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Abstract
Formal verification is usually taught with a focus on functional
languages, such as Agda, or specialized languages, such as
Dafny. However, it remains a fact that these languages are
not very commonly used in mainstream software development.
Nevertheless, strong guarantees about correctness of software
remain highly desirable in nearly all applications. This paper
attempts to bridge the gap between formal verification methods
and mainstream software development. To achieve this goal,
the paper presents state-of-the-art tools and technologies that
can be used to formally verify Java programs. Futhermore, a
focus is set on ease-of-use and learning simplicity, as a measure
for how viable a tool is for use during teaching at the bachelor’s
level.
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1 Introduction
Program verification in software engineering is the prac-
tice of mathematically proving that a program conforms
to a formal specification. Optimally, this is done statically,
i.e. without the need to execute the program to be verified.
As program verification aims to prove the correctness of
a program, it is similar to manual or automated testing in
that regard. However, the big difference is that the effort in
testing grows exponentially, as the confidence in the test
results usually only asymptotically approaches 100%. On the
other hand, program verification often has a higher base ef-
fort, but the effort for very high confidence-levels is usually
significantly lower, compared to testing.
For this reason, formal program verification is a desir-

able method for use in critical applications, where a high
confidence in the correctness is required. Currently, many
developers prefer to use specialized programming languages
which lend themselves better to formal verification. However,
these programming languages are generally less well-known
and represented in the field. Therefore, the risk to a company
grows, as they are reliant on developers of niche skills.
Java is one of the most popular programming languages

in mainstream software development. Many companies and
developers choose to work with or learn Java, simply for the
reason that it is easy to find developers and jobs in Java. Over
time, Java has evolved into a complex language with features
that make it hard to verify. Thus, Java is not a language
known for its formal verification practices.

Nevertheless, there are multiple projects attempting to
bring the world of formal program verification into the
Java ecosystem, and closer to the Java developer. This pa-
per presents an introduction to some of the more popular
options in this field.

1.1 Assumed Knowledge
This paper assumes the reader has a good understanding of
the Java programming language. Basic principles of formal
verification, such as Hoare-logic, weakest preconditions, and
loop invariants are helpful, but not strictly required [Hoa69].

2 Formal Verification Tools for Java
When attempting to verify a program, there are multiple
components involved in that process, as illustrated by Fig-
ure 1.

Source
Code

Specification

Translator

Solver

Figure 1. Toolchain for Formal Verification of a Program

This paper focuses on Java, therefore the source code
will be Java code. The specification is usually a custom lan-
guage, suited to write formal, machine- and human-readable
specifications close to the code. Translators take the formal
specification and transform them to logical and mathemat-
ical verification conditions that need to be solved. Finally,
those proof obligations are passed to a solver software that
attempts to solve them, which is equivalent to proving the
correctness of the code under its specification. Analyzing
those theorem solvers is out-of-scope for this introductory
paper; the default for each tool will be used. Therefore, this
paper will focus on the specification language and transla-
tors.
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2.1 Java Modelling Language (JML)
The Java Modelling Language is a specification language
used to specify the behavior of Java code [LBR99]. It is writ-
ten inside Java comments, prefixed with an @ symbol. JML
itself only provides the syntax and semantics of how to write
formal specifications of Java code, but it provides no tool
for verification itself. Such tools are presented in the later
sections of this paper.
A simple example of a JML specification might look as

shown in listing 1.
1 public class Math {

2 /*@ requires x >= 0 && x <= 10;

3 @ ensures \result * \result <= x;

4 @ ensures (\ result + 1) * (\ result + 1) > x;

5 */

6 public static int intSqrt(int x) { /* ... */ }

7 }

Listing 1. Simple JML specification for a single method

The requires clause declares a precondition that must hold
for the caller to be allowed to call this method. Similarly,
ensures specifies a postcondition that is guaranteed to be true
after the method exits. In this example, the valid argument
range is limited to the interval [0, 10]. This is done for demon-
stration purposes, but might be relevant, for example, if the
implementation relies on a pre-computed table of results.

Even when specifying JML for seemingly trivial methods,
faults that can easily get overlooked are immediately found
by a verifier.

1 public class Math {

2 //@ ensures \result == x * x;

3 public static int square(int x) {

4 return x * x;

5 }

6 }

Listing 2. Seemingly trivial but incorrect implementation

Attempting to verify the example in Listing 2 with Open-
JML (see section 2.2) results in an ArithmeticOperation\-Range

warning “int multiply overflow”.We have naively overlooked
the scenario that our input argument could be large enough
for the multiplication to result in an integer overflow. This
can be fixed by either adding a precondition with an up-
per limit on the input, or by casting x to long before the
multiplication and returning the long .

1 public class CopyArray {

2 /*@ requires a.length == b.length;

3 @ requires begin >= 0 && begin < a.length &&

end >= 0 && end < a.length && begin <=

end;

4 @ ensures (\ forall int i; begin <= i && i <

end; a[i] == b[i]);

5 */

6 public static void copyArray(int[] b, int begin ,

int end , int[] a) {

7 /*@ maintaining begin <= k && k <= end;

8 @ loop_invariant (\ forall int i; begin <=

i && i < k; a[i] == b[i]);

9 @ decreases end - k;

10 */

11 for (int k = begin; k < end; k++) {

12 b[k] = a[k];

13 }

14 }

15 }

Listing 3. JML specification for a copyArray method

A slightly more complex example is shown in Listing 3.
There, a method for copying the contents of one array into
another array is presented, together with the corresponding
JML specification. The CopyArray example shows that JML
is not only used on methods, but can also be used inside
methods, for example on loops. JML makes use of the famil-
iar concept of loop invariants together with a decreasing
condition to prove loop termination and correct loop results.

One alternative to JML isContracts for Java (Cofoja) [Lê11].
Although it uses similar syntax, Cofoja is intended as a spec-
ification language from which runtime checks are generated
into the application. This paper focuses on static program
verification. Therefore, Cofoja will not be covered hereafter.

2.2 OpenJML
OpenJML is a suite of tools developed mainly by David
Cok [Cok14]. OpenJML’s website1 lists three main capabili-
ties:

• parsing and type-checking
• static checking
• runtime-assertion checking

Within the scope of this paper, the runtime-assertion
checking of OpenJML will be disregarded. Parsing and type-
checking are usually already covered by the IDE - at least
for the actual Java code.

Installation and usage of OpenJML is very straight-forward.
A jar-file can be downloaded from the website and immedi-
ately run on the command-line. With the upcoming version
built with JDK 16, an executable file will be released with the
required JRE pre-packaged [Cok21]. This obsoletes the need
to locally install the correct JRE or JDK for both OpenJML
and the application being developed. Therefore, potential
complications if different versions are used can be avoided.
The -esc command-line switch enables “extended static

checking”, which includes verification of JML annotations.
For the purpose of this paper, this is the only relevant command-
line option, other than -sourcepath to let OpenJML know
where the local source files are located. To make the usage of
OpenJML even easier, most IDEs support run configurations
or tasks. With clever setup, verifying a file can be as sim-
ple as pressing a button or hotkey in the IDE. An example
setup of a run configuration for IntelliJ IDEA is shown in
figure 2, which will verify the currently open file when run.
For concrete examples on how to use OpenJML, see section 3.
Furthermore, appendix B lists a dockerfile for running the

1https://www.openjml.org/ (2021)
2021-12-15 17:34. Page 2 of 1–10.

https://www.openjml.org/


Formal Program Verification in Java

newest version of OpenJML based on JDK 16, for which there
is no Windows build available yet.

Figure 2. IntelliJ run configuration for OpenJML

However, OpenJML is in principle not interactive. This
means if a solver is struggling to verify some condition, it
is not possible for the developer to intervene and help the
solver out. Instead, all necessary hints must be written in
JML, or the solver will fail. Furthermore, some experience is
required to understand the root cause of why a proof-attempt
failed. For example, a warning issued by OpenJML might
reference a post-condition that could not be verified, when
really the pre-condition might not have been accurate. Lastly,
OpenJML has limited support for reasoning about floating-
point logic. However, most tools share this limitation.
The developers of OpenJML provide an extensive suite

of JML specifications for JDK classes on their GitHub page2.
This allows code to be verified that makes use of JDK func-
tionality, without the user having to provide those speci-
fications. Furthermore, development on OpenJML is very
active. Raised issues, such as bug reports, are answered and
fixed within a couple of days. Additionally, an IntelliJ plugin
for OpenJML has been published3, although it does not yet
support the full feature-set of JML [MSW+21].

2.3 KeY
The KeY project was started in 1998 at the Karlsruhe Insti-
tute of Technology by Hähnle et al. [HMS98]. According to
The KeY Book, “[..] the aim of the KeY project was to inte-
grate formal software analysis methods [..] into the realm of
mainstream software development.” [ABB+16].
Similar to OpenJML, KeY is easy to get started with. The

KeY website4 provides a download to an executable JAR-
file. That JAR-file then launches a graphical user interface,
into which the user can load their source files. Furthermore,
the application comes packaged with examples, ready to be
loaded and tested.
By providing a graphical user interface, the application

might be more approachable for new students. However, the

2https://github.com/OpenJML/Specs (2021)
3https://gitlab.utwente.nl/fmt/intellijml (2021)
4https://www.key-project.org

application is definitely tailored to expert usage. Therefore,
a new user should be guided closely, otherwise they might
be overwhelmed by the amount of buttons, windows, and
general information provided. That being said, KeY visual-
izes every step the solver takes when attempting to verify
some program. Although not trivial to understand, this can
be an important tool in teaching, where a teacher can show
students exactly what happens under the hood: all the theory
about formula simplifications and transformations can be
seen in action. Furthermore, KeY supports interactive proofs;
a procedure where the user can intervene when a solver gets
stuck, and try to apply manual transformations to guide the
solver. Again, this can be both challenging but also enlight-
ening. KeY also seems to be in relatively active development,
with the latest stable release published in late 2020.

While KeY seems to be promising in most aspects, it adds
more complexity for the user than for example OpenJML.
With KeY, the user not only needs to learn how to write
correct JML, theymust now also learn how to operate the KeY
tool. Furthermore, at the time of writing, there do not seem
to be any efforts on updating KeY to Java versions newer
than 8. However, in regards to teaching, the KeY project does
provide a complete book covering JML, formal methods in
general, and the KeY application [ABB+16].

2.4 Krakatoa
Krakatoa is a tool developed by the Laboratoire de Récherche
en Informatique in Paris as a front-end to the Why plat-
form [DR19]. Krakatoa takes a KML-annotated Java program
(a variant of JML) and transforms it into Jessie; an interme-
diate language common to Java and C. This intermediate
Jessie language can then be passed to Why’s verification con-
dition generator, and ultimately forwarded to the provers.
This architecture is visualized in figure 4.

Figure 4.Why Architecture [Lab15]
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Figure 3. An automated proof being visualized in KeY

At the time of writing, Why3 was still in its early de-
velopment stages. According to the Krakatoa website, it is
recommended to install Why3 conjointly with Why version
2.41 [Lab15]. Unfortunately, the author was not able to get
the setup to work after about a day of effort. Seeing as further
development on Krakatoa andWhy are currently frozen, this
paper will not delve deeper into Krakatoa. A new evaluation
at a later date, when development ofWhy3 has progressed far
enough for Krakatoa to be on-boarded, would be necessary.
According to a case study by Dmitry Brizhinev, Krakatoa
seems to be very promising, if one can get it to run [BG18].
In particular, it seems to be one of the few tools support-
ing accurate floating point verification. Similarly, Divasón
and Romero concluded that Krakatoa was the best tool for
bachelor’s level teaching [DR19], albeit hard to set up.

3 Example: IntStack with OpenJML
To get a better understanding of JML and formal verification
in general, this section presents an exercise from Prof. Farhad
Mehta’s bachelor course “SE Practices 1”, which uses Cofoja.
The provided source code will be extended step-by-step with
JML and verified using OpenJML.
In this example, we try to formally specify (and subse-

quently verify) a simple stack of integers. The interface for
such an IntStack is presented in listing 4.

1 interface IntStack {

2 void push(int value);

3 int pop();

4 int top();

5 boolean isEmpty ();

6 boolean isFull ();

7 }

Listing 4. Bare interface of the IntStack

Without worrying about the implementation for now, we
can already enhance this interface with JML specifications.

These specifications cannot be verified yet, until we provide
an implementation of IntStack . Listing 5 shows the IntStack

interface extended with simple requires and ensures directives.
This should already be sufficient to ensure the basic integrity
of the stack: no elements may be added when full, and no
elements may be removed when empty.

1 public interface IntStack {

2
3 /*@ requires !isFull ();

4 @ ensures !isEmpty ();

5 @ ensures top() == value;

6 */

7 void push(int value);

8
9 /*@ requires !isEmpty ();

10 @ ensures !isFull ();

11 @ ensures \old(top()) == \result;

12 */

13 int pop();

14
15 /*@ requires !isEmpty ();

16 @ pure

17 */

18 int top();

19
20 //@ pure

21 boolean isEmpty ();

22
23 //@ pure

24 boolean isFull ();

25 }

Listing 5. IntStack with basic JML

Beforemoving on to the implementation, we can use Open-
JML to verify that our JML is correct in regards to syntax and
basic semantics (e.g. there are no contradictions). Listing 6
shows the command to achieve this.

1 $> java -jar openjml.jar \

2 -sourcepath src/main/java \

3 -esc src/main/java/intstack/IntStack.java

Listing 6. Verify IntStack using OpenJML
2021-12-15 17:34. Page 4 of 1–10.
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Although adding JML to an interface is a nice exercise to
think about the behavior of something, this does not provide
us with anything concrete to verify yet. Listing 7 shows an
example of a simple array-based implementation of IntStack .

1 class IntStackArrayImpl implements IntStack {

2 private final int[] values;

3 private int topIndex = -1;

4
5 public IntStackArrayImpl(int size) {

6 values = new int[size];
7 }

8
9 @Override

10 public void push(int value) {

11 values [++ topIndex] = value;

12 }

13
14 @Override

15 public int pop() {

16 return values[topIndex --];

17 }

18
19 @Override

20 public int top() {

21 return values[topIndex ];

22 }

23
24 @Override

25 public boolean isEmpty () {

26 return topIndex == -1;

27 }

28
29 @Override

30 public boolean isFull () {

31 return topIndex == values.length - 1;

32 }

33 }

Listing 7. Array-based implementation of IntStack

Without any JML on the implementation itself, we can
already check the specification of the interface against our
implementation. The command in Listing 8 will run a static
verification using OpenJML.

1 $> java -jar openjml.jar \

2 -sourcepath src/main/java \

3 -esc src/main/java/intstack/IntStackArrayImpl.

java

Listing 8. Verify IntStackArrayImpl using OpenJML

Running OpenJML on the bare IntStackArrayImpl should
yield a couple of warnings: possibly negative array indices,
possibly too large array indices, and integer overflow/un-
derflow. Furthermore, OpenJML will complain about some
postconditions that cannot be verified - these are the ensures

directives of the interface.
To resolve these warnings, we must either change the

implementation, or add additional JML declarations to it. For
the purpose of this example, we will not modify the Java
code.

3.1 Constructor
The constructor only has one warning: PossiblyNegativeSize .
This is easily fixed as shown in listing 9 by using a precondi-
tion.

1 //@ requires size >= 0;

2 public IntStackArrayImpl(int size) {

3 values = new int[size];
4 }

Listing 9. Fix PossiblyNegativeSize with requires

3.2 Invariants
To get rid of all PossiblyTooLargeIndex warnings (except for the
one in push() ), we can introduce an invariant that ensures that
topIndex never exceeds the array’s size, as shown in listing 10.
This invariant must be prefixed with the visibility qualifier
private , as the invariant references fields that are private. In
other words, this invariant is not observable from outside the
class itself. While adding an invariant for the upper bound
of the topIndex , we might as well also add the invariant for
the lower bound.

1 class IntStackArrayImpl implements IntStack {

2 //@ private invariant topIndex < values.length;

3 //@ private invariant topIndex >= -1;

4
5 // ... rest omitted

6 }

Listing 10. Class invariants for IntStackArrayImpl

3.3 Private Behavior
After adding the class invariants, all remaining OpenJML
warnings should relate to push , pop , and top . All three of
these methods are specified in terms of isEmpty and isFull on
the interface. Unfortunately, OpenJML does not sufficiently
inspect the implementation of the boolean methods, there-
fore we need to provide some hints. Listing 11 shows the
necessary JML. The JML for isFull is very similar.

1 /*@ also

2 @ private normal_behavior

3 @ ensures \result == (topIndex == -1);

4 */

5 @Override

6 public boolean isEmpty () { /* ... */}

Listing 11. Private behavior for isEmpty

By adding these directives, we let JML know that the isEmpty

method has a clearly defined “normal behavior” (i.e. no
exceptions), but this behavior is not observable from the
outside (private).

Finally, the last two warnings relate to what the top of the
stack is before and after the push and pop operations. Similar
to the boolean methods, a private normal behavior resolves
this issue, as shown in listing 12

1 /*@ also

2 @ private normal_behavior

3 @ requires !isEmpty ();

4 @ ensures \result == values[topIndex ];

2021-12-15 17:34. Page 5 of 1–10.
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5 */

6 @Override

7 public int top() { /* ... */ }

Listing 12. Private behavior for top

3.4 Usage
Although we resolved all OpenJML warnings on our imple-
mentation, our work is not quite complete yet: When trying
to use the IntStack as shown in listing 13, OpenJML tells us
that the push(2) call (amongst others) cannot be verified. The
reason is that the precondition of the stack not being full
cannot be verified. In other words, OpenJML currently can-
not know that after one push-call, the stack is not full yet,
even though we created a stack with maximum capacity of
2.

1 IntStack stack = new IntStackArrayImpl (2);

2 stack.push (1); // {1}

3 stack.push (2); // {1, 2}

4 stack.pop(); // {1}

5 stack.push (3); // {1, 3}

6 stack.pop(); // {1}

7 stack.pop(); // {}

Listing 13. Usage example of IntStack

3.5 Model variables
To fix this, we need to add the concept of stack size and capac-
ity into JML. This could relatively easily be solved by adding
corresponding new methods to the interface. However, this
section will detail an approach solely using JML.
We start by declaring model variables on the interface

to track size and capacity. Model variables are abstractions
of real Java variables. However, model variables are only
available in the JML context for use during verification. In
the case of the IntStack , we need the maximum capacity and
the current size. Furthermore, we declare invariants for those
model variables. Listing 14 shows the complete declaration
of the model variables.

1 interface IntStack {

2 /*@ public model instance int stackSize;

3 @ public model instance int capacity;

4 */

5
6 /*@ public instance invariant stackSize >= 0;

7 @ public instance invariant stackSize <=

capacity;

8 */

9
10 // ... rest omitted

11 }

Listing 14.Model variables declaration

The instance keyword is required when declaring model
variables on an interface. It tells JML that this model variable
exists on every instance of the interface, as opposed to on
the class object, if it were declared as static .

Now that we have more concrete variables to work with,
we can rewrite the JML annotations for most methods. The
extended JML for the push method is shown in Listing 15.

1 /*@ requires stackSize < capacity;

2 @ assignable \everything;

3 @ ensures stackSize == \old(stackSize) + 1;

4 @ ensures capacity == \old(capacity);

5 @ ensures top() == value;

6 */

7 void push(int value);

Listing 15. push specification with model variables

The precondition for the methods are still the same, but
now expressed in terms of the exact stackSize and capacity .
The assignable \everything directive is a new addition, telling
JML that all variables may change as a side-effect of this
method. Normally, onewould specify exactly which variables
may be changed as a side-effect. However, OpenJML does
not yet support the maps directive, which would allow the
implementation to specify that the array contents can be
modified5. As a workaround, we can use \everything together
with an ensures to tell JML that the capacity may not change
when calling this method. The extended JML annotations for
the other interface methods can be found in appendix A.

At this point, we get many warnings from OpenJML about
the model variables. This is because we have not told JML yet
what those model variables are an abstraction of. To do this,
we need to add represents directives to the implementation,
as shown in Listing 16. The same listing also shows small
extensions to the JML annotations on the constructor and
instance fields.

1 private final int[] values; //@ in capacity;

2 private int topIndex = -1; //@ in stackSize;

3
4 /*@ private represents stackSize = topIndex + 1;

5 @ private represents capacity = values.length;

6 */

7
8 /*@ requires size >= 0;

9 @ ensures stackSize == 0;

10 @ ensures capacity == size;

11 */

12 public IntStackArrayImpl(int size) { /* ... */ }

Listing 16. represents declarations in IntStackArrayImpl

As an added bonus, the private behaviors added previ-
ously for isEmpty and isFull are no longer necessary. With
these model variable changes done, the interface, the imple-
mentation, as well as the usage all verify successfully with
OpenJML6.
By declaring model variables on an interface with the

represents clauses in the implementation, we basically used
subtype polymorphism within JML. Every implementation
of the IntStack interface must now declare itself how the con-
cept of stackSize and capacity are implemented. The interface

5https://github.com/OpenJML/OpenJML/issues/757 (2021)
6tested with versions 0.8.58 and 0.16.0-alpha-8
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only cares that these concepts exist and can use them for
verification.

3.6 Verification with KeY
With the interface, implementation, and usage all verified
with OpenJML, we can take a look if the code also verifies
using KeY. When loading the code into KeY, we are first
met with an error message that @Override cannot be found
on the classpath. Although irritating, this can be resolved
by removing those annotations from the implementation
(or adding the annotation to KeY’s classpath). After that, we
get an error that KeY cannot create a locset from stackSize ,
relating to the assignable clause on pop . Without diving deeper
into why this happens, it can be worked-around by changing
the clause to \everything . Finally, we get some warnings that
in-group clauses are not supported by KeY. However, the
code still loads successfully and the contracts can all be
proven successfully.
Unfortunately, KeY does not recognize the assert state-

ments in the usage, so this part cannot be verified easily.
This is apparently a known issue, where the assert statement
must be followed by a non-empty code block. When arti-
ficially adding such code blocks, the solver gets stuck on
the assert statements, unable to automatically verify them.
It is not obvious why KeY has trouble verifying the assert

statements, but delving into interactive solving approaches
is out of scope for this paper. Especially, since a focus of
this paper is on ease-of-use for developers and students new
to the field of formal verification, who likely want to avoid
manually intervening in the proof attempt.

4 Related Work
The academic field of formal verification is quite broad. This
section presents some recent studies relating to Java. Brizhinev
published a case study similar to this paper, comparing dif-
ferent tools for formal verification of Java programs [BG18],
but without a focus on teaching.

4.1 Proving the JDK
Two papers have analyzed the two different sorting algo-
rithms implemented in the JDK: TimSort [GRB+15] andQuick-
Sort [BSSU17]. Notably, de Gouw et al. have discovered a
bug in the implementation during their attempt at proving
TimSort. Both of these studies used KeY, showing that the
tool is suitable, and possibly prefered, for proving complex
algorithms.

4.2 Teaching Formal Verification with Java
Divasón and Romero published a paper on using Krakatoa
as part of their course on formal verification [DR19]. That
course is compulsory in the fourth semester of the bachelor’s
degree at the University of La Rioja. They concede as well
that Krakatoa is notoriously hard to install. However, they

worked around the issue by providing lab computers with
Krakatoa pre-installed for their students.
The Karlsruher Institute for Technology uses KeY in their

course on formal methods, targeted at both bachelor and
master students [Bec16].

The Chalmers University of Technology uses both KeY and
OpenJML in their course “Formal Methods for Software De-
velopment” [Ahr21]. For ease-of-use, they provide a web-
interface to OpenJML to their students to get started7.

4.3 Java Card
Java Card is a subset of the Java programming language,
targeted at embedded systems [Zhi00]. The primary use-
case of Java Card nowadays is in ATM cards and other smart
cards. While Java Card is a subset of Java, it can still be
considered a specialized language, since it was built for a
very specific purpose. As a bonus, Java Card is sufficiently
simplified that it becomes much more viable to verify large
programs. In fact, one paper published a formally verified
reference implementation of the Java Card API [Mos07]. This
verification was conducted with KeY.

4.4 Java Pathfinder
Java Pathfinder is a tool for verifying the bytecode of Java
programs, originally developed by the NASA Ames Research
Center [HP99]. Java Pathfinder acts as a Java Virtual Machine
(JVM) in that it loads and executes parts of the Java program’s
bytecode. However, instead of running the program normally,
Java Pathfinder exploratively searches different execution
paths of the program in an attempt to find inconsistent states,
deadlocks, and other errors.

5 Conclusion
Although currently not well-known in mainstream devel-
opment, there exist a variety of tools in the field of formal
verification of Java programs. When it comes to formal spec-
ification of the Java source code, JML seems to be the undis-
puted standard. However, many tools add their own custom
extensions to JML to cover specific cases or work around lim-
itations. In that regard, the specification of a more complex
program often results in tool-specific annotations, defeat-
ing the purpose of a general-purpose specification language.
Nonetheless, pure JML is already very powerful and often
sufficient for simpler code.

5.1 Mainstream Java Development
In mainstream development, ease-of-use and simplicity are
paramount. Most software developers do not have the neces-
sary knowledge or interest to deeply understand the theory
behind the formal methods. For formal verification meth-
ods to find a foothold in mainstream development, writing
specifications and verifying them should only be marginally

7http://cse-212294.cse.chalmers.se/courses/sefm/openjml/ (2021)
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more time-intensive than writing automated tests. For those
reasons, OpenJML looks most promising in finding potential
for verifying, for example, important core libraries. However,
the general effort of verifying code still seems too large for it
to be worth to attempt to verify entire business applications.

5.2 Expert Usage
KeY seems to be the tool of choice amongst experts. This is
supported by multiple papers using KeY when verifying com-
plex algorithms [GRB+15][BSSU17][Mos07]. If a Java library
is mission critical, teams might have one or more expert
verification engineers on board. In those cases, OpenJML
probably loses its appeal, as it does not provide any interac-
tivity and only limited insight into the proof attempt. With
Krakatoa’s development being frozen, KeY seems like the
natural choice.

5.3 Cutting-Edge Development
For developers dabbling in the newest and freshest features
of Java, OpenJML comes closest to being useful. Although
no tool currently supports the newest features, OpenJML is
the only tool being re-written for the Java 16 platform. This
is promising in that new features could likely be integrated
sooner than for other tools still relying on older versions.

5.4 Teaching Formal Verification
For a quick introduction into formal verification, OpenJML
provides the smallest barrier-of-entry. Students can start
verifying code in a matter of seconds. When diving deeper
into the theory, both KeY and Krakatoa provide insight into
the inner workings of the theorem solver. According to Di-
vasón and Romero, Krakatoa is the superior tool in terms of
visualizing and explaining what is happening [DR19]. How-
ever, it might be adivsable to wait until development on
Krakatoa has picked back up and is integrated into the new
Why3 platform. While Krakatoa is very hard to install, a
pre-installed environment provided to students could be a
useful workaround.

5.5 Limitations of Formal Verification
As with many things, formal verification processes are only
as strong as their weakest link. In mathematics, if something
is proven, we often have 100% confidence in its correctness.
However, if a piece of code passes a formal verifier, it would
be naive to believe it is 100% correct. First of all, a formal
proof can only ever be as accurate as the specification. As
specifications are usually written by humans, there is always
a potential for errors or inaccuracies there.
Additionally, there is the possibility for bugs in the ver-

ification software itself. While writing this paper, a bug in
OpenJML was found, where OpenJML successfully verified

code, which obviously did not satisfy the specification8. For-
tunately, the bug was fixed within only a couple of days.
However, such incidents show that false negatives in formal
verification software is possible, and likely present in some
form or another.

Lastly, modern software runtime environments are highly
complex. Often virtualized, there are dozens or even hun-
dreds of both software and hardware components involved
in executing some program. For confidence in the correct ex-
ecution of the program to be as high as possible, every single
component involved would need to be formally verified. This
is often unfeasible, or completely out of the developer’s con-
trol. Even if every single software and hardware component
was rigorously formally verified, there are other environ-
mental factors, such as cosmic rays, which are impossible to
predict [ZL79].
Nonetheless, by applying formal verification techniques,

we can significantly improve the confidence in the most im-
portant parts of our code. In a landscape of ever-increasing
complexity, it is even more important that as many com-
ponents as possible are of high quality. Bringing the tools
and methods of formal verification closer to students and
developers is an important step in that direction.
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A IntStack with stack size tracking
1 interface IntStack {

2
3 /*@ public model instance int stackSize;

4 @ public model instance int capacity;

5 */

6
7 /*@ public instance invariant stackSize >= 0;

8 @ public instance invariant stackSize <=

capacity;

9 */

10
11 /*@ requires stackSize < capacity;

12 @ assignable \everything;

13 @ ensures stackSize == \old(stackSize) + 1;

14 @ ensures capacity == \old(capacity);

15 @ ensures top() == value;

16 */

17 void push(int value);

18
19 /*@ requires stackSize > 0;

20 @ assignable stackSize;

21 @ ensures stackSize == \old(stackSize) - 1;

22 @ ensures \old(top()) == \result;

23 */

24 int pop();

25
26 /*@ requires !isEmpty ();

27 @ pure

28 */

29 int top();

30
31 /*@ ensures \result == (stackSize == 0);

32 @ pure

33 */

34 boolean isEmpty ();

35
36 /*@ ensures \result == (stackSize == capacity);

37 @ pure

38 */

39 boolean isFull ();

40 }

Listing 17. Final version of IntStack

1 class IntStackArrayImpl implements IntStack {

2 /*@ private invariant topIndex < values.length;

3 @ private invariant topIndex >= -1;

4 */

5
6 private final int[] values; //@ in capacity;

7 private int topIndex = -1; //@ in stackSize;

8
9 /*@ private represents stackSize = topIndex + 1;

10 @ private represents capacity = values.length;

11 */

12
13 /*@ requires size >= 0;

14 @ ensures stackSize == 0;

15 @ ensures capacity == size;

16 */

17 public IntStackArrayImpl(int size) {

18 values = new int[size];
19 }

20
21 @Override

22 public void push(int value) {

23 values [++ topIndex] = value;

24 }

25
26 @Override

27 public int pop() {

28 return values[topIndex --];

29 }

30
31 /*@ also

32 @ private normal_behavior

33 @ requires !isEmpty ();

34 @ ensures \result == values[topIndex ];

35 */

36 @Override

37 public int top() {

38 return values[topIndex ];

39 }

40
41 @Override

42 public boolean isEmpty () {

43 return topIndex == -1;

44 }

45
46 @Override

47 public boolean isFull () {

48 return topIndex == values.length - 1;

49 }

50 }

Listing 18. Final version of IntStackArrayImpl

1 class IntStackUsage {

2
3 public static void main(String [] args) {

4 IntStack stack = new IntStackArrayImpl (2);
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5 //@ assert stack.capacity == 2;

6 //@ assert stack.stackSize == 0;

7
8 stack.push (1);

9 //@ assert stack.stackSize == 1;

10 //@ assert stack.top() == 1;

11
12 stack.push (2);

13 //@ assert stack.stackSize == 2;

14 //@ assert stack.top() == 2;

15
16 int a = stack.pop();

17 //@ assert stack.stackSize == 1;

18 //@ assert a == 2;

19
20 stack.push (3);

21 //@ assert stack.stackSize == 2;

22 //@ assert stack.top() == 3;

23
24 int b = stack.pop();

25 //@ assert stack.stackSize == 1;

26 //@ assert b == 3;

27
28 stack.pop();

29 //@ assert stack.stackSize == 0;

30 //@ assert stack.isEmpty ();

31 }

32 }

Listing 19. Final version of IntStackUsage

B Dockerfile for running OpenJML
1 FROM ubuntu :20.04

2
3 RUN apt -get update \

4 && apt -get install --assume -yes --quiet \

5 libgomp1 \

6 unzip \

7 wget \

8 && rm -rf /var/lib/apt/lists

9
10 ARG OPENJML_VERSION =0.16.0 - alpha -8

11
12 RUN wget https:// github.com/OpenJML/OpenJML/releases

/download/${OPENJML_VERSION }/openjml -ubuntu -

latest -${OPENJML_VERSION }.zip -O /tmp/openjml.

zip

13
14 RUN unzip /tmp/openjml.zip -d /var/lib/openjml \

15 && ln -s /var/lib/openjml/openjml /usr/bin/openjml

\

16 && chmod +x /usr/bin/openjml /var/lib/openjml/

openjml

17
18 ENTRYPOINT [ "openjml" ]

Listing 20. Dockerfile for running OpenJML

1 $> docker build \

2 --file openjml.dockerfile \

3 --build -arg OPENJML_VERSION =0.16.0 - alpha -8 \

4 --tag openjml :0.16.0 - alpha -8 \

5 .

Listing 21. Building the OpenJML Docker image

1 $> docker run --rm \

2 -v "/path/to/local/sources :/opt/ws" \

3 openjml :0.16.0 - alpha -8 -esc \

4 -sourcepath /opt/ws/src/main/java \

5 -verboseness 2 \

6 /opt/ws/src/main/java/my/package/MyFile.java

Listing 22. Example usage of OpenJML Docker image
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