
Semesterarbeit

Fitness Data Platform

Department of Computer Science

OST - University of Applied Sciences

Campus Rapperswil-Jona

Author(s) Joel Suter & Lucas von Niederhäusern

Advisor Frank Koch
Project Partner Michael Güntensperger
External Co-Examiner -
Internal Co-Examiner -

Fitness Data Platform

Abstract

Initial Situation: Today’s world and day-to-day life are increasingly digitalized, with gadgets and
devices that helpwith all kinds of tasks. This also includes theworld of sports and health. The de-
mand for trackers like smartwatches thatmonitor a person’s vitals, fitness routine, andmore shot
up in the last few years. We envision massive potential in services and software in this domain.
One of these potential services is a platformwhere users can synchronizemultiple smartwatches
or fitness trackers, view the data of these gadgets in a unified dashboard, and share their data
with their fitness trainers, doctors, or friends.
Objective: With this project, we aim to build a basis for a platform of this type. The main goal is
to create an extendable infrastructure and code that can be further expanded upon. That means
we want to provide an initial platform that allows users to synchronize and save their data. The
user should be able to view a dashboard wheremerged data of different trackers is displayed. He
should be able to share it with the users he chooses. The platform must be structured to enable
new features to be added easily in the future.
Conclusion: In this project, we created a prototype for a Fitness Data Platform by using Type-
script, Node.js, React, and MongoDB. Our prototype is a web application divided into frontend,
backend, and a NonSQL database. This platform allows users to synchronize their Fitbit Con-
nect and Garmin Connect accounts, view their weekly step count merged from multiple devices
in a unified dashboard, and share these dashboards with other users by distributing their unique
identification codes. Future implementations include additional support for other fitness tracking
devices, more data on the dashboard, and being able to customize dashboards.

Figure 1: MongoDB Figure 2: TypeScript

Figure 3: Own Presentment

Joel Suter & Lucas von Niederhäusern Page 1 of 85

Fitness Data Platform

Management Summary

With the advent of all kinds of fitness and health trackers, health and activity data has become
more andmore important, for private individualswhowant to improve themselves or professional
trainers or doctors trying tomonitor their clients’ progress. The problemwith thosemetrics is that
everymanufacturer has an application or website to retrieve these data. Personal coacheswould
have to skim through multiple applications to collect all data from their clients. Furthermore,
if the user has multiple tracking devices, it also becomes a hassle for the clients to keep up
with their progress. The idea of this project is to collect all data from these fitness tracking
devices in one place and display them in a dashboard. Clients can view their data in one place
and share these dashboards with their trainers, other professionals, or friends to show off or
have a friendly competition. Our platform currently supports devices from Fitbit and Garmin. It
has excellent potential for further development as it is constructed modularly so that additional
device supports can be implemented easily. Many metrics from the tracking devices are already
stored in the database which have to be normalized and then are ready to be implemented on the
frontend.

Joel Suter & Lucas von Niederhäusern Page 2 of 85

Fitness Data Platform

Glossary

backend The part of a computer system or application that is not directly accessed by the user,
typically responsible for storing and manipulating data. 7, 14, 41

base64url Base64URL is a modification of the main Base64 standard, the purpose of which is
the ability to use the encoding result as filename or URL address. 27

frontend The frontend includes all software or hardware that is part of a user interface. 14, 41

NoSQL A non-relational database technology. 14, 24

OAuth 2.0 OAuth 2.0 is the industry-standard protocol for authorization. 27

SHA-256 SHA-256 stands for Secure Hash Algorithm 256-bit and it’s used for cryptographic se-
curity. 27

TypeScript TypeScript is a strongly typed programming language that builds on JavaScript, giv-
ing you better tooling at any scale. 37

Acronyms

API Application Programming Interface. 7, 9, 17, 27, 36

CRUD Create, Read, Update, Delete. 17

DoD Definition of Done. 58

DoR Definition of Ready. 58

IDE Integrated Development Environment. 37

NFR Non-Functional Requirements. 24

Joel Suter & Lucas von Niederhäusern Page 3 of 85

Fitness Data Platform

Contents

1 Starting Position 6
1.1 Motivation . 6
1.2 Project Description . 6

2 Conceptual Formulation 7

3 Framework Conditions 8

4 System Context 9

5 Requirements 10
5.1 Functional Requirements . 10

5.1.1 Additional information . 11
5.2 Non-Functional Requirements . 11
5.3 Optional Requirements . 13
5.4 Verification . 13

6 Design and Architecture 14
6.1 Container Diagram . 14
6.2 Component Diagram . 16
6.3 Backend architecture . 17
6.4 Frontend architecture . 18

6.4.1 UI Mockup . 19
6.5 Scaling . 21

6.5.1 Scaling up . 21
6.5.2 Scaling out . 22

6.6 Deployment . 22
6.7 Domain Model . 23
6.8 Database . 24

6.8.1 Redundancy . 24
6.8.2 Transactions and Rollback . 25

6.9 Security . 25
6.9.1 HTTPS and Domains . 25

7 Implementation 27
7.1 Application Programming Interface . 27
7.2 Dashboard Sharing . 30

7.2.1 Share Dashboard . 30
7.2.2 Switch Dashboard . 32
7.2.3 Revoke Dashboard Access . 33

7.3 Data Normalization . 34
7.3.1 Weighting Algorithm . 36

7.4 Logging . 36
7.5 Code Documentation . 37
7.6 Database . 37

Joel Suter & Lucas von Niederhäusern Page 4 of 85

Fitness Data Platform

7.7 Displaying of Data . 39
7.8 CI/CD and Hosting . 41

8 Result 47

9 Conclusion 49
9.1 Needs to be addressed . 49
9.2 Future Vision . 49

10 Project and Time Management 50
10.1 Project Plan . 50

10.1.1 Deviations . 51
10.2 Risk Management . 54
10.3 Test Concept . 56

10.3.1 Additional . 56
10.4 Definition of Ready / Definition of Done . 58

11 Operational Notes 63

12 Meeting Minutes 64

13 Personal Reports 78
13.0.1 Joel Suter . 78

14 Screenshots 79

15 Task 83
15.1 FitnessDataPlatform . 83

15.1.1 Problembeschrieb . 83
15.1.2 Aufgabenstellung . 83
15.1.3 Technische Umgebung . 83
15.1.4 Funktionale Anforderungen . 83
15.1.5 Optionale Anforderungen . 84
15.1.6 Nicht-Funktionale Anforderungen . 84
15.1.7 Zur Durchführung . 85

15.2 Additional Documents . 85

Joel Suter & Lucas von Niederhäusern Page 5 of 85

Fitness Data Platform

1 Starting Position

1.1 Motivation

We had and still have a great interest in this project. When we first browsed through all the differ-
ent project ideas that were available for the term paper, this one stood out the most. We are both
sports and gym enthusiasts and have also worked with similar technologies in the past, which
were required for this project. This project combined both our hobbies into one, so naturally, this
was the project we hoped we could work on. Furthermore, there is a real need for a project of
this type that combines tracker information into a single dashboardwhere the evaluation of these
data can be done. Currently, it is also not possible to share this information easily without the
need for exports or screenshots.

1.2 Project Description

Manufacturers usually have their own dashboards and graphs with which they can visualize their
data from their clients. There are no solutions in the market where multiple brands and manu-
facturers are supported on the same dashboards, allowing users to share this data with fitness
centers and personal coaches or friends. This paper is dedicated to creating such a solution
from the ground up.

Joel Suter & Lucas von Niederhäusern Page 6 of 85

Fitness Data Platform

2 Conceptual Formulation

This project aims to create a web application that supports two fitness tracker manufacturers
API’swhich are connected to a backend. Data delivered by theAPIwill be evaluated and visualized
on the dashboard, and these dashboards can be shared between users. A personal trainer or
friend can see all his clients’ or friends’ data on the dashboards. In order to use this project in the
future, the project must be built modularly to support more fitness tracker manufacturers in the
near future.

Joel Suter & Lucas von Niederhäusern Page 7 of 85

Fitness Data Platform

3 Framework Conditions

This project is part of the "Semesterarbeit" which is a term paper required for the eligibility of the
bachelor thesis. The planned time budget for this project is 240 hours and equals to 8 ECTS.

Joel Suter & Lucas von Niederhäusern Page 8 of 85

Fitness Data Platform

4 System Context

Figure 4.1: System Context

The above graphic shows the System Context of our application. We have the person "Fitness
Data Tracker User" who represents our software system user. The User can be both a regular
user and a professional. The distinction is only made for future development purposes, but cur-
rently, these users don’t differentiate in functionality. Our Software System, "Fitness Data Tracker
Platform" depends on two external Software Systems. Both are API’s to Fitness Tracker devices.
They allow our System to authorize, access, and sync user data to our internal Software System,
which processes the data further to be displayed in the dashboard. Infrastructure hosting site
DigitalOcean was provided by our industry partner, but dedicated servers and deployment had
still to be set up.

Joel Suter & Lucas von Niederhäusern Page 9 of 85

https://www.digitalocean.com/

Fitness Data Platform

5 Requirements

We use Agile Methodologies to keep track of our functional requirements. These are tracked as
User-Stories or issues in Jira. We prioritize the User-Stories as and issues in our Jira-Backlog.

5.1 Functional Requirements

Figure 5.1: Testing Pyramid

We have two types of users in our system.

1. User: Standard user that uses this platform to track share and view the metrics of others.

2. Trainer: A User that uses the platform to track the metrics of his customers

Joel Suter & Lucas von Niederhäusern Page 10 of 85

Fitness Data Platform

Nr UseCase Description
1 Sign Up User expresses the wish to be registered on the platform.
2 Sync Tracker User expresses the wish to sync one of his fitness trackers.
3 View Dashboard User expresses the wish to view a Dashboard with the

tracked metrics.
4 Switch Dashboard User expresses the wish to switch to another dashboard of

another user.
5 Share Dashboard User expresses the wish to share his dashboard with other

users.
6 Revoke Shared Dashboard User expresses the wish to revoke access of his dashboard

from other users.
7 Send Invite User expresses the wish to invite other users to use the plat-

form.

Table 5.1: Use Cases

5.1.1 Additional information

The functional requirements represent the requirements provided in the initial task formulation.
In the duration of the project one of the requirements changed. The changes done to them and
the reason for that will be listed here:
3. View Dashboard: This functional requirement was limited after discussion with our supervi-
sors to the weekly user steps a user takes. Reasons for that was the resources that would have
to be reallocated to this requirement from other requirements like tracker syncing. So it made
sense to limit this to focus on the core of the application.

Non-user stories Functional Requirements

• Fitness Trackers: The system should be able to sync two trackers from two distinct tracker
manufacturers

• Data Collection: The application should be able to collect data from synced trackers and
establish a connection/syncing with the chosen tracker manufacturers. As much data as
possible should be collected.

• Weighting Algorithm: A user that hasmultiple devicemanufacturers synced should be able
to view his merged data. That means our system should weigh data from both manufac-
turers and merge the data.

• Application Deployment: The application should be deployed and hosted.

5.2 Non-Functional Requirements

Weexpress ourNon-functional requirements as defined in FURPS+. While this project progresses,
this table will be updated with new NFR’s according to the knowledge of the domain and its tech-
nologies. All NFRs listed here are a must unless explicitly stated otherwise. Below is the List of
NFRs in our project:

Joel Suter & Lucas von Niederhäusern Page 11 of 85

Fitness Data Platform

Type Description Acceptance Criteria
Functionality All exceptions are handled and logged. All Exceptions occurring

in the tests are handled
and logged. Furthermore,
all possible exceptions
should be tested.

Usability The WebApp must run error free on
Firefox, Chrome and Safari

Manually checked after
each frontend change

Usability The Domain must be able to be
reached via the internet

Check while setting up this
domain

Usability At least three test users should rate the
Application on a tablet with a grade of
8 from 10

Check at the end of the
project

Reliability Application data is backed up once a
day

A backup is generated
each day and checked
manually.

Reliability Errors do not cause Systemefailures,
but generate an error message and re-
set the system to a previous state

Automated testing

Performance The Backend (Fitnessdata) must be
able to handle 1000 Requests per
minute

Tested with Performance
Testing Framework

Performance Each page must not take longer than
200ms to load

Tested with Automated UI
tests

Performance The database must be able to handle
at least 100 000 datasets

Test with SQL script

Supportability The Business logic must be built in a
modular way so that it can be easily ex-
tended

Business Reviews

Supportability Backend-API must be tested with an
API-Testing tool

Api Testing tool

Others (Security) Data entered in input fields must be
validated before it is passed to the
backend

SQL Injection tests

Others (Security) User passwords are not save in plain
text

Review Database records

Others (Security) The data of a user should not be visible
to others unless he explicitly shared it

Testing

Others Implemented functionality (Backend,
Database, Frontend) must be deployed

CI/CD

Table 5.3: Non-Functional Requirements

Disregarded NFRs In the course of the project we decided to disregard some of the NFR, for
various reasons which will be explained here.

• The Backend (Fitnessdata) must be able to handle 1000 Requests per minute: It didn’t
make much sense to stress test the backend since we currently host them on minimal
required server ressources to keep costs down. This NFR should be considered before a
go live.

Joel Suter & Lucas von Niederhäusern Page 12 of 85

Fitness Data Platform

• Backend-API must be tested with an API-Testing tool: We didn’t consider this requirement
since we didn’t think the extra effort was worth it considering that backend functionality is
fully tested with unit tests.

5.3 Optional Requirements

This section describes the optional requirements of our project. We didn’t implement them since
we focussed onmaking the core of our application robust and solid and didn’t think it wouldmake
sense to take ressources away from testing, refactoring and refining our core application. They
will still be listed 5.5 here to keep track of them for future development purposes.

Type Description
Non-Functional User data is encrypted so that even the admin can’t view

them.
Functional User is able to set goals/milestones in the dashboard
Functional User is able to edit and customize the dashboard to display

data he deems relevant
Functional Personal Trainers are able to chat with client and upload

videos that the user can view
Functional Users can create communities for friends, company etc.

Users are able to create challanges, chats and integrate
these communities with Teams / Slack

Non-Functional Monetizing of Professional-Accounts
Functional User is able to manually enter data that gets considered in

the whole evaluation
Functional User is able to configure which data from which device will

be used to create the dashboard

Table 5.5: Optional Requirements

5.4 Verification

If possible the NFR’s will be checked automatically via automated tests. If that is not a possibility
we will check each NFR after each sprint, and if not all are met the Sprint does not meet the DoD
and has to be fixed as soon as possible.

Joel Suter & Lucas von Niederhäusern Page 13 of 85

Fitness Data Platform

6 Design and Architecture

6.1 Container Diagram

The container diagram 6.1 shows what technologies we chose to implement our application and
how the code is split up. The frontend is implemented as a web application. Therefore, it allows
the user to use our application without needing to download anything. We implemented our
Fitness Data Tracker platform with a dedicated frontend and backend application. Two forces
guided the technology decisions. First, the client suggested technologies and our knowledge
and familiarity with them. The decisions were also guided by the current "state of the art". We
chose MongoDB a NoSQL Database as our database to store the user information. Reasons for
that decision are described in chapter 7.6. Our frontend uses HTTP calls to our backend API to
make requests for data and more. Our backend reads and writes the data to the MongoDB using
MongoDB, a NodeJS package. Our backend also communicates with two external systems, one
for Garmin and one for Fitbit. With these API’s we are able to read the user’s data and save it to
our database.

Joel Suter & Lucas von Niederhäusern Page 14 of 85

Fitness Data Platform

Figure 6.1: Container Diagram

Joel Suter & Lucas von Niederhäusern Page 15 of 85

Fitness Data Platform

6.2 Component Diagram

Figure 6.2: Component Diagram

Figure 6.2 represents the structure of our code. It is a generalization, and there might be devia-
tions in the actual source code, which should be adjusted. We designed our application in a way
that abstracts layers below and that components only communicate with the layer below them.
For example, the user-controller.ts only uses the user-service.ts, which abstracts access to the
repositories (database). This allows a distinction between API code which our frontend depends
upon, and business logic. It allows us to change business logic without changing endpoint logic.
For example, sometimes, a service functionmight only call one function from a repository. This is
by design and allows changing of the service/repository logic without it affecting the controller-

Joel Suter & Lucas von Niederhäusern Page 16 of 85

Fitness Data Platform

s/routes directly. As visible, the only external service that uses our API is the Garmin web service.
It pushes user data to our configured endpoint. Fitbit does not do that, but it should be extended
to do so in the future.

6.3 Backend architecture

For our backend, we will use TypeScript with TSNode. Node.js, because it is a requirement by
our client, we decided on TypeScript since we have experience with it. TypeScript allows for
strongly typed programming, unlike JavaScript. The backend will be structured according to 6.3.
This structure is commonly seen among Nodejs projects, and we have previously applied similar
structuring to our code.

• The configfiles contain configuration variables for connections anddatabase-related things.

• Database folder contains all code related to connection and CRUD operations to our Mon-
goDB database. It contains the connection client itself and all repository classes. It repre-
sents the Database component in the component diagram 6.2

• In the model’s folder, we will create all objects we can model for this project. Excluded are
data entries we receive from Garmin and Fitbit.

• Routes and Controller files will handle requests and responses from the backend to the
frontend. Routeswill configure the actual endpoints that can be reached, and the controllers
will handle these requests. It represents the Routes component in the component diagram
6.2

• Serviceswill implement the bulk of our business logic. They are responsible for establishing
the authentiction of our users with the external API’s, normalizing the user data, manipulat-
ing data, and then calling the repositories to save the data to our database. It represents
the Services component in the component diagram 6.2

Joel Suter & Lucas von Niederhäusern Page 17 of 85

Fitness Data Platform

Figure 6.3: Backend folder structure

6.4 Frontend architecture

We use a lightweight, JavaScript-based frontend library with React. Therefore, a more extensive
architecture is optional, but we must clarify certain internal architecture principles to keep the
code consistent. React organizes itself into so-called components. Each component represents
a logical part of the user interface. All components are considered equal, but there are a few
worth mentioning:

• frontend/src/index.tsx: This is the root component and is the one thatwill always be present
in our component structure. Once the Javascript is loaded, this component will be acti-
vated, and the remaining component tree will be initialized.

• frontend/src/App.tsx: This component is the only child of our root component. It contains
important global configuration, and it has as its child the RouteComponent.tsx, which calls
other components depending on the requested site. App.tsx is a "single page" that will be
displayed to the user.

• frontend/src/RouteComponent.tsx: This component is responsible for decidingwhich com-
ponents are displayed/called depending on the route.

Joel Suter & Lucas von Niederhäusern Page 18 of 85

Fitness Data Platform

• frontend/src/common/apiClient.ts: This file contains a very thin abstraction over the Axios
library, which we use to do HTTP requests to our backend.

In previous versions, components were written as JavaScript classes. However, this requires
much boilerplate code. So, for our project, we will use function-based React components. Those
are much more compact and readable. React does not require implementing a specific folder
structure, but for consistency, we will apply the following one:

• For each logical page, we create a folder in frontend/src and group all relevant components
in there.

• Layout-related components like header and footer are stored in frontend/src/components.

• Things like our HTTP client to talk to the backend which are shared across multiple com-
ponents are stored in frontend/src/common.

The diagram 6.4 visualizes how a request is handled internally, based on the example of when a
user wants to see his own dashboard.

Figure 6.4: Request diagram frontend

6.4.1 UI Mockup

This section will show the initial draft at the beginning of the project. The UI design has since
changed, but wewill still include it to get a feeling of the evolution our design took over the course
of the project. A general guide and inspiration for the UI was the WhatsApp Desktop app, so we
tried a similar approach in designing our UI. This approach was suggested to us by our industrie
partner and we tried for that advice to guide our design of the UI.

Joel Suter & Lucas von Niederhäusern Page 19 of 85

Fitness Data Platform

Figure 6.5: Dashboard main page Mockup 1

Figure 6.6: Dashboard Main Page Mockup 2

Figure 6.7: Login Page Mockup

Joel Suter & Lucas von Niederhäusern Page 20 of 85

Fitness Data Platform

Figure 6.8: Register Page Mockup

6.5 Scaling

6.5.1 Scaling up

Since we use DigitalOcean Droplets to host our frontend, backend and database, scaling up
easy. We use Droplets which are servers to host both the backend and frontend and a man-
aged Database cluster for our MongoDB. DigitalOcean allows scaling up the servers or database
at any point in time. Just press resize and choose more compute power. We can change CPU
power, memory, storage space, etc, on the flywith a click of a button. So upscaling the application
is very manageable with DigitalOcean.

Figure 6.9: Register Page Mockup

Joel Suter & Lucas von Niederhäusern Page 21 of 85

Fitness Data Platform

6.5.2 Scaling out

We did not consider horizontal scaling, since this is currently a prototype and won’t go into pro-
duction in the duration of this project. It also wasn’t mentioned as a requirement. Should the
need for horizontal scaling arise, the following page should be examined MongoDB scaling. The
backend and frontend can easily be duplicated on different instances but data consistency has
to be considered. For that please read the scaling article from MongoDB.

6.6 Deployment

We knew from the beginning that wewere going to use DigitalOcean as our target for deployment
since our client AdaptIT is already using it. We also chose GitLab to host our code. Now that we
had the basics ready, we needed to choose how to best host and deploy our code from Gitlab to
DigitalOcean. Again, we had a few options on how to host the code.

• We could create a kubernetes cluster and host our code there.

• We can dockerize our appliation and run the images on droplets..

• We clone the code onto a droplet, build it there and run the build files.

We looked into each option and even tried it first with a Kubernetes cluster, then a docker appli-
cation on the droplet. We quickly realized that the most efficient way would be the third option.
That way, there is no docker overhead, andDigitalOceanmakes it very easy to use the third option.
More detail about how exactly we deploy it will be in the CI/CD chapter 7.8. Since this product
has yet to be in commercial use, we did not see the need for a staging/test environment, so we
deploy to production every time. This is something that should be added before the go live.

Joel Suter & Lucas von Niederhäusern Page 22 of 85

https://www.mongodb.com/basics/scaling
https://www.digitalocean.com/
https://gitlab.com/mguenten/fitnessdataplatform

Fitness Data Platform

6.7 Domain Model

Figure 6.10: Domain Model

The graphic 6.10 both serves as a representation of the domain we are working in and also as a
database model. For implementation details, please refer to chapter 7.6 At the center of it all is
the user. FitbitData and GarminData are representations of the data we collect. They can (but do
not have to) consist of multiple collections; for example, an activity collection of Garmin would
be counted toward the GarminData modeled here. Modeling all the different collections, we will
collect would clutter this diagram and not benefit the reader’s understanding. Once the user
allows us to sync his device, his credentials will be saved in one of the credentials collections.
After that, his data will be regularly synced or pushed externally and saved into the various data
collection. A significant decision was how the frontend would call and display the data. Since
we first want to display a weekly summary of the steps, it would not be performant to calculate
the weekly steps every time the user opens the dashboard. So we decided to "normalize" our
data before we provided it to the frontend. This is represented here as the weekly summary, a
normalized version of the steps contained in "FitbitData" and "GarminData". This way, data can be
displayed without waiting on the backend calculations. Also, if we want any moment to display
more data, we add a new entry in the summary or create a new summary, for example, a monthly
one. Specifics about data normalization in 7.3. The model DashboardAccess is used to keep
track of which user has access to other users’ dashboard and intern their data.

Joel Suter & Lucas von Niederhäusern Page 23 of 85

Fitness Data Platform

6.8 Database

Whenwe decidedwhich database technology to use, we had toweigh two significant forces from
the requirements. Performance and Flexibility. On the one hand, the technology we choose for
our database should be as fast as possible to satisfy the NFR. However, on the other hand, it
has to be able to store thousands of records and handle hundreds of queries simultaneously. We
also needed the database to be flexible. It should store a multitude of unstructured data and be
easily extended in the future. With these two forces, two Databases came to mind.

• MongoDB

• PostgreSQL

PostgreSQL is widely considered to be one of the fastest, if not the fastest, database out there.
The only problem with PostgreSQL is that it is a relational database. That means you have to
predefine the data structure you want to save. Since we have the goal to store as much data as
possible from Garmin and Fitbit, and both come in different kinds of structures, there would have
been a considerable overhead to define these structures. It would also increase the overhead
cost for future extensions, for example, if we want to collect more data. The database is also
at risk of breaking if the API endpoints of Garmin or Fitbit ever change in the future. For that
reason, we decided that the performance boost of PostgreSQL was not worth the maintenance
cost and initial implementation costs. We, therefore, decided on MongoDB. Even though it is
slower, we can save the data from the API endpoints as they come since it is a NoSQL database
and not worry about structure or modifying the data to fit our database. This reduces overhead
considerably and eases future maintenance.

6.8.1 Redundancy

One of the NFRs was that the data from the database must be backed up at least once a day.
The chosen hosting platform DigitalOcean makes this very easy. It allows restoring a database
to a new cluster. It does not only make daily backups but allows to restore to pretty much any
given time. DigitalOcean allows you to choose either the latest backup or an exact time, and
DigitalOcean will create a new Database cluster and revert all transactions to the chosen time.
If that is done, the previous cluster must be destroyed, and all connection details in the backend
must be updated.

Joel Suter & Lucas von Niederhäusern Page 24 of 85

https://www.mongodb.com/
https://www.postgresql.org/
https://www.digitalocean.com/

Fitness Data Platform

Figure 6.11: DigitalOcean Restore Dialog

6.8.2 Transactions and Rollback

One of our requirements was that when an error occurs, the system should be able to roll back to
a previous functional state. This requirement was pretty much fully covered by mongoDB itself.
As described here, all instructions we use for MongoDB are atomic. Even "createMany()". This
means we log the error when the instruction fails and our system is still functional. Furthermore,
since we do not have consecutive inserts to the database that depend on each other, we just have
tomake sure that we catch and log the error. One exception to that rule was the requirement for a
user to delete his account and all his data. We covered it by wrapping all actions in a transaction
and rolling it back if they failed.

6.9 Security

Since the platform we are developing is not planned to go into production in the span of this
project, security was not the most significant driving force. Still, we had a few considerations
to make. One of these was how we save secrets and keys. For example, Garmin provides us
with secrets and keys that we need to use to request their API. These should not be checked in
the code. We decided to put these keys and secrets into a .env file that is located in our back-
end server. This file gets loaded when the application is deployed, and the keys and secrets
get loaded into their respective "*.config.ts" files. We decided against putting the secrets into
CI/CD variables and then dynamically loading them into the .env file every time the application is
deployed. The reason for that is because of previous work experience where developers could
adjust the pipeline but did not need access to secrets. This way, the secrets are only present in
one place, on the servers themselves, which only authenticated personnel should have access
to.

6.9.1 HTTPS and Domains

Any modern app should communicate with HTTPS. That is why we created a certificate with
certbot for our frontend and backend. The frontend certificatewas created for the "fit.adaptit.ch/"

Joel Suter & Lucas von Niederhäusern Page 25 of 85

https://www.mongodb.com/
https://www.mongodb.com/docs/upcoming/core/transactions/#transactions-api

Fitness Data Platform

domain and backend for "fitbackend.adaptit.ch/" domain. These domains were provided to us
by our industry partner Michael Güntensperger from AdaptIT.

Joel Suter & Lucas von Niederhäusern Page 26 of 85

Fitness Data Platform

7 Implementation

This chapter will describe the most important implementation details and implementation as-
pects of our project.

7.1 Application Programming Interface

This section describes the implementation of the API’s for Fitbit and Garmin.

Fitbit Web API

The Fitbit Web API was the first interface we implemented for our project. This API required mul-
tiple steps before we could request data. First, we had to create a developer account and go
through a verification process. Secondly, we had to register our application to retrieve a client ID
and secret, which wewould need to authorize the user through our application. For the communi-
cationwith the API aOAuth 2.0 is used. In order to keep the Fitbit user data secure, our application
has to generate two specific values. The code verifier and a code challenge. The code verifier is
a cryptographically random value between 43-128 characters. The code challenge is the hashed
version of the code verifier with SHA-256 and a base64url encoding with padding omitted. The

Figure 7.1: Fitbit Web API Workflow

figure 7.1 displays a simplified version of our workflow with the Fitbit Web API. After the client
approves our application through the authorization page of Fitbit, access and refresh token will

Joel Suter & Lucas von Niederhäusern Page 27 of 85

Fitness Data Platform

be sent back as a response with which we can request the client’s data from Fitbit. The refresh
token is used for requesting a new access token after the current one expires. After authorizing
our application through Fitbit, the only thing left was to request data about the user from Fitbit
and persist those in our database. We do this by running a scheduled cronjobwith node-cron. The
schedule for this cronjob can be adjusted in "src/config/scheduled.tasks.config.ts". Currently, it
is set to run each day at 23:00. For simplicity and future purposes, we request that our application
have access to all user data, even though we currently do not need all of it. This is done since we
collect more data than we display and want to extend our application in the future. We registred
our app for fitbit here. All information regarding specifics for authorization or data collection can
be viewed once an application is registered. Fitbit makes these documentation very accessible.
For implementation details refer to the source code.

Joel Suter & Lucas von Niederhäusern Page 28 of 85

https://www.npmjs.com/package/node-cron
https://dev.fitbit.com/apps/new

Fitness Data Platform

Garmin API

This section will describe how we decided to collect user data from their Garmin device. Garmin
offered two distinct options that would cover our needs for this project, and are listed in the
Garmin developer page

• Collecting FIT files thorugh the FIT SDK

• Using the Garmin Connect api’s to collect data

We decided to use the Garmin connect developer program and collect the data through the
Garmin connect API. This has the advantage that in the case that a user has multiple Garmin
devices, Garmin connect will automatically merge the data of the two, so there is no need on our
end to merge or even know the amount of Garmin devices a user might have. Before we go into
detail, it has to be mentioned that Garmin has a strict privacy policy, and most of its documenta-
tion is strictly confidential and cannot be shared. Therefore, we will only go into a little technical
detail about their documentation and our implementation but will provide a general overview of
our integration of Garmin Connect.

App Registration
Before we could receive any user data, we had to register our application in the Garmin connect
developer program. Our Industry partner from AdaptIT did this. We could redirect our user to the
Garmin Connect page with the provided authorization details. There the user has to log in and
authorize our application. After that, the user gets redirected back to our frontend page, and we
can read the user tokens from the URL and send them back to our backend.

Integration Options
Nevertheless, we had to choose a integration option for Garmin before we could collect any
data. Next, we chose a push configuration. Garmin will send newly generated or updated data
to predefined endpoints with this push configuration. We defined these endpoints in the Garmin
endpoint configuration page for our application. Now we can receive each new entry or updated
entry from our user.

Collected Data
We currently do not collect all possible data from Garmin, but limited it to two types of informa-
tion:

• Garmin Daily Health Summaries: Those are daily summaries from the user that contain
much information gathered from the device or devices the user has. From calories burned
to steps taken that day, active seconds where the user actively walked around or did other
activities, rest time, etc

• Activity data: Those are activities that the user either manually entered or manually started
on his own. Those range from runs to hunting, skydiving, etc.

These two types of information we collect cover all of our collection requirements, with the focus
being on the Garmin Daily Health Summaries since these contain all the information we need.
We still decided to collect Activities, too, since they are a big part of Garmin and can provide
interesting information from the user, which can be used in future extensions of our application
Now we can receive newly created or updated entries from the user. However, it would also be
beneficial to collect data from the user before the user authorizes our app in Garmin connect.
This requirement can be fulfilled by sending a backfill request for a datatype and a time range.
The user data in this time range will be flagged as new or updated by Garmin and, therefore, will

Joel Suter & Lucas von Niederhäusern Page 29 of 85

https://developer.garmin.com/
https://developer.garmin.com/fit/overview/
https://connect.garmin.com/

Fitness Data Platform

be pushed to the same endpoint as newly created or updated user entries.
With this configurationwedescribed, we could receive and request the needed data from the user.
In figure 7.2, you can see the workflow process we describe in detail above visually represented
in a diagram

Figure 7.2: Garmin API Workflow

7.2 Dashboard Sharing

One of the initial requirements was for a user to be able to share his dashboard, and view dash-
boards that were shared with him. The user should also be able to revoke dashboard access.
This section will go into some detail on how we decided to implement this requirement in our
application. But for specific implementation details see the attached source code.

7.2.1 Share Dashboard

There were multiple options for a user to share his dashboard and give another user access.
Some common methods are:

• Access Code: A user has an access code that is either generated every time the dashboard
is shared or is a static code. This code can be shared with other users. The User that has an
access code to another user can enter this code and gain access to the user’s dashboard

• Link: Every User has a unique link. If another user visits that link, this User gains access to
the other User’s dashboard

• User selects other users that should have access: The User can choose/enter which users
should have access to his dashboard. That means no action is needed on the user’s end
that gets a dashboard share with him.

The choicewas between the "Access Code," and "Link" since the third option does not allow a user
that gets shared a dashboard to ignore it. So we chose the "Access Code" option. We honestly

Joel Suter & Lucas von Niederhäusern Page 30 of 85

Fitness Data Platform

were torn between those two options but chose the "Access Code" for ease of implementation.
Most of the time you see these two options combined. For example, in Discord you can share a
server with a code or link.
Implementation Details
To allow the sharing of a dashboard with an access code, a few things had to be done. First, we
had to associate a unique code to a user. Another user will use that to access the dashboard.
We had to add a code to the User model:

export class User implements {_id: ObjectId} {
...
private readonly _dashboardCode: number //new field for access code
...
constructor(email: string, firstname: string, lastname: string, role: string, password: string) {

...
this._dashboardCode = uniqid() //gets uniquely generated when a user is initialized

}
...
}

We used the uniqid package to generate a unique code. This code will always be unique since
it generates the code based on the time, place, and machine on which it is generated. Now that
we have a unique access code, we can use this code to give a user access to another user’s
dashboard.

Figure 7.3: User Access Code Frontend Screenshot

These UI elements allow a user to view his code and enter a code from another user. Now let
us go through what happens if a user enters another user dashbaord code.

1. User enters code and presses "GET ACCESS." This submission does a post request to the
backend with URL "<baseUrl>/api/users/requestDashboardAccess". We pass the current
user jwt token to the backend and the entered user code in the body.

2. When the Backend receives this request, it creates a new entry in MongoDB’s "dashboard-
Access" collection. This entry has both the accessor’s email and the accessed user’s email.
This entry will be used to determine if a user has access to a specific dashboard.

Joel Suter & Lucas von Niederhäusern Page 31 of 85

https://discord.com/
https://www.npmjs.com/package/uniqid

Fitness Data Platform

7.2.2 Switch Dashboard

This section describes how a user can switch between dashboards and view other users’ dash-
boards.

Figure 7.4: Accessed Dashboard Frontend Screenshot

In the above screenshot 7.4, an example is displayed where a user has two dashboards listed.
"My Dashboard" represents his Dashboard and data. The "max muster" entry is a dashboard that
this user can access. This list of accessed Dashboards gets returned by the backend when the
user opens the homepageof our application. The endpoint that returns this list is "<baseURL>/api/dashboard/users".
The code the backend runs is as follows:

exports.getAccessedUsers = async (req: express.Request, res: express.Response) => {
...

try {
await dashboardAccessRepository.getAccessedUsers(accessorEmail).then((emails) => {

emails.forEach(async (email) => {
await userRepository.findDashboardCodeByUserEmail(email).then((user) => {

menuItems.push({
route: "/users?accessCode=" + user.dashboardCode,
owner: user.fullName

})
})
res.send(menuItems)

})
})

} catch (e) {
log.error("Something went wrong while accessing database")

}
}

The backend returns a list of "menuItems". These items have two properties.

• route: This Is the route that will be used to access the data of this dashboard.

• owner: Both the name and last name of a user. Will be displayed in the frontend entry

The user can now select another dashboard he has access. In this example, he can switch to the
dashboard of "maxmuster."Whenhedoes this, theURL changes to "<domain>/users?accessCode="<accessCode"".
This triggers our route component:

<Route path="/users" element={<DashboardPage />} />

This route component will rerender our DashboardPage, which will try to read the accessCode
from the URL.

Joel Suter & Lucas von Niederhäusern Page 32 of 85

Fitness Data Platform

function DashboardPage() {
const { search } = useLocation();
const accessCode = new URLSearchParams(search).get(’accessCode’); //reads code

return (
<Layout>

<DisplayGraph accessCode={accessCode} /> //passes it to LineGraph
</Layout>

);
}
...

If the LineGraph is instantiated, he will do one of the two queries to fetch data.

1. If no accessCode is present, LineGraphwill fetch data from "<baseUrl>/api/users/requestData".

2. If an accessCode is present, LineGraphwill fetch data from "<baseUrl>/api/users/requestData?accessCode=<accessCode>".

As seen above, LineGraph will request data from the same endpoint with or without an access-
Code. The backend will check if an access code is provided. If one was, he would return data for
the user accessCode belongs to. If not, he will return data from the user that sent the request,
which is read from the jwt token provided.

exports.requestData = async (req: express.Request, res: express.Response) => {
if(!validator.isUserValidated(req, res)) {

return
}

const userDashboardCode = req.query.accessCode?.toString()
const jwtToken = req.body.token
const userEmail: string = getJWTEmail(jwtToken)

if(userDashboardCode) {
const accessedEmail = await userRepository.findUserEmailByDashboardCode(userDashboardCode)
const access = await dashboardAccessRepository.isAccessGranted(userEmail, accessedEmail)
if(access) {

getAllWeeklySummaries(accessedEmail).then((weeklySummaries) => {
return res.send(weeklySummaries)

})
} else {

return res.status(403).json({errors: "You don’t have access to this repository"})
}

} else {
getAllWeeklySummaries(userEmail).then((weeklySummaries) => {

return res.send(weeklySummaries)
})

}
}

7.2.3 Revoke Dashboard Access

A user is able to see who has access to his dashboard and is able to revoke that access.

Joel Suter & Lucas von Niederhäusern Page 33 of 85

Fitness Data Platform

Figure 7.5: Revoke Dashboard Access

If the users revokes access to his dashboard to from a certain user, the entry in the "dashboar-
dAccess" collection will be removed and the revoked user will no longer be able to view this users
data.

7.3 Data Normalization

The topic of data Normalization was already addressed in the domain model section but will
be highlighted here again. Since we collect data from Fitbit and Garmin, we decided to normal-
ize this data before it is served to the dashboard. The reason for that is performance. Calcu-
lating weekly steps, going through the whole database, and weighing both Garmin and Fitbit
data every time a user opens a dashboard would cause too much load on the backend and
long loading times for the user. So we decided on data normalization, which allows the back-
end only to fetch a few records of data when a dashboard is opened instead of having to do
calculations every time. Every time the backend is started, the "src/index.ts" script gets to run,
which initializes the backend. This file also calls the "createScheduledWeeklySummaryJob()"
from the "src/services/scheduled/scheduled-tasks-service.ts". This method initializes a cronjob
which runs every day at 23:00. The time this job runs can be defined in the "src/config/sched-
uled.tasks.config.ts" file. Every time the cronjob is run "generateWeeklySummaries(email)" func-
tion from the "src/services/data/data.service.ts" gets to run for every user in our system asychro-
nisouly.

The method where this cronjob is initialized is implemented as follows:

/**
* Creates a scheduled cronjob to generate Weekly summary for all users (Data Normalization)
*/

export async function createScheduledWeeklySummaryJob() {
cron.schedule(scheduledTasksConfig.GENERATE_WEEKLY_SUMMARY_SCHEDULE, async () => {

const userEmails: Array<string> = await userRepository.getEmailsOfAllUsers()
userEmails.forEach((email) => {

generateWeeklySummaries(email).then(() => {
log.info("Completed generating of weekly summary for user: " + email)

}).catch((err) => {
log.warn("Error trying to generate weekly summary for user: " + email, err)

})
})

})
}

Joel Suter & Lucas von Niederhäusern Page 34 of 85

Fitness Data Platform

We are able to do scheduled tasks with the node-cron package. Weekly summaries for a user are
generated as follows

Figure 7.6: Generate Weekly Summary Sequence Diagram

Remember that this Sequence Diagram 7.6 is not an exact representation of our source code
but a general overview of how weekly summaries are generated, and can be used to more easily
interpret the code that implements this. As you can see in the sequence diagram, node-cron
starts a scheduled job. First, it retrieves all our users, then loops through them and calls the
method "generateWeeklySummaries" for every user. First, the latest summary data is retrieved.
Depending on this date, the algorithm will run differently. There are three different cases:

• No previous summary exists: Summaries will be generated from the last Sunday to today

• Latest summary lies in the current week: The summary will be updated with new daily
summaries from the current week.

• The latest summary is one or multiple weeks old: The latest summary will be updated, and
gaps in weekly summaries will be filled. The current week will also be updated.

After the latest weekly summary is pulled, the algorithm will pull Daily summaries from both
Garmin and Fitbit that are saved in our database. It will pull these for either the latest summary
to today or if that does not exist, for the last sunday to today. After that, we calculate which data
we want to use for our weekly summary. This is done by weighing the Garmin data against the
Fitbit data and choosing which data to use for that given day. Specifics on how we decided to
weigh Fitbit steps and Garmin steps are described in 7.3.1.

• Scope: Currently we only summarize the step count, and sumup the data to create aweekly
summary.

Joel Suter & Lucas von Niederhäusern Page 35 of 85

https://www.npmjs.com/package/node-cron

Fitness Data Platform

• Extend Weekly Summary: This algorithm can be easily extended to summarize more then
just the weekly step count. It could also summarize the heartrate or other data that we
currently collect. For that two things have to be done:

1. Scope: Currently, we only summarize the step count and sum up the data to create a
weekly summary.

• Extend Weekly Summary: This algorithm can be easily extended to summarize more than
just the weekly step count. It could also summarize the heart rate or other data that we
currently collect. For that, two things have to be done:

1. Add weights for the new data that should be summarized
2. Collect the wanted data (same as weekly steps), weigh them against each other, and

write them into the weekly summary as a new field.

• Daily/Monthly/Yearly Summary: Data normalization could also be extended to generate
daily, monthly, or even yearly summaries. For that, a similar algorithm has to be imple-
mented as it already exists. In addition, the range of data written into the summary has to
be adjusted, and a new collection has been added to the database where this summary will
be written. But generating these summaries will not differ in logic too much, and this code
can be used as a guide or refactored to extend to new summary types.

7.3.1 Weighting Algorithm

This chapter describes how theweighting algorithmworks in our application. After implementing
the Fitbit and Garmin API, we had to persist the data in our database and evaluate a weekly
summary. For theweighting algorithm towork, we had to set aweight for every brand. In the paper
[1], thorough research was done regarding the accuracy of different manufacturers. Through this
paper, we found out that Fitbit watches are more accurate in step count than Garmin watches.
Garmin watches, on the other hand are more accurate in measuring heartbeat. Because in this
project, we only summarize the weekly step count, we made a simple weighting rank for Fitbit at
0.8 and Garmin at 0.6. These weights can be adjusted in "src/config/algorithm.config.ts". The
algorithm requests all data from the current week and compares entries of the same date with
each other. Any data with a higher weight will be prioritized, and if no data exists for this date, a
step count of 0 will be added. Future implementation ideas include considering the actual step
count and how long the watch was worn throughout the day. Depending on the worn length, the
weight of the data would change.

7.4 Logging

For logging, we used a library called tslog. Very simple library with different levels for logging and
extensive information. We primarily used info logs for high-level information and error logs for
any faults in the database or API.

import { Logger } from "tslog";
const logger = new Logger({ name: "myLogger" });

logger.silly("I am a silly log.");
logger.trace("I am a trace log.");
logger.debug("I am a debug log.");
logger.info("I am an info log.");

Joel Suter & Lucas von Niederhäusern Page 36 of 85

Fitness Data Platform

logger.warn("I am a warn log with a json object:", { foo: "bar" });
logger.error("I am an error log.");
logger.fatal(new Error("I am a pretty Error with a stacktrace."));

7.5 Code Documentation

We have documented our TypeScript code for readability and future purposes. As a standard, we
used TSDoc, a proposal for a standardization for TypeScript documentation. The documentation
follows this principle:

export class Statistics {
/**
* Returns the average of two numbers.
*
* @remarks
* This method is part of the {@link core-library#Statistics | Statistics subsystem}.
*
* @param x - The first input number
* @param y - The second input number
* @returns The arithmetic mean of ‘x‘ and ‘y‘
*
* @beta
*/

public static getAverage(x: number, y: number): number {
return (x + y) / 2.0;

}
}

In the backend, we have documented about 80% of our codes. The 20% left is mostly code
snippets which are auto-generated by the IDE or code snippets for which documentation would
be unnecessary.

7.6 Database

The topic Database was already addressed in a previous chapter 7.6. There it was described
why we chose MongoDB and how we designed our database structure. This section will de-
scribe concrete implementation details and the connection to our backend. As mentioned, we
chose MongoDB as our Database. We host this Database on DigitalOcean. It runs on a sepa-
rate cluster. While setting up the Database, we created a new user and password and secured
trusted sources that can access the Database. For the moment, the only trusted sources are
"fitbackend.adaptit.ch" where our backend runs, and our development computers, so that we can
remotely connect to the Database. Local development is still done on a local instance of Mon-
goDB, but remote access was still needed for testing and development purposes. The question
now was how we used this database in our backend. The first option we found was with mon-
goose. This is a prevalent option, but in our case, we found it does not apply. Mongoose requires
you to define schemas for collections. One of the requirements we set ourselves, and why we
chosemongodb, was that we do not have tomodel our collections. Since we want to collect data
fromFitbit andGarminwithout the need tomodel themand be able to save themunstructured, for

Joel Suter & Lucas von Niederhäusern Page 37 of 85

https://www.digitalocean.com/
https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/mongoose

Fitness Data Platform

that reason, we chose another option which we found here. We implemented a "generic repos-
itory pattern". We had to define a "BaseRepository" which implements functions that are used
across all our repositories:

import {Db, Collection, ObjectId} from "mongodb"

export abstract class BaseRepository<T extends { _id: ObjectId }> implements IWrite<T>, IRead<T> {

public readonly _collection: Collection

constructor(db: Db, collectionName: string) {
this._collection = db.collection(collectionName)

}

/**
* Creates an item in the database.
*
* @param item - item to be persisted
* @returns result - boolean if successful or not
*/

async create(item: T): Promise<boolean> {
const result = await this._collection.insertOne(item)
return !!result

}

/**
* Creates multiple items in the database.
*
* @param item - an array holding multiple items to be persisted
* @returns result - boolean if successful or not
*/

async createMany(item: Array<T>): Promise<boolean> {
const result = await this._collection.insertMany(item)
return !!result

}
...

}

This base repository implements two interfaces itself, one responsible for write operations:

export interface IWrite<T> {
create(item: T): Promise<boolean>;
update(id: string, item: T): Promise<boolean>;
delete(id: string): Promise<boolean>;

}

And the other responsible for read operations:

export interface IRead<T> {
find(item: T): Promise<Array<T>>;
findOne(id: string): Promise<T>;

}

Joel Suter & Lucas von Niederhäusern Page 38 of 85

https://medium.com/@erickwendel/generic-repository-with-typescript-and-node-js-731c10a1b98e

Fitness Data Platform

This BaseRepository is then inherited from every collection we have. Each collection is only ac-
cessed by one repository which implements and or overrides method from the BaseRepository
depending on the need. One of the implemented repositories will be shown here:

export class UserRepository extends BaseRepository<User>{

async getEmailsOfAllUsers(): Promise<Array<string>> {
const userEmails = []
const cursor = await this._collection.find()
await cursor.forEach((user) => {

userEmails.push(user._email)
})
return userEmails

}

async findUserByEmail(userEmail: string): Promise<User> {
const result = await this._collection.findOne(

{_email: userEmail}
)
return result ? new User(result._email, result._firstname, result._lastname, result._role, result._password): undefined

}

async findUserEmailByDashboardCode(dashboardCode: string): Promise<string> {
const result = await this._collection.findOne(

{_dashboardCode: dashboardCode}
)
return result ? result._email : undefined

}

async findDashboardCodeByUserEmail(userEmail: string): Promise<{ fullName: string, dashboardCode: string }> {
const result = await this._collection.findOne(

{_email: userEmail}
)
return result ? {fullName: result._firstname + " " + result._lastname, dashboardCode: result._dashboardCode} : undefined

}
..

As seen above the repository implements the BaseRepository for the type user. In this case we
do not overwrite the inherited methods since the default implementation suffices. But we extend
the repository with numerous functions that our services need. The user Repository accesses
the collection "user" from our mongoDB.
To see a model of the different collections please refer to the domain model 6.7. All collections
are listed there except the garmin and fitbit data collection.

7.7 Displaying of Data

This section covers how the data is displayed in the frontend, and with data, we mean the weekly
steps a user takes. It will not cover data collection 7.1, data normalization 7.3. Only how the
data is pulled from the backend and displayed on the frontend. For the displaying of the weekly
step count, we chose the package chart-js. This package allows for displaying of data in various

Joel Suter & Lucas von Niederhäusern Page 39 of 85

https://www.chartjs.org/

Fitness Data Platform

forms and diagrams. Furthermore, it allows the dashboard and the current LineGraph to be easily
extended in the future with further options like selecting the type of data that should be displayed,
time range, etc. The function in our React app that gets called if the graph should be displayed is
implemented as follows

...
const fetchData = (code: string | null) => {

if (code) {
authenticatedApiClient(jwt!).get<Array<any>>(‘/users/requestData?accessCode=${code}‘).then((response) => {

// @ts-ignore
setData(response.data);

}).catch((error) => {
console.log(error);

});
} else {

authenticatedApiClient(jwt!).get<Array<any>>(’/users/requestData’).then((response) => {
// @ts-ignore
setData(response.data);

}).catch((error) => {
console.log(error);

});
}

};
...

const stepData = {
datasets: [

{
label: ’Weekly steps’,
data: data || [],
borderColor: ’rgb(255, 99, 132)’,
backgroundColor: ’rgba(255, 99, 132, 0.5)’,

},
],

};
...

First, the "fetchData" function had to be implemented. This method makes a get request to our
backend, either with an accessCode fromanother user’s dashboard, if the data of this user should
be displayed, or without one, with the data of the currently logged-in user should be displayed.
Depending if this query parameter has been set, the backend will return different data. Lastly, the
data gets set in a reacted state. If this state gets updated, the graph gets rerendered. This state
is then used to build the "stepData", with some additional information on how the graph should
look and what the title should be.

useEffect(() => {
const { accessCode } = props;
// @ts-ignore
setParam(accessCode);
fetchData(accessCode);
// eslint-disable-next-line react/destructuring-assignment

}, [props.accessCode]);

Joel Suter & Lucas von Niederhäusern Page 40 of 85

Fitness Data Platform

If a user switches to another user’s dashboard, the property "props.accessCode" will change.
This will trigger this "useEffect" function, which will set the accessCode and rerun fetchData. All
UI elements depending on these values will be rerendered with the new values.

return (
// eslint-disable-next-line react/jsx-no-useless-fragment

<>
{data ? (

<>
<div id="chart-wrapper">

<Line
data={stepData}
options={{

parsing: {
xAxisKey: ’date’,
yAxisKey: ’steps’,

},
responsive: true,

}}
/>

</div>
<p>{param}</p>

</>
) : (

<div>Loading...</div>
)}

</>
);

Lastly the function returns the UI elements and the chart-js graph to the component that called
that tries to render this function.

7.8 CI/CD and Hosting

This chapter will go in depth on how we chose to implement CI/CD in our project. It will however
not go into detail of our general infrastructure. We created two Node.js Droplets one for the
frontend and one for the backend and a managed MongoDB database cluster that is accessible
from these droplets. To be able to deploy our code to these droplets, we had to prepare a few
things. First, we needed tomanually clone the code to the droplets and checkout themain branch.
This has only to be done once. The rest of the deployment will be automated. The Nginx file also
needed reconfiguring to point all traffic to that droplet to our frontend and backend applications.
Then we had to save a private key in our Gitlab and the public key on the droplets, so that we
could ssh into them. And finally, we wrote to gitlab-ci.yaml. It consists of two stages, test and
deployment. If the tests are successful, we deploy our code. For both backend and frontend the
process looks like this: First, we pull the new changes into the droplets, then we build the code
and finally, we serve the code with PM2. Since they are both Node.js application, they are similar
for deployment.

image: node:7.7.0

Joel Suter & Lucas von Niederhäusern Page 41 of 85

https://marketplace.digitalocean.com/apps/nodejs
https://pm2.keymetrics.io/

Fitness Data Platform

Figure 7.7: DigitalOcean Setup

stages:
- test
- deploy

test-frontend:
image: alpine:latest
stage: test
script:

- cd frontend
- apk add --update nodejs npm
- apk add --update npm
- npm install
- npm run test:ci

test-backend:
image: alpine:latest
stage: test
script:

- cd backend
- apk add --update nodejs npm
- apk add --update npm
- npm install
- npm test

deploy-frontend:
image: alpine:latest
stage: deploy
dependencies:

- test-frontend
- test-backend

Joel Suter & Lucas von Niederhäusern Page 42 of 85

Fitness Data Platform

script:
- chmod og= $ID_RSA
- apk update && apk add openssh-client
- ssh -i $ID_RSA -o StrictHostKeyChecking=no $SERVER_USER@$FRONTEND_API "cd /usr/src/frontend/fitnessdataplatform/frontend; git reset --hard; git fetch; git checkout main; git pull origin main; npm install; npm run build; pm2 delete all; pm2 --name fit.adaptit.ch serve build 3000 --spa;"

environment:
name: production

only:
- main

deploy-backend:
image: alpine:latest
stage: deploy
dependencies:

- test-frontend
- test-backend

script:
- chmod og= $ID_RSA
- apk update && apk add openssh-client
- ssh -i $ID_RSA -o StrictHostKeyChecking=no $SERVER_USER@$BACKEND_IP "cd /usr/src/backend/fitnessdataplatform/backend; git reset --hard; git fetch; git checkout main; git pull origin main; npm install; npx tsc; cp .env dist; cd dist; pm2 delete all; pm2 start index.js --name fit.backend.adaptit"

environment:
name: production

only:
- main

And this diagram 7.8 represents our CI/CD process.

Figure 7.8: CICD Model

Technical Test Documentation

Backend Testing

Unit Tests
We unit tested the Backend using jest. Jest is a popular unit testing framework for Nodejs appli-
cations. Since we use Typescript for the Backend we had to use a additional package, to allow us
to use jest to test our typescript code. We aimed to achieve a 90% test coverage for the backend.
We decided to exclude two directories from unit testing and coverage:

• /models

• /database

Joel Suter & Lucas von Niederhäusern Page 43 of 85

https://jestjs.io/
https://www.npmjs.com/package/ts-jest

Fitness Data Platform

The /models directory only holds data representation classes and has almost no logic. For that
reason, we do not unit-test them. The /database directory holds all of our repository classes
responsible for database access. Since the methods in these repositories are very short, and
most of the time, contain only one statement for access to the MongoDB database, it would
make no sense to test them separately. Unit testing a method like this would require mocking
the collection variable. This would make testing the method useless since we have to mock out
almost all of its logic. An example of a function requiring all its logic to bemocked is listed below.
Access to the collection must be mocked, and that makes this function essentially completely
mocked and nothing is left to be tested.

async upsertDailyActivitySummary(today: FitbitDate, data: any): Promise<boolean> {
const result = await this._collection.replaceOne(

{"date": today.toString(), "dataType": "DailyActivitySummary"},
{

"activities": data.activities,
"goals": data.goals,
"summary": data.summary,
"userEmail": data.userEmail,
"dataType": data.dataType,
"date": data.date

},
{upsert: true}

)
return !!result

}

The backend test coverage at the end of the project was:

Figure 7.9: Backend Test Coverage

Joel Suter & Lucas von Niederhäusern Page 44 of 85

Fitness Data Platform

Frontend Testing

We decided to also unit test our react frontend with jest since we can use this library both for
our backend and frontend. In the frontend we do not aim to test 90most of the components only
render non-interactive elements. Testing these makes little sense since they have no edge cases
or user interactions. Non-interactive components like these can be tested easily through manual
testing. So we only test interactive components like the login page.

Manual Test Protocol

We also decided to setup a manual test protocol that gets run after each sprint or when desired.
At first, it was more informal, but we decided to formalize it here. These will mainly test frontend
components and integration with the backend but not test backend functionality fully. This Test
protocol represents the final version of the test protocol. It had evolved throughout the project
and was first created when the first tracker was added to the application, which was Fitbit. Since
we currently have no active users and the application is not yet in production, we decided to
do these tests on "fit.adaptit.ch" directly. Due to budget constraints, we decided not to create a
new instance and test it directly there. The results of every time this Protokoll was run are not
listed since it would clutter this document. However, the last run at the end of the project was
successful.
Out of scope:
Scheduled tasks cannot be tested with a manual test protokoll. But they can be checked each
day to see if they have been run.
Prerequisites:

1. Connect to database hosted on DigitalOcean with MongoDBCompass.

2. Drop all collections.

3. Create a weeklySummary collection

4. Insert two entries for "max.muster@muster.ch" (date spanning from sunday twoweeks ago
to the last saturday, both entries with 20080 weekly steps)

5. Insert two entries for "jannet.muster@muster.ch" (date spanning from sunday two weeks
ago to the last saturday, both entries with 10000 weekly steps)

6. Go to your garmin connect account and disconnect from "Fitness Data Tracker"

7. Navigate to "fit.adaptit.ch"

Joel Suter & Lucas von Niederhäusern Page 45 of 85

https://jestjs.io/
https://www.mongodb.com/products/compass

Fitness Data Platform

Step Procedure Expected Result
1 Create user with email

"max.muster@muster.ch"
Should navigate to dashboard page. Also
check db entry if it matches entered val-
ues

2 Check if data is displayed in the graph Should display a line in the line graph right
above 20000 steps.

3 Click the three dots in the right corner,
press "Register Device" then press "Regis-
ter Fitbit"

Should get redirected to Fitbit login page
where authorization for our app is needed

4 Authorize app Should get redirected back to
the Dashboard. Expect collec-
tion "fitbitCredentials" and entry for
"max.muster@muster.ch" to be made in
db (check with MongoDBCompass).

5 Click three dots in right corner, press "Reg-
ister Device" then press "Register Garmin"

Should get redirected to Garmin login
page, where authorization for our app is
needed

6 Authorize app Should get redirected back to
the Dashboard. Expect collection
"garminCredentials" and entry for
"max.muster@muster.ch" to be made
in db (check with MongoDBCompass).

7 Go to the Garmin data Generator tool (link
excluded due to confidentiality). Generate
daily summaries, and activities for user
access token present in db entry.

Wait 1m and check if collection "gar-
minDailySummary" and "garminActivity"
have been made, both with entries that
match the generated data.

8 Go back to the Dashboard and copy the
dashboard code present there and then lo-
gout

Expect to be returned to the login page

9 Create a new user with the email "jan-
net.muster@muster.ch"

Should navigate to dashboard page. Also
check db entry if it matches entered val-
ues

10 Check if data is displayed in the graph Should display a line in the line graph at
10000 steps.

11 Enter the copied dashboard code in the
textfield present in the drawer menu, then
press "GET ACCESS"

Should ad a new entry below "My Dash-
board" with the name "max muster".

12 Press the new entry The Graph should now display data from
"max.muster@muster.ch". Check if graph
line is at 20000 steps.

13 Press "My Dashbaord" entry in drawer Graph should display a line at 10000 steps
14 Press the top right menu, then press

"Delete Account"
Expect to be redirected back to login page.
Check database to see if all entries for that
user have been deleted

Joel Suter & Lucas von Niederhäusern Page 46 of 85

Fitness Data Platform

8 Result

In this project, we created a basis for a new kind of platform where tracker data from two man-
ufacturers is displayed in a single unified dashboard. As a result, we were able to complete all
functional requirements.

The user can create an account on our application. He can sync two devices both, Garmin
and Fitbit. After he syncs these devices, he can view his Data on a unified dashboard. This
requirement was changed in the project’s duration with our supervisors’ approval only to include
the user’s weekly steps. The user can share his dashboard with others, view other dashboards
and revoke access to his dashboard from others. Data from synced trackers gets merged with
a weighting algorithm. The application can be deployed via CI/CD and is hosted on a publicly
available domain.
We were able to complete most of the NON-functional requirements. The completed ones are
listed below.

• Features were prioritized with the client

• The Web app is able to run on Firefox, Chrome, and Safari.

• The Web app is reachable through a domain provided by the client publicly.

• We tested the applicationwith three end-user tests. The rating of these can be viewed 10.3.1

• No system errors occur, but they are logged.

• Each error is logged.

• Communication between the backend and frontend is HTTPS (SSL) encrypted.

• User passwords get saved as a Hash in the database.

• User can only view data that he has access to.

• Business logic is implemented modularly to allow further development.

• Implemented functionalities are deployed on DigitalOcean.

Non-functional requirements not achieved will be listed here. Reasons for that are described
in 5.2.

• Backend must be able to handle 1000 requests per minute. This was never tested

• Backend-API must be tested with an API-Testing tool. Such API endpoint tests have not
been done.

The optional features were tracked, but we did not implement them.
The resulting application covers all the functional requirements and most non-functional re-

quirements. Where we deviate from these is described in this document.

Joel Suter & Lucas von Niederhäusern Page 47 of 85

Fitness Data Platform

Figure 8.1: Dashboard Main Page End Result

Joel Suter & Lucas von Niederhäusern Page 48 of 85

Fitness Data Platform

9 Conclusion

In this project, we created a basis for a platform that does not exist as such yet. A platformwhere
a user can keep track of multiple devices, share his data and view the data of others.

We were able to fulfill all the functional requirements and are happy with the result we were
able to achieve.

The shortcomings of this project are mainly testing. We could not fulfill all non-functional
requirements regarding the testing of the application since we needed more time, budget con-
straints in hosting, and had to set priorities. We mentioned these in previous chapters.

9.1 Needs to be addressed

Since the basis for a unified Fitness Tracker Platform stands, before any new features get imple-
mented, testing of the application should be extended. This includes new testing hosting envi-
ronment, stress tests, and API tests. We are happy with what we achieved but are not satisfied
with the number of tests we were able to achieve.

Before any new features are implemented, all bugs or errors that we did not yet detect and
might be detected in the new tests must be addressed.

9.2 Future Vision

In our opinion, this project has many potentials and needs in the current digitalized world. More
and more people wear tracker devices.

The optional requirements ef sec:optreq mentioned in the initial task we received are perfect
extensions for new features and should be considered for future work.

We of course, have some additional input in the forms of questions that can guide further
development:

• Should more tracker companies be added to the supported trackers?

• What data is next to be displayed in the frontend?

• Should horizontal scaling be considered before a go live?

• If dashboards can be customized in the future, should a shared dashboard be displayed as
the user has configured it, or should the one that has access be able to customize it?

• Should a user be able to choose what data we collect?

• Should a user be able to choose what data he wants to share with another user?

• Since we are working with PHI, what degree of security should be implemented before a go
live.

Joel Suter & Lucas von Niederhäusern Page 49 of 85

Fitness Data Platform

10 Project and Time Management

10.1 Project Plan

Figure 10.1: Initial Project Plan

The figure 10.1 shows our initial project plan at the beginning of the project. In the end, it
deviated due to some unknown factors at the beginning of the project. These will be mentioned
later. Note that the completion bars of themilestones can be ignored due to the screenshot being
taken in the middle of the project. We will quickly explain what these milestones mean and what
work was done in them:

• Administration: This was work on the documentation, meetings and general work that
couldn’t directly be associated with an issue.

• Database Setup: This milestone was work regarding the database and its setup. It also
includes choosing our database technology and setting up the connection to the code

• Infrastructure: Everything to do with hosting and CI/CD

• Backend: All the work needed to be done in the backend. Often overlaps with other mile-
stones(epics). Since this is the biggest part of our project, it is no surprise that it runs for
almost the whole duration.

• User Interface: All work done to the frontend. Sometimes overlapped with "backend" and
"Tracker and Tracker Data".

• Authentication: Work done regarding user authentication.

Joel Suter & Lucas von Niederhäusern Page 50 of 85

Fitness Data Platform

• Testing: Everything regarding test setup, from unit tests to manual test protocol, to test the
concept

• Security: In this milestone, we made sure that our application has an acceptable degree of
security. That means password hashing to keep secrets safe and HTTPS.

• Datasharing: Is regarding the dashboard sharing, revoking, and switching requirements

• Weightingalgorithm: This milestone represents work done for Data Normalization, weigh-
ing tracker data etc.

10.1.1 Deviations

As in all projects, we ended up deviating from the project plan in some aspects. They will be
listed here

• Database Setup: This Milestone took longer, longer then the end of October. Reason for
that is some technical issues with hosting the application.

• Infrastructure: This was extended the same amount as the "Database Setup" milestone
for the same reasons. Issues with hosting on DigitalOcean.

• Tracker and Tracker Data: This one probably had the biggest deviation. We began it earlier
than intended since we had to clear up some unknown variables regarding data collection
from Garmin and Fitbit, and it took longer, up to the middle of December, since issues with
the Garmin documentation arose.

We were able to complete the rest as seen in the project plan with a few deviations not worth
mentioning here, for example, minor changes in User Authentication, which happened after the
Milestone was completed.

Project organization

We have organized ourselves according to SCRUMwithminor changes as we are a small team of
two developers. The long-term plan has been organized with RUP. The minor changes to SCRUM
are listed below:

• Our sprints last for two weeks except for the first sprint, which we decided on for one week
as it only consisted of administrative and setup issues.

• Our review meetings will be held every week. Inconsistencies can occur due to advisors
and clients who have different work schedules.

• We scratched the Daily SCRUMMeeting due to overhead and effectiveness for a team con-
sisting only of two people.

Roles

Usually, SCRUM based projects divide their participants into roles. Now because we are only
a team of two developers, we decided to leave the role distribution out. Our team members
divide their work depending on who has time and more experience in a given issue. As both
team members bring similar experiences in the field, there is no need to define specific roles for
individuals. The other team member will review any code or major decisions someone makes.

Joel Suter & Lucas von Niederhäusern Page 51 of 85

Fitness Data Platform

Issue management

For issue management, we decided to use Jira Cloud Solution. One of our team members has
prior experience with it, and our client suggested using this solution. We have divided our re-
quirements into epics which will be further divided into more minor issues. The only release we
captured is the final submission, so it is easier for us to estimate which epics have to be done in
a time frame.

Time tracking

This section will list the time spent on each issue devided by each month. We tracked the time
by logging it to the respective issue or logging it directly to a epic if the work couldn’t be associ-
ated with a specific task. We will not list the time spent per person since both members worked
together and any time differential will be caused by a overlogging or underlogging time.

Figure 10.2: Time Spent September

Figure 10.3: Time Spent October

Joel Suter & Lucas von Niederhäusern Page 52 of 85

Fitness Data Platform

Figure 10.4: Time Spent November

Figure 10.5: Time Spent December

Division of Tasks

Wemostly worked together onmost tasks, but still there are some divisions on how the overlying
requirements were divided under each other. The rough divisions of tasks will be listed below.
Some tasks both worked on equally and that will be mentioned too.

Joel Suter & Lucas von Niederhäusern Page 53 of 85

Fitness Data Platform

Task Lead
Fitbit Data Lucas v. Niderhäusern
Garmin Data Joel Suter
Dashboard Sharing Lucas v. Niderhäusern
User deletion Lucas v. Niderhäusern
Documentation both
Data Normalization Lucas v. Niderhäusern
CI/CD and Hosting Joel Suter
Testing Both
Frontend setup Joel Suter
Database setup Both
Database setup Both
Scheduled Tasks Joel Suter

Table 10.1: Divisons of tasks

10.2 Risk Management

This section will describe the risks to our project. If they occur, they are listed in 10.2 with their
respective probability and severity to the project. The section will be constantly updated for any
new risks that arise during the project and the realized risks that happened. Any countermeasures
and their effectiveness will be documented as well.

Risk ID Risk Countermeasure Severity Probability
1 Team member is unavail-

able
Communicate through
channels to distribute tasks
between other team mem-
bers

Very High Likely

2 Scope Creep Any changes to scopes
have to be estimated again

High Very Likely

3 Technical inexperience Assign issues to the per-
son best suited. Eliminate
any inexperience as early as
possible

High Likely

4 Infrastructure breakdown Create backups and ensure
high availability of the in-
frastructure

Very High Not likely

5 Poor project planning Reviewproject plan after ev-
ery sprint

High Not likely

Table 10.2: Project Risks

Joel Suter & Lucas von Niederhäusern Page 54 of 85

Fitness Data Platform

Figure 10.6: Risk acceptance graph

Realized risks

Team member is unavailable

One team member was unavailable for 3 days. This absence was known in before and workload
was distributed respectively.
Severity: Small
Countermeasure: Successful

Team member is unavailable

Another team member was unavailable for 3 days during a different time period. This absence
was known in before and workload was distributed respectively.
Severity: Small
Countermeasure: Successful

Technical inexperience:

Due to our technical inexperience in MongoDB, we have realized that setting up the MongoDB
took more time than initially anticipated. We have assigned the task to both us to speed up the
process and read through the documentation of MongoDB.
Severity: Medium
Countermeasure: Successful

Technical inexperience

Wewere aware from the beginning that DigitalOcean would be needed as a cloud solution for our
project. As only one of our teammembers hasworkedwith DigitalOcean before, he was assigned

Joel Suter & Lucas von Niederhäusern Page 55 of 85

Fitness Data Platform

for the initial setup. We encountered some time consuming problems regarding the CI/CD for our
project because of the private instance of our Gitlab repository. The issue was resolved after we
migrated our repository to the clients private Gitlab instance.
Severity: Medium
Countermeasure: Successful

Insufficient Documentation

One of the risks we did not expect at the beginning was insufficient documentation for api’s we
need to use. We had problems integrating the Garmin api to our project because of somethings
that were not documented. We were able to solve this by contacting the Garmin support.
Severity: Severe
Countermeasure: Successful

10.3 Test Concept

In general we will conform to the testing Pyramid and design our test concept accordingly, as
it is considered to be a good guideline for software testing. When we deviate from it, we will
document the changes and give reasons for that. We aim to test 80% of our code. Higher then
that usually involves writing tests that don’t add real value to the code base and are more meant
to get to a higher percentage. From our experience, 80% is realistic to achieve with good tests.

Figure 10.7: Testing Pyramid

10.3.1 Additional

As of now we don’t see the need for additional test techniques since the scope of our project
is overseeable. We rather concentrate on the following testing techniques and implement them
with a high degree of quality.

System

We will test the system manually using a test protocol. This protocol will evolve during the dura-
tion of the project. If one of the tests fails in the protocol the sprint cannot be finished, it does

Joel Suter & Lucas von Niederhäusern Page 56 of 85

Fitness Data Platform

not meet the definition of done. The final iteration of the protocol will be listed in the technical
test documentation, and their results. When to run: After Sprint

Integration

We cover these with our unit test and manual testing. So we decided against Integration testing.

Component

Since we have very small modules/components it doesn’t make much sense to test them seper-
ately. For that reason we won’t test themodules seperately but will cover these tests through unit
and manual testing.

Unit

We will implements most of our testing through unit tests. With these we want to make sure all
the code units run as intended. When to run: With Pipeline

End User Tests and Rating

One of the requirements was that three test users would rate our application eight or higher out
of ten. Since this is a very objective requirement and highly depends on the user testing, it is hard
to say for sure if it was fulfilled. It also has to be mentioned that the focus in this project was in
the backend, collecting tracker data and providing and basis that can be extended. The UI was
not the main focus of this project.

For this testing/rating we asked three of our friends and collegues to do the follwing unguided:

1. Create a user

2. Connect their fitbit account (which we asked them to create beforehand)

3. Logout

4. Create a second user

5. Access the dashboard of the first user

6. Delete the second account.

The results were as follows:

1. Rating of 6

2. Rating of 7

3. Rating of 9

In the context of our project we consider these ratings as a success, but they show us that
there is still work to be done in our UI. Aggregated feedback worth mentioning are:

• The graph is not customizable (can’t choose date range etc

• Color Scheme could be more pleasent

• The Dashbaord code should be hidden and only visible when pressed

Joel Suter & Lucas von Niederhäusern Page 57 of 85

Fitness Data Platform

• The menu and submenu at the top right could be colorcoded and or contain logos of Fitbit
and Garmin.

These ratings were done at the very end of the project. The Feedback received from the users
should be considered if this application received further development.

10.4 Definition of Ready / Definition of Done

This section will discuss and list the different DoDs and DoRs. These lists will serve as checklists
either before we do something (DoR) or when we want to check if something is finished (DoD).
In addition, it will ensure that quality standards are met with a clearly defined process.

Definition of Ready

If any of the criteria in the checklist are violated, the concerned item is not ready to be worked. It
will have to be corrected until it meets them. It is ready only if all criteria are met.

• User Stories
– Acceptance Criteria defined
– Story definition accepted by Team
– Story well-defined
– No ambiguities
– Story estimated
– Story in current Sprint
– Story assigned

• General Ticket
– Acceptance Criteria defined
– Ticket in current sprint
– Ticket estimated

• Sprint
– Tickets with highest priority in sprint
– Sprint backlog prioritized
– No hidden work, everything in tickets
– Sprint planned according to capacity
– All Stories meet definition of Ready

Definition of Done

If any of the criteria in the checklist are violated, the concerned item is considered unfinished. It
will not be allowed to be moved to done or regarded as finished. It is done only if all are met.

• User Stories
– Assumptions of User Story met (justified if not)
– Project builds without errors

Joel Suter & Lucas von Niederhäusern Page 58 of 85

Fitness Data Platform

– Tests written according to test concept
– Story tested against acceptance criteria
– Configuration, Architecture or Build changes documented
– Code Review passed
– Code written according to defined guidelines
– NFR stay unviolated

• General Ticket
– Assumptions of Ticket met (justified if not)
– Changes to Documentation reviewed
– Acceptance Criteria met
– No Contradictions in Documentation
– Decisions accepted by Team

• Sprint
– DoD of each Ticket included in Sprint is met
– Sprint scope completed
– All tests pass
– Backlog refined and updated
– Application deployed
– Upcoming Sprint planned

Joel Suter & Lucas von Niederhäusern Page 59 of 85

Fitness Data Platform

Bibliography

[1] Fuller D et al. “Reliability and Validity of Commercially Available Wearable Devices for Mea-
suring Steps, Energy Expenditure, and Heart Rate: Systematic Review.” PhD thesis. JMIR
Mhealth Uhealth, 2020.

Joel Suter & Lucas von Niederhäusern Page 60 of 85

Fitness Data Platform

List of Figures

1 MongoDB . 1
2 TypeScript . 1
3 Own Presentment . 1

4.1 System Context . 9

5.1 Testing Pyramid . 10

6.1 Container Diagram . 15
6.2 Component Diagram . 16
6.3 Backend folder structure . 18
6.4 Request diagram frontend . 19
6.5 Dashboard main page Mockup 1 . 20
6.6 Dashboard Main Page Mockup 2 . 20
6.7 Login Page Mockup . 20
6.8 Register Page Mockup . 21
6.9 Register Page Mockup . 21
6.10 Domain Model . 23
6.11 DigitalOcean Restore Dialog . 25

7.1 Fitbit Web API Workflow . 27
7.2 Garmin API Workflow . 30
7.3 User Access Code Frontend Screenshot . 31
7.4 Accessed Dashboard Frontend Screenshot . 32
7.5 Revoke Dashboard Access . 34
7.6 Generate Weekly Summary Sequence Diagram . 35
7.7 DigitalOcean Setup . 42
7.8 CICD Model . 43
7.9 Backend Test Coverage . 44

8.1 Dashboard Main Page End Result . 48

10.1 Initial Project Plan . 50
10.2 Time Spent September . 52
10.3 Time Spent October . 52
10.4 Time Spent November . 53
10.5 Time Spent December . 53
10.6 Risk acceptance graph . 55
10.7 Testing Pyramid . 56

14.1 Login Page of Application . 79
14.2 Sign In Page . 80
14.3 Sign Up Page . 81
14.4 Dashboard . 82

Joel Suter & Lucas von Niederhäusern Page 61 of 85

Fitness Data Platform

List of Tables

5.1 Use Cases . 11
5.3 Non-Functional Requirements . 12
5.5 Optional Requirements . 13

10.1 Divisons of tasks . 54
10.2 Project Risks . 54

Joel Suter & Lucas von Niederhäusern Page 62 of 85

Fitness Data Platform

11 Operational Notes

Vor allem bei Softwareprojekten: Gehen Sie auf folgende Punkte ein (bei grösserer Dokumenta-
tion verweisen Sie auf den Anhang).

1. Verwendete SDK, IDE und Werkzeuge

2. Hinweise zu CI/CD

3. Installationsanleitung / Bedienungsanleitung

4. Test-Logs

5. Bei Systemen mit User Interfaces: Dokumentation der Usability Tests

Joel Suter & Lucas von Niederhäusern Page 63 of 85

Fitness Data Platform

12 Meeting Minutes

Protocol 21.09 17:00

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Frontend style: Preferred libraries, stylesheet

• Backend technology: Do we need to use Node.js?

• Database technology: Can we use PostgreSQL?

• Question to "Gewichtungsalgorithmus"

• "Project Management Tool" choice (Jira)

• Choose date for issue prioritization

• Formal questions regarding shape and structure of the documentation

Decisions

• We are free to design the frontend how we want

• The backend has to be in Javascript -> Because JS developers are cheaper than other tech-
nologies

• We have to elaborate

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 64 of 85

Fitness Data Platform

Protocol 27.09 17:00

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Do we organise business meetings with client?

• Is there a maximum hours we are allowed to work on this project?

• What is the difference in the UI for admins and normal clients?

• What information do we have to collect from the tracking devices?

• Does Michael have a example for a dashboard?

• When do we plan the meetings for the issue prioritization?

Decisions

• Business review will be held within the normal weekly meetings

• The dashboard should only include the steps, but has to be easily extendable

• We have to collect as much data as possible from the tracking devices into the database

• Most important features: Connection of tracking device, sharable dashboards, collection
of data

• (There might be open source solutions for the dashboard)

Open Tasks / Topics for next week

• Setup meeting for issue priorization

• Michael won’t be attending next meeting

Joel Suter & Lucas von Niederhäusern Page 65 of 85

Fitness Data Platform

Protocol 04.10 17:00

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch

Review

• None

Topics / Questions

• Feedback to our documentation structure

Decisions

• Document end results. Did we achieve our (non-)functional requirements

• Document our software (how is it implemented, testing results)

• Document our deployment (especially workflow with DigitalOcean)

Open Tasks / Topics for next week

• Meeting with Michael regarding technical issues

• Are devices actors in the use cases?

Joel Suter & Lucas von Niederhäusern Page 66 of 85

Fitness Data Platform

Protocol 14.10 19:00

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Quick briefing for Frank so he is up to date with which decisions were made during last
meeting

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 67 of 85

Fitness Data Platform

Protocol 20.10 19:00

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• First version of UI - Feedback

Topics / Questions

• Domain Model - Database solution

• organize a technical / code review

• Data preparation (solution)

Decisions

• Sidebar open by default

• Userprofile on the dashboard

• Livedata to show that synchronization works

• Write email regarding garmin credentials (consumer secret)

• We can dump all data into mongodb collections

• Show live data / show weekly summarization

• Document difficulties regarding data preparation (if one device battery went dead, weigh-
ing)

• Optional point: Multiple graphs, one for fitbit, one for garmin

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 68 of 85

Fitness Data Platform

Protocol 27.10 19:00

Present

Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Subscription API from Fitbit

Decisions

• Use subscription API as a separate service for the application

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 69 of 85

Fitness Data Platform

Protocol 03.11 19:00

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Update of current events

• Does Michael have a wish for domain name

• Is cost of droplet okay?

Decisions

• Try using less performance on droplet to see how much it uses

• Send IP-Address to Michael so he can configure domain name and DNS

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 70 of 85

Fitness Data Platform

Protocol 19:00 10.11.2022

Present

Joel Suter, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Show deployment

Decisions

• None

Open Tasks / Topics for next week

• Frank will be absent on the first week of december

• Brainstorming ideas for bachelor thesis

Joel Suter & Lucas von Niederhäusern Page 71 of 85

Fitness Data Platform

Protocol 19:00 17.11.2022

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Brief Lucas on what happened last week

Topics / Questions

• Show progress of project

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 72 of 85

Fitness Data Platform

Protocol 19:00 24.11.2022

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Almost finished with testing for front- and backend

• Garmin issues

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 73 of 85

Fitness Data Platform

Protocol 19:00 01.12.2022

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Showed progress of our project, nothing else

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 74 of 85

Fitness Data Platform

Protocol 19:00 08.12.2022

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• None

Decisions

• Reduce droplet costs to a minimum to see if any performance issues arise

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 75 of 85

Fitness Data Platform

Protocol 19:00 15.12.2022

Present

Joel Suter, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• We reached maxiumum minutes on our pipelines

• AVT Tool is now open for registration

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 76 of 85

Fitness Data Platform

Protocol 19:00 22.12.2022

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Informal presentation of our project

Topics / Questions

• What to do with Garmin documentation due to it being confidental

Decisions

• We wished each other merry christmas and happy new year

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 77 of 85

Fitness Data Platform

13 Personal Reports

Lucas von Niederhäusern

This project combined a lot of knowledge and experience I gathered during my studies at OST.
Starting this project everything felt a bit bumpy because ofmy inexperience in working with API’s.
I needed a lot of ground work to get accustomed to how API’s work and how I can use them
efficently in this project. Otherwise, especially in the backend, most things worked out pretty
great because of past projects I built with similar technologies. It was also a great experience
to work with React technology in the frontend and how efficent these libraries work once I got
the hang of it. I am happy with the results of this project even though we could not implement
every feature we intended to and hope that this project will be a good foundation on what Adapt
IT wants to implement in the future.

13.0.1 Joel Suter

In this project I tested what i have learned in my years as a DevOps engineer and my time here at
OST. I sharpened my skills in Typescript, hosting, CI/CD, and more. The project is a success. We
were able to achieve what we were given. Of course, as in all projects, some times could have
been better. I learned a lot, especially in project planning. We often estimated tasks to be shorter
than they were since they often had new APIs we had never worked with. I will calculate more
buffers for unknown variables like external APIs in future projects. Nevertheless, I enjoyed my
time working on this project, even when not everything worked out as planned. I am happy with
what a team of two people achieved, and I am happy with our result. This basis we built will bring
great benefit to our client. I learned a lot in this project which I will certainly apply in the next one.

Joel Suter & Lucas von Niederhäusern Page 78 of 85

Fitness Data Platform

14 Screenshots

Figure 14.1: Login Page of Application

Joel Suter & Lucas von Niederhäusern Page 79 of 85

Fitness Data Platform

Figure 14.2: Sign In Page

Joel Suter & Lucas von Niederhäusern Page 80 of 85

Fitness Data Platform

Figure 14.3: Sign Up Page

Joel Suter & Lucas von Niederhäusern Page 81 of 85

Fitness Data Platform

Figure 14.4: Dashboard

Joel Suter & Lucas von Niederhäusern Page 82 of 85

Fitness Data Platform

15 Task

15.1 FitnessDataPlatform

Beteiligte Personen

• Studierende: Lucas von Niederhäusern und Joel Suter

• Industriepartner: AdaptIT GmbH, Michael Güntensperger

• Betreuer: Frank Koch

15.1.1 Problembeschrieb

Fitness-Tracker-Daten werden im Bereich Personal Training immer wichtiger. Im Moment haben
Trainer nur die Möglichkeit, anhand separater Plattformen der Fitness-Tracker-Hersteller die Be-
wegung der Kunden zu tracken und auszuwerten. Dies wird schnell sehr aufwendig, wenn ein
Trainer mehrere Kunden mit unterschiedlichen Trackern hat (z.B. Samsung, Google, Apple, Fit-
bit, Garmin, . . .). Damit dies in Zukunft einfacher wird, soll ein Tool zum Anbinden von Fitness-
Trackern und der Freigabe der Daten z.B. an einen Personal Trainer entwickelt werden.

15.1.2 Aufgabenstellung

Mit diesemProjekt soll die Schnittstelle eines Fitnesstracker-Anbieters (z.B. Garmin) an ein Back-
end angebunden werden und die Daten auf einem Dashboard ausgewertet werden. Dashboards
sollen mit anderen Usern geteilt werden können (Personal Trainer kann die Dashboards der Kun-
den einsehen). DieApplikation sollmodular aufgebaut sein, damit in Zukunftweitere Fitnesstracker-
Anbieter angebunden und das Dashboard erweitert werden kann.

15.1.3 Technische Umgebung

Für die Umsetzung wird mit Web-Technologien gearbeitet.

• Frontend: Angular / React

• Backend: Node.js

• Datenbank: z.B. MongoDB

15.1.4 Funktionale Anforderungen

• Anbindung von zwei Trackern (z.B. zwei unterschiedliche Fitbit-Geräte).

• Evaluieren was für Datenbanktechnologie eingesetzt werden soll, um diese Datenmenge
darzustellen und die Umsetzung damit.

• Benutzer

Joel Suter & Lucas von Niederhäusern Page 83 of 85

Fitness Data Platform

– Erstellen und Löschen von Accounts.
– Darstellen der Daten auf einem Dashboard.
– Teilen von Dashboards mit anderen Usern (so kann Personal Trainer z.B. 20 Dash-

boards einsehen).
– Berechtigungen an Externe wieder entziehen können.

• Gewichtungsalgorithmus, um zu entscheiden, welche Daten für die Auswertung relevant
sind, wenn ein Benutzer zwei Tracker bei sich hat (z.B. Smartwatch undHandy). Z.B. Genauigkeit
von Fitbit Armband beim Tracken von Schritten genauer als das Samsung Handy -> Für die
Auswertung die Schrittzahl von Fitbit nutzen.

• Deployen der Applikation.

• Einladung zum Erstellen eines Accounts versenden können (z.B. per Mail oder WhatsApp).

15.1.5 Optionale Anforderungen

• Verschlüsselung der Daten, dass auch der Admin diese nicht einsehen kann.

• Setzen von Zielen im Dashboard (Bsp. Schritte).

• Benutzer könnendasDashboard selbst bearbeiten und für sie relevante Informationen anzeigen.

• Personal Trainer können viaChatmit Kunden kommunizieren undVideos für diese hochladen.

• Erstellen von Communities (Kollegen, Verein, Firma, . . .).

• Starten von Challenges (z.B. wer Schafft am meisten Schritte diese Woche).

• Chat-Funktionalität.

• Integration Slack / Teams (um über Stand der Challenge zu informieren).

• Monetarisierung von Professional-Accounts.

• Erstellen einer App mit minimaler Auswertungs- und Chat-Funktionalität.

• Manuelle Erfassung von anderen Daten z.B Tägliches Wohlbefinden, Stresslevel, Blutunter-
suchungen, etc.

• Manuele Einstellung, welcher Tracker für welche Daten eingesetzt werden soll.

15.1.6 Nicht-Funktionale Anforderungen

• Das Entwicklerteam implementiert die Features gemäss der abgesprochenen Priorität mit
dem Kunden.

• Das Backend (Fitnessdaten) sollte 1000 Requests pro Minute handeln können (Abhängig
von der Implementation des Daten-Uploads).

• Jede Seite sollte nicht länger als 200ms für das Laden benötigen.

• Die Web-Applikation sollte auf Firefox, Chrome und Safari laufen.

• Via Internet sollte auf eine vomKunden zur Verfügung gestellte Domain zugegriffenwerden
können.

Joel Suter & Lucas von Niederhäusern Page 84 of 85

Fitness Data Platform

• Drei von vier Testusern sollten das UI (Kategorien: layout, responsiveness, colour, content)
der Applikation mit einem Tablet mit einer Note von mindestens 8 von 10 bewerten, wobei
10 das Beste ist.

• Die Datenbank soll bis zu 100’000 Datensätze managen können.

• Errors sollen keine Systemfehler erzeugen, aber eine Error Nachricht Zeigen und das Sys-
tem auf den vorherigen Zustand zurücksetzen.

• Jeder Error soll im System geloggt werden.

• Jede Kommunikation zwischen Front- und Backend soll mit einem SSL-Zertifikat verschlüs-
selt werden.

• Daten welche in Eingabefelder abgefüllt werden, sollen zuerst validiert werden, bevor diese
durch das System verarbeitet werden. SQL Injection test der Eingabefelder sollte keine
Verletzlichkeiten zeigen.

• User-Passwörter werden nicht in plain-text in der Datenbank gespeichert.

• Wenn sich ein User in die Web-Applikation einloggt, werden ihm auch nur seine Daten / auf
Daten die er Zugriff haben soll, angezeigt.

• Businesslogik im Backend soll modular aufgebaut werden, so dass sie erweitert werden
kann.

• Die Backend-API soll durch API-testing Tools getestet werden.

• Implementierte Funktionalität (Datenbank, Backend, Frontend,. . .) sollen deployed werden.

15.1.7 Zur Durchführung

Mit dem Betreuer finden Besprechungen gemäss Absprache statt. Die Besprechungen sind von
den Studierenden mit einer Traktandenliste vorzubereiten und die Ergebnisse in einem Protokoll
zu dokumentieren, das dem Betreuer per E-Mail zugestellt wird. Für die Durchführung der Ar-
beit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuierlichen und sichtbaren Arbeits-
fortschritt zu achten. An Meilensteinen gemäss Projektplan sind einzelne Arbeitsresultate in
vorläufigen Versionen abzugeben. pdfpages

15.2 Additional Documents

[pages=-]template/resources/pdfs/eigenstaendigkeit.pdf [pages=-]template/resources/pdfs/einverstaendnis.pdf
[pages=-]template/resources/pdfs/urheber.pdf

Joel Suter & Lucas von Niederhäusern Page 85 of 85

	Starting Position
	Motivation
	Project Description

	Conceptual Formulation
	Framework Conditions
	System Context
	Requirements
	Functional Requirements
	Additional information

	Non-Functional Requirements
	Optional Requirements
	Verification

	Design and Architecture
	Container Diagram
	Component Diagram
	Backend architecture
	Frontend architecture
	UI Mockup

	Scaling
	Scaling up
	Scaling out

	Deployment
	Domain Model
	Database
	Redundancy
	Transactions and Rollback

	Security
	HTTPS and Domains

	Implementation
	Application Programming Interface
	Dashboard Sharing
	Share Dashboard
	Switch Dashboard
	Revoke Dashboard Access

	Data Normalization
	Weighting Algorithm

	Logging
	Code Documentation
	Database
	Displaying of Data
	CI/CD and Hosting

	Result
	Conclusion
	Needs to be addressed
	Future Vision

	Project and Time Management
	Project Plan
	Deviations

	Risk Management
	Test Concept
	Additional

	Definition of Ready / Definition of Done

	Operational Notes
	Meeting Minutes
	Personal Reports
	Joel Suter

	Screenshots
	Task
	FitnessDataPlatform
	Problembeschrieb
	Aufgabenstellung
	Technische Umgebung
	Funktionale Anforderungen
	Optionale Anforderungen
	Nicht-Funktionale Anforderungen
	Zur Durchführung

	Additional Documents

