributed into the IGP. As soon
as the service prefix is announced in the applied IGP protocol, the prefix information is
made available in the graph database in Jalapeño. From there, the information can be

ABC 32

2.3. IMPLEMENTATION

retrieved by the polling service and sent to the backend service. The backend service
can save this information and make it available to the user.

4. To create a service instance in the application, the user must add necessary information
to the service prefix. The announced service prefix can be assembled with the service
name and the location information. The location information is given by adding the
node/router over which the service is available. As soon as this information is added to
the service prefix, the service can be created and be applied. The service is now installed
in the network and available in the application.

ABC 33

Chapter 3

Conclusion

In the following chapter, a review of the achieved use cases and a critical discussion about
things that could have been done better will be given. In addition, there is also a digression
about further improvements in the future.

3.1 Retrospective

The following sections discuss the various use cases that have been achieved and those that
have not. Afterwards, there will be a discussion about possible improvements and things that
could have been done better.

3.1.1 Use Cases

To better distinguish the different use cases, different colors and symbols are used. All Min-
imum Viable Product (MVP) use cases are displayed in green. The optional non-MVP use
cases are shown in purple. In addition, use cases that could be achieved are shown with the
following symbol Í in contrast to use cases that could not be achieved, shown with the fol-
lowing symbol ë. Each use case begins with the user story from the section 4.1 and is marked
with an "italic font".

Í UC01: View Topology

"As User, I overview the topology of the network connected to the application."

Due to the structured data provided by the API, the frontend can display the topology without
any problems. This use case could be achieved entirely. Due to the standardized API, which
was kept as simple as possible, changes can be introduced without significant adjustments.

The user is automatically informed about updates in the topology; through the update mes-
sages, the frontend can automatically load the latest topology, allowing the user always to
overview the actual topology.

Í UC02: CRUD Segment Routing Traffic Engineering Policy

"As a User, I manage an SR-TE Policy to steer the traffic according to its characteristics on the most
appropriate path through the network and enable the most optimal service treatment."

ADV 34

3.1. RETROSPECTIVE

The backend API allows the user to create a policy; the backend validates all entries for cor-
rectness and gives the user a message about what was not correct. The frontend can provide
the user a form, which is dynamically updated through API requests, this allows them to cre-
ate a policy as smoothly as possible; the frontend can make various dynamic requests based
on the user’s input to the backend. That allows the user to see all available options automati-
cally.

After creating a policy, the user can view the result in a clustered or expanded view. This
use case was achieved and allows the user to create, read, update and delete policies dynam-
ically.

Í UC03: Structure Data

"As User, I need structured data, in order to have an appropriate presentation of the topology and to
create Segment Routing policies."

The backend provides an API that has already implemented the complete logic. That allows
the frontend to make queries without having to implement any logic itself. Furthermore, the
topology displayed is wholly created in the backend as a result and divided into a clustered
and full graph. That allows the backend to assemble the graph graphically.

This use case could be completely fulfilled. Intensive discussions were held with the INS’s
frontend developers to determine the most significant complexity and how the backend can
help transfer it from the frontend to the backend.

Í UC04: Define Service

"As User, I define a service instance and its topology location, in order to use this service instance in
traffic engineering policies."

Services can be defined directly in the admin portal by authorized users. The detected service
prefixes will be listed there, so that a user can only link the service prefix with the type and the
name of the service, which he wants to declare in the topology. When the service is defined,
it will be displayed in the topology and can be used for creating policies.

Using the admin portal to create the services, the user gets a fast and straightforward so-
lution to declare services. Thus, this use case is fulfilled and completed by this option.

Í UC05: Calculate Paths

"As User, I get the most appropriate path after generating a Segment Routing policy."

By introducing preprocessing, the calculated paths can be returned even faster. By the possi-
bility to scale the backends, many requests can be answered at the same speed. The calculation
of paths in a network with thousands of nodes succeeds through the preprocessing even faster
and more stable.

Through the use of preprocessing, this use case is more than satisfied.

ABC 35

3.1. RETROSPECTIVE

Í UC06: Deploy Link Metric Algorithm Policy

"As User, I deploy the created Segment Routing policy, which includes a link metric, on the
appropriate nodes."

Policies can be deployed directly to the router. The deployment is outsourced from the back-
end, so that it can be executed asynchronously. The user will be informed about every status
change and will know, if the deployment was successful or not. A deployed policy can, of
course, also be reverted again. For the configuration, the link metric algorithm is used.

The deployment use case for the link metric algorithm could be fully covered. Policies can be
deployed reliably and also reverted again.

Í UC07: Login

"As a non-authenticated user (Anonymous), I log in to the application to authenticate and use the
application’s functionalities."

Unauthenticated users do not get access to the application. Instead, a login procedure secures
all-access points including frontend, API, admin portal, and the WebSocket connection.

By introducing an authentication option with JWT, this use case is fully met.

Í UC08: Manage Recalculations

"As User, I check the affected policies after a topology change to take action and to bring the policy to a
desired state."

During development, this use case proved to be the most complex use case of the entire appli-
cation. All policies created are continuously checked for validity after each topology change.
Policies that are no longer valid are set directly to an error state, and an error message is sent
to the user. Policies that are still valid, but the path has changed, are automatically updated
if the segment list has not changed. Policies that are still valid but have a new best segment
list are put into a status, that tells the user that a better path could be found. The user can
then manually view this path and accept it, if he wants to. If policies are affected, that are
deployed, then these are automatically redeployed if this is possible.

This use case could be wholly fulfilled and makes the whole application completely dynamic,
as it can now react automatically to topology changes and take measures.

ë UC09: Deploy Delay/TE Algorithm Policy

"As User, I deploy the created Segment Routing policy, which includes a delay or TE metric, on the
appropriate nodes."

This use case could not be completed. That is, because the current software version of the
external software system Jalapeño does not provide delay/Traffic Engineering (TE) metric in-
formation. However, the application could handle this additional deployment type without
significant changes.

ABC 36

3.1. RETROSPECTIVE

Although this use case could not be fulfilled, the application can support this in the future
without any problems. Furthermore, changes in the application to support this use case are
possible without major adjustments.

Í UC10: CRUD Roles and Users

"As Admin, I create, read, update, and delete the roles and users of the application."

The user gets the possibility to create and customize the different users and groups via the
admin portal. Various fundamental groups and permissions are already created at the start of
the application if they do not already exist.

This use case can be fully covered. Through the Django framework, which already brings
a group and user management possibility, the authorized users can adjust all authorization
levels.

Í UC11: Handle Permissions

"As User, I only perform actions for which I am authorized."

The backend checks all API requests to see if this user is authorized to execute them. In order
to achieve this, the backend uses the tools already provided by the Django framework and
extends them to meet the unique requirements.

Users can only use the functions of the application if they are authorized to use them. This
use case is, therefore, achieved.

3.1.2 Discussion

In the following sections, different topics of the bachelor thesis will be discussed critically.

Data Retrieval

Polling data from a database at a fixed interval is not an optimal solution. The polling service
has shown to be very stable and reliable in this work. But using a push mechanism would
improve the overall handling of the updates. The polling service would only have to poll
the data once during the initial load using a push mechanism. Afterwards, it would then
receive a notification about updates via push, which it could then retrieve individually from
the database. That would increase the general performance of the polling service, and updates
could be detected and processed faster.

Configuration Management

Policies are currently written directly to the affected routers; this works perfectly assuming
that no one deletes manually a policy on these routers. If a manual intervention on this
policy configuration would occur, then the application would no longer know the status of
the policy. Consequently, it would lead to inconsistent state. This problem is not only with
this application but in general, when one starts to automate things. In the future, one would
have to make sure that the application could recognize manual interventions on the routers
and adjust the policies accordingly.

ABC 37

3.2. OUTLOOK

Backend Framework

During the project, it turned out that the Django backend framework does not meet the exact
requirements. Django offers many functions out of the box, which is often a relief and can save
much work. However, because Django provides so much and does it itself, the developer also
has less control of what he can do himself. Through this mass of functions that the framework
offers, the whole application is also inflated a bit. In the future, it should be considered
whether a lighter framework might be better to improve the application even further and give
developers more control over the code.

3.2 Outlook

This section is intended to give an outlook on things that could be improved in the application
and features that could be added.

3.2.1 Improvements

In the following, various improvements that can be made to the application, will be discussed
in detail. Most of the improvements arose from the points mentioned in the section Discussion.

Update Processing

The data should no longer be fetched from the external system using the polling method. It
would be possible to hook into an already existing Kafka topic in the external system and
thus be notified, if there are updates. The other possibility is to change the polling service
to communicate with a planned Jalapeño API gateway via gRPC. This gateway is not yet
developed but is currently in the planning phase.

Deployment

The deployment module should be supplemented with additional options. As an example,
the users should be able to choose, which deployment type they prefers. Furthermore, the
deployment module should be adapted to support the Cisco IOS-XR Service Layer API. In
addition, Cisco Network Service Orchestrator (NSO) should also be supported since this tool
is already in use by many customers; therefore, it makes sense to run all configurations of the
routers via one tool.

Microservice Architecture

The backend has grown a lot in this work, and many different individual modules have been
developed. Since these modules can function individually, it would make sense to extract
them into isolated microservices. That would increase the overall maintainability. In addition,
individual microservices could be scaled more efficiently, making the application more stable
and available.

Service Management

Service management is to be improved. In consultation with the developers of the external
software system Jalapeño, a new processor should be written, that writes automatically ser-
vices to a dedicated collection in the graph database of Jalapeño. That would allow SerPro to
query this collection directly and not find a way to get the service data itself.

ABC 38

3.2. OUTLOOK

3.2.2 Innovations

Subsequent innovations can take the application to the next level and provide the user with
an even better experience.

Versioning

Since policies have a significant impact on the traffic, that network A takes to network B,
versioning should be introduced in which a user can see when and where changes are made
which affects a policy. Additionally, it should be possible to restore earlier versions if they are
still valid. That would give the user more control when the application is used in a productive
environment.

Path Selection

The users should decide which path a policy should take, if there are several paths with the
exactly the same costs. That would give the users even more control over the policy and allow
them to look at all the policies in advance and decide which path the policy should take.

Diversity

A new policy character trait should be introduced. The diversity metric should show how
many policies flow over a single service instance and help to utilize the services evenly. A
user could use the diversity metric to determine on which path the services are less used and
configure this path. That would make the entire application even more intelligent and support
the user in choosing the best policy.

Advanced Policy Options

In order to be able to control the policy even better, different policy properties are to be added.
For example, the user should decide that the policy should not be routed via explicit countries.
Further options would be that the policy should only be routed via encrypted links or that
new metrics should be used. Also, those policies should enforce a load-balancing between
two services. This innovation would be a good addition and would give the users even more
options to control the policies exactly to their wishes.

3.2.3 Further Thoughts

During the development of the SerPro application, other ideas came up, that would add value.
These ideas are not explicitly related to this bachelor thesis but are ideas which would give
additional value in the area of Segment Routing. In the following, a few of these ideas are
briefly explained.

Location Tags

During the development of the work, the question came up time and again on how one could
place the different routers in the frontend in a meaningful way. The answer was relatively
straightforward; one would need a location where it would be possible to place the router
exactly on a world map. The problem is, that the used router images (IOS-XR) do not offer
any location configuration options. The idea came up, that this could be done with Simple
Network Management Protocol (SNMP), because there a location is supported. In order to
make this data available in the external software system, a new processor would have to be
written, which reads this location information out of the SNMP packages. The data would
then be available in the graph database of the external system and could be fetched and

ABC 39

3.2. OUTLOOK

used by applications such as SerPro. That would be a relief, especially in the frontend when
topologies with several thousand routers are to be displayed.

Central Service Management

All SR-aware service instances currently in use are entirely independent and therefore also
configured individually. Central management would simplify the complete configuration and
would also allow the synchronization of two service instances. That would have the significant
advantage of then doing a load balancing of the traffic over two different service instances.
Furthermore, it would assure that a second service could take over that service configuration
in the event of a service failure.

ABC 40

3.2. OUTLOOK

Part II

Project Documentation

ABC 41

Chapter 4

Requirement Specification

This chapter includes the entire requirement specification, which was defined together with
the industrial partner as well as the supervisor of this thesis. It is composed of two parts.

The first part outlines the different use cases, which have been adapted from the earlier project
thesis. Particular emphasis was placed on defining the use cases to get the maximal benefit
for a potential customer and that the solution could be used in a production scenario.

The second part lists the non-functional requirements which define the rules, which the ap-
plication should meet.

Since this Bachelor thesis is a follow-up of a project thesis, the use cases were partly taken
over and adapted for the sake of completeness. The original use cases can be found in the
thesis Service Chaining Path Calculation[3].

4.1 Use Cases

Different colours were selected to distinguish whether a user story or a use case belongs to
the MVP or not. The explanation of the colours can be found below.

Use Case - Minimum Viable Product

Use Case - Additional

Table 4.1: Use Cases Color Description

The Minimum Viable Product was defined together with the supervisor and the industrial
partner. In the following section, the MVP only refers to the Main Scenario within a Use Case.
The extensions are always optional and will be implemented if enough time will be available.

ADV 42

4.1. USE CASES

4.1.1 Actors

Actor Description

Anonymous The Anonymous role stands for an actor which is not yet au-
thenticated in the system. The entity has to prove its identity to
the system to be authenticated and use the application function-
alities.

User The User role stands for an actor which is authenticated in the
system. The entity can perform actions which it is authorized
for.

Admin The Admin role stands for a user, which has, compared to the
non-admin user, additional permissions to perform supplemen-
tary operations within the application.

Table 4.2: Actor Description

ABC 43

4.1. USE CASES

4.1.2 Use-Case-Diagram

The following use case diagram should provide an overview over the tasks which should be
accomplished in this thesis. The follow-up sections should be considered for further informa-
tion about the specific use cases .

Figure 4.1: Use-Case-Diagram

4.1.3 Use-Case-Description

All the use cases are described in user stories according to the defined template found below.
The user stories have always the same format, which makes it easier to read and understand.
The motivation is omitted when it does not give the reader an additional value.

To declare the different use cases in more detail. Work accroding to Larman[20] was done.
Through the use of this standardized way, the use cases descriptions follows international
standards for the functional requirement engineering.

g User-Story 00 - User Story Template

As »actor«, I »verb«»function«, »motivation«.

ABC 44

4.1. USE CASES

UC01: View Topology

g User-Story 01 - View Topology

As User, I overview the topology of the network connected to the application.

Primary Actor User

Overview As a User, I look at the present network topology with its
nodes/routers, services, and connections.

Stakeholders and Interests User: wants to get the information of the interconnections
and arrangements of the network nodes and services.

Preconditions • The User is logged into the application, and has the re-
quired permission to do so.

Postconditions • The User can regard the network topology in the form of
a graph. The vertices are either nodes or services, and
the edges the connection between the network nodes.
The distinction between the node types is made with
separate icons.

Main Success Scenario 1. The User wants to overview the topology of the present
network.

2. The User examines the network topology.

Frequency of Occurrence As often as required

Table 4.3: UC01: View Topology - Fully Dressed Description

ABC 45

4.1. USE CASES

UC02: CRUD SR-TE Policy

g User-Story 02 - CRUD Segment Routing Traffic Engineering Policy

As a User, I manage an SR-TE Policy to steer the traffic according to its characteristics
on the most appropriate path through the network and enable the most optimal service
treatment.

Primary Actor User

Overview Create and Update
As User, I select the necessary parameters to create or update an SR-
TE Policy to steer the traffic according to its characteristic on the most
appropriate path through the network and enable the most optimal
service treatment. Those parameters are:
• Source/Ingress Information (Node, VRF, Network)
• Destination/Egress Information (Node, VRF, Network)
• Metric/Algorithm Information
• Services (spefic or general)
Read
As User, I read the parameters and the result of an already created
SR-TE policy
Delete
As User, I delete an existing SR-TE policy to revoke the SR-TE policy
settings and impacts.

Stakeholders and In-
terests

User: Wants to manage SR-TE policies to influence the traffic steering
and service handling within its network: Network packets are steered
from source to destination through the most appropriate path and are
treated by the desired and most suitable service instances on their way.

Preconditions • The User is logged in the application.
• The User is authorized to do at least one of the create, update, read

or delete SR-TE Policy operation.
• The necessary data is available - especially at least one service has

been added to the application
• Action Update/Delete: The policy is not deployed in the network

ABC 46

4.1. USE CASES

Postconditions Create
• The User gets the result, which shows the best path – according to

the input parameters – taken through the network and includes the
information on which services handle the traffic through its travel.
Furthermore, specific information like the Segment (ID) list or the
total cost is retrieved.

• The information about the SR-TE Policy is saved in the application.
• If the use cases UC06 and/or UC09 are realized, a button in the UI

is shown, which allows writing the configuration to the appropriate
router. As a consequence, the traffic is steered and processed by the
services as desired.

Update
Same like in Create, but with the updated values.
Read
The User gets the input and result information from a specific SR-TE
Policy.
Delete
The User receives the notification that the deletion was successful. The
corresponding SR-TE Policy is removed from the application.

ABC 47

4.1. USE CASES

Main Success Scenario Create
1. The User wants to create an SR-TE policy to steer traffic from the

source to the destination on a specific path in which the most suit-
able services process the packets.

2. All possible source nodes are shown. A node is considered as a
possible source node if the router is PE and has customer networks
assigned (L3VPNv4 Prefix). The user selects the source node from
the available list by selecting the router’s hostname.

3. All possible source VRF’s, which have been configured on the pre-
viously selected source node, are shown. The user selects the source
VRF from the available list by selecting the VRF name.

4. All possible source networks, which belong to the previously se-
lected source VRF, are shown. The user selects the source network
from the available list by choosing a specific network address

5. The user defines the service chain by selecting general service types
(FW or/and IDS), services instances (e.g., SNORT-1), or a mixture
of both (FWs and SNORT-1).

6. All possible destination nodes are shown. A destination node has
the same requirements as a source node PE and L3VPNv4 Prefix.
Besides, the destination has to possess at least one VRF where one
export tag matches the selected source VRF’s export tags to be valid.
The user selects the destination node from the available list by se-
lecting the router’s hostname.

7. All possible destination VRF’s, which are configured on the previ-
ously destination node and meet the necessary criterion, are shown.
Only the VRF’s with at least one export tag with the source VRF in
common are valid and shown. The user selects the destination VRF
from the available list by selecting the VRF name.

8. All possible destination networks, which belong to the previously
selected destination VRF, are shown. The user selects the destina-
tion network from the available list by choosing a specific network
address. The source and destination network don’t have to be the
same.

9. The user selects IGP as a metric, which is used for the calculation
of the most suitable path.

10. After the calculation, the first found path with the smallest metric is
returned. The result includes the links, nodes, and services involved
in the most suitable ECMP from source to destination, which steers
traffic through the appropriate service instances. Furthermore, SR-
TE relevant information like the Segment list and the total path cost
is returned.

11. The user can inspect the result, which shows the way through the
network from the source to the destination over transit nodes as well
as service instances. Besides, the user can examine the Segment
Routing Traffic Engineering (SR-TE) relevant information like the
Segment List and the total cost of the path.

ABC 48

4.1. USE CASES

Update
1. The User wants to adjust an existing SR-TE policy.
2. The User selects an existing SR-TE Policy and adjusts the input pa-

rameters mentioned in the Create scenario steps 2 - 8.
3. The User triggers a recalculation of the SR-TE Policy and thus an

update.
4. The User does the same action as mentioned in the Create scenario

steps 10 - 11.
Read
1. The User wants to receive information about an existing SR-TE pol-

icy.
2. The User selects an existing SR-TE policy and examines input as

well as result information of the appropriate policy.
Delete
1. The User wants to delete an existing SR-TE policy.
2. The User selects an existing SR-TE policy .
3. The User confirms the deletion of the SR-TE policy.
4. The SR-TE policy is removed from the application. If use case UC06

and/or UC09 are implemented, the relevant configurations will be
removed on the relevant nodes.

Extensions *a During the actions, an error has occurred.
1. A faulty action has lead to an application error.
2. The application returns the error with a meaningful descrip-

tion.
3. The User can retry the action.

9a The user selects TE as a metric, which is used for the calculation of
the most suitable path.

9b The user selects Delay as a metric, which is used for the calculation
of the most suitable path.

10 There is more than one result with an equivalent metric.
1. The calculation has returned several most suitable paths with

equivalent metrics.
2. The User examines all results, including the appropriate paths,

which have all the same metric count.
3. The User selects and examines its desired path from the best

paths and takes further actions.

Frequency of Occur-
rence

As often as required

Table 4.4: UC02: CRUD SR-TE Policy - Fully Dressed Description

ABC 49

4.1. USE CASES

UC03: Structure Data

g User-Story 03 - Structure Data

As User, I need structured data, in order to have an appropriate presentation of the
topology and to create Segment Routing policies.

Primary Actor User

Overview The User wants to check the topology visualization and
CRUD the policies. Therefore he needs data in an ap-
propriate form in the frontend application, to achieve this,
structured data is required from the backend for the fron-
tend.

Stakeholders and Interests User: The User wants to CRUD the Segment Routing poli-
cies and overview the network topology.

Table 4.5: UC03: Structure Data - Casual Description

UC04: Define Service

g User-Story 04 - Define Service

As User, I define a service instance and its topology location, in order to use this service
instance in traffic engineering policies.

ABC 50

4.1. USE CASES

Primary Actor User

Overview As a User, I define the different service instances and their
topology location.

Stakeholders and Interests User: Wants to define different service instances and their
topology location, in order to use this instances to create
new policies.

Preconditions • The User is authenticated within the application.
• The User has the necessary permission to define a ser-

vice instance.
• The services have to be configured and deployed on the

network to influence the traffic with the service applica-
tion.

Postconditions • The new service instance is present in the application
and can now be used to create new policies.

Main Success Scenario 1. The User wants to define a new service instance and its
topology location.

2. The User can select the topology location to which node
the service instance is connected and configure service
instance-specific configuration data to use the applica-
tion for the policy generation.

Frequency of Occurrence As often as required

Table 4.6: UC04: Define Service - Fully Dressed Description

UC05: Calculate Paths

g User-Story 05 - Calculate Paths

As User, I get the most appropriate path after generating a Segment Routing policy.

ABC 51

4.1. USE CASES

Primary Actor User

Overview The User gets the most appropriate path after generating a
Segment Routing policy.

Stakeholders and Interests User: The User wants to get the most appropriate path for
the generated Segment Routing policy.

Preconditions • The User is authenticated within the application.
• The creation or update of a Segment Routing policy was

successful and supplies appropriate data.

Postconditions • The most appropriate path is calculated.

Main Success Scenario 1. The User wants to get the most appropriate path accord-
ing to a previous generated Segment Routing policy.

2. The most appropriate path will be calculated and re-
turned.

Extensions 2a The return of the most appropriate path is influenced by
the diversity of the different services instances.

1. The most appropriate possible paths will be calcu-
lated.

2. When there are more paths with equivalent met-
ric numbers, the diversity of the different service
instances will be considered. The diversity metric
means, that all Segment Routing policy paths will
be considered and it will be calculated how many
paths go through each service instances.

3. For each potential best path the diversity value of
all affected service instances will be calculated.

4. The path that has the least total diversity value will
be returned.

Frequency of Occurrence As often as required.

Table 4.7: UC05: Calculate Paths - Fully Dressed Description

UC06: Deploy Link Metric Algorithm Policy

g User-Story 06 - Deploy Link Metric Algorithm Policy

As User, I deploy the created Segment Routing policy, which includes a link metric, on
the appropriate nodes.

ABC 52

4.1. USE CASES

Primary Actor User

Overview The User can deploy the created Segment Routing policy,
which includes a link metric, on the appropriate nodes.

Stakeholders and Interests User: The User wants to deploy the created Segment Rout-
ing policy, in order to steer the traffic accordingly.

Preconditions • The User is authenticated within the application.
• The User has the necessary permission to deploy a traffic

engineering policy.
• The Segment Routing policy was successfully created.

Postconditions • The Segment Routing policy is deployed on the appro-
priate nodes.

• The traffic is steered according to the deployed policy.

Main Success Scenario 1. The User wants to deploy the previous created Segment
Routing policy to the appropriate nodes.

2. The User can trigger manually the deployment of the
policy.

3. The policy will be automatically deployed on the appro-
priate nodes.

4. The policy deployment was successful
5. A message is shown, that the policy is successfully de-

ployed.
6. The policy is marked as deployed.

Extensions 4a The policy deployment was not successful.
1. An error message is shown, that the policy was not

deployed successfully.
2. The policy is set into an error state and marked to

be resolved manually.

Frequency of Occurrence As often as required.

Table 4.8: UC06: Deploy Link Metric Algorithm Policy - Fully Dressed Description

UC07: Login

g User-Story 07 - Login

As a non-authenticated user (Anonymous), I log in to the application to authenticate
and use the application’s functionalities.

ABC 53

4.1. USE CASES

UC08: Manage Recalculations

g User-Story 08 - Manage Recalculations

As User, I check the affected policies after a topology change to take action and to bring
the policy to a desired state.

Primary Actor User

Overview The User can check the policy, which was affected after a
topology change, and can take further actions to bring the
policy to a desired state.

Stakeholders and Interests User: The User wants to have the opportunity to check the
affected policy after a topology change, and take further
actions to bring the policy to a desired state.

Preconditions • The User is authenticated within the application.
• The User has the permission to take action on an af-

fected policy.
• The application has found some non-optimal Segment

Routing policies after a topology change.

Postconditions • The Segment Routing policy is in the desired state.

Main Success Scenario 1. The User wants to approve manually the affected policy.
2. Icons and colors indicates an affected policy.
3. The User can regard the new and old result in the topol-

ogy.
4. The User can approve manually the policy with the new

result.
5. If the policy was deployed in the network, the new pol-

icy is redeployed on the devices.

Extensions *a The user will not approve the better policy.
1. The application will not make any changes to the

affected policy.
2. The affected policies will stay marked as affected

until they have been approved.

Frequency of Occurrence After each topology change, which leads to an affected pol-
icy.

Table 4.9: UC08: Manage Recalculations - Fully Dressed Description

ABC 54

4.2. NON-FUNCTIONAL REQUIREMENTS

UC09: Deploy Delay/TE Algorithm Policy

g User-Story 09 - Deploy Delay/TE Algorithm Policy

As User, I deploy the created Segment Routing policy, which includes a delay or TE
metric, on the appropriate nodes.

UC10: CRUD Roles and Users

g User-Story 10 - CRUD Roles and Users

As Admin, I create, read, update, and delete the roles and users of the application.

UC11: Handle Permissions

g User-Story 11 - Handle Permissions

As User, I only perform actions for which I am authorized.

4.2 Non-Functional Requirements

For the Non-functional Requirements the FURPS+[5] principle was used.

4.2.1 Functionality

Suitability

By using a login, the application should be protected from unwanted use by non-authorized
entities.

Accuracy

The application should work with the latest data from the Arango database at all times. The
up-to-date data always allows each policy to be created or deployed using the correct data.

Interoperability

The application should work with the Cisco developed application Jalapeño (version-hash:
f951290185a6b5b8244f7fce100e5369cffa0dbe). The topology data used comes from Cisco IOS
XR devices on which SRv6 is configured. Configurations are written to the same devices
which are in the same topology.

4.2.2 Usability

Understandability

Existing policies should be easy to view and understand. Using colors and icons (e.g., like a
traffic light system) a policy’s status should be available at a glance.

ABC 55

4.2. NON-FUNCTIONAL REQUIREMENTS

Operability

Through the targeted use of descriptions and icons, a user should be able to edit, create or
delete a policy without further assistance.

4.2.3 Reliability

Availability

The application should be available 99% of the time.

Recoverability

The complete application should be developed according to the Cloud Native[9] standard. By
correctly applying this standard and deploying on a Kubernetes cluster, redeployments after
a failure should be possible without further manual intervention.

Fault Tolerance

Incorrect input values should not affect the functionality of the application. If incorrect values
arrive at the backend, they should be intercepted directly and processed with error handling.

4.2.4 Performance

Capacity

The application should be able to handle a network topology of up to 1000 routers. Overall,
it should be designed for two different service types (Firewall (FW) and IDS).

Time behavior

Once the Arango database has processed topology changes, it should take no longer than
one minute for the application to fetch the new data, process it, and make it available to the
various services. This characteristic only obtains topology changes and not the initial loading
of the topology data at the application startup.

4.2.5 Scalability

The application should be utterly scalable through the usage of Cloud-Native development
rules. If more or fewer pods are needed, it should be easy to scale them up or down.

4.2.6 Maintability

Analysability

The application should include a customizable log level. The log should be written to the
standard output by applying Cloud-Native development.

4.2.7 Traceability

All code changes and container deployments should be tracked using the CI and versioning
tool GitLab. Versioning should ensure easy traceability and documentation.

ABC 56

Chapter 5

Domain Analysis

This chapter serves as an entry point into the domain. It analyses the present domain of the
Segment Routing Service Programming environment. Therefore a Domain Model is included
which visualizes the different logical elements in the area. The Administrative Concepts ex-
plains further the different elements and explains their purpose.

In the previous work SerChio a complete analogy was created to understand the concept of
Segment Routing and introduce the reader into the domain. Furthermore, the project thesis
also includes an introduction to the Segment Routing technology. The reader is suggested to
look into these sections if there is no fundamental understanding of Segment Routing.

5.1 Domain Model

The figure 5.1 shows the different logical objects and how they are related to each other. It
should help to give an overview of the different parts of the SerPro application. The individual
elements are then described in more detail in the section Administrative Concepts.

ADV 57

5.2. ADMINISTRATIVE CONCEPTS

Figure 5.1: Domain Model

5.2 Administrative Concepts

This section describes the different parts of the Domain Model in detail. An understanding
of the administrative concepts is assumed to understand the different parts of the developed
application.

5.2.1 Policy

The Policy is the central element in the domain. The Policy contains all the information re-
sponsible for creating a steering Policy in the network and thus steering the traffic according
to the user’s requirements. A Policy includes different elements: A name is needed to differ-
entiate between the other policies in the system. Furthermore, information about the origin
is necessary. The source_node, source_vrf, and source_network refer to the appropriate ele-
ments of the domain. These elements describe where the traffic is derived from, which should
be steered. The opposite information is found in the destination_node, destination_vrf,
and destination_network. These elements describe the target of the traffic to steer. Because
a Policy element always needs a source and destination information, the following relations
can be formed: a Policy always includes exactly two VRFs and two Networks and at least two
Nodes. Since the goal is to steer traffic over the most suitable services, at least one Service is
associated with a Policy. Each Policy contains metric information. This information describes
which metric was used to calculate the most suitable path for the Policy. A Policy is always

ABC 58

5.2. ADMINISTRATIVE CONCEPTS

assembled with the calculated result. The result includes information about the best paths
like the actual way, the total cost, and necessary Segment Routing information. Therefore it
includes information about which links are used and which intermediate nodes the traffic is
flowed through. Hence, the relations have to be made to the Node and the Link. Additionally,
the result information is used to create automatically a Policy in the network which enforces
the steering. The deployed_in_network information informs if the Policy is written down to
the nodes or not.

5.2.2 Node

A Node refers to an essential waypoint in the connected Segment Routing network. In this
domain, the nodes are represented by Cisco IOS-XR routers. Each router has a name assigned
to differentiate between the other Nodes in the domain. Also each Node has a unique segment
assigned which is needed for the Policy result. This domain distincts between intermediate
nodes and PE nodes. The PE nodes can serve as a source or destination node in the policy and
have a VRF assigned. Nodes, which have not set the has_vrf are called intermediate nodes
and do not fulfill the PE characteristics. Therefore they are only needed to forward the packets
to the next waypoint in the path. A Node can occur in zero or more Policies. Additionally, a
Node has one or more Links assigned to have connectivity in the Segment Routing domain.

5.2.3 VRF

A Virtual Routing and Forwarding (VRF) is an essential construct to enabling connectivity be-
tween customer networks. A VRF is identified by a name and has one or several export_tags.
The export_tags are crucial to ensure the reachability to another VRF. At least one of the
export_tags have to match with another VRF to ensure that the attached Networks have con-
nectivity. So, a VRF has at least one Network assigned. Besides, a VRF is configured on exactly
one Node. In a Policy there belong exactly two VRFs: the source and the destination VRF.

5.2.4 Network

The Network represents the customer Local Area Network (LAN). It contains an ip address
and the according subnet. It is the most granular element in a Policy and is needed twice.
Once as a source and once as a destination network. Besides, a Network belongs always to
exactly one VRF.

5.2.5 Service

A Service is another essential element in this domain. These Services must be known to the
application in order to controll traffic specifically via defined Services. Therefore, the segment
is required to direct traffic specifically to this segment and thus also through this Service.
The name and type are mainly intended for easy recognition and use of the Service in the
application.

5.2.6 Link

A Link is of central importance for the complete application. That is because a Link is always
directed from a node (from_node) to another node (to_node). Which is especially important
if such a Link has different metrics (metric_value) between two nodes in the respective di-
rection. This metric_value is then included in the path calculation and influences the Policy
result significantly. As a consequence, a Link can be included in a Policy but does not have
to.

ABC 59

Chapter 6

Architecture and Design Specifications

6.1 General

The goal of this thesis was to extend and improve the application developed in the project
thesis. As in the project thesis, the complete backend architecture is part of this thesis. The
frontend is not part of this thesis but is still listed in the following chapters for the sake of
completeness to show the entirety of the application.

The complete architecture is based on different cloud-native services, which fulfill their own
requirements and tasks. A more detailed view of the architecture can be found in the follow-
ing chapters.

6.2 System Overview

The following sections should give an overview of the application developed in this bachelor
thesis. Among other things, various C4[7] diagrams were created for this purpose.

The complete application consists of a software component called SerPro. This software com-
ponent accesses another software component called Jalapeño, which was developed by Cisco
Systems. The software system SerPro obtains topology data of a physical network from the
software system Jalapeño.

Figure 6.1 provides an overview of the relationship between these two software systems. The
complete SerPro application is not coupled with the external system. All connections which
take place to this system can be exchanged over runtime variables. Thus, both applications can
be deployed at different locations and need only Hypertext Transfer Protocol (HTTP) access
to each other.

ADV 60

6.2. SYSTEM OVERVIEW

Figure 6.1: C4 System Landscape

The SerPro software system consists of several different components which are all deployed
using containers. The user communicates with two containers only, the frontend, and the
backend. All other containers are never directly addressed by the user and remain in the
background.

The various components are described in more detail in the sections below. Figure 6.2 should
provide a rough overview of SerPro’s container infrastructure. The exact communication pro-
cesses are described in more detail in section Service Communication.

ABC 61

6.2. SYSTEM OVERVIEW

Figure 6.2: C4 Container Diagram

6.2.1 Design Goals

The precise design and architecture goals were to ensure that the application could be de-
ployed in a scalable and highly available manner. These goals were achieved by using a mes-
saging system (see section Messaging) and the targeted adherence to the 12-Factor Methodol-
ogy.

ABC 62

6.2. SYSTEM OVERVIEW

6.2.2 Backend

The backend is the brain of the entire SerPro application. It is responsible for processing and
providing all topology data which are received from the Polling service.

The backend is responsible for distributing the different messages to the clients and creat-
ing different jobs (deployment, reversion, and redeployment). In addition, the services and
the complete access data for the endpoints can be managed via the backend. The main task,
however, is the management and calculation of the various policies. That also includes keep-
ing them dynamically up-to-date; more about this can be found in section Calculation and
Preprocessing.

6.2.3 Polling

The polling service is responsible for keeping all topology data in the application up-to-date.
For this purpose, the polling service connects to the external system Jalapeño and pulls the
data to detect the updates and forward them then to the backend. By using a messaging
system, it can be ensured that no updates are lost. See section Service Communication for
more information on how the messaging between the services works precisely.

6.2.4 Worker

Workers are responsible for processing deploy, revert and redeploy jobs. They use the same
container image as the backend but start the Celery worker process only. The workers allow
the backend to submit the jobs completely and process them asynchronously, so the backend
is not blocked and can accept and process further requests. For more detailed information
about the technology in the workers, please refer to section Message Format.

6.2.5 Frontend

The frontend is responsible for providing the customer with a graphical interface. The fron-
tend uses the API provided by the backend to give the user the ability to create and modify
policies. By using additional WebSockets, the frontend allows the user to work dynamically
and asynchronly with the backend.

The frontend was not part of this bachelor thesis. It was developed by the INS in consul-
tation with the authors of this bachelor thesis.

6.2.6 Messaging

A RabbitMQ cluster is used for all messaging between the different services of the SerPro
application. How the messaging works exactly is described in section Service Communication.
The exact technology description and why exactly RabbitMQ was used can be read in section
Messaging.

6.2.7 Caching

The caching system is used for data storage and fast access to the various backend instances.
A complete graph is stored on it, which is used for the calculations of the various paths. The
caching system is a central point for the whole application since both backend and polling
services use this system.

The caching system was implemented using a Redis cluster. More details can be found in
section Caching.

ABC 63

6.3. 12-FACTOR METHODOLOGY

6.2.8 Database

Specific data should be stored persistently on a relational database, including all policies,
services, and credentials. For this data, a PostgreSQL database is deployed, which has a
persistent volume.

6.3 12-Factor Methodology

The goal of this thesis was to develop a scalable and highly available application. For this
purpose, the 12-Factor[4] method was used, as in the previous work SerChio[3]. Because both
works are based on the cloud-native approach, there may be overlaps between the different
points. All points in the 12-Factor[4] method were therefore adapted and expanded for the
sake of completeness.

By using the 12-Factor[4] method, the cloud-native approach can be followed very well and
also controlled. This method ensures that the application can be deployed and used in a cloud
environment.

r 1. Codebase

There should be only one codebase, yet multiple deployments can exist.

Both services backend and polling have an entirely own codebase as well as an
utterly own repository. By building containers on each push to the repository, there are
different containers for each application state.

Conclusion

This factor is ultimately fulfilled through the different codebases and the possibil-
ity of deploying different application releases on different Kubernetes clusters.

r 2. Dependencies

All dependencies should be declared explicitly and isolated.

Both the backend and polling service uses the Python dependency manager pip
to install and manage all dependencies. The dependencies are declared in a so-called
requirements file. In order to isolate production and development requirements, an
additional development requirements file was created to define the dependencies
needed only in the development environment.

Conclusion

The two services meet the requirements for dependency isolation. Only the graph-tool
extension, which is needed in the backend, must be installed outside the Python
dependency manager pip. That is because the Graph Tool has a C++ core and only has
a wrapper for Python.

ABC 64

6.3. 12-FACTOR METHODOLOGY

r 3. Config

Configurations should be stored in the environment.

The complete application with all services backend and polling can be configured
using runtime variables.

Conclusion

Using runtime variables and the possibility to dynamically deploy the application
using Helm Charts on the Kubernetes cluster, makes it possible to launch any number
of versions of the application with different configurations on different clusters.
Therefore, the third factor is fulfilled completely.

r 4. Backing services

Backing services should be treated as attached sources.

Both polling and backend services require access to backing services such as RabbitMQ,
PostgreSQL, or Redis. All these services can be configured dynamically via runtime
variables. That means, that no distinction is made between local and external backing
services.

Conclusion

By using runtime variables, backing services can be exchanged quickly and dy-
namically. The customer can easily decide whether he wants to use a local, internal or
external service. That point is therefore achieved without any problems.

r 5. Build/release/run

Use separate stages for building and running.

Both GitLab pipelines for the backend and polling are identical. The detailed de-
scriptions can be found in section Continuous Integration. The pipelines contain a test,
build, and analysis stage. In the test stage, all automated unit tests are executed. In
the build stage, either the production or the development Docker images are built. The
analysis stage is then responsible for generating a Sonarqube report and uploading it to
the Sonarqube instance.

Conclusion

This factor is not yet fulfilled for the time being. To fulfill it, one would un-
doubtedly have to adapt the software versioning, for example, with timestamps or
incrementing version numbers. With minor changes, however, this point should also be

ABC 65

6.3. 12-FACTOR METHODOLOGY

achievable in the future.

r 6. Processes

The application should be stateless.

All data that should be persistent is outsourced to so-called backing services
such as RabbitMQ, PostgreSQL, or Redis. The actual processes should not have their
state. The application uses different backing services to store or transfer different data
persistently.

Conclusion

All services are currently entirely decoupled from each other and use only back-
ing services across the board to persist or transmit data. This approach makes the
services scalable without any problems. Through this solution, this point is also
achieved.

r 7. Port binding

Make services only available via Port Binding.

The application should not be published by an external web server such as IIS,
Nginx, or Apache2. An integrated web server should be used. The polling service
does not need to have a port open and thus does not need port binding. The backend
service uses the runserver provided by Django, which starts the application and binds
a predefined port.

Conclusion

By using the webserver provided by Django, the seventh factor is fulfilled.

r 8. Concurrency

The application should be scalable via the process model.

While only one process runs in the polling container, the backend container re-
quires several processes, which all run independently on the container. By deploying
on a Kubernetes cluster, the scaling options already integrated into it can be used.

Conclusion

The fact that the application can be deployed on a Kubernetes cluster and scaled
without problems means that the eighth factor is fulfilled.

ABC 66

6.3. 12-FACTOR METHODOLOGY

r 9. Disposability

The robustness should be increased with a clean shutdown and quick start.

No data should be lost in the application in the event of a shutdown or crash.
The use of message queues ensures that messages are not deleted from the queue until
they have been processed completely. That means that even if a backend crashes, no
messages are lost, as they are not acknowledged and can therefore be processed by
another backend instance. The same principle is applied to the polling service. That
ensures that no updates are lost when the polling service is no longer available.

Conclusion

The individual service containers can be started within a few seconds. Since messages
are only deleted when they have been processed completely, it can be assumed that no
data is lost in the event of a crash. The ninth factor is therefore fulfilled.

r 10. Dev/prod parity

Development, Staging and Production should be as similar as possible.

The development should be done with the same services that run in production.
That minimizes errors caused by differences between the productive and developer
services. Because the entire application was developed entirely cloud-native directly in
the Kubernetes cluster (see section Development Environment), the same services could
be used in the production as in the development environment.

Conclusion

Due to the utterly cloud-native development of the entire application directly in
the Kubernetes cluster, all services could be used as in the production environment.
That ensures that the application runs as productively as possible. The tenth factor
is fulfilled by ensuring that the differences between the production and development
environments are as minimal as possible.

r 11. Logs

Logs should be treated as event streams.

The logs in all developed services are standardized and written in stdout (see
section Logging). That allows the logs to be easily read from the command line or sent
to an external logging system such as an Elasticsearch, Logstash and Kibana (ELK)
stack.

Conclusion

ABC 67

6.4. TECHNOLOGY DECISIONS

The eleventh factor is entirely fulfilled by writing the logs to stdout.

r 12. Admin processes

Administrative tasks should be carried out as one-off processes.

Admin tasks should always be performed on an identical system that is also run-
ning in production. Because all services are containerized, administrative tasks are
performed automatically when the application is started.

Conclusion

Due to the containerization, all administrative tasks are already executed when
the application is started and can also be executed separately on a staging or testing
system. This factor is therefore also achieved.

6.4 Technology Decisions

This section lists the different libraries and technologies which were used to implement the
application. Moreover, it contains a detailed section about the motivation and the reason
behind the technology decision for this application. In the section, it is also mentioned which
other technologies were encountered to be used. Significant decisions were influenced highly
by the vision to create a high-scalable and -available software.

Several technologies were inherited from the previous project thesis. More detailed informa-
tion about these technologies can be found in the SerChio thesis.

6.4.1 Technology Stack

The following table contains an overview of the most important technologies which were
applied in the software.

ABC 68

6.4. TECHNOLOGY DECISIONS

Component Technology

Backend • Programming Language: Python
• Framework: Django
• Framework Extensions: Django REST Framework
• Additional Libraries:

– django-redis (Caching)
– djangorestframework-simplejwt (Authentication)
– nornir (Policy Deployment)
– channels_rabbitmq (Websockets)
– carehare (RabbitMQ Messaging)
– celery (Worker Tasks)
– graph-tool (Graph Implementation)
– rom (Redis Object Mapper - Caching)

Polling • Programming Language: Python
• Additional Libraries:

– pyArango (Graph DB Access)
– asyncio (async Task Management)
– schedule (Job Scheduling)
– pika (RabbitMQ Messaging)
– rejson (Redis Cache Access)

Database • PostgreSQL for development and productive usage
• SQLite for unittests

Messaging • RabbitMQ

Cache • Redis cache with JSON module

Table 6.1: Technologies

6.4.2 Programming Language and Framework

In the previous project thesis, the polling service was implemented with Python. Because it
has proven to be stable and accurate, the service was further improved on the existing code-
base.

Python Django, together with the Django REST Framework (DRF), was already a proven de-
sign decision in the backend service during the previous work, and therefore it was adhered
to. It has been proven that this design decision was appropriate because some features, like
authentication and authorization, could be implemented swiftly with the help of the Django
Framework.

ABC 69

6.4. TECHNOLOGY DECISIONS

Figure 6.3: Output Django Admin Site

According to the programming language and actual code writing, one of the most significant
changes was the introduction of static typing [23]. The development team had decided to
improve the code further and use the static typing feature, making the code less error prone
and more readable. Static typing adds type information to the code and helps the developer
to give additional information about variable types, return values, and more. In the listing
6.1 an old code snipping is shown, which has no type hints included. On the opposite, the
listing 6.2 shows the same method with static type information. It can be observed that the
parameter object_hashes_from_cache has to be a Python Dictionary, and the return value is a
boolean value (bool).

def object_cache_is_empty(self, object_hashes_from_cache):
return object_hashes_from_cache is None

Listing 6.1: without typing

def object_cache_is_empty(self, object_hashes_from_cache: Dict) -> bool:
return object_hashes_from_cache is None

Listing 6.2: with typing

More detailed information about the technical decisions according to the programming lan-
guage, the web framework and its extensions can be found in the thesis SerChio.

6.4.3 Database

In the pre-work, called project thesis, the decision was made for PostgreSQL as a database
system. This database system has proved a perfect fit for the application to persist data
and works perfectly together with the introduced frameworks. Therefore PostgreSQL was
inherited and also applied in the bachelor thesis.

ABC 70

6.4. TECHNOLOGY DECISIONS

6.4.4 Caching

General

A cache instance was mainly used to cache data for the polling service in the pre-bachelor
thesis. The cached data were used to detect network changes and notify the backend about
them. This implementation showed that the cache has ultimate speed, and the cache could
and should be used for more intended uses.

So, at the beginning of the bachelor thesis, it was decided to stick with the Redis cache tech-
nology and extend its usage. The goal was to rely highly on Redis for the development and
production of the whole software and thus, enhance the whole architecture. Redis should not
only be used in the polling service to detect changes but furthermore, enable caching in the
backend service.

The permanent storage could be identified as a massive bottleneck for data accessing in the
previously done work. Writing specific data that were already held in the persistent graph
database in the cache instead of in the PostgreSQL, should help to raise the whole application
performance. This design decision was central for building a high-scalable, high-available,
and distributed software.

Because the Redis Cache System has such a central value in the complete software architecture
design, it was decided to build a high-available Redis caching system with the help of the
widely used technology Redis Sentinel described in the following section.

The reason why Redis was used in the previous work, can be found in the documentation of
the SerChio thesis.

Redis Sentinel

� Redis Sentinel

Redis Sentinel provides high availability for Redis. In practical terms this means that using
Sentinel you can create a Redis deployment that resists without human intervention certain
kinds of failures.[25]

The caching system is one of the core components of the whole software. It enables the
delivery of information in no time. Because the whole application counts on the caching
system’s functionality and reachability, it was decided to enable a high-available solution
with the solution called Redis Sentinel.

Redis Sentinel is a Redis solution that enables high availability for the caching solution. Redis
follows a master-slave principle, which is called master and replica in Redis terms. The Sen-
tinel has the task of monitoring the status of the master and replica instances. As soon as the
master malfunctions, the Sentinel starts a failover process, when a new master is elected, and
the other Replicas are informed about the new master instance. This process is visualized in
figure 6.4.

Another essential responsibility of the Redis Sentinel is the master discovery and updating
of the configuration. Redis Sentinels acts as a mapping service: Because the Redis Sentinel
always has the connection to the current master, clients can ask a Redis Sentinel instance for
the current master address. So, it can be ensured that the clients always get the connection
information of the current master.

ABC 71

6.4. TECHNOLOGY DECISIONS

Figure 6.4: Redis Sentinel Failover

Applied Application Libraries

rejson (https://github.com/RedisJSON/redisjson-py) rejson is a library that allows a per-
formant write and load of JSON objects into a Redis database. One of the most significant
advances is the on-the-fly (de)serialization of objects into valid JSON. This library is used in
the polling service to implement data caching. This library was already used in the previous
project thesis and, therefore, not replaced.

django-redis (https://github.com/jazzband/django-redis/) Django comes with an im-
plemented framework for caching data [8]. It supports officially Memcached as their primary
cache system. Because we already had a Redis caching system, we decided to use it with a
community project called Jazzband Django Redis (django-redis). This library not only enables
the same functionality as the default caching system moreover, it also supports saving things
with an infinite timeout. This feature is one thing that the application relies upon. Besides,
it also enables the automatic (de)serialization of Python objects, making it effortless to save
things permanently and enable fast access. Early in the project, it was decided that this library
should be used for storing and retrieving calculation and graph information from the Redis
cache. On the one hand, it should ensure that the current, complete graph with its charac-
teristics is saved into the cache. On the other hand, it should be used to store preprocessing
information like shortest distance information about the graph in the cache. So, with the help
of this library and the cache system, it should be ensured that each backend instance disposes
of the latest data and therefore can calculate the correct policy results.

Redis Object Mapper (https://github.com/josiahcarlson/rom) In the previous work Ser-
Chio, the performance was identified as there is need to improve in the future. This crucial
concern was addressed in the early designing phase. A way should be found to minimize the
slow database accesses. The solution to this problem was found in the Redis Object Mapper
(rom). rom allows the creation of database-like models and saves them in the more perfor-
mant Redis cache. Hence, not only the performance problem should be solved. In addition,
the information, which is already persisted in the Arango graph database, could be easily
cached in the Redis cache and therefore has not to be saved in a persisted database twice.
Another advantage to the non-comparing performance of the cache models, is the easy syntax
to use. The syntax for the model definition (listing 6.3) and the data query (listing 6.4) is quite
similar compared to the Django ORM ones (listings 6.5 & 6.6). This fact also supported the

ABC 72

https://github.com/RedisJSON/redisjson-py
https://github.com/jazzband/django-redis/
https://github.com/josiahcarlson/rom

6.4. TECHNOLOGY DECISIONS

decision to rewrite the existing appropriate Django ORM models from the previous work to
Redis Object Mapper models in this thesis.

class Link(rom.Model):
_key = rom.Text(required=True, unique=True)
local_node = rom.ManyToOne("Node", on_delete="cascade")
remote_node = rom.ManyToOne("Node", on_delete="cascade")
local_link_ip = rom.Text(required=True, unique=True)
remote_link_ip = rom.Text(required=True, unique=True)
igp_metric = rom.Integer(required=True)
enabled = rom.Boolean(index=True, default=True)

Listing 6.3: ROM Model Example

Link.query.filter(enabled=True)

Listing 6.4: ROM Query Example

class Service(models.Model):
FIREWALL = "FW"
IDS = "IDS"
SERVICE_CHOICES = [(FIREWALL, "FW"), (IDS, "IDS")]
name = models.CharField(max_length=20, null=False, unique=True)
belongs_to_node = models.IntegerField(null=False, unique=True)
service_type = models.CharField(

max_length=3, choices=SERVICE_CHOICES, default=FIREWALL, null=False
)
service_prefix = models.IntegerField(null=False, unique=True)
service_suffix = models.CharField(max_length=64)
srv6_sid = models.CharField(max_length=128, unique=True)
enabled = models.BooleanField(default=True)

Listing 6.5: Django ORM Model Example

Service.objects.filter(enabled=True).all()

Listing 6.6: Django ORM Query Example

6.4.5 Messaging

General

It was indicated in the project thesis that the communication approach needs to be improved
in the future. Especially the messaging via WebSocket between the polling and the backend
service was not a future-proof solution. It did not scale well, needed complex error handling,
and was not optimal for several backend containers. Nevertheless, the WebSocket should not
be removed from the backend application because it seems the best solution for notifying
the frontend dynamically about existing changes in the network. So, because the WebSocket
support should not be dropped and Django Channels is the only known library to support
WebSockets in the Django framework, it was clear that Django Channels was also needed in
the bachelor thesis.

The vision of using message queues between the polling and the backend application was
clear from the beginning. It seemed like the perfect solution to implement a reliable, scalable,
and fast communication channel between polling and the backend services. However, the
exact solution and technique were utterly unknown at the start of the bachelor thesis.
The functionality of a message queue is quite manageable. A message is put into a message

ABC 73

6.4. TECHNOLOGY DECISIONS

queue, and the message queue acknowledges its receptions. The message queue then delivers
the message to all receivers, which are subscribed to the appropriate queue. After all, sub-
scribers have acknowledged their reception, the message will be deleted, and the following
message is processed in the same manner. This process is visualized in figure 6.5.

Figure 6.5: Message Queue Functionality

First, it was tried to find a message queue solution with the already determined Redis cache
system. Redis cache system implements a publish-subscribe feature, which serves as a simple
message queue solution. [24] It seemed like the most suitable solution first, but after more de-
tailed research, it was discovered that Django Channels did not support Redis Sentinel. This
design decision would avoid the implementation of WebSocket communication between the
front- and backend. Because the vision included a dynamic application with WebSocket sup-
port and a high-available caching solution with Redis Sentinel support, this design decision
was avoided, and another solution was examined.

The goal was to find a solution supporting high availability and was supported by Django
Channels. The answer was given by inspecting RabbitMQ as a message queue solution. Rab-
bitMQ not only delivers an excellent, high-available and -scalable solution, but there is also
a community-driven library for using Django Channels together with RabbitMQ. Hence, this
solution met the necessary requirements. Therefore, it was decided to implement a RabbitMQ
cluster to communicate between polling and backend services, the WebSocket messaging, and
additional parts like, for example, the Celery communication.

More detailed information about the messaging implementation can be found in section Mes-
saging.

Applied Application Libraries

channels_rabbitmq (https://github.com/CJWorkbench/channels_rabbitmq/) The
channels_rabbitmq supports the standard Django Channels interface to enable WebSocket
communication. The difference between the regular Django Channels library lays in the back-
ing store. The conventional Django Channels use Redis as their backing store, whereas this
library saves and distributes the WebSocket messages over a RabbitMQ system. Therefore, the
library is used to notify the different frontend clients with the update messages.

carehare (https://github.com/CJWorkbench/carehare/) The carehare library is a RabbitMQ
client that allows receiving messages queued on a RabbitMQ system asynchronilly. The library
is developed from the maintainer of the channels_rabbitmq and is also needed in the same
library. This library was applied, because it is an excellent addition to the existing channel’s

ABC 74

https://github.com/CJWorkbench/channels_rabbitmq/
https://github.com/CJWorkbench/carehare/

6.4. TECHNOLOGY DECISIONS

library and enables the asynchronous receiving of the messages without blocking. The li-
brary is used to receive update messages from the polling service as well as notification of
deployment and reversion tasks.

pika (https://github.com/pika/pika/) Pika is a RabbitMQ client which sends messages
synchronically. Because the polling does not need asynchronous code, it was decided to use
pika to send messages into the RabbitMQ system.

6.4.6 Graph Library

In the previous thesis, the library graph-tool (https://graph-tool.skewed.de) was selected
according to its ultimate speed. Another advantage is the (de)serialization possibility which is
implemented with the standard pickle module[27] in the library. The library, therefore, allows
to save and restore the whole graph with its characteristics [21]. Besides the vast performance,
this feature was one of the main reasons to stick with the library. It allows using the congruent
graph in more than one backend instance.

6.4.7 Policy Deployment

General

The policy deployment was a new and unknown part at the beginning of the bachelor thesis.
Neither the configuration for the policies was available nor the way how to configure the ap-
propriate routers. So, the goal was to find a way to write Segment Routing Traffic Engineering
policies automatically down to the present Cisco IOS-XR routers. The solution should be as
reliable, easy-to-use, and -maintain as possible. Therefore, this design decision was also a
crucial part of the Elaboration phase of this bachelor thesis.

Configuration Interface

The first part was to declare which programmatic configuration interfaces were given in the
existing devices to configure these. An overview of the different techniques can be found in
table 6.2.

IOS-XR systems support two programmatic interfaces besides the usual CLI [22]. The first
interface is NETCONF, which enables retrieving or writing configurations via an SSH connec-
tion and is standardized in RFC 6241W[14]. The second interface is gRPC, which connects to
the routers via an HTTP(S) connection. Both approaches belong to the so-called model-driven
programmability methods. Simplified, this means that they need data models in order to re-
trieve or configure device information. Data models in the field of network programmability
are written in Yet Another Next Generation (YANG).

After some investigations and the help of the industry partner, it was concluded that the
solution has to be based on the CLI because there are no YANG models for all the needed
configuration parts present. Therefore, the developer team decided to find a possibility to
automate the CLI mode.

ABC 75

https://github.com/pika/pika/
https://graph-tool.skewed.de
https://tools.ietf.org/html/rfc6241

6.4. TECHNOLOGY DECISIONS

NETCONF gRPC CLI

Protocol SSH HTTP(S) SSH

Python library Ë Ë Ë

Data Models needed Ë Ë é

Encoding XML Google Protobuf -

Table 6.2: Comparision Configuration Interfaces IOS-XR

Tool

The second step was to decide which tool could be used to configure devices automatically.
The restrictions were clear: it should be able to connect to the device, execute the commands,
and disconnect after with the tool.

The first thoughts were about using plain SSH libraries like Netmiko or Paramiko to connect
to devices and execute the commands. However, this proposal was adverted because there
are frameworks available, which already have implemented SSH-connection handling and
additional features like connection management and error handling. These frameworks are
often built on top of these mentioned libraries and therefore take much work off.

One of these libraries, which is based on the mentioned libraries, is Network Automation and
Programmability Abstraction Layer with Multivendor support (NAPALM). NAPALM seemed
a perfect fit because for the maintainers of the bachelor thesis, it enables an easy-to-use in-
terface with the demanded functions. Additionally, it includes impressive features like the
detection of failed configuration results and more. Because the editors of the bachelor thesis
were familiar with the NAPALM API, they decided to use this library.

In most cases, NAPALM is not used directly but instead accessed by frameworks on the
top. Established frameworks, like Ansible or SaltStack, are such examples. These mentioned
frameworks were also considered but were dropped because they are often not as extensible
as the solution should be.

The solution was found in a pure Python library called Nornir. Nornir is a framework which
is specialized in automation tasks. It can be used with Python, has an easy-to-use API and
vast performance and is extensible. So, it has the advantage of being integrated easily into
the existing backend service. Moreover, it allows managing efficiently an inventory of the dif-
ferent devices and their characteristics. Another part was the noteworthy support of different
plugins, including NAPALM, which fit perfectly overall. So it was decided to use the Nornir
framework, which is built on the desired stack of tools:

ABC 76

6.4. TECHNOLOGY DECISIONS

Figure 6.6: Nornir Stack

Automation

The goal was to introduce a technique that does not block the whole API during a deployment
or reversion process. A solution had to be found, which could take on these tasks and fit
perfectly into the application’s ecosystem. For this operation, it was decided to introduce a
task queue. A task queue is basically the same as a message queue, but instead functions are
put into the queue. So-called workers or worker nodes then process these functions. After
the function is executed, the result is returned to the caller, assigning the task initially. An
overview of this process can be seen in figure 6.7.

ABC 77

6.5. MESSAGING

Figure 6.7: Task Queue Functionality

A task queue that suits perfectly in the new architecture could be found quickly. The well-
known task queue Celery not only has excellent support for Django, but it also allows to use of
RabbitMQ as a queuing system. The advantages of Celery are its simplicity, high availability
and performance. After a first test, it was ensured that Nornir tasks could be automatized
with the help of Celery and therefore, could be included in the application’s ecosystem.

More information about the policy deployment with the help can be found in section 6.6.4

6.5 Messaging

This chapter contains further and more detailed information on how the messaging is solved
within the application. It includes information about the different queues created in the ex-
isting RabbitMQ cluster and their purpose. Furthermore it also examines the bi-directional
communication between the backend and the frontend of the application. The last part of this
capture is about general message format and describes why a common message format was
introduced.

6.5.1 Service Communication

The central system for all messaging between services is the RabbitMQ cluster. All the differ-
ent queues, that connect the backend, polling, and workers run on this cluster. The individual
queues and the messages, that are exchanged in them are described below. The whole com-
munication can be seen graphically in the backend blueprint in figure 6.8.

changes The polling service sends all update messages directly, to the changes queue. The
backend has a service subscribed to this queue and therefore, it gets the messages di-
rectly when the polling publishes them.

channels All WebSocket messages are stored in the channel’s queue. That allows the various
backend instances to forward the WebSocket messages to the clients, who are connected
to them.

celery The celery queue is used for jobs (deploy, revert, redeploy). The backends publish the
jobs in this queue and the workers react as soon as a new job is placed there.

workerresult The workers send their job results to the workerresults queue which the various
backend instances are subscribed to. By this procedure, the backend instances do not
have to request the results but get the result as soon as the workers have finished a job.

ABC 78

6.5. MESSAGING

As shown on the blueprint in figure 6.8, the RabbitMQ cluster is the hub for the entire com-
munication of the application. By using a RabbitMQ cluster, the availability of the messaging
system can be improved significantly.

Figure 6.8: Backend Architecture Blueprint

6.5.2 Backend - Frontend Communication

The frontend makes the web application available in the browser to the client. The web
browser then communicates with the API of the backend. The browser also establishes a
WebSocket connection with a backend instance. Through this WebSocket connection, the
browser receives real-time updates directly from the backend.

Figure 6.9 shows this communication graphically.

ABC 79

6.5. MESSAGING

Figure 6.9: Frontend Architecture Blueprint

6.5.3 Message Format

At the beginning of the construction phase, a global consistent message format was intro-
duced. It should standardize the skeleton of the messages which are sent over the RabbitMQ
cluster. The message format was therefore adapted for each communication which was men-
tioned in the section Service Communication. It was decided to use JSON as a common
message format from the polling, over all other services to the frontend. There were some
reasons which backed this decision:

1. The polling service retrieves the network information from the graph database in the
JSON format and caches it in the same format.

2. The frontend expect JSON from the API as well as from the WebSocket.

3. JSON is easy to-read and has great Python support

So, each message which is sent over the message queue has to adhere to the following format:

Key Value

type Contains information about the type of the message

status Contains information about the status of the message

message Contains a description of the message

data Contains the effective payload of the message

Table 6.3: Message Format

After receiving a message in the standard message format, it is easy to detect its purpose.
The combination of the type and the status information give the necessary information to
process the message further. The additional information in the message and the data part
delivers the necessary data to adapt to each message. Thus, the different messages can be
adapted precisely to their purpose. Whereas a polling message delivers information about
updates in the network (listing 6.7), the WebSocket message is adopted to deliver the necessary
information to the frontend (listing 6.8).

ABC 80

6.6. POLICY TREATMENT

{
"type": "lsnode",
"status": "add",
"message": "incoming changes",
"data": {

"md5_checksum": "1ed4454d3e534f6ff4ef8c2b4308506b",
"_key": "2_0_0_0000.0000.0004",
"igp_router_id": "0000.0000.0004",
"area_id": "49.0001",
"name": "XR-4"

}
}

Listing 6.7: Example Message Polling - Backend

{
"type": "creation",
"status": "successful",
"message": "Policy testpolicy is successfully created",
"data": {

"id": 1,
"name": "testpolicy"

}
}

Listing 6.8: Example Websocket Message

The advantage is not far to seek: all messages have an equivalent format at each part of the
application. The whole communication was more straightforward to develop and comfortable
to maintain because the message format was always the same. Another benefit is the easy-
to-understand format, which allows reacting quickly to changes. So an introduction of a new
status or message type was done without circumstances. Thus, the messaging is prepared for
the future with the help of this generalization.

6.6 Policy Treatment

The policies are the central elements in the application. This chapter delivers more detailed in-
formation about different policy treatments in different situations. Before a calculation can be
created, the input must be validated; more detailed information can be found in this section.
Furthermore, it contains a separate section on each of the following topics: policy creation,
policy update, policy deployment and policy reversion, which deliver more explicit informa-
tion.

6.6.1 Input Validation

The input validation is a crucial part of the application and the fundament for all the policy
actions. It has the purpose to only let correct input enter the application. Therefore, it averts
later problems in other backend processes like the calculation, the network configuration or
deployment, and more. Furthermore, it permits security incidents of the backend service.
Hence, before the actual calculation can happen, the correctness of the input has to be val-
idated. As soon as the input is validated, a policy creation can proceed (see also 2.14 and
Policy Creation).

As a solid validation automatically leads to a more secure and stable application, many differ-
ent validation rules were created. As soon as one rule can not be adhered to, a ValidationError

ABC 81

6.6. POLICY TREATMENT

will be raised, which is translated automatically into a HTTP 400 Bad Request response code. It
ensures that the request is declined and the user is notified about, what was wrong with the
input. The listings 6.9 and 6.10 are some examples of validation errors, which fulfil different
purposes. The listing 6.9 notifies that the source_vrf does not belong to the source_node what
literally can never happend. The listing 6.10 hints that the name had characters in it, which
are not permittable. If this validation did not happen, it would lead to an error in the pol-
icy deployment afterward. Such flaws are automatically averted using the created validation
logic.

HTTP 400 Bad Request
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
"source_vrf": [

"The source vrf with id 3 does not belong to the node with id 10! Please
provide a valid source vrf!"
]

}

Listing 6.9: Source VRF Validation Error

HTTP 400 Bad Request
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
"name": [

"The name can only include follwing characters [(a-z)(A-Z)(0-9)_-]"
]

}

Listing 6.10: Name Validation Error

6.6.2 Policy Creation

A policy creation, whose sequence is visualized in figure 6.10, starts with a POST request to
the API route /api/policy. The request with its attached data is further redirected until its
JSON data are translated into Python native types. This process is called deserialization.
Afterwards, the data can be validated as described in more detail in section Input Validation.
If the PolicyValidator cannot allocate the input data, an error is raised which is returned as
an HTTP 400: Bad Request to the user. An example can be seen in figure 6.9. If the data are
valid, the Calculator can be accessed, which calculates the result and returns it. Next, these
result values are used to create and save the new policy in the database. As soon as this
step is finished, the result can be serialized, translated into valid JSON, and returned. The
user receives the result together with a HTTP 201: Created code, which indicates the success of
policy creation.

ABC 82

6.6. POLICY TREATMENT

Figure 6.10: Policy Creation

6.6.3 Policy Update

The whole update procedure is visualized in figure 6.11. A policy update process is similar
to the Policy Creation activity with slight differences. The request is triggered with an HTTP
PUT method. If the input data are not correct or the policy is not editable, a ValidationError
is raised. A Policy is only editable if the policy is not deployed in the network. As soon as a
policy configuration is written down to the router, the policy is locked for changes. If the input
parameters are valid, the update process is started. The application detects automatically if
a new calculation of the best result is necessary and triggers if necessary. It is the case, if
another parameter as the policy name has changed. In each case, the policy can be updated
with the new values and can be returned. A policy update is converted automatically in a
HTTP 200 OK, which indicates that the policy was updated successfully.

ABC 83

6.6. POLICY TREATMENT

Figure 6.11: Policy Update

6.6.4 Policy Deployment

As soon as the customer triggers a deployment via the dedicated action in the API module,
the backend creates a so-called job using Celery, which then lands in a dedicated job queue.
Celery was used here to execute the jobs asynchronously so that the backend is not blocked.
By creating these jobs, the backend task is done for the moment, and the workers can start
their work. All workers are subscribed to this job queue and are notified as soon as a new job
is in the queue. Figure 6.12 describes the job creation process graphically using a sequence
diagram.

Figure 6.12: Policy Job Creation

Celery Workers use the same code base as the backend. This allows all functions to be ex-
ecuted, that the backend can also execute. The Celery process running inside the workers
subscribes them to the dedicated job queue. As soon as a job appears in this queue, the first
available worker receives it and can start processing the job. The workers can be scaled up or
down automatically based on the jobs in the job queue. More about this can be found in the
Autoscaling section.

ABC 84

6.6. POLICY TREATMENT

The deployment jobs will then first create a new inventory from which they know on which
devices they have to store the configuration. After creating the inventory, the deployment
template must be rendered with the correct data. Nornir will then finally store the configu-
ration on the routers and store the result internally. For the result to get back to the backend
from the workers, it was decided that the workers should store the result in a dedicated result
queue. This way, the result message can already be created on the worker, and the backend
can react accordingly as soon as the result has arrived.

Figure 6.13: Policy Deployment

In order to be able to inform the customer directly about a deployment after it has been
completed or has failed, a solution was sought in which the workers automatically inform the
backend about the deployment result. After finishing the deployment, the workers put their
results in a dedicated queue. Because the backend is subscribed to this queue, the backend is
informed as soon as a new result is available and can then forward it asynchronously to the
clients via a WebSocket message. The sequence diagram in figure 6.14 describes this process
graphically.

ABC 85

6.7. ROLE BASED ACCESS CONTROL

Figure 6.14: Policy Result Handling

6.6.5 Policy Reversion

The policy reversion is made analog to the Policy Deployment, but contrary to the deployment,
this process reverts the policy configuration on the network devices

6.7 Role Based Access Control

Since the application can make changes in a physical network, it was necessary to control
access to the application and allow the customer to create different access levels.

The access control, already prepared in the Python Django framework, was used to create a
so-called Role-Based Access Control (RBAC). This makes it possible to create different groups
and users out of the box and assign permissions.

In order to use a modern and secure authentication, the entire authentication for the API
and the WebSocket was implemented by using the standardized and proven authentication
method with JWT. Using JWT, two new routes had to be made available to the user: authenti-
cation/token and authentication/refresh. By calling authentication/token, the user receives
access and refresh tokens to connect to the backend. After a certain period, the access to-
ken expires, and the user has to renew his access token with the refresh token. The exact
procedure which happens when a user requests a new token can be seen in figure 6.15.

ABC 86

6.7. ROLE BASED ACCESS CONTROL

Figure 6.15: Authentication Sequence Diagram

The API will respond with HTTP 403 Forbidden when a user is not authenticated within the
application. For the websocket, a separate middleware was written that checks, whether the
user is authenticated or not when a WebSocket connects to enable authentication with JWT
on the WebSocket. With this middleware, the connection can be authenticated already during
the connection setup. In listing 6.11, the URL structure for the WebSocket connection can be
seen, to mention is here that the access token is delivered with a query parameter.

wss://serpro.stud.pilota.ch/ws/?token=<jwt-access-token>

Listing 6.11: Websocket URL

It was decided that the JWT should also contain the group name to enable the frontend to
show and hide buttons dynamically and adjust forms so that the frontend knows exactly
which group a user is assigned to and which permissions, and therefore what buttons or
forms should be displayed. An encoded example of a JWT can be seen in listing 6.12. In this
example, it can be seen that the JWT also contains the group name.

{
"token_type": "access",
"exp": 1622622793,
"jti": "8b6f3a04858649ce929e6f3a85f743ee",
"user_id": 2,
"username": "engineer",
"group": "engineer"

}

Listing 6.12: Decoded JWT

Because the frontend now knows about the group membership through the customized JWT,
the design can be customized based on the user’s permission. In figures 6.16 and 6.17, there
can be seen the difference between a user in the readonly group and a user in the engineer
group. The exact group permissions are described in table 6.4 and should show which group
has permission in the application.

ABC 87

6.8. UPDATE PROCESSING

Figure 6.16: User in engineer group Figure 6.17: User in readonly group

All permissions are created automatically when the application is started. However, these can
also be adjusted afterwards without any problems.

anonymous • Cannot log into the application.

read_only • Can view all data.

operator • Can view all data.
• Can CRUD policies.

engineer • Can view all data.
• Can CRUD policies.
• Can deploy policies.
• Can revert policies.
• Can CRUD services.
• Can CRUD authentications.
• Can CRUD endpoints.

superuser • Can do anything.

Table 6.4: Group permissions

6.8 Update Processing

During the development of the entire application, the goal was to ensure that a user can al-
ways work with the latest data. That is very important because the application makes policies
based on the current network status. These policies are then deployed directly to the network
if desired. The network traffic is routed accordingly. If new calculations are not done on the
most current data, it could be that a network has no connection to the rest of the topology. It
was, therefore, crucial to have a functioning and, above all, very stable update processing.

Design-wise, the goal was not to have the backend to be responsible for detecting updates
too. Therefore, it was decided to adopt and adapt the idea of the polling service, which was
already created in the preliminary work SerChio. How the exact process in the polling service
looks precisely can be examined in section Polling Service Update Processing.

6.8.1 Polling Service Update Processing

The application needs the data from the external software system Jalapeño. The polling ser-
vice plays an essential role. It is responsible for the primary polling and detection of updates
from the external software system.

The data is fetched directly from the external systems graph database ArangoDB. All these

ABC 88

6.8. UPDATE PROCESSING

data have a checksum that allows detecting if data have been modified. The checksums of
the new data are compared to the checksums of the data of a previous query. That allows the
polling service to detect what data has been changed.

The big difference from the previous work (SerChio) is that the updates are no longer sent
directly to the backend via a WebSocket. The data is now put into a queue on the RabbitMQ
cluster via individual messages and stored individually in the cache. By processing these
changes separately, it can be ensured that the checksum of the change is only stored in the
cache when the update is already in the RabbitMQ queue. So if the polling service has a
problem, then no updates would be lost, but it would instead send the updates a second time.

Figure 6.18: Polling Service Data Update

6.8.2 Backend Service Update Processing

The backend is responsible for keeping the data in the cache up-to-date; besides, it also has
to update a complete graph of the topology on which the policy calculations happen. The
backend gets all update messages directly from a dedicated queue on the RabbitMQ cluster.
To avoid race conditions due to multiple scaled backends, the queue that transmits the update
messages was declared a single-active-consumer queue. This way, only one backend instance
gets the update messages, and the other instances are in standby mode. That ensures that all
messages are processed in the correct order. Furthermore, the individual messages are only
acknowledged at the queue and deleted from the queue when individual updates have been
completed. This guarantees, that if a backend has a problem and cannot finish processing the
message, the message can be treated by the next backend.

The entire process can be inspected graphically in figure 6.19.

ABC 89

6.9. REST API

Figure 6.19: Backend Update Processing

6.9 REST API

6.9.1 General

Already in the preliminary work SerChio, an API was introduced. The same approach was
followed in this bachelor thesis.

After consultation with the frontend developers, however, it was ultimately decided to re-
vise and simplify the API. Fewer routes should be available, but these should be as simple
as possible to get to the required information. The hyperlinking aimed at in the preliminary
work was replaced by a classic API design. Features like pagination were not implemented,
yet because they are not needed and can be upgraded without problems by using the Django
Rest Framework.

Figure 6.20: Backend API Root

ABC 90

6.9. REST API

6.9.2 Query Parameters

By introducing query parameters, the complete query logic can be transferred to the backend.
The backend is then responsible for making various queries in the cache or the database and
answering the respective queries correctly. A more complex example of this is displaying all
VRFs with a specific export tag, which is passed as a query parameter. This query is needed
to make sure that the two VRFs have a connection. The backend has to query different models
in the cache and match the different export tags with the VRFs to answer this query. Because
this logic is completely implemented in the backend, the frontend has to make one request
only.

GET /api/vrf/?export_tags=1:190
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

[
{

"id": 8,
"belongs_to_node": 11,
"name": "VPN3",
"rd": "12.12.12.12:3",
"ext_community_list": [

"1:190"
]

},
{

"id": 6,
"belongs_to_node": 10,
"name": "VPN3",
"rd": "11.11.11.11:3",
"ext_community_list": [

"1:190"
]

}
]

Listing 6.13: API Query Parameter Example

6.9.3 Actions

To make the deployment, revert or acceptance of the better path as easy as possible for the
user, various actions have been introduced. With the help of these actions, the user can make
regular GET requests on a specific policy, and the backend can then react accordingly to this
action. Table 6.5 lists the different available actions in more detail.

ABC 91

6.10. APPLICATION DEPLOYMENT

Request Description

GET /api/policy/<pk>/deploy
Deploy the specific policy.

GET /api/policy/<pk>/revert
Revert the specific policy.

GET /api/policy/<pk>/expand
Get the non-clustered graph of the spe-
cific policy.

GET /api/policy/<pk>/showbetterclustered
Get the clustered graph of the better path
of the specific policy.

GET /api/policy/<pk>/showbetterfull
Get the non-clustered graph of the better
path of the specific policy.

GET /api/policy/<pk>/acceptbetter
Accept the better path of the specific pol-
icy.

Table 6.5: API Action Description

6.10 Application Deployment

The goal of the entire development was to make the application as scalable and highly avail-
able as possible. In order to achieve these goals, a deployment option had to be found that
would also make this possible. Due to the cloud-native approach, the choice fell on Kuber-
netes. By deploying on a Kubernetes cluster, the individual services within the application
can be easily scaled.

The complete deployment diagram can be seen in figure 6.21. As we can see there, differ-
ent services are scaled - these are the frontend, the backend, and the workers. For a detailed
description of how the whole communication between the different services works, please
refer to section System Overview.

ABC 92

6.10. APPLICATION DEPLOYMENT

Figure 6.21: Kubernetes Deployment

The Kubernetes Package Manager Helm was used for the entire deployment. More informa-
tion about the deployment with Helm can be found in section Helm Chart.

6.10.1 Helm Chart

To deploy the application on different clusters as efficiently as possible and to have the possi-
bility to manage the application with different so-called revisions, a Helm Chart with various
sub-charts was written. Using a Helm Chart, the individual configurations of the various
components can be made central in a so-called values file. That allows the customer to deploy
and manage the application on any cluster. The use of Helm Charts also offers the possibility
to deploy new so-called releases of the application and jump back to earlier releases.

ABC 93

6.10. APPLICATION DEPLOYMENT

A Helm Chart consists of standard Kubernetes object definitions, which are defined as tem-
plates. Helm then renders this template with the predefined values from the values file. That
provides a generic application template for the deployment on a Kubernetes cluster. In listing
6.14 an extract from the serpro Helm chart can be seen.

{{- if (default .Values.backend.autoScaling true) }}
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:

name: {{ .Values.backend.name }}-scaledobject
spec:

scaleTargetRef:
name: {{ .Values.backend.name }}

minReplicaCount: {{ .Values.backend.replicas }}
triggers:
- type: cpu

metadata:
type: AverageValue
value: "50"

{{- end }}

Listing 6.14: Helm chart template example

In total, a main chart was written which deployed the entire SerPro application. This chart
has several so-called sub-charts which deploy the different components which the SerPro
application depends on. A detailed description of the different charts can be found in table
6.6.

serpro
Main chart, which will deploy all SerPro related Kuber-
netes objects for the frontend, backend and workers.

serpro/rabbitmq-cluster
Sub-chart of serpro chart, which will deploy a RabbitMQ
cluster which is needed for the SerPro application.

serpro/redis-cluster
Sub-chart of serpro chart, which will deploy a Redis cluster
with Redis slaves and Redis sentinels.

Table 6.6: Helm chart description

$ helm install serpro serpro --namespace test
NAME: serpro
LAST DEPLOYED: Sat Jun 5 09:26:12 2021
NAMESPACE: test
STATUS: deployed
REVISION: 1
TEST SUITE: None

Listing 6.15: Helm chart deployment output

6.10.2 Autoscaling

Keda is used so that the application does not have to be scaled manually in the event of a high
load volume. With the help of Keda, so-called scaled objects can be created in Kubernetes.

ABC 94

6.11. PERSISTENCE

The scaled objects then define which metrics should be used to scale the pods.

The frontend and backend pods are scaled based on the load, ensuring that there is no la-
tency if many different requests come to these pods. The worker pods are scaled based on
the number of jobs. That has the significant advantage that, if many jobs are available for
the workers, they are scaled up automatically, and the jobs can be distributed and processed
faster. The scaled object connects to the RabbitMQ queue celery (see section Service Commu-
nication) and can then detect how many messages are waiting to be processed in this queue
to detect the number of jobs. Keda also detects automatically when the load volume is low or
when there are no waiting jobs in the queue. If this is the case, Keda can scale down automat-
ically the pods, which is especially useful for a public cloud provider because then costs can
be reduced.

6.11 Persistence

The basic persistency logic developed in the preliminary work SerChio was not changed very
much in principle. However, it was decided that most of the data should be stored in the
cache; the exact reasons for this can be found in section Caching. By dividing the different
data between the cache and a relational database, a solution for the linking of the data had
to be found. The different IDs mainly do this linking. In sections Cache Persistence and
Database Persistence, the different persistency diagrams on the cache and the database are
described more in detail.

In order to keep the two persistency diagrams in the same style, the different points are
declared as listed which should make the different attributes graphically distinguishable.

• Primary keys are bold and marked with an underline.

• Foreign keys are underlined.

• Uniqueness is marked with an italic font.

• Not Null constraints are displayed with a purple color.

ABC 95

6.11. PERSISTENCE

6.11.1 Cache Persistence

Figure 6.22: Cache Persistence Diagram

Node The Node table contains all nodes from the topology. Behind the node, a service can
be installed, therefore, this table has a connection to the ServicePrefix table. A VRF is
always configured on a node and a node has links connected to it.

Link is the table which contains all links connected to the nodes. A link has always a re-
mote_node and local_node connection in order to have a relation in which direction the
traffic goes.

VRF is always connected to a node. A VRF has also a L3VPNv4Prefix connection and a
connection to the ExportCommunity in order to have a relation which VRF can commu-
nicate with another VRF.

ABC 96

6.11. PERSISTENCE

ServicePrefix is the table which holds all announced service prefixes. The ServicePrefix con-
nection is connected to the Node table because a service prefix is always configured
behind a node.

ExportTag The ExportTag table contains all ExportTags that are created by the application.

ExportComunity The ExportCommunity table is used to create a relationship between the
VRF table and the ExportTag table.

L3VPNv4Prefix are different networks that a VRF has. A L3VPNv4Prefix is always associated
with a VRF.

6.11.2 Database Persistence

Figure 6.23: Database Persistence Diagram

Policy The Policy table is the one that contains all the information and results from the ap-
plication. A policy has a connection to the BetterPolicy table if one exists. Additionally,
it has a connection to the ServiceMapping, which the Django ORM implicitly creates.

BetterPolicy The BetterPolicy is like a copy of the Policy table but only contains data if a
better policy was found.

ABC 97

6.12. PACKAGES AND CLASSES

Service The Service table holds a configured service instance, for example an IDS or a FW.

Authentication is the table which holds the username and the password for the endpoint
connection.

Endpoint is the table which holds the management ip address of the different endpoints of
the topology.

6.12 Packages and Classes

The following section will discuss the different classes and packages of the polling and back-
end service in more detail. During the entire development, it was essential to program against
the interface and work with dependency injection, where it does make sense. That simplified
the testing of the complete application time and again.

6.12.1 Backend

The backend was divided into different packages. Because the framework was used (see Pro-
gramming Language and Framework), the packages could be implemented as single Django
apps. Figure 6.24 shows that the entire backend application consists of a total of eight different
packages, which will be discussed in more detail below.

Figure 6.24: Package Diagram Backend

Package serpro

The serpro package is the main package of the whole application. This package handles
the complete configurations and the different URL routes for the different Django apps. It
is mainly responsible for the management of the different Django apps and has no explicit
classes.

Package api

The api package is responsible for the complete REST API. It contains all data models for
the cache and the relational database, and the associated data providers allow access to the
respective databases. In addition, the api package contains all views, serializers, and valida-
tors needed for the REST API. Because of the size of the whole package, the complete class

ABC 98

6.12. PACKAGES AND CLASSES

diagram is in the appendix under section Class Diagrams (see figure A.1). In figure 6.25, a
minor diagram can be seen.

Figure 6.25: Class Diagram api

Package authentication

Since it was decided to rely on JWTs for the complete authentication (see Role Based Ac-
cess Control), a separate authentication package was written, which handles the complete
WebSocket authentication via its middleware. In addition, the package also takes care of the
special permissions that do not come directly from the Django framework and the creation of
special JWTs tailored to the frontend needs.

Figure 6.26: Class Diagram authentication

Package calculation

The calculation package takes care of the complex calculations of the different paths needed
for the policies. The package also handles all the preprocessing and recalculations. For more
information: section Calculation and Preprocessing can be consulted.

Figure 6.27: Class Diagram calculation

Package deployment

To be able to deploy all the policies, a complete deployment package was written. The deploy-
ment package handles the different tasks for Celery, the admin-specific settings to generate

ABC 99

6.12. PACKAGES AND CLASSES

the inventory (see Policy Deployment), and the job results’ handling.

Figure 6.28: Class Diagram deployment

Package graph

The graph package is responsible for the complete graph, which is needed for the different
path calculations. In order to maintain only one graph at a time in a backend, it was decided to
implement the graph class as a singleton. That ensures that the respective backend instances
only maintain one graph instance and perform calculations on it. Additionally, that minimizes
error sources and ensures that no inconsistencies can occur.

Figure 6.29: Class Diagram graph

Package notification

The complete notification package was developed to provide a unified solution for the other
packages to send WebSocket messages to the clients. If another package wants to inform the
frontend about any changes, it can simply use this package and send the messages through it.

ABC 100

6.12. PACKAGES AND CLASSES

Figure 6.30: Class Diagram notification

Package updatehandler

The updatehandler package was written to process the update messages generated by the
polling service and keep the complete data in the backend up-to-date. This is responsible
for maintaining the various data in the cache and keeping the graph up-to-date. Due to the
generic structure of the updatehandler package, listeners can be added without much effort,
which allows the package to perform updates on different levels (currently on the cache and
on the graph).

Figure 6.31: Class Diagram updatehandler

6.12.2 Polling

The complete polling service consists of one package only. The polling service was designed,
so that the individual components can be replaced as efficiently as possible should something
change in the external software system Jalapeño. Therefore, it was paid attention to work
everywhere with dependency injection to keep a change of a class as simple as possible. By
strictly adhering to the instruction to program against the interface as much as possible, many
external components, that are not so easy to test, could be replaced by different mocks during
testing.

ABC 101

6.12. PACKAGES AND CLASSES

Figure 6.32: Class Diagram Polling

ABC 102

Chapter 7

Project Management

This chapter contains the entire project management-specific topics. It includes an overview
of the project plan, including milestones, sprints, and time management. Besides, it includes
developer concepts and the project-related risk analysis. During the project, this chapter is
changed and adjusted based on the course of the project. In table 7.1. the version history can
be found stating the mentioned changes.

Date Version Changes Author

24.02.2021 1.0 Initial project plan was created. jklaiber, sdellsperger

03.03.2021 1.1 Update Iteration Planning (E1) sdellsperger

10.03.2021 1.2
Risk Management Update (R3 eliminated -
prototype)

sdellsperger

17.03.2021 1.3 Update Iteration Planning (S1) jklaiber

31.03.2021 1.4 Update Iteration Planning (S2) sdellsperger

14.04.2021 1.5 Update Iteration Planning (S3) sdellsperger

23.04.2021 1.6
Risk Management Update (R1, R2 eliminated
- Alpha Release Software)

jklaiber

28.04.2021 1.7 Update Iteration Planning (S4) jklaiber

12.05.2021 1.8 Update Iteration Planning (S5) sdellsperger

20.05.2021 1.9
Risk Management Update (R4, R5, R7 elimi-
nated - Beta Release Software)

sdellsperger

26.05.2021 1.10 Update Iteration Planning (S6) jklaiber

29.05.2021 1.11
Update Responsibilities, Repositories, Infras-
tructure, Development Concept and Environ-
ment, Continuous Integration, Code Metrics

jklaiber, sdellsperger

30.05.2021 1.12
Update Exception Handling, Logging, Test-
ing

jklaiber

09.06.2021 1.13
Update Iteration Planning (T1) and remove
last meeting info

jklaiber

Table 7.1: Version History Project Mangement

ADV 103

7.1. PROJECT MANAGEMENT

7.1 Project Management

The introduced project management method is called Scrum Plus, suggested by the Eastern
Switzerland University of Applied Science. The procedure is a mixture of the well-known
methods Rational Unified Process and Scrum. Therefore, it combines certain aspects of an
agile and iterative approach (Scrum) with a classical strategy (RUP). The result is visualized
in the project timeline in picture 7.1: The project contains the four RUP phases Inception,
Elaboration, Construction, and Transition. Furthermore, various milestones to take project
management measures are included. Also, the thesis is organized with sprints to develop the
results incrementally.

7.2 Scheduling

The bachelor thesis at the Eastern Switzerland University of Applied Science is accredited
with 12 ECTS credits. Because one credit is considered 30 hours of work, the work per person
is 360 hours. Following, the two-member team has a total of 720 hours for the completion of
the thesis at disposal.

During the thesis, the team will use the whole available time. Because the project is organized
with an agile approach, the most considerable possible scope is developed in the available
time. The scope will be adjusted and prioritized with exact planning to fulfill the needs and
result in the best possible end product.

Next, the project timeline is shown. It contains information about events, terms, and fixed
dates. Besides, it shows the project-specific topics like milestone and sprints in a visualized
manner. Because this bachelor thesis is a follow-up project of a project thesis, the planning
was optimized to fulfill the needs and give the authors the most suitable approach to deliver
the best result in the end.

The sprints in the Construction phase are fixed and defined as a length of two weeks. In
this part of the project, the application is realized, and therefore, it is quite essential to have
orderliness in it. The sprints "E1" and "T1" are adjusted for the optimal length to start respec-
tively finish the project. More information on Iteration Planning can be obtained in table 7.2.

The project contains four milestones to check if the project is on track. This number is the
perfect cap between project controlling and minimizing the management lead. This decision
is strongly related to the fact that this thesis is a follow-up project. More detailed information
can be found in chapter Milestones

ABC 104

7.2. SCHEDULING

Figure 7.1: Project Timeline

7.2.1 Iteration Planning

During planning, it was decided that there would be regular sprints in the Construction phase.
Due to the very short Inception and Elaboration phase, which was given by the fact that it
is a follow-up project, a so-called Elaboration sprint was introduced which lasts longer than
usual. This ensured that the Construction sprints could be carried out properly. Due to the

ABC 105

7.2. SCHEDULING

agile approach, the respective work packages are always defined at the beginning of the sprint.
Therefore, table 7.2 is continuously being updated during the project.

Inception

Elaboration 1 24.02. - 02.03. Kickoff meeting with industrial partner

Creation of the project plan

Elaboration

Elaboration 1 03.03. - 16.03. Use Cases and Non-Functional Requirements

Development Environment

Architecture Prototyp

Construction

Sprint 1 17.03. - 30.03. Adjust Polling Application to SRv6

Data Caching

Communication between Polling and Backend

Sprint 2 31.03. - 13.04 Backend Graph Implementation

API Route

Calculation and Preprocessing

Sprint 3 14.04. - 27.04. Improve Calculation and Preprocessing

Worker Implementation

Architecture Prototyp

Sprint 4 28.04. - 11.05. Improve Calculation and Preprocessing

Authentication and Login

Handle Topology Changes

Enabling/Disabling of Components

Sprint 5 12.05. - 25.05. Exception Handling

Unit Testing

Sprint 6 26.05. - 08.06. System Testing

Documentation

Transition

Transition 1 09.06. - 18.06. Documentation Finalization

Table 7.2: Iteration Planning

7.2.2 Estimates

During the project, each task is created, estimated and the spend time is assigned. These tasks
are performed in the YouTrack tool, making it possible to track the time and export different
time reports.

ABC 106

7.3. MILESTONES

Figure 7.2: YouTrack Estimates

7.2.3 Time Evaluation

The complete time evaluation is made with the information available in the YouTrack applica-
tion. Thus, the authors can not only review but also improve their time-relevant actions, such
as estimation.

7.3 Milestones

A total of four milestones were defined to track the project progress. Because this bachelor
thesis is a follow-up project of a project thesis, this number of milestones seems to be the ideal
choice. Because there is no need for an intensive Inception phase, it was decided to set the
first milestone to the end of the Elaboration phase. There are two significant milestones in the
construction phase: The Alpha and the Beta Release of the application under development.
Three out of the four milestones are finished on a Tuesday. The milestone review is made at
the next project meeting on the subsequent Thursday. The project’s status is presented to the
supervisor and the industrial partner, and essential topics are reflected at this meeting. The
last milestone, the Project Closure, is presented at the Bachelor presentation, which point in
time has to be defined after the actual project.
During the project, the work is done as agile as possible, and therefore, the result is developed
incrementally.

Figure 7.3: Milestone Overview

ABC 107

7.4. MEETINGS

Milestone Due Date Goals

M1 - End of Elaboration 16.03.2021 The goal is to complete the whole project plan,
the requirement specification, including the
use cases and the non-functional requirements,
and the domain analysis. All the risks should
be minimized to an acceptable level or elimi-
nated with the help of a prototype.

M2 - Alpha Release 27.04.2021 The goal is to have a first running version of
the application under development.

M3 - Beta Release 25.05.2021 The goal is to have a more mature and im-
proved release; also, there is a feature freeze.

M4 - Project Closure 18.06.2021 The goal is to close the project with a working
application and complete the essential parts.

Table 7.3: Milestone Description

7.4 Meetings

Meetings are supposed to discuss open relevant project circumstances and speak about the
stage of the project. At these meetings, the thesis’s authors, the advisor, the co-advisor, and
the industrial partner are invited. Francois Clad and Ahmed Abdelsalam represent the project
partner.

Due to the unique situation (COVID-19), the project meetings will take place online in a
Microsoft Teams meeting.

Because communication is quite important to set the direction and goals initially, there will
be a weekly meeting on Thursdays in the first four weeks. Afterward, the Thursday meetings
will be repeated in a two-week stroke.
After the Alpha release, the mid-term presentation is held, and also the current Alpha Release
is presented. Afterward, in week 19, the meeting is cancelled due to a public holiday. The rest
of the time, the meetings are executed in the defined rhythm. There is no meeting planned in
the transition phase because the team will concentrate on the finish of the thesis in this period.

An overview about the planned meetings can be found in illustration 7.1

7.5 Responsibilities

According to the application structure, the application to develop is divided into two primary
responsibilities: the front- and the backend.
In the beginning, it was defined that the authors do not maintain the frontend application.
The supervisor decided that this task is allocated at the Institute of Networked Solutions.

The second responsibility - the backend and polling application - is a crucial part of this bach-
elor thesis. Therefore, the responsibilities and tasks are shared between the two thesis authors.
The authors decided to distribute all the tasks and responsibilities according to their interests,
their main working topics, abilities and strengths.

ABC 108

7.6. REPOSITORIES

After the application design was finished, the responsibilities were defined and distributed.
Severin Dellsperger focused more on the network-related parts, whereas Julian Klaiber con-
centrated on the cloud-native parts like the Kubernetes deployment and CI/CD. So, the team
amends their skills to produce the most beneficial output during this thesis.

7.6 Repositories

In order to have the possibility to develop the different services independently from each
other and through the usage of a dedicated message queue, which allows a standardized way
of communication between the different services, two complete separated repositories are
created for the services. One repository holds all the code for the backend service, the other
is only responsible for the polling service code. Because the complete deployment contains a
lot of different files for all the different components, the team members decided to create an
own repository for the deployment base.

7.6.1 SerPro Backend Repository

The serpro-backend repository holds the code base for the whole backend service. The struc-
ture of the repository can be overviewed in table 7.4

SerPro Backend

README.md...Project description
images..Image directory for Readme
.gitlab-ci.yml...Pipeline definition
requirements.txt..Pyhon requirements
requirements-dev.txt..........................Pyhon development requirements
Makefile...Development commands
set-env.sh.......................................Development environment file
manage.py..Django management service
build...Build related files

Dockerfile.prod Multistage Dockerfile for production
entrypoint.prod.sh...............Docker entrypoint script for production
supervisord.conf...........................Supervisord configuration file

api..API module
authentication...Authentication module
calculation ... Calculation module
common.............................Common module for development and testing
deployment..Deployment module
exceptions...Exception module
graph...Graph module
notification...Notification module
serpro..General application module
updatehandler...Updatehandler module

Table 7.4: SerPro Backend Repository

ABC 109

7.6. REPOSITORIES

7.6.2 SerPro Polling Repository

The serpro-polling repository holds the code base for the whole polling service. The structure
of the repository can be overviewed in table 7.5

SerPro Polling

README.md...Project description
images..Image directory for Readme
.gitlab-ci.yml...Pipeline definition
requirements.txt..Pyhon requirements
requirements-dev.txt..........................Pyhon development requirements
Makefile...Development commands
set-env.sh.......................................Development environment file
Dockerfile.prod Multistage Dockerfile for production
Dockerfile ... Dockerfile for development
main.py ... Application entrypoint
polling...Polling module

serpro*.py..Polling related classes
interfaces...Interface module

iserpro*.py.....................................Polling related interfaces
tests..Test module

test_serpro*.py....................................Polling related classes
mocks..Mock module
exceptions...Exception module

Table 7.5: SerPro Polling Repository

7.6.3 SerPro Kubernetes Repository

The serpro-k8s repository holds the code base for the whole deployment. The structure of the
repository can be overviewed in table 7.6

ABC 110

7.7. INFRASTRUCTURE

SerPro K8s

README.md...Project description
images..Image directory for Readme
dev-env...Values files for development
serpro..SerPro Helm Chart

charts....................................Subcharts for SerPro application
rabbitmq-cluster RabbitMQ cluster Helm Chart
redis-cluster..................................Redis cluster Helm Chart
postgresql-10.3.14.tgz.....................Fixed PostgreSQL Helm Chart

templates...Template file directory
backend................................Backend related deployment files
frontend..............................Frontend related deployment files
polling................................Polling related deployment files
worker..................................Worker related deployment files
_helpers.tpl..Helm Chart helpers

Chart.lock.................................Chart lock for PostgreSQL Chart
Chart.yaml...Chart description
values.yaml...Default values file

Table 7.6: SerPro Kubernetes Repository

7.7 Infrastructure

For the external system Jalapeño, which is needed for the topology data and developer ser-
vices like Sonarqube, a dedicated virtual machine with a kubeadm Kubernetes cluster was
installed in the network of the Institute network for Networked Solutions.

The application is developed directly in dedicated containers on a Kubernetes cluster at the
Institute for Networked Solutions. A detailed description of the development environment
can be found in section 7.9.

The Institute for Networked Solutions provided two Kubernetes clusters to test the appli-
cation and to run it in production.

As version control, the official GitLab instance was used with a dedicated runner, which
also runs on the virtual machine, to build the containers.

7.8 Development Concept

7.8.1 Definition of Done

In order to be always on the right track and to close issues only when they are completely
finished, a definition of done was defined.

• Code Style Guidelines are met.

• The Continuous Integration run without errors.

• All unit tests run successfully.

• The system tests were successful.

ABC 111

7.8. DEVELOPMENT CONCEPT

7.8.2 Code Style Guidelines

It was decided to follow the PEP8 style guidelines for both team members to write the cleanest
code possible and speak from the same guidelines. Additional typing was used to make the
code even more readable and understandable for external programmers. More about this can
be found in section 6.4.2.

In addition to the style guidelines, it was decided to use an auto formatter to ensure that
the code has the same style everywhere.

7.8.3 Development Workflow

A development workflow, which can be seen in Figure 7.4 was already created in the prelimi-
nary work[3]. This workflow proved itself very well, which is why it was decided to adopt it
and continue it in the bachelor thesis.

For the sake of completeness, the workflow has been included here again.

ABC 112

7.9. DEVELOPMENT ENVIRONMENT

Figure 7.4: Development Workflow[3]

7.9 Development Environment

A uniform development environment was used for the entire development of the application.
Since the entire application is ultimately to run on a Kubernetes cluster, it was decided that
development should also take place directly in the cluster. The decision was made to use
Visual Studio Code as the development environment since both team members had already
worked with it, and as it offers good Python support. For the development directly in the
cluster, the tool Okteto was chosen, which, together with the Remote Development Extension
in Visual Studio Code, allows to set up an own Python container directly in the cluster. The
codebase is synchronized from the local system directly in the dedicated container in the clus-

ABC 113

7.9. DEVELOPMENT ENVIRONMENT

ter and vice versa. The entire development environment can be viewed graphically in Figure
7.5.

This approach offers several advantages, which are described below:

• Use the components like in the production environment.

• Possibility to use the Kubernetes services.

• No local dependencies needed to install.

• Complete cloud-native development.

Figure 7.5: Development Environment

ABC 114

7.10. CONTINUOUS INTEGRATION

Figure 7.6: Development Environment Namespaces in Rancher

7.10 Continuous Integration

In order to have continuous integration, a pipeline description was created in the backend and
polling repository. Both pipelines have the same stages and execute the same commands. For
the sake of simplicity, all the commands are defined in a Makefile. The pipeline definition can
therefore be held short and clean. The stages are described in summary in table 7.7.

Stage Description Execution

1. execute-tests Tests of the backend with the
django built-in testing tools.

On every commit

2. dev-build Builds Docker image with dev tag-
ging

On every commit exclude the
master branch

3. sonar Generates the Sonarqube report. When merging in the master
branch

4. prod-build Builds Docker image with latest
tagging

When merging in the master
branch

Table 7.7: Continuous Integration Stages

Figure 7.7 shows the pipeline workflow graphically. The deployment and redeployment are
described in more detail in the section Application Deployment.

ABC 115

7.11. CODE METRICS

Figure 7.7: Pipeline Workflow

7.11 Code Metrics

For the complete code analysis, the tool Sonarqube was used, which is located on a dedicated
server in the network of the Institute for Networked Solutions. The Sonar report is generated
and analyzed each time a merge into the master branch takes place. Thus, there is always a
current code analysis for the master branch.

The goal was to pass certain quality attributes described in the table 7.8. The quality at-
tributes have not changed compared to the previous thesis[3] and have been listed again here
for the sake of completeness.

ABC 116

7.12. RISK MANAGEMENT

Metric Description Goal

Bugs Bugs are errors in the code which can
break the execution of the application.

0

Security Hotspots Code which you have to check manu-
ally to make sure that there is no security
hole.

0

Code Smells Code which is hard to understand or to
read.

0

Coverage Coverage describes what percentage of
the code is covered by tests.

min. 80%

Duplications Duplications describe what percentage of
the code is duplicated.

max. 1%

Table 7.8: Quality Attributes[3]

Figure 7.8: Sonarqube Overview

7.12 Risk Management

The following chapter serves to show the project risks graphically (figure 7.9) as well as tex-
tually (table 7.9). Subsequently, various preventions and measures were defined to minimize
the individual risks.

The most significant risk was identified in the implementation of the desired policies on the
device. This risk should be reduced as much as possible at the beginning of the project.

ABC 117

7.12. RISK MANAGEMENT

Figure 7.9: Risk Overview

ABC 118

7.12. RISK MANAGEMENT

Risk Description Damage [h] Probability Weighted Damage

R1 Adjustment of the existing code
base to the new data plane (SRv6)
leads to delays.

50 25 0 12.5 0

R2 The Jalapeño application does not
provide all the information which
is needed.

8 40 0 3.2 0

R3 Unable to connect/login to the net-
work devices.

16 10 0 1.6 0

R4 Unable to write policies to the net-
work devices.

16 10 0 1.6 0

R5 Unable to create policy configura-
tion on the devices which influ-
ences the traffic like desired.

50 40 0 20 0

R6 A team member has to suspend
working due to illness or an acci-
dent.

50 20 10

R7 Difficulties to extract SRv6 Traffic
Engineering information to realize
policies in the application.

40 20 0 8 0

R8 Services are not working properly
due to misconfigurations.

10 10 1

R9 Constant changes from the
frontend-developers lead to con-
stant adjustments in the backend.

16 5 0.8

R10 The targeted caching solution leads
to problems.

16 15 2.4

R11 The targeted message queue solu-
tion leads to problems.

16 25 4

R12 The used tools, frameworks or
components have unknown bugs
or faults.

20 10 2

Table 7.9: Risk List

7.12.1 Dealing with Risks

For each risk, which was collected and analyzed in table 7.9, preventions and measures were
defined. These elements can be found in the table 7.10.

ABC 119

7.12. RISK MANAGEMENT

Prevention Measures

R1 The team verifies the new data
stored in the graph database of the
Jalapeno application and checks if
the data can be used to realize the
use cases as soon as possible.

If the adjustment takes longer than planned,
the team will concentrate on implementing a
solid base to adapt the application to the newly
introduced data structure.

R2 The team members contact the de-
velopment team of the Jalapeño
application before the construction
phase in order to check if all
needed data is available.

If information is missing in the Jalapeño appli-
cation, the team members will add manually
the missing data to the application, and inform
the Jalapeño development team.

R3 The team members consider com-
mon network connection plugins.

The team members will use a plain SSH con-
nection to connect to the network devices.

R4 The team members consider com-
mon network configuration frame-
works.

The team members will write the configuration
with the CLI over a plain SSH connection.

R5 The team members inform about
Segment Routing Traffic Engineer-
ing topics to build knowledge on
how to configure SR-TE policies.

If there is no solution found on how to config-
ure the policies, the supervisor and/or Cisco
experts are asked for help.

R6 The team members try to adhere to
hygiene measures in order not to
get a disease.

If one team member falls ill, the situation is dis-
cussed with the supervisor. Depending on the
duration of the illness, the scope of the thesis
will be reduced.

R7 The necessary data is saved in a
form, which enables comfortable
extraction of the information.

If the necessary information can not be ex-
tracted, the developer team will work inten-
sively to solve it.

R8 The team members have contact
with the developer of these ser-
vices.

If there is no solution found on how to con-
figure the services correctly, the development
team of the service is contacted directly.

R9 The team members have the lead
which feature will be implement at
which point.

Features in the frontend will be freezed until
the team members are ready in the backend.

R10 A prototype in the elaboration
phase will be developed to test if
the caching system solution can be
used for the application.

If the message queue solution cannot be real-
ized, the architecture will be changed accord-
ing to the planned needs.

R11 A prototype in the elaboration
phase will be developed to test if
the message queue solution can be
used for the application.

If there is a problem with the utilized software
components, the Institute of Networked Solu-
tion employees will be asked for help. They
have considerable knowledge in this area.

R12 The same tools and framework as
in the project thesis will be used.

When there are problems with the utilized
frameworks, issues will be opened on the cor-
responding projects.

Table 7.10: Dealing with Risks

ABC 120

7.13. EXCEPTION HANDLING

7.12.2 Implications

If one or more risks occur that cannot be mitigated, the supervisor will analyze whether the
scope of work can be adjusted. The scope of work is then reduced, especially for non-MVP
requirements.

7.13 Exception Handling

In addition to the standard HTTP messages, two are especially important for the exception
handling of the application. One is HTTP 400 Bad Request, and the other is HTTP 403 Forbidden.
Both are described in more detail below.

All requests will be validated in the API module to ensure that the backend can only work
with validated data. That ensures that calculations are only performed with correct data. If
invalid data is sent to the backend, the backend returns an HTTP 400 Bad Request response (see
listing 7.1).

HTTP 400 Bad Request
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
"source_node": "The source node with id 99 could not be found! Please provide a
valid source node!"

}

Listing 7.1: Backend Validation Example

The backend sends HTTP 403 Forbidden responses for unauthorized requests to give the user
feedback on whether operations with his permissions are allowed or not. An example HTTP
403 Forbidden response can be found in listing 7.2

HTTP 403 Forbidden
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
"detail": "You do not have permission to perform this action."

}

Listing 7.2: Backend Authentication Exception Example

Due to the high complexity and the interaction of different components, a way had to be
found to inform the customer about errors in a component. Using a dedicated messaging
system can ensure that messages are only acknowledged and removed from the queue if they
can be processed entirely and without errors. If an error were to occur, the application would
pass an error message (see Listing 7.3) through the messaging system, which would then be
forwarded to the client’s browser via a web socket. This way, the customer gets feedback
on what exactly failed. The unacknowledged message can then be received from another
backend, and therefore, processed by them.

ABC 121

7.14. LOGGING

{
"type": "deployment",
"status": "failed",
"message": "Policy testpolicy deployment failed",
"data": {

"id": 1,
"name": "testpolicy"

}
}

Listing 7.3: Websocket Error Message Example

The application process is automatically stopped in case of a fatal error to keep the containers
in an error-free state, which results in the container being shut down and redeployed au-
tomatically by Kubernetes. This approach ensures that the containers are always in a valid
state.

7.14 Logging

Since the whole application is to be deployed cloud-native, it was decided that all logs should
be written to the Standard Output (stdout). This was included for both services, the polling,
and the backend. For the other components, the logging was used already integrated by the
manufacturer. With this solution, the container log can be easily viewed. At a later time, it is
possible to send the logs to an external logging system and monitor them at a central location
without much effort.

It is possible to analyze much more information in the log during development, using dif-
ferent logging levels. That also makes it easy to see where exactly, for example, messages
have been sent and where they arrive. That makes sense, especially when the application is
tested in a scaled state, as this simplifies troubleshooting considerably.

In the listing 7.4 an example log of a backend container can be found. In this example, it
is visible that, for example, messages from the messaging system are only displayed in the
log-level debug.

2021-05-30 10:05:35,761 | INFO | Connect to RabbitMQ and subscribe to queue: changes
2021-05-30 10:05:35,845 | INFO | Connected to queue changes
2021-05-30 10:05:36,028 | INFO | Connect to RabbitMQ and subscribe to queue:

workerresults
2021-05-30 10:05:36,051 | INFO | Connected to queue workerresults
2021-05-30 10:05:50,825 | INFO | Watching for file changes with StatReloader
2021-05-30 10:09:07,329 | INFO | HTTP POST /authentication/token/ 200 [0.28,

10.42.5.3:53110]
2021-05-30 10:09:07,584 | INFO | HTTP GET /api/link/ 200 [0.05, 10.42.5.3:53110]
2021-05-30 10:13:55,844 | DEBUG | {"type": "lsnode", "status": "add", "message":

"incoming changes", ...}
2021-05-30 10:13:56,019 | DEBUG | {"type": "lsnode", "status": "add", "message":

"incoming changes", ...}

Listing 7.4: Backend Container Example Log Output

ABC 122

7.15. TESTING

7.15 Testing

In order to test the application thoroughly, we mainly used unit tests in combination with
integration tests which were performed together with the unittest framework. The coverage
of the individual files will be created with the tool coverage. All unit/integration tests will
be executed on each commit to the repository, and the pipeline runs only if all these tests
are passed. The exact pipeline workflow can be seen in section Continuous Integration. Due
to the automatic coverage detection of GitLab, the coverage is displayed directly with each
merge request. That has the advantage that current coverage can be observed when merging
in the master branch. A total of 234 unit/integration tests were written.

Figure 7.10: GitLab Coverage on Merge Request

...
Name Stmts Miss Cover

api/serializers/endpointserializer.py 6 0 100%
api/serializers/l3vpnv4prefixserializer.py 7 0 100%
api/serializers/linkserializer.py 8 0 100%
api/serializers/nodeserializer.py 9 0 100%
api/serializers/policyserializer.py 250 53 79%
api/serializers/serviceprefixserializer.py 6 0 100%
api/serializers/serviceserializer.py 12 0 100%
api/serializers/vrfserializer.py 9 0 100%
api/services/dataprovider/cache/cachedataprovider.py 309 22 93%
api/services/dataprovider/cache/decorators.py 52 3 94%
api/services/dataprovider/database/dbdataprovider.py 125 1 99%
api/services/verification/policyverifier.py 84 16 81%
api/validators/policyvalidator.py 145 33 77%
api/views.py 274 0 100%
authentication/permissions.py 21 9 57%
authentication/serializers.py 10 0 100%
authentication/tokenviews.py 4 0 100%
calculation/services/calculation/calculator.py 234 3 99%
calculation/services/preprocessing/preprocessor.py 42 1 98%
calculation/services/recalculation/recalculator.py 38 16 58%
deployment/config/config.py 64 0 100%
deployment/management/commands/handle_worker_messages.py 19 2 89%
deployment/plugins/deploymentinventoryplugin.py 19 0 100%
deployment/services/managers/deployment/deploymentmanager.py 54 0 100%
deployment/services/managers/result/resultmanager.py 20 0 100%
deployment/tasks/task.py 16 0 100%
exceptions/edgenotfoundexception.py 5 0 100%
exceptions/pathnotfoundexception.py 5 2 60%
exceptions/serproexception.py 4 0 100%
exceptions/vertexnotfoundexception.py 7 0 100%
graph/decorators.py 8 0 100%
graph/serprograph.py 238 4 98%
notification/consumers.py 16 0 100%
notification/services/managers/notification/notificationmanager.py 10 0 100%
updatehandler/management/commands/handle_polling_messages.py 28 2 93%
updatehandler/services/listeners/cacheupdatelistener.py 42 0 100%

ABC 123

7.15. TESTING

updatehandler/services/listeners/graphupdatelistener.py 40 0 100%
updatehandler/services/managers/update/iupdatemanager.py 9 2 78%
updatehandler/services/managers/update/updatemanager.py 38 1 97%

TOTAL 100 686 91%

Ran 158 tests in 9.394s

Listing 7.5: Backend Testreport Output from Pipeline

Name Stmts Miss Cover

polling/helper.py 180 1 99%
polling/serproarangodb.py 64 11 83%
polling/serprodetection.py 61 5 92%
polling/serpromessaging.py 33 1 97%
polling/serpropolling.py 79 32 59%
polling/serproredis.py 58 6 90%

TOTAL 976 81 92%

Ran 76 tests in 0.037s

Listing 7.6: Polling Testreport Output from Pipeline

Due to the high scalability and the complex interaction of different components from the net-
work to the frontend, we focused firmly on system tests in addition to unit tests. A total of
80 system tests were written in order to be sure that the whole application works as expected.
The system test protocol can be found in the appendix (see Test Protocols).

Because the frontend was developed by the Institute for Networked Solutions and is not part
of this bachelor thesis, no usability tests were performed.

ABC 124

7.15. TESTING

Part III

Appendix

ABC 125

Appendix A

Class Diagrams

ADV 126

Figure A.1: Class Diagram Backend API Complete

ABC 127

Appendix B

Test Protocols

B.1 System Tests

Due to the fact that the application was to be tested in a productive environment and therefore
in a scaled state, manual system tests were performed. All system tests were performed jointly
by both authors of this thesis and documented in an Excel sheet. The different system tests
can be seen in figure B.1, B.2 and B.3. Extended comments have been omitted to improve
presentability. These can be taken from the Excel sheet provided with the bachelor thesis.

ADV 128

B.1. SYSTEM TESTS

1

Se
gm

en
t R

ou
tin

g
Se

rv
ic

e
Pr

og
ra

m
m

in
g

- S
ys

te
m

te
st

in
g

Pr
ec

on
di

tio
n

Fr
es

h
de

pl
oy

m
en

t (
3

ba
ck

en
ds

/fr
on

te
nd

s
an

d
2

w
or

ke
r p

od
s)

 w
ith

 a
ut

om
at

ed
 o

bj
ec

t l
oa

di
ng

 a
nd

 a
ut

he
nt

ic
at

ed
 w

ith
 th

e
ad

m
in

 u
se

r t
o

th
e

ba
ck

en
d.

Te
st

 N
um

be
r

Ex
ec

ut
io

n
D

at
e

Ex
ec

ut
ed

 B
y

D
es

cr
ip

tio
n

Ex
pe

ct
ed

 R
es

ul
ts

A
ct

ua
l R

es
ul

ts
Pa

ss
 /

Fa
il

In
iti

al
 L

oa
di

ng
 a

nd
 A

dm
in

 C
on

so
le

 T
es

ts
1

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
ll

no
de

s
w

er
e

lo
ad

ed
/c

re
at

ed
14

 n
od

es
14

/1
4

no
de

s
P

as
s

2
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

ll
lin

ks
 w

er
e

lo
ad

ed
/c

re
at

ed
50

 li
nk

s
50

/5
0

lin
ks

P
as

s
3

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
ll

vr
f w

er
e

lo
ad

ed
/c

re
at

ed
9

vr
fs

8/
8

vr
fs

P
as

s
4

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
ll

l3
vp

nv
4

pr
ef

ix
es

 w
er

e
lo

ad
ed

/c
re

at
ed

11
 l3

vp
nv

4
pr

ef
ix

es
11

/1
1

l3
vp

nv
4

pr
ef

ix
es

P
as

s
5

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
ll

se
rv

ic
e

pr
ef

ix
es

 w
er

e
lo

ad
ed

/c
re

at
ed

4
se

rv
ic

e
pr

ef
ix

es
4/

4
se

rv
ic

e
pr

ef
ix

es
P

as
s

6
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 a

ll
en

dp
oi

nt
s

w
er

e
lo

ad
ed

/c
re

at
ed

4
en

dp
oi

nt
s

4/
4

en
dp

oi
nt

s
P

as
s

7
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

ll
no

de
 s

rv
6_

si
d

w
er

e
al

lo
ca

te
d

14
 s

rv
6_

si
ds

14
/1

4
sr

v6
_s

id
s

P
as

s
8

26
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 a
ll

m
et

ric
s

w
er

e
lo

ad
ed

/c
re

at
ed

1
m

et
ric

 (I
G

P
)

1/
1

m
et

ric
P

as
s

9
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

ll
no

de
 p

re
fix

es
 (l

oo
pb

ac
k0

) w
er

e
al

lo
ca

te
d

14
 p

re
fix

es
14

/1
4

pr
ef

ix
es

P
as

s
10

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
ll

no
de

 p
re

fix
_l

en
 w

er
e

al
lo

ca
te

d
14

 p
re

fix
_l

en
14

/1
4

pr
ef

ix
_l

en
P

as
s

11
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 s

er
vi

ce
s

ca
n

be
 c

re
at

ed
 in

 a
dm

in
 c

on
so

le
4

se
rv

ic
es

4/
4

se
rv

ic
es

P
as

s
12

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 s
er

vi
ce

s
ca

n
be

 lo
ad

ed
 in

 a
pi

 a
fte

r c
re

at
io

n
4

se
rv

ic
es

4/
4

se
rv

ic
es

P
as

s
13

26
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 u
se

r i
n

re
ad

 o
nl

y
gr

ou
p

ca
n

be
 c

re
at

ed
1/

1
us

er
1/

1
us

er
P

as
s

14
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 u

se
r i

n
op

er
at

or
 g

ro
up

 c
an

 b
e

cr
ea

te
d

1/
1

us
er

1/
1

us
er

P
as

s
15

26
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 u
se

r i
n

en
gi

ne
er

 g
ro

up
 c

an
 b

e
cr

ea
te

d
1/

1
us

er
1/

1
us

er
P

as
s

16
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 u

se
r i

n
en

gi
ne

er
 g

ro
up

 c
an

 lo
gi

n
to

 a
dm

in
 c

on
so

le
su

cc
es

sf
ul

ly
 lo

gi
n

su
cc

es
sf

ul
ly

 lo
gi

n
P

as
s

17
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 u

se
r i

n
en

gi
ne

er
 g

ro
up

 c
an

 C
R

U
D

 s
er

vi
ce

su
cc

es
sf

ul
ly

 C
R

U
D

su
cc

es
sf

ul
ly

 C
R

U
D

P
as

s
18

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 u
se

r i
n

en
gi

ne
er

 g
ro

up
 c

an
 C

R
U

D
 d

ep
lo

ym
en

t
su

cc
es

sf
ul

ly
 C

R
U

D
su

cc
es

sf
ul

ly
 C

R
U

D
P

as
s

19
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 u

se
r i

n
en

gi
ne

er
 g

ro
up

 c
an

 C
R

U
D

 a
ut

he
nt

ic
at

io
n

su
cc

es
sf

ul
ly

 C
R

U
D

su
cc

es
sf

ul
ly

 C
R

U
D

P
as

s
20

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 o
pe

ra
to

r a
nd

 re
ad

 o
nl

y
us

er
 c

an
 n

ot
 lo

gi
n

to
 a

dm
in

 c
on

so
le

no
 lo

gi
n

po
ss

ib
le

no
 lo

gi
n

po
ss

ib
le

P
as

s
21

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 ju
st

 c
re

at
ed

 u
se

r c
an

 lo
gi

n
in

 fr
on

te
nd

su
cc

es
sf

ul
ly

 lo
gi

n
su

cc
es

sf
ul

ly
 lo

gi
n

P
as

s

To
po

lo
gy

 U
pd

at
e

Te
st

s
22

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
 n

od
e

ho
st

na
m

e
ch

an
ge

 is
 a

pp
lie

d
co

rr
ec

tly
ne

w
 h

os
tn

am
e

se
t

ne
w

 h
os

tn
am

e
se

t
P

as
s

23
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

 li
nk

 m
et

ric
 c

ha
ng

e
is

 a
pp

lie
d

co
rr

ec
tly

ne
w

 li
nk

 m
et

ric
 s

et
ne

w
 li

nk
 m

et
ric

 s
et

P
as

s
24

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
 l3

vp
nv

4
pr

ef
ix

 d
el

et
io

n
is

 a
pp

lie
d

co
rr

ec
tly

re
m

ov
e

l3
vp

nv
4p

re
fix

re
m

ov
e

l3
vp

nv
4p

re
fix

P
as

s
25

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
 v

rf
ex

po
rt

ta
g

de
le

tio
n

is
 a

pp
lie

d
co

rr
ec

tly
re

m
ov

e
vr

f e
xp

or
t t

ag
re

m
ov

e
vr

f e
xp

or
t t

ag
P

as
s

26
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

 v
rf

de
le

tio
n

is
 a

pp
lie

d
co

rr
ec

tly
re

m
ov

e
vr

f
re

m
ov

e
vr

f
P

as
s

27
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

 v
rf

re
en

ab
lin

g
is

 a
pp

lie
d

co
rr

ec
tly

re
en

ab
le

 v
rf

re
en

ab
le

 v
rf

P
as

s
28

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 a
 v

rf
ex

po
rt

ta
g

ad
di

tio
n

is
 a

pp
lie

d
co

rr
ec

tly
ad

d
vr

f e
xp

or
t t

ag
ad

d
vr

f e
xp

or
t t

ag
P

as
s

29
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 li

nk
 d

el
et

io
n

is
 a

pp
lie

d
co

rr
ec

tly
re

m
ov

e
lin

k
re

m
ov

e
lin

k
P

as
s

30
.1

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 n
od

e
de

le
tio

n
is

 a
pp

lie
d

co
rr

ec
tly

re
m

ov
e

no
de

 V
er

te
xN

ot
Fo

un
dE

xc
ep

tio
n

Fa
il

30
.2

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 n
od

e
de

le
tio

n
is

 a
pp

lie
d

co
rr

ec
tly

 (a
fte

r b
ug

 fi
x)

re
m

ov
e

no
de

re
m

ov
e

no
de

P
as

s
31

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 n
od

e
re

en
ab

lin
g

is
 a

pp
lie

d
co

rr
ec

tly
re

en
ab

le
 n

od
e

re
en

ab
le

 n
od

e
P

as
s

32
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 s

er
vi

ce
 p

re
fix

 d
el

et
io

n
is

 a
pp

lie
d

co
rr

ec
tly

de
le

te
 s

er
vi

ce
pr

ef
ix

de
le

te
 s

er
vi

ce
pr

ef
ix

P
as

s
32

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 s
er

vi
ce

 p
re

fix
 re

en
ab

lin
g

is
 a

pp
lie

d
co

rr
ec

tly
re

en
ab

le
 s

er
vi

ce
pr

ef
ix

re
en

ab
le

 s
er

vi
ce

pr
ef

ix
P

as
s

Figure B.1: System Testing Page 1

ABC 129

B.1. SYSTEM TESTS

2

Po
lic

y
Te

st
s 33

26
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 re
ad

 o
nl

y
us

er
 c

an
 n

ot
 c

re
at

e
a

po
lic

y
ca

n
no

t c
re

at
e

ca
n

no
t c

re
at

e
P

as
s

34
.1

26
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 o
pe

ra
to

r u
se

r c
an

 C
R

U
D

 a
 p

ol
ic

y
ca

n
cr

ea
te

A
ss

er
tio

nE
rr

or
Fa

il
34

.2
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 o

pe
ra

to
r u

se
r c

an
 C

R
U

D
 a

 p
ol

ic
y

(a
fte

r b
ug

 fi
x)

ca
n

C
R

U
D

 p
ol

ic
y

ca
n

C
R

U
D

 p
ol

ic
y

P
as

s
35

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 e
ng

in
ee

r u
se

r c
an

 C
R

U
D

 a
 p

ol
ic

y
ca

n
C

R
U

D
 p

ol
ic

y
ca

n
C

R
U

D
 p

ol
ic

y
P

as
s

36
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 c

lu
st

er
ed

 g
ra

ph
 is

 c
or

re
ct

co
rr

ec
t c

lu
st

er
ed

 g
ra

ph
co

rr
ec

t c
lu

st
er

ed
 g

ra
ph

P
as

s
37

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 fu
ll

gr
ap

h
(e

xp
an

d)
 is

 c
or

re
ct

co
rr

ec
t f

ul
l g

ra
ph

co
rr

ec
t f

ul
l g

ra
ph

P
as

s
38

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 re
su

lt
(c

os
t &

 s
id

 li
st

) i
s

co
rr

ec
t

co
rr

ec
t r

es
ul

t
co

rr
ec

t r
es

ul
t

P
as

s
39

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 re
ad

 o
nl

y
us

er
 c

an
no

t u
pd

at
e

po
lic

y
ca

n
no

t u
pd

at
e

ca
n

no
t u

pd
at

e
P

as
s

40
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 re

ad
 o

nl
y

us
er

 c
an

no
t d

el
et

e
po

lic
y

ca
n

no
t d

el
et

e
ca

n
no

t d
el

et
e

P
as

s
41

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

de
pl

oy
m

en
t i

s
no

t p
os

si
bl

e
if

no
 m

gm
t a

dd
re

ss
 s

et
ca

n
no

t d
ep

lo
y

ca
n

no
t d

ep
lo

y
P

as
s

42
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 a

dm
in

 c
an

 C
R

U
D

 a
ut

he
nt

ic
at

io
n

an
d

en
dp

oi
nt

s
ca

n
C

R
U

D
ca

n
C

R
U

D
P

as
s

43
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 e

ng
in

ee
r c

an
 C

R
U

D
 a

ut
he

nt
ic

at
io

n
an

d
en

dp
oi

nt
s

ca
n

C
R

U
D

ca
n

C
R

U
D

P
as

s
44

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 re
ad

 o
nl

y
us

er
 c

an
 n

ot
 d

ep
lo

y
a

po
lic

y
ca

n
no

t d
ep

lo
y

ca
n

no
t d

ep
lo

y
P

as
s

45
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 o

pe
ra

to
r u

se
r c

an
 n

ot
 d

ep
lo

y
a

po
lic

y
ca

n
no

t d
ep

lo
y

ca
n

no
t d

ep
lo

y
P

as
s

46
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 e

ng
in

ee
r u

se
r c

an
 d

ep
lo

y
a

po
lic

y
ca

n
de

pl
oy

ca
n

de
pl

oy
P

as
s

47
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 p

ol
ic

y
de

pl
oy

m
en

t i
s

su
cc

es
sf

ul
su

cc
es

sf
ul

ly
 d

ep
lo

ye
d

su
cc

es
sf

ul
ly

 d
ep

lo
ye

d
P

as
s

48
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 re

ad
 o

nl
y

us
er

 c
an

 n
ot

 re
ve

rt
a

po
lic

y
ca

n
no

t r
ev

er
t

ca
n

no
t r

ev
er

t
P

as
s

49
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 o

pe
ra

to
r u

se
r c

an
 n

ot
 re

ve
rt

a
po

lic
y

ca
n

no
t r

ev
er

t
ca

n
no

t r
ev

er
t

P
as

s
50

26
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 e
ng

in
ee

r u
se

r c
an

 re
ve

rt
a

po
lic

y
ca

n
re

ve
rt

ca
n

re
ve

rt
P

as
s

51
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 p

ol
ic

y
re

ve
rs

io
n

is
 s

uc
ce

ss
fu

l
su

cc
es

sf
ul

ly
 re

ve
rte

d
su

cc
es

sf
ul

ly
 re

ve
rte

d
P

as
s

52
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 s

ec
on

d
po

lic
y

de
pl

oy
m

en
t o

n
sa

m
e

so
ur

ce
 n

od
e

w
or

ks

su
cc

es
sf

ul
ly

 re
ve

rte
d

su
cc

es
sf

ul
ly

 re
ve

rte
d

P
as

s

53
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 th

ird
 p

ol
ic

y
de

pl
oy

m
en

t o
n

sa
m

e
so

ur
ce

 n
od

e
w

or
ks

su

cc
es

sf
ul

ly
 re

ve
rte

d
su

cc
es

sf
ul

ly
 re

ve
rte

d
P

as
s

54
26

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 p

ol
ic

ie
s

on
 s

am
e

so
ur

ce
 n

od
e

ca
n

be
 re

ve
rte

d
su

cc
es

sf
ul

ly
 re

ve
rte

d
su

cc
es

sf
ul

ly
 re

ve
rte

d
P

as
s

55
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 a
ut

om
at

ic
al

ly
 re

ca
lc

ul
at

ed
 a

fte
r l

in
k

m
et

ric
 c

ha
ng

e
su

cc
es

sf
ul

ly
 re

ca
lc

ul
at

ed
su

cc
es

sf
ul

ly
 re

ca
lc

ul
at

ed
P

as
s

56
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 a
ut

om
at

ic
al

ly
 re

ca
lc

ul
at

ed
 a

fte
r l

in
k

de
le

tio
n

su
cc

es
sf

ul
ly

 re
ca

lc
ul

at
ed

su
cc

es
sf

ul
ly

 re
ca

lc
ul

at
ed

P
as

s
57

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 e
rr

or
 s

ta
te

 if
 s

ou
rc

e_
no

de
 n

ot
 a

va
ila

bl
e

er
ro

r s
ta

te
er

ro
r s

ta
te

P
as

s
58

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 v
al

id
 s

ta
te

 if
 s

ou
rc

e_
no

de
 is

 re
en

ab
le

d
va

lid
 s

ta
te

va
lid

 s
ta

te
P

as
s

59
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 e

rr
or

 s
ta

te
 if

 d
es

tin
at

io
n_

no
de

 n
ot

 a
va

ila
bl

e
er

ro
r s

ta
te

er
ro

r s
ta

te
P

as
s

60
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 v

al
id

 s
ta

te
 if

 d
es

tin
at

io
n_

no
de

 is
 re

en
ab

le
d

va
lid

 s
ta

te
va

lid
 s

ta
te

P
as

s
61

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 e
rr

or
 s

ta
te

 if
 s

pe
ci

fic
 s

er
vi

ce
 n

ot
 a

va
ila

bl
e

er
ro

r s
ta

te
er

ro
r s

ta
te

P
as

s
62

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 v
al

id
 s

ta
te

 if
 s

pe
ci

fic
 s

er
vi

ce
 is

 re
en

ab
le

d
va

lid
 s

ta
te

va
lid

 s
ta

te
P

as
s

63
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 e

rr
or

 s
ta

te
 if

 s
ou

rc
e_

vr
f n

ot
 a

va
ila

bl
e

er
ro

r s
ta

te
er

ro
r s

ta
te

P
as

s
64

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 v
al

id
 s

ta
te

 if
 s

ou
rc

e_
vr

f i
s

re
en

ab
le

d
va

lid
 s

ta
te

va
lid

 s
ta

te
P

as
s

65
26

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 e

rr
or

 s
ta

te
 if

 d
es

tin
at

io
n_

vr
f n

ot
 a

va
ila

bl
e

er
ro

r s
ta

te
er

ro
r s

ta
te

P
as

s
66

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 v
al

id
 s

ta
te

 if
 d

es
tin

at
io

n_
vr

f i
s

re
en

ab
le

d
va

lid
 s

ta
te

va
lid

 s
ta

te
P

as
s

67
.1

26
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 e
rr

or
 s

ta
te

 if
 s

ou
rc

e_
ne

tw
or

k
no

t a
va

ila
bl

e
er

ro
r s

ta
te

er
ro

r s
ta

te
Fa

il
67

.2
27

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 e

rr
or

 s
ta

te
 if

 s
ou

rc
e_

ne
tw

or
k

no
t a

va
ila

bl
e

(a
fte

r b
ug

 fi
xi

ng
)

er
ro

r s
ta

te
er

ro
r s

ta
te

P
as

s

Figure B.2: System Testing Page 2

ABC 130

B.1. SYSTEM TESTS

3

68
27

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 v

al
id

 s
ta

te
 if

 s
ou

rc
e_

ne
tw

or
k

is
 re

en
ab

le
d

va
lid

 s
ta

te
va

lid
 s

ta
te

P
as

s
69

27
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

is
 in

 e
rr

or
 s

ta
te

 if
 d

es
tin

at
io

n_
ne

tw
or

k
no

t a
va

ila
bl

e
er

ro
r s

ta
te

er
ro

r s
ta

te
P

as
s

70
27

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 p

ol
ic

y
is

 in
 v

al
id

 s
ta

te
 if

 d
es

tin
at

io
n_

ne
tw

or
k

is
 re

en
ab

le
d

va
lid

 s
ta

te
va

lid
 s

ta
te

P
as

s
71

27
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 p
ol

ic
y

ge
ts

 b
es

t p
at

h
af

te
r e

rr
or

be
st

 p
at

h
be

st
 p

at
h

P
as

s
72

27
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 th
e

po
lic

y
is

 n
ot

 c
ha

ng
ed

 w
he

n
th

e
pa

th
 a

nd
 c

os
t i

s
th

e
sa

m
e

af
te

r a
 re

ca
lu

cl
at

io
n

no
 c

ha
ng

es

no
 c

ha
ng

es

P
as

s
73

27
.5

.2
02

1
jk

la
ib

er
Te

st
 if

 th
e

po
lic

y
is

 u
pd

at
ed

 a
fte

r a
 re

ca
lc

ul
at

io
n

w
he

n
th

e
S

ID
 li

st
 is

 n
ot

 in
flu

en
ce

d
su

cc
es

sf
ul

ly
 u

pd
at

ed
su

cc
es

sf
ul

ly
 u

pd
at

ed
P

as
s

74
27

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 th

e
po

lic
y

is
 u

pd
at

ed
 b

ut
 w

ith
 th

e
sa

m
e

S
ID

 w
he

n
th

er
e

is
 a

n
eq

ua
l c

os
t S

R
V

6
S

ID
 li

st
 a

fte
r a

 re
ca

lc
ul

at
io

n
su

cc
es

sf
ul

ly
 u

pd
at

ed
su

cc
es

sf
ul

ly
 u

pd
at

ed
P

as
s

75
27

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 th

e
po

lic
y

is
 a

ut
om

at
ic

al
ly

 u
pd

at
ed

 a
fte

r a
 re

ca
lc

ul
at

io
n

w
he

n
th

e
ol

d
pa

th
 is

 n
ot

 v
al

id
su

cc
es

sf
ul

ly
 u

pd
at

ed
su

cc
es

sf
ul

ly
 u

pd
at

ed
P

as
s

76
27

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 th

e
po

lic
y

ha
ve

 a
 b

et
te

r p
at

h
af

te
r r

ec
al

cu
la

tio
n

w
he

n
th

e
ol

d
S

ID
 li

st
 is

 s
til

l v
al

id
be

tte
r p

at
h

av
ai

la
bl

e
be

tte
r p

at
h

av
ai

la
bl

e
P

as
s

77
27

.5
.2

02
1

jk
la

ib
er

Te
st

 if
 th

e
be

tte
r p

at
h

of
 a

 p
ol

ic
y

ca
n

be
 a

cc
ep

te
d

be
tte

r p
at

h
ac

ce
pt

ed
be

tte
r p

at
h

ac
ce

pt
ed

P
as

s
78

27
.5

.2
02

1
sd

el
ls

pe
rg

er
Te

st
 if

 th
e

po
lic

y
is

 a
ut

om
at

ic
al

ly
 re

de
pl

oy
ed

 a
fte

r a
 p

ol
ic

y
is

 d
ep

lo
ye

d
in

 n
et

w
or

k
an

d
ac

ce
pt

ed
su

cc
es

sf
ul

ly
 re

de
pl

oy
ed

su
cc

es
sf

ul
ly

 re
de

pl
oy

ed
P

as
s

79
27

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 th

e
po

lic
y

is
 a

ut
om

at
ic

al
ly

 re
de

pl
oy

ed
 w

he
n

ol
d

po
lic

y
st

at
e

ha
s

er
ro

r
su

cc
es

sf
ul

ly
 re

de
pl

oy
ed

su
cc

es
sf

ul
ly

 re
de

pl
oy

ed
P

as
s

80
27

.5
.2

02
1

sd
el

ls
pe

rg
er

Te
st

 if
 b

et
te

r p
at

h
is

 fo
un

d
im

 b
et

te
r s

er
vi

ce
 is

 re
en

ab
le

d
be

tte
r p

at
h

fo
un

d
be

tte
r p

at
h

fo
un

d
P

as
s

Figure B.3: System Testing Page 3

ABC 131

Appendix C

Metrics

In this bachelor thesis, a total of 10’781 lines of Python code were written. These lines of code
are divided between the two services backend and polling. In the backend service, 8’851 lines
of Python code were written (see figure C.1) with a coverage of 92,2%. In the polling service,
there were 1’930 lines of Python code (see figure C.2) with a coverage of 92,5%. In Figures C.3
and C.4, the different excerpts from Sonarqube can be viewed. It should also be noted that
these lines of code are only related to the implementation in Python; besides that, many more
lines were written for deployment, pipeline, and the various Docker definitions.

Figure C.1: Sonar Lines of Code Backend Service

ADV 132

Figure C.2: Sonar Lines of Code Polling Service

Figure C.3: Sonar Code Analysis Backend Service

ABC 133

Figure C.4: Sonar Code Analysis Polling Service

ABC 134

	Glossary and Abbreviations
	Bibliography
	List of Figures
	List of Tables
	Technical Report
	Introduction
	General
	Thesis Structure

	Terms and Techniques
	Segment Routing over IPv6 (SRv6)
	Segment Routing Policy
	Explicit Path
	Automated Steering

	Aims and Objectives
	Problem
	Solution - Service Programming

	Results
	Distinction
	Achievements
	View Topology
	CRUD Segment Routing Traffic Engineering Policy
	Structure Data
	Define Service
	Calculate Paths
	Deploy Link Metric Algorithm Policy
	Login
	Manage Recalculations
	CRUD Roles and Users
	Handle Permissions

	Implementation
	Architecture
	Enabling / Disabling
	Calculation and Preprocessing
	Policy Verification
	Policy Deployment
	Clustering
	Service Management

	Conclusion
	Retrospective
	Use Cases
	Discussion

	Outlook
	Improvements
	Innovations
	Further Thoughts

	Project Documentation
	Requirement Specification
	Use Cases
	Actors
	Use-Case-Diagram
	Use-Case-Description

	Non-Functional Requirements
	Functionality
	Usability
	Reliability
	Performance
	Scalability
	Maintability
	Traceability

	Domain Analysis
	Domain Model
	Administrative Concepts
	Policy
	Node
	VRF
	Network
	Service
	Link

	Architecture and Design Specifications
	General
	System Overview
	Design Goals
	Backend
	Polling
	Worker
	Frontend
	Messaging
	Caching
	Database

	12-Factor Methodology
	Technology Decisions
	Technology Stack
	Programming Language and Framework
	Database
	Caching
	Messaging
	Graph Library
	Policy Deployment

	Messaging
	Service Communication
	Backend - Frontend Communication
	Message Format

	Policy Treatment
	Input Validation
	Policy Creation
	Policy Update
	Policy Deployment
	Policy Reversion

	Role Based Access Control
	Update Processing
	Polling Service Update Processing
	Backend Service Update Processing

	REST API
	General
	Query Parameters
	Actions

	Application Deployment
	Helm Chart
	Autoscaling

	Persistence
	Cache Persistence
	Database Persistence

	Packages and Classes
	Backend
	Polling

	Project Management
	Project Management
	Scheduling
	Iteration Planning
	Estimates
	Time Evaluation

	Milestones
	Meetings
	Responsibilities
	Repositories
	SerPro Backend Repository
	SerPro Polling Repository
	SerPro Kubernetes Repository

	Infrastructure
	Development Concept
	Definition of Done
	Code Style Guidelines
	Development Workflow

	Development Environment
	Continuous Integration
	Code Metrics
	Risk Management
	Dealing with Risks
	Implications

	Exception Handling
	Logging
	Testing

	Appendix
	Class Diagrams
	Test Protocols
	System Tests

	Metrics

