
Student Research Project

Documentation

Knackpunkt BRK
Semester: Autumn 2022/23

Version: 1.0
Date: 2023-03-01 20:53:44Z
Git Version: Not available

Project Team: Carlo Del Rossi
Claudio Knaus

Project Advisor: Mirko Stocker

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

The UN CRPD (United Nations Convention on the Rights for People with Disabilities)
is a human rights instrument, aiming to change attitudes and approaches toward persons
with disabilities.1

The ZEN (Center for Ethics and Sustainability) of the OST (Eastern Switzerland Uni-
versity of Applied Sciences) has created a printable survey form, that focuses on several
aspects of the UN CRPD. This survey form allows institutions and homes for people
with disabilities to evaluate themselves.

The goal of this project is to digitize the survey form created by the ZEN to simplify
the entire process of distributing survey forms and tallying scores.

We ended up with a survey application that allows institutions to start surveys that
are accessible via an online link. The survey can then be filled out by respondents who
received that link. Once the survey is completed, institutions can view the results and
receive recommendations on how to improve their implementation of the UN CRPD.
During the creation of the application, we placed great emphasis on accessibility, to
make sure it can be filled out by almost everyone. During the duration of the project
we managed to implement a large part of the desired functionality, however, there are
still some features missing. Despite this, we have managed to create a usable product
that provides value for institutions wishing to evaluate themselves.

1Convention on the Rights of Persons with Disabilities (CRPD). url: https : / / www . un . org /

development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.

html. (accessed: 09.12.2022).

i

https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html

Contents

I Introduction 1

1 Management Summary 2
1.1 Baseline . 2
1.2 Achieved Results . 5

II Analysis 6

2 Domain Analysis 7
2.1 Problem . 7
2.2 Domain Specific Language . 8
2.3 Domain Model . 8
2.4 Domain Model Assumptions . 9

3 Requirements 10
3.1 Use Case Diagram . 10
3.2 Functional Requirements . 11
3.3 Non-Functional Requirements . 12

III Design 13

4 Architecture 14
4.1 Overview . 14
4.2 Architectural Decisions . 16

4.2.1 Frontend . 16
4.2.2 Backend . 16
4.2.3 Database . 17
4.2.4 Authentication . 17

4.3 C4 Diagrams . 17
4.3.1 Context Diagram . 18
4.3.2 Container Diagram . 18
4.3.3 Component Diagram . 19

ii

5 Database 21
5.1 Database Tables . 22

5.1.1 Survey Template . 22
5.1.2 Institution and Admin Account . 22
5.1.3 Credential . 22
5.1.4 Survey . 22
5.1.5 Question . 23
5.1.6 Definition and Scored Answer Option 23
5.1.7 Comment and Answer . 23

IV Implementation 24

6 Frontend 25
6.1 Application Structure . 25
6.2 Access Token Flow . 26

7 Backend 27
7.1 File Structure . 27
7.2 Interesting Code Snippets . 28

7.2.1 Injecting Dependencies . 28
7.2.2 Testing Functions that use the Notifier 30
7.2.3 Testing Exceptions . 31

8 Proxy 34
8.1 Configuration . 34

9 Quality Measures 36
9.1 Coding Guidelines . 36
9.2 Test Concept . 37

9.2.1 Unit Testing . 37
9.2.2 Integration Testing . 37
9.2.3 Frontend . 38
9.2.4 Backend . 38

9.3 Workflow . 39

V Discussion 40

10 Results 41
10.1 Functional Requirements . 41
10.2 Non-Functional Requirements . 42
10.3 Screenshots . 43

11 Conclusion & Next Steps 48
11.1 Functional Requirements . 48

11.1.1 Non-Functional Requirements . 49
11.2 Reflection Frontend . 49

11.2.1 axe DevTools Testing Limitations 50
11.2.2 Maintainability and further Testing 50
11.2.3 Evaluation on Technology . 51

11.3 Reflection Backend . 51
11.4 Next Steps . 52

VI References 54

VII Appendix 57
11.4.1 Responsibilities . 58

12 Operational Notes 59
12.1 CI/CD . 59

12.1.1 Automated Backend Test Action 59
12.1.2 Automated Docker Image Build Actions 60
12.1.3 Automated Documentation Building 61

12.2 Installation instructions . 62
12.2.1 Docker Compose File . 63
12.2.2 Environment File . 65

12.3 Updating the Survey Questions . 66
12.4 Test-logs . 70

12.4.1 Backend . 70
12.4.2 Frontend . 71

Part I

Introduction

1

Chapter 1

Management Summary

The ZEN (Center for Ethics and Sustainability) research team commissioned the OST
University of Applied Sciences to conduct an online survey as part of a software engi-
neering project. The online survey developed by the project team is primarily aimed at
institutions with disabled people who want self-evaluation.

1.1 Baseline

The ZEN has developed a questionnaire to evaluate institutions with disabled individ-
uals against the UN CRPD (United Nations Convention on the Rights of Persons with
Disabilities). The questionnaire will be completed by residents, professionals of the in-
stitution, or the resident’s relatives. The survey focuses on the wishes of disabled people
regarding sexuality, partnership and the desire to have children.

The survey results are used to create recommendations for different groups of respon-
dents that institutions have insight into. Anonymity among respondents and institutions
is also a requirement. The questionnaire is available on paper, and respondents can enter
their answers into an evaluation system. The questionnaire also includes explanations
of certain words in easy language and space for comments.

The project was divided into five phases: elaboration, requirements, building, tran-
sition, and documentation. In the elaboration phase, the long-term project plan and
initial tooling were established. The requirement phase focused on developing drafts
and defining the MVP (Minimum Viable Product). The building phase involved the ac-
tual creation of the product using vanilla TypeScript for the frontend and Node.js with
TypeScript for the backend. The transition phase included a dockerized deployment on
a test server, used by the ZEN to re-evaluate and incorporate new requirements. Finally,
the documentation phase will involve the creation of necessary documentation.

2

(a) Initial Print version from the ZEN

(b) Resulting Product

Figure 1.1: Original Print Version and Result Side by Side

(a) Original Print Version of Results and Recommendations from the ZEN

(b) Resulting Product of Results

(c) Resulting Product of Results & Recommendations from OST

Figure 1.2: Original Print Version and Result Side by Side

1.2 Achieved Results

The authors found that the explicitly required goals were met, allowing institutions
to create and delete surveys. Some implications of the specified goals were further
measures, such as creating a user account or changing the email address and password.
However, some requirements resulting from implications of the main requirements were
not met, including the ability for the ZEN to edit the questions after the project had been
submitted. The explicit requirements have been outlined in the Requirements chapter,
and further details on non-compliance are in the Conclusions chapter.

Part II

Analysis

6

Chapter 2

Domain Analysis

2.1 Problem

To analyze the domain we have discussed the problem with the ZEN. The goal is to
create an application for the evaluation of the implementation of the United Nations
Convention of the Rights of Persons with Disabilities (UN-CRPD). From the discussion
we were able to take away some key points:

• The institutions should be able to start self-evaluations on the implementation of
the UN-CRDP.

• Those self-evaluations should be made in the form of a survey.

• The survey is filled out by employees and residents of the institution, as well as
relatives of the residents.

• The survey questions are managed by the ZEN.

• There are up to four answer options per question: ’Yes’, ’No’, ’Sometimes/Partially’
and ’Cannot Answer’.

• Each option has a certain score.

• Each question belongs to a certain category.

• Once a survey is over, the scores can be tallied up and grouped by target group
and category.

• The results should be displayed on a scale from 0 to 100.

• The scales should be color-coded. (red: below 33.3%, yellow: between 33.3% and
66.6% and green: more than 66.6%)

• If the total is below 66.6%, some recommendations are displayed that can help the
institution with the implementation of the UN-CRDP.

7

2.2 Domain Specific Language

Respondent: A person that fills out the survey received from the institution.
Employee: A person that works at the institution. A subgroup of respondents.
Resident: A person that lives in the institution. A subgroup of respondents.
Relative: A relative of a resident. Subgroup of respondents.
Survey Administrator: A person that has control over the questions that are part of
the survey and is capable of adding/removing questions and managing institutions.
Institution Representative: A person that creates and maintains the account for the
corresponding institution.

2.3 Domain Model

From the previous textual description we have created the following domain model:

Figure 2.1: Domain Model

2.4 Domain Model Assumptions

The following assumptions were made concerning the Domain Model:

• The surveys can be edited. This means Questions can be added and removed. For
past surveys to make sense, removed questions must be kept. If a question is not
removed, it will be part of multiple iterations of the survey. That is the reason for
the 1..* cardinality in the Survey-Question relationship.

• An institution can be evaluated multiple times, to see the progress. That is the
reason for the 1..* cardinality of the institution-survey relationship.

• There has to exist at least one maintainer of the survey that keeps the survey up
to date by adding or removing questions. This corresponds to the Survey Admin.

Chapter 3

Requirements

3.1 Use Case Diagram

Figure 3.1: Use Case Diagram

The use case diagram summarizes the functional requirements (FRs) as a graphic
depiction of interactions among different roles within the system, which shows the ex-

10

pected system in its final form. Additional requirements that have not been prioritized
are not explicitly listed in the use case diagram. This included the displaying of recom-
mendations for the disabled people at the end of a survey, as well as the possibility for
institution representatives to anonymously share their results with the ZEN. In addition,
the customer’s requirement to print out a survey became obsolete.

3.2 Functional Requirements

Use Case Description

UC1 Fill In Survey Respondents should be able to fill in a survey based on
their role: ’Resident’, ’Employee’, ’Relative’.

UC2 View Results Institution Representative should be able to view re-
sults and recommendations of a single survey that has
ended.

UC2.1 View All Results Institution Representative should be able to view re-
sults and recommendations for each ended survey.

UC3 Start Survey Institution Representative should be able to start a new
survey.

UC4 End Survey Institution Representative should be able to set an end
date for a survey to make corresponding results visible
for the account.

UC5 CRUD Questions Survey Administrator should be able to add and re-
move survey questions.

UC6 CRUD Survey Ad-
ministrator

ZEN Administrators should be able to manage account
rights for their staff members with Survey Administra-
tor accounts.

UC7 CRUD Institution
Representative

ZEN Administrators should be able to manage account
rights for Institution Representative accounts.

3.3 Non-Functional Requirements

The following non-functional requirements (NFRs) were derived from the requirements
on accessibility, useability, privacy, domain specifications and engineering specifications.

Nr. Description Measurement Prio

NFR1 People with cognitive impairments can fill out surveys
easily.

Acceptance Tests 5

NFR1.1 The survey follows the WCAG 2.1 guidelines with a
score of AA, thus minimum standard plus additional
features.

Acceptance Tests, Linter Ver-
ification

5

NFR1.2 WCAG 2.1 Guideline, Operable - Navigation: Survey
can be filled out by keyboard, mouse, touch screen or
screen reader only.

Acceptance Tests, partial Lin-
ter Verification

5

NFR1.3 WCAG 2.1 Guideline, Understandable - Readability:
Content is readable and easy to understand. Defini-
tions should be enclosed by the abbr-tag.

Acceptance Tests, partial Lin-
ter Verification

5

NFR1.4 WCAG 2.1 Guideline, Robustness - Compatibility:
Semantically correct HTML must be used wherever
possible and they should be enriched with ARIA tags.

Acceptance Tests, partial Lin-
ter Verification

5

NFR2 The survey must be anonymous. A questioned person
must never be asked to provide personally identifying
information.

Acceptance Tests 5

NFR3 Code must stay maintainable. At least 80% test coverage,
so that refactoring can be ap-
plied as confidently as possi-
ble.

4

NFR4 For easier deployment, all the components must be
dockerized.

5

NFR5 To prevent secrets from accidentally being uploaded,
they must be saved in environment variables.

3

NFR6 A linter must be used to prevent bad practices. 4

NFR7 Quick response time when starting a survey. After clicking the ’Start Sur-
vey’ button, the user must
start seeing questions after no
longer than 3s.

4

NFR8 Quick response time when inspecting survey results. After clicking the ’See Survey
Results’ button, the user must
see the results within 3s.

3

NFR9 Quick response time for submitting results. After clicking the ’Submit’
button, the user must see the
’Survey Finished’ screen after
no longer than 3s.

4

Part III

Design

13

Chapter 4

Architecture

4.1 Overview

For our project, we decided to go with a classic three-tier design. We split up the appli-
cation into the following tiers: Frontend (Presentation & Dialog Control Layer), Back-
end (Application Kernel & Database Access Layer) and Database (Persistence Layer).
Thus, we applied the following Client/Server Cuts: Remote User Interface and Remote
Database.1

We have decided to go for this approach as it allows us to separate the application
into self-contained parts. This allows us to define clear error boundaries and easily
collaborate on the project independently. Since each of those tiers runs on a separate
docker container and the backend is stateless, this would also allow us to duplicate the
frontend and backend services, to be able to scale horizontally. The database could
also be scaled horizontally, but it would require some extra work to ensure consistency
between the different instances.

As seen in figure 4.1, we decided to follow the Clean Architecture approach.2 By doing
this, we mainly tried to achieve high testability and independence of the framework, as
well as the independence of the database.

At the center of our architecture are the entities. They are at the core of the business
logic. It is those entities that are persisted in the database. They contain all the data
needed to make the application work.

A layer further out we can find the business logic, security components and repositories.
The business logic is responsible for all the use cases. It is the business logic that

1Klaus Renzel and Wolfgang Keller. “Client/Server Architectures for Business Information Systems
A Pattern Language”. In: 1997. url: https://hillside.net/plop/plop97/Proceedings/renzel.pdf.
(accessed: 09.12.2022).

2Robert C. Martin. The Clean Architecture. url: https://blog.cleancoder.com/uncle-bob/2012/
08/13/the-clean-architecture.html. (accessed: 09.12.2022).

14

https://hillside.net/plop/plop97/Proceedings/renzel.pdf
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Figure 4.1: Architecture Diagram

performs all the necessary operations for the application to work.
The security components are supporting the business logic. For example, the hashing

module provides all the necessary logic to hash the users’ credentials so that the login
logic can function properly. And the JWT module provides the necessary logic to create
JWTs, which is also crucial for the business logic to be able to function.

The repositories provide the necessary logic to read from and write to the database.
Using dependency inversion we were able to decouple the business logic from the Type-
ORM logic. For this, we created different repository interfaces, that contain the necessary
methods for the business logic to operate properly. The repository implementation is
injected at the startup of the application. To swap out the TypeORM library one simply
has to rewrite the implementations of the repositories, the business logic is not affected
by this change.

Yet another layer further out we can find the libraries used. These libraries include
nodemailer for the sending of emails to users, and the TypeORM library responsible for
the persisting and loading of database entries. Both of these libraries are wrapped in
a class and injected into the business logic via dependency injection. This allows these
components to be exchanged easily. For example, TypeORM could be exchanged with
node-Postgres just by rewriting the repository implementations or providing new ones.
The same goes for the nodemailer library which is wrapped inside the GmailNotifier
class.

On the outermost layer, we can find the express framework which consists of routes and
controllers. The routes are responsible for the routing of HTTP requests to the right
controller, which in turn is responsible for executing the correct business logic functions
and providing HTTP responses for the HTTP requests.

4.2 Architectural Decisions

4.2.1 Frontend

Framework

In the context of the frontend framework, facing the short amount of time available for
our project, we decided to use plain HTML/CSS/TypeScript and neglected frameworks
like VUE to avoid having to familiarize ourselves with a framework, accepting that we
have to do more work by ourselves.

Communication with Backend

In the context of communication between frontend and backend facing the need to quickly
and easily answer requests from the frontend we decided to use an HTTP-web-API and
neglected other solutions like WebSockets to achieve a unidirectional API for the frontend
to make requests. As the API only needed to be unidirectional, sockets would not have
made a lot of sense, as they bring more complexity.

4.2.2 Backend

Server-Side Technology

In the context of server-side technology, facing the wish to use a technology we were
already familiar with, we decided to use Node.js and neglected other technologies like
Spring Boot to minimize the risk of using a technology that we’re not familiar with.

Programming Language

In the context of server programming language, facing the wish to use a typed language
we decided to use TypeScript and neglected JavaScript accepting that we would have to
get used to a slightly different syntax.

Framework

In the context of the backend framework, facing the need to easily answer requests from
the frontend, we decided to use the express framework and neglected other frameworks
like nest.js etc. to achieve a simple solution using frameworks that we were already
familiar with accepting that we miss out on extra functionality, other frameworks could
have provided.

Database Connection

In the context of communication between backend and database facing the need to
get/save entities to/from the database in an easy way, we decided to use TypeORM
and neglected libraries like node-Postgres to achieve easy database management so we
don’t have to manage connections etc by ourselves and so we don’t have to create the
database model by ourselves accepting certain limitations of the object-relational map-
ping (ORM).

4.2.3 Database

Database Paradigm

In the context of the database, facing the need to persist data with as little redundancy
as possible and not having to learn to use a new paradigm from the start, we decided to
use the relational paradigm and neglected the graph- and document-oriented paradigm
to achieve a solution without the extra effort of learning a new paradigm and a low
degree of redundancy, accepting that there is more redundancy than if we used a graph-
based paradigm and that there is a bit more complex than if we used a document-based
paradigm.

Database Type

In the context of the database, facing the need to use a database that we were already
familiar with, we decided to use a PostgreSQL database and neglected more lightweight
databases like SQLite to achieve a solution without the extra effort of becoming familiar
with the details of other databases accepting that our database is a bit more heavyweight.

4.2.4 Authentication

In the context of authentication, facing the wish to not be forced to use pre-existing
accounts like Google or Facebook accounts we decided to implement our authentication
using JSON Web Tokens (JWTs). and neglected existing frameworks like OAuth 2.0 in
combination with the Google API accepting that we would have to put in more work to
realize authentication.

4.3 C4 Diagrams

To get a quick overview of our backend architecture, in this section we show a couple of
C4 Model diagrams of our architecture. We have decided to skip the Code Diagram as
it is far too detailed, and we don’t think that this level of detail is required here.3

3Simon Brown. The C4 model for visualising software architecture. Context, Containers, Compo-
nents, and Code. url: https://c4model.com/. (accessed: 09.12.2022).

https://c4model.com/

4.3.1 Context Diagram

Figure 4.2: Context Diagram

Our application has two main actors. The institution representatives manage surveys
of their respective institutions. This includes the creation of surveys as well as the
deletion of surveys. In addition to that, they are responsible for distributing the survey
links to the respondents that will fill out those surveys. Once a survey is over, the
institution representatives can view the results.

The respondents receive those links and can then fill out the surveys.
Our survey system makes use of Gmail as an external service to send various emails

to the institution representatives.

4.3.2 Container Diagram

Our application consists of the following containers:
At the entry point, we have put up a proxy that is responsible for redirecting requests

to the respective endpoint. The proxy is also responsible for HTTPS encryption, making
sure that the messages exchanged are confidential. Besides HTTPS encryption the proxy

Figure 4.3: Container Diagram

serves another purpose, which is to make it look like all resources are located in the
same place. This removes the need for Cross-Origin-Resource-Sharing (CORS), which
also increases security.

To be able to deliver our Single-Page Application (SPA) to the user, we use an
NGINX server. Non-API requests are automatically redirected to the NGINX server.
Requests made by the SPA are redirected to the API Server.

The API itself is located behind the proxy as well. It runs on a NodeJS docker
container.

The database is accessed by the API Server. It runs on a Postgres docker container.

4.3.3 Component Diagram

In the API Application, the requests made by the SPA are delivered to the correct con-
trollers via express routers. The controllers are responsible for executing the business
logic and returning the responses to the user. During the startup process, the dependen-
cies are injected into the controllers, which pass them to the business logic. Due to this,
the business logic can be decoupled from its dependencies, like repositories for database

Figure 4.4: Component Diagram

access and notifiers to send emails to the users. The controllers are also responsible for
catching any errors that might have been thrown by the business logic. The creation of
a custom error class allows different error messages and HTTP error codes to be sent
while keeping the controller logic simple.

The business logic is called by the controllers. Each business logic module makes
use of at least one repository to load or persist data. As already mentioned before, the
business logic only depends on an interface, which means the repository implementations
can be exchanged freely.

Some business logic modules also make use of security components, which are the
hashing module and the JWT module. As the name suggests, the hashing module is
responsible for the hashing of passwords. Thus it is used in the login part of the business
logic, where the hashing module is also used to check passwords for login attempts. The
JWT module is responsible for the creation of JWTs. Again, the login business logic
module makes use of this component to create access tokens, so that the users can log
in.

Chapter 5

Database

Figure 5.1: Database Diagram

The database was designed with the intention to reduce the amount of overhead
in the surveys, while at the same time allowing the Survey Administrators to add and
remove questions, while making sure that backwards compatibility is guaranteed.

21

5.1 Database Tables

5.1.1 Survey Template

The survey template is the core of survey management. It keeps track of the questions
belonging to a survey.

If a question is deleted, it cannot just be removed from the database. It has to be
preserved for past surveys, in case an institution representative wants to look at the
results. This restriction led to the idea of survey templates that would keep track of all
the questions that together form a survey. Each time a question is added or removed, a
new survey template is created. Thanks to that, older surveys can still remember which
questions were answered, which is important for the calculation of points and derivation
of recommendations.

If a question is removed by the Survey Administrator, it does not get deleted from
the database. Instead, a new survey template is created, and all the references to
the questions in the old survey template are copied. Only the deleted question is not
referenced in the new template. The overall number of questions in the database remains
unchanged. And if an institution wants to look at its older results, it can still see the
results from the question that has been removed, as it is still available in the old template.

To make this possible the published column has been added to the survey tem-
plates. As long as a survey template is not published it can be edited by the Survey
Administrators. Once it is published, however, it becomes immutable, to make sure that
everyone with the same survey link gets the same questions.

5.1.2 Institution and Admin Account

Both admin account and institution are tables that represent persons. They share
many attributes and reference the credential table. The main difference is that an
institution can have surveys, while an admin account can’t. They are used to manage
personal and login information.

5.1.3 Credential

The credential table is used to manage login information. It holds the password hash
of a user. It either references an admin account or an institution. The credential type is
set to either ’Institution’ or ’AdminAccount’, to be able to tell which of the two columns
’institutionId’ or ’adminAccountId’ is not null.

5.1.4 Survey

A survey is a concrete instance of a survey template. It references survey template to
be able to tell which questions belong to that survey. As a survey always has to belong
to an institution, this table also references the institution table.

5.1.5 Question

A question contains a text column, which is the question itself. Every question belongs
to exactly one category. Since there are different surveys for different target groups,
each question must also keep track of the target group it is intended for. Valid values
for target groups are ’Angehoerige’, ’Fachkraefte’, and ’Bewohnende’. In addition to
this, a question has an array of recommendations, that are displayed in the results if the
question is not answered sufficiently well.

5.1.6 Definition and Scored Answer Option

Each question has three to four Scored Answer Options (SAO). Every SAO contains the
score of this particular answer option, the answer option itself (’Ja’, ’Nein’, ’Manchmal’,
’NichtBeurteilbar’), and references a question. Using these two pieces of information,
the score of a single answer can be determined.

Each question can also have an array of definitions, which contain complicated words
and their description.

5.1.7 Comment and Answer

Both the comment and answer tables are used to persist the information filled out by the
user. Each comment belongs to a certain category and a target group. This information
is needed for the correct display of the results.

Each answer references a question. The answer column of the table contains either
the string ’Ja’, ’Nein’, ’NichtBeurteilbar’ or ’Manchmal’. With those two pieces of
information, the score of a single answer can be determined.

Part IV

Implementation

24

Chapter 6

Frontend

This chapter describes various implementation aspects of the frontend.

6.1 Application Structure

The file structure of the frontend intertwines the application structure with the underly-
ing HTML pages. The MVC (Model View Controller) pattern structures the application
in distributed directories. As a variant, the MVC pattern follows a semantic cut, so that
the respective HTML page holds the logic of the JS files together.

The folder app/Classes/Model contains the classes for the business logic
The folder app/Classes/Views is mainly limited to the view of the MVC pattern.
The folders institution and login correspond to the relative path of the site:

src

test

app

Classes

Model

View

config

modules

htmlGenerators

resources

images

styles

institution

login

25

6.2 Access Token Flow

When logging in via GET /api/login, the browser saves an access token in the browser’s
Session Storage, which is only valid until the time limit has been reached or until the
browser tab has been closed. Persistency is achieved by a key-value pair by a setter or
getter in TypeScript as part of the standard library. This access token is base64 encoded
and can be used for various API calls to allow the user to make appropriate requests to
the backend via HTTP verbs GET, DELETE, POST, PATCH, and UPDATE.

For example, starting a new survey: /api/institutions/institutionId/surveys/start. The
token checks its validity at regular intervals, by issuing a renewal request. If the renewal
of the token was successful, the login remains persistent by replacing the old token with
a new one, otherwise, the user ends up redirected to the login page.

Chapter 7

Backend

This chapter covers the implementation of the backend a bit more in-depth.

7.1 File Structure

Backend

src

authentication

businessLogic

classes

controllers

entity

enums

interfaces

repositories

interfaces

routes

test

testRepositories

tests

Authentication: The authentication folder contains all classes and modules neces-
sary to create and verify JWTs as well as hashing and checking passwords.

Business Logic: The businessLogic contains most of the functionality of the appli-
cation.

Classes: The classes folder contains all the classes that didn’t belong in any other
folder.

27

Controllers: The controllers folder contains the controllers, which are responsible
for answering requests. They extract the necessary information from the requests, call
the corresponding business logic functions, and then send back the responses.

Entities: The entity folder contains all the entity classes. Created entities are stored
in the database.

Enums: The enums folder contains all enums.

Interfaces: The interfaces folder miscellaneous interfaces.

Repositories: The repositories folder contains all repositories. The repositories are
used to access the database.

Repositories/Interfaces: The repositories/interfaces folder contains all inter-
faces that the repositories must implement.

Routes: The routes folder contains all the routes, which define the mapping of re-
quests to controller functions. The mapping is based on the URL and request method.

Test-Repositories: The testRepositories folder contains all the repository classes
that are used for testing. Each test repository must implement an interface defined in
the repositories/interfaces folder.

Tests: The test folder contains all the unit tests that are run during test execution.

7.2 Interesting Code Snippets

This section contains interesting code snippets from the backend. These code snippets
show interesting patterns like dependency injection or interesting test concepts.

7.2.1 Injecting Dependencies

To avoid dependency cycles, dependency injection was used to inject the repository and
notifier classes into the controllers. Each controller has a function that sets the repository
(and optionally the notifier), so they don’t have to import the data source manager from
the index.ts file.

1 # resultController.ts

2

3 let resultRepository: IResultRepository;

4 let institutionRepository: IInstitutionRepository;

5

6 export function setResultRepository(repositories: {

7 resultRepository: IResultRepository,

8 institutionRepository: IInstitutionRepository,

9 }) {

10 resultRepository = repositories.resultRepository;

11 institutionRepository = repositories.institutionRepository;

12 return (req: Request, res: Response, next?: NextFunction) => {

13 next();

14 };

15 }

The function setResultRepository is meant to be called as an express middleware
from the index.ts file. Each controller has one function similar to this one, where the
dependencies are set. By doing this, the dependencies can be instantiated once and
passed to each controller. There is no singleton needed, and by programming against
interfaces, the business logic can be decoupled from its dependencies.

16 # index.ts

17

18 const repositories = {

19 resultRepository: new ResultRepository(AppDataSource.manager),

20 questionRepository: new QuestionRepository(AppDataSource.manager),

21 answerRepository: new AnswerRepository(AppDataSource.manager),

22 surveyRepository: new SurveyRepository(AppDataSource.manager),

23 commentRepository: new CommentRepository(AppDataSource.manager),

24 institutionRepository: new InstitutionRepository(AppDataSource.manager),

25 surveyTemplateRepository: new SurveyTemplateRepository(

26 AppDataSource.manager

27),

28 };

29

30 app.use(’/api/resultate’, resultRouter, setResultRepository(repositories));

In the index.ts file, all repositories are instantiated once. The entity manager is
passed as an argument. While mapping the route /api/resultate to the resultRouter
module, the setResultRepository function is called as an middleware, setting the
repositories in the resultController.

7.2.2 Testing Functions that use the Notifier

Classes implementing the INotifier interface are responsible for sending messages via
email (or potentially other means of communication). The sending of emails can poten-
tially take a big amount of time, which is why the sendMessage function is not awaited
in the business logic. This, however, means that the business logic can’t check if the
function was executed properly.

To still be able to test the behavior of the business logic in the unit tests, a fake of
the INotifier interface is created, that saves the relevant information in its properties.
Those properties can then be checked to make sure that the business logic calls the
right functions at the right time. The INotifier fake also contains a property called
shouldFail, which indicates if the sendMessage function should fail and throw an error.
This can be used in case the sendMessage function is awaited, to be able to test the
error handling of the calling business logic.

1 # TestHelper.ts

2

3 const testNotifier = {

4 shouldFail: false,

5 sendMessage: (messageInfo: {

6 message: string, subject: string, recipient: string

7 }) => {

8 testNotifier.recipient = messageInfo.recipient;

9 testNotifier.message = messageInfo.message;

10 testNotifier.subject = messageInfo.subject;

11 if (testNotifier.shouldFail) {

12 return Promise.reject(

13 new Error(’Sending message failed! (This is a mock error)’)

14);

15 }

16 return Promise.resolve();

17 },

18 recipient: <string> undefined,

19 message: <string> undefined,

20 subject: <string> undefined,

21 };

22 # InstitutionLogicTest

23

24 const notifierMock = TestHelper.createTestNotifier();

25 const notifier = notifierMock as unknown as INotifier;

26

27 const institutionInfo = {

28 name: ’Inst.’,

29 address: ’Addr.’,

30 city: ’City’,

31 areaCode: ’4564’,

32 email: ’inst@mail.com’,

33 };

34 const { email } = institutionInfo;

35

36 await institutionLogic.createNewInstitution(

37 institutionInfo,

38 institutionRepository,

39 notifier

40);

41

42 const expectedToken = JWT.generateEmailConfirmationToken(institutionInfo);

43

44 notifierMock.recipient.should.equal(email);

45 notifierMock.subject.should.equal(’Registration’);

46 notifierMock.message.should.match(/.*emailBestaetigung\.html\?token=.*/);

47 notifierMock.message.should.contain(expectedToken);

The test case shown above first creates a new test notifier fake using the TestHelper.
The fake must be ”casted” to INotifier, so it can be passed to the createNewInstitution
function of the institutionLogic. Once the createNewInstitution function is done, the
fake notifier’s properties can be checked to make sure that the sendMessage function
has been called correctly.

7.2.3 Testing Exceptions

As it turned out during the writing of the tests using chai and mocha, it was not very
easy to test if the functions would throw the correct exceptions. This is partially due to
chai not checking the messages of the errors. In addition, we have defined a custom error
class called ApiError, which also includes the HTTP error code that should be returned,
to simplify error handling. This however made the testing of errors even harder, since
the functions provided by chai would never check those error codes. Also checking for
the correct error type caused some problems.

To circumvent all of the problems mentioned above, the TestHelper class offers four
functions. Two functions to check the errors thrown by non-async functions, one for

checking for ApiErrors, and one for checking any other kind of Error. And an additional
two functions to check errors thrown by async functions, again, one for ApiErrors and
one for all other Errors.

In this section, one of these functions is shown in detail, the remaining three are very
similar and thus not shown.

1 async function assertThrowsApiErrorAsync(

2 f: () => Promise<unknown>,

3 message: string,

4 errorCode: number,

5) {

6 try {

7 await f();

8 chai.assert.fail(’No error was thrown!’);

9 } catch (e) {

10 assertApiError(e, message, errorCode);

11 }

12 }

13 function assertApiError(error: Error, message: string, errorCode: number) {

14 if (error instanceof ApiError) {

15 if (

16 message === error.message

17 && errorCode === error.getErrorCode()

18) {

19 return;

20 }

21 chai.assert.fail(‘Actual: {

22 message: ${error.message},

23 code: ${error.getErrorCode()}

24 } is not the same as expected: {

25 message: ${message},

26 code: ${errorCode}

27 }.‘);

28 }

29 chai.assert.fail(‘

30 Actual: {

31 message: ${error.message}

32 }is not the same as expected: {

33 message: ${message}, code: ${errorCode}

34 }.‘);

35 }

The assertthrowsApiErrorAsync function takes an async function, the expected
error message and the expected error code as parameters. It calls the provided functions,

and if it throws no error, it causes the test to fail. If it throws an error, the error is
checked by the assertApiError function. This function checks the error type, message
and code of the thrown exception, and if there is a mismatch, it causes the test to fail.

Using these custom error-check functions eliminated all the previously mentioned
problems that we had with the testing library.

The functions can then be used like this:

36 # LoginLogicTest.ts

37

38 await TestHelper.assertThrowsApiErrorAsync(

39 () => loginLogic.resetPassword(

40 passwordResetToken,

41 newPassword,

42 institutionRepo,

43),

44 ’Dieser Link ist ungültig!’,

45 400,

46);

Chapter 8

Proxy

This chapter highlights the configuration that we used to implement the NGINX proxy.

8.1 Configuration

The configuration file is made up of two parts.
The first part is the HTTP endpoint (lines 3 through 14). The purpose of this part

is to redirect all HTTP requests to the HTTPS endpoint (lines 11 through 13). The
only requests that are not redirected are the requests to ’/.well-known/acme-challenge/’,
which are used to obtain a TLS certificate (lines 8 through 10).

The second part is the HTTPS endpoint (lines 16 through 29). To enable TLS lines
21 through 22 specify the required files. Requests starting with ’/api’ are forwarded to
the backend server (lines 24 through 36), while the remaining requests are forwarded to
the frontend server (lines 27 to 29).

To generate the TLS certificate we use the certbot1 docker image, which helps to
easily generate certificates via Let’s Encrypt2

1certbot. url: https://certbot.eff.org/. (accessed: 14.12.2022).
2Let’s Encrypt. url: https://letsencrypt.org/. (accessed: 14.12.2022).

34

https://certbot.eff.org/
https://letsencrypt.org/

1 # default.conf

2

3 server {

4 listen 80;

5 listen [::]:80;

6 server_name <hostname>;

7

8 location /.well-known/acme-challenge/ {

9 root /var/www/certbot;

10 }

11 location / {

12 return 301 https://<hostname>$request_uri;

13 }

14 }

15

16 server {

17 listen 443 default_server ssl http2;

18 listen [::]:443 ssl http2;

19 server_name <hostname>;

20

21 ssl_certificate /etc/nginx/ssl/live/<hostname>/fullchain.pem;

22 ssl_certificate_key /etc/nginx/ssl/live/<hostname>/privkey.pem;

23

24 location /api {

25 proxy_pass http://backend:8000/api;

26 }

27 location / {

28 proxy_pass http://frontend:80/;

29 }

30 }

Chapter 9

Quality Measures

This chapter describes the various quality measures we have put in place to make sure
that our code is as clean as possible and working as expected.

9.1 Coding Guidelines

• General

– Code needs to be committed frequently with descriptive commit messages.

– Side effects should be avoided whenever possible.

– Comments may only be used if they are helpful.

– Global variables should be avoided if possible.

– Exceptions are preferred over error codes.

– Nesting should not be deeper than 2 levels.

– No duplicate code. (DRY)

– Functions should be kept short (less than 11 lines).

– Create feature branches, before every merge, tests must be run.

• Formatting

– Line length should not exceed 120 characters.

– Style guide: ESLint + AirBnB

– Code must be auto-formatted before being committed.

– Code must pass all tests before being committed.

• Naming

– Function names should be verbs.

– Class names should be nouns.

36

– Longer, more descriptive names are preferred over short ones.

– No abbreviations in names.

– No 1-character names.

9.2 Test Concept

This section describes the test concept for the project. The concept should be seen as a
consecutive description for developers, beginning from Unit Tests up to Usability Tests
in corresponding order. The concept outlines the verification of requirements on the
system.

9.2.1 Unit Testing

Unit Tests should often be carried out under the AAA paradigm, which stands for
Arrange, Act, Assert. This approach includes the following:

• Arrange: Setting up tests for a particular piece of code such as methods, variables
and classes.

• Act: Performing the actual testing after the code has changed.

• Assert: Observing the resulting behavior and checking whether expectations were
met. The code should be changed to achieve a positive test result.

• Each operation returns the correct result in case the operation is applied correctly.

• Each operation throws the correct exception in case the operation is applied in-
correctly.

9.2.2 Integration Testing

The Docker containers should be tested for inter-communication via API calls. In-
tegration tests verify intra-connectivity between the frontend, backend and database
containers. In general, the procedure includes verification on:

• Correctly called operations.

• The combination of individually called operations.

• Asynchronous timeout requests and responses.

• On database queries.

9.2.3 Frontend

Usability

Usability Tests are the main derivation of functional requirements. As such, they are a
quality measuring tool for the entire project. NFRs 1.0 - 1.4 fall at least in one of the
following two categories:

• User experience of the main application (survey & results) for disabled people.

• Accessibility of the main application (survey & results) for disabled people.

Usability tests are partially automated, and thus remain mostly manually tested in this
concept due to their complexity. The effectiveness of time and resources for our usability
testability is maximized with the following tools:

• axe as VSC Linter plugin1 for accessibility.

• axe DevTools as Chrome Plugin2 verifies in-browser accessibility.

Both tools provide insights into the previously mentioned user experience and accessi-
bility under the WCAG 2.1 standard.3 With these tools, technical requirements were
tested and verified.

Some NFRs require manual testing since only a human being can judge how good or bad
a user experience is. The reason is, that ”semantic correctness” is hard or impossible
to test with a tool, that is not capable of thinking like a human being. To verify the
early requirements (FRs & NFRs) acceptance tests were used in real-world situations
within a dockerized test environment. Furthermore, the ZEN was asked to test against
the requirements of the target audience (disabled people) to meet the expectations.

9.2.4 Backend

On the backend, unit tests are used to make sure everything is working properly. To allow
the testing of the complete business logic, dependency injection is used. Instead of the
real repositories, for example, repository fakes are passed as parameters that eliminate
the need to include the database in the tests. Besides performance improvements, this
also makes tests independent of each other, as they don’t make changes on a common
database.

1axe Linter for Visual Studio Code. url: https://www.deque.com/blog/shift-further-left-

with-deques-axe-linter-for-vs-code/. (accessed: 12.12.2022).
2axe DevTools web accessibility. url: https : / / chrome . google . com / webstore / detail / axe -

axe%20DevTools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd. (accessed: 12.12.2022).
3Web Content Accessibility Guidlines (WCAG) 2.1. url: https://www.w3.org/TR/WCAG21/.

(accessed: 21.12.2022).

https://www.deque.com/blog/shift-further-left-with-deques-axe-linter-for-vs-code/
https://www.deque.com/blog/shift-further-left-with-deques-axe-linter-for-vs-code/
https://chrome.google.com/webstore/detail/axe-axe%20DevTools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd
https://chrome.google.com/webstore/detail/axe-axe%20DevTools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd
https://www.w3.org/TR/WCAG21/

9.3 Workflow

The workflow is also part of our quality assurance. On the backend repository, we created
a pipeline that runs the tests automatically when creating a merge request. This adds
another layer of quality assurance, making sure that the tests are not only passing on the
local machine. Only once those tests pass, are we allowed to merge the feature branch
into the main branch.

Part V

Discussion

40

Chapter 10

Results

This chapter describes the achieved and not achieved goals, which are closely related to
the FR and NFRs.

10.1 Functional Requirements

UC1 - UC4 partially satisfied the MVP requirements according to acceptance tests. UC5
to UC7 were not implemented and thus didn’t satisfy all the requirements of a MVP. As
a result, the MVP was only partially satisfied.

UC# Description Satisfied

1 Respondents are able to fill in surveys. Yes
2 Institutions are able to view the results and recommendations of filled-in

surveys.
Yes

3 Institutions are able to start surveys. Yes
4 Institutions are able to end surveys. Yes
5 Survey Administrators aren’t able to manage questions. No
6 ZEN Administrators aren’t able to manage Survey Administrators. No
7 ZEN Administrators aren’t able to manage Institution Representatives. No

41

10.2 Non-Functional Requirements

NFR# Description Satisfied

1 People with cognitive impairments can fill out surveys easily. Yes
1.1 The acceptance tests, automated tests and linter showed, that the survey

met the WCAG 2.1 AA guidelines.
Yes

1.2 Automated tests showed that the survey can be completed and navigated
using a keyboard.

Yes

1.2 An acceptance test by an institution showed that the survey was not
displayed optimally on a mobile device.

No

1.2 Acceptance tests on screen readers were not performed. No
1.2 The acceptance tests and automated tests showed that the survey can

be filled out using a mouse.
Yes

1.3 The acceptance tests showed that the content is readable and easy to
understand.

Yes

1.4 The acceptance tests, automated tests and linter showed, that the sur-
vey met the robustness requirements by following semantically correct
HTML.

Yes

1.4 Automated tests and linter showed, that ARIA tags were not necessary
for the project scope.

Yes

2 The acceptance tests showed that the survey is anonymous thus a re-
spondent was not asked to provide personally identifying information.

No

3 Test results showed that the backend met the requirements. Yes
3 The frontend didn’t meet the requirements due to the lack of tests. No
4 Manual acceptance tests showed that components are dockerized. Yes
5 Manual acceptance tests showed that environment variables were kept

secret.
Yes

6 Manual acceptance tests showed that a linter prevented bad practices. Yes
7 Manual acceptance tests showed that the page response time on average

is no longer than 3s after clicking the ’Start Survey’ button.
Yes

8 Manual acceptance tests showed that the page response time on average
is no longer than 3s after clicking the ’See Survey Results’ button.

Yes

9 Manual acceptance tests showed that the page response time on average
is no longer than 3s after clicking the ’Survey Finished’ button.

Yes

10.3 Screenshots

Figure 10.1: Extract of the Survey Entry Page

Figure 10.2: Extract of the Survey Page

Figure 10.3: Smileys and Colors can be inverted, in case ’Yes’ is the bad Answer.

Figure 10.4: If the Question is just about the Opinion, Smileys and Colors can be
removed.

Figure 10.5: Field for Comments during the Survey.

Figure 10.6: Button to display Definitions.

Figure 10.7: Definition of a Hard Word.

Figure 10.8: Extract of the Results Page for Institution Representatives

Figure 10.9: Registration Input for Institutions.

Figure 10.10: Login Screen for Institutions.

Figure 10.11: Overview of all the Institution’s Surveys.

Figure 10.12: First Half of the Institution Management Screen to update Information.

Figure 10.13: Second Half of the Institution Management Screen to update Information.

Chapter 11

Conclusion & Next Steps

In this chapter, the project team reflects on and evaluates the results achieved. There-
fore, goal achievement is measured by comparing it to the task and goal of the work.

The following sections discuss the facts surrounding the project concerning FRs & NFRs
and illuminate the frontend and the backend from different perspectives. At the same
time, attempts are made to find new solutions in the discussion.

11.1 Functional Requirements

According to the test results, UC1 to UC4 were implemented. Other requirements added
by the ZEN that have not been met are discussed in the frontend and backend sections.

Additional Requirements

In the course of the transition phase, new requirements came into the project. Some re-
quirements were prioritized by the ZEN due to the limited time in the project, therefore
some requirements could no longer be met.

Among other things, it was not possible to introduce personal recommendations for
disabled people based on their survey results, as proposed after the first project presen-
tation.

In addition, another additional requirement could not be met, which should allow the
anonymous sharing of survey results of institutions with the ZEN.

A trailing requirement in the final week of construction addressed optimization for mo-
bile devices. Since building time has already passed and the pending issues still have to
be dealt with, this requirement could not be met as well.

One requirement was removed from the project by the ZEN. This concerned the im-

48

plementation of a printable survey for respondents.

Basic Requirements

UC5 to UC7, which particularly affected the CRUD operations for the ZEN, could not be
completed due to various reasons. The reasons will be discussed in the section Reflection
Frontend.

11.1.1 Non-Functional Requirements

The main intention and thus the core criterion of the ZEN was that institutions could
evaluate themselves based on the responses of respondents (NFR 1). With the help of
non-representative acceptance tests conducted by the ZEN, it could be shown that peo-
ple with cognitive impairments were able to complete the survey. Subsequent acceptance
tests thus theoretically ensured a barrier-free user experience for disabled people.

The ZEN stipulated that the survey had to be usable with a mouse, keyboard, touch
screen and screen reader (NFR 1.2). The project team did not establish direct contact
with the test subjects, so it was not possible to finally explain which device inputs the
test subjects had used to carry out the test.

A further requirement concerned the simple comprehensibility of the content of the
survey text (NFR 1.3). It was necessary to ensure an implementation so that definitions
of complicated words could be made accessible and explained to disabled people.

The backend has stable test results. The code ins the frontend is only partially main-
tainable with the current implementation (NFR 3). Tests were always part of the initial
requirements of the project.

The linter was previously used to set framework conditions (NFR 6). Some linter sugges-
tions were ignored because they weren’t practical in the context. However, the majority
of the linter suggestions resulted in better code quality.

Manual tests have shown that the response time to start a survey Displaying results
and submitting results was less than 3s (NFR 7-9). These test results were not logged.

11.2 Reflection Frontend

The tight schedule is due to the time that was spent on change requests for UC1, as
mentioned in the previous subsection on Basic Requirements. In the course of the main
requirements, however, it can be argued that these requirements had a very high value,
in which the time was well invested. This was possible due to the design decisions made
by the team in cooperation with the ZEN and disabled people re-evaluating the changing
requirements. On the technical side, time was invested in the semantic correctness of

the presentation so that this requirement could be met. The presentation and content of
the entire survey were planned with the greatest possible care and implemented under
the WCAG2.1 guidelines (NFR 1.1, NFR 1.4).

Unfortunately, a considerable part of the available time was invested in UC2 (View
Results) in terms of accessibility and usability, so that overall there was less time for the
development of the additional requirements from UC5 to UC7. The situation described
was subject to a change in requirements, although it was initially considered that the
results should be visible to all respondents including disabled people. Afterward, how-
ever, only institution representatives should be able to see the results, according to the
ZEN. Had this requirement been clear from the outset, at least the semantic correctness
with all implementation details for accessibility & usability could have been dispensed
with.

11.2.1 axe DevTools Testing Limitations

Concerning the accessibility tester axe DevTools, the limitation of partial testability is
worth mentioning. In general, this testing tool was subject to certain restrictions that
did not allow any insight into the user guidance. The evaluation of a tool intended for
this purpose might have yielded further insights.

Additional limitations regarding axe DevTools are the erroneously made flags that should
have violated the semantic correctness of HTML. For example, empty a-tags were clas-
sified as ”critical”, although the empty tags were only used to control the flow of pop-up
definitions. We decided not to change this code to ensure a good user experience regard-
less of failed test results.
Another hurdle was the evaluation of the test results at the end of the project because
the test results in the appendix corresponded to obsolete test results. This is because
the evaluation period for the chargeable test environment axe DevTools had ended at
the time of the construction phase of the project. As a result, the test results could
not be renewed, although appropriate countermeasures were taken after the tests. The
additional limitations in the last section mentioned, however, were also included in the
test logs.

11.2.2 Maintainability and further Testing

Regarding the frontend maintainability, only a few integration tests are present for the
frontend (NFR 3). Testability was dispensed with in favor of functionality in terms of
the changing requirements on the part of the client. The implementation followed the
MVC (Model View Controller) pattern, which makes the testability of the frontend more
difficult. The lack of structuring in the code generally required architectural decisions,
which would have simplified the implementation.
Therefore, for multi-class projects like this, following an MVVM (Model View View-
Model) pattern approach might be more appropriate. MVVM separates the development

of user interfaces from business logic and behavior. Declarative data bindings allow UI
and development work to occur separately within the same codebase,

Moreover, testing was made more difficult because the use of global variables had a
fixed place in the code, so that testability could no longer be guaranteed as a require-
ment. All of the problems mentioned meant that this requirement was not met.

11.2.3 Evaluation on Technology

In the evaluation phase at the beginning of the project, the vue.js framework was de-
liberately avoided. A further evaluation phase with React was not subsequently carried
out. In retrospect, the evaluation of the React Framework would probably have been
better, so that the complexity could have been mitigated.

11.3 Reflection Backend

While not all use cases were implemented yet and the MVP has not been reached yet,
we managed to provide most of the important functionality to make the result usable.
All the self-evaluation functionality for the institutions has been implemented, which is
the most used feature.

The bar for the MVP was probably set a bit too high to be realistic, especially
considering the quality measures, which required a big amount of the code to be tested.

There were many things that we have done for the first time in this project, like for
example the deployment including proxy and TLS encryption, as well as the deployment
itself, which we had never done before. Working on all these things has certainly helped
to expand our toolkit for future projects and will probably be a valuable experience that
will help with the implementation of similar upcoming projects.

This being said, there is still some more work that could be done on the currently
implemented functionality. For starters, we would rethink the database design a slightly
bit.

As of right now, there are two types of accounts, the Institution and the AdminAccount.
Those two entities share many common properties. The only property that is not shared
is the surveys property, as only institutions can create and start surveys. Thus, it might
be a good idea to either create a common base entity and extend that with inheritance,
or to put the two entities together to create one single Account entity.

This problem resulted from thinking ahead too far when creating the entity that
stores credentials. It was a quick fix, that wasn’t really needed but was still performed.
It would probably be a good idea to refactor those two entities before continuing work,
to make account management and login easier.

Another weak point is the JWT module with the different tokens that it generates. It

might be better to create a class per token type, to make the handling a bit easier, as
right now the JWT module is responsible to create all different token types. These token
types include refresh tokens, access tokens, and the so-called event tokens. The event
tokens are tokens that are created to send email links to the users, which allow them to
reset their passwords, delete their accounts permanently and register new accounts. So
with those five different token types, it might be a good idea to separate them, which
could be done by separating them into different classes.

This problem is a result of the organic growth of the JWT module and insufficient
refactoring. It would surely be worth checking this out before continuing to implement
new features.

There are also still some problems with the TypeORM entities is that some relations
were not properly defined for lazy loading. The type of the relation should have been
a promise of a type, instead of just the type. Because of this, the ResultRepository,
has to do a complex query to be able to get all results for a certain survey. This change
would probably take a bit of a bigger refactoring, but it is certainly something worth
doing for the continuation of the project.

The formatting of the emails sent to the users is not too good either. The text could be
improved a bit, right now it just contains the most important information and not much
more. An HTML version of the emails could be created too, which would make the
formatting of the email easier. This has been neglected though, as other things needed
to be prioritized.

The application is also still missing some (error) logging capabilities. For development,
the errors were logged using console.log, but for production, a feature like this is missing.
This is due to the limited available time. The logging was not prioritized.

Something that I would probably do differently for a future project is to use another
backend technology. While I have enjoyed working with TypeScript, especially compared
to regular JavaScript, I felt like the express framework made it a bit difficult to work
with dependency injection. I had to pass all the instances through many functions, to
be able to keep the business logic decoupled. Compared to Spring Boot for example,
which handles dependency injection ’automagically’, this was a bit inconvenient.

It might also be worth checking out other frameworks than express, as these might
help with this problem as well.

11.4 Next Steps

The project team felt the need to meet the client’s MVP. The team designed & developed
a valid and stable product. All roles except ZEN Administrator and Survey Adminis-
trator are fully functional and ready to go into production. At the same time, the user
interface and thus the roles of ZEN Administrator and Survey Administrator are not

implemented on the frontend. Furthermore, all tests would have to be implemented
later by the frontend. In general, the maintainability of the frontend would have to be
ensured by making structural changes.

Unanswered questions arise about the gained accessibility and usability. Is a repre-
sentative accessibility test as positive as the feedback received? Is the site accessible for
screen readers and more exotic input devices?

Part VI

References

54

List of Figures

1.1 Original Print Version and Result Side by Side 3
1.2 Original Print Version and Result Side by Side 4

2.1 Domain Model . 8

3.1 Use Case Diagram . 10

4.1 Architecture Diagram . 15
4.2 Context Diagram . 18
4.3 Container Diagram . 19
4.4 Component Diagram . 20

5.1 Database Diagram . 21

10.1 Extract of the Survey Entry Page . 43
10.2 Extract of the Survey Page . 43
10.3 Smileys and Colors can be inverted, in case ’Yes’ is the bad Answer. . . . 43
10.4 If the Question is just about the Opinion, Smileys and Colors can be

removed. 44
10.5 Field for Comments during the Survey. 44
10.6 Button to display Definitions. 44
10.7 Definition of a Hard Word. 45
10.8 Extract of the Results Page for Institution Representatives 45
10.9 Registration Input for Institutions. 46
10.10Login Screen for Institutions. 46
10.11Overview of all the Institution’s Surveys. 46
10.12First Half of the Institution Management Screen to update Information. . 47
10.13Second Half of the Institution Management Screen to update Information. 47

12.1 Enable 2FA . 66
12.2 Generate App Password . 67
12.3 Test Output Backend . 70
12.4 Frontend Integration Tests . 71

55

References

axe DevTools web accessibility. url: https://chrome.google.com/webstore/detail/
axe-axe%20DevTools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd. (ac-
cessed: 12.12.2022).

axe Linter for Visual Studio Code. url: https://www.deque.com/blog/shift-
further-left-with-deques-axe-linter-for-vs-code/. (accessed: 12.12.2022).

Brown, Simon. The C4 model for visualising software architecture. Context, Containers,
Components, and Code. url: https://c4model.com/. (accessed: 09.12.2022).

certbot. url: https://certbot.eff.org/. (accessed: 14.12.2022).
Convention on the Rights of Persons with Disabilities (CRPD). url: https://www.

un.org/development/desa/disabilities/convention- on- the- rights- of-

persons-with-disabilities.html. (accessed: 09.12.2022).
Creating a personal access token. url: https://docs.github.com/en/authentication/

keeping- your- account- and- data- secure/creating- a- personal- access-

token. (accessed: 10.12.2022).
Let’s Encrypt. url: https://letsencrypt.org/. (accessed: 14.12.2022).
Martin, Robert C. The Clean Architecture. url: https://blog.cleancoder.com/

uncle-bob/2012/08/13/the-clean-architecture.html. (accessed: 09.12.2022).
Renzel, Klaus and Wolfgang Keller. “Client/Server Architectures for Business Informa-

tion Systems A Pattern Language”. In: 1997. url: https://hillside.net/plop/
plop97/Proceedings/renzel.pdf. (accessed: 09.12.2022).

Web Content Accessibility Guidlines (WCAG) 2.1. url: https://www.w3.org/TR/
WCAG21/. (accessed: 21.12.2022).

56

https://chrome.google.com/webstore/detail/axe-axe%20DevTools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd
https://chrome.google.com/webstore/detail/axe-axe%20DevTools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd
https://www.deque.com/blog/shift-further-left-with-deques-axe-linter-for-vs-code/
https://www.deque.com/blog/shift-further-left-with-deques-axe-linter-for-vs-code/
https://c4model.com/
https://certbot.eff.org/
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://letsencrypt.org/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://hillside.net/plop/plop97/Proceedings/renzel.pdf
https://hillside.net/plop/plop97/Proceedings/renzel.pdf
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/

Part VII

Appendix

57

The following list is a brief overview of our agreed cooperation for the project scope.

• Collaboration method: Scrum+, which is a combination of Scrum and RUP
(Rational Unified Process).

• Roles: were not specified due to the team size of two people.

• Planned meetings: half-weekly scrums were typically held on Mondays, Wednes-
days and Fridays. Sprints were held on demand.

• Long Term Plan: see section Project Plan.

• Short Term Plan: available in Jira

• Risks: Most of the technology is known to the team members. However, a risk of
sickness initially remained such that a buffer of two weeks would be enough time
to finish the MVP in week 12. This is also visible in the long-term plan.

• Time tracking: available in Jira.

11.4.1 Responsibilities

Carlo Del Rossi was responsible for the backend, CI/CD, test server deployment and
general deployment. Claudio Knaus was responsible for the frontend.

https://knackpunkt.atlassian.net/jira/software/projects/BRK/boards/1
https://knackpunkt.atlassian.net/jira/software/projects/BRK/boards/1

Chapter 12

Operational Notes

This chapter describes the used tools for frontend and backend, CI/CD, installation
instructions and test-logs.

12.1 CI/CD

For our project, we have created several GitHub Actions on our repositories to build
docker images, test our code etc. In this section, we will show them and explain what
they do.

12.1.1 Automated Backend Test Action

This GitHub action runs all tests in the backend repository.
As seen in lines 3 through 6, the tests are run every time a pull request merging into

the main branch is created, as well as every time a push-on merge is done.
As seen on line 18, the command ’npm test’ is executed. This command is defined

in the package.json file of the backend repository and contains the run configuration for
the tests:

"test": "ts-mocha -p tsconfig.json test/tests/*.ts"

59

1 name: Backend Tests

2 on:

3 push:

4 branches: ["main"]

5 pull_request:

6 branches: ["main"]

7 jobs:

8 build:

9 runs-on: ubuntu-latest

10 steps:

11 - uses: actions/checkout@v3

12 - name: Use Node.js

13 uses: actions/setup-node@v3

14 with:

15 node-version: 14.x

16 cache: ’npm’

17 - run: npm install

18 - run: npm test

12.1.2 Automated Docker Image Build Actions

This GitHub action builds docker images from the code on the repositories and pushes
them to the container registry when done. Overall we have five actions in the same style
as this, each one responsible to build one of the components of our system (database,
proxy, secure proxy, frontend, backend). Each action contains a line similar to lines 16
and 17 in this action, that builds the docker containers from the Dockerfile. Lines 18
through 22 are almost the same in all the actions. They are responsible for logging in to
the GHCR (GitHub Container Registry) and for pushing the build image to the GHCR.

1 name: Docker Image CI

2 on:

3 push:

4 branches: ["main"]

5 jobs:

6 build:

7 runs-on: ubuntu-latest

8 steps:

9 - uses: actions/checkout@v3

10 - name: Build the Docker image

11 env:

12 DB_HOST: ${{ secrets.DB_HOST }}

13 DB_USER: ${{ secrets.DB_USER }}

14 DB_PASSWD: ${{ secrets.DB_PASSWD }}

15 DB_NAME: ${{ secrets.DB_NAME }}

16 run: docker build . --file Dockerfile

17 -t ghcr.io/knackpunktbrk/backend:latest

18 - name: login to registry

19 run: echo ${{ secrets.CONTAINER_REGISTRY_TOKEN }}

20 | docker login ghcr.io -u <username> --password-stdin

21 - name: push to registry

22 run: docker push ghcr.io/knackpunktbrk/backend:latest

12.1.3 Automated Documentation Building

The last type of action that we created is an action that automatically builds a PDF from
our LATEX-files. This ensures that the documentation can be easily accessed and viewed
without requiring a LATEX-environment. The first step (starting on line 11) compiles the
document and creates a PDF. The second step (starting on line 16) uploads the PDF so
that it can be downloaded from the GitHub repository.

1 name: Build LaTeX

2 on:

3 push:

4 branches: ["main"]

5 workflow_dispatch:

6 jobs:

7 build:

8 runs-on: ubuntu-latest

9 steps:

10 - uses: actions/checkout@v3

11 - name: Compile Document

12 uses: xu-cheng/latex-action@v2

13 with:

14 working_directory: ./Documentation/src

15 root_file: main.tex

16 - name: Upload PDF

17 uses: actions/upload-artifact@v3

18 with:

19 name: PDF

20 path: ./Documentation/src/main.pdf

12.2 Installation instructions

In order to deploy the application, two files are required, namely the docker-compose.yml
file and the .env file. Both these files should be in the same folder. The following
subsections describe those two files in more detail.

12.2.1 Docker Compose File

1 version: "3.9"

2

3 services:

4 db:

5 image: ghcr.io/knackpunktbrk/database:latest

6 restart: always

7 ports:

8 - "${DB_PORT}:${DB_PORT}"

9 expose:

10 - ${DB_PORT}

11 environment:

12 POSTGRES_DB: ${DB_NAME}

13 POSTGRES_USER: ${DB_USER}

14 POSTGRES_PASSWORD: ${DB_PASSWD}

15 volumes:

16 - ./postgres-data:/var/lib/postgresql/data

17 backend:

18 image: ghcr.io/knackpunktbrk/backend:latest

19 ports:

20 - "8000:${API_PORT}"

21 restart: always

22 depends_on:

23 - db

24 environment:

25 DB_HOST: db

26 DB_USER: ${DB_USER}

27 DB_PASSWD: ${DB_PASSWD}

28 DB_NAME: ${DB_NAME}

29 JWT_TOKEN_SECRET: ${JWT_TOKEN_SECRET}

30 frontend:

31 image: ghcr.io/knackpunktbrk/frontend:latest

32 ports:

33 - "${FE_PORT}:80"

34 restart: always

35 depends_on:

36 - backend

37 - db

38 environment:

39 FE_PORT: ${FE_PORT}

40 API_HOST: ${RP_HOST}

41 API_PORT: ${RP_PORT}

42 rps:

43 image: ghcr.io/knackpunktbrk/secure-proxy:latest

44 restart: always

45 ports:

46 - "80:80"

47 - "443:443"

48 expose:

49 - "80"

50 - "443"

51 volumes:

52 - ./certbot/www:/var/www/certbot/:ro

53 - ./certbot/conf/:/etc/nginx/ssl/:ro

54 depends_on:

55 - backend

56 - frontend

57 certbot:

58 image: certbot/certbot:latest

59 volumes:

60 - ./certbot/www/:/var/www/certbot/:rw

61 - ./certbot/conf/:/etc/letsencrypt/:rw

On lines 5, 18, 31 and 43 the required docker images are pulled from the GHCR. To
be able to pull the images from the private repositories one has to log in first. Similar
to the GitHub actions mentioned earlier, the login happens with the following shell
command:

echo <password> | docker login ghcr.io -u <username> --password-stdin

When the login has succeeded, the application can be started using the following com-
mand:

docker-compose up

This will download the docker images if they are present on the server yet and then start
them up. To update the application in case there are newer images on the GHCR, the
images can be downloaded with the following command:

docker pull ghcr.io/knackpunktbrk/<repository-name>

The containers can then be restarted with the following two commands:

docker-compose down

docker-compose up

To be able to log in a personal access token needs to be created on GitHub first. For
more details consider.1

1Creating a personal access token. url: https://docs.github.com/en/authentication/keeping-

your-account-and-data-secure/creating-a-personal-access-token. (accessed: 10.12.2022).

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

certbot

The certbot image is used to easily receive a TLS certificate from Let’s Encrypt. The
certificate is valid for 90 days. Thus certbot needs to be run manually every once in a
while to refresh the certificate, as this task has not been automated yet.

To generate a certificate for the first time, the following command can be used:

docker-compose run --rm certbot certonly --webroot

--webroot-path /var/www/certbot/

-d example.org

To renew an existing certificate, the following command needs to be run:

docker-compose run --rm certbot renew

12.2.2 Environment File

In addition to the docker-compose.yml file, a file containing the required environment
variables is necessary. Usually, the file is named ’.env’. The .env file should look like
this:

1 # API

2 API_PORT=8000

3 API_HOST=<hostname of the website>

4 JWT_TOKEN_SECRET=<secret for the generation of JSON Web Tokens>

5

6 # Database

7 DB_TYPE=postgres

8 DB_HOST=db

9 DB_PORT=5432

10 DB_USER=<username>

11 DB_PASSWD=<password>

12 DB_NAME=<db name>

13

14 # Frontend

15 FE_PORT=8080

16

17 # Reverse Proxy

18 RP_PORT=80

19

20 # Mail Service

21 MAIL_SERVICE_ADDRESS=<gmail address>

22 MAIL_SERVICE_PASSWD=<password>

23

24 # Github

25 CONTAINER_REGISTRY_TOKEN=<personal access token from GitHub>

Registry Token

The CONTAINER REGISTRY TOKEN is not mandatory, as it is only used to log in
to the GHCR, in order to pull the newest images.

Mail Service Credentials

As of the writing of this documentation, Gmail is used to send emails to users. The
MAIL SERVICE PASSWD is not the standard password used with the Gmail account.
Instead, it is a password that can be generated on the google account management
website. 2 Factor Authentication (2FA) needs to be enabled in order to be able to
generate such a password. Under Security, there is a section called ’Signing in to Google’.
In this section, 2FA can be enabled.

Figure 12.1: Enable 2FA

Once that is completed, ’App passwords’ can be generated. In the app password
creation dialogue, ’Other’ can be selected as app and then a name can be entered. That
name does not have a signifcance other than keeping track of what app passwords are
active. Once the password is generated, it can be only looked up once, after that it will
not be possible to see the password anymore. The generated password can now be used
in the .env file to be able to send emails.

12.3 Updating the Survey Questions

As the application does not support question creation or deletion, this has to be done
manually using the init scripts provided in the database repository.

Before executing any scripts, the existing scripts should be adjusted, to reflect the

Figure 12.2: Generate App Password

desired changes to the questions. To edit the questions, the files starting with 20 or
higher need to be adjusted accordingly. The files are named after the following scheme:

<number in sequence>_<target group>_<category>.sql

f.ex: 20_fachkraefte_wohnen.sql

Each of the scripts with a sequence number greater or equal to 20 contains the
necessary SQL statements to insert the questions. Those statements are arranged in
blocks containing three to four individual statements.

The first statement (starting at line 1) creates the question itself. The question text,
category, target group and recommendations need to be specified.

The second statement (starting at line 18) inserts all the possible answer options for the
question. For this statement, the point distribution needs to be specified.

The third statement (line 27) adds a relation between the created question and the
newest survey template. Nothing needs to be specified in this statement.

The fourth statement (line 33) is optional and inserts a definition in case a hard word is
used in the question text. The title, which corresponds to the hard word, and the text,
which corresponds to the description of the hard word, need to be specified.

In the example below, the segments of the statement that can be edited, are underlined.
It is not recommended to adjust any other segments of the query, as those changes might
break the scripts. It should also be noted that the sequence of the statements matters,

and that they should always be written in those blocks of three to four statements in
this order.

1 INSERT INTO question (

2 "questionId",

3 text,

4 category,

5 "targetGroup", -- Can be ’Bewohnende’, ’Angehoerige’, or ’Fachkraefte’

6 recommendations,

7) VALUES (

8 default,

9 ’Hat das Wohnheim Ihnen erklärt, ABC ist?’,

10 ’ABC’,

11 ’Bewohnende’,

12 ARRAY [

13 ’Es ist wichtig, dass sie wissen, was ABC ist.’,

14 ’ABC ist sehr wichtig für XYZ.’

15]

16) RETURNING "questionId" into questionid;

17

18 INSERT INTO scored_answer_option (

19 option, score, "questionId"

20) VALUES

21 (’Ja’, 6, questionid),

22 (’Nein’, 0, questionid),

23 (’Manchmal’, 3, questionid), -- ’Manchmal’ is optional,

24 (’NichtBeurteilbar’, 0, questionid) -- the other options

25 ; -- must be provided

26

27 INSERT INTO survey_template_questions_question (

28 "surveyTemplateTemplateId", "questionQuestionId"

29) VALUES(

30 (SELECT MAX("templateId") from survey_template), questionid

31);

32

33 INSERT INTO definition (-- This statement can be omitted,

34 title, -- if no complicated words are used

35 text,

36 "questionId"

37) VALUES (

38 ’ABC’,

39 ’ABC bedeutet, dass....’,

40 questionid

41);

Once all the questions have been adjusted, a new survey template needs to be created.
In order to do this, it suffices to run the 01 add survey template.sql script, found in the
initScripts folder of the Database repository.

INSERT INTO survey_template ("templateId", published)

VALUES (default, true);

Once a new survey template is created, all scripts that add questions need to be
run. That includes all scripts that start with 20 or higher. (The first one would be
20 fachkraefte wohnen.sql)

Once all those scripts are run, all questions should be updated.

12.4 Test-logs

This section shows the test logs and results for the frontend and backend.

12.4.1 Backend

As seen in figure 12.3, an average test coverage of around 88% has been reached on all
the relevant files in the backend. The lowest coverage is on the AdminAccount class. The
reason for this is that the AdminAccount class is not yet used productively, so the tests
have not been fully implemented yet. The only missing relevant files are the Controllers,
which are not tested yet. However, most of the controllers just call one single business
logic function, and all business logic functions have been tested individually already,
which is why the controller tests weren’t prioritized a lot.

Figure 12.3: Test Output Backend

12.4.2 Frontend

The following sections contain all relevant frontend logs of the project.

Integration Test Logs

Integration Tests in the frontend can be executed with the following command:

"test": "npx ts-mocha -n loader=ts-node/esm

-p tsconfig.json ’src/__test__/**/*.ts’",

Figure 12.4: Frontend Integration Tests

Manual tests for all other endpoints were not logged.

axe DevTools Page Scan

The page scan includes automated tests on all components of the survey pages on WCAG
2.1AAA HTML semantics and HTML errors. The test shows no problems on all tested
pages and hence has WCAG 2.1AA compliance. Furthermore, the test recommends ex-
ample solutions for problems, if any problems had occurred. So far, all test results were
successful.

axe DevTools intelligent Guided Test

The guided test on all components of the survey pages includes tests of the keyboard,
modal dialog, interactive elements, structure, images and forms. The test shows potential
problems as well as WCAG 2.1AAA compliancy. Furthermore, the test recommends
example solutions for problems. Please note that these tests are obsolete, as discussed
in the Conclusion chapter.

Issues: Total Issues19

Toggle Highlight
Role: The element's role is missing or incorrect2
Inspect issue
More Info
SHARE ISSUE

 1 of 2

 Next Issue

 Last Issue

Issue Description

The element's role is missing or is not appropriate for the element's function.

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.questions:nth-of-type(1) >
p#question19:nth-of-type(1)

Element Source

<p tabindex="0" id="question19">
 Hat das Wohnheim Ihnen erklärt, was sexuelle Gewalt ist?
 </p>

To solve this problem, you need to...

Fix the following:

Add the interactive role "dialog" to the element (using semantic HTML where possible).

 Found:

Manually

 Impact:

critical

 wcag2a

 wcag412b

 Found on:

26.11.2022 at 9:49 PM

Toggle Highlight
Dialog / Alert Dialog: Dialog is missing appropriate role and/or attributes2
Inspect issue
More Info
SHARE ISSUE

 1 of 2

 Next Issue

 Last Issue

Issue Description

The element appears and functions like a modal dialog but is missing required ARIA role(s) and/or attribute(s).

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.definition:nth-of-type(2) > a:nth-
of-type(1) > section:nth-of-type(1) > p:nth-of-type(1)

 Found:

Manually

 Impact:

critical

 wcag2a

 wcag412b

 Found on:

26.11.2022 at 10:06 PM

Toggle Highlight
Keyboard focus is not placed on opened modal2
Inspect issue
More Info
SHARE ISSUE

 1 of 2

 Next Issue

 Last Issue

Issue Description

When the modal dialog is activated, keyboard focus is not placed on/in it.

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.definition:nth-of-type(2) > a:nth-
of-type(1) > section:nth-of-type(1) > p:nth-of-type(1)

 Found:

Manually

 Impact:

serious

 wcag2a

 wcag243a

 Found on:

26.11.2022 at 10:06 PM

Toggle Highlight
Function cannot be performed by keyboard alone2
Inspect issue
More Info
SHARE ISSUE

 1 of 2

 Next Issue

 Last Issue

Issue Description

There is no way to perform the function using only the keyboard on the same screen or on a qualifying conforming alternate version.

Element Location

body > div#main-view-10:nth-of-type(2) > main:nth-of-type(1) > section.answers:nth-of-type(2) > form:nth-of-
type(1) > fieldset.answer-form:nth-of-type(1) > div#\31 0-Nein.radio-button:nth-of-type(2) > label:nth-of-
type(1)

Element Source

<label for="10-Nein-answer">Nein 😟</label>

 Found:

Manually

 Impact:

critical

 wcag2a

 wcag211a

 Found on:

26.11.2022 at 9:34 PM

Toggle Highlight
Able to browse outside modal with screen reader2
Inspect issue
More Info
SHARE ISSUE

 1 of 2

 Next Issue

 Last Issue

Issue Description

Screen readers can read content outside the modal dialog.

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.definition:nth-of-type(2) > a:nth-
of-type(1) > section:nth-of-type(1) > p:nth-of-type(1)

To solve this problem, you need to...

Fix the following:

Add aria-hidden="true" attribute to all wrapping elements within <body> that do not contain the modal. You do not need to add aria-hidden="true"
to <script> and <style> elements as screen readers do not read content in those tags.

 Found:

Manually

 Impact:

serious

 wcag2a

 wcag132a

 Found on:

26.11.2022 at 10:06 PM

Toggle Highlight
Keyboard focus is not maintained in modal1
Inspect issue
More Info
SHARE ISSUE

 1 of 1

Issue Description

Keyboard focus is not maintained within the modal. It is possible to tab out of the modal.

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.definition:nth-of-type(2) > a:nth-
of-type(1) > section:nth-of-type(1) > p:nth-of-type(1)

 Found:

Manually

 Impact:

serious

 wcag2a

 wcag243a

 Found on:

26.11.2022 at 10:06 PM

Toggle Highlight
Modal is closed, focus is not returned to trigger1
Inspect issue
More Info
SHARE ISSUE

 1 of 1

Issue Description

When the modal dialog or similar element is closed, keyboard focus is not returned to the triggering element.

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.definition:nth-of-type(2) > a:nth-
of-type(1) > section:nth-of-type(1) > p:nth-of-type(1)

 Found:

Manually

 Impact:

serious

 wcag2a

 wcag243a

 Found on:

26.11.2022 at 10:06 PM

Toggle Highlight
All page content should be contained by landmarks1
Inspect issue
More Info
SHARE ISSUE

 1 of 1

Issue Description

Ensures all page content is contained by landmarks

Element Location

#intermediate-view-12 > .ask-and-comment > .ask-category

Element Source

<section class="ask-category">
 <p tabindex="0">
 Wollen Sie noch etwas sagen zum Thema «Wohnen»?
 </p>
 </section>

To solve this problem, you need to...

Fix the following:

Some page content is not contained by landmarks

 Found:

Automatically

 Impact:

moderate

 cat.keyboard

 best-practice

 Found on:

26.11.2022 at 9:31 PM

Toggle Highlight
Form elements must have labels1
Inspect issue
More Info
SHARE ISSUE

 1 of 1

Issue Description

Ensures every form element has a label

Element Location

#comment-category-form12

Element Source

<input type="text" name="comment-category-form" id="comment-category-form12">

To solve this problem, you need to...

Fix at least (1) of the following:

 Form element does not have an implicit (wrapped) <label>

 Form element does not have an explicit <label>

 aria-label attribute does not exist or is empty

 aria-labelledby attribute does not exist, references elements that do not exist or references elements that are empty

 Element has no title attribute

 Element has no placeholder attribute

 Element's default semantics were not overridden with role="none" or role="presentation"

 Found:

Automatically

 Impact:

critical

 cat.forms

 wcag2a

 wcag412

 wcag131

 section508

 section508.22.n

 ACT

 Found on:

26.11.2022 at 9:31 PM

Toggle Highlight
States/Properties: The element has missing or incorrect states or properties5
Inspect issue
More Info
SHARE ISSUE

 1 of 5

 Next Issue

 Last Issue

Issue Description

The element has missing or incorrect states or properties that are necessary for screen reader users to interact with or understand the content
conveyed by the element.

Element Location

body > div#main-view-19:nth-of-type(14) > main:nth-of-type(1) > section.answers:nth-of-type(3) > form:nth-
of-type(1) > fieldset.answer-form:nth-of-type(1) > div#\31 9-Ja.radio-button:nth-of-type(1) > input#\31 9-
Ja-answer:nth-of-type(1)

Element Source

<input id="19-Ja-answer" for="19-Ja" tabindex="0" type="radio" name="answer" value="19-Ja">

To solve this problem, you need to...

Fix the following:

Apply the following state(s) to the element: html "checked" property (or aria-checked="false").

 Found:

Manually

 Impact:

critical

 wcag2a

 wcag412b

 Found on:

26.11.2022 at 9:50 PM

Very Last Page

Issue Description

Ensures headings have discernible text

Element Location

#end-view > header > h2

Element Source

<h2></h2>

To solve this problem, you need to...

Fix at least (1) of the following:

 Element does not have text that is visible to screen readers
 aria-label attribute does not exist or is empty

 aria-labelledby attribute does not exist, references elements that do not exist or references
elements that are empty

 Element has no title attribute

	I Introduction
	Management Summary
	Baseline
	Achieved Results

	II Analysis
	Domain Analysis
	Problem
	Domain Specific Language
	Domain Model
	Domain Model Assumptions

	Requirements
	Use Case Diagram
	Functional Requirements
	Non-Functional Requirements

	III Design
	Architecture
	Overview
	Architectural Decisions
	Frontend
	Backend
	Database
	Authentication

	C4 Diagrams
	Context Diagram
	Container Diagram
	Component Diagram

	Database
	Database Tables
	Survey Template
	Institution and Admin Account
	Credential
	Survey
	Question
	Definition and Scored Answer Option
	Comment and Answer

	IV Implementation
	Frontend
	Application Structure
	Access Token Flow

	Backend
	File Structure
	Interesting Code Snippets
	Injecting Dependencies
	Testing Functions that use the Notifier
	Testing Exceptions

	Proxy
	Configuration

	Quality Measures
	Coding Guidelines
	Test Concept
	Unit Testing
	Integration Testing
	Frontend
	Backend

	Workflow

	V Discussion
	Results
	Functional Requirements
	Non-Functional Requirements
	Screenshots

	Conclusion & Next Steps
	Functional Requirements
	Non-Functional Requirements

	Reflection Frontend
	axe DevTools Testing Limitations
	Maintainability and further Testing
	Evaluation on Technology

	Reflection Backend
	Next Steps

	VI References
	VII Appendix
	Responsibilities
	Operational Notes
	CI/CD
	Automated Backend Test Action
	Automated Docker Image Build Actions
	Automated Documentation Building

	Installation instructions
	Docker Compose File
	Environment File

	Updating the Survey Questions
	Test-logs
	Backend
	Frontend

