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Abstract
The Islanders artwork by Pors & Rao is a robot applica-
tion reacting to the sounds in the room and controlling
actuators. The control software is written in a low-level
imperative style, intertwining the program sequence and
commands for the actuators. Furthermore, the program
code describes the behavior of the program depending on
the current state of the actuators. It is difficult to com-
prehend where the state transitions are initiated. This
way of programming complicates the comprehension of
the code making modifications in the program sequence
arduous. Functional Reactive Programming (FRP) is
a composable, modular way to program reactive appli-
cations. With FRP, the code was redesigned, making
it more customizable, especially for people with little
programming experience. The redesign uses Yampa, an
FRP implementation in Haskell using Arrows as the ba-
sic structuring framework. The resulting design is very
promising. The state transitions clearly show which event
triggers which reaction, making the code much more un-
derstandable. The new design separates the control of
the hardware from the implementation of the program
flow. This makes it possible to use the same code with
different peripheral devices.

1 Introduction
The Islanders1 artwork was created by the artist duo
Pors & Rao [Rao20]. It is a composition of different-sized
panels mounted on three walls. When the room becomes
quiet, black silhouettes of tiny figures slowly start to
creep out from behind the panels. First, they peep over
the edge, and after a while, they move further out. A
loud noise in the room causes the creatures to retreat
and hide behind the panel again. At a soft sound, a few
creatures do not hide completely but still peek over the
edge [Rao06].

The movements of the figures appear life-like due
to a behavioral algorithm. A random factor makes the
islanders move differently from each other. Depending
1The artwork is presented in the talk: “High-tech art (with a sense
of humor)” by Aparna Rao: https://youtu.be/kJLDl2uDNaA?t=111

on the sound volume, the figures move faster or slower.
If the sound level in the room is high, the figures are
more likely to hide completely and stay hidden longer.

The current control software is written in a state
machine style. Depending on the state of the islanders,
different instructions are sent to the actuators. But it
is difficult to understand where in the code the state
changes are triggered. This makes changes in the program
sequence error-prone. Section 3.1 describes the original
implementation of the control software in more detail.

FRP is a composable, modular way to code reactive
applications. With the help of FRP, the control software
was redesigned leading to better understandable code.
Instead of sending commands directly to the actuators,
in FRP a signal is created that indicates the current
positions of the islanders. This can then be interpreted
by various outputs. In the real artwork, commands can
be transmitted to the actuators to move the islanders to
the current values of the position signal. The same signal
can also be used for a simulation where the Graphical
User Interface (GUI) places the islanders at their current
positions. A change of position then has the effect of an
animation.

Section 2 provides a first introduction to the concept of
FRP. The new design of the control software is presented
in section 3. Section 4 provides some implementation
details and highlights the strengths and weaknesses of
using the FRP concept.

2 FRP and Yampa
This section introduces the main concepts of FRP and
Yampa [HCNP03] that are relevant to understand this
paper.

2.1 FRP
FRP is the intersection of functional programming and
reactive programming. Reactive programming means
that a program is event-based and acts in response to
its input. Unlike the imperative style, FRP proposes a
declarative approach to program reactive applications.

A simplified example of how to think of FRP is a
spreadsheet. A spreadsheet consists of cells that can
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contain values or functions. For example, a function can
check whether the value in a particular cell is larger than
the value in another particular cell. When programming
the function, the user describes the dependency of the
result on the two cells (result = cell1 > cell2). If
the value in a cell is changed, the result is automati-
cally updated. The refreshing is done by the spreadsheet
program. In imperative programming, the refreshing of
the values has to be specified by the programmer [BJ16,
Chapter 1].

In 1997, the concept of FRP was implemented by
Conal Elliott and Paul Hudak in Fran. Fran is a domain-
specific language (DSL) for animations in Haskell. Fran
makes it possible to separate the presentation of anima-
tions from the description of the animations [EH97].

Two years later, the FRP concepts were applied to
Frob, a DSL for use in robotic systems. Frob hides the
details of low-level robot programming and makes pro-
gramming more hardware independent. Unlike Fran,
Frob must also manage hardware control, which adds an
additional layer of complexity [PHE99].

The following sentence from [PHE99] makes this dif-
ference clear.

“For one thing, an animated figure will al-
ways do what you ask; but a robot will
not!”

2.2 Yampa
Yampa is an FRP implementation inspired by Fran
and Frob. Yampa is more application-independent and
is used in various areas such as robotics, GUI appli-
cations, and games [HCNP03]. For instance, Pembeci,
Nilsson, and Hager [PNH02] have built vision-guided,
semi-autonomous robots with FRP using Yampa.

2.2.1 Signals and Events The most important concepts
of FRP in Yampa are Signals and Events. A Signal is
a continuous, time-varying value. It can be understood
as a mapping of a value of type Time to a value of type
a: Time -> a

Figure 1. An example of an integer Signal that changes
its value over time.

Figure 1 visualizes an example of an integer Signal.
During runtime, a Signal always contains a value. The

program code defines at which event the value of a
Signal changes and how. A Signal automatically keeps
its value up to date.

Events in Yampa (for example, when a mouse click
happens) have a similar structure to Haskell’s Maybe
data type. An event stream can be understood as a
Signal (Event b), which is a Signal that yields either
nothing or an Event with a value of type b. The value
of type b is generated each time the event occurs. For
example, the current position of the mouse can be at-
tached to the event. A visualization of an event stream
Signal (Event Int) can be found in Figure 2.

Figure 2. An example of a Signal that yields nothing
or an Event containing a value of type Int.

The concept of Signal enables the writing of pro-
grams that have time2 and space leaks3. The reason for
this is beyond the scope of this paper. Yampa solves
this problem by not allowing Signals as first-class values.
The value contained in a Signal can only be modified
using signal functions. These cannot be constructed di-
rectly, but only using a set of given combinators. The
given combinators ensure that time and space leaks are
avoided. In Yampa, this concept was implemented with
the help of arrows, a generalization of monads proposed
by John Hughes [Hug00].

A signal function SF a b is an instance of the Arrow
class and can be thought of as a mapping of Signals to
Signals: Signal a -> Signal b.

2.2.2 Example To better understand how signal func-
tions work, this section provides a small example. It
creates an animation of a straightforward motion of an
object. The animation can be started and controlled
using mouse clicks. Depending if the left or the right
button is clicked, the current speed is slow or fast. The
result is a signal that represents the position. Its value
should be zero at the beginning and after a mouse click,
increase with the corresponding speed. The resulting sig-
nal can be interpreted by a GUI to create an animation
of an arbitrary object as shown in Figure 3.

2[HCNP03] includes a definition of a time leak in a real-time
system.
3The section “Introduction” of [Kri13] provides a good example
of how a space leak can occur.
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Figure 3. Animation of a star depending on the posi-
tion pos. The direction is determined by the definition of
the coordinates in the GUI. E.g. the coordinates on the
left correspond to a movement along the x-axis, whereas
those on the right result in a movement along the y-axis.

2.2.2.1 Creation of a Position Signal The example
starts with the creation of a signal function with constant
to represent the velocity. It is of type constant ::
b -> SF a b and creates a signal function providing
an output signal with a constant value.

1 type Velocity = Double
2
3 velocity :: Velocity -> SF () Velocity
4 velocity v = constant v

To calculate the position based on a constant velocity,
the value of the input signal must be integrated with
the signal function integral (see Figure 4).

Figure 4. Visualization of integral accumulating a con-
stant input value over time.

To pass the output signal of velocity to the integral
signal function, as in Figure 5, a combinator is needed.
One possibility to link a signal function with another is
the operator >>>.

(>>>) :: SF a b -> SF b c -> SF a c

Now the function positionSF can be defined that
will increase the value of the resulting signal steadily.
This can be interpreted as a movement with a constant
speed v.

1 type Position = Double
2
3 positionSF :: Velocity -> SF () Position
4 positionSF v = velocity v >>> integral

Figure 5. Visualization of positionSF. The arrow repre-
sents the signal that is modified by the signal functions
velocity and integral.

2.2.2.2 Start on Mouse Click Now the movement should
start when a mouse click occurs. So, the velocity should
first be zero, and after the mouse click set to the slow
speed (here ten). For this, the function hold is needed.
This function receives a start value as a parameter and
creates a signal function from it. This signal function
takes an event stream as input and produces an output
signal. In the beginning, the output signal holds the start
value. When an event occurs, the value is replaced by
the value of the event.

hold :: a -> SF ( Event a) a

The output signal of hold should indicate the new
speed after the click. For this, the velocity must be
attached to the event using the function tag.

tag :: ( Event a) -> b -> ( Event b)

Figure 6 visualizes the transformation of the event
stream to the position signal. First, the input signal
yields nothing and hold produces a signal containing
the value zero. Therefore, the output signal of integral
also indicates zero. When a mouse click event occurs, ten
is attached to it, and hold changes the value accordingly
to ten. After the change, integral starts increasing the
value of the position.

Figure 6. Visualization of positionSF transforming the
event stream to the position signal. Note that tag is not
a signal function.

The new version of positionSF receives the mouse
event of type Event() as an input signal. To apply tag,
the event has to be extracted from the signal. This is
possible in the arrow notation. The structure is similar
to the do notation as an alternative monad syntax and
looks like this:
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1 proc input -> do
2 result1 <- signalFunction1 -< input1
3 result2 <- signalFunction2 -< input2
4 returnA -< result

The new version of positionSF in arrow notation
looks like this:

1 positionSF' :: SF ( Event ()) Position
2 positionSF' = proc click -> do
3 v <- hold 0 -< click `tag ` 10
4 pos <- integral -< v
5 returnA -< pos

The extracted value of the input signal is click of
type Event(). The event is tagged with ten and is passed
to the signal function (hold 0). This produces an output
signal containing the current velocity. The velocity v can
be passed to the function integral which produces the
output position pos. With returnA the value pos is
wrapped in the outgoing signal.

2.2.2.3 Switch between Speeds To switch between two
different speeds depending on the left and right click of
the mouse, two event streams must be used. This can be
realized by changing the input signal of programSF' to
the type (Event(), Event()). Then a different speed
is tagged to each of the two click events. To use hold,
both event streams have to be merged into one. For this,
we have to decide which of the two events has priority
when both occur simultaneously. With rMerge, the right
event is always preferred4 as in Figure 7.

rMerge :: ( Event a) -> ( Event a) -> ( Event a)

Figure 7. Visualization of rMerge. It merges the two
event streams preferring the events from the second
stream.

Here is the new implementation of positionSF', where
lbp corresponds to a left mouse click, and rbp to a right
mouse click. Each time the left mouse button is pressed,
v corresponds to the value 10, and when the right but-
ton is pressed to the value 20. The position is increased
accordingly faster or slower.
4Note that there are different versions of merges: https://hackage.
haskell.org/package/Yampa-0.14/docs/FRP-Yampa.html#g:10

1 positionSF'' :: SF ( Event () , Event ()) Position
2 positionSF'' = proc (lbp , rbp) -> do
3 v <- hold 0 -< lbp `tag ` 10
4 `rMerge ` rbp `tag ` 20
5 pos <- integral -< v
6 returnA -< pos

3 Design Concept
The core of the control software is the description of the
behavior of the islander. This section covers how the
code of the current software could be implemented in
Yampa.

3.1 Current Implementation
The current code of the Islanders artwork is written in
imperative style. The program is running in a loop and at
every iteration, the control software of every actuator is
executed. It depends on the current state of the actuator
instance which instructions will be executed.

In this code section, a simplified version of such an
actuator control program is shown. In the hide state,
the actuator moves the islander to the hiding position. In
the go_peeking state, the islander waits for a specified
time and then starts to creep out to the peeking position.
In the go_standing state, the islander waits again and
then moves to the standing position. In the 'wait' state,
nothing happens.

1 def program ( state ):
2 switch state
3
4 case 'hide ':
5 actuator .move (0 , hidingV )
6 waitUntil = currentTime + waitingTime
7 state = 'go_peeking '
8
9 case 'go_peeking ':

10 if currentTime > waitUntil :
11 actuator .move( peekPos , peekV )
12 state = ' go_standing '
13 waitUntil = currentTime + waitingTime
14
15 case ' go_standing ':
16 if currentTime > waitUntil :
17 actuator .move( standPos , standV )
18 state = 'wait '
19
20 case 'wait ':
21 # do nothing
22 pass

This program describes the behavior of an islander
and at the same time passes the instructions to the
actuator. It is well-visible what happens in each state.
However, it is unclear when and where a state is set.
For example, hide is set outside the program function.
When making changes in the program flow, it must first
be exactly understood where these transitions occur
to make changes in the correct places. Therefore, all
occurrences of the state name have to be searched in the
project.
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3.2 New Design in FRP
In FRP it is possible to separate the behavior of the
islander and the control of the actuators or the anima-
tions. The behavior can be implemented in a function
producing a signal that indicates the current position
of each islander. The function changes the value of this
signal according to the input signal providing the sound
level in the room. For example, if the noise exceeds a
certain level, the islanders hide at position zero, and if it
is quiet, they move out and the position is increased ac-
cordingly. Each islander has its own motion parameters,
thus the positions of the islanders in the output signal
will differ from each other.

The output signal containing the islanders’ positions
can be consumed by actuators. The actuators always
move to the current position in the signal. At the value
zero, the islander is hidden and the actuator is fully
retracted. At the maximum position value, the islander
is standing and the motor is fully extended.

The control of the microphone in the artwork produces
events when certain sound levels are exceeded. In the
new design, a sound signal is used that displays the
values zero to two and changes depending on the events
from the microphone. When it is quiet, the signal shows
zero and the islanders start to crawl out. When there is
a small noise, the signal changes the value to one and
the islanders move backward and hide. A few islanders
will still peek over the edge. If there is a loud noise, the
value is set to two and all islanders hide.

This structure enables the separation of the islanders’
behavior from the representation in the output. Changes
to the behavior of the islanders are therefore automati-
cally visible without modifying the control of the actua-
tors. Furthermore, the actuators can be replaced with
another output device. So, a simulation of the artwork
was created using the keyboard as input and a GUI as
output. The behavior of the islanders is defined with
the same code as the actuators use. Figure 8 shows a
screenshot of the GUI from the resulting application.

In the simulation, the events from the microphone
are imitated with the keyboard number keys zero to
two. The output signal is passed to the GUI that always
draws the islander at the current position. Depending
on which side of the panel the islander is located, the
GUI changes the coordinates of the x or y axis based
on the position from the output signal. So, the islander
moves along the corresponding axis. If an islander is
stationary, its position remains at the same value and
the coordinates do not change.

The following sections further describe the implemen-
tation of the behavior of the islanders. At the end of
section 4, an excerpt from the islanders code is provided.

Figure 8. GUI of the Islanders Simulation

3.2.1 Execution In order to execute the function defin-
ing the behavior indefinitely, Yampa offers the function
reactimate. It allows receiving new inputs and process-
ing the outputs.

1 reactimate :: Monad m
2 -- Initialization action
3 => m a
4 -- Input sensing action
5 -> ( Bool -> m ( DTime , Maybe a))
6 -- Output processing action
7 -> ( Bool -> b -> m Bool )
8 -- Signal function
9 -> SF a b

10 -> m ()

1 reactimate
2 ( initializationAction )
3 (\_ -> inputSensingAction )
4 (\_ positions -> outputProcessingAction

positions )
5 islandersBehavior

The initializationAction function defines the first
input at the beginning of the execution. In this case,
the sound should be zero. After the start of the ex-
ecution, the function inputSensingAction returns ei-
ther new keyboard input or sound events from the mi-
crophone. The discarded Boolean argument indicates
if the inputSensingAction can block. The function
islandersBehavior of type SF a [Pos] creates a sound
signal that is altered depending on the input. Then
it starts for each islander the islander signal func-
tion and passes the sound signal as input. The result-
ing positions of each islander are gathered together
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and passed to the outputProcessingAction function,
which sends them to the GUI or the actuators. The
first argument indicates if the output has changed. The
outputProcessingAction should return True if the func-
tion reactimate should stop otherwise the execution
continues.

The function islander defines the current behavior
of an islander. It takes the sound as an input. Then it cal-
culates the current velocity with the function behavior
and then integrates the velocity to calculate the current
position.

1 islander :: SF Sound Pos
2 islander = proc sound -> do
3 rec
4 v <- behavior -< ( sound , pos)
5 pos <- integral -< v
6 returnA -< pos

The behavior function needs the sound and the cur-
rent position as input. This allows the function to adjust
the speed according to the sound level and to stop the
islander’s movement at certain positions. The position
is an input and output which leads to a recursive call
(see Figure 9). To enable this, the keyword rec is used
in the arrow notation.

Figure 9. Visualization of islander transforming the
sound signal to a position signal.

3.2.2 Behavior of the Islander The state transitions of
the islander’s behavior can be implemented with switch.
It switches once between two signal functions of type
SF a b when an event occurs in the given event stream5

of type Event c.
1 switch
2 :: SF a (b , Event c)
3 -> (c -> SF a b)
4 -> SF a b

The first parameter is a signal function combining
the current behavior Signal b with the event stream
Signal (Event c). If an event occurs, its value is passed
to the function in the second parameter of switch that
creates the signal function with the new behavior. After
the switch, the new signal function is applied.

For example, the state transition to hide would be
implemented as follows:

5Note that there are different versions of the function
switch: https://hackage.haskell.org/package/Yampa-0.14/docs/
FRP-Yampa.html#g:11

1 goHiding :: SF ( Sound , Pos) (Vel , Event ())
2
3 behavior :: SF ( Sound , Pos) Vel
4 behavior = ( creepOut `doUntil ` danger )
5 `switch ` (\_ -> goHiding
6 `switch ` const behavior )

The function creepOut describes the normal sequence
of an islander moving out. The function delivers the
corresponding velocity signal. The implementation of
creepOut is given further below. The signal function
danger produces events when the sound value in the
input signal is too high. The danger events and the
velocity of creepOut are combined into a tuple with the
function doUntil.

1 doUntil
2 :: SF a b
3 -> SF a ( Event c)
4 -> SF a (b , Event c)
5 doUntil behavior event = behavior &&& event

The operator &&& combines the behavior and the event
stream and is of the following type:

(&&&) :: SF b c -> SF b c' -> SF b (c , c')

When an event occurs in danger, it will trigger the
switch. From this moment the velocity will be defined
by the function goHiding, which sets the velocity to
a high negative value until the islander arrives at the
hiding position. The underscore in the lambda function
after the switch means, that the input parameter (the
value of the event triggering the switch) is discarded. As
soon as the islander arrives, the behavior will recursively
switch to the behavior function to restart the crawling
process.

The moving out of an islander in the creepOut signal
function would look like this.

1 creepOut :: SF ( Sound , Pos) Vel
2 creepOut = (stop `doUntil ` safe)
3 `switch ` (\_ -> waitBeforePeek
4 `switch ` (\_ -> goPeeking
5 `switch ` (\_ -> waitBeforeStand
6 `switch ` (\_ -> goStanding
7 `switch ` const stop))))

With the implementation using FRP, it becomes clear
as to which event is causing which reaction. First, the
islander waits until it is quiet or safe. Then it waits for its
individual waiting time. Up to this moment, the output
signal for the speed contains the value zero. When the
time is up, the behavior changes to forward motion until
the peeking position has been reached. The output signal
holds the resulting velocity value during this time. The
behavior changes again when the arrival event occurs,
and the velocity is set to zero. The movement to the
standing position then works analog to the previous
sequence. Upon arrival there, the velocity value remains
at zero.
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3.2.3 Movement To move the islander to a position,
a signal indicating the speed and an event stream are
needed. When the islander reaches the target position,
the event stream generates an event triggering the switch
in creepOut. Then, one of the wait signal functions will
be executed which sets the velocity to zero.

The function goPeeking combines the velocity with
the arrival event. As seen in the Yampa example, a
velocity signal can be created with constant.

1 goPeeking :: SF ( Sound , Pos) (Vel , Event ())
2 goPeeking = constant peekV `doUntil `

arrivalPeeking

In the function arrivalPeeking, the condition
hasArrived is checked. Therefore, the current position
of the islander needs to be extracted from the input
signal using the arrow notation. As soon as the condi-
tion is true, the signal function created by edge of type
SF Bool (Event ()) will generate an event.

1 arrivalPeeking :: SF ( Sound , Pos) ( Event ())
2 arrivalPeeking = proc (_ , pos) -> do
3 let hasArrived = peekPos <= pos
4 event <- edge -< hasArrived
5 returnA -< event

3.2.4 Waiting To stay in a position for a certain time,
the functions stop and timeToPeek are needed.

1 waitBeforePeek :: SF ( Sound , Pos) (Vel , Event ())
2 waitBeforePeek = stop `doUntil ` timeToPeek

The signal function stop produces a signal with a
value of zero.

1 stop :: SF () Vel
2 stop = constant 0

In order to generate an event at a specific time, there
is the function after. It takes a time and a value and
then produces the event with the corresponding value
at the corresponding time.

after :: Time -> b -> SF a ( Event b)

The implementation of the function timeToPeek is
given below. Since the event value does not matter () is
used.

1 waitingTime :: Time
2
3 timeToPeek :: SF ( Sound , Pos) ( Event ())
4 timeToPeek = after waitingTime ()

4 Implementation Details
This section describes how the code was adapted to make
the islanders life-like and how the hardware connection
and another version of the artwork were implemented.
Also, the advantages and difficulties of FRP encountered
during these tasks are presented.

4.1 Making the Islanders life-like
The artwork is characterized by the fact that the figures
look life-like. This is because the figures move differently
due to randomly generated parameters. Furthermore,
according to a behavior algorithm, different ranges for
waiting times and speeds are used depending on the
sound level. For instance, at a high sound level, the
figures move more nervously or faster and remain longer
in a position.

In order to keep the first implementation as simple
as possible, the algorithm was simplified. There are pre-
defined value ranges in which the state variables of an
islander can lie.

1 type VelRange = (Vel , Vel)
2 type PosRange = (Pos , Pos)
3 type TimeRange = ( Time , Time )
4
5 data IslanderState = IslanderState
6 {
7 waitToPeek :: TimeRange ,
8 waitToStand :: TimeRange ,
9 hiding :: (Pos , VelRange ) ,

10 peeking :: ( PosRange , VelRange ) ,
11 standing :: (Pos , VelRange ) ,
12 isHidingComplete :: Bool
13 }

In the beginning, the islanders’ states are created with
random values in the corresponding ranges. Instead of
increasing these ranges for loud noises and setting new
random values, the values are increased by a factor for
each loud noise. Every time it is quiet, the values are
decreased by a factor again. The original values serve as
a lower limit. The following sections describe difficulties
encountered during implementation.

4.1.1 Missed Events During the implementation of the
differing behavior of the islanders, the application began
to behave strangely. The problem was finally found in
the signal function safe, which triggers the first switch
in creepOut. The function always generated an event
when the sound signal changed to zero.

1 edge :: SF Bool ( Event ())
2
3 -- old implementation of safe
4 safe :: SF ( Sound , Pos) ( Event ())
5 safe = proc ( sound , _) -> do
6 event <- edge -< sound == 0
7 returnA -< event

For all islanders that were waiting in the hiding position
at this time, this event triggered the switch. However, if
an islander was not yet in the hiding position, it missed
the event and did not reappear until it became quiet
again after a loud event.

To solve the problem, events must be generated repeat-
edly while it is quiet. Therefore, a signal function quiet
of type SF Sound Bool was added to safe. When the
sound signal becomes zero, the output signal of quiet
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is set to True, and when the sound increases to False
again. To repeatedly create events while the sound is
zero, repeatedly is used and combined with gate. The
function repeatedly creates repeating events and gate
disables all events during the time quiet has the value
False.

1 gate :: Event a -> Bool -> Event a
2 repeatedly :: Time -> b -> SF a ( Event b)
3
4 -- new implementation of safe
5 safe :: SF ( Sound , Pos) ( Event ())
6 safe = proc ( sound , _) -> do
7 isQuiet <- quiet -< sound
8 clockEvent <- repeatedly 1 () -< ()
9 returnA -< clockEvent `gate ` isQuiet

4.1.2 Islander State as a Signal To change the behavior
of the islanders over time (e.g. increase the speed with
louder sounds) the islander’s state should be passed as
an input signal. During the realization, the function
creepOut had to be adapted. The problem was that
the function creepOut uses functions like after and
constant. Based on the parameters passed, they create
a signal function at the beginning of the execution. For
example, after creates a signal function that creates an
event as soon as the time is up. In the example below,
the event stream created by after creates an event at
time waitToPeek stored in the islander’s state.

1 timeToPeek
2 :: IslanderState
3 -> SF ( Sound , Pos) ( Event ())
4 timeToPeek state = after ( waitToPeek state ) ()

If the state parameter is passed in the input signal
to timeToPeek, it can no longer be used as a function
parameter as after requires. The reason for this is that
the input signal’s value can change over time, which
requires repeated creation of signal functions. The value
of an input signal can only be passed again as an input
signal to other signal functions. So, the following code is
therefore not possible:

1 timeToPeek
2 :: SF ( IslanderState , Sound , Pos) ( Event ())
3 timeToPeek = proc ( state , _ , _) -> do
4 -- this does not compile :
5 event <- after ( waitToPeek state ) () -< ()
6 returnA -< event

The problem was solved by passing the parameter
at the switch. When the event that triggers the switch
occurs, the current islander’s state is read from the
input signal and attached to the event. The function
switch passes the value of the event as a parameter to
the creation of the new signal function that should be
executed now. Since the state is passed as a function
parameter and not as an input signal, functions like
after can be used to create the new signal function.
Here is the function safe as an example:

1 safe = proc ( state , _ , sound ) -> do
2 -- ...
3 returnA -< event `tag ` ( waitToPeek state )

The passing of the value after the switch looks like
this:

1 creepOut :: SF ( IslanderState , Pos , Sound ) Vel
2 creepOut = (stop `doUntil ` safe)
3 `switch ` (\ state -> waitBeforePeek state
4 `switch ` (\ state-> goPeeking state
5 `switch ` (\ state -> waitBeforeStand state
6 `switch ` (\ state -> goStanding state
7 `switch ` const stop ))))

The relationships between the state transitions are
still clearly visible. However, if changes are made to the
sequence, it must be ensured that all the event values
are set in the correct order.

4.2 Connect Hardware
To see how the new design would look in FRP, the ap-
plication was first created as a simulation. The sound
level is simulated with the keyboard and as output, the
islanders are displayed in the GUI. Thanks to FRP’s
modular approach, only a few changes were needed to
connect to the real artwork. The artwork uses a frame-
work that provides an interface for the microphone and
the actuators. A socket connection was implemented to
enable communication between the framework and the
Haskell code.

The biggest change was rewriting the call to the func-
tion reactimate. Instead of the keyboard, the micro-
phone data is now used as input. And instead of being
displayed in the GUI, the resulting positions are sent
to the framework. There the actuators are moved to
the new position. The difficulty was to determine the
right parameters for interpreting the current position
to ensure that the islanders do not stumble or move
differently than in the simulation.

Now, the same code can be connected to both the
simulation and the hardware. This makes it easy to
adjust and test the behavior of the islanders in the
simulation before running the code on the artwork. This
also makes it easier to identify the cause of an error. If an
error occurs in both the artwork and the simulation, it is
most likely an issue in the behavior program. Otherwise,
the problem lies in the input or output management.

4.3 Add a new Version of the Artwork
There is another artwork by Pors & Rao called “Lone
Islander” which is a variation of the Islanders artwork.
This artwork has one islander on each side of the panel.
Only one of the four islanders crawls out from behind
the panel at a time. As soon as it hides, the side is
randomly changed. This gives the viewer the feeling that
it is always the same islander.
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This version was also added to the software. Due to the
modular structure, only the function islandersBehavior
had to be adapted, which starts the islander function
for each islander. For the lone islander, it is started only
once. Every time the islander reaches the hiding posi-
tion, the new panel side is determined. The function
then returns the result of the islander function for the
current panel side and zero for the other positions.

The new panel side is determined using the func-
tion noiseR. This generates a random signal contain-
ing values in the specified range. It is based on the
pseudo-random function randomRs from the random li-
brary [oG22].

1 noiseR
2 :: ( RandomGen g , Random b)
3 => (b , b)
4 -> g
5 -> SF a b

Here is a snippet of the implementation of islander:
1 type In = ( IslanderState , Pos , Sound )
2 type Mov = (Pos , Vel)
3
4 danger :: SF In ( Event Mov)
5 danger = proc (p , y , sound ) -> do
6 small <- eventInRange smallRange -< sound
7 loud <- eventInRange loudRange -< sound
8 returnA -< ( small `tag ` hideOrPeekMov )
9 `rMerge ` (loud `tag ` hideMov )

10
11 quiet :: SF Sound Bool
12 quiet = proc sound -> do
13 quietEvent <- eventInRange quietRange -< sound
14 soundEvent <- eventInRange noiseRange -< sound
15 quiet <- hold False -< quietEvent `tag ` True
16 `rMerge ` soundEvent `tag ` False
17 returnA -< quiet
18
19 safe :: SF In ( Event Time )
20 safe = proc (p , _ , sound ) -> do
21 isQuiet <- quiet -< sound
22 clockEvent <- repeatedly 1 () -< ()
23 let onlyQuiet = ( clockEvent `gate ` isQuiet )
24 returnA -< onlyQuiet `tag ` waitToPeek p
25
26 arrivalStanding :: Pos -> SF In ( Event ())
27 arrivalHiding :: Pos -> SF In ( Event ())
28 arrivalPeeking :: Pos -> SF In ( Event Time )
29 arrivalPeeking target = proc (p , pos , _) -> do
30 let hasArrived = target <= pos
31 event <- edge -< hasArrived
32 returnA -< event `tag ` waitToStand p
33
34 stop :: SF In Vel
35 stop = constant 0
36
37 goHiding :: Mov -> SF In (Vel , Event ())
38 goStanding :: Mov -> SF In (Vel , Event ())
39 goPeeking :: Mov -> SF In (Vel , Event ())
40 goPeeking (pos , v) = constant v `doUntil `

arrivalPeeking pos
41
42 timeToPeek :: Time -> SF In ( Event Mov)
43 timeToPeek t = proc ( state , _ , _) -> do
44 event <- after t () -< ()
45 returnA -< event `tag ` peeking state
46
47 waitBeforePeek :: Time -> SF In (Vel , Event Mov)
48 waitBeforeStand :: Time -> SF In (Vel , Event Mov)
49 waitBeforePeek t = stop `doUntil ` timeToPeek t
50
51 creepOut :: SF In Vel
52 creepOut = (stop `doUntil ` safe)
53 `switch ` (\ state -> waitBeforePeek state
54 `switch ` (\ state -> goPeeking state
55 `switch ` (\ state -> waitBeforeStand state
56 `switch ` (\ state -> goStanding state
57 `switch ` const stop))))
58
59 behavior :: SF In Vel
60 behavior = ( creepOut `doUntil ` danger )
61 `switch ` (\ state -> goHiding state
62 `switch ` const behavior )
63
64 islander :: SF ( IslanderState , Sound ) Pos
65 islander = proc ( state , sound ) -> do
66 rec
67 v <- behavior -< ( state , pos , sound )
68 pos <- integral -< v
69 returnA -< pos
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5 Conclusions and Future Work
The implementation of the control software of the Is-
landers artwork with FRP brings many advantages. Due
to the modularization and the more visible state tran-
sitions, the code is more comprehensible, and thus it is
simpler to make changes in the code. However, care must
be taken when adapting code responsible for generating
events. For example, a missed arrival event will cause
the islanders to move off-screen. Furthermore, it is a pre-
requisite to know the Arrow concept to understand and
adapt the code. In a further development, an abstraction
would have to be offered that allows non-programmers
to adjust the behavior of the islanders without the use
of Arrows.

The implementation in FRP comes close to the orig-
inal implementation. The figures do not yet appear as
life-like as in the original, but this is due to the simpli-
fied implementation of the behavior algorithm. However,
the current implementation shows that it is possible to
implement the behavior algorithm in FRP in a similar
form.

Thanks to the separation of the control from the pe-
ripherals, it was easy to replace the GUI output with the
actuator control. Both versions receive the same position
signal resulting in similar behavior of the simulation and
the artwork. Changes to the program can thus be easily
tested in the simulation before connecting the hardware.
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