
Zurich

EASTERN SWITZERLAND
UNIVERSITY OF APPLIED SCIENCES

FOCUS PROJECT 2

Zero-Knowledge Inclusion Proofs

Author:
Roman BÖGLI

Supervisors:
Dr. Kaoutar EL KHIYAOUI

Dr. Angelo DE CARO

Prof. Dr. Mitra PURANDARE

A work submitted in fulfillment of the requirements for the degree of
Master of Science in Engineering in Computer Science (MSE CS)

at

Institute for Network and Security (INS),
Departement of Computer Science

in collaboration with

Security Research Department,
IBM Research Zurich Lab

21. August 2023

i

Abstract

This work discusses a solution for implementing a zero-knowledge inclusion proof
using existing software components, referred to as automation frameworks. In the
beginning, the use case that necessitates such proofs is stated together with estab-
lishing the contextual backdrop. This includes elaborating essential prerequisites
such as cryptographic hash functions, commitment schemes, and Merkle trees.

Furthermore, it presents an overview of zero-knowledge proof systems, detailing
their core characteristics, analogies, and real-world applications. The discussion
delves into the two prominent implementation families, namely zkSNARK and
zkSTARK, emphasizing their distinguishing features. To ensure resistance against
potential threats originating from quantum computers, the proposed approach
centers on utilizing non-interactively employed zkSTARK proofs enabled through
the Fiat-Shamir transformation.

Finally, this work formally states the objective of the zero-knowledge inclusion
proof for the specific use case and proposes an algorithmic specification. A curated
selection of promising automation frameworks with the potential to facilitate the ob-
jective’s implementation is presented, with in-depth scrutiny applied to two specific
frameworks: RISC Zero and the Winterfell. The work concludes by discussing initial
experiences with these frameworks and outlining future endeavors to chart the path
towards implementing a minimal viable product.

The appendix complements the discussion by providing an overview of current
post-quantum cryptography developments.

Keywords: zero-knowledge proof, proof of inclusion, Merkle tree, zkSNARK,
zkSTARK, RISC Zero, Winterfell

ii

Declaration of Authorship

I, Roman BÖGLI, declare that all material presented in this paper is my own work
or fully and specifically acknowledged wherever adapted from other sources. I
understand that if at any time it is shown that I have significantly misrepresented
material presented here, any degree or credits awarded to me on the basis of that
material may be revoked. I declare that all statements and information contained
herein are true, correct and accurate to the best of my knowledge.

iii

Contents

Abstract i

Declaration of Authorship ii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Outline . 2

2 Prerequisites 3
2.1 Cryptographic Hash Functions . 3
2.2 Commitment Schemes . 4
2.3 Merkle Trees . 5

3 Zero-Knowledge Proof Systems 8
3.1 Characteristics . 8
3.2 Applications . 11
3.3 Implementations . 13

4 Implementing Proof of Inclusion 15
4.1 Objective . 15
4.2 Approach . 15
4.3 Automation Frameworks . 16
4.4 Minimal Viable Product . 19

5 Conclusion 20

A Post-Quantum Cryptography 21

Bibliography 25

List of Abbreviations 30

List of Figures 31

List of Tables 32

1

1 Introduction

Advances in digitalization and connectivity through the internet have also affected
a millennial-old means of transaction, namely money. What used to be coins made
out of precious metals in ancient times has been replaced with physical and later
digital debt notes.

The fields of computer science and cryptography opened the door to the most
recent type of medium of exchange, namely cryptocurrencies which elevates the
quality of money traits even more. These traits include unforgeability, verifiability,
portability, divisibility, fungibility, durability, and — exclusively in the case of
digital money — programmability. Prominent cryptocurrencies, such as Bitcoin
for example, additionally introduce the trait of being censorship-resistant through
the use of Distributed Ledger Technology (DLT) powered by proof-of-work consensus
mechanisms1.

1.1 Problem Statement

A disadvantage of DLT systems concerns the risk of loss of user privacy. This
stems from the requirement for transactions to remain auditable for all, resulting in
their transparent recording within publicly available and append-only blockchain
data structures. Consequently, observers may permanently track individual token
movements, negatively impacting user privacy [2].

Also, the security model of digital money usually breaks in the scenario of compro-
mised, stolen, or lost keying material used for digital signatures. Although there are
various strategies to minimize this risk [3], there is no such thing as absolute security.
This becomes especially delicate in systems where a money-issuing authority uses
keying material to sign or mint new tokens, allowing a successful attacker to mimic
minting and thereby counterfeit money.

Lastly, the concern of being quantum-resistant urges adopting new algorithms
grounded on Post-Quantum Cryptography (PQC). Therefore, a future-oriented digital
money solution must account for this development and upgrade the employed cryp-
tographic primitives to quantum-safe versions. Appendix A provides an overview
of the current developments in the realm of PQC.

1 There exists many different consensus algorithms besides proof-of-work, as surveyed by Al-
sunaidi and Alhaidari [1].

Chapter 1. Introduction 2

In summary, the problem encompasses the question of how to verifiably prove a specific
token’s validity in a trustless and quantum-resistant setting without revealing which specific
token it concerns in order to preserve user privacy.

This work describes a solution to this problem that employs Zero-Knowledge Proof
(ZKP) protocols to convince a verifying party of a token’s inclusion in a public
set of valid tokens, encoded as Merkle tree data structure, without revealing the
token specifically. Preliminary, the fundamental concepts of cryptographic hash
functions, commitment schemes, and Merkle trees are explained, followed by a
general introduction to ZKP protocols. In order to contribute to the prospective
goal of implementing a minimum viable product of such a proof system, this
work additionally provides an overview of identified implementation facilitating
automation frameworks, which forms the basis for future endeavors in this topic.

1.2 Outline

The rest of this work is structured as follows. Chapter 2 addresses the essential
prerequisites in order to comprehend the remaining content. Chapter 3 delves
into the domain of ZKP systems, offering insights into their general characteristics
and exploring potential areas of application. Chapter 4 formulates the solution
approach to the above problem statement and specifies the mechanism of the proving
algorithm. Furthermore, this chapter offers insights into potential frameworks that
facilitate implementation, with a more detailed exploration of two frameworks.
Finally, Chapter 5 concludes the key insights and outlines prospects for future work.

3

2 Prerequisites

This chapter establishes the foundational framework for upcoming discussions, ex-
ploring three essential sections: cryptographic hash functions, commitment schemes,
and Merkle trees. These well-established concepts serve as fundamental tools with
versatile applications in the realm of computer science.

2.1 Cryptographic Hash Functions

A cryptographic hash function H represents a one-way function, whereas d is a
data input of arbitrary length1 and H(d) a random but deterministic output of fixed
length. This is formally expressed as H(d) : {0, 1}⋆ 7→ {0, 1}n, whereas n represents
a constant. H(d) is also denoted as digest or hash value of d. Besides the irreversibility
property, such functions are also considered chaotic, meaning that small changes
on the input side lead to massive changes in its output. Due to the infinite input
size and the finite output size, it is unavoidable that two different inputs lead to the
same digest, which defines a collision. This is, however, not an issue as long as such
collisions are infeasible to find. In this context, infeasibility refers to computational
infeasibility, i.e., theoretically possible but considered impractical as it would require
excessive resources. Secure hash functions must have [4]:

• Preimage Resistance: A hash function is said to be preimage resistance when
it is practically infeasible to find a d for a given h = H(d). Due to the fact that
no inversion function exists, d can only be found through exhaustive search,
also known as brute force search.

• Second Preimage Resistance: Describes the infeasibility for a given d to find d′

with d ̸= d′ and H(d) = H(d′). This property is also known as weak collision
resistance.

• (Strong) Collision Resistance: Describes the infeasibility of finding a pair
(d, d′) with d ̸= d′ such that H(d) = H(d′). This is similar to the previous prop-
erty except that the constraint in this problem is less stringent or demanding
and thus increases the resistance quality if fulfilled.

1 In literature also denoted as message m.

Chapter 2. Prerequisites 4

2.2 Commitment Schemes

Commitment schemes are cryptographic protocols that allow a prover P to tem-
porarily hide some information I ⊆ {0, 1}∗ from V with no option for subsequent
alteration. In other words, it is a tool that forces P to decide on I while allowing V
to verify the originality of this decision later in time. Commitment schemes must
fulfill two properties [5, 6]:

• Hiding Property: The published value that hides I should not reveal anything
about I . Cryptographic hash functions are an excellent choice to fulfill this
property, thanks to their unpredictability and irreversibility. Concatenating a
random secret value to I before hashing leverages the quality of this property
as it thwarts any search strategy of V2.

• Binding Property: P must not be able to alter I after commitment without
being detected by V . The deterministic behavior of hash functions enables
V to verify P ’s commitment to I upon revelation. Although hash function
collisions exist in theory due to infinite input and finite output possibilities, it
remains computationally infeasible for P to deceive V at this point.

Use cases requiring two parties to agree on random choices rely on such commitment
schemes. Fair gaming is an example of such. Assume Alice and Bob aim to decide
on a fair coin toss, where 0 represents heads and 1 tails. Note that this protocol is
tailored for sequential message exchange, which is typically the case in Internet
communication. Alice chooses her toss outcome TA := { t | t ∈ {0, 1} } and sends
Bob the commitment H(TA | r) = hA, whereas r is a concatenated («|» operator)
secret random value also known as a blinding factor. Latter is crucial to sustaining
the commitment’s hiding property in this particular binary domain case. Bob does
the same without knowing TA and immediately reveals his toss outcome TB to
Alice. Next, Alice reveals TA together with r so that Bob can verify its originality by
recomputing hA. This convinces Bob that Alice did not sabotage the randomness
of their collective coin toss TAB = XOR(TA, TB) after she learned TB, thanks to the
binding property. Similarly, Alice can be confident that Bob could not manipulate
the final outcome beforehand since he was unaware of TA at the time of choosing
TB, because of the hiding property.

2 Committing to small domain values, like age, can be easily revealed using brute force.

Chapter 2. Prerequisites 5

2.3 Merkle Trees

The Merkle tree, introduced by Ralph C. Merkle in 1982 [7], is a fundamental data
structure with numerous use cases in computer science. Over time, it has become
widely embraced in applications where safeguarding and validating data integrity
are imperative. Such applications include, for instance, file systems, blockchains, or
version control systems.

Usage Benefits

Merkle trees serve as an efficient tool for two types of problems. One is detecting
whether some data D has changed compared to an earlier version of it. Hashing D
directly and monitoring its digest for changes is a viable solution to this problem.
However, using a Merkle tree provides a more efficient approach, particularly
beneficial for large D.

This more efficient approach involves dividing D into smaller components or blocks
{d0, d1, . . . , di}, which then serve as individual hash inputs hi = H(t | di) with t = 0.
Here, t acts as a type identifier that is concatenated to the data block beforehand. In
practice, this identifier is usually one byte that is prepended to the hash function’s
input. It differentiates leaf nodes (0x00) from intermediate nodes (0x01) as a simple
yet effective countermeasure against second preimage attacks [8]. Alternatively, one
could also append the appropriate node level.

Figure 2.1 visualizes this concept. The data blocks or leaf nodes are shown in green,
intermediate nodes are blue, and red marks the root node. Two subsequent or child
digests serve again as input for their parent node on next level, e.g., h0 and h1 will
together with t = 1 create h01 = H(1 | h0 | h1). Continuing this hashing pattern of
combining two lower node hashes to create a new one ultimately leads to the root

hR = H(1 | h01 | h23)

h01 = H(1 | h0 | h1)

h0 = H(0 | d0)

d0

h1 = H(0 | d1)

d1

h23 = H(1 | h2 | h3)

h2 = H(0 | d2)

d2

h3 = H(0 | d3)

d3

FIGURE 2.1: Merkle Tree

Chapter 2. Prerequisites 6

hash of the tree3. Little changes in D will inevitably result in a different root hash hR

which is why Merkle trees are a powerful tool for data change detection. This task is
considerably more efficient than directly monitoring changes in D as the so-called
authentication path from a leaf to the root only grows with O(log n) and hR remains
of constant size.

The second type of problem where hash trees qualify as an ideal tool has to do with
the question of whether or not D contains a specific di. If di is included in D, the
hash chain from the leaf node using the minimum amount of intermediate nodes
will result in the expected root node. Proving the inclusion of d0 in Figure 2.1, for
example, requires the elements {d0, h1, h23} in order to recompute {h∗0 , h∗01, h∗R}. A
verifier V will be convinced that d0 is indeed part of the hash tree with root hR when
h∗R = hR. The list of required elements is thus also known as inclusion proof and
synonymous with authentication path. Verifying such a claim remains efficient even
for large D thanks to the logarithmic growth behavior of binary trees.

Practical Example

So far, it has been shown how data structured in Merkle trees represent a powerful
tool for scalable change detection and inclusion proofs, where hash functions play
a central role owing to their distinctive properties. Furthermore, one can utilize
hash functions to temporarily conceal information in an integrity-ensuring manner
without the option of subsequent unnoticed alteration as required in commitment
schemes.

Decentralized digital asset protocols such as, for instance, Bitcoin combine these two
applications in a use case called Simple Payment Verification (SPV). Nakamoto [9]
sketched this use case, as shown in Figure 2.2.

8. Simplified Payment Verification

It is possible to verify payments without running a full network node. A user only needs to keep

a copy of the block headers of the longest proof-of-work chain, which he can get by querying

network nodes until he's convinced he has the longest chain, and obtain the Merkle branch

linking the transaction to the block it's timestamped in. He can't check the transaction for

himself, but by linking it to a place in the chain, he can see that a network node has accepted it,

and blocks added after it further confirm the network has accepted it.

As such, the verification is reliable as long as honest nodes control the network, but is more

vulnerable if the network is overpowered by an attacker. While network nodes can verify

transactions for themselves, the simplified method can be fooled by an attacker's fabricated

transactions for as long as the attacker can continue to overpower the network. One strategy to

protect against this would be to accept alerts from network nodes when they detect an invalid

block, prompting the user's software to download the full block and alerted transactions to

confirm the inconsistency. Businesses that receive frequent payments will probably still want to

run their own nodes for more independent security and quicker verification.

9. Combining and Splitting Value

Although it would be possible to handle coins individually, it would be unwieldy to make a

separate transaction for every cent in a transfer. To allow value to be split and combined,

transactions contain multiple inputs and outputs. Normally there will be either a single input

from a larger previous transaction or multiple inputs combining smaller amounts, and at most two

outputs: one for the payment, and one returning the change, if any, back to the sender.

It should be noted that fan-out, where a transaction depends on several transactions, and those

transactions depend on many more, is not a problem here. There is never the need to extract a

complete standalone copy of a transaction's history.

5

Transaction

In

...

In Out

...

Hash01

Hash2 Hash3

Hash23

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Merkle Branch for Tx3

Longest Proof-of-Work Chain

Tx3

FIGURE 2.2: SPV in Bitcoin [9]

3 The number of leaves should be a power of 2 to obtain a perfect tree or at least even. In the case
of an odd leave count, the last leaf can be duplicated.

Chapter 2. Prerequisites 7

A transaction TX transfers some coins to an address which is the hash value of the
public component of the payee’s asymmetric key. One considers TX settled when it
is included in a data block, organized as a Merkle tree, which is part of the longest4

(block)chain available. Asking for an authentication path is a common way5 to verify
this inclusion. Figure 2.2 shows this process for Tx3, where V would recalculate
the intermediate node hashes {Hash3, Hash23} with the help of {Hash2, Hash01} to
verify the Merkle root hash eventually. When the recomputed root hash equals the
expected one, V can be convinced that Tx3 is settled.

4 Technically speaking, settlement in Bitcoin is not defined by the longest chain of blocks but by
the one that exhibits or proofs the highest amount of (hash) work.

5 As conducted by so-called light nodes in Bitcoin. Alternatively, full nodes maintain a verified
copy of the entire blockchain which allows them to autonomously verify transactions.

8

3 Zero-Knowledge Proof Systems

A general proof system is a tool such that P can convince V that a certain statement
S is true. When V learns nothing except the fact that S is true (or not), the proof is
considered zero-knowledge. This chapter outlines the essential characteristics of
such systems based on the works of Thaler [10] and provides examples of practical
applications as well as implementations.

3.1 Characteristics

Let S be the statement «I know that x = 10 for 13x ≡ 2262 (mod 7919) is valid». Here,
x represents the witness of S . A trivial proving strategy would involve simply
disclosing the witness such that V can validate S directly. Large or secret witnesses as
well as computationally expensive validation operations, however, ask for different
proving strategies that function with partial or even non-disclosure of the witness.
Meanwhile, the ability to convince V remains equally important. This work focuses
on such non-trivial proof systems.

Describing Properties

ZKP systems exhibit three central properties, as shown below. In order to address
these properties, certain cryptographic assumptions apply. This includes, for exam-
ple, the existence of secure hash functions or the hardness of the so-called Discrete
Logarithm Problem (DLP)1.

• Complete: When every valid proof generated by an honest P over a true
S convinces V then one considers this system as complete. In other words,
completeness describes the property that V will always be convinced when
presented with a truthful proof.

• Sound: Proof systems that are sound ensure the property that incorrect proofs
or correct proofs of a false S always fail to convince V . More specifically, one
speaks of statistical or information-theoretic soundness when this property holds
against a computational unbounded P . Otherwise, the term computational
soundness applies.

1 DLP states that finding x for a given b in ax ≡ b mod p is disproportionately harder than finding
b for a given x [3].

Chapter 3. Zero-Knowledge Proof Systems 9

• Zero-Knowledge: A proof that does not disclose any information about its
witness while upholding the ability to convince V is said to be a ZKP. In other
words, V should not learn anything but the boolean outcome of the proof
verification process.

Two further properties of proof systems describe the level of interaction between
P and V in order to end up with a complete and sound proof outcome. One
distinguishes between protocols that prescribe active communication and ones that
do not, as stated below.

• Interactive: Interactive proof systems require live communication between
P and V in the context of repeated challenge-response rounds with random
variables.

• Non-Interactive: When V can verify a proof without the need to exchange
messages with P , one speaks of non-interactive proof systems. This is especially
powerful as proving and verifying can be performed independently from each
other without any form of required dialogue.

Generally, every interactive system can be transformed into a non-interactive one
using the Fiat-Shamir transformation [11] in the so-called Random Oracle Model
(ROM). It assumes that both P and V have access to a random function R, which
for an input x deterministically returns a random value R(x) = y. In practice, R is
usually a cryptographic hash function.

The core of back-and-forth communication in interactive protocols lies in the ran-
domly chosen challenges to which only an honest P can consistently respond
successfully in the long run. To transform such protocols into non-interactive ones,
P simulates the challenges by prompting R for random challenges. All prompts
inside this ROM will be embedded in the proof such that V can verify the integrity
of these prompts at any later point in time non-interactively. The security model
holds as it would be unfeasible for a computationally bounded P to use R in a
self-serving manner facilitating the task to generate proofs dishonestly.

Last but not least, proof systems also differentiate themselves from each other based
on the following two remaining properties.

• Succinct: A protocol that results in proof size and verification time that grows
sublinear to the input size while upholding the security level is considered
succinct. However, other definitions exist where authors associate succinct-
ness with polylogarithmic or quasilinear growth. Figure 3.1 visualizes these
different growth behaviors.

• Transparent: Proof systems that do not require a trusted setup are considered
transparent. An example of a trusted setup is, for instance, the necessity of

Chapter 3. Zero-Knowledge Proof Systems 10

a mutually created secret key that must be destroyed after the protocol’s
completion2.

Argument vs. Proof of Knowledge

There exists a slight but important difference in the quality of a system that aims to
convince V that P knows a valid witness. This difference is addressed below.

• Argument of Knowledge: In an argument of knowledge system, P is known
to be computationally bounded and thus only able to create proofs that rely
on polynomial-time complexity. This allows V to assume that the underly-
ing cryptographic assumptions hold. In other words, there is no way for a
computationally bounded P to convincingly prove knowledge of x without ac-
tually knowing x. A computationally unbounded P , however, could break the
underlying cryptographic assumptions and thus generate convincing proofs
without actually knowing a valid witness. Argument of knowledge systems
are also known as argument systems or computationally bounded proof systems.

• Proof of Knowledge: A proof of knowledge, on the other hand, represents
a stronger artifact than an argument of knowledge since a computationally
unbounded P would still fail to convince V with dishonest proofs despite the
ability to break cryptographic assumptions. It follows that proof of knowledge
systems possess higher security than argument systems, although the latter is
more common in practice.

For the sake of simplicity, this work continues to primarily utilizes the term proof sys-
tems for both types of systems and uses the explicit specification where contextually
meaningful.

100 101 102 103100

102

104

Input x

Fu
nc

ti
on

V
al

ue
f(

x) linear
quasilinear
sublinear

polylogarithmic

FIGURE 3.1: Different Growth Functions
For example, f (x) = 2x grows linearly, f (x) = log(x) ∗ x quasilinearly,

f (x) =
√

x sublinearly, and f (x) = logkx polylogarithmically.

2 Secret information generated during the setup phase of a cryptographic system that later could
enable a potential adversaries to compromise the system’s integrity is known as toxic waste.

Chapter 3. Zero-Knowledge Proof Systems 11

3.2 Applications

The field of ZKP applications is manifold. Beforehand, it is advisable to describe the
dynamics of such proof systems by means of two famous analogies, which promote
a more intuitive understanding.

Analogies

Subfigure (A) in Figure 3.2 sketches the so-called «Ali Baba Cave» analogy published
by Quisquater et al. [12]. P (blue avatar) would like to prove to V (purple avatar)
the possession of a key capable of unlocking a door (black bar) located in the rear
part of a cave that is not visible from its entry and only reachable through either of
the paths PA or PB. The protocol is designed as follows. P secretly enters the cave
by randomly choosing either of the two possible path CP := { c | c ∈ {PA, PB} } and
waits in front of the locked door. V then challenges P to exit the cave using a specific
path CV := { c | c ∈ {PA, PB} } that V chooses randomly as well. Two possible
explanations exist when P fulfills this request as demanded. Either P luckily chose
the same path as V later challenged as the exit point, or they did not choose the
same path and P is indeed able to pass the locked door. The latter implies that P
possesses the appropriate door key.

In order to qualify this proof system as sound, this procedure is repeated n times
to reduce the probability of a lucky P to 2−n, which makes it an interactive proof.
In other words, a cheating P will immediately be detected when CP ̸= CV , which
in turn becomes exponentially more likely to happen with increasing number of
rounds, indicating soundness. Also, note that V never learns something about the
key except the fact that P must know it to pass the door in CP ̸= CV rounds, which
makes the protocol zero-knowledge.

(A) «Ali Baba Cave» (B) «Where’s Waldo»

FIGURE 3.2: ZKP Analogies

Chapter 3. Zero-Knowledge Proof Systems 12

The second ZKP analogy is known as «Where’s Waldo» and was inspired by the
eponymous comic book series. Subfigure (B) in Figure 3.2 models an image in which
Waldo (green avatar) hides among many other people (red avatars). P arranges this
image behind an opaque and much larger poster with an avatar-like silhouette hole
in its middle such that Waldo’s distinctive face appears.

By looking at the poster, V can verify that the silhouette hole indeed shows Waldo
and that P is able to pinpoint his location, which results in convincing proof (com-
pleteness). The presentation of a wrong character would immediately be detected
during this visual verification stage as Waldo’s appearance is public knowledge
(soundness). Meanwhile, V did not learn anything about the location as the image
arrangement, i.e., image corners relative to Waldo, remains secret (zero-knowledge).
This represents a non-interactive proof system, as the convincing V does not depend
on a reiterating challenge-response interaction.

Real World Examples

The rather generic mechanisms demonstrated by the analogies above can be trans-
ferred to more practical implications. So-called range proofs allow to prove that
a particular value, e.g., an age or salary lies in a specific interval. Questioning
adulthood or solvency could be performed in a privacy-protecting manner while
the verifying party must no longer manage the risk of storing sensitive Customer
Identifiable Data (CID). ZKPs could also be used to attest that a certain financial
transaction is settled. Furthermore, they can help to maintain full data integrity
in electronic voting systems where the validity of each individual vote must be
checked. While not always zero-knowledge, proof systems fulfill the need for verifi-
able computations. For instance, a cloud provider executing complex computations
for its clients can provide proof of the computational integrity of the result. [13]

Another broad area of applications can be found in the domain of cryptocurrencies
[14]. One reason is that ZKPs represent a promising solution to mask sensitive
details of a transaction. This includes, for example, the participants (payer and
payee) or the amount. Besides leveraging privacy, the motivation also roots in the
desire to further optimize storage efficiency. As previously mentioned, the partial
or non-disclosure of (large) witnesses can positively impact the growth factor of
such append-only data structures like blockchains without having to compromise
on trustless verifiability thanks to ZKPs.

Chapter 3. Zero-Knowledge Proof Systems 13

3.3 Implementations

This work focuses on two prominent implementation families of ZKP, both receiving
significant research and development attention. Two prominent ZKP implementa-
tion families receive significant research and development attention. Ben-Sasson
[15] surveys the terminological landscape of ZKP in greater details.

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK) represents
the first family of proof systems [16, 17]. They rely on a mutually created secret key
required to verify a proof and thus require a trusted setup. The non-interactivity
property of zkSNARKs makes them ideal candidates for use cases where P acts inde-
pendent of V and vice versa. Succinct proof size relative to the security parameters
promotes storage efficiency while the verification time remains constant. However,
the trusted setup introduces two disadvantages. One is the possibility of leaking
toxic waste, which facilitates the creation of proofs that were generated dishonestly
and remain undetected during verification. A second disadvantage concerns the
missing quantum-resistance due to necessary computational assumptions, making
zkSNARKs post-quantum insecure.

Zero-Knowledge Scalable Transparent Argument of Knowledge (zkSTARK) defines the
other implementation family [18]. Here, the public constraints of S with secret input
x are translated into a so-called Algebraic Intermediate Representation (AIR) using
arithmetic circuits. For example, S = «I know a number x s.t. (x + 3) ∗ 5 = 55»
exemplifies such a circuit in Figure 3.3, whereas (55

5 − 3) constraints a valid x. The
computation is sequentially executed from left to right such that every operation,
i.e., state change, can be registered in a trace table. The AIR serves as a basis to
represent the constraints for a valid solution to S in a polynomial form known as
Compositional Polynomial (CP). This CP is a linear combination of rational functions
that will be polynomials if and only if x is a valid input to S . Besides verifying the
correctness of the public constraints, V will repetitively challenge CP to test whether
it is a polynomial or not. In the case of latter, P failed to prove S .

55×

+

x

3

5

FIGURE 3.3: Example of an Arithmetic Circuit

Chapter 3. Zero-Knowledge Proof Systems 14

Other than in zkSNARKs, zkSTARKs do not require a trusted setup and are thus
considered transparent. The transparency trait, however, comes at the cost of larger
proof sizes. Furthermore, zkSTARKs are considered post-quantum secure as they
rely on cryptographic hash functions, which qualifies them as the preferred option
in this work’s proposed solution to zero-knowledge inclusion proofs.

As mentioned in Section 3.1, interactive proof systems can be deployed non-interactively
using the Fiat-Shamir transformation and the ROM. Consequently, non-interactive
zkSTARKs are also referred to as transparent zkSNARK, while transparent zkSNARKs
with a succinct setup can also be considered as zkSTARKs. [15]

15

4 Implementing Proof of Inclusion

4.1 Objective

This section describes the proposed solution to the problem stated in Section 1.1
in greater detail and serves as a basis for the remainder of this document. Let the
hash value h = H(v | r) be a token that was derived by hashing a public identifier v
concatenated with a secret blinding factor r. Also, let the set M = {h0, h1, . . . , hn} be
the leaf nodes of publicly available Merkle tree data structure with n leaves and the
root hash hM.

P aims to prove to V the knowledge of r such that the digest of its concatenation
with a given v is included in M. Equation 4.1 states this objective formally.

∃ (r, v) s.t. ∃ i ∈ {h0, h1, . . . , hn} where hi = H(v | r) (4.1)

To keep the ownership relation between v and P private, V must learn nothing
except the fact that P indeed owns a suitable r that leads to token hi ∈M.

4.2 Approach

Prior to the proof creation, P will query the publicly available Merkle tree of M to
receive the authentication path Pauth that proves the inclusion of H in M with HM.
Note that Pauth simply is an array of hash values and represents together with (v, r)
secret information.

Next, P executes Algorithm 1 below to recompute all required hashes from the leaf
to the root hash h∗R. These computations represent the core of the ZKP proof as V
will later verify that all computations were executed correctly and the resulting root
hash matches the expected one. If this is the case, V will be convinced that P knows
a suitable (r, v) s.t. H(v | r) ∈M.

The goal is to implement the proposed solution with the help of pre-existing soft-
ware projects or libraries that provide the required environment for generating and
validating a ZKP. This work classifies these projects as automation frameworks and
presents a selection of them in the following section.

Chapter 4. Implementing Proof of Inclusion 16

Algorithm 1 Inclusion Proof
Input: Private information (v, r, Pauth)
Output: Computed root hash H∗R

1: procedure PROOF(v, r, Pauth)
2: H ← h(0x00 | v | r) ▷ create leaf node hash
3: n← len(Pauth) ▷ get size of authentication path
4: i← 0 ▷ initialize authentication path access variable
5: while i < n do ▷ loop through all elements in Pauth
6: if Pauth[i].isRightHandSide then ▷ decision on concatenation order
7: H ← h(0x01 | H | Pauth[i]) ▷ create intermediate node hash
8: else
9: H ← h(0x01 | Pauth[i] | H) ▷ create intermediate node hash

10: i← i + 1 ▷ move to next Pauth element
11: H∗R ← H ▷ last hash value represent root hash
12: return H∗R

4.3 Automation Frameworks

The automation frameworks presented in this chapter serve the purpose of facilitated
practical implementation. Table 4.1 lists a selection of promising projects in this area.
Following aspects play an essential role in order to be an attractive candidate for
later implementation.

• Maturity: A mature automation framework qualifies through well-defined
and well-tested code. Ideally, a third party has cryptographically audited the
code to ensure its security.

• Efficiency: Proof creation and verification exhibit fast execution time thanks
to performance-optimized code. The code is also designed to consume a
relatively low amount of memory, which is important for practical adaptation
on smartphones.

• Usability: The framework’s use of common high-level programming lan-
guages makes it highly accessible and easy to integrate with other systems.
Ideally, the framework is licensed to be free to use, modify, and distribute.

• Maintainability: The framework is under active development, with ongoing
work on optimization and new features. It follows good software development
practices and common patterns and is accompanied by thorough documenta-
tion.

The rest of this section describes two of the identified frameworks in Table 4.1 more
closely.

Chapter 4. Implementing Proof of Inclusion 17

Framework Focus License Language Resources

bellman zkSNARK Apache2.0 / MIT Rust [19]
circom zkSNARK GPL-3.0 Rust / C++ / Wasm [20]
gnark zkSNARK Apache-2.0 Go [21]
libiop zkSNARK MIT C++ [22]
libsnark zkSNARK MIT C++ [23]
libSTARK zkSTARK Custom C++ [18, 24]
Marlin zkSNARK MIT Rust [25, 26]
Miden VM zkSNARK MIT Rust [27]
OpenZKP zkSTARK Apache-2.0 Rust [28]
RISC Zero zkSTARK Apache-2.0 C++ / Rusts [29, 30]
snarkjs zkSNARK GPL-3.0 JavaScript / Wasm [31]
Valida zkSTARK Apache-2.0 Rust [32]
Winterfell zkSTARK MIT Rust [33]
Zilch zkSTARK MIT Rust [34]
ZoKrates zkSNARK LGPL-3.0 Rust [35]

TABLE 4.1: ZKP Automation Frameworks

RISC Zero

The RISC Zero or risc0 project was published in February 2022 by a homonymous
company founded the year before. The framework embraces an open-source virtual
machine used to generate verifiable proofs (receipts) of any program that runs
inside this virtual machine. It allows staging private inputs before running the
computations inside the virtual machine in order to address the zero-knowledge
property. Accordingly, one refers to it as Zero-Knowledge Virtual Machine (zkVM).

More specifically, it allows to run arbitrary Rust or C++ programs inside the zkVM.
To do so, the program (guest method) is compiled into an Executable and Linkable
Format (ELF) binary file that runs on so-called RISC-V processors. Other than x86-64

or ARM processors, RISC-V is a free and open Instruction Set Architecture (ISA) based
on the principles of Reduced Instruction Set Computing (RISC) [36, 37]. Algorithm 1,
for example, could serve as a guest method.

To create a proof, the executor runs the guest method inside the zkVM to create the
execution trace, i.e., an array of all machine states over the execution time. The result
of this execution, together with its public variables, is stored in a journal which in
turn is sealed through a zkSTARK proof. The journal and the seal collectively form
the receipt file1. The receipt serves to persuade V that the journal was genuinely
produced through the anticipated circuit of the publicly known guest method. When
this is the case, V can examine the logged computed result from the journal form its

1 See the proof system sequence diagram for more detailed information.

https://github.com/zkcrypto/bellman
https://github.com/iden3/circom
https://zenodo.org/record/8136160
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libsnark
https://github.com/elibensasson/libSTARK
https://github.com/arkworks-rs/marlin
https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xProject/OpenZKP
https://github.com/risc0/risc0
https://github.com/iden3/snarkjs
https://github.com/valida-xyz/valida
https://github.com/facebook/winterfell
https://github.com/TrustworthyComputing/Zilch
https://github.com/Zokrates/ZoKrates
https://dev.risczero.com/proof-system/proof-system-sequence-diagram

Chapter 4. Implementing Proof of Inclusion 18

Aspect RISC Zero Winterfell

Maturity Relatively young project, tests
and examples exist, not yet
cryptographically audited.

Slightly older project, tests
and examples exists, not yet
cryptographically audited.

Efficiency Overhead through zkVM,
slow proving but fast verify-
ing time.

Direct implementation, paral-
lelization option, fast proving
and verifying time.

Usability Easy to use thanks to high-
level programming language,
abstracted complexity.

More complex to use due to
required AIR, abstracted com-
plexity.

Maintainability Ongoing development, thor-
oughly documented.

Ongoing development, barely
documented.

TABLE 4.2: Assessment of RISC Zero and Winterfell

final verdict. This could be, for instance, whether a recomputed Merkle root hash
equals an anticipated root hash.

First tests with RISC Zero exemplified the straightforward setup. It also showcases
the potency of encoding provable computations in familiar high-level programming
languages (in this case, Rust). However, the added complexity of the zkVM makes it
more challenging to comprehend the internal operations fully and is also expected
to have a detrimental effect on efficiency. Nevertheless, this automation framework
is a promising tool that warrants further investigation in future work.

Winterfell

Winterfell represents the second promising automation framework investigated so
far. It was published by Meta2 in April 2021 and implements a zkSTARK prover
and verifier for arbitrary computations.

Other than RISC Zero, Winterfell does not rely on a virtual machine to create proofs.
Instead, the underlying computation (e.g. Algorithm 1) must be provided as AIR
directly. While this zkSTARK-friendly format reduces the accessibility for new
developers, it promises faster proof times as no virtual machine overhead exists.
Also, the proof generation process can be parallelized at the cost of higher memory
consumption. Although this strategy does not harmonize with potential use cases
in the smartphone domain, the framework aims to utilize parallelization in order to
distribute the computational effort on multiple machines.

2 Formerly known as Facebook.

Chapter 4. Implementing Proof of Inclusion 19

To this point, only a few hands-on tests with Winterfell could be performed. As
expected, the execution times to create proofs are significantly lower compared to
RISC Zero. Therefore, it also represents a desirable tool worth further investigation
in future work.

Table 4.2 captures a first-impression assessment of how RISC Zero and Winterfell
address the previously stated desired framework aspects.

4.4 Minimal Viable Product

So far, a minimal viable product that adequately fulfills the aforementioned objective
remains unrealized. The received experiences during this exploration phase steered
the focus into promising directions that will be pursued in forthcoming endeavors.

The dynamic evolution of ZKPs, coupled with the increasing interest they generate,
is set to impact their adoption within the software domain positively. This, in
turn, will enhance accessibility for both novice developers and various utilization
scenarios. While closely following this progression, the above-stated endeavors will
also contribute to it.

20

5 Conclusion

This work presented a solution to the question of how to verifiably proof a specific
token’s validity without revealing which specific token it concerns using a zero-
knowledge inclusion proof.

Preliminary, the basic concepts of cryptographic hash functions, commitment schemes,
and Merkle trees were provided, followed by a general characterization of ZKPs.
This includes discussing key aspects like completeness, soundness, zero-knowledge,
and (non-)interactivity. For the promotion of intuitive understanding, the deliber-
ation encompassed two well-known analogies as well as examples for real-world
applications. Subsequently, two specific ZKP implementations were elaborated,
namely zkSNARK and zkSTARK. Latter is considered post-quantum secure and
thus preferred in this solution. Thanks to the Fiat-Shamir transformation, interactive
proofs can also be transformed into non-interactive ones, which is required in this
case.

Also, the work stated a formal description of the objective to prove knowledge of a
private blinding factor such that the digest of its concatenation with a public token
identifier is contained in a public set of valid tokens encoded as Merkle tree. The
proposed implementation approach of the latter encompasses the employment of au-
tomation frameworks that serve as programmable interfaces for efficient zkSTARK
proof creation and verification. Insights into the mechanics and initial usage experi-
ences were provided for two such automation frameworks, namely RISC Zero and
Winterfell. Both exhibit promising features that allow to create and verify proofs
with an abstracted layer of complexity.

Future endeavors will focus on further investigating these automation frameworks.
Once a minimum viable product is achieved using the most suitable framework,
efforts will be directed toward optimizing both proof creation and verification
runtime. Memory space optimization will also be a concurrent area of attention
along with these performance enhancements, as it represents a critical requirement
for mobile applications Ultimately, the chosen automation framework and the
implemented solution must undergo a cryptographic audit before deployment in
operational systems.

21

A Post-Quantum Cryptography

Recent advances in quantum computing introduce new threats to traditional crypto-
graphic primitives. The security of this primitives primarily rests on the asymmet-
rical complexity inherent in mathematical functions and their inverses. So far, the
yardstick for measuring this complexity has been linked to binary-based computer
systems. Quantum computers, however, transcend this binary restriction unlocking
enhanced computational capabilities that now poses a new threat to traditional
cryptography.

The field of PQC emerged to address this threat. It encompasses the research in
new cryptographic primitives designed to withstand potential quantum computing
attacks while maintaining robustness and practicality in traditional computing
environments. The key innovation of these new algorithms is that they rely on
different mathematical problems that are hard to solve for both binary and quantum
computers. PQC aims to foster the development of new provable secure protocols
with the ultimate objective of introducing novel implementation standards for
cryptographic applications. Ideally, this undertaking outpaces the progression of
quantum computing.

For example, the DLP features such an asymmetrical difficulty and is thus widely
employed in cryptographic primitives nowadays. The security of these primitives
relies on computing the discrete logarithm of a large number modulo a prime is
believed to be hard for classical computers. However, quantum computers have the
potential to break these primitives efficiently using Shor’s algorithm [38].

Shor’s algorithm facilitates factoring integers and computing the discrete logarithms
by exploiting the quantum properties of superposition and entanglement to perform
computations in parallel. By running it on a quantum computer, an attacker could
theoretically defeat the security of cryptographic primitives that rely on the DLP.

Appendix A. Post-Quantum Cryptography 22

Starting in 2016, the National Institute of Standards and Technology (NIST) leads the
current standardization process of PQC algorithms1. This community project aims
to evaluate the security and efficiency of several proposed algorithms in a round-
based manner to determine superior candidates. NIST plans to proclaim the finalist
algorithm as a new standard in the near future.

Algorithm Types

The security of PQC algorithms rely on a different set of mathematical problems
that cannot be solved efficiently by both traditional and quantum computers. The
following paragraphs provide an overview of four popular types of such algorithm
based on Aumasson and Green [5].

• Lattice-Based: These algorithms utilize lattices, i.e., mathematical structures
that describe a repeating pattern in an n-dimensional space, to construct the
problem of finding optimal combinations of given vectors to reach a desired
target point in that lattice. One generalizes such problems as Closest Vector
Problem (CVP), whereas Short Integer Solution (SIS), Learning With Errors (LWE),
or Learning With Rounding (LWR) represent more specific examples of it. It is
worth mentioning that the CVP serves only as a secure cryptographic tool for
traditional and quantum computers in its hardest instance. To create practical
cryptosystems, however, hardness must also be guaranteed in average cases.

• Code-Based: These types of cryptographic algorithms were inspired by so-
called error-correcting codes, which denote the theory of making bit transmis-
sions over noisy channels more robust to receiving errors. In general, this is
achieved by adding redundancy to the transmitted bit sequence on the sender
side, which eventually helps the receiving side autonomously correct errors
to a certain degree. A popular class of error-correcting codes is known as
linear codes. Here the transmitted bit sequence is encoded as a vector v to be
multiplied with a matrix G to receive the code word w = v · G. Depending
on how G was instantiated, the recipient can correct up to t-bit errors in w
to recover v. Code-based cryptographic algorithms such as, for example, the
McEliece [39] scheme, compose a publicly known G of multiple secret matrices
acting as the private key. The security of code-based cryptography resides on
the NP-hard problem of decoding a linear code, meaning that it is computa-
tionally infeasible to solve using a classical or quantum computer within a
reasonable amount of time2.

1 See NIST’s project webpage for current state and additional information.
2 See article by Aaronson [40] on quantum computers limits relating computational problem

classes.

https://csrc.nist.gov/projects/post-quantum-cryptography

Appendix A. Post-Quantum Cryptography 23

• Multivariate: The security of this cryptographic algorithm type relies on
systems of equations with multiple unknowns. More concretely, it depends
on another NP-hard problem that can be constructed by means of a random
quadratic system of equations known as multivariate quadratic equations. Since
the hardness of such problems relies on various parameters that must be
chosen wisely, multivariate cryptography is not widely used in productive
systems.

• Hash-Based: While the security of the previous algorithm types relies on their
mathematical hardness, this type utilizes the security of collision-resistant
cryptographic hash functions. Section 2.1 discusses these functions in detail.
As of the time of writing, the properties of such one-way functions are not
endangered by quantum computers. Consequently, systems that rely on
the difficulty of finding collisions, such as Winternitz [41] or SPHINCS [42,
43], are considered quantum-resistant. In other words, the security of hash-
based signature schemes stems from the fact that quantum computers cannot
efficiently find collisions in cryptographic hash functions.

Notable Implementations

The current standardization effort by NIST has brought forward several PQC algo-
rithms with the potential to become state-of-the-art cryptography tools in future.
Table A.1 provides an overview of notable candidates in this context.

Generally, one categorizes these algorithms based on their indented core function.
One category describes public-key encryption and key establishment algorithms,
also known as Key Encapsulation Mechanism (KEM). Such a mechanism represents
a public-key or asymmetric encryption scheme used to encrypt and decrypt data,
usually for exchanging a symmetric key [6]. The other category includes algorithms
used to proof data authenticity through signatures, known as Digital Signature
Algorithm (DSA). Such algorithms allow that a signer to sign any piece of data using
a private key so that any other party can verify this signature to the corresponding
data using the associated public key.

Cryptographic Agility

As stated earlier, cryptographic primitives are omnipresent in today’s digitalized
world. Basically, every user activity on the internet, such as requesting a webpage
or login into a web platform, relies on such primitives. Let alone the fundamen-
tal Transport Layer Security (TLS) protocol which is responsible for exchanging
information between computing devices.

Appendix A. Post-Quantum Cryptography 24

Algorithm Function Type Website Reference

BIKE KEM Code-Based [44]
Classic McEliece KEM Code-Based [39, 45]
CRYSTALS-Kyber KEM Lattice-Based (LWE) [46]
CRYSTALS-Dilithium DSA Lattice-Based [47]
Falcon DSA Lattice-Based [48]
NTRU KEM Lattice-Based [49]
Rainbow DSA Multivariate [50]
SABER KEM Lattice-Based [51]
SPHINCS+ DSA Hash-Based [43]

TABLE A.1: Notable PQC Algorithms.

Establishing new standards regarding quantum-resistant algorithms alone does not
suffice to mitigate quantum attacks. Equally vital is the ability of systems to flexibly
accommodate evolving security needs within the realm of cryptography. The term
cryptographic agility or crypto-agility refers to this ability. All actors in the digitalized
landscape must inevitably confront the task of evaluating their individual exposure
to cryptographic systems in order to remain cryptographically agile and thus secure.

https://bikesuite.org/
https://classic.mceliece.org/
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://falcon-sign.info/
https://ntru.org/
https://www.pqcrainbow.org/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://sphincs.org/

25

Bibliography

[1] S. J. Alsunaidi and F. A. Alhaidari. “A Survey of Consensus Algorithms for
Blockchain Technology”. In: 2019 International Conference on Computer and
Information Sciences (ICCIS). 2019 International Conference on Computer and
Information Sciences (ICCIS). Sakaka, Saudi Arabia: IEEE, Apr. 2019, pp. 1–6.
ISBN: 978-1-5386-8125-1. DOI: 10.1109/ICCISci.2019.8716424.

[2] E. Androulaki et al. “Evaluating User Privacy in Bitcoin”. In: Financial Cryp-
tography and Data Security. Ed. by A.-R. Sadeghi. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2013, pp. 34–51. ISBN: 978-3-642-39884-1.
DOI: 10.1007/978-3-642-39884-1_4.

[3] R. Bögli. “A Security Focused Outline on Bitcoin Wallets”. Focus Project 1.
Rapperswil-Jona: OST Ostschweizer Fachhochschule, 2023. URL: https://epr
ints.ost.ch/id/eprint/1103/.

[4] W. Stallings. Network Security Essentials: Applications and Standards. 4th ed.
Boston: Prentice Hall, 2011. 417 pp. ISBN: 978-0-13-610805-4.

[5] J.-P. Aumasson and M. D. Green. Serious Cryptography: A Practical Introduction
to Modern Encryption. San Francisco: No Starch Press, 2017. 282 pp. ISBN:
978-1-59327-826-7.

[6] J.-P. Aumasson. Crypto Dictionary: 500 Tasty Tidbits for the Curious Cryptographer.
San Francisco: No Starch Press, 2021. 145 pp. ISBN: 978-1-71850-140-9.

[7] R. C. Merkle. “Method of providing digital signatures”. U.S. pat. 4309569A.
Univ Leland Stanford Junior. Jan. 5, 1982.

[8] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC6962. RFC
Editor, June 2013, RFC6962. DOI: 10.17487/rfc6962.

[9] S. Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. Oct. 31, 2008.

[10] J. Thaler. “Proofs, Arguments, and Zero-Knowledge”. In: Foundations and
Trends® in Privacy and Security 4.2–4 (2022), pp. 117–660.

[11] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86.
Ed. by A. M. Odlyzko. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1987, pp. 186–194. ISBN: 978-3-540-47721-1. DOI: 10.1007/3-540-47
721-7_12.

https://doi.org/10.1109/ICCISci.2019.8716424
https://doi.org/10.1007/978-3-642-39884-1_4
https://eprints.ost.ch/id/eprint/1103/
https://eprints.ost.ch/id/eprint/1103/
https://doi.org/10.17487/rfc6962
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12

Bibliography 26

[12] J.-J. Quisquater et al. “How to Explain Zero-Knowledge Protocols to Your
Children”. In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by G.
Brassard. Vol. 435. New York, NY: Springer New York, 1990, pp. 628–631. ISBN:
978-0-387-97317-3. DOI: 10.1007/0-387-34805-0_60.

[13] A. M. Tran. “Theoretical and practical introduction to ZK-SNARKs and ZK-
STARKs”. MA thesis. Masaryk University, Faculty of Informatics, 2022. URL:
https://is.muni.cz/th/ovl3c/.

[14] E. Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments from Bit-
coin”. In: 2014 IEEE Symposium on Security and Privacy. 2014 IEEE Symposium
on Security and Privacy. May 2014, pp. 459–474. DOI: 10.1109/SP.2014.36.

[15] E. Ben-Sasson. A Cambrian Explosion of Crypto Proofs. NAKAMOTO. Jan. 8,
2020. URL: https://nakamoto.com/cambrian-explosion-of-crypto-proof
s/ (visited on 08/04/2023).

[16] N. Bitansky et al. “From Extractable Collision Resistance to Succinct Non-
Interactive Arguments of Knowledge, and Back Again”. In: Proceedings of the
3rd Innovations in Theoretical Computer Science Conference. ITCS ’12. New York,
NY, USA: Association for Computing Machinery, Jan. 8, 2012, pp. 326–349.
ISBN: 978-1-4503-1115-1. DOI: 10.1145/2090236.2090263.

[17] E. Ben-Sasson et al. “Succinct Non-Interactive Zero Knowledge for a von Neu-
mann Architecture”. In: 23rd USENIX Security Symposium (USENIX Security
14). USENIX Association, 2014, pp. 781–796. ISBN: 978-1-931971-15-7. URL:
https://www.usenix.org/conference/usenixsecurity14/technical-sess

ions/presentation/ben-sasson.

[18] E. Ben-Sasson et al. Scalable, transparent, and post-quantum secure computational
integrity. 2018. URL: https://eprint.iacr.org/2018/046. preprint.

[19] bellman. Version 0.13.0. Zero-knowledge Cryptography in Rust, May 7, 2022.
URL: https://github.com/zkcrypto/bellman (visited on 08/05/2023).

[20] circom. Version 2.1.6. iden3, June 22, 2023. URL: https://github.com/iden3
/circom (visited on 08/05/2023).

[21] G. Botrel et al. ConsenSys/gnark. Version 0.7.0. Zenodo, Mar. 2022. URL: https:
//doi.org/10.5281/zenodo.5819104.

[22] libiop. Version 0.2.0. SCIPR Lab, Aug. 13, 2020. URL: https://github.com/sci
pr-lab/libiop (visited on 08/05/2023).

[23] libsnark. Version 20140603. SCIPR Lab, June 3, 2014. URL: https://github.co
m/scipr-lab/libsnark (visited on 08/05/2023).

[24] E. Ben-Sasson et al. libSTARK. 2018. URL: https://github.com/elibensasso
n/libSTARK (visited on 08/05/2023).

https://doi.org/10.1007/0-387-34805-0_60
https://is.muni.cz/th/ovl3c/
https://doi.org/10.1109/SP.2014.36
https://nakamoto.com/cambrian-explosion-of-crypto-proofs/
https://nakamoto.com/cambrian-explosion-of-crypto-proofs/
https://doi.org/10.1145/2090236.2090263
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://eprint.iacr.org/2018/046
https://github.com/zkcrypto/bellman
https://github.com/iden3/circom
https://github.com/iden3/circom
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK

Bibliography 27

[25] Marlin. Version 0.3.0. arkworks, June 7, 2021. URL: https://github.com/arkw
orks-rs/marlin (visited on 08/05/2023).

[26] A. Chiesa et al. Marlin: Preprocessing zkSNARKs with Universal and Updatable
SRS. 2019. URL: https://eprint.iacr.org/2019/1047. preprint.

[27] Miden Virtual Machine. Version 0.6.1. Polygon Miden, June 30, 2023. URL:
https://github.com/0xPolygonMiden/miden-vm (visited on 08/05/2023).

[28] OpenZKP. ZeroEx (0x), 2020. URL: https://github.com/0xProject/OpenZKP
(visited on 08/05/2023).

[29] RISC Zero. Version 0.16.1. RISC Zero, July 13, 2023. URL: https://github.com
/risc0/risc0 (visited on 08/05/2023).

[30] J. Bruestle and P. Gafni. “RISC Zero zkVM: Scalable, Transparent Arguments
of RISC-V Integrity”. Draft. July 29, 2023. URL: https://www.risczero.com/p
roof-system-in-detail.pdf (visited on 08/05/2023).

[31] snarkjs. Version 0.7.0. iden3, May 24, 2023. URL: https://github.com/iden3
/snarkjs (visited on 08/05/2023).

[32] Valida. Valida. URL: https://github.com/valida-xyz/valida (visited on
08/05/2023).

[33] Winterfell. Version 0.6.4. Meta, May 26, 2023. URL: https://github.com/face
book/winterfell (visited on 08/05/2023).

[34] Zilch. Trustworthy Computing Group. URL: https://github.com/Trustwort
hyComputing/Zilch (visited on 08/05/2023).

[35] ZoKrates. Version 0.8.7. ZoKrates, Apr. 22, 2023. URL: https://github.com/Zo
krates/ZoKrates (visited on 08/05/2023).

[36] A. Waterman et al. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Version 2.1. UCB/EECS-2016-118. EECS Department, University of California,
Berkeley, May 31, 2016. URL: http://www2.eecs.berkeley.edu/Pubs/Tech
Rpts/2016/EECS-2016-118.html.

[37] A. Waterman et al. The RISC-V Instruction Set Manual Volume II: Privileged
Architecture Version 1.9. UCB/EECS-2016-129. EECS Department, University
of California, Berkeley, July 8, 2016. URL: http://www2.eecs.berkeley.edu
/Pubs/TechRpts/2016/EECS-2016-129.html.

[38] P. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science. 35th Annual Symposium on Foundations of Computer Science. Santa
Fe, NM, USA: IEEE Comput. Soc. Press, 1994, pp. 124–134. ISBN: 978-0-8186-
6580-6. DOI: 10.1109/SFCS.1994.365700.

[39] R. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic Coding
Theory”. In: Coding Thv 4244 (1978), pp. 114–116.

https://github.com/arkworks-rs/marlin
https://github.com/arkworks-rs/marlin
https://eprint.iacr.org/2019/1047
https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xProject/OpenZKP
https://github.com/risc0/risc0
https://github.com/risc0/risc0
https://www.risczero.com/proof-system-in-detail.pdf
https://www.risczero.com/proof-system-in-detail.pdf
https://github.com/iden3/snarkjs
https://github.com/iden3/snarkjs
https://github.com/valida-xyz/valida
https://github.com/facebook/winterfell
https://github.com/facebook/winterfell
https://github.com/TrustworthyComputing/Zilch
https://github.com/TrustworthyComputing/Zilch
https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
https://doi.org/10.1109/SFCS.1994.365700

Bibliography 28

[40] S. Aaronson. “THE LIMITS OF Quantum”. In: Scientific American 298.3 (2008),
pp. 62–69. ISSN: 0036-8733. JSTOR: 26000518. URL: https://www.jstor.org
/stable/26000518.

[41] R. C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology —
CRYPTO’ 89 Proceedings. Ed. by G. Brassard. Lecture Notes in Computer
Science. New York, NY: Springer, 1990, pp. 218–238. ISBN: 978-0-387-34805-6.
DOI: 10.1007/0-387-34805-0_21.

[42] D. J. Bernstein et al. “SPHINCS: Practical Stateless Hash-Based Signatures”.
In: Advances in Cryptology – EUROCRYPT 2015. Ed. by E. Oswald and M.
Fischlin. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2015, pp. 368–397. ISBN: 978-3-662-46800-5. DOI: 10.1007/978-3-662-46800-
5_15.

[43] D. J. Bernstein et al. “The SPHINCS+ Signature Framework”. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’19. New York, NY, USA: Association for Computing Machinery, Nov. 6,
2019, pp. 2129–2146. ISBN: 978-1-4503-6747-9. DOI: 10.1145/3319535.3363229.

[44] N. Aragon et al. “BIKE: Bit Flipping Key Encapsulation”. In: (2017).

[45] D. J. Bernstein et al. “Classic McEliece: conservative code-based cryptography”.
In: NIST submissions (2017).

[46] J. Bos et al. “CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM”.
In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P). 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). London: IEEE, Apr.
2018, pp. 353–367. ISBN: 978-1-5386-4228-3. DOI: 10.1109/EuroSP.2018.00032.

[47] L. Ducas et al. “CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme”. In: IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (Feb. 14, 2018), pp. 238–268. ISSN: 2569-2925. DOI: 10.13154/tches.v201
8.i1.238-268.

[48] P.-A. Fouque et al. “Falcon: Fast-Fourier Lattice-based Compact Signatures
over NTRU”. In: Submission to the NIST’s post-quantum cryptography standard-
ization process 36.5 (2018).

[49] C. Chen et al. “NTRU - Algorithm Specifications and Supporting Documen-
tation”. In: Brown University and Onboard security company, Wilmington USA
(Mar. 30, 2019).

[50] J. Ding and D. Schmidt. “Rainbow, a New Multivariable Polynomial Signature
Scheme”. In: Applied Cryptography and Network Security. Ed. by J. Ioannidis,
A. Keromytis, and M. Yung. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2005, pp. 164–175. ISBN: 978-3-540-31542-1. DOI: 10.1007/1
1496137_12.

http://www.jstor.org/stable/26000518
https://www.jstor.org/stable/26000518
https://www.jstor.org/stable/26000518
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/11496137_12

Bibliography 29

[51] J.-P. D’Anvers et al. “Saber: Module-LWR Based Key Exchange, CPA-Secure
Encryption and CCA-Secure KEM”. In: Progress in Cryptology – AFRICACRYPT
2018. Ed. by A. Joux, A. Nitaj, and T. Rachidi. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2018, pp. 282–305. ISBN:
978-3-319-89339-6. DOI: 10.1007/978-3-319-89339-6_16.

https://doi.org/10.1007/978-3-319-89339-6_16

30

List of Abbreviations

AIR Algebraic Intermediate Representation 13
CID Customer Identifiable Data . 12
CP Compositional Polynomial . 13
CVP Closest Vector Problem . 22
DLP Discrete Logarithm Problem . 8
DLT Distributed Ledger Technology . 1
DSA Digital Signature Algorithm . 23
ELF Executable and Linkable Format 17
ISA Instruction Set Architecture . 17
KEM Key Encapsulation Mechanism . 23
LWE Learning With Errors . 22
LWR Learning With Rounding . 22
NIST National Institute of Standards and Technology 22
PQC Post-Quantum Cryptography . 1
RISC Reduced Instruction Set Computing 17
ROM Random Oracle Model . 9
SIS Short Integer Solution . 22
SPV Simple Payment Verification . 6
TLS Transport Layer Security . 23
ZKP Zero-Knowledge Proof . 2
zkSNARK Zero-Knowledge Succinct Non-Interactive Argument of Knowledge 13
zkSTARK Zero-Knowledge Scalable Transparent Argument of Knowledge . 13
zkVM Zero-Knowledge Virtual Machine 17

31

List of Figures

2.1 Merkle Tree . 5
2.2 SPV in Bitcoin [9] . 6

3.1 Different Growth Functions . 10
3.2 ZKP Analogies . 11
3.3 Example of an Arithmetic Circuit . 13

32

List of Tables

4.1 ZKP Automation Frameworks . 17
4.2 Assessment of RISC Zero and Winterfell 18

A.1 Notable PQC Algorithms. 24

	Abstract
	Declaration of Authorship
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Outline

	2 Prerequisites
	2.1 Cryptographic Hash Functions
	2.2 Commitment Schemes
	2.3 Merkle Trees

	3 Zero-Knowledge Proof Systems
	3.1 Characteristics
	3.2 Applications
	3.3 Implementations

	4 Implementing Proof of Inclusion
	4.1 Objective
	4.2 Approach
	4.3 Automation Frameworks
	4.4 Minimal Viable Product

	5 Conclusion
	A Post-Quantum Cryptography
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables

