
Make Model Driven Network Automation
Pythonic

Term Project

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Semester: Autumn 2022

Version: 1.0
Date: 2022-12-23 15:27:10Z

Git Version: 5b29ffc

Project Team: Dejan Jovicic
Dominic Walther

Project Advisor: Urs Baumann

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Acknowledgements

We would like to take this opportunity to thank all those who have supported us in this
study.

We would especially like to thank our supervisor Urs Baumann. At the weekly meetings he
always took enough time to answer our questions, and through his experience and expertise
he was able to provide us with input that helped us to understand and solve problems.
In particular, we would like to thank him for always being available quickly and without
complications throughout the entire work, even outside the agreed meetings.

D. Jovicic, D. Walther i

Abstract

yang is a data modelling language used to define data structures transmitted over either
the netconf or restconf protocol. Such models can be used to perform so-called Model
Driven Network Automation.

The goal of this project is to create a proof-of-concept to show how yang models could
be translated to Python data-structures based on pydantic. These data-structures can
in turn be initialized with configuration values, serialized into a restconf payload and
sent to a network device, applying the configuration. If successful, this would facilitate
configuring network devices through Python code, without requiring the user to have prior
knowledge of yang.

We started by analysing the Python ecosystem surrounding yang, including projects such
as Pyang, PyangBind, yangson and Pyang-Pydantic, as well as pydantic and datamodel-
code-generator. Our analysis revealed that most of the projects in the ecosystem have
either been abandoned for years or are nowhere near robust or reliable enough to be used
in a productive environment.

After some consideration, we settled on Pyang as our yang parser and used the Pyang-
Pydantic plugin as a starting point for our project. We then proceeded to gradually add
features designed to make the generated Python models as intuitive and convenient to
work with as possible.

This resulted in the creation of Pydantify, a tool for translating yang models into ex-
ecutable Python code which can in turn generate valid restconf payloads. On top of
validating the concept as feasible, we successfully managed to implement a large section
of the yang specification, enabling some real-world models to be converted without is-
sue.

This paper documents the development of Pydantify and outlining the challenges we faced
along the way, providing a stepping stone for future projects in this domain.

D. Jovicic, D. Walther ii

Lay Summary

Initial Situation

The common goal in the IT industry is to automate every task as much as possible,
and in the context of networking, one of the key components is yang. yang is used to
describe data structures containing the configuration of a network device in a process called
Model Driven Network Automation. Such data structures can be transmitted to network
devices, typically in either XML or JSON payloads, to modify the device’s configuration
remotely. Writing such payloads by hand and without errors is tedious, so tools are
employed to simplify the process. There are however very few Python-based tools for this
purpose.

Approach

Our goal was to create a proof-of-concept to demonstrate that yang models could be
translated to Python data structures which in turn can generate restconf payloads
when initialized with configuration values by the user. These payloads can then be sent
to a network device where the configuration changes get applied. Such a tool would help
network engineers with little to no yang experience create configurations in a Python
environment and with the aid of type-hints provided by their IDE of choice.

Results

By creating Pydantify, we were able to demonstrate the feasibility of the concept and
how Model Driven Network Automation based on yang models could be improved in a
Pythonic way.

Further Work

As Pydantify is only a proof-of-concept, the functionality does not cover all aspects of
yang. Further improvements to the capability and usability of Pydantify can certainly
be made, however many of its limitations lie with its dependencies, requiring work on
external projects to fully resolve.

D. Jovicic, D. Walther iii

Table of Contents

Acknowledgements i

Abstract ii

Lay Summary iii

Listings vii

List of Figures viii

List of Tables ix

Glossary x

Acronyms xii

I Technical Report 1

1 Vision 2
1.1 Problem Statement . 2
1.2 Our Solution . 2

2 Technical Framework 3
2.1 Overview . 3

2.1.1 typedef . 4
2.1.2 leafref . 5
2.1.3 RESTCONF . 6
2.1.4 XPath . 7

2.2 Python Ecosystem Overview . 9
2.2.1 yangson . 9
2.2.2 Pyang . 9
2.2.3 PyangBind . 10
2.2.4 Pyang-Pydantic . 10
2.2.5 Pydantic . 11
2.2.6 datamodel-code-generator . 12

2.3 Pyang In-Depth . 13
2.3.1 The plugin system . 13
2.3.2 Pyang classes . 14

D. Jovicic, D. Walther iv

Pydantify TABLE OF CONTENTS

II Product Documentation 16

3 Requirements 17
3.1 Storyboard . 17
3.2 Functional Requirements . 18

3.2.1 Actors . 18
3.2.2 Validation . 18
3.2.3 Actions . 19

3.3 Non-Functional Requirements . 21

4 Architecture 24
4.1 Architecture considerations . 24

4.1.1 Pyang integration . 24
4.1.2 Necessary information to generate each pydantic class 25
4.1.3 Resolving type definitions and references 26
4.1.4 Input validation in the output model 26
4.1.5 Implications . 27

4.2 Component overview . 28
4.2.1 Input Model . 28
4.2.2 Pydantify Domain . 28
4.2.3 Output Model . 28
4.2.4 RESTCONF Payload . 29

4.3 Class Diagram . 30

5 Work done on external projects 31
5.1 Contributions to Datamodel Code Generator 31

5.1.1 Field annotation via docstrings . 31
5.1.2 Pydantic deprecation warnings fix 32

6 Results 33

7 Further Work 34
7.1 Work to be done within Pydantify . 34

7.1.1 Tests . 34
7.1.2 Instantiation of the output model . 34

7.2 Proposed work in the ecosystem . 35
7.2.1 XML-Schema Regular Expressions 35
7.2.2 Pyang . 35
7.2.3 Multi-alias support in pydantify and DMCG 35
7.2.4 Poetry and other package managers 35

III Project Documentation 37

8 Project Plan 38
8.1 Organization . 38
8.2 Project Time Plan . 38

8.2.1 Phases . 38
8.2.2 Milestones . 39

8.3 Roles . 40

D. Jovicic, D. Walther v

Pydantify TABLE OF CONTENTS

8.3.1 Advisor and Stakeholder . 40
8.3.2 Developers . 40

8.4 Meetings . 40
8.5 Planning Tools . 40

9 Risk Management 41
9.1 Risks . 41
9.2 Opportunities . 43
9.3 Realized Opportunities . 43

10 Quality Measures 44
10.1 Code Guidelines . 44
10.2 Testing . 45

10.2.1 Code Coverage . 45
10.2.2 Integration Tests . 45
10.2.3 System Tests . 45
10.2.4 Usability Tests . 46
10.2.5 CI/CD Pipeline . 46
10.2.6 Usability Test Result . 47

IV Appendix 48

A Assignment 49
A.1 Supervisor and Expert . 49
A.2 Students . 49
A.3 Introduction . 49
A.4 Goals of the Project . 50
A.5 Documentation . 50
A.6 Important Dates . 50
A.7 Evaluation . 50

B Screenshots 51
B.1 NFR Validation Screenshots . 51
B.2 Usability Test Protocols Results . 54

G Bibliography 54

D. Jovicic, D. Walther vi

Listings

2.1 yang Model Interface Common Example 4
2.2 typedef percent . 4
2.3 typedef percent usage example . 4
2.4 Simple leafref yang example . 5
2.5 Simple leafref XML example . 5
2.6 XPath must statement . 7
2.7 XPath when statement . 7
2.8 Barebones Pyang plugin . 14

D. Jovicic, D. Walther vii

List of Figures

3.1 Expected workflow of the end-user . 17
3.2 Use Cases . 18

4.1 Component overview . 28
4.2 Resulting class diagram . 30

6.1 Closing Example of a Generated Output Model 33

10.1 Model serialization during system test . 45
10.2 Sandbox configuration after restconf-patch request 46

B.1 NFR Performance Base yang . 51
B.2 NFR Performance Base yang result . 51
B.3 NFR Performance 5xBase yang . 51
B.4 NFR Performance 5xBase yang result . 51
B.5 NFR Performance 10xBase yang . 52
B.6 NFR Performance 10xBase yang result . 52
B.7 NFR Testability Code Coverage . 52
B.8 NFR Reliability Unsupported Yang Statement 53
B.9 Usability Test Form 1 . 54
B.10 Usability Test Feedback 1 . 55
B.11 Usability Test Form 2 . 56
B.12 Usability Test Form 2 . 57

D. Jovicic, D. Walther viii

List of Tables

2.1 yang node types . 3

3.1 Functional Requirement - GeneratePydanticModel 19
3.2 Functional Requirement - ModifyPydanticModel 19
3.3 Functional Requirement - InstantiatePydanticModel 20
3.4 Functional Requirement - SerializeToJSON 20
3.5 Functional Requirement - TrimYANGModel 20

9.1 Risk analysis . 42
9.2 Opportunity analysis . 43
9.3 Realized opportunity analysis . 43

D. Jovicic, D. Walther ix

Glossary

container

contains a group of related nodes. 11, 25

Flit

is a simple way to put Python packages and modules on PyPi. 35

Gantt

is a type of bar chart that illustrates a project schedule. 38

intramodel

is someting that is within a model. 26

Jinja2

is a full-featured template engine for Python. 31

JSONSchema

is a declarative language that allows you to annotate and validate JSON documents.
12, 28

kanban board

is a scheduling system for lean manufacturing. 38

leaf

represents a single value in YANG. 4

leaf-list

contains a sequence of leaf nodes. 5

library

is a collection of prewritten code that user can use to optimize tasks. 9, 24, 35, 45

netconf

The Network Configuration Protocol, defines data retrieval, upload, manipulation
and deletion of configuration data on network devices. 2, 3, 6

payload

is the data to be transmitted in networks. iii, 8, 29

D. Jovicic, D. Walther x

Pydantify Glossary

PDM

is a Python package and dependency manager. 35

Poetry

is a dependency and packaging manager. 35

Pyang

is a YANG validator, transformator and code generator, written in Python. 8–10,
13, 19, 24, 28, 35

Pyang-Pydantic

is a Pyang plugin that generates a pydantic class out of YANG modules, supporting
only basic container types and has no input validation nor default values. 10, 43

PyangBind

is a Pyang plugin, which converts a YAML schema to valid Python code that can
be edited, instantiated with data and sent to a switch. ii, 10

pydantic

is a Python library for data validation. 2, 11, 18, 25, 26, 32, 35, 45

Pytest

makes it easy to write small, readable tests, and can scale to support complex func-
tional testing for applications and libraries. 32

restconf

is a HTTP based protocol for configurig YANG data using datastore concepts from
netconf. 2, 6, 20, 24, 26, 28, 35

SNMP

Simple Network Management Protocol used to collect, organize and modify infor-
mation from network devices. 3

typedef

is a statement used to define types derived from a base type. 20, 26

usability test

is a test used to evaluate a product by testing it on users. 22, 46

yangson

is a Python 3 library offering programmers tools for working with configuration and
other data modelled with YANG. ii, 9

D. Jovicic, D. Walther xi

Acronyms

CI/CD

Continous Integration / Continous Deployment. 22, 46

CLI

Command-Line Interface. 9, 24, 31

CRUD

Create, Read, Update and Delete. 6

DMCG

Datamodel Code Generator. 12, 25, 28, 31, 32, 35

IDE

Integrated Development Environment. iii, 14, 19, 27

IETF

Internet Engineering Task Force. 2, 3

INS

Institute for Networked Solutions. 22, 46

JSON

JavaScript Object Notation. 2, 20, 24

RPC

Remote Procedure Call. 6

XML

Extensible Markup Language. 2, 5

XPath

XML Path Language. 7

yang

Yet Another Next Generation. 2, 3, 18, 24, 25, 28, 35, 39

D. Jovicic, D. Walther xii

Part I

Technical Report

Chapter 1

Vision

1.1 Problem Statement

The introduction of the netconf and restconf protocols led to the creation of a data
modeling language by the IETF to define a standard for data models, which would be
used by both protocols to get, update, and push configurations from or to network devices.
This led to the publication of yang in 2010. The data modeling language itself has similar
structures to XML or JSON and contains nested statements and references to other files,
making it difficult to understand and use. The configuration data needs to be in XML or
JSON format, depending on the protocol being used. A single yang file can contain over
a thousand lines of code, and the associated data is usually just as vast, often making it
impractical to work with the entire model at once. Therefore, the typical workflow of a
network engineer is to narrow down the chunk of data they work on by using filters in
their netconf or restconf request. After that, they can modify their chosen section
of configuration data before sending it back to the network device using the same filters
as before. However, adding to or modifying the structure of the data usually requires
consulting the yang model itself, which is significantly more tedious.

1.2 Our Solution

Our project aims to demonstrate how a yang model can be translated into a pydantic1

model as a proof-of-concept. This could be useful for network engineers who want to create
restconf payloads from scratch using their Python skills, limited yang knowledge, and
with the added help provided by type hints. The result would be generated models in
Python code that can be used to create JSON structures, which can then be used to
configure a Cisco router or switch through by means of restconf.

In summary, the primary focus of this thesis is to show that it is possible to make model-
driven network automation more Pythonic, which can be further developed in future theses
or by the public yang community.

1pydantic is a popular Python library for data validation and type hinting

D. Jovicic, D. Walther 2

Chapter 2

Technical Framework

2.1 Overview

yang (short for ”Yet Another Next Generation”) is a data modeling language that was
designed to improve upon the limitations of SNMP1 in configuration management. While
SNMP is commonly used as a network management system to detect errors on network
devices, its disadvantages sparked a need for the creation of a better protocol. In 2006, the
IETF published netconf, a standardized protocol for automating network configurations.
netconf allows for the retrieval, upload, manipulation, and deletion of configuration data.
However, netconf only defines the process of transmitting and modifying data, not the
structure of the data itself. This lead to the to the development of yang. yang makes it
easier to understand data models and is widely used in the networking industry.

yang is hierarchical, provides high extensibility and can distinguish between configurations
and status. In other words, yang complements netconf so that it is possible to define
configuration and state data, notifications and Remote Procedure Calls using netconf-
based operations.

A yangmodule defines a single data model, however, it can reference definitions from other
modules by using the import and include statements. yang, as defined in RFC6020, has
four primary node types[2] as shown in Table 2.1.

Type Description Comparable to

leaf represents a single value a variable

leaf-list contains a sequence of leaf nodes an array

container contains a group of related nodes a class

list
contains a sequence of nodes, each uniquely identified by
one or more key attributes

a database table

Table 2.1: yang node types

1Simple Network Management Protocol

D. Jovicic, D. Walther 3

Pydantify 2.1. OVERVIEW

1 grouping passive-interface-grouping {

2 container passive-interface {

3 description

4 "Suppress routing updates on an interface";

5 choice passive-interface-choice {

6 leaf default {

7 description

8 "Suppress routing updates on all interfaces";

9 type empty;

10 }

11 leaf-list interface {

12 type string;

13 }

14 }

15 }

16 container disable {

17 when ’../ passive-interface/default ’;

18 list passive-interface {

19 key "interface";

20 leaf interface {

21 type string;

22 }

23 }

24 }

25 }

Listing 2.1: yang Model Interface Common Example

2.1.1 typedef

By using the typedef statement, one can define types derived from a base type. This base
type can either be a built-in type, such as string or uint8, or an already derived type.
This allows for a basic form of inheritance between types, where the root type is always a
built-in type.

For example, a type called percent can be defined, which is derived from the base type
uint8 and has its value restricted to between 0 and 100, as seen in Listing 2.2.

1 typedef percent {

2 type uint8 {

3 range "0 .. 100";

4 }

5 }

Listing 2.2: typedef percent

Such a type can then be referenced by other statements, such as leafs. In Listing 2.3, the
completion leaf can be thought of as a variable of type percent[2].

1 leaf completion {

2 type percent;

3 }

Listing 2.3: typedef percent usage example

D. Jovicic, D. Walther 4

Pydantify 2.1. OVERVIEW

2.1.2 leafref

The leafref type is a little bit more complicated to understand than the other types.

The leafref type is used to reference other leaf instances in the tree via its ”path” sub-
statement. The ”path” statement takes a string as an argument and must refer to an
existing leaf or a leaf-list node, dangling references are not allowed.[2]

1 list interface {

2 key "name";

3 leaf name {

4 type string;

5 }

6 leaf admin-status {

7 type admin-status;

8 }

9 list address {

10 key "ip";

11 leaf ip {

12 type yang:ip-address;

13 }

14 }

15 }

16

17 leaf mgmt-interface {

18 type leafref {

19 path "../ interface/name";

20 }

21 }

Listing 2.4: Simple leafref yang example

In Listing 2.4, we can see that the leafref refers to the path "../interface/name", mean-
ing that the leaf it is referring to can be found by leaving the scope of the current node,
navigating into the ”interface” list and finally locating the node called ”name”. A corre-
sponding XML is shown in Listing 2.5.

1 <interface >

2 <name>eth0</name>

3 </interface >

4 <interface >

5 <name>lo</name>

6 </interface >

7

8 <mgmt -interface >eth0</mgmt -interface >

Listing 2.5: Simple leafref XML example

D. Jovicic, D. Walther 5

Pydantify 2.1. OVERVIEW

2.1.3 RESTCONF

In section 2.1 Overview, we took a short excursion into the history of the creation of
netconf and yang, but there is one more component to it - the restconf protocol.
restconf is a protocol based on HTTP that provides an interface to access data defined
in yang, while using the data store concepts of netconf.

The goal of both yang, netconf and restconf is to facilitate the automation of network
configurations. While netconf is based on RPCs2, something many companies would
need to re-train their IT-Engineers for in order to use, restconf uses HTTP-based REST-
ful APIs, which are much more ubiquitous in the industry.

restconf tends to be easier to work with for simple CRUD operations when compared
to netconf, and its ability to work with both XML and JSON data makes it a bit more
flexible to integrate with other software, such as in our case.

All in all, restconf is an easy way for applications to access configuration and state data,
data-model-specific RPC operations, and event notifications.

The operations provided by restconf are defined in RFC 8040 and can be summarized
thusly[1]:

• OPTIONS

• Is sent to discover which methods (options) are supported by the opposing side
for a specified resource

• GET

• Is sent to retrieve data and metadata of a specified resource

• HEAD

• Is sent to retrieve just the header fields from a specified resource

• POST

• Is sent by the client to create a data resource or invoke a Remote Procedure
Call

• PUT

• Is sent to create or replace the data of a specified resource

• PATCH

• Is used to provide an extensible framework for resource patching mechanisms
and can be used to create or modify a child resource within the specified resource

• DELETE

• Is used to delete the specified resource

2Remote Procedure Call

D. Jovicic, D. Walther 6

Pydantify 2.1. OVERVIEW

2.1.4 XPath

XML Path Language, or XPath for short, was designed to support the query of XML
structures. The simplest form an XPath statement can take would be a complete and
internal path, such as interfaces/ip, which selects a child node called ip located in a node
called interfaces. There are many, much more complex queries that can be performed
through XPath, an introduction to which can be found on the W3Schools website.

In yang, XPath is used in for referencing other nodes or to specify restrictions on them.
Here are a few examples of where XPath finds application in yang:

Must Statements are used to constraint nodes, in Listing 2.6 we want to make sure that
the value of count is exactly 10.

1 container interface {

2 must "count = 10";

3 leaf count {

4 type uint8

5 }

6 }

Listing 2.6: XPath must statement

If/When Statements are used to make instances of yang conditional. The when state-
ments can change at run-time, whereas if statements are set on boot-time. Listing 2.7
describes a leaf called ”name”, which is only present in the data if the value of percent
is below 50.

1 container test {

2 leaf percent {

3 type uint8

4 }

5 leaf name {

6 when "../ percent < 50";

7 type string

8 }

9 }

Listing 2.7: XPath when statement

Path Statements, as described in subsection 2.1.2 leafref, are the most common appli-
cation of XPath within yang. They are essential for the functioning of leafrefs as they
specify which yang node is being referenced. They can also be used to add additional
restrictions on the properties the node to be referenced must have, allowing them to be
used as a form of foreign key constraint.

XPath in Pydantify

All in all, XPath is a powerful feature, but making use of it is not a trivial affair. For
instance the path statements can only be checked as the model is being instantiated with
data, meaning that the validity of the input can only be tested after Pydantify has already
completed its task of generating a pydantic output model.

In addition, queries like if and when can alter which components are included in the model
dynamically based on input values. To fully reproduce this behaviour in the output model

D. Jovicic, D. Walther 7

https://www.w3schools.com/xml/xpath_intro.asp

Pydantify 2.1. OVERVIEW

would require the output model to be self-modifying, adding a layer of meta-programming
which would easily exceed the scope of our project.

It would however be possible to validate the input after the instantiation of the output
model by having Pyang check the generated restconf payload against the yang model.
This would allows the the configuration data to be validated fully, without having to
implement the validation ourselves. The only downside being that the yang files have to
be preserved alongside the output model in order to provide this functionality.

D. Jovicic, D. Walther 8

Pydantify 2.2. PYTHON ECOSYSTEM OVERVIEW

2.2 Python Ecosystem Overview

2.2.1 yangson

Yangson is a Python 3 library that offers programmers tools for working with configuration
and other data modelled with the yang data modelling language.[8] The documentation
places great emphasis on the ability to modify yang models directly from within Python
which, while being a valuable feature, does not directly align with the goals of Pydantify
(although it would likely offer what is required). It is still being actively maintained,
however it does not appear to be as widely used as other projects in this chapter.

After sampling the project’s repository to get a sense of the code quality we rather quickly
decided to not use this project as the base for Pydantify. While it is based on Python3.6
and makes good use of type annotations and docstrings, the quality of the code itself does
not inspire a lot of confidence. The code is littered throughout with string operations and
inconsistent uses of exceptions and return values.

A commented-out unit test with the note ”Commented out because it fails.”[7] ultimately
settled the matter.

2.2.2 Pyang

Pyang describes itself as ”a yang validator, transformator and code generator, written in
Python”. It is capable of translating yang modules between various formats including
yang, YIN, DSDL, jsTree, among others. The library is extensible through plugins, most
notably PyangBind and Pyang-Pydantic.

Being widely used in the industry while having released version 1.0 over 12 years ago
should indicate that it is a fairly reliable tool. However, being that old comes at a cost:
it maintains backwards compatibility all the way to Python 2.7. It does so by using only
the subset of Python instructions valid in both Python 2.7 and 3.6, occasionally using
branching code paths where necessary. It therefore comes with no type hints, f-strings,
list comprehensions, match-case statements or any number of other features that have
improved the legibility of Python code since the Python 2.7 release.

Usage

Pyang is primarily designed to be used as a CLI tool, but it does offer a few additional
options: There are other options however:

• Using Pyang as an intermediate translation step

• pro: this would expand our tool options. For example YIN (which is effectively
XML) can be interpreted by off-the-shelve Python libraries, making it easier
for us to parse.

• pro: we would not need to concern ourselves with any of the Pyang internals.

• con: on its own, this would require any yang to pydantic conversion to be done
in multiple steps (Eg. translating yang to YIN using Pyang, then generating
a pydantic model from said YIN output).

• Using Pyang as a library

D. Jovicic, D. Walther 9

Pydantify 2.2. PYTHON ECOSYSTEM OVERVIEW

• pro: models could be used directly upon loading, without translating them to
another format first. This could eliminate the need for an additional depen-
dency in the chain.

• con: as this is not the primary intended use-case, there is no intended interface
for us to use, leading to increased coupling as we would need to access the
library’s internals directly.

• Extending Pyang with a plugin of our own

• pro: it’s the intended interface by which to add functionality to Pyang, giving
us greater guarantees that the components we would rely on will stay the same.

• con: implemented this way, our project would effectively be a pure translator,
running only when the user requires a model to be converted from one format
to another. This would limit our ability to add functionality designed to aid
the user after the initial conversion. For example, if the user intends to modify
the pydantic schema we would likely not be able to offer any editing tools (Eg.
pruning a branch of the model-tree would have to be done manually by the
user). Any mistakes by the user would only be noticeable when attempting to
convert the pydantic model back to a yang module, requiring a trial-and-error
approach.

• additional complication: neither of us has prior experience writing exten-
sions for third-party software, leading to more uncertainty in our estimates for
potential risks and challenges.

2.2.3 PyangBind

PyangBind is a Pyang plugin which, at least in theory, should be exactly what we need.
It purports to convert a YAML schema to valid Python code that can then be edited,
instantiated with data and sent to a switch. There are however several factors that do not
inspire confidence in the project.

• As of September 2022, PyangBind has not received any new commits on any publicly
available branch since August 2018 despite 82 unresolved issues, leading us to believe
that the project has been abandoned by the author.

• The aforementioned unresolved issues generally revolve around serialization and de-
serialization issues, making it a questionable option for critical work.

• The quality of the code leaves a lot to be desired. The issues range from ”un-Pythonic
code” to severe structural problems.

For these reasons and for the time investment necessary to address them, we have opted
not to pursue this plugin any further and consider it an option of last resort.

2.2.4 Pyang-Pydantic

As mentioned in section 9.3 Realized Opportunities, Pyang-Pydantic saw its first public
commit in the first week of this project and while it has not nearly as many features as
PyangBind, what it does have is much more concise and clean in terms of its implemen-
tation.

D. Jovicic, D. Walther 10

Pydantify 2.2. PYTHON ECOSYSTEM OVERVIEW

Currently, it functions as a Pyang plugin that simply receives a set of interpreted yang
modules, recursively iterates through their tree-structure and generates a pydantic class
for each yang type it encounters, then prints it to the output. It only directly supports
the basic container types and it adds neither input validation nor default values.

So while it does not satisfy the full scope of our project it would be a great starting-off
point for us, as we could start expanding upon its functionality without delays caused by
having to refactor anything.

2.2.5 Pydantic

Pydantic is a data validation library for Python with some very appealing features:

• It can do runtime type-checking of arguments when instantiating classes or assigning
to one of its member fields

• It allows even complex class structures with inheritance and compositions to be
instantiated with a JSON-like dictionary

• It can serialize the content of a class to JSON, provided it consists only of python-
native types or if custom serialization functions are provided for non-native types

• It can serialize and de-serialize a class structure, allowing it to be stored or sent as
JSON

• It can do automatic type-casting and conversion between native types, allowing it
to inter-operate with applications written in untyped languages, such as JavaScript

• Despite relying heavily on generic and dynamically generated classes, it provides a
lot of type-hinting information to the IDE, making it easy to work with

These features are provided through a series of classes any developer should be familiar
with when using pydantic for their project. The rest of this subsection aims to provide an
overview of said classes and their purpose.

BaseModel

The BaseModel class lies at the heart of every pydantic project. It is the base class each
class needs to inherit from, if it wants to make use of the aforementioned pydantic features
and become a Pydantic Model.

When a class inherits from BaseModel, it fundamentally changes how the class works. For
instance, member fields are no longer declared in the __init__() method, instead needing
to be declared directly in the class body like conventional static members. Type annotation
also plays a crucial role, as pydantic tries to convert any input given during construction
to the annotated type - if no type is provided or the provided type is unknown to pydantic
(meaning it does not inherit from BaseModel, nor provide its own validator), an exception
is raised by default. Additionally, such a class can automatically be instantiated from a
dictionary of its fields, even without declaring an __init__() method explicitly.

The integration with Python’s dictionary type does not end there however. Any class in-
heriting from BaseModel can be serialized to a schema-dictionary via the .schema()method.
Any properties pertaining to the data of the class are preserved in said schema, such as
field types, names, defaults and value constraints in a way that is compatible with JSON

D. Jovicic, D. Walther 11

Pydantify 2.2. PYTHON ECOSYSTEM OVERVIEW

Schema Core and OpenAPI. Other class attributes such as methods, however, are not
included, which is relevant when used in combination with the Datamodel Code Generator
(DMCG).

Config

Defining a Config class within a model adds the option of modifying model-wide settings.
Some of the most widely used settings include[4]:

• allow_mutation: whether __setattr__() is allowed

• arbitrary_types_allowed: whether to allow arbitrary user types for fields (validation
simply consists of checking if the type matches when enabled)

• extra: whether to ignore, allow, or forbid extra attributes during initialization

• underscore_attrs_are_private: whether to treat any underscore fields as private, or
leave them as is

• validate_assignment: whether to perform validation on assignment to attributes

Type Annotation and Validation

Input validation in pydantic is primarily declared via type-annotation. Pydantic’s valida-
tion supports numerous types and therefore will be summarized aggressively here.3

• Most native Python types are supported, including but not limited to: bool, int,
str, bytes, list, dict and tuple.

• Various types of enum are supported.

• Various types found in the ipaddress library are supported for IP validation.

• Most types provided by the typing library are supported, including Optional, Union,
Sequence, Type, Callable, Pattern and Annotated.

• Pydantic offers several additional constrained types, such as stricturl, PositiveFloat
, conint and constr. Most of these are built upon other types, with additional
customizable restrictions.

• If the supported types are not sufficient, custom ones can be added by creating
classes that provide their own validators via a __get_validators__() method, even
if they do not inherit from BaseModel.

2.2.6 datamodel-code-generator

Datamodel-code-generator (or DMCG for short) is a project which aims to translate
data models written in either the ApenAPI 3 or JSONSchema format into Python class
structures based on pydantic. While it is primarily designed as a CLI tool, it can easily
be used as a library and integrated into other projects (though the lack of documentation
surrounding this use-case requires some reverse-engineering).

Some notable features include:

3A complete list of supported types can be found at https://pydantic-docs.helpmanual.io/usage/types/

D. Jovicic, D. Walther 12

Pydantify 2.3. PYANG IN-DEPTH

• automatic generation of import statements based on the types and methods present
in the schema being translated

• support for annotating classes via Python docstrings for ease of use within IDEs

• ability to re-use and reference other classes within the schema (meaning two classes
containing a field of the same type do not lead to said type appearing twice in the
output model)

• ability to rename classes and fields in order to not cause syntax errors, while still
allowing initialization by the original name through pydantic’s alias attribute

As of September 2022, datamodel-code-generator only supports pydantic V1, however the
developer has been made aware of the impending V2 update in issue #803.

Additionally, the DMCG supports annotating classes with docstrings based on the de-
scription field of a class via the use_schema_description flag, however, there currently is
no such option for member fields of classes. This leads to field descriptions only being
visible in the field annotation, rendering them invisible to any IDE. The lack of such a
feature has already been raised in issue #857 [3] and its implementation would greatly
improve the usability of Pydantify.4

2.3 Pyang In-Depth

In this chapter, we will cover the Pyang project in more detail, specifically the parts
relevant to our project. It is by no means a comprehensive review, but it should serve as
a crash-course for anyone improving upon or maintaining our project.

2.3.1 The plugin system

Pyang can be extended at runtime through a fairly typical plugin interface. The pyang

console-command supports a --plugindir="<path>" flag that, if present, prompts Pyang
to look for additional plugins situated at the given path and import them through the
importlib library.

For Pyang to recognise a Python script as a valid plugin, it needs to contain a pyang_plugin_init
() function. This function will be called by Pyang once it is ready to initialize plugins
and must in turn call register_plugin() with an instance of a class which inherits from
PyangPlugin as its argument. Said class must:

• Call the super-class’ constructor with its own name as the argument.

• Implement add_output_format(self, fmts) to associate the plugin with a given out-
put file format.

• Implement emit(self, ctx, modules, fd), which gets called after Pyang has parsed
a yang model if the user requests the output to be in the associated format.

The Listing 2.8 Barebones Pyang plugin shows a Pyang plugin with no additional func-
tionality.

4This feature has since been implemented as part of the project. See subsection 5.1.1 Field annotation
via docstrings.

D. Jovicic, D. Walther 13

https://pypi.org/project/importlib/

Pydantify 2.3. PYANG IN-DEPTH

1 from pyang.plugin import PyangPlugin , register_plugin

2 from pyang.statements import ModSubmodStatement

3 from pyang.context import Context

4 from typing import List , Dict

5

6

7 def pyang_plugin_init ():

8 register_plugin(MyPlugin ())

9

10

11 class MyPlugin(PyangPlugin):

12 def __init__(self):

13 # Pass on the name of the plugin

14 super ().__init__(name="my -plugin -name")

15

16 def add_output_format(self , fmts: Dict[str , PyangPlugin]):

17 # Register self as the plugin in charge of "my -format" inputs

18 fmts["my-format"] = self

19

20 def emit(self , ctx: Context , modules: List[ModSubmodStatement], fd):

21 # Main functionality goes here.

22 # Once converted , write the output to the "fd" file -descriptor.

23 pass

Listing 2.8: Barebones Pyang plugin

This approach works quite well, but it does come with a slight disadvantage, namely that
the plugins folder can not contain any non-plugin files in order to avoid Pyang logging it as
an error. This has slight implications on the project’s structure, as it requires a separate
folder just for the plugin’s entry-point.

2.3.2 Pyang classes

Statements

Statements represent most of the common yang keywords such as module, list, leaf,
container, type, etc. These are effectively the nodes in the yang tree structure and are
all derived from a common Statement class, often with very few additions.

Statement instances make heavy use of Python __slots__, which is effectively a whitelist
of field names that are allowed within the instance. This means that, unlike conventional
classes, arbitrary fields cannot be added to an instance at runtime. Additionally, the
way these __slots__ are used in Pyang leads to many of the fields being declared but
not initialized, causing exceptions to be raised when accessed, even by an IDE. This,
combined with yang’s heavy use of optional substatements can lead to situations in which
the majority of a Statement’s fields are undefined. Direct access to fields therefore needs
careful consideration.

The Statement class also offers most of the functionality required for tree traversal, includ-
ing search() and search_one() to locate the statement’s children and substatements by
either their keyword or arg values along with main_module(), used to find the root module
of the tree. To simplify navigation even further, each Statement contains a reference to
its parent. For debugging and logging purposes, each Statement also contains a pos field,
referencing the file and line number from which it was parsed - a welcome addition when
working on cross-referential models split up across several files.

D. Jovicic, D. Walther 14

Pydantify 2.3. PYANG IN-DEPTH

TypeSpecs

TypeSpec and its derived classes hold information about the underlying type of a node.
They contain the base type (for example an integer, float or string) and the restrictions the
value must adhere to to be considered valid. These restrictions typically consist of value
ranges, length restrictions, regular expressions (called ”patterns”) or pre-defined values
(called ”enums”).

These classes also contain a validate() function which, as the name implies, validates
whether a given value matches the restrictions imposed on the type. Unfortunately for
Pydantify, these functions are tightly coupled to the Pyang project and cannot be easily
repurposed for input validation in the output model.

D. Jovicic, D. Walther 15

Part II

Product Documentation

Chapter 3

Requirements

3.1 Storyboard

Figure 3.1: Expected workflow of the end-user

One of the potential issues that stands out in Figure 3.1 is the large number of user
interactions. This emphasises the need for intuitive and well documented interactions
between the user and Pydantify, especially at the main point of contact, namely inside
the output model.

D. Jovicic, D. Walther 17

Pydantify 3.2. FUNCTIONAL REQUIREMENTS

3.2 Functional Requirements

Figure 3.2: Use Cases

3.2.1 Actors

The sole actor in our system is the network engineer, who will fetch a yang module, then
generate and modify a corresponding pydantic model. The pydantic model can finally be
instantiated with configuration values and sent to a network device.

3.2.2 Validation

The validation of the functional requirements was done in terms of the System Tests.

D. Jovicic, D. Walther 18

Pydantify 3.2. FUNCTIONAL REQUIREMENTS

3.2.3 Actions

GeneratePydanticModel

Actor Network Engineer

Success Scenario

The network engineer wants to generate a pydantic model from a
yang model. He can do so by running a command-line command.
The command prompts a custom Pyang plugin to generate a
pydantic model representing the yang model.

Validation Result

An OpenConfig yang model was downloaded and subsequently
passed to Pydantify through the command
pydantify openconfig-interfaces.yang. This resulted in the
successful generation of a valid output model. Generating pydantic
models from yang 1.1 models is currently not fully supported by
Pydantify due to issues within the Pyang dependency.

Table 3.1: Functional Requirement - GeneratePydanticModel

ModifyPydanticModel

Actor Network Engineer

Success Scenario
The network engineer wants to modify the generated pydantic model.
He can do so manually in an IDE of his choice.

Validation Result
After the generation of the pydantic model, it was possible to modify
the generated model within Visual Studio Code. We specifically
tested modifying docstrings, patterns and integer ranges.

Table 3.2: Functional Requirement - ModifyPydanticModel

D. Jovicic, D. Walther 19

Pydantify 3.2. FUNCTIONAL REQUIREMENTS

InstantiatePydanticModel

Actor Network Engineer

Success Scenario

The network engineer wants to instantiate the pydantic model with
configuration values. He can do so by fetching the network device’s
configuration in JSON form through a restconf request. He can
then pass the configuration to the constructor of the pydantic model
to create an instance.

Validation Result

Instantiating a pydantic model with configuration values was possible
to do by inserting the values by hand. Instantiating a pydantic model
by fetching the network device’s configuration in JSON form through
a restconf request was not possible, as our solution exclusively
uses qualified names (e.g. "openconfig-interfaces:interfaces"),
whereas restconf replies only use qualified names under certain
conditions, which causes a name mismatch. (See subsection 4.1.2
Necessary information to generate each pydantic class)
This requirement has therefore only been partly met.

Table 3.3: Functional Requirement - InstantiatePydanticModel

SerializeToJSON

Actor Network Engineer

Success Scenario
The network engineer wants to serialize the pydantic model to valid
JSON, so that it can be sent to a network device via restconf. He
can do so by calling .json() on an instance of the pydantic model.

Validation Result

We can call .json(alias=True) on an instance of the Model class in
the pydantic model. This serializes its contents to a valid JSON
payload which can be used to configure a network device over
restconf.

Table 3.4: Functional Requirement - SerializeToJSON

TrimYANGModel

Actor Network Engineer

Success Scenario

The network engineer wants to work only with one branch of the
yang model tree. He can do so by passing a command-line argument
containing a yang-model-internal path to the node of the tree he
wants included. The plugin then filters the model, ignoring the nodes
leading up to the selected node unless they are relevant to the branch
(eg. typedefs).

Validation Result

By using the command argument -t/-trim (e.g.
"pydantify -t openconfig-interfaces/interfaces/interface/

config openconfig-interfaces.yang"), it was possible to only
include the config node and its children in the output model.

Table 3.5: Functional Requirement - TrimYANGModel

D. Jovicic, D. Walther 20

Pydantify 3.3. NON-FUNCTIONAL REQUIREMENTS

3.3 Non-Functional Requirements

The process of validating the Non-Functional Requirements will be done by Dejan Jovicic,
following called ”The Validator”. Screenshots of the validations can be seen in section B.1
NFR Validation Screenshots.

Portability

• The project SHOULD be able to run on both Linux and Windows.

• Validation process:

Try to run Pydantify on both Operating Systems.

• Validation results:

Pydantify was installed and ran on both Operating Systems without any issues.

• The project SHOULD be installable via a single command, provided the
appropriate Python version is pre-installed.

• Validation process:

The Validator will try to install Pydantify with the command pip install ’

path’

• Validation results:

It was possible to install Pydantify with pip install . if the project was down-
loaded prior to your computer. Another possibility is to download and install it
directly from gitlab with the command pip install git+https://gitlab.ost.

ch/pydantic-sa/pydantify

Performance

• After the YANG model is parsed, generating a pydantic model from it
MUST take no longer than 5 minutes.

• Validation process:

A YANG model with a length of 150 lines (approximately the average YANG
file to be used) will be used by the Validator to generate pydantic models to
check if it will take longer than 5 minutes.

• Validation results:

A YANG model with a length of approximately 150 lines of node statements
was used and the time needed to generate the pydantic model out of the YANG
model was 0.121 seconds.

• After the YANG model is parsed, generating a pydantic model from it
MUST scale sub-exponentially with the size of the inputted model.

• Validation process:

The Validator will use three different YANG models with the size of ”Base”,
”5xBase” and ”10xBase”, meaning that the ”Base” will be our standard model
size, which will then be multiplied by 5 and 10.

D. Jovicic, D. Walther 21

Pydantify 3.3. NON-FUNCTIONAL REQUIREMENTS

• Validation results:

The result with ”Base” was 0.121 seconds as mentioned before in Performance.
The results for ”Base”, ”5xBase” and ”10xBase” were as follows:

• Base: 0.121 seconds

• 5xBase: 0.470 seconds

• 10xBase: 0.904 seconds

We can read from the results that the performance of Pydantify is scaling
sub-linear and therefore fulfills the requirement to scale sub-exponentially.

Maintainability

• The plugin SHOULD be easily adaptable to pydantic 2.0.

• Validation process:

No validation possible, as pydantic v2.0 has not been released yet at this point.
Planned to be released in 2023.

Usability

• A network engineer SHOULD be able to realize in less than 5 minutes
whether this plugin meets his needs.

• Validation process:

At the end of the project, the Validator will do a usability test with selected
network engineers from the Institute for Networked Solutions (INS), the results
will determine if this NFR is passed or not.

• Validation results:

The results of the Usability Test can be seen in subsection 10.2.6 Usability Test
Result.

Testability

• The project SHOULD contain tests covering all supported YANG node
types.

• Validation process:

The test coverage should be higher than 90%.

• Validation results:

On Gitlab we can see in the Continous Integration / Continous Deployment
(CI/CD) of the project the stage ”run pytests” is run, which runs a code
coverage report from which we can read the code coverage percentage, which is
currently at 94.95% .

D. Jovicic, D. Walther 22

Pydantify 3.3. NON-FUNCTIONAL REQUIREMENTS

Reliability

• The plugin MUST raise an exception when a YANG statement is en-
countered it does not recognise.

• Validation process:

The Validator will try to generate a pydantic model out of a YANG model
which has an unsupported YANG statement, an exception is expected.

• Validation results:

Tried to generate a pydantic model out of a YANG model with an unsupported
statement, an exception was raised.

• The generated pydantic model SHOULD be complete if no exception was
raised.

• Validation process:

The Validator will try to generate a pydantic model out of a YANG model and
afterwards try to push the generated JSON file to a switch via RESTCONF.

• Validation results:

The generation of a pydantic model out of a YANG model and then sending it
to a switch via RESTCONF worked without any issues.

D. Jovicic, D. Walther 23

Chapter 4

Architecture

4.1 Architecture considerations

The architecture of our project was arrived at by attempting to address several questions
regarding the generation process.

• How can Pyang (primarily a CLI tool) be integrated into the project?

• Which pieces of information need to be gathered to generate an output class?

• What constraints does the restconf JSON structure impose on the structure of
the output model?

• Given that a yang statement can reference a definition located somewhere else in
the model, how can we resolve said definition without parsing it multiple times?

• To what extent can input validation be done by the output model?

The rest of this section aims to answer the questions posed above and list the constraints
those answers pose for the architecture of our project.

4.1.1 Pyang integration

As explained in subsection 2.2.2 Pyang, Pyang is designed to be a stand-alone tool and
is not primarily intended to be used as a library. Additionally, being a legacy codebase
compatible with both python 2.7 and 3, a large part of it is implemented in a non-standard
way. A key area of concern regarding the integration into Pydantify is the installation
process. Unlike more modern Python projects where installation is done via a ”.toml” file
in conjunction with a package manager, it is instead installed via a ”setup.py” script. The
issue is, that as part of the process, the Python based start-up script is moved from the
project’s ”bin” directory to a scripts folder, with the unfortunate side-effect of rendering
the start-up file non-importable by other projects.

D. Jovicic, D. Walther 24

Pydantify 4.1. ARCHITECTURE CONSIDERATIONS

4.1.2 Necessary information to generate each pydantic class

When the pydantic model is to be generated, the following information needs to be avail-
able for each and every class in the output model:

• Class name

• Base class to derive from

• The class’ doc-string, if present

• The Config to use

• The Class’ member fields

Class Name

Can be generated by taking the arg field of the original model and appending to it the
type it originates from. Eg. a node of type container called "interface" results in a class
called InterfaceContainer. In case the combination of arg value and type is not unique in
the model, it needs to be made unique in some other way, otherwise the DMCG cannot
distinguish these and will fall back to only ever referencing the first occurrence.

Base Class

Depending on the yang type being represented, the following options present them-
selves:

• The yang type being represented is a container

• The base class can be pydantic’s own BaseModel.

• The yang type being represented is a list

• A class representing a member of the list is created based on BaseModel. The list
itself gets created by annotating the field holding it with List[<member-type>],
without the need for a class of its own.

• The yang type being represented is a primitive

• The base class can be derived from pydantic’s own template-types, such as
constr, conint and condate.

Class Doc-string

A class’ doc-string can be generated from the node’s description field, if present.

Config

As explained in section 2.2.5 Config, the Config class provides settings relevant to the
creation process of pydantic models and is not included in the output model. For our
purposes, the same Config class can be used for all classes as the settings are independent
of the input model.

D. Jovicic, D. Walther 25

Pydantify 4.1. ARCHITECTURE CONSIDERATIONS

Class Members

Class members are added to the model via a dictionary which takes the form of Dict[<
name>, <type-info>], where the name corresponds to the yang statement’s sanitized arg

field. type-info, on the other hand, has the following signature:

Annotated[<type>, Field(<default>, alias=<alias>)]

This requires additional information to be gathered before model creation:

• <type>: a reference to the class of the field. Any input validation is performed by
said class.

• <default>: the value provided by the yang default statement.

• <alias>: the name to be used for the field during serialization to JSON

The alias is required due to the name of the field needing to be sanitized in the output
model for Python to recognise it as a valid identifier, whereas restconf expects the
original, unmodified name.

4.1.3 Resolving type definitions and references

yang models can contain intramodel references both to make use of custom type def-
initions and to create references between different nodes via leafref. The statements
being referenced can be located virtually anywhere in the model, meaning that common
tree traversals such as preorder and postorder may encounter nodes with references to
previously not encountered statements. Additionally, such references may contain other
references as long as no circular references arise.

In order to avoid duplicate classes in the output model, it is important that each statement
in the input model gets interpreted at most once (even if referenced multiple times),
resulting in a single object representing it. This in turn requires the ability to keep track
of already encountered statements and referencing the generated output instance directly
if encountered again, without parsing it again.

4.1.4 Input validation in the output model

As explained in subsection 2.1.1 typedef, typedef statements allow only a handful of
basic types, namely strings and various kinds of numbers. During instantiation of the
output model, pydantic automatically coerces a value to the type dictated by the field it’s
being assigned to, raising an exception if the conversion cannot be done. Additionally,
pydantic V2 plans to add a ”strict” mode, disabling the automatic conversion in favour
of dictating the required type to be given by the user.[5] Basic type validation is therefore
covered automatically by pydantic, provided the expected type is annotated correctly in
the output model.

Restrictions on the value of a node however are not as trivial. yang allows for nested
typedefs, where each layer imposes additional restrictions on the underlying type. The
valid input range for a given type therefore consists of all the values that fit the cumulative
sum of all its restrictions. Pydantic’s con-types (such as conint and condecimal) provide
most of the building-blocks needed to implement yang’s full spectrum of restrictions, but it
is much more basic in its implementation. For example, a yang integer can be restricted to
be within the ranges "0..1 | 5..10 | 20..max", all in a single statement, whereas pydantic’s

D. Jovicic, D. Walther 26

Pydantify 4.1. ARCHITECTURE CONSIDERATIONS

conint can only be restricted to be between two values at most. Similarly, string-based
types can have multiple regex checks imposed on them, whereas Pydantic’s constr only
allows a single one. In addition, yang uses the xmlschema regex spec[6], which is not
entirely covered by Python’s regex implementation.

4.1.5 Implications

Pyang integration: Due to the legacy status of the codebase and the inability to import
the startup file, only two options remain: running Pyang as a console-command from
inside Pydantify or copying the startup script into the project as-is, effectively adding a
wrapper around Pyang’s main function.

The first option comes with a major downside that makes it unattractive, namely de-
buggability. Pydantify would need to execute Pyang via a console-command, which in
turn imports the project as a plugin and executes it. Any exceptions raised within Pyang
would result in an early exit with errors; the IDE would only be able to report that the
console-command could not be executed successfully, with no further insights.

Copying the startup script into the project is also undesirable as it requires any future
changes to the script in Pyang to be ported to its now detached sibling. In terms of
maintainability and code cleanliness however, it is the lesser of two evils.

Necessary information to generate each pydantic class: Since nodes are primarily
defined by the statements they contain, these sub-statements have to be visited before the
current node can be fully initialized. This necessitates a post-order traversal of the input
model.

The possibility of identically named nodes in the input model requires a mechanism to
make the class names in the output model uniquely identifiable. To facilitate this, class
names can be enumerated sequentially if they are not otherwise unique.

Resolving type definitions and references: When a reference is encountered to a
statement that has not been visited yet, the post-order traversal has to be temporarily
abandoned to resolve the statement being referenced. If the reference instead points to an
already visited statement, the resulting output class should be re-used, which necessitates
keeping track of all visited statements and their corresponding output classes.

Input validation in the output model: Validating or coercing the type of an input
value during initialization can be done rather easily by finding the root type and mapping
it to a type known to pydantic.

Layered regular expressions can be implemented by turning each pattern into a lookahead-
check, concatenating them and capturing everything if all checks pass.[10] Unfortunately,
the issue regarding yang using a different regex spec remains and is outlined in more
detail in chapter 7 Further Work.

When it comes to validating the value range of numbers however, currently only basic
sanity checks are possible without implementing custom validators, as ”or” logic would be
needed to properly validate disjointed value ranges.

D. Jovicic, D. Walther 27

Pydantify 4.2. COMPONENT OVERVIEW

4.2 Component overview

Figure 4.1: Component overview

As seen in the picture above, there are four core components to the project. These are,
from left to right: the input model, the ”Pydantify domain”, the output model, and the
restconf payload.

4.2.1 Input Model

The input model, consisting of a main yang file and its dependencies (if any), is passed
to Pydantify through file paths.

4.2.2 Pydantify Domain

Pydantify itself consists of three components: the Pydantify plugin, Pyang andDMCG.

• The Pydantify plugin first parses the user’s input, then runs Pyang. It later trans-
lates what it receives back from Pyang into a JSONSchema model and passes it on
to the DMCG.

• Pyang is in charge of parsing the input model into a data structure. This structure
is passed on to Pydantify when done.

• DMCG transforms the JSONSchema model into the Python code which constitutes
the output model.

4.2.3 Output Model

The output model consists of an executable Python file. Said file contains a class structure
which can be initialized with values by the user and then converted to a restconf payload
via a built-in function. Utility functions and tips on how to use the model can be included
at the end of the file at the user’s request.

D. Jovicic, D. Walther 28

Pydantify 4.2. COMPONENT OVERVIEW

4.2.4 RESTCONF Payload

The restconf payload is the final product in the chain. It contains the configuration
data set by the user in a format compatible with the input model. This payload can be
copied from the terminal when the model is run or sent directly to a network device via
the requests library, a code snippet for which is included in the output model to make
the process as easy as possible.

D. Jovicic, D. Walther 29

P
y
d
a
n
tify

4.3.
C
L
A
S
S
D
IA

G
R
A
M

4.3 Class Diagram

Figure 4.2: Resulting class diagram

Note for future developers: Because class diagrams tend to go out of date rather quickly, the Pydantify project contains a convenience-
command in order to quickly generate a new one directly from the source-code. By running pdm run class_diagram in the root folder of the
source repository, a new diagram can be generated automatically. While it is not as well formatted as in Figure 4.2, it does come with the
guarantee of being up-to-date.

D
.
J
ov

icic,
D
.
W
alth

er
30

Chapter 5

Work done on external projects

As part of the project, some contributions were made to the projects Pydantify depends
on. This chapter aims to document these contributions.

5.1 Contributions to Datamodel Code Generator

5.1.1 Field annotation via docstrings

As outlined in subsection 2.2.6 datamodel-code-generator, the DMCG did not support
annotating class fields via docstrings. We therefore opted to implement this feature our-
selves.

We tried to align our addition as close as possible to the existing code, drawing heavy
inspiration from the use_schema_description feature. Our implementation consists of a
series of distinct steps:

• Parsing the --use-field-description CLI flag

• Relaying the state of the flag to the relevant section of code

• Generating a docstring through a property when requested and when the flag is set

• Removing the description from the field annotation when the flag is set

• Printing the docstring to the output file through Jinja2 when a docstring is present

In addition to the above, a unit test was added to not negatively impact the existing code
coverage score of the project. This contribution resulted in merge-request#918[13], which
was merged into the master branch without alterations on the 17th of November, officially
releasing as part of the 0.14.0 update.

We also contributed a more general fix for DMCG’s docstrings, as the indentation of
docstrings which span more than a single line was not done correctly, leading to issues
with how they got rendered inside the IDE. Our solution to this issue was to pass the
string to the indent() function within Jinja2 before they get printed to the output file.
This resulted in in merge-request#938[12], which was merged without changes into the
main branch on the 22nd of December.

D. Jovicic, D. Walther 31

Pydantify 5.1. CONTRIBUTIONS TO DATAMODEL CODE GENERATOR

5.1.2 Pydantic deprecation warnings fix

While implementing automated tests via Pytest, we noticed a large number of warnings
stemming from the outdated use of copy_on_model_validation. After some investigation,
we found that the issue was within the DMCG itself. An update to pydantic had changed
how this flag worked, turning it from a simple boolean toggle to a string-selection con-
sisting of three options. After changing the default value set by the DMCG from False

to "None", Pytest warnings regarding Pydantify were reduced from 130 to none, while
warnings regarding the DMCG were reduced from 6145 to 4. This change resulted in
merge-request#927[11] in which the project owner added a case distinction based on the
installed pydantic version before merging it into main on the 22nd of November.

D. Jovicic, D. Walther 32

Chapter 6

Results

In this thesis, we demonstrated the feasibility of generating valid pydantic data structures
from yang models in a way that enables them to serialized to valid restconf payloads,
all in a way that is as intuitive and user-friendly as possible. Along the way we conducted
research on a wide variety of technologies and projects, and documented our findings.

All non-functional requirements have been satisfied and while not all functional require-
ments have been met, the remaining ones likely require work on external projects to
implement cleanly.

While there is still a lot of work to be done to turn Pydantify it into a production-ready
tool, the concept is sound and shows potential. We look forward to seeing its continued
development.

Figure 6.1: Closing Example of a Generated Output Model

D. Jovicic, D. Walther 33

Chapter 7

Further Work

7.1 Work to be done within Pydantify

7.1.1 Tests

While expanding the feature-set of Pydantify, we repeatedly encountered the need to up-
date the pydantic models we compare against in the integration tests. This was primarily
due to changes in formatting or code structure propagating through all the tests. For this
reason, we recommend keeping the number of integration tests to a minimum. Addition-
ally, improving the legibility of the error messages raised when comparing output models
could drastically simplify the debugging process by indicating the precise location where
the output model deviates from the expected result.

7.1.2 Instantiation of the output model

One of the pain points surrounding the use of Pydantify are the error messages raised when
the output model is being instantiated wrongly by the user. These may improve by up-
grading to Python 3.11 or by changes in the pydantic project. Should these improvements
not materialize however, using the friendly Python library should be considered, as it
drastically simplifies locating issues in case of nested constructors and complex single-line
expressions, at the cost of an additional dependency in the output model.

D. Jovicic, D. Walther 34

Pydantify 7.2. PROPOSED WORK IN THE ECOSYSTEM

7.2 Proposed work in the ecosystem

7.2.1 XML-Schema Regular Expressions

We discovered relatively late in the project that yang uses regular expressions as described
in the xmlschema, which is not equivalent to Python’s implementation of regex.[6] While
they are mostly similar, at least the "\p{...}" token (called a ”category escape”) appears
to be a nonstandard regex feature which leads to an exception being raised when parsed
by Python’s re-library. This exception would be raised within pydantic while initializing
the output model.

We are of the opinion that despite the context the exception is raised in, covering the
xmlschema implementation of regex is not the responsibility of pydantic. Instead, we
would like to propose a project that converts xmlschema regular expressions into Python-
native regular expressions. Such a library could be utilized by Pydantify as a further
processing step when generating an output model.

7.2.2 Pyang

In our opinion, the Pyang project suffers from its ongoing compatibility with older Python
versions. The addition of type annotations in Python 3.8 could drastically improve the
legibility of the code, simplifying both the maintainability of the project as well as the
development of plugins.

Additionally, dropping support for Python versions below 3.7 would enable the use of
setuptools, which would resolve most of the issues relating to differences of installation
between Windows and Linux, such as issue #310[9]. It would also alleviate the frustrations
described in subsection 4.1.1 Pyang integration, as the startup script would not need to
be moved programmatically in a custom installation process.

7.2.3 Multi-alias support in pydantify and DMCG

Currently, Pydantify does not fully support output model initialization directly from rest-
conf payloads due to the lack of support for multiple aliases on individual fields of the
output model. This may change with the release of pydantic V2 but as of the time of writ-
ing, circumventing this limitation would require compromises in either the maintainability
of the source code or the versatility of the output model.

For this reason, we opted to forego such an attempt in the scope of this thesis and would
instead like to propose the implementation of multiple aliases in Pydantic and by extension
DMCG.

7.2.4 Poetry and other package managers

Package managers generally install the latest version of a dependency unless the project
sets a specific restriction. This is a great approach for keeping projects up to date but a
breaking change in a dependency requires maintainers to either drop support for the older
version or add an alternate branch in the code depending on the version of the depen-
dency installed. This became apparent to us while working on the Pydantic deprecation
warnings fix contribution to DMCG, where we noticed a need for the ability to install the
oldest supported version of all dependencies of a Python project in order to validate the
advertised range of compatibility. Currently neither Poetry, PDM nor Flit support such a

D. Jovicic, D. Walther 35

Pydantify 7.2. PROPOSED WORK IN THE ECOSYSTEM

feature, leaving maintainers with the option of either manually locking dependencies to a
particular version during testing or trying to manually keep track of changes and hoping
to spot compatibility issues in contributions made by other other developers during pull
requests.

D. Jovicic, D. Walther 36

Part III

Project Documentation

Chapter 8

Project Plan

8.1 Organization

In typical projects, the costs, timeline and scope of a project have to be considered and
balanced out, this is typically referred to as the ”project management triangle”. For
our purposes however, the final deadline is non-negotiable and the costs are non-existent.
This means our scope is limited to whatever can be achieved within the timeframe, mak-
ing artifacts like Gantt charts and milestone-trend analysis rather pointless for planning
purposes. We instead opted to subdivide our allotted time into phases, akin to RUP, and
use a simple kanban board to keep track of outstanding tasks and assign the associated
responsibilites. This keeps the organizational overhead to a minimum, leaving more time
for productive work.

8.2 Project Time Plan

8.2.1 Phases

Inception

The inception phase starts on 19.09.2022 and will end on 07.10.2022. In this phase, we are
making ourselves familiar with yang and the general network automation environment.
Reaching a consensus on the project scope with the stakeholder is another goal of this
phase.

Elaboration

The elaboration phase starts on 07.10.2022 and lasts till 04.11.2022. We check what tools
and projects we can implement in our project. In this phase, we define what our risks,
our technical requirements and NFRs are. We set up our programming environment, so
that we are ready for the construction phase.

Construction

The construction phase starts on 04.11.2022 and ends on 12.12.2022, in this time span the
programming will take place.

D. Jovicic, D. Walther 38

Pydantify 8.2. PROJECT TIME PLAN

Transition

This phase will take place in the last week before the final hand-in of the project from
12.12.2022 to 23.12.2022 17:00. In this phase we will be finalizing the documentation and
preparing it for the final hand-in.

8.2.2 Milestones

M1: End of Inception - 07.10.2022

The goal of this milestone is to understand the assignment and get a grasp of the yang
and network automation environment. A project time plan is created.

Products:

• Documentation of our research

• Project time line

M2: End of Elaboration - 04.11.2022

At the end of the elaboration the decision should have been made, with which tools
and projects we will work in the future, what our risks are and the definition of the
requirements.

Products:

• Risk analysis

• FRs and NFRs

• Use cases

• Barebones proof of concept

M3: End of Construction - 12.12.2022

The project should be finished by then, only small adjustments and the documentation
are left to be finished.

Products:

• Test protocol

• Usability protocol

• Working proof of concept

• Abstract (due 19.12.2022)

M4: End of Transition - 23.12.2022 17:00

Everything should be finished and the project should be handed-in with the complete
documentation.

Products:

• Finished project documentation

D. Jovicic, D. Walther 39

Pydantify 8.3. ROLES

• Finished proof of concept

M5: Presentation - TBD

The presentation for the term project is prepared and the team is ready to presentate it.
The poster according to the guidelines is created.

Products:

• Presentation

8.3 Roles

8.3.1 Advisor and Stakeholder

Urs Baumann is responsible for the evaluation of the project and is simultaneously the
stakeholder. He is available for any help of the project if the team is facing any sort of
issues.

8.3.2 Developers

Dejan Jovicic and Dominic Walther will be the developers and responsible for the success
of the project.

8.4 Meetings

Every friday a meeting will be held with the advisor and stakeholder Urs Baumann and
the two developers. The notes to which can be found in ?? ??.

8.5 Planning Tools

• clockify.me (timetracker)

• Gitlab (issue tracker, file storage & versioning)

• Microsoft Teams (communication channel & meeting)

• Visual Studio Code (used to write the documentation in LATEX)

D. Jovicic, D. Walther 40

Chapter 9

Risk Management

9.1 Risks

This chapter deals with the risks that might occur during the project. The properties of
the risks are:

• ID: Identifier of the risk.

• Description: Short text explaining the risk.

• Probability: The probability of the risk measured in percentage. 100% meaning that
it will occur at least once during the project.

• Maximum Time Loss: The maximum time loss we will have because of this risk,
measured in hours

• Mitigation: Description of the precautions we can take to mitigate the risk.

• Behaviour: Describes the behaviour of what is done if the risk happens.

• Severity: The severity shows the extent of the damage the risk will do to the goals
and objectives to the project. It is measured qualitatively with ”low”, ”mid” and
”high” severity.

D. Jovicic, D. Walther 41

P
y
d
a
n
tify

9.1.
R
IS
K
S

ID Description Probability
Max. time

loss
Mitigation Behaviour Severity

R1 A team member gets sick low 17h No mitigation possible
Communication between team
members, prioritize tasks which
need to be done

low

R2
Irreparable corruption of the
git server

low 34h
Weekly off-site backups on the
devices of the team members

Restore data with your backup mid

R3
Irreparable corruption of the
clockify data

low 0.5h
Weekly off-site backups on the
devices of the team members

Restore data with your backup low

R4 Unrealistic timeline low 17h Detailed project plan Reduction of the project scope mid

R5
Specifications cannot be
implemented as intended

mid 51h
Weekly meetings with the advi-
sor

Getting help from the advisory
& experts

mid

R6
Familiarization with Pyang,
pydantic or other plugin takes
longer than expected

low 34h
Watch tutorials to gain knowl-
edge of technology

Reduction of the project scope mid

R7
Hardware of a team member is
kaput

low 34h No mitigation possible
Buy new hardware and install
all tools again - redo destroyed
work

mid

Table 9.1: Risk analysis

D
.
J
ov

icic,
D
.
W
alth

er
42

P
y
d
a
n
tify

9.2.
O
P
P
O
R
T
U
N
IT

IE
S

9.2 Opportunities

ID Description Probability Impact

O1 Pydantic V2.0 is scheduled to be released at the end of October 2022, latest at the end of the year 2022 high high

O2 An existing GitHub repository gives us an idea on how to solve a problem mid high

Table 9.2: Opportunity analysis

9.3 Realized Opportunities

ID Description Impact Date OID

RO1 The ”Pyang-Pydantic” repository offered us a great starting-off point for our project mid 22.09.22 O2

Table 9.3: Realized opportunity analysis

D
.
J
ov

icic,
D
.
W
alth

er
43

Chapter 10

Quality Measures

10.1 Code Guidelines

The principles described in this section should always be adhered to to ensure a consistent
code-style. Change proposals are always welcome.

Editor: The editor to be used is VSCode. Files associated with said editor can be
committed to the repository provided the contained settings are not user-dependent. The
recommended plugins should be installed.

Linter: The linter specified in the settings file should be installed and enabled at all times
with the provided settings. Exceptions to the linting rules should be avoided. Linting rules
may be changed if an agreement is found.

Classes: Class names are written in CamelCase. Member fields are annotated with their
expected type. Should annotation not be possible the regular way (e.g. due to circular
imports), annotations are done via so-called ”forward references”.

Function Names: Class names are written in snake case.

Variable Names: Class names are written in snake case. Too explicit is better than
too short. Abbreviations are only allowed if they are immediately obvious in their con-
text.

Comments: Comments should primarily explain why something was done, not how it
works. Comments explaining how something works are to be treated as a code-smell.

Comprehensions: Comprehensions should only be used for trivially understandable op-
erations. Use explicit for-loops otherwise.

Exception handling: Exceptions are to be treated as errors and should only be raised
if the program cannot proceed safely. Exceptions should not be caught unless absolutely
necessary. Exceptions may be caught and re-thrown to add additional context to the
exception.

D. Jovicic, D. Walther 44

Pydantify 10.2. TESTING

10.2 Testing

10.2.1 Code Coverage

Our aim is to reach a code coverage of at least 90%, with every supported yang statement
appearing in at least one test. This gives us enough confidence that the tests cover all sup-
ported yang node types as requested in section 3.3 Non-Functional Requirements.

10.2.2 Integration Tests

The integration tests are realised with the pytest library. It verifies the correct generation
of pydantic models by converting yang models to pydantic models. The generated Python
files are then compared against ones we validated by hand.

This makes detecting regressions easy, at the expense of complicating the process of in-
tegrating new features, as changes tend to propagate throughout most if not all tests,
quickly necessitating multiple tests to be updated.

10.2.3 System Tests

The system testing was done with a switch from the cisco devnet sandbox1. We did
so by generating an output model from the ”interfaces/interface/config” branch of the
”openconfig-interfaces.yang” model. This model was then instantiated with values and
serialized to JSON as seen in Figure 10.1.

Figure 10.1: Model serialization during system test

1The devnet sandbox is free for everyone to use, to learn how to configure a product, development or
API testing

D. Jovicic, D. Walther 45

Pydantify 10.2. TESTING

After sending the JSON payload seen in Figure 10.1 to the sandbox switch via a restconf-
patch request, the resulting configuration received back from the switch was as seen in
Figure 10.2. With this test, the concept was successfully proven to work.

Figure 10.2: Sandbox configuration after restconf-patch request

10.2.4 Usability Tests

The usability testing will be done by the network engineers of the INS, as they are the
ideal target audience for Pydantify. They will receive a zip-file with the project files and
a word file with tasks and fields to give us feedback. As they are network engineers, they
are supposed to solve the tasks with Pydantify without any external help, other than the
readme and the CLI help command.

The usability test is planned to be done in Week 13, giving us enough time to fix minor
imperfections and improving the provided hints as necessary. The Usability Test Proto-
col and the filled out word files can be reviewed in section B.2 Usability Test Protocols
Results

Goal

The goal of the usability test is that all participants will rate the readme file, the help
command and the IDE hints with a minimum score of 4 on a scale from 1 to 5. Also the
participants should have now problems to complete the usability tests. If that is the case,
we consider the non-functional requirement Usability as passed.

10.2.5 CI/CD Pipeline

To avoid ”it works on my machine” scenarios, we added a CI/CD Pipeline for the Py-
dantify source code, as well as the documentation.

The documentation CI pipeline consists of two stages: ”build doc”, which generates a
PDF out of the latest LATEX-files and ”build doc diff”, which builds a PDF in which the
changes that were made since the last meeting are highlighted. This is especially helpful
during meetings, as it makes demonstrating progress trivial.

The Pydantify source code CI/CD contains the ”run pytest” stage, which runs pytest and
generates a code coverage report. If all tests pass, a second ”deploy” stage takes said
coverage report and hosts it on ”GitLab Pages”, allowing users to interactively navigate
the source code with added coverage information.

D. Jovicic, D. Walther 46

Pydantify 10.2. TESTING

10.2.6 Usability Test Result

As explained in subsection 10.2.4 Usability Tests, our usability testers were network engi-
neers of the INS. In total there were 2 participants. The filled out usability test protocols
can be found in section B.2 Usability Test Protocols Results.

Results

Both participants had no trouble in finishing our usability test protocol, as both gave us
feedback that everything worked well. The feedback for the subtask 2-Hello World was
about the same in both cases. In one case it was mentioned that it should be possible to
change the output name of the generated file if someone needs multiple pydantic models.
The other feedback was that it would be beneficial if Pydantify printed the path to the
output folder.

When asked how comprehensible the help in the readme, help command and IDE hints
was, both participants answered with at least a 4.

Conclusion

While the sample size is admittedly small, we agree with the testers that it would be
beneficial for the users to be able to change the output name and to print out the path of
the output folder. Hence, we are planning to implement this after the submission of the
term project.

The NFR Usability is passed, as we have received a minimum score of 4 in every aspect
and the participants had no issues in completing the usability tests.

D. Jovicic, D. Walther 47

Part IV

Appendix

Appendix A

Assignment

A.1 Supervisor and Expert

This student project will be developed for the Institute for Network and Security at OST
internally. It will be supervised by Urs Baumann (urs.baumann@ost.ch), OST.

A.2 Students

This project is conducted in the context of the module “Studienarbeit” in the department
“Informatik” by:

• Dominic Walther

• Dejan Jovicic

A.3 Introduction

Since the introduction of netconf (rfc6241) and later restconf (rfc8040) the data mod-
eling language yang (rfc6020) got very popular. yang is the modeling language used to
describe the data structure received through netconf or restconf. The data itself is
usually in JSON or XML. Network automation using this kind of model is also called
Model Driven Automation. Model Driven Streaming Telemetry also takes advantage
of yang models. A collection of yang models can be found in the following repository
YangModels/yang

There has been a growing ecosystem around working with yang models and some projects
are already not maintained anymore. This is an incomplete list:

pyang https://github.com/mbj4668/pyang

libyang https://github.com/CESNET/libyang

pyangbind https://github.com/robshakir/pyangbind

ydk-gen https://github.com/CiscoDevNet/ydk-gen

yangson https://github.com/CZ-NIC/yangson

yang2swagger https://github.com/bartoszm/yang2swagger

D. Jovicic, D. Walther 49

https://github.com/YangModels/yang
https://github.com/mbj4668/pyang
https://github.com/CESNET/libyang
https://github.com/robshakir/pyangbind
https://github.com/CiscoDevNet/ydk-gen
https://github.com/CZ-NIC/yangson
https://github.com/bartoszm/yang2swagger

Pydantify A.4. GOALS OF THE PROJECT

Pydantic is a popular Python library for data validation using type hints.

A.4 Goals of the Project

The goal of this project is to show how yang modules can be translated to pydantic

models and so make model-driven network automation pythonic. After analysing the
ecosystem and the technologies a proof-of-concept should be created to show how model-
driven network automation can be done with pydantic. The generated models should be
able to be used for sending and receiving restconf configuration from a Cisco router or
switch.

A.5 Documentation

This project must be documented according to the guidelines of the “Informatik” de-
partment. This includes all analysis, design, implementation, project management, etc.
sections. All documentation is expected to be written in English. The project plan also
contains the documentation tasks. All results must be complete in the final upload to the
archive server. There is no need to print out the documentation

A.6 Important Dates

Date Event

19.09.2022 Start of the student project

19.12.2022 Hand-in of the abstract using the online tool abstract.rj.ost.ch

23.12.2022 17:00 Final hand-in of the report using the online tool avt.i.ost.ch

TBD Presentation

A.7 Evaluation

Criterion Weight

Organization and implementation 20%

Formal quality of the report 20 %

Analysis, design and evaluation 20 %

Technical implementation 40 %

D. Jovicic, D. Walther 50

https://github.com/pydantic/pydantic
http://abstract.rj.ost.ch/
https://avt.i.ost.ch/

Appendix B

Screenshots

B.1 NFR Validation Screenshots

Figure B.1: NFR Performance Base yang

Figure B.2: NFR Performance Base yang result

Figure B.3: NFR Performance 5xBase yang

Figure B.4: NFR Performance 5xBase yang result

D. Jovicic, D. Walther 51

Pydantify B.1. NFR VALIDATION SCREENSHOTS

Figure B.5: NFR Performance 10xBase yang

Figure B.6: NFR Performance 10xBase yang result

Figure B.7: NFR Testability Code Coverage

D. Jovicic, D. Walther 52

Pydantify B.1. NFR VALIDATION SCREENSHOTS

Figure B.8: NFR Reliability Unsupported Yang Statement

D. Jovicic, D. Walther 53

Pydantify B.2. USABILITY TEST PROTOCOLS RESULTS

B.2 Usability Test Protocols Results

Usability test

1-Installation

Instructions Install Pydantify according to the instructions in the README.md file.

Hint Navigate into the «pydantify» folder, then run «pip install .».

Feedback OK.

2-Hello World

Instructions Use the «pydantify» command to convert «hello-world/model.yang» into a

Pydantic data structure.

Use «pydantify --help»

Hint «pydantify hello-world/model.yang»

Feedback OK. Would be nice if the convert tool prints the output directory.

3-Initializing

Instructions Open the Python file generated in the previous step (located in the «out» folder).

Navigate to the bottom and fill the «Model» constructor with values. Follow the

hints given by the IDE.

Run the file as a regular python file. You should see no errors or exceptions.

Hint All classes must be initialized via key-value pairs. E.g. «MyNode(name=’test’)».

This also applies to «__root__» fields, eg. «__root__=’test’».

Feedback I wasn't sure what to do at first. After conversation with Urs: OK.

4-Added complexity

Instructions Use the «pydantify» command to convert only the

«openconfig-interfaces/interfaces/interface/config/»

branch of «complex/openconfig-interfaces.yang» into a pydantic structure into a

directory named “openconfig” (all in one command).

Hint «pydantify -t openconfig-interfaces/interfaces/interface/config -o openconfig

complex/openconfig-interfaces.yang»

Feedback Worked.

Figure B.9: Usability Test Form 1

D. Jovicic, D. Walther 54

Pydantify B.2. USABILITY TEST PROTOCOLS RESULTS

Feedback

Please rate the following questions on a scale from 1 to 5. 1 2 3 4 5

How familiar are you with YANG? ☐ ☒ ☐ ☐ ☐

How familiar are you with Python? ☐ ☐ ☒ ☐ ☐

How understandable is the README.md file? ☐ ☐ ☐ ☒ ☐

How understandable is the «pydantify --help» command? ☐ ☐ ☐ ☒ ☐

How intuitive are the IDE hints? ☐ ☐ ☐ ☐ ☒

How helpful is the code snippet below the output model? ☐ ☐ ☐ ☐ ☐

Feedback

What would you change/add to README.md/help-command/code-annotations?

Didn’t understand the question: “How helpful is the code snippet below the output model?”

Other feedback/suggestions?

Why is this a Word document?

Figure B.10: Usability Test Feedback 1

D. Jovicic, D. Walther 55

Pydantify B.2. USABILITY TEST PROTOCOLS RESULTS

Usability test

1-Installation

Instructions Install Pydantify according to the instructions in the README.md file.

Hint Navigate into the «pydantify» folder, then run «pip install .».

Feedback Was easy

2-Hello World

Instructions Use the «pydantify» command to convert «hello-world/model.yang» into a

Pydantic data structure.

Use «pydantify --help»

Hint «pydantify hello-world/model.yang»

Feedback Worked well. Would be nice to have the option to change the output name. For

example, if someone needs multiple models

3-Initializing

Instructions Open the Python file generated in the previous step (located in the «out» folder).

Navigate to the bottom and fill the «Model» constructor with values. Follow the

hints given by the IDE.

Run the file as a regular python file. You should see no errors or exceptions.

Hint All classes must be initialized via key-value pairs. E.g. «MyNode(name=’test’)».

This also applies to «__root__» fields, eg. «__root__=’test’».

Feedback Works well for someone with pydantic know-how.

4-Added complexity

Instructions Use the «pydantify» command to convert only the

«openconfig-interfaces/interfaces/interface/config/»

branch of «complex/openconfig-interfaces.yang» into a pydantic structure into a

directory named “openconfig” (all in one command).

Hint «pydantify -t openconfig-interfaces/interfaces/interface/config -o openconfig

complex/openconfig-interfaces.yang»

Feedback Easy

Figure B.11: Usability Test Form 2

D. Jovicic, D. Walther 56

Pydantify B.2. USABILITY TEST PROTOCOLS RESULTS

Feedback

Please rate the following questions on a scale from 1 to 5. 1 2 3 4 5

How familiar are you with YANG? ☐ ☐ ☐ ☒ ☐

How familiar are you with Python? ☐ ☐ ☐ ☒ ☐

How understandable is the README.md file? ☐ ☐ ☐ ☒ ☐

How understandable is the «pydantify --help» command? ☐ ☐ ☐ ☒ ☐

How intuitive are the IDE hints? ☐ ☐ ☐ ☒ ☐

How helpful is the code snippet below the output model? ☐ ☐ ☒ ☐ ☐

Feedback

What would you change/add to README.md/help-command/code-annotations?

Nice to have would be a full example in the README of how to generate the model, import it and

use it. Like a quick start.

Other feedback/suggestions?

Figure B.12: Usability Test Form 2

D. Jovicic, D. Walther 57

Bibliography

[1] A. Bierman, M. Bjorklund, and K. Watsen, “Restconf protocol,” Jan 2017, last time
accessed: 28/10/2022. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8040#
section-4

[2] M. Bjorklund, “Yang - a data modeling language for the network configuration
protocol (netconf),” Oct 2010, last time accessed: 28/10/2022. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6020.html#section-4

[3] ClausHolbechArista, “Use schema description to populate field docstring,” Sep 2022,
last time accessed: 21/11/2022. [Online]. Available: https://github.com/koxudaxi/
datamodel-code-generator/issues/857

[4] S. Colvin, “Model config - pydantic,” Oct 2022, last time accessed: 28/10/2022. [On-
line]. Available: https://pydantic-docs.helpmanual.io/usage/model config/#options

[5] ——, “Pydantic v2 plan - pydantic,” Nov 2022, last time ac-
cessed: 19/11/2022. [Online]. Available: https://pydantic-docs.helpmanual.io/
blog/pydantic-v2/#strict-mode

[6] P. V. B. et al., “Xml schema part 2 Datatypes second edition,” Oct 2004,
last time accessed: 1/12/2022. [Online]. Available: https://www.w3.org/TR/2004/
REC-xmlschema-2-20041028/#regexs

[7] kwatsen, “yangson/test model.py at master cz-nic/yangson,” Jan 2021, last time
accessed: 4/12/2022. [Online]. Available: https://github.com/CZ-NIC/yangson/
blob/1c632c7a4f76956f02173b5f269ccf1c16df9153/tests/test model.py#L1124

[8] L. Lhotka, “Introduction - yangson 1.4.15 documentation,” Mar 2016, last time
accessed: 4/12/2022. [Online]. Available: https://yangson.labs.nic.cz/introduction.
html

[9] C. Lunsford, “pyang is not executable when using the windows command prompt
as your shell,” Apr 2017, last time accessed: 28/11/2022. [Online]. Available:
https://github.com/mbj4668/pyang/issues/310

[10] A. Moore, “regex - combine regexp? - stack overflow,” May 2009, last time accessed:
19/11/2022. [Online]. Available: https://stackoverflow.com/a/870506

[11] D. Walther, “Fix deprecation warnings around ”copy on model validation”,”
Nov 2022, last time accessed: 21/11/2022. [Online]. Available: https:
//github.com/koxudaxi/datamodel-code-generator/pull/927

D. Jovicic, D. Walther 58

https://www.rfc-editor.org/rfc/rfc8040#section-4
https://www.rfc-editor.org/rfc/rfc8040#section-4
https://www.rfc-editor.org/rfc/rfc6020.html#section-4
https://github.com/koxudaxi/datamodel-code-generator/issues/857
https://github.com/koxudaxi/datamodel-code-generator/issues/857
https://pydantic-docs.helpmanual.io/usage/model_config/#options
https://pydantic-docs.helpmanual.io/blog/pydantic-v2/#strict-mode
https://pydantic-docs.helpmanual.io/blog/pydantic-v2/#strict-mode
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs
https://github.com/CZ-NIC/yangson/blob/1c632c7a4f76956f02173b5f269ccf1c16df9153/tests/test_model.py#L1124
https://github.com/CZ-NIC/yangson/blob/1c632c7a4f76956f02173b5f269ccf1c16df9153/tests/test_model.py#L1124
https://yangson.labs.nic.cz/introduction.html
https://yangson.labs.nic.cz/introduction.html
https://github.com/mbj4668/pyang/issues/310
https://stackoverflow.com/a/870506
https://github.com/koxudaxi/datamodel-code-generator/pull/927
https://github.com/koxudaxi/datamodel-code-generator/pull/927

Pydantify BIBLIOGRAPHY

[12] ——, “Fix indents for multiline docstrings,” Dec 2022, last time
accessed: 23/12/2022. [Online]. Available: https://github.com/koxudaxi/
datamodel-code-generator/pull/938

[13] ——, “Implement field descriptions as docstrings,” Nov 2022, last time
accessed: 21/11/2022. [Online]. Available: https://github.com/koxudaxi/
datamodel-code-generator/pull/918

D. Jovicic, D. Walther 59

https://github.com/koxudaxi/datamodel-code-generator/pull/938
https://github.com/koxudaxi/datamodel-code-generator/pull/938
https://github.com/koxudaxi/datamodel-code-generator/pull/918
https://github.com/koxudaxi/datamodel-code-generator/pull/918

	Acknowledgements
	Abstract
	Lay Summary
	Listings
	List of Figures
	List of Tables
	Glossary
	Acronyms
	I Technical Report
	Vision
	Problem Statement
	Our Solution

	Technical Framework
	Overview
	typedef
	leafref
	RESTCONF
	XPath

	Python Ecosystem Overview
	yangson
	Pyang
	PyangBind
	Pyang-Pydantic
	Pydantic
	datamodel-code-generator

	Pyang In-Depth
	The plugin system
	Pyang classes

	II Product Documentation
	Requirements
	Storyboard
	Functional Requirements
	Actors
	Validation
	Actions

	Non-Functional Requirements

	Architecture
	Architecture considerations
	Pyang integration
	Necessary information to generate each pydantic class
	Resolving type definitions and references
	Input validation in the output model
	Implications

	Component overview
	Input Model
	Pydantify Domain
	Output Model
	RESTCONF Payload

	Class Diagram

	Work done on external projects
	Contributions to Datamodel Code Generator
	Field annotation via docstrings
	Pydantic deprecation warnings fix

	Results
	Further Work
	Work to be done within Pydantify
	Tests
	Instantiation of the output model

	Proposed work in the ecosystem
	XML-Schema Regular Expressions
	Pyang
	Multi-alias support in pydantify and DMCG
	Poetry and other package managers

	III Project Documentation
	Project Plan
	Organization
	Project Time Plan
	Phases
	Milestones

	Roles
	Advisor and Stakeholder
	Developers

	Meetings
	Planning Tools

	Risk Management
	Risks
	Opportunities
	Realized Opportunities

	Quality Measures
	Code Guidelines
	Testing
	Code Coverage
	Integration Tests
	System Tests
	Usability Tests
	CI/CD Pipeline
	Usability Test Result

	IV Appendix
	Assignment
	Supervisor and Expert
	Students
	Introduction
	Goals of the Project
	Documentation
	Important Dates
	Evaluation

	Screenshots
	NFR Validation Screenshots
	Usability Test Protocols Results

	G Bibliography

