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Abstract
Functional programming languages such as Haskell are fundamentally different from imperative
languages. While Haskell code is very expressive and elegant, the language involves a steep
learning curve. Concepts like higher-order functions, lazy evaluation and recursion are difficult
to teach. Moreover, debugging a functional language is more difficult due to a less intuitive
execution model compared to imperative languages.

This thesis presents the implementation of the „Haskell Substitution Stepper“, a tool aiming
to address those issues. The goal is to create an environment in which developers can analyze
Haskell expressions. To achieve this, the evaluation of those expressions is done step by step,
and an explanation for each reduction is given. Such step by step reductions are often printed
in textbooks to help understand a small program.

The first step was to research how the Glasgow Haskell Compiler (GHC) transforms and eval-
uates expressions in the backend. Existing similar solutions were assessed and ideas for im-
provement were collected. Finally, the „Haskell Substitution Stepper“ was implemented using
the intermediate representation „Core“ from GHC.

The result is a command line application. Developers can load a source file with Haskell
expressions into the stepper and see the individual reduction steps. The tool can be used for
debugging or to better understand specific Haskell expressions. While the stepper is using the
Core intermediate representation for the reduction, the result can be pretty printed in a format
that looks like regular Haskell code.
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Management Summary

Goal

In the imperative programming paradigm, a debugging tool with an appropriate visualization
of the program counter and internal state is often used as an aid to visualize and learn about
program execution. The functional programming paradigm does not have the concept of a
program counter or internal state. Executing a program in a functional programming language
is typically viewed as evaluating an expression using repeated substitution, as seen in the image
below.

Figure 1: Haskell substitutions

Although derivations such as those listed are used when teaching functional programming and
reasoning about functional programs, there is no tool support for automatically generating
such derivations. Having such tool support could greatly help learning programming in and
debugging programs written in the functional style. Hence, the main aim of this project is to
implement a substitution stepper for the functional programming language Haskell that can be
used to visualize the execution of a functional program.

Implementation

The first Proof of Concept was built on a simplified subset of the Haskell AST. Further research
into the Glasgow Haskell Compiler and discussions with Haskell experts showed that it is more
feasible to work with GHCs intermediate language Core than with the original Haskell. This
switch also enabled a closer coupling to GHC, and the output of the resulting prototype proved
to be more readable and user-friendly.
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Figure 2: Substitution Stepper architecture

Conclusion

The result of this project is a command line tool, that can successfully step through most Haskell
programs and produces outputs that closely resemble the examples given in the task description.
In comparison to similar, previously existing tools, the Haskell Substitution Stepper supports
a larger part of Haskell and is more closely coupled with the Glasgow Haskell Compiler.

Figure 3: Substitution Stepper output compared to textbook
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Haskell Substitution Stepper 
Task Description 

1. Setting 
In the imperative programming paradigm, a debugging tool with an appropriate visualisation of the 
program counter and internal state is often used as an aid to visualise and learn about program 
execution. Such tools enjoy widespread use by beginners wanting to learn how the paradigm works, as 
well as professional programmers trying to find causes for unexpected program behaviour. 

The functional programming paradigm does not have the concept of a program counter or internal state. 
Other techniques are therefore required to visualise the execution of functional programs. Executing a 
program in a functional programming language is typically viewed as evaluating an expression using 
repeated substitution: 

 

Although derivations such as these are used when teaching functional programming and reasoning about 
functional programs, there is no tool support for automatically generating such derivations. Having tool 
support for generating such derivations could greatly help learning programming in and debugging 
programs written in the functional style. 
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2. Goals 
The main aim of this project is to implement a substitution stepper (HaskSubStep) for the functional 
programming language Haskell that can be used to visualise the execution of a functional program. 

The following is a brief and unstructured list of initial requirements: 

1. Input:  
a. A program context containing existing definitions, types, etc. 
b. The target expression/program to start the derivation. 

2. Output: A stepwise derivation of the target expression to its normal form.  
a. Each step of the derivation must be a valid Haskell expression.  
b. If possible, each step must be justified in an appropriate manner (e.g., an indication of 

the substitution rule used) 
3. The user may choose to advance the derivation or fold parts of the derivation in a controlled 

manner (e.g., compress or step over derivation steps related to certain trivial functions) 
4. The standard application programming interface (API) of the Glasgow Haskell Compiler (GHC) 

should be used as far as possible in order to reuse existing functionality and allow the tool to 
remain usable with future versions of GHC with minimal porting effort. 

5. The tool must be usable for a beginner with little experience in functional programming. Its user 
interface must be carefully designed to this end. For instance, the tool should allow hiding parts of 
large expressions that remain the same, or allow highlighting subexpressions that change 
between steps. 

6. In the likely case where a graphical user interface is required, a plugin to the Haskell Language 
Server VS Code Plugin should be considered. 

7. Regardless of the choice of user interface, an open API and/or command line interface (CLI) 
should be provided to allow the tool to be open to additional user interfaces. 

8. The tool will be released under the GPLv3 license. 
 

Since there is currently no existing tool that offers such functionality, further refinements and 
modifications to this list that serve the main aim of this project are possible during its course. 

3. Deliverables 
• Product documentation in English that is relevant to the use and further development of the tool 

(e.g., requirements, domain model, architecture description, code documentation, user manuals, 
etc.) in a form that can be developed further with the product and is amenable to version control 
(e.g., LaTeX or Markdown). 

• Project documentation that is separate from the product documentation that documents 
information that is only relevant to the current project (e.g., project plan, time reports, meeting 
minutes, personal statements, etc.). 

• Additional documents as required by the department (e.g., poster, abstract, presentation, etc.) 
• Any other artefacts created during the execution of this project. 

 

All deliverables may be submitted in digital form.   
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2 Introduction

2.1 About this Document

This document is the project documentation for the bachelor thesis. It targets readers who
are not only interested in the final product but also in the process of building the Haskell
Substitution Stepper. This document contains the project plan, design decisions, problems,
and solutions.

The product itself is documented on GitLab Pages and targets the users (product documenta-
tion). It contains a guide on how to install and use the substitution stepper:
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html

2.2 Links

GitLab Repositories (private access)
https://gitlab.ost.ch/haskell-substitution-stepper

Jira (private access)
https://hasksubstep.atlassian.net/jira/software/projects/HAS/boards/1

Product Documentation (public, OST-internal access)
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html

Figure 4: Product documentation as GitLab Page

http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html
https://gitlab.ost.ch/haskell-substitution-stepper
https://hasksubstep.atlassian.net/jira/software/projects/HAS/boards/1
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html
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2.3 About us

We are a group of three students working on this project:

Dominik Dietler I find Haskell very interesting, because it is so different to other program-
ming languages. Furthermore I enjoy working with and on Compilers.

Robin Elvedi Haskell sparked my interest in programming language design and domain-
specific languages. I’ve always wanted to use Haskell within a more practical
project and was delighted to be able to use it for our thesis.

Jan Huber My first experience with Haskell was in a module at OST University of
Applied Sciences about programming languages and formal methods. I
was fascinated about the idea of functional programming and impressed by
the compact and expressive syntax of Haskell.

2.4 Goal and Motivation

Our main goal is to help Haskell programmers understand what their code does. When we
ourselves were learning the basics of the language, we realized that Haskell differs in fundamental
ways from other well-known programming languages such as Java or C#. As a student, it is
often a challenge to tell what a function does by just reading the function body.

In the literature about Haskell, we frequently encountered listings of expressions and their
evaluation steps [1]. See the task description in Chapter 1 for an example. Those listings
helped us a lot to understand the functions from the Prelude. Seeing the evaluation of an
expression step by step is helpful, especially when recursion comes into play. Functions like
foldl are difficult to explain using only words. They are more intuitively understood when
given some practical examples.

We wondered whether it is possible to automatically generate such a stepwise reduction from
a given Haskell expression. From a student’s perspective, it would certainly be helpful to be
able to experiment with self-made examples in this way. Characteristics of Haskell such as
higher-order functions, operator precedence and evaluation order could be taught in a more
playful manner.
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3 Project Plan

Notice
This public version of the document does not contain the full project plan

3.1 Software Requirement Specification

3.1.1 Introduction

The software requirements listed in this chapter are not explicitly stated in the task description.
They were listed as additional or implicit goals to create a common ground in the team and to
avoid misconceptions.

3.1.2 Functional Requirements

The evaluation of the functional requirements are listed in Chapter 8.

• A user can enter arbitrary Haskell Code into the stepper as text input (not a simplified
Version of Haskell).

• A user can provide multiple files at once, input files can reference other files.

• A user can configure the verbosity of the stepper output.

• The stepper explains each reduction step that was taken.

• The stepper follows the rules of laziness and non-strictness.

• A user can work with custom functions, custom types and custom type classes.

• A user can work with functions, types, and type classes from the Standard Haskell Prelude
where it is feasible.

3.1.3 Non-Functional Requirements

The evaluation of the non-functional requirements are listed in Chapter 8.

• Performance: Generating and Printing the reduction steps for a simple expression like
reverse [1, 2, 3, 4] does not take any longer than 10 seconds on the development
machines.

• Security: The software does not use dynamic loading with eval to implement the re-
duction rules.

• Constraints: Reductions are implemented in the the Haskell programming language.

• Installability: There is a one-command installer for the software.
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• Learnability: The tool can be used and understood by someone without having read
the full user manual.

• Fault tolerance: Expressions that cannot be stepped do not result in a crash of the
application.

• Fault tolerance: Infinite loops during reduction do not result in a crash of the applica-
tion, instead the reduction is aborted.

• Maintainability: The code is structured in a modular way. The user interface can
potentially be exchanged without having to change the backend.

• Modifiability/Changeability: The backend can be individually configured. Not every
configuration option has to be shown to the user.

• Testability: The CI pipeline fails if there are failing automated tests.
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4 Analysis and Research

4.1 Knowledge Gaps

In the following chapters, we research open questions to provide enough information to outline
how a substitution stepper could work. We also assess how realistic and effective the various
approaches are.

Our biggest questions are:

• does GHC offer an API to evaluate an expression step by step, or is there a way to pause
the execution of the GHC and analyze the intermediate results?

• is there a way that allows us to directly work with the Haskell language instead of a
desugared language (Core, STG) or a reduced language such as Duet?

4.1.1 Consulted Experts

To get some feedback about feasibility, we contacted some well-known names in the Haskell
community: David Luposchainsky (Creator of stgi1), Vladislav Zavialov (GHC contributor),
Twan van Laarhoven (Creator of the simple-reflect package2), Bastiaan Heeren (Co-Author of
the paper ‘Evaluating Haskell expressions in a tutoring environment‘3), Steve Krouse (Author
of Lamda Bubble Pop4) and Stephen Diehl (Software Engineer and Haskell Expert).

1https://github.com/quchen/stgi
2https://hackage.haskell.org/package/simple-reflect
3https://arxiv.org/pdf/1412.4879.pdf
4https://chrisuehlinger.com/LambdaBubblePop/

https://github.com/quchen/stgi
https://hackage.haskell.org/package/simple-reflect
https://arxiv.org/pdf/1412.4879.pdf
https://chrisuehlinger.com/LambdaBubblePop/
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4.2 The Haskell Language

4.2.1 Language Characteristics

Creating a stepper for Haskell requires being aware of the language characteristics. Some of
the following characteristics (for example non-strict semantics) are a special challenge when
building a stepper. Other language features (for example pureness) are an advantage and make
the work easier. In this chapter, there are some characteristics listed that have an impact on
our work.

4.2.2 Sharing

GHC uses sharing, which means that temporary data is sometimes calculated and stored in
memory when it is needed more than once. This happens in different situations. For example,
every time a let binding is used. In let k = add 1 2, the result k = 3 is stored in memory
and used every time k is used again. (This would also be the case in many other languages,
such as Java). Another example is where:

1 x * x
2 where x = 1 + 2

Listing 1: Example of sharing

Here, the value of x will also only be calculated once. As a rule of thumb, it can be said that
named values will be shared by GHC. Sharing can be tricky as it can lead to space leaks if a
programmer is not aware of the behavior. This is the case when a computation is easy, but
the result is large [2]. The GHC is rather conservative in using sharing even though sharing is
described as a benefit when using pure functions. GHC does not remember every function call:
calling the same function with the same arguments usually results in the same computation
twice.

To support sharing for the substitution stepper, we would have to keep a representation of the
heap during the evaluation. However, in a first version, we ignore that sharing exists and just
evaluate some expressions multiple times.

4.2.3 Memoization

Memoization is similar to sharing but described as a programming technique. Memoization can
be used by the programmer to store intermediate results instead of calculating them multiple
times. This will improve the performance of an application. Knowing when GHC uses sharing
allows programmers to optimize their source code for speed.
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4.2.4 Non-Strictness

Non-strictness is a feature that distinguishes Haskell from many well-known programming lan-
guages.

Technically speaking, non-strict semantics means that a Haskell expression can be rewritten/-
substituted even if there are some subexpressions that do not resolve. This is achieved with
the outermost-first evaluation strategy: When a function-application is reduced, the arguments
are not fully resolved into normal form before using them inside the function. This means that
arguments are evaluated only if needed. This is also known as call-by-name strategy [3].

For example, in a language such as Java, an expression like 1.0/0.0 would immediately lead
to an exception. However, in Haskell, the compiler would not immediately try to convert
the expression into a value. Therefore, there might not be any error if the result of the illegal
operation is not used later in the program flow. The following program would terminate without
error:

1 Prelude> fst (1.0/2.0, 1.0/0.0)
2 0.5

Listing 2: Example of non-strictness in Haskell

Let’s take a look at the definition of the fst-function from the prelude5:

1 fst :: (a,b) -> a
2 fst (x,_) = x

Listing 3: Example of an ignored expression

As we see, the second expression in the tuple is simply ignored.

Haskell is not a completely non-strict language. Where required, evaluation of thunks can be
enforced using the built-in function seq. This function’s intent is to offer a way for programmers
to force evaluate their arguments because the non-strict evaluation can sometimes lead to
performance issues. Pattern matching is also strict, so expressions get evaluated in order to
check if there is a matching pattern.

The term laziness is often confused with non-strictness, but it is not exactly the same. While
non-strictness is given by the specification of the language, laziness is one (popular) way to
evaluate a non-strict language [4].

5https://hackage.haskell.org/package/base-4.15.0.0/docs/Prelude.html

https://hackage.haskell.org/package/base-4.15.0.0/docs/Prelude.html
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“Basically laziness == non-strictness + sharing“

(From the Haskell Wiki [5])

As a lazy evaluation can reduce the performance, GHC uses a strictness analysis to evaluate
which arguments will always be evaluated by a function and can therefore be evaluated by the
caller instead [5].

The concept of non-strictness allows Haskell to have infinite data structures, like [1..] which
can also be passed to functions like take 10 [0..].

For the evaluation stepper, non-strictness can be achieved by following the rules of the outermost-
first evaluation. Expressions should be kept as thunks instead of values as long as possible.

4.2.5 Normal Form

Haskell differs between the Weak Head Normal Form (WHNF), and the Normal Form
(NF)

In the lamda calculus as well as in the Haskell language, there is the term redex. Redex means
‘reducible expression‘ and is used to denote an expression that is not yet fully evaluated.

• To get the Weak Head Normal Form, the evaluation is no longer continued when the
outermost data constructor or lamda abstraction of an expression is reached [6] [7].

• In the plain Normal Form, an expression is completely evaluated and there are no
redexes left.

Here are some expressions that are not in normal form and not in weak head normal form:

1 "Hello" ++ " World" -- application of (++) operator
2 (\x -> [x, x+1, x+2]) 1 -- application of lamda
3 1 == 1 -- application of (==) operator

Listing 4: Some unevaluated expressions (not in normal form)

Here are the evaluated expressions from before in normal form:

1 "Hello World" --string
2 [1, 2, 3] --list
3 True --boolean

Listing 5: Some expressions in normal form
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Every expression in normal form is also in weak head normal form, while the opposite must
not be true.

Recognizing the weak head normal form is easy. Whenever the outermost part of an expression
is a data constructor, a lamda or partial function application, the expression is in weak head
normal form. Here are some examples:

1 'H' : ("ello World") --data constructor
2 \x -> [x, x+1, x+2] --lamda
3 True --data constructor

Listing 6: Some expressions in weak head normal form but not in normal form

The weak head normal form is used for lazy evaluation because it offers enough information
without having to evaluate everything. For example, a pattern matching on a list can be done
without having to evaluate every single element inside the list.

The goal of the evaluation stepper is to bring expressions into the weak head normal form.
This is also what GHCi does when an expression is entered.

4.2.6 Pureness

Haskell is a pure language, which means that functions do not have a side effect by changing
some internal state which could potentially change the result of a future computation. Still,
Haskell can do Input/Output by wrapping up I/O actions with an I/O monad.

For the goal of stepping through an evaluation, pureness is a huge advantage because it allows
expressions to be rewritten and evaluated without having to worry that the evaluation or
rewriting itself could have any potentially unwanted side effects. It also means that at any
point, an expression inside the code could be substituted with a reduced form of the expression
without changing the behavior of the program.
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4.3 Glasgow Haskell Compiler

4.3.1 About the Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC)6 is the best known compiler for Haskell. In the next
subchapters, we analyze the process of compiling. We refer to the first three compilation stages
as the ‘frontend‘: parsing, renaming and type checking.

We also analyze the intermediate languages ‘Haskell Core‘ and ‘STG‘ (Spineless Tagless Graph
reduction machine).

The main goal of this section is to assess the feasibility of using GHC’s frontend to parse Haskell
code and use the resulting AST for stepping through a program.

4.3.2 Compilation

Overview of the GHC pipeline Using a substitution stepper might give the impression that
Haskell code is processed in a linear way. However, this is not the case. Haskell does not have
an imperative program flow, but instead is non-strict as discussed earlier. The Haskell code is
therefore put into a graph structure by the compiler to be processed further from there. Let’s
take a look at how the Haskell code is actually processed by the GHC pipeline:

Figure 5: GHC stages

6https://www.haskell.org/ghc/

https://www.haskell.org/ghc/
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Parser Haskell source code is first fed to the parser. This results in an abstract syntax tree
HsSyn RdrName with identifiers of type String. After the renaming step, the syntax tree ends
up being of type HsSyn Name

Typechecker The syntax tree of type HsSyn Name is then passed to the type checker. The
type checker validates the code and generates a syntax tree with complete type information of
type HsSyn Id, where HsSyn Id is a Name with complete type information.

Haskell Core The Haskell program is now converted into the Haskell Core language. Haskell
Core is also called desugared Haskell, because many language features of Haskell get stripped
away in Haskell Core. However, Haskell Core is not a subset of Haskell but a language on its
own. But the concepts that are used also exists in the original Haskell. Here is an example of
a Haskell expression with the rewritten variant in Haskell Core [8]:

1 f x y = not x && y

Listing 7: Definition of a function with two arguments in Haskell

1 f =
2 \(x :: Bool) ->
3 \(y :: Bool) ->
4 (&&) (not x) y

Listing 8: Definition of a function with two arguments in Haskell Core

As we see in the listing, Haskell Core still looks a lot like Haskell. It is more laborious to read
as it uses nested lambdas to define the function.

This representation of Haskell serves a couple of purposes. The most obvious one is simplicity.
Translating Haskell into a much smaller language early in the pipeline simplifies all subsequent
steps. Transforming and optimizing a tiny language such as Core can be done more elegantly
and concisely than doing the same for a large language.

Another, perhaps less obvious, advantage of Core is that it acts as a barrier for any language
features that may be added in the future. If a Haskell language extension compiles to Core, it
is guaranteed to also pass through all the other stages of the compiler as well. This results in
those new language features also benefiting from the optimizations that happen further down
the line.
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Simplifier The simplifier does numerous transformations of type Core -> Core. It eliminates
dead code, inlines functions and applies so-called ‘rewrite rules‘, which are used to optimize the
abstract language features Haskell offers us into more efficient representations.

STG Converter In the next step, the code is transformed into an ‘STG‘ representation (spine-
less, tagless graph reduction machine).

STG An STG defines how expressions can be evaluated for a higher-order, functional and lazy
language and is optimized for performance and therefore has no types anymore [9][10]. The
STG language mainly consists of applications, evaluations, branching, definitions and lamdas.
A lot of the Haskell syntax is gone: if-statements, to give one concrete example, are replaced
by pattern matching on a boolean [11]. There are also no more where-clauses, guards or nested
expressions anymore. Surprisingly, there are not many rules to evaluate STG-Code (Source:
own illustration, based on [12]):

Figure 6: Evaluation rules for STG (simplified)

Code Generator From this point, .cmm files are generated as the next intermediate step.

Cmm This file type basically contains C– code with some minor differences [13].

Machine Code Generator The final step turns the Cmm code into an executable file.
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4.3.3 A Deeper Look into the Abstract Syntax Trees

Running Example In the next few sections, we work with the following code example in
Haskell to show how this code gets transformed in the different stages of GHC:

1 addOne :: Integer -> Integer
2 addOne x = x + 1

Listing 9: Function used to generate the AST

This code example defines a function addOne that takes an Integer as a parameter and returns
the same value increased by one.

Complexity of the ASTs The Haskell language is specified by the Haskell2010 language
report [14]. In theory, this compact and expressive language could be represented in an easy-to-
understand abstract syntax tree (AST). However, looking at how most modern Haskell projects
are written, one cannot help but notice the extensive use of multiple language extensions by
which syntax and language features are expanded vastly. This approach to language evolution
by selective language extensions is a rather unique trait for a programming language, and as
such requires some additional considerations when designing a parser and accompanying AST.
Extensibility and plugability are key features of such a design. As a consequence of this design,
the AST that GHC generates ends up being large and unwieldy, as noted by several experts we
consulted during the evaluation.
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Parser AST Omitting the function declaration and some noise, the resulting AST after pars-
ing takes the following form:

1 (OpApp -- applying an operator to a value
2 (NoExtField)
3 ({ Main.hs:7:12 }
4 (HsVar
5 (NoExtField)
6 ({ Main.hs:7:12 }
7 (Unqual
8 {OccName: x}))))
9 ({ Main.hs:7:14 }

10 (HsVar
11 (NoExtField)
12 ({ Main.hs:7:14 }
13 (Unqual
14 {OccName: +}))))
15 ({ Main.hs:7:16 }
16 (HsOverLit
17 (NoExtField)
18 (OverLit
19 (NoExtField)
20 (HsIntegral
21 (IL
22 (SourceText
23 "1")
24 (False)
25 (1)))
26 (HsLit
27 (NoExtField)
28 (HsString
29 (SourceText
30 "noExpr")
31 {FastString: "noExpr"}))))))

Listing 10: AST after parsing

We begin at the OpApp node in the tree, which marks the beginning of the subtree for applying
an operator to a value, in this case + is applied to x and 1. A recurring pattern in this tree
and all subsequent examples is the NoExtField leaf. It represents the absence of a TTG (Trees
that grow) extension point as described in ‘Trees that Grow‘ [15]. Although not relevant for
our examination of this example, it hints at the extensibility of the tree.
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Renamer AST Moving on in the compiler pipeline, this tree is decorated with additional
information by the renamer. It can be useful to visualize the next stage as a diff to the
previous (parser AST):

Figure 7: From the parser AST to the renamer AST

We can see how the renamer turns unqualified names from the parser into qualified and unique
names. We also see that the mysterious noExpr from the parser stage is revealed to be a
fromInteger call.
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Typechecker AST Now we move on to the final tree representation before the transformation
into the Core language. This is done by the typechecker.

Figure 8: From the renamer AST to the typechecker AST

We see some new segments which end with a TyConApp node. These segments result in a TyCon
(Type Constructor) being applied by TyConApp to an abstract type constructor.
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STG This is how the same code looks after the Core to STG conversion:

1 addOne =
2 \r [x_sI7]
3 let { sat_sId = CCCS S#! [1#]; } in + $fNumInteger x_sI7 sat_sId;

Listing 11: STG

STG code is difficult to read. Before the conversion to STG a simplifier runs multiple times,
making the code more performant.

Conclusion As seen in the previous example, even a simple function produces a complex
AST. Although interpreting this AST on a basic level, as demonstrated, can be done, diving
into the details is a time-intensive task. The amount of different nodes in the tree as well as
all the operations performed are somewhat overwhelming. We conclude that it is not feasible
to base our substitution stepper on any of the ASTs produced by the three stages in GHCs
frontend.

We also acknowledge our lack of understanding of various implementation details used in the
design of the parser, renamer and especially the typechecker. The difficulty of applying the
insights of the design talked about in the ‘Trees that Grow‘ document [15] and the real-world
implementation in GHC is also noteworthy.
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4.4 Existing Solutions

4.4.1 Overview

There are multiple existing solution that provide stepwise evaluation of Haskell expressions.
They mainly differ in the language subset they support. We analyze the popular solutions and
present our findings in the following chapters. None of the tools fulfilled the all the requirements
and goals that we have for this project.

4.4.2 Lambda Bubble Pop / hs.js

Lambda Bubble Pop7 is an intuitive web-based graphical tool for stepwise evaluation of very
simple functional-style programs. It is based on the hs.js tool provided by the Lambda-Lessons
project8. It implements a haskell-like / pseudo-haskell language that only supports integer- and
list- types. It is written exclusively in javascript and runs locally in the browser. The tool does
not use the GHC-toolchain, but implements its own parser and evaluator.

Figure 9: Screenshot of Lamda Bubble Pop

7https://chrisuehlinger.com/LambdaBubblePop/
8https://stevekrouse.com/hs.js/

https://chrisuehlinger.com/LambdaBubblePop/
https://stevekrouse.com/hs.js/
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Figure 10: Screenshot of Lamda Lessons

The limitations of those tools are quite obvious. Trying to evaluate the following expression
results in a parser error:

1 getLast :: String -> String
2 getLast [] = []
3 getLast [x] = [x]
4 getLast (_:xs) = getLast xs

Listing 12: Lamda Lessons breaking example

Because String is not a supported datatype, this function will not parse. It fails with the not
so helpful (at least to novices) message: Expected " " or "]" but "x" found.
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4.4.3 Duet

The approach that Duet9 takes is very similar to Lambda Bubble Pop, but with a much larger
subset of the Haskell language. It supports quite a few data types as well as type classes.
The custom parser and evaluator are both written in Haskell itself, the same also goes for
the rest of the code-base. There are no obvious shortcomings with this approach, as most
programs will evaluate stepwise without any issue. The examples show some simple factorial
functions, as well as more complicated programs, such as a complete monad instance for the
Maybe datatype:

1 class Monad (m :: Type -> Type) where
2 bind :: m a -> (a -> m b) -> m b
3

4 class Applicative (f :: Type -> Type) where
5 pure :: a -> f a
6

7 class Functor (f :: Type -> Type) where
8 map :: (a -> b) -> f a -> f b
9

10 data Maybe a = Nothing | Just a
11

12 instance Functor Maybe where
13 map =
14 \f m ->
15 case m of
16 Nothing -> Nothing
17 Just a -> Just (f a)
18

19 instance Monad Maybe where
20 bind =
21 \m f ->
22 case m of
23 Nothing -> Nothing
24 Just v -> f v
25

26 instance Applicative Maybe where
27 pure = \v -> Just v
28

29 main = bind (pure 1) (\i -> Just (i * 2))

Listing 13: Code example in Duet

The above example can be evaluated in two ways. One yields a concise evaluation, the other a
more detailed one.

9https://github.com/chrisdone/duet

https://github.com/chrisdone/duet
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1 bind (pure 1) (\i -> Just (i * 2))
2 Just (1 * 2)
3 Just 2

Listing 14: Concise stepping

1 bind (pure 1) (\i -> Just (i * 2))
2 (\m f ->
3 case m of
4 Nothing -> Nothing
5 Just v -> f v)
6 (pure 1)
7 (\i -> Just (i * 2))
8 (\f ->
9 case pure 1 of

10 Nothing -> Nothing
11 Just v -> f v)
12 (\i -> Just (i * 2))
13 case pure 1 of
14 Nothing -> Nothing
15 Just v -> (\i -> Just (i * 2)) v
16 case (\v -> Just v) 1 of
17 Nothing -> Nothing
18 Just v -> (\i -> Just (i * 2)) v
19 case Just 1 of
20 Nothing -> Nothing
21 Just v -> (\i -> Just (i * 2)) v
22 (\i -> Just (i * 2)) 1
23 Just (1 * 2)
24 Just 2

Listing 15: Detailed stepping

There is also basic support for I/O. The functions GetLine and PutStrLn enable simple writing
and reading from and to the terminal. Duet is intended to be used as a teaching tool for
Haskell. We believe it meets this goal completely. It can be used in the browser with a simple
user interface that supports direct text input or as a CLI utility that reads in .hs files.

Duet does not support let and where bindings. This limitation can be overcome by the use
of inline lambda functions. For small examples, this shortcoming is a minor inconvenience.
However, for larger examples it can become a bit of a hassle.

Named functions and the import-statement are also not supported. This results in the following
examples are all not working in Duet:
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1 -- named function
2 f x = x ++ "!"
3 main = putStrLn (f "hi")
4

5 -- where binding
6 main =
7 putStrLn x
8 where x = "hi"
9

10 -- let binding
11 main =
12 let x = "hi"
13 in putStrLn x
14

15 -- using imports
16 import Data.List
17 main =
18 let x = intercalate "," ["Hi", "Bye"]
19 in putStrLn x

Listing 16: Not supported in Duet

Duet operates independently of the GHC ecosystem and is implemented using a custom to-
kenizer, parser, typechecker and stepper. Duet also does not try to implement a prelude,
although there are some example-implementations of well-known prelude-functions, such as
foldl or map. We think that Duet is the most advanced solution of all the analyzed ones. In
the next chapter, we take a more profound look inside the code of Duet.
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4.4.4 How Duet works

Documentation The stepper for Duet itself is completely written in Haskell. Unfortunately,
the code is documented only sporadically and partly non-descriptive names are used. Therefore,
it was difficult to analyze how the stepping process works. The process is shown here in a
simplified way for illustration purposes.

Function runStepper In the file Main.hs there are the functions runStepper and runStepperIO,
which we have looked deeper into. These functions accept an expression in the form of a string,
as well as the context and binding groups. The maximum number of substitution-steps can
also be defined.

Conversion of the String into an Expression In a first step, the expression-string is converted
into an expression type. For this purpose, there is a helper function lookupNameByString. The
binding groups and the string are passed as parameters to this function. The function looks up
the matching bindings for the passed names.

Expression Type The Expression-type looks like this:

1 data Expression (t :: * -> *) i l
2 = VariableExpression l i
3 | ConstructorExpression l i
4 | ConstantExpression l Identifier
5 | LiteralExpression l Literal
6 | ApplicationExpression l (Expression t i l) (Expression t i l)
7 | InfixExpression l (Expression t i l) (String, Expression t i l)

(Expression t i l)↪→

8 | LetExpression l (BindGroup t i l) (Expression t i l)
9 | LambdaExpression l (Alternative t i l)

10 | IfExpression l (Expression t i l) (Expression t i l) (Expression t i
l)↪→

11 | CaseExpression l (Expression t i l) [CaseAlt t i l]
12 | ParensExpression l (Expression t i l)
13 deriving (Show, Generic, Data, Typeable, Functor, Traversable,

Foldable, Eq)↪→

Listing 17: Expressions in Duet

(Note: Let-Expressions are listed, although they are not supported)
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The Stepper Loop To fully reduce an expression, the function expandSeq1 is called repeat-
edly in a loop. The expression obtained from this function is then printed to the console.
This loop runs until the expression has been reduced completely or until the desired number of
maxSteps has been reached.

expandSeq1 is the actual heart of the stepper. The function is called with an expression as
well as a Context and the BindingGroups as parameters. Since the type of the expression is
known, it is possible to react differently to the different expression types using a case-of-
statement.

The final goal of the substitution is to obtain the normal form. As Duet is non-strict but
not-lazy, all sub-expressions are fully reduced.
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4.4.5 Haskell Expression Evaluator

Haskell Expression Evaluator10 is a prototype to step through Haskell-Expressions. Compared
to Duet, the prelude is already implemented, so expressions using functions from the prelude
can be directly evaluated. However, there is no possibility to enter the surrounding context
of an expression. Custom functions can be added if the project is run locally. (The functions
are defined in a file on the web server that cannot be changed from the user’s perspective).
The syntax is limited and only supports integers, lists, recursion, and functions with pattern
matching. To reduce the expressions, there is a set of rewrite rules implemented. For each
substitution-step, the name of the rule that was chosen is shown. The user can also choose
between the ‘outermost evaluation strategy‘ and the ‘innermost evaluation strategy‘. Despite
its limited possible applications, the tool is interesting because it is very well documented in
the corresponding research paper [16].

Figure 11: Screenshot of Haskell Expression Evaluator

10https://ideas.science.uu.nl/HEE/

https://ideas.science.uu.nl/HEE/
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4.4.6 Stepeval

The user interface of Stepeval11 is quite simple. Users can enter an expression with a function
from the prelude which is then evaluated step by step. The possibilities are restricted. As
a user there is no way, to enter own function-definitions. The implementation does not use
a typed AST, so the type information gets lost during evaluation [17]. Unlike the Haskell
Expression Evaluator, the evaluation strategy cannot be chosen. The input is parsed using the
haskell-src-exts package 12.

Figure 12: Screenshot of Stepeval

11https://github.com/bmillwood/stepeval, interactive demo available here: http://bm380.user.srcf.
net/cgi-bin/Prelude.txt

12https://hackage.haskell.org/package/haskell-src-exts

https://github.com/bmillwood/stepeval
http://bm380.user.srcf.net/cgi-bin/Prelude.txt
http://bm380.user.srcf.net/cgi-bin/Prelude.txt
https://hackage.haskell.org/package/haskell-src-exts
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4.4.7 GHCi Debugger

The GHCi debugger offers some interesting possibilities to analyze source code. Breakpoints
can be set on functions as well as on expressions. For lazy evaluated expressions, evaluation
can be forced using :force. However, there are no sub-steps shown [18].

Here, we use the addOne function that we defined before. We set a breakpoint on the second
line and then call addOne 2. As we see, the execution is paused:

Figure 13: GHCi debugger on running example

4.4.8 GHC-vis

With GHC-vis13, data structures on the heap can be displayed graphically. This primarily helps
to understand the concepts of lazy evaluation and sharing. The tool is mainly used inside the
interactive GHCi environment. Data structures can be defined with let, and then be displayed
visually with the command :view. The references between the individual data structures are
also shown. The expressions are not evaluated, but this can be enforced. GHC-vis can also be
used as a library.

13http://felsin9.de/nnis/ghc-vis/

http://felsin9.de/nnis/ghc-vis/
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4.4.9 OCaml Stepper

The OCaml stepper was created as a lecturing-support for a programming class in the Ochan-
omizu University in Tokyo, Japan. The idea was to provide students with a basic use tool to
‘debug‘ their code. OCaml is in essential parts different from the Haskell language, although
the syntax looks kind of familiar. A big difference is that OCaml, in contrast to Haskell, is
that impure functions can have side effects. Similar to Haskell, the language is often used in
an academic context.

The OCaml stepper does not support the whole language but still a big part of it though (user-
defined data types, user-defined modules, exception handling...). The stepper was created by
changing the interpreter. The built-in parser is used to load the source into an AST. For each
reduction step, the entire program gets reconstructed [19].

Figure 14: Screenshot of the OCaml Stepper
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4.5 Risk Analysis

4.5.1 Introduction

Before we started to think about the general architecture of the application or concrete imple-
mentation details, we wanted to make sure that the project is actually feasible to do in the way
we wanted it to work. We also asked some Haskell experts about their thoughts and inputs. In
the following chapters, we list some of the potential problems.

4.5.2 Missing API Interface

In the run-up to the project, we already expected that there will not yet be a ready-to-use
solution for displaying the individual evaluation steps of the GHC. In our search for such a
functionality, we did not find anything suitable. There is no API interface for the GHC to
resolve expressions step by step. Also, an expert of the GHC-API, Vladislav Zavialov (GHC
contributor since 2018), confirmed that he is not aware of such an interface:

“As far as I’m aware, GHC doesn’t include a step-by-step evaluator for Core ex-
pressions at the moment“

(Vladislav Zavialov)

This is presumably the reason all analyzed projects that resolve Haskell expressions step by
step do not cooperate with the GHC or other Haskell compilers, but instead implement their
own parser for a limited Haskell-like language.

4.5.3 Conversion to Haskell Core and STG before evaluation

In a first compilation-step, Haskell code is converted into Haskell Core [20] as seen in Chapter
4.3.2. Doing a step by step reduction would be much easier for Haskell Core, however the
resulting sub-expressions would be more complicated to read. However, some of the experts we
asked encouraged us to work with Haskell Core:

Twan van Laarhoven, (Creator of the simple-reflect package for Haskell14), expressed concerns
if it is applicable to work with the full Haskell language:

“I think getting a step by step evaluation of the full Haskell language, in the way
that a human would understand it out of Ghc is not easily possible. The way Ghc
works [. . . ] is nothing like the term rewriting that you normally think of.“

(Twan van Laarhoven)

David Luposchainsky (Creator of stgi15) recommended us to work with Core:
14https://hackage.haskell.org/package/simple-reflect
15https://github.com/quchen/stgi

https://hackage.haskell.org/package/simple-reflect
https://github.com/quchen/stgi
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“[Haskell Core is] probably what you want to implement, and then convince people
they want to watch“

(David Luposchainsky)

Unfortunately, there is no way to convert Haskell Core code back into Haskell form because such
a conversion is ambiguous and certain syntactic information is lost in the conversion process.
At least, the conversion to Core happens before running the simplifier, which would drastically
change the whole program structure. Haskell Core does not support the same set of syntax
features. One of the main differences between Haskell and Haskell Core is that case is ‘strict‘.
The evaluation order is not specified in the Haskell report, but the operational semantic is
surprisingly compact.

In contrast to Haskell Core, STG code is one level deeper with a deterministic evaluation order,
an explicit stack and no types, which makes it easy to be resolved step by step. However, STG
is complicated to read.

There is an existing tool to step through an STG program called stgi16. This tool is not based
on GHC but on the original STG definition. (The STG language has changed overtime and is
not compatible with that tool anymore, but STGi is still used for teaching purposes.)

4.5.4 Let Statements

Implementing the support for named bindings such as in let, where or top-level functions like f
x = x + 1 poses a challenge in the case a custom Haskell-like language would be implemented.
Assuming we choose to go down that path, this is mainly a design challenge that needs to be
overcome. This has also been stated by Chris Done in his Duet project.

16https://github.com/quchen/stgi

https://github.com/quchen/stgi
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4.5.5 Conclusion and Further Procedure

To reach our main goal of stepping through Haskell source code in a user-friendly way, all
approaches analyzed in this section have pros and cons:

Advantages Disadvantages

Stepping a
Haskell-like language

- What the user expects
- Most useful for beginners

- Requires a custom
implementation of a Haskell
like language (similar to Duet)
- Deemed not possible using
GHC provided APIs due to
the execution model of
Haskell in GHC

Stepping
Core or STG

- Can be implemented in a
custom way (STGi) or using
GHC APIs
- Follows actual execution
steps of a Haskell program

- Not intended to be human
readable
- Code cannot be converted
back to original Haskell

Tracing

- Can be implemented using
GHC APIs
- Follows actual execution
steps of a Haskell program

- Rather experimental approach
- Deducing substitution steps
from a trace might not always
be possible

Table 1: Pros and cons for different approaches

Together with our advisor, we have agreed that we - if possible - would try to build a substitution
stepper that works with the GHC-API in order to support the full Haskell language. However,
it turned out that this approach is not feasible. For the proof of concept, we only work with
the GHC-frontend to get the typechecker AST and then continue to do the reduction based on
the AST we get from GHC.
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5 Proof of Concept

5.1 Idea

As we have seen in the previous chapters, the GHC generates an AST that is almost impossible
to keep track of in its complexity. A large part of the information contained in the AST is
not relevant for us (currently). We have therefore decided to work with a simplified AST. The
reduction and output of the individual reduction-steps is based on this simplified AST. The
typechecker AST we get from the GHC can be converted into this simplified AST.

This approach brings some advantages:

• The simplified AST transparently shows exactly which syntax constructs are currently
supported.

• The code becomes easier to read. We only have to deal with the complex typechecker AST
in one place (this is where the GHC AST is converted to our simplified AST). All other
functions work with the simplified AST, which will significantly increase the readability
of the code.

• Extracting the relevant information from the GHC AST is done in a single location and
is not scattered throughout the code.

• There is an additional layer between the GHC AST and the stepper functions. Theo-
retically, it would even be possible to use a different AST than the GHC AST without
having to rewrite the entire program. This approach gives us some flexibility if something
changes in the GHC AST or if we decide to use a different version of the GHC AST (for
example, the parser AST instead of the typechecker AST).

This approach also brings some disadvantages:

• We have to convert the data from one structure into another, this adds some overhead.
(This was not implemented for the prototype.)

• The more syntax features the simplified AST supports, the more it will look like the GHC
AST and therefore add some level of redundancy.

• The more syntactic constructs we support, the more time we have to spend thinking
about the design of the simplified AST. Mistakes can be costly to correct later.

• The collaboration in the team must be well planned because we work with a data structure
that changes again and again during the project.
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5.2 Architecture

Here is the architecture of the proof of concept:

Figure 15: Architecture of the proof of concept

5.3 Example Code

In the next few sections, we use the following Haskell code example (running example) as the
input for the proof of concept:

1 > x = 1 + 2 * 3
2 > y = 3 - 4
3 > z = x + y
4 > z
5 6

Listing 18: A basic Haskell example code
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5.4 Implementation and Design Thoughts

5.4.1 Simplified Abstract Syntax Tree

The goal of the first simplified AST design was to support only a few syntax constructs. These
are:

• Integer Values

• Operator Application

• Named Bindings

(Later in this chapter, we extend our simplified AST with more base types)

With those features, basic Haskell programs can be represented.

This is how the example code looks like in the simplified AST structure:

Figure 16: Simplified AST
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In comparison – the same program is represented much more verbosely with the typechecker
AST from the GHC. In this figure only the relevant nodes and their parents are shown. In
addition, many nodes have been omitted for simplicity (like Wraps and Bags).

Figure 17: Type checker AST

For the definition of the simplified AST, we use a recursive data type Expression, which is
structured as follows:

1 data Expression
2 = BindingReference String {-for example "x"-}
3 | Value Int {-for example 1-}
4 | OperatorApplication {leftExpression :: Expression, operator ::

Operator, rightExpression :: Expression}} {-for example "1 + 1"-}↪→

Listing 19: Expression data type

Here, Operator is just an alias for String.



5 Proof of Concept 39

5.4.2 Step by Step Reduction

For demonstration purposes, we built a simple stepper function to resolve expressions step by
step using the simplified AST. Since only a tiny part of the Haskell syntax is implemented, this
stepper function is simple. The stepping function takes two parameters:

• a list of bindings [Binding]. A binding is a Tuple that consists of a String (for example
"x") and an expression, for example 1+2*3.

• an expression to reduce, for example, x+1

The stepper function creates a new expression that is reduced at one point. Thus, the function
can be called several times until the expression is in the weak head normal form. The following
reduction rules have been implemented:

• BindingReferences like x are replaced by their definition.

• If an OperatorApplication has the left and the right sub-expression in the form of a
Value, the operation is calculated and the OperatorApplication gets replaced by a
Value.

• Otherwise, the left and right sub-expressions of an OperatorApplication get recursively
reduced.

This approach works for the algebraic operators +, - and * that we have implemented for
now. However, when we want to implement operators such as || or && it will not be the best
approach to reduce the operands on both sides of the operator as this would lead to non-strict
behavior.
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This is how the rules are implemented in code:

1 applyStep :: [Binding] -> Expression -> Expression
2

3 {-cannot reduce more-}
4 applyStep _ (Value value) = Value value
5

6 {-replace binding reference with actual expression (Delta Reduction)-}
7 applyStep bindings (BindingReference reference) = findBinding reference

bindings↪→

8

9 {-Apply Operator-}
10 applyStep bindings (OperatorApplication (Value leftValue) operator (Value

rightValue)) = (Value (applyOperator operator leftValue rightValue))↪→

11

12 {-Reduce Right-Side-Expression -}
13 applyStep bindings (OperatorApplication (Value leftValue) operator

rightExpression) = OperatorApplication (Value leftValue) operator
(applyStep bindings rightExpression)

↪→

↪→

14

15 {-Reduce Left-Side-Expression -}
16 applyStep bindings (OperatorApplication leftExpression operator

rightExpression) = OperatorApplication (applyStep bindings
leftExpression) operator rightExpression

↪→

↪→

Listing 20: Function applyStep (slightly simplified)
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Since the instance declaration show is implemented for the type Expression, the individual
reduction steps can easily be printed to the console. The reduction output of the code example
shown above looks like this:

Figure 18: Console output from the proof of concept (v1)
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Here is a visualization of the Expression-type during reduction:

Figure 19: Reduction steps performed on the simplified AST

In the first version of the proof of concept, the input-bindings and the input-expression are
created directly in the simplified AST structure.
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5.4.3 Syntax Tree Conversion

We did not finish the tree-traversal function that would convert the typechecker AST into our
simplified AST. For now, we hardcoded our expressions to reduce for the demo purpose.

5.4.4 Handling Invalid Expressions

Our Solution With our expression data type, it is possible to represent invalid expressions.
For example, if we use unknown operators:

1 OperatorApplication (Value 1) "?" (Value 2)

Listing 21: Invalid expression in the simplified AST

Some errors would be recognized by the GHC before converting the GHC typechecker AST
into our simplified AST. Still, we wanted to be able to represent invalid expressions. We
added the InvalidExpression constructor to the type Expression. Every operation on an
InvalidExpression will result in an InvalidExpression again.

The constructor InvalidExpression takes a String where a human-readable error message
can be added. This message is printed if an InvalidExpression is printed to the console. We
can also use InvalidExpression if a feature is not yet implemented.

Discarded Alternative Approach Instead of the InvalidExpresion-constructor, we could
just have used Maybe Expression in all the helper functions, so a function could result in
Nothing if a calculation or reduction on an expression leads to an invalid result.

We have first implemented this approach but soon realized that this really bloats up the whole
code everywhere we have to wrap and unwrap the Maybe Expression. Additionally, we think
that having an InvalidExpression is a more consistent approach and easier to understand for
someone who reads the code.
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5.4.5 Adding Support for more Base Types to our Simplified AST

Our Solution The first version of the proof of concept only supported Integer values. Next,
we wanted to support more base types of Haskell. We choose to represent the different types
in the following way:

1 data Expression
2 = StringValue String
3 | IntegerValue Integer
4 | DoubleValue Double
5 | BoolValue Bool
6 | CharValue Char
7 | ListValue [Expression]
8 | TupleValue (Expression, Expression)
9 | OperatorApplication { leftExpression :: Expression

10 , operator :: Operator
11 , rightExpression :: Expression
12 }
13 | BindingReference String
14 | InvalidExpression String

Listing 22: Support for more base types in the simplified AST

Disadvantage of this approach This approach leads to some kind of redundancy. This can
be seen in the following example:

1 instance Show Expression where
2 show (StringValue x) = x
3 show (IntegerValue x) = show x
4 show (DoubleValue x) = show x
5 show (BoolValue x) = show x
6 show (CharValue x) = show x
7 show (ListValue x) = show x
8 show (TupleValue x) = show x
9 show (BindingReference x) = x

10 show (InvalidExpression reason) = "(Invalid Expression: " ++ reason ++
")"↪→

11 show (OperatorApplication (leftExpression) operator (rightExpression)) =
"(" ++ show leftExpression ++ " " ++ operator ++ " " ++ show
rightExpression ++ ")"

↪→

↪→

Listing 23: Redundant implementation of show

As we see, the implementation for most value types look exactly the same.



5 Proof of Concept 45

Discarded Alternate Approach We first thought about making a polymorphic expression
type like the following, where a could be an arbitrary type:

1 data Expression a
2 = Value a
3 | ...

Listing 24: Polymorphic expression type

This would have allowed us to easily represent any type possible. However, this approach is
not possible: Expressions can be nested and not every sub-expression will have the same type.
For example, we can add an Integer-Value with a Double-Value:

1 OperatorApplication (IntegerValue 1) "+" (DoubleValue 2.0)

Listing 25: Addition of IntegerValue and DoubleValue

Furthermore, in some cases, we will not be able to know the type before evaluating the entire
expression.

How this is solved in Duet Duet has a similar Expression structure, as seen in Chapter
4.4.4. But the difference is that it uses multiple polymorphic types. Another difference is that
there is only one constructor for literals. Literals are represented within a separate Literal
type:

1 data Literal
2 = IntegerLiteral Integer
3 | CharacterLiteral Char
4 | RationalLiteral Rational
5 | StringLiteral String
6 deriving (Show, Generic, Data, Typeable, Eq)

Listing 26: Literal Type in Duet

The duet solution has advantages compared to our solution: the derivation of type classes
can automatically be done because the underlying types already implemented the required
functions. This eliminates a lot of the boilerplate code we have written for our simplified
AST.
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Expression also makes use of multiple polymorphic types (instead of just one like we have
tried). This makes sense as it allows writing the code in a much more generic way.

We think that the Duet approach is the most elegant way to solve the problem. We did not
rewrite the prototype to make use of this approach but see it as a valuable learning.

5.4.6 Support for more operators

Our Solution To apply operators like +, -, *, /, == and so on, we made Expression a derived
instance of Num, Fractional and Eq.

Here, for example, is the implementation of the (+)-Operator:

1 instance Num Expression where
2 (+) (IntegerValue x) (IntegerValue y) = IntegerValue ((Prelude.+)

x y)↪→

3 (+) (DoubleValue x) (DoubleValue y) = DoubleValue ((Prelude.+) x
y)↪→

4 (+) (IntegerValue x) (DoubleValue y) = DoubleValue ((Prelude.+)
(fromInteger x) y)↪→

5 (+) (DoubleValue x) (IntegerValue y) = DoubleValue ((Prelude.+) x
(fromInteger y))↪→

6 (+) _ _ = InvalidExpression "+ not supported for this type"

Listing 27: Implementation of the plus operator for the simplified AST

As seen here, the result of an addition with incompatible types is an InvalidExpression.

More Generic Operator Application A problem of our code is that the implementations of
+, - and * almost look the same. The only thing that changes is the operator itself.

We tried to make a more generic function for arithmetic operations. The signature would look
something like this:

1 applyNumOperator :: Num a => (a -> a -> a) -> Expression -> Expression ->
Expression↪→

2 applyNumOperator operator leftExpression rightExpression = {-...-}

Listing 28: Wanted approach to make a generic function to apply numeric operators

However, we could not find a way to implement such a function. The problem is, that we
cannot pass a concrete Type like Double or Integer to a function that expects a Num a. This
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shows that a type class in Haskell cannot really be compared to what other languages know as
an interface.

How this problem is solved in Duet It turned out that the approach we have chosen is very
similar to Duet. Duet also implemented each operator twice: once for IntegerLiteral and
once for RationalLiteral. These two are the only numeric types that Duet supports.

5.4.7 Show Substeps during Operator Application while Preserving Non-Strictness

Problem In the first version of the proof of concept, we always reduced the operands of
an operator to normal form before applying the operator. This worked well when we only
supported algebraic operators and the integer type. But now that we also support types such
as list, tuple and so on, we cannot just reduce the operands to normal form before operator
application – this would be strict behavior.

Example of the Problem An implementation like the following would (in this case) still lead
to the correct result, but it would not reflect the non-strict behavior of GHC:

1 ((1,(1 + 2)) == (2,(2 + 1)))
2 {-Apply Operator +-}
3 ((1,3) == (2,(2 + 1)))
4 {-Apply Operator +-}
5 ((1,3) == (2,3))
6 {-Apply Operator ==-}
7 False

Listing 29: Strict operator application

In the next example expression, such an implementation would result in an error despite the
expression being valid in original Haskell:

1 (1.0,(1.0 + 2.0)) == (2.0,(1.0/0.0))
2 {- Apply Operator + -}
3 (1.0,3.0) == (2.0,(1.0/0.0))
4 {- Apply Operator / -}
5 InvalidExpression "cannot divide by 0"

Listing 30: Unwanted strict behavior in the proof of concept



5 Proof of Concept 48

Our Solution We omit this problem by not showing any sub-steps during operator application.
We reduce each expression argument to normal form before passing it to the operator. But the
behavior is still lazy because if the operator does not need to evaluate some arguments, reduce
will not actually be called as long as we do not print the sub-steps:

1 (1.0,(1.0 + 2.0)) == (2.0,(1.0/0.0))
2 {-Apply Operator ==-}
3 False

Listing 31: Operator sub-steps are not printed

Possible Solution with Sub-steps and Non-Strictness To support the printing of sub-steps
for an operator application, we are not allowed to reduce the operands to normal form before
operator application. However, this implicates that we would have to implement our own oper-
ators like == and others because the operators must be able to do the reduction by themselves
– if they need to do it. This means that it is not enough for an operator function to know
the lefthand-side expression and the righthand-side expression because it also has to know the
context and bindings to do a reduction if necessary. Additionally, operators like == either have
to use IO() to print the sub-steps or add the reduction steps to a specific data structure.

If implemented, the sub-steps of an operator application could look like this:

1 (1.0,(1.0 + 2.0)) == (2.0,(1.0/0.0))
2 {-Apply Operator ==-}
3 (1.0 == 2.0) && ((1.0 + 2.0) == (1.0/0.0))
4 {-Apply Operator ==-}
5 False && ((1.0 + 2.0) == (2.0 + 1.0))
6 {-Apply Operator &&-}
7 False

Listing 32: How operator-substeps could be printed (concept)
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5.4.8 Function Application without Eval

We want to be able to pass expression arguments to any function. Having that feature allows
us to reduce function applications in one single step. This is useful if the substitution stepper
can not understand the function-body itself because it uses features that we do not support
(yet).

Applying functions in one single step could look like this:

1 reverse [1, 2, 3, 4]
2 {-apply reverse -}
3 reverse [4, 3, 2, 1]

Listing 33: Single step reduction of function application

Of course, it would be preferred in this example to parse the function-body of reverse to show
the sub-steps. But if this is not possible in some cases, we think a single step would be a
adequate alternative.

So to pass an Expression to any function, we have to provide a converter function that converts
the Expression into the type that is expected by the function that should be called. We came
up with the following functions that take a function as well as 1, 2 or 3 parameters in the form
of an Expression:

1 applyOneArgument :: (a -> b) -> FunctionArgument a -> b
2 applyOneArgument function (unwrap, expression) = (function (unwrap

expression))↪→

3

4 applyTwoArguments :: (a -> b -> c) -> FunctionArgument a ->
FunctionArgument b -> c↪→

5 applyTwoArguments function firstArgument secondArgument =
applyOneArgument (applyOneArgument function firstArgument)
secondArgument

↪→

↪→

6

7 applyThreeArguments :: (a -> b -> c -> d) -> FunctionArgument a ->
FunctionArgument b -> FunctionArgument c -> d↪→

8 applyThreeArguments function firstArgument secondArgument thirdArgument =
applyOneArgument (applyTwoArguments function firstArgument
secondArgument) thirdArgument

↪→

↪→

Listing 34: Functions to apply arguments

A FunctionArgument looks like this:
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1 type FunctionArgument a = ((Expression -> a), Expression)

Listing 35: FunctionArgument type

Now we can call any function like this:

1 applyOneArgument (not) (expressionToBool, (BoolValue True))
2

3 expressionToBool :: Expression -> Bool
4 expressionToBool (BoolValue x) = x

Listing 36: Example of generic function/operator application with expression

We can also use functions that expect their arguments in the form of a type class, as long as
Expression derives from this type class. For example: for functions that expect a Num type,
we can just use the id function as converter:

1 applyTwoArguments (^) (id, (IntegerValue 2)) (expressionToInteger,
(IntegerValue 3))↪→

Listing 37: Usage of functions with type class parameter

We used this capability to add support for more operators like && or ||.
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5.5 Result

Here are some example reductions done by the proof of concept that demonstrate the handling
of different types and operators:

Figure 20: Console output from the proof of concept (v2)
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5.6 Discussion and Further Procedure

5.6.1 Use of the GHC Frontend

When we started working on the proof of concept, we were thinking about three alternatives
that we could take:

1. Work with the GHC frontend (typechecker AST) and provide our backend to reduce
expressions

2. Work with the Duet language and add more features

3. Create a user interface where users can enter an expression and apply their own reduction
steps. This solution would use GHC to check the validity of the user input.

With the proof of concept, we tried out the first option. We think that this approach is
theoretically doable, although it would not be possible to support the whole Haskell-Syntax in
a reasonable time. Also, we had troubles to work with the typechecker AST and to convert it
into our own simplified AST because it is enormously large.

5.6.2 GHC Typechecker AST vs Core AST

After presenting the proof of concept, we re-discuessed the idea of stepping Haskell Core in-
stead of Haskell Code with our advisor and our external examiner. At the beginning of the
project, we rejected the idea of stepping Haskell Core because Haskell Code is easier to read
for the user. However, we realized that working with Haskell Core would give us indeed many
advantages:

1. There are substantially less syntactic constructs. That means that even if we do not
support the full syntax of Haskell we could support a larger percentage of the syntax,
making the tool usable in more situations.

2. For the user of the substitution stepper it could be interesting to see how Haskell input is
converted into Haskell Core. The tool would also be interesting for debugging language
extensions or similar projects.

3. For someone who can read Haskell Code, Haskell Core is a bit more difficult to read but
still understandable.

4. The reduction will be less experimental.

Working with Core does not give us the same ability to do equational reasoning but as we
have seen in the analysis chapter (4.4.5), there are already solid solutions to education like the
Haskell Expression Evaluator [16].

For all those reasons, we decided that stepping through Haskell Core is better than stepping
original Haskell. So for the real implementation we will work with Haskell Core. This means
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that we cannot reuse much of our code written for the proof of concept. However, we think
that the proof of concept still gave us many learnings that we will be able to apply for the real
stepper.

5.6.3 Use of a Simplified AST

For the proof of concept, we created our own Expression type (simplified AST). There are
already some advantages and disadvantages of this approach listed on top of this chapter. For
the prototype, handling our own Expression-Type was simple, but it would become more
complicated the more features we support.

The alternative would be to use the AST that we get from GHC and do the reduction directly
on this structure. For the typechecker AST, this would be very complicated. Since we already
struggled to convert the AST into our custom structure, it would be even more complex to
apply reduction rules on the typechecker AST itself as we would have to understand all of the
fields and how they are used in order to construct a valid tree.

However, working with Haskell Core, the AST is much simpler and easier to understand.

Considering the pros and cons of using our own data structure, we decided to first work with a
custom data structure that is very similar to Core and later work with the original CoreExpr
type.

5.6.4 Representation of the Heap

We also discussed if we should somehow show a representation of the heap to the user while
doing the reduction. The advantage would be that we would be able to show concepts like
sharing. However, we decided that for now we will not show the heap and maybe even build a
solution that does not support sharing.
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5.6.5 New Architecture

After those decisions, the new architecture for the stepper will look like this:

Figure 21: New architecture with Haskell Core

5.6.6 Conclusion

We will have to change a part of the underlying architecture for the final implementation. The
proof of concept has forced us to think about our software design and the implementation
challenges. This gave us valuable insights about how we can build the final solution.
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6 Implementation

6.1 Planning of the Construction Phase

The construction phase started rather late because of the long time spent on the analysis. We
experimented with different approaches and finally came to the conclusion that stepping Haskell
Core is the most feasible approach. The detailed planning for this phase is written in a separate
document, but here is a summary of what we expect the implementation to include:

• Architecture: Retrieve Haskell Core code from the GHC for a user-defined input file

• Stepping: Use of built-in helper functions from GHC whenever possible. Work with a
data structure that is very close to the Core type, ideally work with the Core type itself

• Supported Haskell Syntax: Support the same language-features as the prototype
and add more features like Lamda, Function Application, Pattern Matching, Recursion,
Types, Let-Statements, Polymorphism, Cast, Coercion. . .

• Prelude: Add well-known functions from the Prelude, so they can be stepped through
too

• Configurability: Let the user choose how verbose the output should be

• Testing: Cover more of the functionality with automatic tests

• User Interface: Create an easy-to-use user interface
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6.2 Understanding the Core Type

6.2.1 Expression Type in Core

As a first step, it was important to understand how expressions are represented in the Core
Type of GHC. It is impressive that Core only has 10 constructors to represent the whole syntax
[21]:

1 data Expr b -- "b" for the type of binders,
2 = Var Id --variables
3 | Lit Literal --literals
4 | App (Expr b) (Arg b) --function application
5 | Lam b (Expr b) --lamdas
6 | Let (Bind b) (Expr b) --let bindings
7 | Case (Expr b) b Type [Alt b]
8 | Type Type
9 | Cast (Expr b) Coercion

10 | Coercion Coercion
11 | Tick (Tickish Id) (Expr b) --not important for us
12

13 data Bind b = NonRec b (Expr b)
14 | Rec [(b, (Expr b))]
15

16 type Arg b = Expr b
17

18 type Alt b = (AltCon, [b], Expr b)
19

20 data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

Listing 38: Expr type for GHC Core

This means that GHC already does a lot of work for us: while in original Haskell there are
many ways to write the same program, there is no more syntactic sugar in Core. This is good
news for the stepper: if we support most of those constructors, we can support a large part of
the Haskell language.

Looking at Core is even more impressive if it is compared with the HsExpr data structure,
which is used to represent original Haskell and has significantly more constructors.
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6.2.2 Polymorphic Parameter b

The polymorphic parameter b is the type of binders on an expression. Working with the Core
language in GHC, it is of type Var:

1 type CoreExpr = Expr CoreBndr
2 type CoreBndr = Var

Listing 39: CoreExpr type for GHC Core

The Var type contains a lot of information. What is most important for us is the name of a
variable.

6.2.3 Literals

Looking at the literal type, it is evident that there are only very few base types [21]:

1 data Literal
2 = LitChar Char
3 | LitNumber !LitNumType !Integer Type
4 | LitString !ByteString
5 | LitNullAddr
6 | LitRubbish
7 | LitFloat Rational
8 | LitDouble Rational
9 | LitLabel FastString (Maybe Int) FunctionOrData

10 deriving Data

Listing 40: Literal type for GHC Core

Things like Bool or composite types like lists or tuples are missing. They are not needed
because Core represents them differently, in fact, as application on a constructor.
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6.2.4 Getting the Core Code

To get an idea of how Core looks, it was useful to convert some examples of Haskell source code
to Core. There are multiple ways to achieve this:

• one can work with the ghc-core and then make use of the package programmatically:

1 cabal install ghc-core

Listing 41: Installation of the GHC Core package

• or one could use GHCi to print out Core representations directly on the console:

1 stack ghci --ghci-options "-ddump-simpl -dsuppress-idinfo
-dsuppress-coercions -dsuppress-type-applications -dsuppress-uniques
-dsuppress-module-prefixes"

↪→

↪→

Listing 42: Usage of GHCi to get Core

As seen in the command, there are many flags that are used to suppress some less inter-
esting information.

In the next chapter there are some original Haskell code examples with their representation
in Core. We do not show every aspect of Core here, but it should give an idea of how Core
looks.
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6.2.5 Core Example - id: Handling of Types, Parametric Polymorphism

1 id :: a -> a
2 id x = x

Listing 43: id function (Haskell)

1 id :: forall a. a -> a
2 id = \ (@ a) (x :: a) -> x

Listing 44: id function (Haskell Core)

It is interesting to see how Core handles polymorphic types. The first parameter of the id
function is a type a (for example, one could pass @ GHC.Types.Char) and only then the ‚real‘
parameter (for example ’c’) can be passed. Types are treated just like normal variables. This
behavior is inspired by the second order lambda calculus [22].
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6.2.6 Core Example - sayMe: Pattern Matching with case

1 sayMe :: Integer -> String
2 sayMe 1 = "One!"
3 sayMe 2 = "Two!"
4 sayMe 3 = "Three!"
5 sayMe x = "Not between 1 and 3"

Listing 45: sayMe function (Haskell)

1 sayMe :: Integer -> String
2 sayMe
3 = \ (ds_d1py :: Integer) ->
4 case == @Integer $fEqInteger ds_d1py 1 of {
5 False ->
6 case == @Integer $fEqInteger ds_d1py 2 of {
7 False ->
8 case == @Integer $fEqInteger ds_d1py 3 of {
9 False -> unpackCString# "Not between 1 and 3"#;

10 True -> unpackCString# "Three!"#
11 };
12 True -> unpackCString# "Two!"#
13 };
14 True -> unpackCString# "One!"#
15 }

Listing 46: sayMe function (Haskell Core)

case is a structure that is frequently used in Haskell Core as it replaces multiple language
features (syntactic sugar) from Haskell like if-then-else, function definitions with pattern
matching or guards.

In the example, it can be seen how the pattern matching is converted into a nested case
statement. Each of the case statements checks the equality of the parameter (which was named
ds_d1py) with an Integer literal.
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6.2.7 Core Example - logicalOperator: Mutli-Argument Function Bindings

1 logicalOperator :: Bool -> Bool -> Bool
2 logicalOperator x y = not x && y

Listing 47: Multi-argument function (Haskell)

1 logicalOperator :: Bool -> Bool -> Bool
2 logicalOperator = \ (x :: Bool) (y :: Bool) -> && (not x) y

Listing 48: Multi-argument function (Haskell Core)

Because of the pretty-printing used in this example, it looks like Core would support lamdas
that take multiple parameters. However, this expression is actually a nested lamda where each
lamda only takes a single parameter. A more accurate representation would look like this
[8]:

1 logicalOperator =
2 \(x :: Bool) ->
3 \(y :: Bool) ->
4 (&&) (not x) y

Listing 49: Nested multi-argument function (Haskell Core)
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6.2.8 Core Example - reverseList: Pattern Matching, Handling of Lists and Recursion

1 reverseList :: [Integer] -> [Integer]
2 reverseList [] = []
3 reverseList (a:bc) = reverseList bc ++ [a]

Listing 50: reverseList function (Haskell)

1 Rec {
2 reverseList [Occ=LoopBreaker] :: [Integer] -> [Integer]
3 reverseList
4 = \ (ds_d1pq :: [Integer]) ->
5 case ds_d1pq of {
6 [] -> [] @Integer;
7 : a bc -> ++ @Integer (reverseList bc) (: @Integer a ([]

@Integer))↪→

8 }
9 end Rec }

Listing 51: reverseList function (Haskell Core)

Again, there is a case statement instead of the pattern matching. It is also interesting to see
how lists are represented in Core. A list like [1, 2, 3] is represented as:

1 : @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer)))

Listing 52: Representation of a list in Haskell Core

As we see in the example, Core does not have a special type for lists. Instead, the list is
represented as a repeated application of the Cons-Operator (:).
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6.2.9 Core Example - double: Type Classes

1 double :: Num a => a -> a
2 double x = x + x

Listing 53: double function (Haskell)

1 double :: forall a. Num a => a -> a
2 double
3 = \ (@a) ($dNum_a1oj :: Num a) (x :: a) -> + @a $dNum_a1oj x x

Listing 54: double function (Haskell Core)

[8]

Core does not have the concept of type classes. Instead, as we see here, functions that expect a
parameter to be in a specific type class in Haskell get a new dictionary parameter (dNum_a1oj) in
Core. This dictionary parameter contains implementations of the functions which are expected
to be supported by the typeclass. (For example, for the typeclass Num, this would be operators
like +, -, * and so on).
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6.2.10 Optimization of Core Code

To make the output of the stepper as readable as possible, we work with the Core-output that
is not optimized. In the original GHC-pipeline, Core code is transformed over and over again,
making the code more performant but also more difficult to read. This is called the simplifier-
phase. It includes: Inlining, elimination of dead code, case merge and much more. Developers
can also write simplification-rules for their code, which are then used by the GHC [22].

However, this is not of interest for the stepper. The stepper works with the Core code imme-
diately after the desugaring phase, still before any optimization happens. Like this, the Core
code should still be more similar to what the user has entered.

Even though the unoptimized Core code is still pretty understandable, we decided to create a
pretty printer that prints out Core code in a way that looks like original Haskell code.

6.2.11 Summary - Some important Things to know about Core

Here are some of the most significant changes in Haskell Core compared to original Haskell [22]
[23]:

• Application always only has one single argument. Application of a function that expects
more than one argument is represented as nested application.

• case is used a lot.

• case is where actual evaluation/reduction happens (nodes are removed from the AST).

• The let constructor is used for allocation (for example, whenever where is used in original
Core).

• As Haskell itself, Core is non-strict (but case is strict in Core).

• Types are passed around like normal parameters.

• Infix operators are represented as function application.

• Every binder is explicitly annotated with its type (implicitly in original Haskell).
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6.3 Retrieving Core from GHC

The first implementation step was to take a Haskell file as input and then use GHC as a library
to convert it to Core. Using the GHC-library, the different intermediate steps are retrieved.
For debugging purpose, the parser AST, the type checker AST and the Core AST are written
out on a generated file.

This is the type provided from the GHC-library:

1 type CoreSyn.CoreProgram = [CoreBind]

Listing 55: CoreProgram type definition

CoreBind itself is defined like this:

1 type CoreBind = Bind CoreBndr
2 type CoreBndr = Var

Listing 56: CoreBind and CoreBndr type definition

A binding can either be recursive or non-recursive:

1 data Bind b = NonRec b (Expr b) | Rec [(b, (Expr b))] deriving Data

Listing 57: Bind type definition

In simple terms, a binding is an assignment of a name to an expression. For example, in the
Expression x = 1, x would be the non-recursive binding at the top-level and 1 would be the
expression. Bindings are used for local let-statements as well.

(Note: The Expr type is described at the beginning of this Chapter.)

Once the Core AST is retrieved, we could use GHC’s built-in pretty printer to take a look at
the AST itself:

1 showOutputable (pprCoreBindings coreAst)

Listing 58: Printing a Core AST

Still, it was a challenge to understand which types and constructors the various syntax con-
structs had. We added a function for debugging which takes a Core Expression - this expression
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(which is actually a tree) is then traversed and for every node, the corresponding constructor
and additional information is printed.
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6.4 Usage of Built-in Functions from GHC

6.4.1 The GHC Api

It is our goal to use as much of the built-in tools from GHC as possible. This not only reduces
our development time, but also helps us to stay more compatible with GHC even if a new GHC
version will be released.

The Core part of GHC consists of +/- 60 separate modules. Many of them provide helpful
functions that work on the Expr-type. We went through the GHC source code to find out
which functions are helpful for the implementation of the stepper.

6.4.2 Maker Functions

Although the base Expr-Type is rather simple, working with Core can still be demanding.

To give an example, something simple like a Core Literal 1 is difficult to create from the ground
up. In Core, 1 would be a Literal instance with the constructor LitNumber. LitNumber itself
has multiple subtypes. Choosing the right subtype depends on the target machine where the
code runs. Furthermore, the LitNumber constructor takes a Type as constructor argument,
which itself is a nested data structure again.

This example illustrates that it is not feasible to create Core types from the ground up, especially
if the resulting Core type is dependent on the type of computer being used.

Fortunately, GHC provides some maker-functions that can be used to create Expression In-
stances. This screenshot shows some of the functions that are exported by the GHC.Core-
Module:

Figure 22: Some maker helper functions from GHC Core

Thanks to those helper functions, some Core expressions can be easily created. For example,
the Integer literal:

1 mkLitInt64 1

Listing 59: Creation of a Core Integer Literal
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6.4.3 Information Retrieval

Similarly, it is useful to have functions to read some properties of expressions. This helped us
a lot to implement the stepper-functionality.

Here, for example, are some functions from the GHC.Core.Utils module:

Figure 23: Some property functions from GHC Core

6.4.4 Functions that have been especially helpful

Writing the stepper, there were some functions that have been especially useful for us and
helped us to keep our codebase smaller.

• There is a function exprIsHNF in the Module GHC.Core that takes an expression and
returns if this expression is in head normal form. For the stepper, this allows to check
if an expression should be further stepped or if the stepping is complete. For the first
prototype, this functionality had to be implemented from the ground up. Working with
Core, we already got it for free.

• The modules GHC.Utils.Outputable and GHC.Core-PPr provide functions to pretty print
Core Expressions.

• The function collectArgs in the module GHC.Core has the type signature Expr b ->
(Expr b, [Expr b]). If there is a nested App expression, the function collects all the
arguments passed to the function and returns them in a one-dimensional list. For the
stepper, this was used to decide which reduction step should be used next and to evaluate
functions that cannot be stepped (see Chapter 6.14.6).

6.4.5 No Functions directly related to Stepping found

It was disappointing that we did not find ready-to-use reduction-rules in the GHC. We were
looking for functions that would — for example — apply an argument expression to a lamda
expression or similar functionality.

However, it makes sense that such functions must not inevitably exist for Core as the real
evaluation only happens at the STG-stage. For the stepper, it meant that we had to implement
the reduction rules ourselves. (See Chapter 6.8)
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6.5 First Draft: Stepping on a Simplified Core AST

6.5.1 Why did we first stick to a Simplified Core AST instead of working on the Core
AST directly?

Although our advisor told us that it would be ideal to work on the original Expr type itself, we
started the implementation with our own simplified Core-like AST. At first, we were skeptical
as to whether stepping on Haskell Core was possible or not, and we have already made some
experience with a simplified AST to create the prototype. Our biggest concern was, as described
above, that while it is rather easy to read out some properties from existing Core expressions,
it can become much more difficult to create a valid expression instance from the ground up.
This is why we decided to first convert the user input file into Haskell Core (using the GHC-
library) but then transform this Haskell Core AST into our simplified AST. This approach
allowed us to first work on the „hearth“ of the application, which the stepper-logic. During the
implementation of the simplified AST, we tried to make the structure very close to the Core
structure itself. We always had the idea in mind that this intermediate-structure could later
be removed and replaced with the Expr type from Core itself.

Outlook to Chapter 6.6: Indeed, it was later possible to completely remove the simplified AST
and implement the stepper on the Core type directly. This change was actually simpler than
expected, and much of the code written was adopted unchanged.



6 Implementation 70

6.5.2 First Draft: The Simplified Core AST

Our first draft of a simplified expression type looked like this:

1 data ExpressionS
2 = VarS String --for example "x" or "+"
3 | LitS LiteralS --for example "4"
4 | AppS {expressionS :: ExpressionS, argumentS :: ExpressionS} --for

example "+ 1"↪→

5 | LamS {parameterS :: String, expressionS :: ExpressionS} --for example
"\x -> ...""↪→

6 | CaseS {expressionS :: ExpressionS, alternativesS :: [AltS]} --for
example "case True of {True -> "True"; False -> "False"}↪→

7 | TypeS --not implemented
8 | MultiArgumentAppS {name :: String, argumentsS :: [ExpressionS]} --does

not exist in original Core↪→

9 | InvalidExpression String --for example, InvalidExpression
"unsupported expression"↪→

10

11 data LiteralS
12 = LitCharS Char
13 | LitNumberS Integer
14 | LitStringS String
15 | LitFloatS Rational
16 | LitDoubleS Rational
17 | InvalidLiteral String
18

19 type AltS = (AltConS, [String], ExpressionS)
20

21 data AltConS
22 = DataAltS String --pattern is a constructor, for example ":"
23 | LitAltS LiteralS -- pattern is a literal, for example 5
24 | DefaultS -- pattern is "_"

Listing 60: Simplified Core AST type

At the first sight, this structure looks very similar to the original Expr type. However, there
were some key differences:

• Instead of nested data types like the Expr type, we often used primitive types. For exam-
ple, while a Var in Core contains a lot of information (such as varName, uniqueIdentifier,
varType, scope...) we simply used a String which only contained the name of a bind-
ing. The same goes for Literals as well.

• Type information was completely discarded

• A new constructor MultiArgumentAppS was introduced. This constructor was used to
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represent applications with more than one argument. (This is not Core-like but made the
internal handling of nested applications easier.)

• A new constructor InvalidExpression was introduced. This constructor was already
used in the prototype to represent invalid states — for example, if the stepper does not
support a specific language feature.

In general, the simplified AST contains only the information we needed for printing and step-
ping. All the other information from the original Expr type was discarded.

6.5.3 First Draft: Conversion from Core AST to the Simplified AST

The implementation of the conversion method was simple. Using the helper functions from
GHC, it was simple to extract all the information required from the Expr type and fill it into
the ExpressionS type.

6.5.4 First Draft: Pretty Printing

The printing function implemented for the ExpressionS type prints expressions in a form
that look much like original Haskell. Here is an example: The first listing is a function in its
original Haskell form. The second listing shows the same function transformed to and printed in
Haskell Core. The third listing is the same function transformed and printed as our simplified
AST:

1 x = 1 + (2 * 3)

Listing 61: Algebraic expression (pretty-printed Haskell)

1 x = + @Integer $fNumInteger 1 (* @Integer $fNumInteger 2 3)

Listing 62: Algebraic expression (pretty-printed Haskell Core)

1 x = (+ 1) ((* 2) 3)

Listing 63: Algebraic expression (pretty-printed simplified Core AST)
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6.5.5 First Draft: Rules for the stepper

Next, we implemented the main functionality: A function that takes the context and an
ExpressionS and applies one single reduction-step to the expression, which is then returned
as a result. Here is the signature of this function:

1 applySingleStep :: [BindS] -> ExpressionS -> ExpressionS
2 applySingleStep bindings expression = {-...-}

Listing 64: Type signature of applySingleStep function

(Note: A BindS is just a simple type alias for (String, ExpressionS). The list [BindS]
passed to the function contains the whole surrounding context of the expression (which means
all functions and variables defined by the user).

This is a simplified version of the implemented algorithm. For visualization purpose, the code
is shown in a simplified version:

1 --replace VarS with the corresponding expression
2 applyStep bindings (VarS name) = findBindingWithName bindings name
3

4 --lamda reduction
5 applyStep bindings (AppS (LamS parameter expression) argument) =

deepReplaceVarWithinExpression parameter argument expression↪→

6

7 --applyStep for left-hand side of application
8 applyStep bindings (AppS firstArgument secondArgument) = AppS (applyStep

bindings firstArgument) secondArgument)↪→

9

10 --reduce pattern pathing
11 applyStep bindings (CaseS expression alternatives) =
12 if canBeReduced expression
13 then CaseS (applyStep bindings expression) alternatives
14 else findMatchingPattern expression alternatives
15

16 --reduction rule not yet implemented
17 applyStep bindings _ = InvalidExpression "No reduction implemented for

this type of expression")↪→

Listing 65: Implementation of applyStep for the simplified Core AST

Furthermore, we added support for the most well known algebraic and logical operators (not
shown in the listing).
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6.5.6 First Draft: Example

Even with those few simple reduction rules, it was surprising to how many expressions could
be stepped. The following is a simple example. This is the input-source file:

1 sayMe :: Integer -> String
2 sayMe 1 = "One!"
3 sayMe 2 = "Two!"
4 sayMe x = "Not between 1 or 2"
5

6 x = sayMe 4

Listing 66: Simplified Core AST stepper example input
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Stepping the binding x prints out the following result to the console: (some sub-steps are
skipped)

1 (sayMe 1)
2

3 {-Replace 'sayMe' with definition-}
4

5 (\ds_d1oa -> (case ((== ds_d1oa) 1) of {
6 False -> case ((== ds_d1oa) 2) of {
7 False -> "Not between 1 or 2";
8 True -> "Two!";
9 };

10 True -> "One!";
11 }) 1)
12

13 {-Lamda Application-}
14

15 case (== 1 1) of {
16 False -> case ((== ds_d1oa) 2) of {
17 False -> "Not between 1 or 2";
18 True -> "Two!";
19 };
20 True -> "One!";
21 }
22

23 {-apply == -}
24

25 case True of {
26 False -> case ((== ds_d1oa) 2) of {
27 False -> "Not between 1 or 2";
28 True -> "Two!";
29 };
30 True -> "One!";
31 }
32

33 {-Replace with matching pattern-}
34

35 "One!"
36

37 {-reduction complete-}

Listing 67: Simplified Core AST stepper example output
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6.6 Final Architecture: Removal of the Simplified AST

6.6.1 Introduction

Now that some easy expressions could be stepped, the next implementation step was to remove
the simplified Core AST (ExpressionS) and to replace it with the original Core AST (Expr
Var):

Figure 24: Architecture without the simplified Core AST

Even though we were first very skeptical if a reduction on original Core code is feasible to do
in a reasonable time, the transition from the simplified AST solution to the original Core AST
solution went surprisingly well. This was mainly because during the reduction, Nodes are either
replaced by other Nodes or completely removed from the AST. This is much easier compared
to creating new Nodes in the Core AST. It is very rarely the case that new Nodes have to be
created.

However, to get rid of the simplified AST, there were some challenges to overcome, which are
described in the next chapter.
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6.6.2 Challenges and Solutions

Problem / Challenge Solution

The Var Type from Expr contains
much more information than the
String that is used instead for the
simplified AST

There is no need to
create new instances of Var.
Only existing Vars inside
expressions will be read and
replaced by other
Expressions.

After evaluating operators and
functions (such as + ) the result has
to be converted back into a Core
Literal.

There are helper functions
such as mkLitInt64 or
mkLitString that allow
us to create Literal
instances. However, types
that are not built-into Core
(such Bool) will be more
difficult to support.

Floating numbers are represented
as Rational in Core
(type Rational = Ratio Integer).
The results of algebraic calculations
have to be converted into that type.

There is already a function
that does that: toRational
Real a => a -> Rational

There is not such thing as an
InvalidExpression constructor for
Core. What should we return from
a function if something goes wrong
while stepping? (for example, if a
feature is not implemented?)

The workaround here is to
use Maybe Expr in every
function that might not result
in a valid expression. This
makes the code a bit harder to
read but thanks to the monad
syntax (do expressions) this
should not be a big deal.

Type information has to be handled
correctly and cannot just be
thrown away.

Types in Core are used as if
they were just normal
variables / parameters. There
is not much that has to be
specially considered. One
difference is that when we
evaluate a function or operator
like (+), there is not only
the numeric arguments but
also the type arguments.

Let, Cast and Coercion constructors
were not implemented
for the simplified AST.

The stepper can return
Nothing if one of those
constructors is encountered.
Later, those constructors
should be supported as well.

Table 2: Core AST: implementation challenges
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6.7 Stepper Loop

The stepper loop is the driver of the reduction, responsible for the reduction and the printing
of the reduction steps. The function takes an expression as argument and repeatedly calls
applyStep until the expression is in head normal form. Afterwards, it checks if the reduction
can be reduced even more to normal form and applies the necessary reductions.

6.8 Reduction Rules

6.8.1 List of Reduction Rules

Here are the implemented reduction rules:

Step for Pattern: (Var name)

• Rule: Search for a binding with the same Var. Then replace with the expression of the
found binding.

• Example Input (simplified):

1 addOne

• Example Output (simplified):

1 (\x -> (+) x 1)

Step for Pattern: (App (Lam parameter expression) argument)

• Rule: Lamda Application

• Example Input (simplified):

1 ( \x -> (+) x 1 ) 1

• Example Output (simplified):

1 (+) 1 1
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Step for Pattern: (App expression argument)

• Rule: applyStep on expression

• Example Input (simplified):

1 addOne 1

• Example Output (simplified):

1 (\x -> (+) x 1 ) 1

Step for Pattern: (Case expression binding caseType alternatives)

• Rule: If expression is not in head normal form: applyStep on Expression, else: replace
with matching pattern

• Example Input 1 (simplified):

1 case ((==) 1 1) of {
2 True -> ...;
3 False -> ...
4 }

• Example Output 1 (simplified):

1 case True of {
2 True -> ...
3 False -> ...
4 }

• Example Input 2 (simplified):

1 case True of {
2 True -> 1;
3 False -> 2
4 }
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• Example Output 2 (simplified):

1 1

• Example Input 3 (simplified):

1 case (: 1 [2]) of
2 : a b -> a
3 : DEFAULT -> ...

• Example Output 3 (simplified):

1 1

Step for Pattern: (Let binding expression)

• Rule: replace every occurrence from the local bound variable inside the expression with
its definition. If the binding is recursive, it means that the body of the let-statement
at some point references itself. In this case, the reference should not be replaced by its
definition immediately as this would result in an infinite loop.

• Example Input (simplified):

1 let {
2 x :: Integer
3 x = 1
4 } in (*) x x

• Example Output (simplified):

1 (*) 1 1
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Step for Pattern: (Cast expression cohersion)

• Rule: The cohersion-part of the expression is simply removed, and the reduction is
continued on the expression only.

• Example Input:

1 ($cchange @a)
2 `cast` (Sym (N:Navigatable[0] <Direction a>_N)
3 :: Coercible (Direction a -> Direction a) (Navigatable (Direction

a)))↪→

• Example Output (simplified):

1 ($cchange @a)

6.8.2 Background

Those reduction rules follow the concept of non-strictness. That means that arguments are
only evaluated when they are needed.

However, there is one exception which is not shown in the table. Whenever there is an App
expression argument and the expression cannot be resolved, all arguments are collected and
eagerly evaluated. (As described in Chapter 6.14.6, „Unsteppable / Unparsable Functions“).
This is the case if the expression is a Var that points to a function that cannot be stepped.
(This could be a function that uses syntactic constructs that the stepper cannot parse, or if it is
a basic operator like +). It can also be the case for nested applications if the leftmost innermost
application expression is a Var that points to a function that cannot be stepped.

Here is an example of App where the arguments have to be eagerly evaluated (because the ==
operator cannot be stepped):

1 (== 1) (neg 1)

Listing 68: Nested application example

This expression is a nested App in the form of App (App Var Lit) (App Var Lit)

If the stepper encounters such an expression, it uses the built-in GHC function collectArgs
to convert the application into a tuple of type (Expr, [Expr]). The first element in the tuple
is the function or operator, and the second element in the tuple is a list of arguments. If the
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App-expression was nested, the argument-list would contain multiple arguments, if the App-
expression was not nested, the argument-list contains only one single argument. The example
above would now look like this (conceptually) after collecting the arguments:

1 ((==), [1, neg 1])

Listing 69: Function and its collected arguments

Next, the stepper checks if some arguments are not yet in head normal form. If this is the case,
applyStep is called on those arguments until every argument is in head normal form.

The example above would look like this after the reduction of the arguments (conceptu-
ally):

1 ((==), [1, -1])

Listing 70: Function and its collected and fully reduced arguments

Finally, the function is evaluated. In the example, the result of the evaluation would be the
Bool constructor False.
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6.9 Basic Operations and Functions on Literal Types

Not every expression can be stepped — for example, a comparison of two Integers:

1 1 == 2

Listing 71: Equality on Integers in Haskell

1 ==
2 @Integer
3 $fEqInteger
4 (@Integer 1)
5 (@Integer 2)

Listing 72: Equality on Integers in Core

Therefore, we implemented a function evaluateUnsteppableFunctionWithArguments that
takes a function or operator name (represented as a String) and a list of expressions (argu-
ments). The function then returns the evaluation of this expression. It is implemented without
the use of eval which means it is secure and without side effects.

The function evaluateUnsteppableFunctionWithArguments is called whenever the stepper
finds a function or operator application and cannot resolve the body of this function or operator.
This is most likely the case when the function or operator cannot be represented in Haskell
Code (this is the case for the equality operator for Integer types, as seen in the example
above).

6.10 Support for Custom Types

A type instance in Core is represented as an application. For example, the expression Maybe
5 is an (App expr arg) in Core, where Maybe ist the expression and 5 is the argument. This
behavior made it easier to implement support for custom types and type classes.

The stepper supports custom datatypes, custom type classes, implementation of custom or
existing type classes for custom types as well as automatic derivation of type classes.
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6.11 Support for Type Classes

The biggest challenge was to extract the right type class function binding for the right type.
For example, here we have a custom data type Optional that automatically derives from Eq.
It looks like this:

1 data Optional a = None | Some a deriving (Eq)

Listing 73: Definition of a custom Optional type

Imagine that we make a comparison on two instances of Optional:

1 (Some 1) == (Some 2)

Listing 74: Equality on a custom Optional type in Haskell

This is the Core representation of the Haskell expression:

1 ==
2 @(Optional Integer)
3 ($fEqOptional @Integer $fEqInteger)
4 (Some @Integer 1)
5 (Some @Integer 2)

Listing 75: Equality on a custom Optional type in Core

The actual implementation of the == operator for the Optional type is defined in the binding
$fEqOptional. $fEqOptional is a function dictionary that contains every function required
by the Eq type class. Here, it points to a lamda expression that contains the implementations
for == and /=:

1 \ (@a) ($dEq_a1nN :: Eq a) ->
2 C:Eq @(Optional a) ($c== @a $dEq_a1nN) ($c/= @a $dEq_a1nN)

Listing 76: Core representation of $fEqOptional

This is how the == operator for the Optional type is actually generated:
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1 \ (@a)
2 ($dEq_a1nN :: Eq a)
3 (ds_d1oL :: Optional a)
4 (ds_d1oM :: Optional a) ->
5 case ds_d1oL of {
6 Some x ->
7 case ds_d1oM of {
8 Some y -> /= @a $dEq_a1nN x y;
9 None -> /= False

10 };
11 None ->
12 case ds_d1oM of {
13 Some _ -> /= False
14 None -> /= True
15 }
16 }

Listing 77: Core representation of $c== for Optional (simplified)

When using custom types with type classes, the stepper has to look for the right implementation
of the function or operator that is being used. If multiple data types are used, multiple bindings
might have the same name (there might be multiple $c==-bindings, for example). Therefore,
it is always necessary to check the type signatures to choose the right implementation for the
right type.

6.12 Error Handling

The Maybe type is used whenever a function might not have a result. In that case, the function
returns Nothing. However, this is not the same as an error, it just means that a feature or
specific syntax is not supported (yet) by the stepper. If this is the case, the stepping is canceled
and the user is notified with a message („unsupported expression“).

Errors are thrown when a precondition is violated. Errors should never occur during runtime.
The occurrence of an error at runtime means that there is a bug in the implementation.
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6.13 Support for the Standard Haskell Prelude from the Haskell 2010
Report

6.13.1 Introduction

The stepper should be easily accessible with a low entry barrier for beginners of the Haskell
language. To allow users to quickly experiment with their own expressions, we added built-in
support for the Standard Haskell Prelude from the Haskell 2010 Report [24].

Adding the prelude means that users do not have to re-define existing definitions from the
prelude to step then. They can just work with the preexisting types, type classes and functions
from the prelude.

Each Haskell implementation uses its own definition of the prelude. We took the original
prelude definition because its main goal is code clarity instead of speed, which is perfect for our
use case. At some points, we tweaked the prelude a little when we thought it would be helpful
for the user.

While the prelude makes things easier for the users, they can still define custom types, type
classes and functions.

Figure 25: The steppable prelude is a separate file that is integrated into the stepper
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6.13.2 Types

Besides the literal types and lists which were already supported by the stepper from the be-
ginning, the prelude defines some more types: Maybe, Either and Ordering. The other types
are not defined in the prelude itself but in the stepper backend. This is because not every type
definition can be expressed in pure Haskell (for example tuples, lists and literal types).

Declarations for special types such as Integer [. . . ] cannot be given in Haskell.“

(From the Haskell Report 2010 [24])

6.13.3 Type Classes

Type classes from the prelude are supported too, namely Bounded, Enum, Eq, Floating, Fractional,
Functor, Integral, Monad, Num, Ord, RealFloat and RealFrac.

To integrate the type classes, we had to make an important architectural decision:

• Option A: Define and implement the type classes and type class instances inside the
SteppablePrelude.hs file.

• Option B: Add support for the type class functions in the backend.

Option A would allow to step through functions defined in a type class. However, this option
was not always possible to choose for two reasons:

• The Haskell prelude does not contain everything in plain Haskell. Many of the basic
functions from type classes cannot be represented in Haskell code itself. For example, it
is impossible to implement Eq for the Int type in pure Haskell. This is why expressions
like 1 + 2 are evaluated in the backend.

• When we re-define well-known type classes in the SteppablePrelude.hs file (such as Eq),
it would mean that those type classes would not be automatically derivable from anymore.
From a user perspective, this would be bad. When users define custom types, they would
have to manually implement the type classes. It would not be possible (without additional
libraries and flags) tools to, for example, just write deriving (Eq) [25].

This is why we chose option B and added support for the type classes in the backend. This
comes with the downside that functions defined in the backend are just evaluated instead of
stepped. However, this is not a big deal as most of those functions are „unsteppable“ anyway:
The prelude type classes mostly contain unsteppable functions such as sin, +, toInteger and
so on.

The type classes Read and Show are not supported. This is because types such as ReadS or
ShowS have no built-in equivalent representation in Haskell Core, and rebuilding such a type in
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Core would be quite difficult. However, if users wish to work with type classes not defined in
the prelude, they can simply provide custom type classes.

6.13.4 Functions

The prelude contains many helpful functions: Functions to work with types like Maybe/Either,
functions to work with lists, operators, mathematical functions and much more. Those functions
can now be used without any additional effort by the users. Users can also define custom
functions.

6.13.5 Work with the Steppable Prelude from a User’s Perspective

To work with the steppable prelude, the Module SteppablePrelude has to be imported. Fur-
thermore, the automatic import of the standard prelude must be prevented so that there are no
naming conflicts. A simple input file for the stepper which makes use of the SteppablePrelude
could look like this [26]:

1 {-# OPTIONS -fno-implicit-prelude #-}
2

3 module Source6 where
4 import SteppablePrelude
5

6 result = reverse [1, 2, 3]

Listing 78: Example stepper input file that uses the steppable prelude

A full guide on how to use the Steppable Prelude is included in the product documentation:
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/guide/3_steppable_
prelude.html

6.13.6 Summary: How much of the Prelude is supported?

• Operators: everything (24/24)

• Types: everything except IO (13/14)

• Type Classes / Type Class Instances: everything except Read and Show (13/15)

• Functions: everything (93/93)

http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/guide/3_steppable_prelude.html
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/guide/3_steppable_prelude.html


6 Implementation 88

6.14 Resolution of Function Names

6.14.1 Overview: Six Types of Functions

There are six different kinds of functions that are differentiated in the stepper:

Figure 26: The six different types of functions

When the stepper tries to find a function binding, it searches in the order indicated in the
figure.

6.14.2 Override Functions defined by the User (1)

Every so often, it is useful to use different function definitions instead of the ones that are
predefined in the prelude. That is why we implemented a way for the user to override function
definitions from the prelude. To override a function, users just have to define a new function.
This new function has the same name as the function that should be overwritten, but using
the prefix override’. This can be useful, for example, if the original function is optimized for
execution speed instead of readability.

Here is an example:

The reverse function of the prelude is defined in a way that is difficult to understand:

1 reverse :: [a] -> [a]
2 reverse = foldl (flip (:)) []

Listing 79: Complicated reverse function from the prelude

For teaching purpose, it might be useful to replace the function with a slower but easier to read
version:
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1 override'reverse :: [a] -> [a]
2 override'reverse [] = []
3 override'reverse (x:xs) = (override'reverse xs) ++ [x]

Listing 80: Slower but easier reverse function

The overwritten reverse function is now automatically used everywhere instead of the original
function.

6.14.3 Functions defined inside a Type Class instance (2)

In Haskell Core, application of functions defined inside a type class look like this:

1 customFunction @Int $fCustomTypeClassInt (I# 1#) (I# 1#)

Listing 81: Application of a function defined inside a type class

The parameter $fCustomTypeClassInt is a dictionary that contains implementations for every
function required by the CustomTypeClass. In this example, the stepper would try to resolve
$fCustomTypeClassInt and find the implementation for customFunction.

6.14.4 Functions defined by the User (3)

Functions defined by the user can be stepped because the stepper knows the body / definition
of the function itself. Here is an example that shows how the stepping of such a user-defined
function (addOne) looks like conceptually:

1 addOne 1
2 {-replace addOne with definition-}
3 (\x -> (+) x 1) 1
4 {-lamda reduction-}
5 (+) 1 1
6 {-apply (+)-}
7 2

Listing 82: Example stepping on a user-defined function
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6.14.5 Imported Functions from the Prelude (4)

As described in Chapter 6.13, there is a custom prelude file containing many definitions. This
custom prelude file is converted to Haskell Core at runtime (just like the input file from the
user).

Stepping a prelude function looks exactly like stepping a function defined by the user itself.

6.14.6 Unsteppable Functions from the Prelude (5)

There are some functions from type classes that cannot be stepped. The stepper can still
evaluate those functions as long as both the argument- and result-types are supported:

• An argument-type is supported if there is a converter function that converts an Expr into
the expected argument type. For example, if a function expects an argument to have
the type Bool, there has to be a converter function like exprToBool :: Expr Var =>
Bool. Note that such a conversion can potentially lead to an error. For example, this
might be the case if the expression does not contain a representation of a Bool instance.
However, such errors are not expected to happen because such type errors are already
checked by GHC before the stepper logic itself is executed.

• A result-type is supported if there is a converter function that converts the result back
into an Expr. For example, if a function returns a type Bool, there has to be a converter
function like boolToExpr :: Bool => Expr Var.

This downside with this kind of function is that partial function application is not possible.
Furthermore, every argument passed to the function has to be eagerly reduced into a literal.
This is strict behavior and thus not the same evaluation order that GHC would choose. This
is not ideal but still better than stopping the reduction altogether. (See Chapter 6.8 for more
details about the collection and reduction of application arguments)

Here is a code snipped that shows how such unparsable / unsteppable functions are evaluated.
Note how converter functions are used:

1 evaluateUnsteppableFunctionWithArguments :: String -> [Expr Var] -> Expr
Var↪→

2 evaluateUnsteppableFunctionWithArguments "+" [x, y] = (+) x y
3 evaluateUnsteppableFunctionWithArguments ">" [x, y] = boolToCoreExpression

((>) x y)↪→

4 evaluateUnsteppableFunctionWithArguments "negate" [Lit (LitNumber _ x)] =
integerToCoreExpression (negate x)↪→

5 {-...-}

Listing 83: Excerpt of the evaluateUnsteppableFunctionWithArguments function
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Here is the conceptual output of the stepper when it encounters such an unparsable func-
tion:

1 (magicalUnsteppableFunction (((+) 1) 2)) ((+ 3) 4)
2 {-strict/eager evaluate the first argument-}
3 (magicalUnsteppableFunction 3) ((+ 3) 4)
4 {-strict/eager evaluate the second argument-}
5 (magicalUnsteppableFunction 3) 7
6 {-evaluate magicalUnsteppableFunction (showing substepps is not supported

for this function)-}↪→

7 42

Listing 84: Example evaluation on an unsteppable function

6.14.7 Unknown Functions (6)

Unknown functions that are not defined by the user, and that are not supported by the stepper
per default, cause the stepper to stop.

Here is what the output looks like (conceptually) for such an unsupported function:

1 unknownFunction 1
2 {-unknownFunction is not supported-}

Listing 85: Stepper output for an unsupported expression
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6.15 Support for Infinite Lists

The stepper supports infinite lists like [1..]. Infinite lists can be used as function parameters,
for example take 3 [1..].

To support infinite lists, it was necessary to implement a custom version of the Enum typeclass.
The original definition from the prelude would have resulted in an infinite loop when the sub-
steps are printed.

6.16 Detection of Infinite Loops

Of course, infinite loops can still occur if the final result of a reduction is an infinite data
structure. The stepper detects such infinite loops and stops the output before an error occurs.
Here is an example where further reduction to normal form would lead to an infinite loop. In
this case, the stepper stops the reduction as soon as the expression is in head normal form (but
not in normal form):

1 : @Integer
2 0
3 (enumFrom
4 @Integer $fEnumInteger (succ @Integer $fEnumInteger 0))
5

6 {-reduction is complete-}

Listing 86: Detection of infinite loops
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6.17 Haskell-Like Pretty Printing

6.17.1 Pretty Printer

Haskell Core code is not completely difficult to understand for someone who knows the Haskell
language. But sometimes, it is still exhausting to read because the interesting part of an
expression is cluttered with additional information such as types.

To make the stepper more beginner-friendly, we added an optional “Haskell-like“ output. If
this option is used, the stepper prints out Core expressions in a way that it looks like original
Haskell Code (and usually is indeed valid Haskell Code). The pretty printer transforms the
Core expression in several ways to make it easier to read:

• Remove type information

• Use infix operators

• Convert nested lamdas into lamdas with multiple parameters

• Print lists like [1, 2, 3] instead of : 1 (: 2 (: 3 []))

• Visualize tuples and case-patterns like Haskell

The users can choose in which syntax they want to see the output. The next subchapters show
comparisons of the output.

The Haskell-Like Pretty Printer for Core is a separate module which could also be useful for
other projects.
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6.17.2 Example Expression

Original User Input This is what the user enters:

1 mapComparison = map negate [1, 2, 3] < [1, 2, 3]

Listing 87: Pretty print example 1: Original User Input

GHC’s Pretty Printer for Core This is the same expression, printed in Core:

1 mapComparison =
2 < @[Integer]
3 ($fOrd[] @Integer $fOrdInteger)
4 (map
5 @Integer
6 @Integer
7 (negate @Integer $fNumInteger)
8 (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer)))))
9 (: @Integer 1 (: @Integer 2 (: @Integer 3 ([]

@Integer))))↪→

Listing 88: Pretty print example 1: Core output

Our Haskell-Like Pretty Printer This is the same Core expression from above, printed by
the Haskell-Like Pretty Printer:

1 mapComparison = (map (negate) [1, 2, 3]) < [1, 2, 3]

Listing 89: Pretty print example 1: Haskell-like pretty printed Core output

Remarks The output of the Haskell-Like Pretty Printer looks almost like the user’s input,
apart from some explicit brackets.
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6.17.3 Example Expression 2

Original User Input This is what the user enters:

1 monadExample = do
2 a <- [1, 2, 3]
3 b <- [3, 2, 1]
4 return (a * b)

Listing 90: Pretty print example 2: Original User Input

GHC’s Pretty Printer for Core This is the same expression, printed in Core:

1 monadExample =
2 >>=
3 @[]
4 $fMonad[]
5 @Int
6 @Int
7 (: @Int (I# 1#) (: @Int (I# 2#) (: @Int (I# 3#) ([] @Int))))
8 (\ (a :: Int) ->
9 >>=

10 @[]
11 $fMonad[]
12 @Int
13 @Int
14 (: @Int (I# 3#) (: @Int (I# 2#) (: @Int (I# 1#) ([] @Int))))
15 (\ (b :: Int) -> return @[] $fMonad[] @Int (* @Int $fNumInt a

b)))↪→

Listing 91: Pretty print example 2: Core output

Our Haskell-Like Pretty Printer This is the same Core expression from above, printed by
the Haskell-Like Pretty Printer:

1 monadExample = [1, 2, 3] >>= (\a -> [3, 2, 1] >>= (\b -> return (a * b)))

Listing 92: Pretty print example 2: Haskell-like pretty printed Core output

Remarks Haskell Core has no monadic do-syntax. Instead, the operator »= is used. The
Haskell-Like Pretty Printer output is valid Haskell as well.
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6.18 Configurable Verbosity

6.18.1 Full Verbosity vs. Minimal Verbosity

The full output of a step by step reduction can become quite large. Sometimes even simple input
expressions result in hundreds of pages in output and a large amount of sub-steps. Especially
recursive statements, which are widely used in Haskell, increase the length of the output.

This is the reasons we made the verbosity of the output configurable. In the configuration of
the backend, it can be decided for every possible reduction category if the result should be
printed or not. To make the tool accessible, the user can choose between two verbosity levels:
all sub-steps or only interesting sub-steps. When the user chooses “only interesting sub-steps“,
only the following reductions-types are shown:

• Evaluation of unsteppable functions

• Pattern Matching

Practice has shown that this minimal verbosity configuration leads to good and understandable
results.
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6.18.2 Example of minimal verbosity

The full reduction for the expression maximum [1, 2, 3] contains 26 sub-steps. If the minimal
verbosity is turned on, only 7 “interesting“ sub-steps are shown:

1 maximum [1, 2, 3]
2

3 {- skipping 3 substeps -}
4

5 {- Replace with matching pattern -}
6 foldl1 (max) [1, 2, 3]
7

8 {- skipping 4 substeps -}
9

10 {- Replace with matching pattern -}
11 foldl (max) 1 [2, 3]
12

13 {- skipping 4 substeps -}
14

15 {- Replace with matching pattern -}
16 foldl (max) (max 1 2) [3]
17

18 {- skipping 4 substeps -}
19

20 {- Replace with matching pattern -}
21 foldl (max) (max (max 1 2) 3) []
22

23 {- skipping 4 substeps -}
24

25 {- Replace with matching pattern -}
26 max (max 1 2) 3
27

28 {- (Strict) reduce application argument -> Evaluate unsteppable
function/operator max -}↪→

29 max 2 3
30

31 {- Evaluate unsteppable function/operator max -}
32 3
33

34 {- reduction completed successfully -}

Listing 93: Example of minimal verbosity output
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6.19 Notes for the Maintenance of this Project

6.19.1 Project Maintenance

There might be a continuation work based on this project, so we want to be transparent
about the pitfalls we had to deal with and the workarounds we chose. This section should
help developers in the future to work with the substitution stepper and to maintain it. We
consulted experts of GHC Core but there does not seem to be simple solutions to replace those
workarounds chosen:

6.19.2 Workaround: Creation of Boolean Data Constructors

To support some unsteppable functions from the prelude, it was sometimes necessary to convert
basic Haskell types into their corresponding Core representation and the other way around. We
were lucky that GHC contains many helper functions for the creation of literal expressions, such
as mkLitString or mkLitInt64.

However, the Bool type does not have its own custom representation in Haskell Core (such
as Integer, Char, and others). Instead, True and False are represented as type construc-
tors.

The implementation of our function boolToCoreExpression :: Bool -> CoreExpr looks
odd. It allows us to work with Bool values, but we felt like there must be a more elegant
way to create custom type constructors in Core.

6.19.3 Workaround: Sporadic Usage of „show“ to Extract some Information from Core
Instances

In some cases, we need to extract specific information from a Core expression but did not find
a function in GHC that helps to extract the information. In such cases, we used the show
function for Core expressions and extracted the required information on a String level. This
happens in these cases:

• To find out if a function refers to a class dictionary (such as $EqInteger), the stepper
analyzes the name of the function. This is not the most elegant way, as it might lead
to errors if the user defines functions where the name resembles a type class instances.
Fortunately, this is unlikely.

• When the stepper looks up a specific binding from the list of bindings, it compares the
binding name and the expression type to choose the right binding. The comparison
happens on the String-representation of these types. This works but is not elegant.
Unfortunately, the type Type does not derive from the Eq type class.

• To find out if a type is a tuple type, the stepper uses String-comparison. A tuple type
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looks different depending on how large a tuple is. Valid tuple types are (,), („), („,)
and so on. The stepper checks if the type starts with a ( and ends with a ) to decide if
a type describes a tuple. Again, this works but is not elegant.

6.19.4 Workaround: Extracting Functions out of Type Class Dictionaries

The following example snippet shows the generated type dictionary $fEqDirection which
contains functions from the Eq type class for the custom type Direction. It includes references
to the implementations of == and /= for this specific type.

1 C:Eq @(Direction a) ($c== @a $dEq_a3FW) ($c/= @a $dEq_a3FW)

Listing 94: Class dictionary in Core, containing references to the operators == and /=

When the stepper needs to find the implementation for an operator or function (such as ==)
it compares the function name to the suffixes of the (automatically named) function from the
class dictionary. In this example, the stepper would find the right function, which is $c==. This
worked for every example we attempted. However, there is no guarantee that the generated
function names follow this pattern, which could potentially result in a bug. Unfortunately, we
haven’t discovered a better way to solve this imperfection.
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7 Testing and Documentation

7.1 Haddock Documentation

We documented the source code using Haddock Comments as well as inline commends where
we thought it would be helpful for developers.

The Haddock Documentation can be downloaded from the product documentation GitLab
Page: http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.
html

Figure 27: Haddock documentation

http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html
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7.2 Test Suite

The testing framework Hspec and its integration with QuickCheck was used to write automatic
unit and integration tests. The tests can be started with the following command:

1 stack --no-terminal test

Listing 95: Command to execute tests in the console

This is what part of the output looks like:

Figure 28: Test output

The tests are also executed in the CI for every push. If there are failing tests, the whole pipeline
fails.



7 Testing and Documentation 102

7.3 Integration Tests

• Total Amount of Integration tests: 114 (a list of all the tests can be found in the
appendix)

Each integration test defines an input expression in pure Haskell, as well as an expected output
expression. Here is an example:

1 lamdaApplicationInput = (\x y -> x+y) 1 2
2 lamdaApplicationExpectedOutput = 3

Listing 96: Input and expected output for an example integration test

Using the GHC library, both expressions are converted to Core during the test. Next, the input
expression is reduced with the stepper until it is in head normal form. Finally, the equality of
the reduced input expression and the expected output expression is checked.

The call to the GHC library is not pure, as it uses the IO monad. Therefore, it was a good idea
to use the before hook from Hspec to pass all the data needed into the test instead of calling
the GHC library from inside the tests. Like this, we did not have to work with monadic code
inside the tests. All integration tests receive two variables to work with:

• a function bindingFinder which is used to get the Core expression for a given name

• a function coreBindings containing all the Core expressions

This is what a typical integration tests looks like:

1 spec :: Spec
2 spec = before getBindingFinderWithCoreBindings $ do
3 describe "Basic Function/Lamda Application" $ do
4 it "can reduce function application" $ \(bindingFinder, coreBindings)

-> do↪→

5 let input = bindingFinder "lamdaApplicationInput"
6 let expectedOutput = bindingFinder "lamdaApplicationExpectedOutput"
7 let actualOutput = reduceToHeadNormalForm coreBindings input
8

9 {-expectation-}
10 actualOutput `shouldBe` expectedOutput

Listing 97: A typical integration test

Note that the shouldBe function from Hspec can directly be used because we implemented the
Eq type for Expr b. The equality comparison only works if both expressions are Literals.
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7.4 Unit Tests

• Amount of Unit tests: 19 (a list of all the tests can be found in the appendix)

The integration tests check that expressions are successfully reduced from the initial form into
normal form. The integration tests compare the reduced expression in normal form with the
expected result to decide whether the reduction was successful or not. In contrast, the “Unit
tests“ check if the individual reduction steps are applied correctly.

Technically speaking, those tests are integration tests as well. They trigger the GHC pipeline to
obtain the input expression. Still, we refer to them as Unit tests because the intention is to test
the function applyStep and not the GHC pipeline itself. This approach was chosen because
it is almost impossible to create a valid and useful Core expression from scratch without using
the GHC.

The function applyStep takes an expression as an argument and returns a reduced expression
and a description of the reduction rule that was selected. The unit tests check if the right
reduction rule was chosen for the given input expression and if the reduced expression has the
expected format.

There are also separate unit tests which check the output format of the Haskell-Like Pretty
Printer.

7.5 End to End tests

End to End tests were done manually. A Haskell file was defined that contains numerous
Haskell expressions. Each expression uses a different aspect or syntactic feature of the Haskell
language. We printed the reduction output for each expression and made sure that all the sub
steps are correct.

7.6 Investigating Bugs

Sporadically, it was helpful for debugging to add tracing statements to the code when a specific
problem had to be investigated.

Here is how an expression that makes use of tracing looks:

1 tryFindBindingForString key [] = trace "no binding found" Nothing

Listing 98: Usage of tracing
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7.7 Testing Conclusion

Automatic testing helped us to discover multiple bugs. For example, there was a silly bug
regarding the pattern matching: The patterns in Core are not necessarily in the same order as
the patterns in original Haskell. This led to the bug that sometimes during the stepping, the
default-pattern (_) was used even though there were other matching patterns.

The tests not only helped to discover bugs, but they also helped to get an overview of the
supported and unsupported syntax at any given point in time. We implemented not only tests
for existing functionality, but also for the missing functionality using the pendingWith function
from Hspec. Each pending test can be interpreted as a to-do item.
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8 Result

8.1 Final product

The final product implements reduction rules for all the Core Constructors (except for Tick
which is rarely used) which means that most expressions should be supported. As stated in the
task description, users can define a custom context with functions, types, and type classes and
choose an expression to step. If the output is printed with the Haskell-Like Pretty Printer, the
result is a valid Haskell expression in most of the cases. For every substitution step taken, the
chosen reduction rule is printed out as a comment. Those comments can also be suppressed if
the user wishes so. Depending on the chosen verbosity, some sub-steps are skipped. The default
verbosity is chosen in a way that the output looks like the reductions which are known from
textbooks. In the backend, the verbosity can be fine-tuned for every reduction rule individually.
The GHC library was used whenever possible: Mainly to convert the Haskell Input into Haskell
Core, but also to extract information and manipulate Core expressions.

If there will be a continuation-work, it would make sense to connect the stepper backend to a
graphical user interface. The backend is created in a manner that allows for an easy exchange
of the user interface. This would make the tool more accessible for beginner users and would
allow adding additional features – for example, to highlight subexpressions that change or to
let the user select which part of an expression should be reduced next.

There is a user manual on the product documentation GitLab Page: http://haskell-substitution-
stepper.pages.gitlab.ost.ch/product-docu/index.html

8.2 Demonstration

8.2.1 Examples

The task descriptions contained some example reductions from textbooks. In the next chapters,
we compare those reductions with the output of the stepper for the same expression.

http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html
http://haskell-substitution-stepper.pages.gitlab.ost.ch/product-docu/index.html
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8.2.2 Example 1: sum (Core-Like Pretty Printing, Low Verbosity)

Here is the reduction printed in the textbook:

Figure 29: Textbook example 1
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Here is the output of the stepper:

1 sum [1, 2, 3]
2

3 {- skipping 5 substeps -}
4

5 {- Replace with matching pattern -}
6 foldl ((+)) ((fromInteger 0) + 1) [2, 3]
7

8 {- skipping 4 substeps -}
9

10 {- Replace with matching pattern -}
11 foldl ((+)) (((fromInteger 0) + 1) + 2) [3]
12

13 {- skipping 4 substeps -}
14

15 {- Replace with matching pattern -}
16 foldl ((+)) ((((fromInteger 0) + 1) + 2) + 3) []
17

18 {- skipping 4 substeps -}
19

20 {- Replace with matching pattern -}
21 (((fromInteger 0) + 1) + 2) + 3
22

23 {- (Strict) reduce application argument -> (Strict) reduce application
argument -> (Strict) reduce application argument -> Evaluate
unsteppable function/operator fromInteger -}

↪→

↪→

24 ((0 + 1) + 2) + 3
25

26 {- (Strict) reduce application argument -> (Strict) reduce application
argument -> Evaluate unsteppable function/operator + -}↪→

27 (1 + 2) + 3
28

29 {- (Strict) reduce application argument -> Evaluate unsteppable
function/operator + -}↪→

30 3 + 3
31

32 {- Evaluate unsteppable function/operator + -}
33 6
34

35 {- reduction completed successfully -}

Listing 99: Reduction of sum
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As can be seen, the implementation of sum is different from the version in the textbook.
However, we can define a function custom sumList that works like the example in the text-
book:

1 sumList :: (Num a) => [a] -> a
2 sumList [] = 0
3 sumList (x:xs) = x + sumList xs

Listing 100: Definition of sumList
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Now, the stepper output almost exactly looks like the example in the textbook:

1 sumList [1, 2, 3]
2

3 {- skipping 2 substeps -}
4

5 {- Replace with matching pattern -}
6 1 + (sumList [2, 3])
7

8 {- skipping 2 substeps -}
9

10 {- (Strict) reduce application argument -> Replace with matching pattern
-}↪→

11 1 + (2 + (sumList [3]))
12

13 {- skipping 2 substeps -}
14

15 {- (Strict) reduce application argument -> (Strict) reduce application
argument -> Replace with matching pattern -}↪→

16 1 + (2 + (3 + (sumList [])))
17

18 {- skipping 2 substeps -}
19

20 {- (Strict) reduce application argument -> (Strict) reduce application
argument -> (Strict) reduce application argument -> Replace with
matching pattern -}

↪→

↪→

21 1 + (2 + (3 + (fromInteger 0)))
22

23 {- (Strict) reduce application argument -> (Strict) reduce application
argument -> (Strict) reduce application argument -> Evaluate
unsteppable function/operator fromInteger -}

↪→

↪→

24 1 + (2 + (3 + 0))
25

26 {- (Strict) reduce application argument -> (Strict) reduce application
argument -> Evaluate unsteppable function/operator + -}↪→

27 1 + (2 + 3)
28

29 {- (Strict) reduce application argument -> Evaluate unsteppable
function/operator + -}↪→

30 1 + 5
31

32 {- Evaluate unsteppable function/operator + -}
33 6
34

35 {- reduction completed successfully -}

Listing 101: Reduction of sumList
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8.2.3 Example 2: reverse (Core-Like Pretty Printing, Low Verbosity)

Here is the reduction printed in the textbook:

Figure 30: Textbook example 2

Again, the behavior of the reverse function from the prelude is different from the function
from the textbook.

For a better comparison, we define a custom reverseList function:

1 reverseList :: [a] -> [a]
2 reverseList [] = []
3 reverseList (a : bc) = reverseList bc ++ [a]

Listing 102: Definition of reverseList
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The resulting reduction looks very similar to the textbook version and is slightly less verbose
in the “low verbosity“ configuration:

1 reverseList [1, 2, 3]
2

3 {- skipping 2 substeps -}
4

5 {- Replace with matching pattern -}
6 (reverseList [2, 3]) ++ [1]
7

8 {- skipping 20 substeps -}
9

10 {- Replace with matching pattern -}
11 3 : (([] ++ [2]) ++ [1])
12

13 {- reduction complete - reduce constructor arguments for better
visualization -}↪→

14 [3, 2, 1]
15

16 {- reduction completed successfully -}

Listing 103: Reduction of reverseList
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8.2.4 Example 3: safediv (Core-Like Pretty Printing, Low Verbosity)

Here is the reduction printed in the textbook:

Figure 31: Textbook example 3

This is the definition of the safeDiv function:

1 safeDiv :: Integer -> Integer -> Maybe Integer
2 safeDiv x 0 = Nothing
3 safeDiv x y = Just (x `div` y)

Listing 104: Definition of safeDiv

The output of the stepper is identical, although not every step from the textbook is shown:
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1 (pure 10) >>= (\n -> (pure 2) >>= (\m -> safeDiv n m))
2

3 {- skipping 5 substeps -}
4

5 {- Replace with matching pattern -}
6 (\n -> (pure 2) >>= (\m -> safeDiv n m)) 10
7

8 {- skipping 6 substeps -}
9

10 {- Replace with matching pattern -}
11 (\m -> safeDiv 10 m) 2
12

13 {- skipping 5 substeps -}
14

15 {- Replace with matching pattern -}
16 Just (div 10 2)
17

18 {- reduction complete - reduce constructor arguments for better
visualization -}↪→

19 Just 5
20

21 {- reduction completed successfully -}

Listing 105: Reduction of safeDiv

Like in all the other examples, all the reduction steps can be shown using a more verbose
configuration.



8 Result 114

8.2.5 Example 4: applicative

Here is the reduction printed in the textbook:

Figure 32: Textbook example 4

This last expression cannot elegantly be stepped with the stepper. The reason is that the
Applicative type class is not part of the standard prelude.

8.2.6 Examples of the four verbosity levels

All the examples listed here use the lowest verbosity level because higher verbosity levels tend
to expand over many pages. In the appendix, there is an example of the same expression
reduced in all 4 verbosity levels.
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8.3 Validation of Functional Requirements

Requirement A user can enter arbitrary Haskell Code into the stepper as text input (not a
simplified Version of Haskell).

Result Requirement accomplished

Requirement A user can provide multiple files at once, input files can reference other files.
Result Requirement not accomplished. Only one single input file (containing an arbi-

trary number of expression) can be provided as input.

Requirement A user can configure the verbosity of the stepper output.
Result Requirement accomplished. User can choose four different verbosity levels.

Requirement The stepper explains each reduction step that was taken.
Result Requirement accomplished.

Requirement The stepper follows the rules of laziness and non-strictness.
Result Requirement partially accomplished. Rules of laziness and non-strictness are

followed. Exception: Arguments of unsteppable functions are eagerly reduced
as described in Chapter 6.14.6.

Requirement A user can work with custom functions, custom types and custom type classes.
Result Requirement accomplished.

Requirement A user can work with functions, types, and type classes from the Standard
Haskell Prelude where it is feasible.

Result Requirement accomplished. Support for the Prelude is implemented except for
IO, Show and Read.
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8.4 Validation of Non-Functional Requirements

Requirement Performance: Generating and Printing the reduction steps for a simple expres-
sion like “reverse [1, 2, 3, 4]“ does not take any longer than 10 seconds on the
development machines.

Result Requirement accomplished. Compiling a file printing (multiple) reduction takes
about two seconds.

Requirement Security: The software does not use dynamic loading with “eval“ to implement
the reduction rules.

Result Requirement accomplished. There is a custom “evaluate“ function that does
not use dynamic loading.

Requirement Constraints: Reduction are implemented in the the Haskell programming lan-
guage.

Result Requirement accomplished.

Requirement Installability: There is a one-command installer for the software.
Result Requirement accomplished. The software can be installed with stack (also see

installation guide in project documentation)

Requirement Learnability: The tool can be used and understood by someone without having
read the full user manual.

Result Requirement accomplished. All options and commands are explained in the
helper page of the console tool.

Requirement Fault tolerance: Expressions that cannot be stepped do not result in a crash of
the application.

Result Requirement accomplished.

Requirement Fault tolerance: Infinite loops during reduction do not result in a crash of the
application, instead the reduction is aborted.

Result Requirement accomplished.

Requirement Maintainability: The code is structured in a modular way. The user interface
can potentially be exchanged without having to change the backend.

Result Requirement accomplished.

Requirement Modifiability/Changeability: The backend can be individually configured. Not
every configuration option has to be shown to the user.

Result Requirement accomplished.
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Requirement Testability: The CI pipeline fails if there are failing automated tests.
Result Requirement accomplished.
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8.5 Code Metrics

Here is a statistic about the code written for this project:

Language files blank comment code
Haskell 33 884 505 3853
YAML 4 36 116 121
Markdown 2 23 0 40
——– ——– ——– ——– ——–
SUM: 39 943 621 4014

Table 3: Code Metrics
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9 Conclusion
The goal of this thesis was to implement a tool hat can be used to visualize the execution of a
functional program.

To achieve this, we first compiled a comprehensive overview and analysis of the Haskell pro-
gramming language, its features, as well as the Glasgow Haskell Compiler pipeline and existing
tools with similar goals.

Due to this research and after discussions with various Haskell experts, we concluded that it
is more advantageous to implement the substitution stepper on GHCs intermediate language
Haskell Core than on the original Haskell AST.

We developed a command line tool that can successfully step through most Haskell programs
and produces an output that is very similar to textbook examples. The stepper output is
customizable so that the level of detail and amount of information provided is appropriate to
the user’s needs.

In comparison to similar, previously existing tools, our Haskell Substitution Stepper supports
a larger part of Haskell and is more closely coupled with the Glasgow Haskell Compiler. It is
also easier to customize and extend.

Future work could include the integration of the stepper into GHCi or an IDE-plugin, for
example for VS Code. Further possibilities are the implementation of an interactive GUI or
expanding the supported Haskell language features. It would be interesting to provide an online
version of the stepper to make it even more accessible without installation.
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10 Appendix
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10.1 Declaration of other People’s Work

• Code Snippets: The source of unchanged code snippets is stated as a comment in the
source code.

• Documentation template: This document is based on the following template by
"maknesium" which is published under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Germany License: https://github.com/maknesium/latex-vorlage-diplom-
bachelor-masterarbeiten

• GitLab Page Template: The template chosen for the GitLab Page was created by
former students.

• Documentation correction: Many thanks to AnneMarie O’Neill for proofreading this
text!

https://github.com/maknesium/latex-vorlage-diplom-bachelor-masterarbeiten
https://github.com/maknesium/latex-vorlage-diplom-bachelor-masterarbeiten
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10.2 Example of the four verbosity levels

Input Expression

This is the input expression:

1 maximum [1, 2, 3]

Listing 106: maximum function

Verbosity Level 1: Haskell-Like Pretty Printing, Skipping Substeps

This is the output for verbosity level 1:



1

maximum [1, 2, 3]

{- skipping 3 substeps -}

{- Replace with matching pattern -}
foldl1 (max) [1, 2, 3]

{- skipping 4 substeps -}

{- Replace with matching pattern -}
foldl (max) 1 [2, 3]

{- skipping 4 substeps -}

{- Replace with matching pattern -}
foldl (max) (max 1 2) [3]

{- skipping 4 substeps -}

{- Replace with matching pattern -}
foldl (max) (max (max 1 2) 3) []

{- skipping 4 substeps -}

{- Replace with matching pattern -}
max (max 1 2) 3

{- (Strict) reduce application argument -> Evaluate unsteppable 
function/operator max -}
max 2 3

{- Evaluate unsteppable function/operator max -}
3
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Verbosity Level 2: Haskell-Like Pretty Printing, No Skipping

This is the output for verbosity level 2:



1

maximum [1, 2, 3]

{- Reduce function of application -> Replace 'maximum' with 
definition -}
(\$dOrd_a84C ->
  \ds_d8Ej ->
    case ds_d8Ej of {
      [] -> (error "Prelude.maximum: empty list");
      _ -> (foldl1 (max) ds_d8Ej)
    }
    where
      $dIP_a84F =
        (pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 421 21 421 56) emptyCallStack))
  [1, 2, 3]

{- Reduce function of application -> Replace binding '$dIP_a84F' 
with definition -}
(\ds_d8Ej ->
  case ds_d8Ej of {
    [] ->
      (error
        pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 421 21 421 56) emptyCallStack
        "Prelude.maximum: empty list");
    _ -> (foldl1 (max) ds_d8Ej)
  })
  [1, 2, 3]

{- Lamda Application -}
case [1, 2, 3] of {
  [] ->
    (error
      pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 421 21 421 56) emptyCallStack
      "Prelude.maximum: empty list");
  _ -> (foldl1 (max) [1, 2, 3])
}

{- Replace with matching pattern -}
foldl1 (max) [1, 2, 3]



2

{- Reduce function of application -> Replace 'foldl1' with 
definition -}
(\ ->
  \f ds_d8Eg ->
    case ds_d8Eg of {
      [] -> (error "Prelude.foldl1: empty list");
      : x xs -> (foldl f x xs)
    }
    where
      $dIP_a84y =
        (pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 297 21 297 55) emptyCallStack))
  max
  [1, 2, 3]

{- Reduce function of application -> Replace binding '$dIP_a84y' 
with definition -}
(\f ds_d8Eg ->
  case ds_d8Eg of {
    [] ->
      (error
        pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 297 21 297 55) emptyCallStack
        "Prelude.foldl1: empty list");
    : x xs -> (foldl f x xs)
  })
  max
  [1, 2, 3]

{- Lamda Application -}
(\ds_d8Eg ->
  case ds_d8Eg of {
    [] ->
      (error
        pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 297 21 297 55) emptyCallStack
        "Prelude.foldl1: empty list");
    : x xs -> (foldl (max) x xs)
  })
  [1, 2, 3]



3

{- Lamda Application -}
case [1, 2, 3] of {
  [] ->
    (error
      pushCallStack ("error", SrcLoc "main" "SteppablePrelude" 
"src/SteppablePrelude.hs" 297 21 297 55) emptyCallStack
      "Prelude.foldl1: empty list");
  : x xs -> (foldl (max) x xs)
}

{- Replace with matching pattern -}
foldl (max) 1 [2, 3]

{- Reduce function of application -> Replace 'foldl' with 
definition -}
(\f z ds_d8Eb ->
  case ds_d8Eb of {
    [] -> z;
    : x xs -> (foldl f (f z x) xs)
  })
  max
  1
  [2, 3]

{- Lamda Application -}
(\z ds_d8Eb ->
  case ds_d8Eb of {
    [] -> z;
    : x xs -> (foldl (max) (max z x) xs)
  })
  1
  [2, 3]

{- Lamda Application -}
(\ds_d8Eb ->
  case ds_d8Eb of {
    [] -> 1;
    : x xs -> (foldl (max) (max 1 x) xs)
  })
  [2, 3]

{- Lamda Application -}



4

case [2, 3] of {
  [] -> 1;
  : x xs -> (foldl (max) (max 1 x) xs)
}

{- Replace with matching pattern -}
foldl (max) (max 1 2) [3]

{- Reduce function of application -> Replace 'foldl' with 
definition -}
(\f z ds_d8Eb ->
  case ds_d8Eb of {
    [] -> z;
    : x xs -> (foldl f (f z x) xs)
  })
  max
  max 1 2
  [3]

{- Lamda Application -}
(\z ds_d8Eb ->
  case ds_d8Eb of {
    [] -> z;
    : x xs -> (foldl (max) (max z x) xs)
  })
  max 1 2
  [3]

{- Lamda Application -}
(\ds_d8Eb ->
  case ds_d8Eb of {
    [] -> (max 1 2);
    : x xs -> (foldl (max) (max (max 1 2) x) xs)
  })
  [3]

{- Lamda Application -}
case [3] of {
  [] -> (max 1 2);
  : x xs -> (foldl (max) (max (max 1 2) x) xs)
}



5

{- Replace with matching pattern -}
foldl (max) (max (max 1 2) 3) []

{- Reduce function of application -> Replace 'foldl' with 
definition -}
(\f z ds_d8Eb ->
  case ds_d8Eb of {
    [] -> z;
    : x xs -> (foldl f (f z x) xs)
  })
  max
  max (max 1 2) 3
  []

{- Lamda Application -}
(\z ds_d8Eb ->
  case ds_d8Eb of {
    [] -> z;
    : x xs -> (foldl (max) (max z x) xs)
  })
  max (max 1 2) 3
  []

{- Lamda Application -}
(\ds_d8Eb ->
  case ds_d8Eb of {
    [] -> (max (max 1 2) 3);
    : x xs -> (foldl (max) (max (max (max 1 2) 3) x) xs)
  })
  []

{- Lamda Application -}
case [] of {
  [] -> (max (max 1 2) 3);
  : x xs -> (foldl (max) (max (max (max 1 2) 3) x) xs)
}

{- Replace with matching pattern -}
max (max 1 2) 3

{- (Strict) reduce application argument -> Evaluate unsteppable 
function/operator max -}
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max 2 3

{- Evaluate unsteppable function/operator max -}
3

{- reduction completed successfully -}



10 Appendix 131

Verbosity Level 3: Core Pretty Printing, Skipping Substeps

This is the output for verbosity level 3:
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maximum
  @Integer
  $fOrdInteger
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- skipping 5 substeps -}

{- Replace with matching pattern -}
foldl1
  @Integer
  (max @Integer $fOrdInteger)
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- skipping 5 substeps -}

{- Replace with matching pattern -}
foldl
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  1
  (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- skipping 6 substeps -}

{- Replace with matching pattern -}
foldl
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger 1 2)
  (: @Integer 3 ([] @Integer))
{- skipping 6 substeps -}

{- Replace with matching pattern -}
foldl
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3)
  ([] @Integer)
{- skipping 6 substeps -}

{- Replace with matching pattern -}



2

max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3
{- (Strict) reduce application argument -> Evaluate unsteppable 
function/operator max -}
max @Integer $fOrdInteger 2 3
{- Evaluate unsteppable function/operator max -}
3
{- reduction completed successfully -}



10 Appendix 134

Verbosity Level 4: Core Pretty Printing, No Skipping

This is the output for verbosity level 4:



1

maximum
  @Integer
  $fOrdInteger
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Reduce function of application -> Replace 'maximum' with 
definition -}
(\ (@a) ($dOrd_a84C :: Ord a) ->
   let {
     $dIP_a84F :: HasCallStack
     [LclId,
      Unf=Unf{Src=<vanilla>, TopLvl=False, Value=False, 
ConLike=False,
              WorkFree=False, Expandable=False, Guidance=IF_ARGS 
[] 340 0}]
     $dIP_a84F
       = (pushCallStack
            (unpackCString# "error"#,
             SrcLoc
               (unpackCString# "main"#)
               (unpackCString# "SteppablePrelude"#)
               (unpackCString# "src/SteppablePrelude.hs"#)
               (I# 421#)
               (I# 21#)
               (I# 421#)
               (I# 56#))
            emptyCallStack)
         `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
                 :: Coercible CallStack (?
callStack::CallStack)) } in
   \ (ds_d8Ej :: [a]) ->
     case ds_d8Ej of {
       __DEFAULT -> foldl1 @a (max @a $dOrd_a84C) ds_d8Ej;
       [] ->
         error
           @'LiftedRep
           @a
           $dIP_a84F
           (unpackCString# "Prelude.maximum: empty list"#)
     })
  @Integer
  $fOrdInteger
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  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Lamda Application -}
(\ ($dOrd_a84C :: Ord a) ->
   let {
     $dIP_a84F :: HasCallStack
     [LclId,
      Unf=Unf{Src=<vanilla>, TopLvl=False, Value=False, 
ConLike=False,
              WorkFree=False, Expandable=False, Guidance=IF_ARGS 
[] 340 0}]
     $dIP_a84F
       = (pushCallStack
            (unpackCString# "error"#,
             SrcLoc
               (unpackCString# "main"#)
               (unpackCString# "SteppablePrelude"#)
               (unpackCString# "src/SteppablePrelude.hs"#)
               (I# 421#)
               (I# 21#)
               (I# 421#)
               (I# 56#))
            emptyCallStack)
         `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
                 :: Coercible CallStack (?
callStack::CallStack)) } in
   \ (ds_d8Ej :: [a]) ->
     case ds_d8Ej of {
       __DEFAULT -> foldl1 @Integer (max @Integer $dOrd_a84C) 
ds_d8Ej;
       [] ->
         error
           @'LiftedRep
           @Integer
           $dIP_a84F
           (unpackCString# "Prelude.maximum: empty list"#)
     })
  $fOrdInteger
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Lamda Application -}
(let {
   $dIP_a84F :: HasCallStack
   [LclId,
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    Unf=Unf{Src=<vanilla>, TopLvl=False, Value=False, 
ConLike=False,
            WorkFree=False, Expandable=False, Guidance=IF_ARGS [] 
340 0}]
   $dIP_a84F
     = (pushCallStack
          (unpackCString# "error"#,
           SrcLoc
             (unpackCString# "main"#)
             (unpackCString# "SteppablePrelude"#)
             (unpackCString# "src/SteppablePrelude.hs"#)
             (I# 421#)
             (I# 21#)
             (I# 421#)
             (I# 56#))
          emptyCallStack)
       `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
               :: Coercible CallStack (?callStack::CallStack)) } 
in
 \ (ds_d8Ej :: [a]) ->
   case ds_d8Ej of {
     __DEFAULT -> foldl1 @Integer (max @Integer $fOrdInteger) 
ds_d8Ej;
     [] ->
       error
         @'LiftedRep
         @Integer
         $dIP_a84F
         (unpackCString# "Prelude.maximum: empty list"#)
   })
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Reduce function of application -> Replace binding '$dIP_a84F' 
with definition -}
(\ (ds_d8Ej :: [a]) ->
   case ds_d8Ej of {
     __DEFAULT -> foldl1 @Integer (max @Integer $fOrdInteger) 
ds_d8Ej;
     [] ->
       error
         @'LiftedRep
         @Integer
         ((pushCallStack
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             (unpackCString# "error"#,
              SrcLoc
                (unpackCString# "main"#)
                (unpackCString# "SteppablePrelude"#)
                (unpackCString# "src/SteppablePrelude.hs"#)
                (I# 421#)
                (I# 21#)
                (I# 421#)
                (I# 56#))
             emptyCallStack)
          `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
                  :: Coercible CallStack (?
callStack::CallStack)))
         (unpackCString# "Prelude.maximum: empty list"#)
   })
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Lamda Application -}
case : @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))) of 
{
  __DEFAULT ->
    foldl1
      @Integer
      (max @Integer $fOrdInteger)
      (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))));
  [] ->
    error
      @'LiftedRep
      @Integer
      ((pushCallStack
          (unpackCString# "error"#,
           SrcLoc
             (unpackCString# "main"#)
             (unpackCString# "SteppablePrelude"#)
             (unpackCString# "src/SteppablePrelude.hs"#)
             (I# 421#)
             (I# 21#)
             (I# 421#)
             (I# 56#))
          emptyCallStack)
       `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
               :: Coercible CallStack (?callStack::CallStack)))
      (unpackCString# "Prelude.maximum: empty list"#)
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}
{- Replace with matching pattern -}
foldl1
  @Integer
  (max @Integer $fOrdInteger)
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Reduce function of application -> Replace 'foldl1' with 
definition -}
(\ (@a) ->
   let {
     $dIP_a84y :: HasCallStack
     [LclId,
      Unf=Unf{Src=<vanilla>, TopLvl=False, Value=False, 
ConLike=False,
              WorkFree=False, Expandable=False, Guidance=IF_ARGS 
[] 340 0}]
     $dIP_a84y
       = (pushCallStack
            (unpackCString# "error"#,
             SrcLoc
               (unpackCString# "main"#)
               (unpackCString# "SteppablePrelude"#)
               (unpackCString# "src/SteppablePrelude.hs"#)
               (I# 297#)
               (I# 21#)
               (I# 297#)
               (I# 55#))
            emptyCallStack)
         `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
                 :: Coercible CallStack (?
callStack::CallStack)) } in
   \ (f :: a -> a -> a) (ds_d8Eg :: [a]) ->
     case ds_d8Eg of {
       [] ->
         error
           @'LiftedRep
           @a
           $dIP_a84y
           (unpackCString# "Prelude.foldl1: empty list"#);
       : x xs -> foldl @a @a f x xs
     })
  @Integer
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  (max @Integer $fOrdInteger)
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Lamda Application -}
(let {
   $dIP_a84y :: HasCallStack
   [LclId,
    Unf=Unf{Src=<vanilla>, TopLvl=False, Value=False, 
ConLike=False,
            WorkFree=False, Expandable=False, Guidance=IF_ARGS [] 
340 0}]
   $dIP_a84y
     = (pushCallStack
          (unpackCString# "error"#,
           SrcLoc
             (unpackCString# "main"#)
             (unpackCString# "SteppablePrelude"#)
             (unpackCString# "src/SteppablePrelude.hs"#)
             (I# 297#)
             (I# 21#)
             (I# 297#)
             (I# 55#))
          emptyCallStack)
       `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
               :: Coercible CallStack (?callStack::CallStack)) } 
in
 \ (f :: a -> a -> a) (ds_d8Eg :: [a]) ->
   case ds_d8Eg of {
     [] ->
       error
         @'LiftedRep
         @Integer
         $dIP_a84y
         (unpackCString# "Prelude.foldl1: empty list"#);
     : x xs -> foldl @Integer @Integer f x xs
   })
  (max @Integer $fOrdInteger)
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Reduce function of application -> Replace binding '$dIP_a84y' 
with definition -}
(\ (f :: a -> a -> a) (ds_d8Eg :: [a]) ->
   case ds_d8Eg of {
     [] ->
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       error
         @'LiftedRep
         @Integer
         ((pushCallStack
             (unpackCString# "error"#,
              SrcLoc
                (unpackCString# "main"#)
                (unpackCString# "SteppablePrelude"#)
                (unpackCString# "src/SteppablePrelude.hs"#)
                (I# 297#)
                (I# 21#)
                (I# 297#)
                (I# 55#))
             emptyCallStack)
          `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
                  :: Coercible CallStack (?
callStack::CallStack)))
         (unpackCString# "Prelude.foldl1: empty list"#);
     : x xs -> foldl @Integer @Integer f x xs
   })
  (max @Integer $fOrdInteger)
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Lamda Application -}
(\ (ds_d8Eg :: [a]) ->
   case ds_d8Eg of {
     [] ->
       error
         @'LiftedRep
         @Integer
         ((pushCallStack
             (unpackCString# "error"#,
              SrcLoc
                (unpackCString# "main"#)
                (unpackCString# "SteppablePrelude"#)
                (unpackCString# "src/SteppablePrelude.hs"#)
                (I# 297#)
                (I# 21#)
                (I# 297#)
                (I# 55#))
             emptyCallStack)
          `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
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                  :: Coercible CallStack (?
callStack::CallStack)))
         (unpackCString# "Prelude.foldl1: empty list"#);
     : x xs -> foldl @Integer @Integer (max @Integer 
$fOrdInteger) x xs
   })
  (: @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))))
{- Lamda Application -}
case : @Integer 1 (: @Integer 2 (: @Integer 3 ([] @Integer))) of 
{
  [] ->
    error
      @'LiftedRep
      @Integer
      ((pushCallStack
          (unpackCString# "error"#,
           SrcLoc
             (unpackCString# "main"#)
             (unpackCString# "SteppablePrelude"#)
             (unpackCString# "src/SteppablePrelude.hs"#)
             (I# 297#)
             (I# 21#)
             (I# 297#)
             (I# 55#))
          emptyCallStack)
       `cast` (Sym (N:IP[0] <"callStack">_N <CallStack>_N)
               :: Coercible CallStack (?callStack::CallStack)))
      (unpackCString# "Prelude.foldl1: empty list"#);
  : x xs -> foldl @Integer @Integer (max @Integer $fOrdInteger) x 
xs
}
{- Replace with matching pattern -}
foldl
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  1
  (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- Reduce function of application -> Replace 'foldl' with 
definition -}
(\ (@a) (@b) (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
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     [] -> z;
     : x xs -> foldl @a @b f (f z x) xs
   })
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  1
  (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- Lamda Application -}
(\ (@b) (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @Integer @b f (f z x) xs
   })
  @Integer
  (max @Integer $fOrdInteger)
  1
  (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- Lamda Application -}
(\ (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @Integer @Integer f (f z x) xs
   })
  (max @Integer $fOrdInteger)
  1
  (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- Lamda Application -}
(\ (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs ->
       foldl
         @Integer
         @Integer
         (max @Integer $fOrdInteger)
         (max @Integer $fOrdInteger z x)
         xs
   })
  1 (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- Lamda Application -}
(\ (ds_d8Eb :: [b]) ->
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   case ds_d8Eb of {
     [] -> 1;
     : x xs ->
       foldl
         @Integer
         @Integer
         (max @Integer $fOrdInteger)
         (max @Integer $fOrdInteger 1 x)
         xs
   })
  (: @Integer 2 (: @Integer 3 ([] @Integer)))
{- Lamda Application -}
case : @Integer 2 (: @Integer 3 ([] @Integer)) of {
  [] -> 1;
  : x xs ->
    foldl
      @Integer
      @Integer
      (max @Integer $fOrdInteger)
      (max @Integer $fOrdInteger 1 x)
      xs
}
{- Replace with matching pattern -}
foldl
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger 1 2)
  (: @Integer 3 ([] @Integer))
{- Reduce function of application -> Replace 'foldl' with 
definition -}
(\ (@a) (@b) (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @a @b f (f z x) xs
   })
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger 1 2)
  (: @Integer 3 ([] @Integer))
{- Lamda Application -}
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(\ (@b) (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @Integer @b f (f z x) xs
   })
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger 1 2)
  (: @Integer 3 ([] @Integer))
{- Lamda Application -}
(\ (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @Integer @Integer f (f z x) xs
   })
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger 1 2)
  (: @Integer 3 ([] @Integer))
{- Lamda Application -}
(\ (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs ->
       foldl
         @Integer
         @Integer
         (max @Integer $fOrdInteger)
         (max @Integer $fOrdInteger z x)
         xs
   })
  (max @Integer $fOrdInteger 1 2) (: @Integer 3 ([] @Integer))
{- Lamda Application -}
(\ (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> max @Integer $fOrdInteger 1 2;
     : x xs ->
       foldl
         @Integer
         @Integer
         (max @Integer $fOrdInteger)
         (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 
2) x)
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         xs
   })
  (: @Integer 3 ([] @Integer))
{- Lamda Application -}
case : @Integer 3 ([] @Integer) of {
  [] -> max @Integer $fOrdInteger 1 2;
  : x xs ->
    foldl
      @Integer
      @Integer
      (max @Integer $fOrdInteger)
      (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 
x)
      xs
}
{- Replace with matching pattern -}
foldl
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3)
  ([] @Integer)
{- Reduce function of application -> Replace 'foldl' with 
definition -}
(\ (@a) (@b) (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @a @b f (f z x) xs
   })
  @Integer
  @Integer
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3)
  ([] @Integer)
{- Lamda Application -}
(\ (@b) (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @Integer @b f (f z x) xs
   })
  @Integer
  (max @Integer $fOrdInteger)
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  (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3)
  ([] @Integer)
{- Lamda Application -}
(\ (f :: a -> b -> a) (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs -> foldl @Integer @Integer f (f z x) xs
   })
  (max @Integer $fOrdInteger)
  (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3)
  ([] @Integer)
{- Lamda Application -}
(\ (z :: a) (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> z;
     : x xs ->
       foldl
         @Integer
         @Integer
         (max @Integer $fOrdInteger)
         (max @Integer $fOrdInteger z x)
         xs
   })
  (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3)
  ([] @Integer)
{- Lamda Application -}
(\ (ds_d8Eb :: [b]) ->
   case ds_d8Eb of {
     [] -> max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 
2) 3;
     : x xs ->
       foldl
         @Integer
         @Integer
         (max @Integer $fOrdInteger)
         (max
            @Integer
            $fOrdInteger
            (max @Integer $fOrdInteger (max @Integer $fOrdInteger 
1 2) 3)
            x)
         xs



14

   })
  ([] @Integer)
{- Lamda Application -}
case [] @Integer of {
  [] -> max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 
3;
  : x xs ->
    foldl
      @Integer
      @Integer
      (max @Integer $fOrdInteger)
      (max
         @Integer
         $fOrdInteger
         (max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 
2) 3)
         x)
      xs
}
{- Replace with matching pattern -}
max @Integer $fOrdInteger (max @Integer $fOrdInteger 1 2) 3
{- (Strict) reduce application argument -> Evaluate unsteppable 
function/operator max -}
max @Integer $fOrdInteger 2 3
{- Evaluate unsteppable function/operator max -}
3
{- reduction completed successfully -}
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10.3 Automated Testing Output

Figure 33: Jira board (1/4)
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Figure 34: Testing output (2/4)
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Figure 35: Testing output (3/4)



10 Appendix 153

Figure 36: Testing output (4/4)
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