
Embedded Programming with Embedded
Domain-Specific Languages (EDSLs) in Haskell

Eliane I. Schmidli
OST – Eastern Switzerland University of Applied Sciences

MSE Seminar “Programming Languages”
Supervisor: Prof. Dr. Farhad Mehta

Spring 2023

Abstract
Embedded domain-specific languages (EDSLs) make it
possible to program embedded systems with Haskell.
Programming in Haskell has many advantages such as
the reduction of runtime errors and writing code more el-
egantly. The Haskell library Haskino provides two EDSL-
based variants for programming Arduinos. In the first
variant, commands are sent interactively to an Arduino
that is connected to the computer. The second variant
turns the Haskell code into an abstract syntax tree (AST)
representing actions and computations. This structure
can be used to generate C code that can be executed
directly on the Arduino. The advantage of Haskell be-
comes apparent when using paradigms such as functional
reactive programming (FRP). In the first variant offered
by Haskino, FRP can be used without any problems
because it is executed in the Haskell environment. In
the second, it would be necessary to integrate the FRP
functionality into the AST and to define the translation
into C. The ability to run FRP code directly on Arduino
is demonstrated by the frp-arduino library. This paper
introduces EDSLs in Haskell, their application in the
Haskino library, and shows an Arduino programming
example using Haskell and FRP.

1 Introduction
Safety and correctness are essential in embedded systems.
Due to Haskell’s strong, static type system, the func-
tional programming language can help to avoid errors.
Furthermore, the use of Haskell can lead to more mod-
ular, elegant code, which can improve maintainability.
Unfortunately, it is not possible to run Haskell directly
on small embedded systems with limited resources, such
as an Arduino.

An alternative is to use an EDSL. This is a domain-
specific language (DSL) embedded in a host program-
ming language such as Haskell. In the subsequent sec-
tions, an overview of EDSLs is provided. Section 2
presents an EDSL that enables programming the Ar-
duino in Haskell. Section 3 shows the benefits of using
Haskell for embedded programming by controlling the
Arduino with FRP.

1.1 Embedded and External DSL
A DSL is a computer language designed for a specific
problem. Unlike general-purpose languages, it uses terms
and syntax that are close to the problem domain. An
example is the Very High Speed Integrated Circuit Hard-
ware Description Language (VHDL) used for circuit
design.

Two types of DSLs can be differentiated: internal
DSLs (referred to as embedded DSLs (EDSLs)) and
external DSLs. EDSL is a language embedded in a host
language. So, it can use a subset of the features of the
host language, such as its appearance and semantics. An
external DSL, on the other hand, is a language created
from scratch (like VHDL). To process it, a complete
parser must be written [Fow19].

1.2 Shallow and Deep EDSL
There are two different types of EDSLs; shallowly em-
bedded and deeply embedded. The shallow EDSL uses
elements and the runtime environment of the host lan-
guage. Therefore the syntax and semantics of a shallow
EDSL are close to those of the host language. Deep ED-
SLs, on the other hand, do not use the host language
for direct calculations, but to generate a new language.
The resulting output is an AST representing actions or
calculations to be executed. Its interpretation must be
explicitly defined. Thus, it is possible to interpret and
execute the construct in a language other than the host
language [GYG17].

For example, in a shallow EDSL, an integer type can
be defined as a type synonym:

type AInt = Int

In shallow EDSL, existing Haskell functions accepting
arguments of type Int can also be called with values
of type AInt (A was chosen for Arduino). For example,
functions of class Num like the addition with (+). So, in
shallow EDSLs, values like myAddition are computed
directly.

1 myAddition :: AInt
2 myAddition = (1 + 2) + 3

In contrast, when using a deep embedding, a new
language which describes the actions or computations

2023-10-13 09:57. Page 1 of 1–7.

Eliane I. Schmidli

that need to be performed is defined. In the case of our
current example, the following type is needed:

data Expr = Add Expr Expr | Val Int

Using the type Expr results in a tree structure describ-
ing the calculations to be performed. Here, the expression
myAdditionE represents the structure of myAddition,
but cannot be calculated directly anymore.

1 myAdditionE :: Expr
2 myAdditionE = Add (Add (Val 1) (Val 2)) (Val 3)

To interpret the function in Haskell, a function eval is
needed that evaluates the two expression type variables
of Add recursively and then adds the resulting integers
together.

1 evalE :: Expr -> Int
2 evalE Val x = x
3 evalE Add x y = (eval x) + (eval y)

But it would also be possible to translate the resulting
structure into another programming language [Aug12].

1.3 Embedded Programming with Haskell
There are several libraries and languages that support
programming close to hardware with Haskell. One of
these is C𝜆asH; a functional hardware description lan-
guage that generates code in VHDL [Baa09]. There are
also deep EDSLs that generate C code, such as Co-
Pilot [PWNG12] and Ivory [EPW15].

A library that takes advantage of both shallow and
deep EDSL is Haskino. It allows programming the Ar-
duino in Haskell[GYG17]. It is based on the shallow
EDSL hArduino which requires a connection between
the host and the Arduino [Erk22]. An alternative to
deep EDSL is the method described in Compiling to
Categories [Ell17].

The following sections introduce the use of shallow and
deep EDSL in Haskino. Furthermore, the limitations of
Haskino are shown when trying to program the Arduino
in FRP style.

2 Haskino
Haskino takes advantage of both EDSL variants. It is
possible to write the code in the easy-to-use shallow
EDSL. The code can then either be executed in the
Haskell environment interactively sending commands to
the connected Arduino or compiled into C code by using
a deep EDSL and executed directly on the Arduino. The
first variant is suitable for debugging and prototyping.
The second variant is more efficient and produces exe-
cutables in smaller sizes [GYG17]. The two variants are
described in more detail in the following sections.

2.1 Interpreted interactive system
Haskino’s interpreted interactive system executes the
shallow EDSL in the Haskell environment and sends com-
mands to the Arduino connected via a USB cable. They
provide a firmware interpreter Arduino program that
must be loaded on the Arduino. This interpreter receives
instructions from the computer via a serial link and exe-
cutes the corresponding Arduino commands [GYG17].

The user can write a Haskell program using the shal-
low EDSL provided by the Haskino library. The function
signatures are like those provided by Arduino. The sim-
ilarity between the programs can be seen in the blink
example, which is considered to be Arduino’s Hello World
program. It repeatedly turns the built-in LED on and
off on boards such as UNO, MEGA, or ZERO.

In the Arduino programming language, two functions
called setup and loop must be defined. The function
setup is called in the beginning and can be used to
initialize the input and output pins. The program that
should be executed can be defined in the function loop.
At runtime, a main loop calls this function at each itera-
tion.

For the blink example [Ard23], setup initializes the
digital pin LED_BUILTIN as an output.

1 void setup () {
2 pinMode (LED_BUILTIN , OUTPUT);
3 }

Then the program can be implemented in the loop
function. The digitalWrite function sets the voltage
level for the corresponding LED and accordingly turns it
on (HIGH, resp. 1) or off (LOW, resp. 0). To wait one second
between the switches, the function delay is executed
with 1000 milliseconds.

1 void loop () {
2 digitalWrite (LED_BUILTIN , HIGH);
3 delay (1000) ;
4 digitalWrite (LED_BUILTIN , LOW);
5 delay (1000) ;
6 }

The Haskell program with Haskino looks similar. It
represents the Arduino using the RemoteMonad [GD16],
an implementation of the concepts of the remote monad
design pattern [GSD15]. It is a way of making calls to a
remote target less expensive.

newtype Arduino a = Arduino (RemoteMonad
ArduinoPrimitive a)

On boards such as UNO, MEGA, or ZERO, the pin
number of the built-in LED is 13. The initialization is
done before the loop. The constants HIGH and LOW are
replaced by True and False.

2023-10-13 09:57. Page 2 of 1–7.

Embedded Programming with Embedded Domain-Specific Languages (EDSLs) in Haskell

1 blink :: Arduino ()
2 blink = do
3 setPinMode 13 OUTPUT
4 loop $ do
5 digitalWrite 13 True
6 delayMillis 1000
7 digitalWrite 13 False
8 delayMillis 1000

However, the execution of the shallow EDSL is dif-
ferent to the execution of the Arduino program. The
loop runs on the computer in the Haskell environment.
The instructions of this program are sent one by one to
the interpreter on the Arduino. The interpreter executes
the instruction and for the delay instruction sends back
a message when the time is up. The following snippet
of console output from the blink program shows the
process.

1 [199:40444148161] Haskino :
2 Sending :
3 DIG_CMD_WRITE_PIN
4 (EXPR_WORD8 - EXPR_LIT 13)
5 (EXPR_BOOL - EXPR_LIT True)
6
7 [200:40444148323] Haskino :
8 Sending :
9 BC_CMD_DELAY_MILLIS

10 (Bind 0) <- (EXPR_WORD32 - EXPR_LIT 1000)
11
12 [201:40444148475] Haskino :
13 Waiting for response
14
15 [202:40444451142] Haskino :
16 Received DelayResp
17
18 [203:40444451360] Haskino :
19 Sending :
20 DIG_CMD_WRITE_PIN
21 (EXPR_WORD8 - EXPR_LIT 13)
22 (EXPR_BOOL - EXPR_LIT False)

2.2 Compiled System
To run a Haskino program directly on the Arduino,
the program written in shallow EDSL can be automati-
cally compiled into C by Haskino. The shallow EDSL is
first translated by the Glasgow Haskell Compiler (GHC)
into Haskino’s deep EDSL and then compiled into a
C program. The resulting Arduino file can be loaded
onto the Arduino together with a runtime provided by
Haskino [GYG17]. The following sections provide the
intermediate translation steps for the blink example.

The shallow EDSL is first translated into the deep
EDSL. To gain insight into the structure of Haskino’s
deep EDSL, the following section describes the loop
body representation in the context of the blink exam-
ple. A comprehensive explanation of the representation
of control structures such as conditionals and loops in
Haskino’s deep EDSL can be found in [GYG17].

The operations digitalWrite and delayMillis are
represented by the data structure ArduinoPrimitive.

The Haskell types used in these operations are captured
in the data structure Expr.

1 data Expr a where
2 LitB :: Bool -> Expr Bool
3 LitW8 :: Word8 -> Expr Word8
4 LitW32 :: Word32 -> Expr Word32
5
6 data ArduinoPrimitive :: * -> * where
7 DigitalWriteE :: Expr Word8 -> Expr Bool ->

ArduinoPrimitive (Expr ())
8 DelayMillisE :: Expr Word32 ->

ArduinoPrimitive (Expr ())

The loop body representation in Haskino’s deep EDSL
is similar to that of the shallow EDSL, as shown below:

1 DigitalWriteE (LitW8 13) (LitB True)
2 DelayMillisE (LitW32 1000)
3 DigitalWriteE (LitW8 13) (LitB False)
4 DelayMillisE (LitW32 1000)

The deep EDSL representation of the blink example is
then translated into the C programming language. The
resulting C program looks like this:

1 # include " HaskinoRuntime .h"
2 // simplified
3 void setup () {
4 haskinoMemInit ();
5 // 255 is the id of the task haskinoMain
6 createTask (255 , haskinoMain);
7 scheduleTask (255 , 0);
8 startScheduler ();
9 }

10
11 void haskinoMain () {
12 pinMode (13 , OUTPUT);
13 while (1) {
14 digitalWrite (13 , 1);
15 delayMilliseconds (1000) ;
16 digitalWrite (13 , 0);
17 delayMilliseconds (1000) ;
18 }
19 taskComplete ();
20 }

Unlike the original Arduino program, loop is not
called here. Instead, a thread that executes the main
program is started.

The setup function initializes the memory manage-
ment of the Haskino runtime and creates and sched-
ules a task executing the haskinoMain function. In
haskinoMain, the pins that are used in the program
are initialized. Then the infinite loop starts where the
digitalWrite instruction of the Arduino programming
language is called. The function delayMilliseconds
reschedules the task by 1000 milliseconds. The schedul-
ing functions are provided by the Haskino runtime and
allow multi-threading [GG19]. When writing the pro-
gram in the shallow EDSL, the functions createTask
and scheduleTask can be used to run different tasks
simultaneously. The next section provides an example
using threads. It is only possible to use multi-threading
with the compiled system in Haskino. The interactive
mode does not provide this functionality.

2023-10-13 09:57. Page 3 of 1–7.

Eliane I. Schmidli

2.3 Haskino Example with Threads
The use of threads in Haskino can be better seen in
the following example. As in the blink example, the
built-in LED should blink. Additionally, a microphone
is connected to the Arduino, which has a digital output.
On the microphone, a threshold for the volume can be
set. A second LED is connected, which should light up
when the threshold is exceeded.

For the first task, the same code as in the blink ex-
ample can be used. This is written in a function called
ledTask.

1 led :: Word8
2 led = 13
3
4 ledTask :: Arduino ()
5 ledTask = do
6 loop $ do
7 digitalWrite led True
8 delayMillis 1000
9 digitalWrite led False

10 delayMillis 1000

For the second task, digitalRead is used to read the
value from the digital output of the microphone. In this
example, the digital output is connected to pin three.
If the volume threshold is exceeded, the value is True,
otherwise it is False. A red LED is connected to pin
nine and is turned on when the threshold is exceeded,
otherwise it is turned off. On the last line, a small pause
is inserted, so that the serial interface is not overloaded.

1 ledRed :: Word8
2 ledRed = 9
3
4 digitalSoundPin :: Word8
5 digitalSoundPin = 3
6
7 soundTask :: Arduino ()
8 soundTask = do
9 loop $ do

10 digitalVal <- digitalRead digitalSoundPin
11 if digitalVal
12 then do
13 digitalWrite ledRed True
14 else do
15 digitalWrite ledRed False
16 delayMillis 50

In order to execute the program, the pin modes must
first be defined. Here the two LEDs are outputs and the
digitalSoundPin is an input. Now the two tasks can
be created with createTask. Besides the function to
be executed, an id is also passed. With scheduleTask,
the task with the corresponding id can be started at
the desired time. Here both tasks are started at the
beginning.

1 start :: Arduino ()
2 start = do
3 setPinMode led OUTPUT
4 setPinMode ledRed OUTPUT
5 setPinMode digitalSoundPin INPUT
6
7 createTask 1 $ ledTask
8 createTask 2 $ soundTask
9 scheduleTask 1 0

10 scheduleTask 2 0

The translated C program will look as follows. First,
setup is defined, which initiates the memory and starts
the haskinoMain task. As can be seen, it is identical to
that of the blink example.

1 // simplified
2 void setup () {
3 haskinoMemInit ();
4 // 255 is the id of the task haskinoMain
5 createTask (255 , haskinoMain);
6 scheduleTask (255 , 0);
7 startScheduler ();
8 }

The main program sets the pin modes as well as
creating and scheduling the two tasks.

1 // simplified
2 void haskinoMain () {
3 pinMode (13 , OUTPUT);
4 pinMode (9 , OUTPUT);
5 pinMode (3 , INPUT);
6
7 createTask (1 , task1); // led task
8 createTask (2 , task2); // sound task
9 scheduleTask (1 , 0);

10 scheduleTask (2 , 0);
11
12 taskComplete ();
13 }

The first task with the blink program works as in the
previous example.

1 // simplified
2 void task1 () { -- led task
3 while (1) {
4 digitalWrite (13 , 1);
5 delayMilliseconds (1000) ;
6 digitalWrite (13 , 0);
7 delayMilliseconds (1000) ;
8 }
9 taskComplete ();

10 }

The second task stores the value read by digitalRead
under bind3 and performs the corresponding
digitalWrite.

2023-10-13 09:57. Page 4 of 1–7.

Embedded Programming with Embedded Domain-Specific Languages (EDSLs) in Haskell

1 // simplified
2 void task2 () { -- sound task
3 bool bind3 ;
4
5 while (1) {
6 bind3 = digitalRead (3);
7
8 if (bind3) {
9 digitalWrite (9 , 1);

10 } else {
11 digitalWrite (9 , 0);
12 }
13
14 delayMilliseconds (50);
15 }
16 taskComplete ();
17 }

3 Using FRP on Arduino
The examples just described are reactive applications.
The states of the LEDs change depending on the input
or after the time specified by the delay has elapsed. Re-
active applications can quickly become too complicated
to program and therefore difficult to change. FRP is a
declarative approach to programming reactive applica-
tions, which makes the code more modular. Furthermore,
FRP provides a structured method for handling events
that makes it easier to express complex event-driven
behaviors.

By using FRP, the description of what the program is
supposed to do is separated from the instructions to the
output. In the blink example, the description of the pro-
gram would be to change the state of an LED every sec-
ond. The result can be represented as a time-continuous
signal showing either zero or one and changing every
second. The output sets the voltage level of the pin of the
LED based on the current value of the signal. The output
calls digitalWrite at regular intervals and passes the
current value of the signal. So, the output does not care
about how long an LED is supposed to stay on or off. If
the delay is longer, the output calls digitalWrite more
often with the same value.

This approach is more modular than the imperative
approach. For example, it would be possible to replace
the output to the hardware with an output to a graphi-
cal user interface (GUI) to simulate the execution of a
program. Because of the modularization, the program-
ming of the LED signal does not need to be adapted.
So, it would be convenient to be able to use FRP when
programming the Arduino as well. The following sections
demonstrate how to implement the blink program for
the Arduino in the shallow and deep EDSL using FRP.

3.1 FRP with Shallow EDSL
With Haskino’s shallow EDSL, the use of FRP is not
a problem because the program runs in the Haskell
environment. This makes it possible to integrate external

libraries into the program code. One FRP framework
that has been used for robotics applications is Yampa.
In Yampa, signals do not exist directly as types but
can be created and transformed using signal functions.
The type SF a b can be read as a signal function that
takes a signal containing a value of type a as input
and produces a signal containing a value of type b as
output [HCNP03].

To implement the blink example using Yampa, a sig-
nal function is created that defines the behavior of the
LED. This is then linked to the instructions for the LED
pin. The behavior of the LED can be represented as a
signal that indicates either True or False, depending
on whether the LED should be turned on or off.

The blink program should first initialize the LED pin
and then execute the program. In Yampa, this can be
done with the reactimate function.

1 reactimate :: Monad m
2 -- Initialization action
3 => m a
4 -- Input sensing action
5 -> (Bool -> m (DTime , Maybe a))
6 -- Output processing action
7 -> (Bool -> b -> m Bool)
8 -- Signal function
9 -> SF a b

10 -> m ()

The invocation of the function reactimate within the
blink program looks like the following.

1 progBlink = do
2 setPinMode led OUTPUT
3 t <- liftIO $ getCurrentTime
4 timeRef <- liftIO $ newIORef t
5 reactimate
6 firstInput
7 _ -> nextInputs timeRef
8 _ ledState -> output
9 (toggle False)

The function reactimate runs toggle that defines
the behavior of the LED. It generates a Boolean signal
that toggles its value every second.

1 toggle :: Bool -> SF a Bool

The resulting output signal is linked by reactimate
to the desired output processing, in this case, the func-
tion output. This function executes the digitalWrite
command to set the LED to the value received from the
signal function. The discarded Boolean signifies a change
in the output of toggle, while the return value indicates
whether to stop the execution of reactimate.

1 output :: Bool -> Bool -> Arduino Bool
2 output _ x = do
3 digitalWrite 13 x
4 return False -- continue forever

The function reactimate also allows to pass external
inputs to the signal function, e.g. when a button is
pressed. These inputs can be passed in nextInputs. The
argument indicates if it can block. In addition, an initial

2023-10-13 09:57. Page 5 of 1–7.

Eliane I. Schmidli

input can be specified in firstInput. For the blink
example, no inputs are used.

1 firstInput :: Arduino () -- input at time zero
2 firstInput = return ()
3
4 nextInputs
5 :: IORef UTCTime
6 -> Bool
7 -> Arduino (Double , Maybe ())
8 nextInputs timeRef _ = do
9 now <- liftIO $ getCurrentTime

10 lastTime <- liftIO $ readIORef timeRef
11 liftIO $ writeIORef timeRef now
12 let dt = now `diffUTCTime ` lastTime
13 return (realToFrac dt , Nothing)

3.2 FRP with Deep EDSL
Running an FRP program directly on the Arduino is
more complex. The deep EDSL should represent the
program to be executed as an AST. This means that any
new functionality has to be integrated into the struc-
ture and the evaluation of the AST has to be adapted
accordingly. In the case of Haskino, when translating
from shallow EDSL to deep EDSL, the translation of
the FRP functions in the example before is not defined.
Therefore, Haskino has no way to run FRP directly on
the Arduino at the moment.

However, it is possible to program the Arduino with
FRP, as shown by the frp-arduino Haskell library. This
deep EDSL allows writing FRP programs in Haskell and
compiles them to C code that can be run on the Arduino.
It is important to note that the frp-arduino library’s
capabilities are tailored specifically to the Arduino. In
contrast, Yampa is an FRP library in Haskell that can
produce a signal that can be interpreted by various
systems.

The blink program can be implemented in frp-arduino
as follows [Lin19].

digitalOutput pin13 =: clock ~> toggle

The clock function produces a signal (called a stream
in the library) incrementing an integer at a given time
interval. The ~> operator is used to pass the resulting
signal to the toggle function. This produces a signal
with one bit set based on the input signal. If the input
signal contains an even number, the bit is set to 1, and
if it contains an odd number, the bit is set to 0.

clock :: Stream Word

(~>) :: Stream a -> (Stream a -> Stream b) ->
Stream b

toggle :: Stream Word -> Stream Bit

The =: operator appends the resulting output signal to
pin 13. This turns the LED on and off depending on the
signal.

(=:) :: Output a -> Stream a -> Action ()

digitalOutput :: GPIO -> Output Bit

pin13 :: GPIO

The Haskell program is then compiled into a C pro-
gram and loaded onto the Arduino. The resulting C pro-
gram can be seen in the examples of frp-arduino [Lin15].
To summarize the C program in a simplified way, a
main loop is executed checking if a time interval has
expired and, if so, executing digitalWrite with the
corresponding bit.

It is therefore possible to take advantage of FRP also
in deep EDSL. To use it in Haskino, the structure and
the interpretation must be adapted accordingly.

4 Conclusion
Using Haskell instead of C to program the Arduino can
make the program code more modular and therefore
easier to program and maintain. There are several ways
to run Haskell on embedded systems. A simple solution
is a shallow EDSL, like the one provided by Haskino.
The user can program Haskell as usual, using Haskell
libraries such as Yampa. Running the code directly on
the Arduino without a connection to a computer requires
the use of a deep EDSL. This leads to a more efficient
program execution, but also to a higher implementation
effort. For example, when using a library like Yampa, the
functionality has to be integrated into the deep EDSL.

The uses of EDSLs shown in this paper only allow the
translation from Haskell to C code. In none of the vari-
ants can the hardware be controlled directly with Haskell.
Furthermore, all the presented libraries are specifically
designed for the Arduino. A more direct and general
approach is provided by Conal Elliott [Ell17].

References
[Ard23] Arduino. Arduino documentation: Blink. https://

docs.arduino.cc/built-in-examples/basics/Blink, 2023.
Accessed: 2023-05-15.

[Aug12] Lennart Augustsson. Tech mesh 2012 - making edsls
fly - lennart augustsson. https://www.youtube.com/
watch?v=7gF7iFB4mFY, 2012. Accessed: 2023-05-15.

[Baa09] Christiaan Baaij. C𝜆ash : from haskell to hardware,
December 2009.

[Ell17] Conal Elliott. Compiling to categories. Proc. ACM
Program. Lang., 1(ICFP), aug 2017.

[EPW15] Trevor Elliott, Lee Pike, Simon Winwood, Pat Hickey,
James Bielman, Jamey Sharp, Eric Seidel, and John
Launchbury. Guilt free ivory. In Haskell Symposium.
ACM, 2015. Available at https://leepike.github.io/
pub_pages/ivory.html.

[Erk22] Levent Erkök. Hackage package: harduino. https://
hackage.haskell.org/package/hArduino, 2022. Accessed:
2023-05-15.

2023-10-13 09:57. Page 6 of 1–7.

https://docs.arduino.cc/built-in-examples/basics/Blink
https://docs.arduino.cc/built-in-examples/basics/Blink
https://www.youtube.com/watch?v=7gF7iFB4mFY
https://www.youtube.com/watch?v=7gF7iFB4mFY
https://leepike.github.io/pub_pages/ivory.html
https://leepike.github.io/pub_pages/ivory.html
 https://hackage.haskell.org/package/hArduino
 https://hackage.haskell.org/package/hArduino

Embedded Programming with Embedded Domain-Specific Languages (EDSLs) in Haskell

[Fow19] Martin Fowler. Domain-specific languages guide. https:
//martinfowler.com/dsl.html, 2019. Accessed: 2023-06-
14.

[GD16] Andy Gill and Justin Dawson. Hackage package:
remote-monad. https://hackage.haskell.org/package/
remote-monad, 2016. Accessed: 2023-06-14.

[GG19] Mark Grebe and Andy Gill. Threading the arduino
with haskell. In David Van Horn and John Hughes,
editors, Trends in Functional Programming, pages 135–
154, Cham, 2019. Springer International Publishing.

[GSD15] Andy Gill, Neil Sculthorpe, Justin Dawson, Alek-
sander Eskilson, Andrew Farmer, Mark Grebe, Jeffrey
Rosenbluth, Ryan Scott, and James Stanton. The
remote monad design pattern. In Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell, Haskell
’15, page 59–70, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[GYG17] Mark Grebe, David Young, and Andy Gill. Rewriting
a shallow dsl using a ghc compiler extension. Pro-
ceedings of the 16th ACM SIGPLAN International

Conference on Generative Programming: Concepts
and Experiences, 2017.

[HCNP03] Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Advanced Functional Programming:
4th International School, AFP 2002, Oxford, UK,
August 19-24, 2002. Revised Lectures, pages 159–187.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[Lin15] Rickard Lindberg. frp-arduino examples:
Blink.c. https://github.com/frp-arduino/frp-
arduino/blob/master/examples/Blink.c, 2015.

[Lin19] Rickard Lindberg. frp-arduino. https://github.com/
frp-arduino/frp-arduino, 2019.

[PWNG12] Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn
Goodloe. Experience report: A do-it-yourself high-
assurance compiler. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional
Programming, ICFP ’12, page 335–340, New York, NY,
USA, 2012. Association for Computing Machinery.

2023-10-13 09:57. Page 7 of 1–7.

https://martinfowler.com/dsl.html
https://martinfowler.com/dsl.html
 https://hackage.haskell.org/package/remote-monad
 https://hackage.haskell.org/package/remote-monad
https://github.com/frp-arduino/frp-arduino/blob/master/examples/Blink.c
https://github.com/frp-arduino/frp-arduino/blob/master/examples/Blink.c
https://github.com/frp-arduino/frp-arduino
https://github.com/frp-arduino/frp-arduino

	Abstract
	1 Introduction
	1.1 Embedded and External DSL
	1.2 Shallow and Deep EDSL
	1.3 Embedded Programming with Haskell

	2 Haskino
	2.1 Interpreted interactive system
	2.2 Compiled System
	2.3 Haskino Example with Threads

	3 Using FRP on Arduino
	3.1 FRP with Shallow EDSL
	3.2 FRP with Deep EDSL

	4 Conclusion
	References

