

Visual OO Debugger

Term Project
Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2021

Author(s): Gino Cardillo, Alexandre Lagadec, Pascal Schürmann

Advisor: Prof. Mirko Stocker

Project Partner: Institute for Software

Visual OO Debugger Seite | 1 24.12.2021

Abstract

Object-oriented programming can be a challenge for unexperienced or new developers. The

relations between objects, variables, and the concept of call-by-reference in methods is difficult to

comprehend for a lot of people, sometimes even for more experienced developers. Teaching object-

oriented programming can be just as challenging as learning it. One of the best ways to teach this

topic, is to visualize the relations between objects and variables. Creating such visualizations is time

consuming and the result is often too abstract for learners because such self-made visualizations

are usually static images.

The goal of this project is to create a tool for developers, with any level of experience, as well as

teachers, to ease the process of learning and teaching the concepts of object-oriented

programming. This tool uses debugger information at runtime to visualize objects and variables in a

graph. The nodes of the graph represent variables and objects while the edges represent references

between variables and objects, as well as references between two objects.

The result was an extension for the widely used and free IDE Visual Studio Code. The Visual OO

Debugger, VOOD for short, uses the information the built-in debugger provides to create a graph of

the variables and objects. For the visualization of the graph, we used the open-source visualization

library vis.js. In case of an object, a node consists of the name of the class in parentheses and, if

present, every instance field with a primitive data type including its value. References to other

objects are displayed with edges/arrows to other nodes. In case of a variable referencing an object

or null, a node simply contains the name of the variable. A variable with a primitive data type

contains the type, name of the variable and the value. Newly added nodes and edges are colored in

yellow. Multiple options to export the visualization were implemented, as a PNG, PlantUML or

GraphViz of the current state or as a GIF of multiple steps. Using the two buttons in the upper left-

hand corner of the debugger view, it is possible to load the previous/next state of the visualization,

all the way back to the first visualization.

Figure 1 Visual OO Debugger in VS Code

Visual OO Debugger Seite | 2 24.12.2021

Table of Contents

1 Introduction and Goals .. 4

1.1 Requirements Overview ... 4

1.2 Quality Goals ... 6

1.3 Stakeholders ... 7

1.4 Existing comparable products .. 10

1.5 Contextual inquiry .. 11

2 Constraints ... 12

3 System Scope and Context ... 13

3.1 Business Context ... 13

3.2 Technical Context .. 14

4 Solution Strategy .. 15

5 Building Block View ... 16

5.1 Whitebox Overall System ... 16

5.2 Level 2 ... 18

5.3 Level 3 ... 20

6 Runtime View ... 23

6.1 Use Case: vis.js rendering.. 23

6.2 Use Case: Export GIF.. 24

7 Deployment View ... 25

8 Cross-cutting Concepts ... 26

8.1 User Experience concepts (UX) ... 26

8.2 Development Concepts.. 32

9 Design Decisions ... 33

9.1 VOOD will be developed as a VS Code Extension .. 33

9.2 vis.js will be used for the visualization ... 34

9.3 JointJs will be implemented in the Bachelor Thesis ... 35

10 Quality Requirements .. 36

10.1 Quality Tree ... 36

10.2 Quality Scenarios ... 37

11 Risks and Technical Debts .. 40

11.1 Risk Assessment .. 41

11.2 Risk Matrix .. 42

12 Conclusion .. 43

12.1 Target Achievement ... 43

Visual OO Debugger Seite | 3 24.12.2021

12.2 Outlook .. 45

13 Glossary .. 46

14 List of Figures .. 47

15 List of Tables .. 48

16 Bibliography .. 49

Visual OO Debugger Seite | 4 24.12.2021

1 Introduction and Goals

This document describes the development process and the results of the project “Visual OO

Debugger”, short “VOOD”.

The arc421-template was used and extended for this document.

1.1 Requirements Overview

From the initial assignment we derived the following requirements (Figure 2)

Figure 2 Mind map of the requirements

1 (arc42, 2021)

Visual OO Debugger Seite | 5 24.12.2021

ID Description

REQ-1.1.1 The visual debugger is intended to support teachers in object-oriented
programming.

REQ-1.1.2 The visual debugger is intended to support students in object-oriented
programming.

REQ-1.2 A visual debugger for Java should be created.

REQ-2.1.1.1 The aim is to visualize objects graphically.

REQ-2.1.1.2 The aim is to visualize variables graphically.

REQ-2.1.2 The aim is to run a program step by step inside the debugger.

REQ-2.2.1 The visual debugger should make it possible to understand how objects change
over the course of the program.

REQ-2.2.2 The visual debugger should make it possible to understand how variables
change over the course of the program.

REQ-3.1 Other goals of the project are to make it as easy as possible to get started

(setup and import of the program as simple as possible), universal use, e.g., as a
Visual Studio Code2 extension or in the browser (e.g., with GitPod3) and usability.

REQ-3.2 Another goal of the project is to make the import of the program as simple as
possible.

REQ-3.3 Another goal of the project is to be used as a Visual Studio Code extension.

REQ-3.4 Another goal of the project is to be used in GitPod.

REQ-3.5 Another goal of the project is usability [of the system].

Table 1 Requirements

2 (Visual Studio Code, 2021)
3 (GitPod, 2021)

Visual OO Debugger Seite | 6 24.12.2021

1.2 Quality Goals

Form the original requirements, we consider the following (Table 2 Quality goals from

requirementsTable 2) as key quality goals.

ID Quality Characteristic Description

REQ-2.2.2 Functional Stability The visual debugger should make it possible to
understand how objects change over the course
of the program.

REQ-3.2 Operability Another goal of the project is to make the import
of the program as simple as possible.

REQ-3.3 Compatibility Another goal of the project is to be used as a
Visual Studio code extension.

REQ-3.4 Compatibility Another goal of the project is to be used in
GitPod.

REQ-3.5 Operability A goal of the project is usability [of the system].

Table 2 Quality goals from requirements

A further key quality goal was found during the stakeholder analysis (Table 3).

ID Quality Characteristic Description

REQ-4 Maintainability

Well documented and maintainable source code
that is open to extensions.

Table 3 Quality goals from stakeholder analysis

Visual OO Debugger Seite | 7 24.12.2021

1.3 Stakeholders

Group Contact Goals Role(s) Expectations

OO lecturers:

Mirko Stocker

mirko.stocker@ost.ch Successful completion
of the project

Adviser

Customer

Product Owner

Lecturer

MVP as a basis for further thesis and
development.

A tool for his students to study the runtime
behavior of OO programs easily.

Initial developers:

Gino Cardillo

Pascal Schürmann

Alexandre Lagadec

gino.cardillo@ost.ch

pascal.schuermann@ost.ch

alexandre.lagadec@ost.ch

Successful completion
of the project

Developer

Student

To gain experience

To gain reputation

FOSS community

To gain experience

To gain reputation

Developers Well documented and maintainable source
code that is open to extensions.

Lecturers in OO-related
subjects:

Thomas Letsch (AD)

Silvan Gehrig (PF)

thomas.letsch@ost.ch

silvan.gehrig@ost.ch

To demonstrate the
runtime behavior of high-
level OO concepts.

Lecturer To have a tool with which one can
demonstrate the runtime behavior of high-
level OO concepts.

Students of OO and
related subjects:

Patrick Schürmann

Alexandre Lagadec

patrick.schuermann@ost.ch

alexandre.lagadec@ost.ch

To gain a deeper
understanding of OO in
general.

To gain a deeper
understanding of
concepts that build on
OO.

Student To have a tool with which one can study
the runtime behavior of OO programs in
general.

To have a tool with which one can study
the runtime behavior of high-level OO
concepts.

Table 4 Stakeholders

mailto:mirko.stocker@ost.ch
mailto:gino.cardillo@ost.ch
mailto:pascal.schuermann@ost.ch
mailto:alexandre.lagadec@ost.ch
mailto:thomas.letsch@ost.ch
mailto:silvan.gehrig@ost.ch
mailto:patrick.schuermann@ost.ch
mailto:alexandre.lagadec@ost.ch

Visual OO Debugger Seite | 8 24.12.2021

1.3.1 Stakeholder Analysis

Group Cooperation Influence Motivation (s)

OO lecturers Very Positive Very High Very High

Initial developers Very Positive Very High Very High

FOSS community Positive

There is a vast amount of
FOSS projects. Those who
choose to contribute to our
project are likely to be
supportive.

Positive

There is a vast amount of FOSS projects.
Those who choose to contribute to our
project are likely to be supportive.

Medium

There is a vast amount of FOSS
projects. Those who choose to
contribute to our project are likely to be
motivated to provide at least simple
feature requests or bug reports.

Lecturers in OO-related
subjects

Positive Very High

Lecturers in OO-related subjects can provide
valuable insights on what makes learning
high-level OO concepts and OO in general
challenging

High

Lecturers in OO-related subjects would
probably like to demonstrate the
runtime behavior of high-level OO
concepts.

Students of OO and
related concepts

Positive High

Students of OO and related subjects can
provide raw feedback on what makes
learning high-level OO concepts and OO in
general challenging

High

Students of OO and related subjects
would probably like to study the runtime
behavior of high-level OO concepts and
OO in general.

Table 5 Stakeholder analysis

Visual OO Debugger Seite | 9 24.12.2021

1.3.2 Relation map

 OO lecturers Initial developers FOSS community Lecturers in OO-
related subjects

Students of OO and
related concepts

OO lecturers - Very Good

Successful kick-off
meeting

Weekly meetings
planned

Unknown Good

Silvan and Mirko even
share some lectures

Default

Patrick attends OO
lecture; no active
discussion yet

Initial developers - - None Default

Alexandre attends AD
and PF lectures; no
active discussion yet

Good

Patrick is Pascal’s
brother

FOSS community - - - Unknown Unknown

Lecturers in OO-
related subjects

- - - - Default

Alexandre attends AD
and PF lectures; no
use case yet

Students of OO and
related concepts

- - - - -

Table 6 Relation map of the stakeholders

Visual OO Debugger Seite | 10 24.12.2021

1.4 Existing comparable products

Title Authors Organisation Category Features References

Visual Tracing for
the Eclipse Java
Debugger

- Bilal Alsallakh
- Peter Bodesinsky
- Alexander Gruber
- Silvia Miksch

TU Wien Eclipse
plug-in

- Tracking
- Temporal

scaling
- Search for

variables

Paper (TU Wien)

Paper (IEEE)

Paper (Research gate)

Youtube

Mirur Visual
Debugger

Brandon Borkholder Brandon
Borkholder

Eclipse
plug-in

- Plots for
numeric
arrays

Eclipse Marketplace

JIVE Support:

- Demian Lessa - Lead JIVE Developer
- Jeffrey K. Czyz - Eclipse/JIVE Developer
- Paul V. Gestwicki - Stand-alone JIVE

Developer
- J. Swaminathan - JIVE Plug-in Developer

University at
Buffalo

Eclipse
plug-in

- ‘Reverse
stepping’

- Based on
UML model

University at Buffalo

OCL-based Runtime
Monitoring of JVM
hosted Applications

Lars Hamann (H-Man2), Martin Gogolla,
Mirco Kuhlmann

Universität
Bremen

Stand-
alone?

- Based on
UML model

Stackoverflow

TU Berlin

Sourceforge

Visual Debugger Tim Kräuter - IntelliJ
plug-in

- Uses native
IntelliJ
debugger as
data source

Tim Kräuters Webseite

JetBrains Marketplace

Visual Debugger GitHub

UI GitHub

Debug Visualizer Henning Dieterichs Microsoft
(VS Code)

VS Code
plug-in

- Dynamic
rendering

Visual Studio Marketplace

GitHub

Table 7 Existing comparable products

https://publik.tuwien.ac.at/files/PubDat_207587.pdf
https://ieeexplore.ieee.org/document/6178940
https://www.researchgate.net/publication/230753899_Visual_Tracing_for_the_Eclipse_Java_Debugger
https://www.youtube.com/watch?v=GNuRbPrhvrw
https://marketplace.eclipse.org/content/mirur-visual-debugger
https://cse.buffalo.edu/jive/support.html
https://cse.buffalo.edu/jive/
https://stackoverflow.com/users/43814/h-man2
https://stackoverflow.com/a/8209486
https://journal.ub.tu-berlin.de/eceasst/article/view/623
https://sourceforge.net/projects/useocl/
https://timkraeuter.com/visual-debugger/
https://plugins.jetbrains.com/plugin/16851-visual-debugger
https://github.com/timKraeuter/VisualDebugger
https://github.com/timKraeuter/object-diagram-modeler/tree/master/debugger
https://marketplace.visualstudio.com/items?itemName=hediet.debug-visualizer
https://github.com/hediet/vscode-debug-visualizer

Visual OO Debugger Seite | 11 24.12.2021

1.5 Contextual inquiry

To gather further information on what the requirements are from a student’s perspective, a

contextual inquiry was performed.

1.5.1 Method

The inquiry consisted of multiple observations that were performed during the exercises for OOP1.

The focus of these observations was on how a student works with the IDE and how he solves

problems that occurred during the exercises. After the observation a brief conversation was held

which gave the student the chance to discuss what they anticipate for a visualization.

1.5.2 Results

ID Description

CI-1 The current debugger is used as a last resort tool to solve a problem during the
exercises.

CI-2 The modelling of relationships between classes is perceived as a difficult task. A
visualization of the relationships would indeed be helpful.

CI-3 The student uses only a part of the screen for the IDE, often the screen will be shared
with the pdf description of the exercise or lecture notes. The space that would be
available for a visualization is therefore limited.

CI-4 During the exercise lessons, the students work on their private laptops, often without an
external mouse. Some curser movements are therefore difficult to perform.

Table 8 Results of contextual inquiry

Visual OO Debugger Seite | 12 24.12.2021

2 Constraints

ID Constraint Consequences

CO-1 The visual OO debugger should be
implemented as a VS Code
extension.

The constraints and guidelines for VS Code
extensions apply for the entire project.

VS Code must be used for testing.

CO-2 For the visualization, external
libraries should be used.

The libraries have various requirements for the input
data. These requirements need to be considered for
the construction of the extensions.

CO-3 The project needs to be completed
within the Autumn Term 2021.

The time of the project is limited to the duration of
the semester.

CO-4 The documentation of the project
should meet the formal
requirements of a technical
publication.

Established templates and solutions need to be
evaluated and used to guarantee a certain degree of
technical correctness.

CO-5 The VOOD will be published as an
open-source project.

English must be used as the official project
language.

Table 9 Constraints

Visual OO Debugger Seite | 13 24.12.2021

3 System Scope and Context

This chapter describes the delimitations of the system from all its communication partners. The

visualization is based on the System Context diagram of the C4 Model.4

3.1 Business Context

Figure 3 Context diagram

Partner Communication

User The user can influence the Visual OO Debugger, either by sending commands
or by adjusting the visualization. The user can also export the current
visualization.

Visual Studio Code Besides being the environment for the Visual OO Debugger, Visual Studio
Code provides the Visual OO Debugger with:

- Redirected user commands
- Settings set by the user
- Debugger information

Debug Adapter The debug adapter manages the communication with the debugger. The
debug adapter provides the Visual OO Debugger with the debugging data.

Table 10 Description of the business context

4 (C4 model, 2021)

Visual OO Debugger Seite | 14 24.12.2021

3.2 Technical Context

The Visual OO Debugger requires the following API’s and protocols.

API Definition

(VS Code API, 2021) https://code.visualstudio.com/api/references/vscode-api

(Debug Adapter Protocol, 2021) https://microsoft.github.io/debug-adapter-protocol/specification

Table 11 Required API's and protocols

VS Code API

The VS Code API allows the Visual OO Debugger to access the functionality and data of VS Code.

The following VS Code API features are relevant for the visual OO debugger:

Feature Description

commands For registering and listening to commands

debug Provides functionalities for accessing the debugger

DebugSession Provides access to the current debug session

ExtensionContext Provides a collection of utilities private to the extension.

Uri A universal resource identifier for representing a resource

ViewColumn To specify a location of a window inside VS Code

Webview To display html content inside VS Code

WebviewPanel For handling a window containing a Webview

window Namespace of the currently active window

workspace Give access to the current workspace

Table 12 Used VS Code API features

Debug Adapter Protocol

Visual Studio Code communicates with the debugger through the debug adapter. The debug adapter

is an intermediate component that normalizes the access to different debuggers. It is possible for

the Visual OO Debugger to send requests to the debug adapter using the debug adapter protocol.

These requests allow access to the following resources:

Figure 4 Class diagram of debug adapter protocol models

https://code.visualstudio.com/api/references/vscode-api
https://microsoft.github.io/debug-adapter-protocol/specification

Visual OO Debugger Seite | 15 24.12.2021

4 Solution Strategy

Goal/Requirements Solution approach

REQ-1.1.1 The visualization can be exported as a PNG, animated GIF, PlantUML or
GraphViz for further use in teaching.

REQ-2.1.1.1 &

REQ-2.1.1.2

vis.js5 will be used for the visualization.

REQ-3.1 &

REQ-3.2

The finished extension will be made available over the VS Code extension
marketplace.

CO-1 The extension will be written in Typescript, as it is the standard for VS Code
extensions.

CO-2 A neutral visualization interface will be created which is then implemented by
the designated visualization.

Table 13 Solution strategy

5 (vis.js, 2021)

Visual OO Debugger Seite | 16 24.12.2021

5 Building Block View

The building block view shows the static decomposition of the system into building blocks as well

as their dependencies

5.1 Whitebox Overall System

Figure 5 Class diagram of debug adapter protocol models

The Visual OO Debugger can be roughly divided in two parts, the debug backend and the webview.

This split was made to separate the logic for visualizing the data and retrieving and processing the

debugging data. Furthermore, this solution simplified the distribution of work inside the project

team.

Visual OO Debugger Seite | 17 24.12.2021

5.1.1 Debug Backend

Responsibility

The debug backend handles the communication with the debug adapter of VS Code. This goal can

be split in three separated tasks:

‐ Handling debugging events
‐ Retrieving the data from the external debug adapter
‐ Process the received debugging data for the webview.

Interfaces

‐ The debug backend communicates with the debug adapter via the debugger adapter protocol.
‐ The debug backend is given an instance of a webview class which is called whenever a

debugging event is triggered.

5.1.2 Webview

Responsibility

The webview is responsible for rendering the visualization of the debugging data. Besides the

visualization, the webview handles user interactions. This includes:

‐ The user interactions using commands
‐ User interactions with the visualization, either by repositioning elements or by using the back-

stepper function

Interfaces

‐ The user can send commands to the Visual OO Debugger to open the webview panel.
‐ The user can trigger an export by sending a command.
‐ The user can interact with the visualization on the webview panel
‐ An instance of a webview object is given to the debug backend. When the debug backend

detects a debug event, an update function will be triggered.

Visual OO Debugger Seite | 18 24.12.2021

5.2 Level 2

Level 2 specifies the inner structure of the building blocks in the overall system.

5.2.1 White Box Debug Backend

Figure 6 Component diagram of debug backend

The debug backend consists of two components, the debug session proxy, and the debug event

manager.

The debugSessionProxy handles the communication with the debug adapter and receives

debugging data.

The debugEventManager handles the debugging events. If the debugEventManager detects that the

debugger has stopped, it will request the debugging data from the debugSessionProxy. The

debugging data received by the debugSessionProxy will then be further processed before it is sent

to the webview for the visualization.

Visual OO Debugger Seite | 19 24.12.2021

5.2.2 White Box Webview

Figure 7 Component diagram of webview

The webview can be split in two basic components, the debuggerPanel and the panelView.

The debuggerPanel creates the view panel and handles incoming commands for the visualization.

The panelView renders the visualization, provides the possibility for the user to reposition elements

and handles the export of a diagram.

Visual OO Debugger Seite | 20 24.12.2021

5.3 Level 3

Level 3 specifies the inner structure of the building blocks in level 2.

5.3.1 White Box DebugEventManager

Figure 8 Class diagram of DebugEventManager

The DebugEventManager is a single class with a DebugSessionProxy instance to load the debug

data.

The DebugEventManager creates the event handler for when the debugger stopped in his

constructor. In this case, the event handler uses the debug session proxy to load all current

variables. These variables are then processed to PanelViewInputs for the webview to render.

Visual OO Debugger Seite | 21 24.12.2021

5.3.2 White Box PanelView

Figure 9 Class diagram of PanelView

The PanelView is implemented as the interface PanelViewProxy with concrete implementations.

VisjsPanelView is one of these concrete implementations which renders the debug data as visjs

diagram. The visjsPanelView itself calls an html file where the rendering of the diagram takes place.

The communication between the Visual OO Debugger and the html page is handled by

PanelViewCommands.

This html page is rendered in a webview panel, which the DebuggerPanel constructs and manages.

Visual OO Debugger Seite | 22 24.12.2021

5.3.3 Panel View Variable

Figure 10 Class diagram of PanelView variables

The DebugEventManager prepares the variables for the webview as PanelView variables

Visual OO Debugger Seite | 23 24.12.2021

6 Runtime View

The runtime view describes concrete behavior and interactions of the system’s building blocks in

form of scenarios.

6.1 Use Case: vis.js rendering

Brief use case

The user can open a new VOOD panel with the command “VOOD: Open debugger view”. When the

user starts the debugging process in VS Code, a visualization of the current debugging step will be

rendered in the panel. This visualization uses the vis.js library. Between the debugging steps the

user can reposition elements.

Sequence diagram

Figure 11 Sequence diagram of the extension’s start

1. The user starts VS Code, if the VOOD extension is enabled, the extension.ts file of the Visual OO
Debugger extension will start to set up the extension.

2. The first step is to create the PanelView. Based on the user settings, the extension.ts will use a
concrete implementation of the PanelView interface.

4. The DebuggerPanel gets initialized with the newly created PanelView
5. After the DebuggerPanel is created, the extension.ts will register the user commands to interact

with the DebuggerPanel.
6. When the DebugEventManager is created, the constructor of the DebugEventManager creates

the DebugSessionProxy and sets up the event handler for the debugger.
9. After the DebugEventManager is set up, the extension is ready to start.
10. The user can use the command “VOOD: Open debugger view”, which is processed by the

DebuggerPanel and opens a new webview panel.

Visual OO Debugger Seite | 24 24.12.2021

6.2 Use Case: Export GIF

The Visual OO Debugger has multiple export features. For demonstration purposes, this section will

discuss the inner workings of the GIF export.

Brief use case

A user can start recording a GIF of what is currently visualized with the command “VOOD: Start

recording a GIF”. With “VOOD: Stop recording a GIF”, the user can stop the recording and download

the GIF.

Sequence diagram

Figure 12 Sequence diagram of GIF export

1. The user runs the command “VOOD: Start recording GIF”, which is redirected to the
DebuggerPanel as a startRecordingPanel function call.

2. The command to start the recording is redirected to the PanelView, where the recording of the
GIF starts.

3. When the user has made his actions that he wishes to record he can stop the recording with
“VOOD: Stop recording a GIF”, which calls the stopRecordingPanel function of the
DebuggerPanel.

4. The PanelView processes the recording, creates a GIF, and saves it.

Visual OO Debugger Seite | 25 24.12.2021

7 Deployment View

The project makes use of GitHub6 Actions to enable Continuous Deployment. Three workflows are

defined.

Figure 13 GitHub workflow overview

Pull Request CI

The Pull Request CI workflow is executed whenever a pull request is created or updated. This

workflow does a checkout of the code and then runs linting checks, formatting checks, unit tests

and integration tests. Only if all those tasks succeed, the pull request can be merged.

Master CI

The Master CI workflow is triggered on every commit to the master branch. First it does the same

checks as the Pull Request CI workflow. If that succeeds, another job is started which uses a GitHub

action to create a repository dispatch event. This dispatch event will then trigger the Continuous

Deployment workflow.

Continuous Deployment

The Continuous Deployment workflow can only be triggered by a repository dispatch event. This

workflow only has one job for the deployment, which is executed on the production environment.

Any workflows that operate on the production environment must be reviewed before the jobs can

start. If approved, the job does a checkout of the code on the master branch, builds it, and publishes

it to the VS Marketplace.

6 (GitHub, 2021)

Visual OO Debugger Seite | 26 24.12.2021

8 Cross-cutting Concepts

This chapter describes overall, principal regulations and solution ideas that are relevant in multiple

parts of your system.

8.1 User Experience concepts (UX)

The UI of the extension must be designed in a way that is intuitive for the user and gives enough

options to freely visualize the current debugging step.

VS Code offers different UI elements for extension. But the usage of these elements is regulated by

the extension guidelines of Visual Studio.

For the Visual OO Debugger it is sufficient to use the command palette for the basic commands.

The commands will be described in the README.md file of the extension, which is shown on the

extension marketplace site. Further UI elements for the control of the extension aren’t needed. They

would clutter the UI.

For rendering the visualization, a WebView will be used. This approach gives the most flexibility and

allows the use of external visualization libraries. User input, which directly effects the visualization,

for example the back-stepper function, is handled by the WebView directly.

Figure 14 Wireframe of VS Code Integration

8.1.1 Usage of vis.js

The Visual OO Debugger can use different libraries to visualize the current debugging step. For the

term project, the first library to be used is vis.js. The vis.js library can position the nodes by itself and

therefore no calculation for positioning the elements is needed. Another benefit is that the user can

easily manipulate the visualization with drag and drop if needed.

Visual OO Debugger Seite | 27 24.12.2021

Low fidelity Wireframes

These low fidelity Wireframes depict how various data types are displayed as well as how the

extension will be integrated inside VS Code.

The Wireframes were created using Balsamiq7.

Primitive Types, Strings and null

Although Strings technically are objects, because they are so common, we decided to display them

as if they were a primitive type instead of the underlying byte array because it is a commonly used

object and to increase comprehensibility.

Figure 15 Wireframe of primitive types

Simple Object

A simple object only consists of primitive types and Strings. Three versions have been created to

display a simple object.

Simple Object Version 1

In this version both primitive types and Strings are separate bubbles and connected with an arrow.

Figure 16 Wireframe of simple object version 1

Simple Object Version 2

In this version both primitive types and Strings are part of the object’s bubble.

Figure 17 Wireframe of simple object version 2

7 (Balsamiq, 2021)

Visual OO Debugger Seite | 28 24.12.2021

Simple Object Version 3

In this version primitive types are part of the object's bubble and Strings are in separate bubbles.

Figure 18 Wireframe of simple object version 3

Simple Object Decision

We decided to go with version 3 for displaying simple objects. This way, an arrow is defined as a

reference and a String is correctly used as an object.

Potentially it could be configurable to select the more compact version 2.

Arrays of Primitive Types and Strings

Arrays of primitive types and Strings have a simplified display. An array that exceeds a certain length

will be shortened and a tooltip will show the full content of the array.

Figure 19 Wireframe of arrays of primitive types and strings

Visual OO Debugger Seite | 29 24.12.2021

Array of Simple Objects

The indexes are the references between the array and its objects.

Figure 20 Wireframe of object array

Map of String to Object

A map is very similar to an array. All entries of a map are saved in some specialization of the

Collection interface. Therefore, the nodes are indexed.

Figure 21 Wireframe of String to Object Map

Visual OO Debugger Seite | 30 24.12.2021

Enum

An Enum is special because it has a value (e.g., “RED”) and can have references.

Figure 22 Wireframe of an Enum

Composite Object

A composite object has references to other objects which are connected by arrows.

Figure 23 Wireframe of Composite Object

Visual OO Debugger Seite | 31 24.12.2021

Collapsed Objects

If a graph becomes too big, the user can collapse objects or a variable.

Figure 24 Wireframe of Collapsed Objects

This feature was ultimately not implemented.

Visual OO Debugger Seite | 32 24.12.2021

8.2 Development Concepts

This chapter describes concepts that were used during development, with focus on code quality.

8.2.1 Code Review

For maintaining and developing the code, GitHub was used. New changes to the code will be

developed in feature branches. To merge a feature branch into the master branch, a pull request will

be created. Only if at least one other team members approves the changes, they will be merged into

the master branch.

8.2.2 Code Guidelines

To ensure a coherent code style, prettier will be used.

To ensure a certain degree of code quality, ESLint8 and SonarCloud9 will be used.

Figure 25 SonarCloud summary

8 (ESLint, 2021)
9 (SonarCloud, 2021)

Visual OO Debugger Seite | 33 24.12.2021

9 Design Decisions

This chapter documents the most important design decisions for the development of the Visual OO

Debugger.

9.1 VOOD will be developed as a VS Code Extension

History

Date Step

23.09.2021 Initial research

23.09.2021 Decision was made to develop VOOD as a VS Code extension

Table 14 History of decision to develop VOOD as VS Code Extension

Context

The initial pitch of the project did not specify an IDE for which the visualization should be

implemented. Therefore, different solutions were investigated to find a suitable platform for the

solution.

The following options were discussed:

‐ Implementation as a Visual Studio Code extension
‐ Implementation as an IntelliJ Plugin

Decision

The decision was made to implement the VOOD as a VS Code extension. The reason for this

decision is that VS Code is free to use, and VS Code extensions can also be used in GitPod, a web

IDE.

Consequences

‐ The project depends on the VS Code extension API
‐ The project depends on the debug adapter protocol
‐ TypeScript will be used as programming language

Visual OO Debugger Seite | 34 24.12.2021

9.2 vis.js will be used for the visualization

History

Date Step

04.10.2021 Initial research

04.10.2021 Decision to use vis.js for visualization

Table 15 History of decision to use vis.js for visualization

Context

There were multiple possible approaches for how to render a visualization of the debugging steps.

The following Options were discussed:

‐ Usage of vis.js for visualization
‐ Stepwise rendering as a PlantUML diagram
‐ Developing an own visualization

Decision

The decision was made to use vis.js for the visualization, and to construct the extension to support

different visualizations. vis.js offers a good-looking visualization of the debugging steps and can

position the elements by itself.

Consequences

‐ Webview will be needed to render vis.js
‐ Dependency to vis.js
‐ The architecture must support multiple visualization options

Visual OO Debugger Seite | 35 24.12.2021

9.3 JointJs will be implemented in the Bachelor Thesis

History

Date Step

08.11.2021 Discussion implementation of JointJs10 as an alternative visualization

15.11.2021 Proposition to implement JointJs in a bachelor thesis

22.11.2021 Team members agree to implement JointJs in the bachelor thesis

Table 16 History of decision to split JointJS off in a separate project

Context

After the implementation of the vis.js visualization, the discussion was held on what alterative

visualization could be added. The vis.js solution was visually appealing but had its limitation.

The following options where considered:

‐ To use JointJs as an alternative visualization
‐ Implementation of a table-based visualization

Decision

After creating low fidelity wireframes for the table-based visualization, the decision was made to not

proceed any further with this visualization. It didn’t provide any new information to the user which is

not already available in the default debugger.

A prototype was built with JointJs which looked promising. A major drawback is that JointJs

doesn’t position the elements by itself. Therefore, an implementation of a JointJs view needs to

calculate the size and position of the elements by itself. It was decided that this would consume too

much time for the term project and is better suited for a bachelor thesis.

The implementation of JointJs and some other features are therefore moved to a bachelor thesis

where the project team will continue working on the Visual OO Debugger.

Consequences

No immediate consequences for the project.

10 (JointJS, 2021)

Visual OO Debugger Seite | 36 24.12.2021

10 Quality Requirements

This chapter contains all quality requirements as a quality tree with scenarios. The most important

ones have already been described in section “1.2 Quality Goals”.

10.1 Quality Tree

Figure 26 Quality tree

Visual OO Debugger Seite | 37 24.12.2021

10.2 Quality Scenarios

This section concretizes quality requirements using scenarios.

10.2.1 REQ-2.2.2

Scenario User uses VOOD during an OO exercise

Business Goals The VOOD should make it possible to understand how objects change over the
course of the program.

Relevant Quality
attributes

Functional Stability

Scenario
Components

Stimulus User runs extension during an OO exercise

Stimulus Source User

Environment VOOD is installed as extension in VS Code. The OO
exercise is opened in VS Code and the debugger has
started

Artifact PanelView

Response The system visualizes the debugging steps in a way that
helps the user to understand what happens

Response Measure The user feels that the VOOD helped him to understand
the OO exercise

Table 17 Quality scenario for REQ-2.2.2

10.2.2 REQ-3.2

Scenario User installs the VOOD

Business Goals Another goal of the project is to make the import of the program as simple as
possible.

Relevant Quality
attributes

Operability

Scenario
Components

Stimulus The VOOD extension is installed and started for the first
time in VS Code

Stimulus Source New user

Environment A published version of VOOD available on the VS
marketplace

Artifact -

Response The VOOD can be installed from the VS marketplace. The
introductory text on the VS marketplace page should
instruct the user on how they can work with the
extension

Response Measure The user can install and use the VOOD within reasonable
time

Table 18 Quality scenario for REQ-3.2

Visual OO Debugger Seite | 38 24.12.2021

10.2.3 REQ-3.3

Scenario Installation in Visual Studio Code

Business Goals Another goal of the project is to be used as a Visual Studio Code extension.

Relevant Quality
attributes

Compatibility

Scenario
Components

Stimulus The VOOD extension is installable and useable in VS
Code

Stimulus Source User

Environment A published version of VOOD available on the VS
marketplace

Artifact -

Response The VOOD can be installed from the marketplace. The
extension should be usable in VS Code

Response Measure The User can install and run the VOOD in VS Code

Table 19 Quality scenario for REQ-3.3

10.2.4 REQ-3.4

Scenario Installation in GitPod

Business Goals Another goal of the project is to be used in GitPod.

Relevant Quality
attributes

Compatibility

Scenario
Components

Stimulus The VOOD extension is installable and useable in GitPod

Stimulus Source User

Environment A published version of VOOD available on the VS
marketplace

Artifact -

Response The VOOD can be installed from the marketplace. The
extension should be usable in GitPod

Response Measure The user can install and run the VOOD in GitPod

Table 20 Quality scenario for REQ-3.4

Visual OO Debugger Seite | 39 24.12.2021

10.2.5 REQ-3.5

Scenario User uses system to debug a simple solution

Business Goals Another goal of the project is usability [of the system]

Relevant Quality
attributes

Operability

Scenario
Components

Stimulus User runs command “VOOD: Open debugger view” and
starts debugging

Stimulus Source User

Environment VOOD is installed as extension in VS Code. The User has
read the VS marketplace page

Artifact PanelView, marketplace page, registered commands

Response The system visualizes the debugging steps in a way that
is understandable for the user

Response Measure The user can use the functions of the extension without
a problem, after he read the VS marketplace page

Table 21 Quality scenario for REQ-3.5

10.2.6 REQ-4

Scenario Implementation of new view for the VOOD

Business Goals Having a well-documented and maintainable source code that is open to
extensions.

Relevant Quality
attributes

Maintainability

Scenario
Components

Stimulus A new view for the VOOD is developed

Stimulus Source Future developer

Environment VOOD is in a stable condition

Artifact The extension.ts and the extension manifest

Response The view can be added to the system by adding a new
templateView to the repository and configuring the
extension.ts and the extension manifest

Response Measure The developer can implement a new view

Table 22 Quality scenario for REQ-4

Visual OO Debugger Seite | 40 24.12.2021

11 Risks and Technical Debts

Nr. Title Description Expected effects Prevention Behavior on entry

R0 PM :: Bad work
package ordering

The order in which
work packages are
processed is causing
the project to stall

Delays Analyze inter-package
dependencies during
planning

Assign all available
team members to
blocking work
packages

R1 PM :: Poor
requirements analysis

Requirements are not
properly understood,
approved, and
prioritized

Delays Regular validation of
the requirements
internally and with
stakeholders

Re-evaluate erroneous
requirements with
stakeholders

R2 CI/CD :: A build failure
in the CI/CD pipeline
blocks the project

A build failure in the
CI/CD pipeline blocks
the project

Delays Develop guidelines:
wait for CI/CD results
each day before
finishing work

Responsible
developers fix build
problems immediately
and notify all blocked
team members

R3 Dev :: Technology
mastery :: Inefficient
extension
development

Functionalities and
best practices related
to the chosen
extension framework
are unknown, leading
to unnecessary efforts
and/or delays

Delays, unnecessary
complexity

Study extension
development tutorials

Perform design
reviews on a regular
basis and maintain a
knowledge base for
key insights

Table 23 Identified risks

Visual OO Debugger Seite | 41 24.12.2021

11.1 Risk Assessment

Nr. Max. damage Probability of occurrence Probability of discovery Probability of occurrence Weighted damage

R0 60 5% 50% 10% 6

R1 120 10% 25% 40% 48

R2 60 5% 100% 5% 3

R3 120 20% 25% 80% 96

Sum 360 153

Table 24 Risk probabilities

After planning risk prevention and containment, we were able to reduce all identified risks to an acceptable level.

The weighted damage adds up to 153 hours, which is 21.25% of the time budget of 720 hours. In order to reserve time for dealing with the expected

risks, we have increased our time estimates accordingly by around 20% during the sprint planning.

Visual OO Debugger Seite | 42 24.12.2021

11.2 Risk Matrix

P
ro

b
a

b
il

it
y

 o
f

e
n

tr
y

 /
 P

ro
b

a
b

il
it

y
o

f
d

is
c

o
v

e
ry

Frequent

Likely

Rare R3

Very rare R1

Unlikely R2 R0

Insignificant Low Noticeable Critical Existential

 Damage

Low risk, no countermeasures required

Moderate risk, consider countermeasures

High risk, countermeasures required

Inacceptable risk, countermeasures urgently required

Figure 27 Risk matrix

Visual OO Debugger Seite | 43 24.12.2021

12 Conclusion

This chapter contains an evaluation of the project as well as an outlook for further work on the

Visual OO Debugger.

12.1 Target Achievement

The target achievement is evaluated by looking at each of the requirements defined in the section

“1.1 Requirements Overview”.

REQ-1.1.1

“The visual debugger is intended to support teachers in object-oriented programming.”

Achieved: yes

The Visual OO Debugger generates visualizations of objects at runtime which supports teachers by

saving time, since they don’t have to create their own visualizations.

REQ-1.1.2

“The visual debugger is intended to support students in object-oriented programming.”

Achieved: yes

The visualizations generated by the Visual OO Debugger help understanding the references between

variable and objects as well as references between two objects.

REQ-1.2

“A visual debugger for Java should be created.”

Achieved: yes

The Visual OO Debugger supports debugging of a Java application.

REQ-2.1.1.1

“The aim is to visualize objects graphically.”

Achieved: yes

The Visual OO Debugger visualizes objects as nodes and references as edges.

REQ-2.1.1.2

“The aim is to visualize variables graphically.”

Achieved: yes

The Visual OO Debugger visualizes variables as nodes. If the variable is a reference to an object, the

reference is visualized as an edge. Otherwise, the node also contains the value of the primitive type.

Visual OO Debugger Seite | 44 24.12.2021

REQ-2.1.2

“The aim is to run a program step by step inside the debugger.”

Achieved: yes

VS Code’s built-in debugger can be used to progress the code and the visualizations are updated

immediately. In addition to that, the user has the option to use the stepper of VOOD to load previous

states of the variables.

REQ-2.2.1

“The visual debugger should make it possible to understand how objects change over the course of

the program.”

Achieved: yes

The Visual OO Debugger updates the visualization on every step of the execution and colorizes the

new or changed objects and references in a different colour.

REQ-2.2.2

“The visual debugger should make it possible to understand how variables change over the course

of the program.”

Achieved: yes

The Visual OO Debugger updates the visualization on every step of the execution and colorizes the

new or changed variables and references in a different colour.

REQ-3.1

“Other goals of the project are to make it as easy as possible to get started (setup and import of the

program as simple as possible), universal use, e.g., as a Visual Studio Code extension or in the

browser (e.g., with GitPod) and usability.”

Achieved: yes

The Visual OO Debugger is a VS Code extension which requires no further setup other than installing

it. Since GitPod also uses VS Code extensions, it is also possible to use VOOD with GitPod.

REQ-3.2

“Another goal of the project is to make the import of the program as simple as possible.”

Achieved: yes

The import of a program depends on the IDE in use. In the case of VS Code, the code needs to be on

the file system and can be easily imported using VS Code. In the case of GitPod, a program can be

imported by creating a connection to a git repository.

REQ-3.3

“Another goal of the project is to be used as a Visual Studio Code extension.”

Achieved: yes

The Visual OO Debugger is a Visual Studio Code extension.

Visual OO Debugger Seite | 45 24.12.2021

REQ-3.4

“Another goal of the project is to be used in GitPod.”

Achieved: yes

Since GitPod uses the same extensions as VS Code, the Visual OO Debugger can be use with GitPod

as well.

REQ-3.5

“Another goal of the project is usability [of the system]”

Achieved: yes

The Visual OO Debugger is kept as simple as possible. The only action required by the user is

running a command to open the debugger view. The rest is handled by the IDE.

12.2 Outlook

The development of the Visual OO Debugger will be continued in a bachelor thesis. With the current

state of VOOD extension, there is only one type of visualization using vis.js. This library has its

limitations, and the initial goal of the bachelor thesis will be to add another type of visualization

using the library JointJS. This goal is described in more detail in section “9.3 JointJs will be

implemented in the Bachelor Thesis”.

Another possible feature to implement is collapsing and expanding nodes. A wireframe was created

for this feature in the section “Collapsed Objects”. The larger the object graph gets, the more

beneficial would this feature be.

Visual OO Debugger Seite | 46 24.12.2021

13 Glossary

Term Definition

AD Algorithms and Data structures

API Application Programming Interface

CI/CD Continuous Integration/Continuous Deployment

FOSS Free and Open-Source Software

IDE Integrated Development Environment

MVP Minimum Viable Product

OO Object-Oriented

OOP1 Object-Oriented Programming 1 (a course at OST)

OST Ostschweizer Fachhochschule

PF Patterns and Frameworks

VOOD Visual OO Debugger

VS Code Visual Studio Code

Table 25 Glossary

https://www.ost.ch/

Visual OO Debugger Seite | 47 24.12.2021

14 List of Figures

Figure 1 Visual OO Debugger in VS Code .. 1

Figure 2 Mind map of the requirements .. 4

Figure 3 Context diagram ... 13

Figure 4 Class diagram of debug adapter protocol models ... 14

Figure 5 Class diagram of debug adapter protocol models ... 16

Figure 6 Component diagram of debug backend ... 18

Figure 7 Component diagram of webview ... 19

Figure 8 Class diagram of DebugEventManager .. 20

Figure 9 Class diagram of PanelView .. 21

Figure 10 Class diagram of PanelView variables .. 22

Figure 11 Sequence diagram of the extension’s start .. 23

Figure 12 Sequence diagram of GIF export ... 24

Figure 13 GitHub workflow overview ... 25

Figure 14 Wireframe of VS Code Integration ... 26

Figure 15 Wireframe of primitive types .. 27

Figure 16 Wireframe of simple object version 1 ... 27

Figure 17 Wireframe of simple object version 2 ... 27

Figure 18 Wireframe of simple object version 3 ... 28

Figure 19 Wireframe of arrays of primitive types and strings .. 28

Figure 20 Wireframe of object array .. 29

Figure 21 Wireframe of String to Object Map .. 29

Figure 22 Wireframe of an Enum.. 30

Figure 23 Wireframe of Composite Object .. 30

Figure 24 Wireframe of Collapsed Objects .. 31

Figure 25 SonarCloud summary ... 32

Figure 26 Quality tree .. 36

Figure 27 Risk matrix ... 42

Visual OO Debugger Seite | 48 24.12.2021

15 List of Tables

Table 1 Requirements ... 5

Table 2 Quality goals from requirements .. 6

Table 3 Quality goals from stakeholder analysis .. 6

Table 4 Stakeholders ... 7

Table 5 Stakeholder analysis .. 8

Table 6 Relation map of the stakeholders ... 9

Table 7 Existing comparable products .. 10

Table 8 Results of contextual inquiry ... 11

Table 9 Constraints ... 12

Table 10 Description of the business context ... 13

Table 11 Required API's and protocols .. 14

Table 12 Used VS Code API features ... 14

Table 13 Solution strategy .. 15

Table 14 History of decision to develop VOOD as VS Code Extension ... 33

Table 15 History of decision to use vis.js for visualization .. 34

Table 16 History of decision to split JointJS off in a separate project ... 35

Table 17 Quality scenario for REQ-2.2.2 .. 37

Table 18 Quality scenario for REQ-3.2 ... 37

Table 19 Quality scenario for REQ-3.3 ... 38

Table 20 Quality scenario for REQ-3.4 ... 38

Table 21 Quality scenario for REQ-3.5 ... 39

Table 22 Quality scenario for REQ-4 .. 39

Table 23 Identified risks .. 40

Table 24 Risk probabilities .. 41

Table 25 Glossary .. 46

Visual OO Debugger Seite | 49 24.12.2021

16 Bibliography

arc42. (2021). Retrieved from https://www.arc42.de/

Balsamiq. (2021). Retrieved from https://balsamiq.com/

C4 model. (2021). Retrieved from https://c4model.com/

Debug Adapter Protocol. (2021). Retrieved from https://microsoft.github.io/debug-adapter-

protocol/specification

ESLint. (2021). Retrieved from https://eslint.org/

GitHub. (2021). Retrieved from https://github.com/

GitPod. (2021). Retrieved from https://www.gitpod.io/

JointJS. (2021). Retrieved from https://www.jointjs.com/

OST - Ostschweizer Fachhochschule. (2021). Retrieved from https://www.ost.ch/

SonarCloud. (2021). Retrieved from https://sonarcloud.io/

vis.js. (2021). Retrieved from https://almende.github.io/vis/

Visual Studio Code. (2021). Retrieved from https://code.visualstudio.com/

VS Code API. (2021). Retrieved from https://code.visualstudio.com/api/references/vscode-api

