
FlatFeeStack Go-Live

Bachelor’s Thesis

Department of Computer Science
OST – Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Spring Term ����

Authors

Pascal Knecht & Andy P�ster & David Kalchofner

Advisor

Dr. Thomas Bocek

External Co-Examiner

Dr. Guilherme Sperb Machado

Internal Co-Examiner

Prof. Stefan F. Keller

June ��, ����

Abstract

The FlatFeeStack platform offers a convenient and transparent way for individuals and
companies to show their support for open-source projects. It operates on a simple model
where users pay a �xed fee of $��� annually. Through FlatFeeStack, contributors to open-
source projects receive funds based on their contribution level, measured by analyzing Git
commits. Payments can be made using credit cards, and the platform supports payouts
using cryptocurrencies.

The platform has been in development for several years now. The platform is primar-
ily feature-complete, so it should be opened to the public. A platform-as-a-provider was
evaluated as part of the thesis, and a continuous deployment strategy leveraging GitHub
Actions was implemented. The platform uses Prometheus and Grafana for monitoring,
which allows to observe both infrastructure and application-relevant metrics. The exist-
ing decentralized autonomous organization (DAO) is now accompanied by a forumwhere
members can discuss proposals before they are written onto the blockchain. A complete
overview of all the functionality was created, and bugs were �xed that were discovered
during the creation of this overview.

On June �nd, the platform was silently launched, and initial contributions to open-source
projects were distributed on the same day.

Keywords: Blockchain, Fintech, Open-Source, Sponsoring.

i

Executive Summary

Initial Situation

FlatFeeStack is a platform that allows companies and individuals to sponsor open-source
projects. Compared to other sponsoring platforms, FlatFeeStack has a �xed annual sub-
scription of $��� instead of paying for each project individually. FlatFeeStack will analyze
the contribution of each project member using Git metrics and distribute the funds ac-
cordingly. Payouts are done in cryptocurrencies to keep the payout process simple and
transparent.

The platform has been in development for several years but is primarily feature-complete.
After adding these missing features, the platform should be made available to the public,
using a cloud provider to keep operation efforts low.

Procedure & Technologies

The project started by conducting functionalities already built into the platform, identifying
missing or incomplete features. A list of tasks to complete was compiled in discussions
with the advisor and external co-examiner, and a go-live date was set.

After an evaluation phase, DigitalOcean was chosen as a platform provider for the pro-
duction instance. The different microservices which compose the FlatFeeStack platform
were deployed as services under a common domain. For a simple deployment process,
Docker images are built from GitHub Actions and pushed to the DigitalOcean registry,
where the services pull new images if requested. Metrics are collected using Prometheus
and displayed using Grafana, completing a modern, cloud-native deployment.

The existing decentralized autonomous organization (DAO) should receive a new compo-
nent to discuss proposals. The requirements were unique, so a new microservice using
Go was implemented. The forum allows users to create posts and comments. The forum
observes the ETH blockchain, taking action when certain events happen in the DAO, like
when a new proposal gets created.

ii

As different papers have been written about FlatFeeStack, as well as the advisor and ex-
ternal co-examiner working on the platform in their free time, a complete overview of the
platform’s features needed to be composed. These are documented now in the form of
use case diagrams. A test plan was created to ensure those use cases worked, as well as
bugs �xed that occurred during testing.

Final Thoughts

The silent launch of the platform, accomplished on June �nd, was successful. The plat-
form is available at �atfeestack.io. The �rst contributions to open-source projects were
even distributed the very same day.

Given the time constraint, somework had to be excluded. For example, somemajor library
updates still need to be done. Thiswas either due to thembeing released late in the project
(hardhat-toolbox v�) or other dependencies not yet ready for the new version like neow�j
not having support for Gradle v8. Cryptocurrency pay-ins still need to be activated, as the
integration with the respective payment provider was not extensively tested. More future
work is documented in a later chapter (�.�).

The platform is now in good shape for potential users and developers to continue improv-
ing it. Users bene�t from the changes and improvementsmade in the frontend. The devel-
opers bene�t from a good code base with up-to-date libraries and the designed continu-
ous integration and continuous deployment. The chosen deployment with GitHub Actions,
DigitalOcean, containers, and the monitoring infrastructure with Grafana and Prometheus
is considered state-of-the-art in the industry. The forum component will help in the daily
business of the DAO, allowing members to communicate with each other easily. The use
case overview will help future developers to orient themselves in the system.

iii

Acknowledgment

We want to thank the following people for helping with this Bachelor’s thesis:

• Dr. Thomas Bocek and Dr. Guilherme Sperb Machado for their guidance and super-
vision this semester.

• Michael Bucher for explaining the payout signature algorithm to us and updating the
development con�guration for the NEO payout contract.

iv

Contents

� Introduction �
�.� Assignment . �
�.� Basic Conditions . �

� Problem Analysis �
�.� Functional Requirements . �

�.�.� Persona . �
�.�.� Use Cases . �
�.�.� Requirements for this Thesis . ��

�.� Non-Functional Requirements . �6
�.� Initial Application Architecture . �8

�.�.� System Context Diagram . �8
�.�.� Container . ��
�.�.� Component Diagrams . ��
�.�.� Potential for Improvement . �6

� Research �8
�.� Evaluation PaaS Provider . �8

�.�.� Why a PaaS Provider? . �8
�.�.� Evaluation Criteria . ��
�.�.� Pre-Selection of Providers . ��
�.�.� Evaluation . ��

�.� Complete Payout Functionality . �8
�.�.� Prior Work . �8
�.�.� Goal / Initial Position . ��
�.�.� Design Questions . ��

�.� Evaluation Form of Discussion on Proposals ��
�.�.� Introduction . ��
�.�.� Evaluation Criteria . ��

v

�.�.� Pre-Selection of Possible Solutions ��
�.�.� Results . �6
�.�.� Conclusion . �8

� Solution ��
�.� Application Architecture . ��

�.�.� System Context . ��
�.�.� Container . ��
�.�.� Component . ��

�.� Mono Repository Merge . ��
�.�.� Payout . ��

�.� Production Deployment . 6�
�.�.� DigitalOcean App Platform . 6�
�.�.� GitHub Actions . 6�
�.�.� Increased Price . 6�

�.� Complete Payout Functionality . 66
�.�.� Smart Contracts . 66
�.�.� Payout Service . 66
�.�.� Backend . 6�
�.�.� Frontend . 68

�.� Discussion Implementation . 6�
�.�.� API Design . 6�
�.�.� Architecture . ��
�.�.� Implementation . ��
�.�.� Ethereum Event Listener . �6
�.�.� Frontend Implementation . �6

�.6 Monitoring . �8
�.6.� Instrumenting PostgreSQL . ��
�.6.� Changes in Go-Code . 8�
�.6.� Dashboards . 8�
�.6.� Provisioning . 8�
�.6.� Deployment . 86

�.� Various Improvements . 88
�.�.� Feedback From the Semester Assignment 88
�.�.� Frontend Improvements . 8�
�.�.� Logging . 8�
�.�.� No-Reply Addresses . 8�
�.�.� OpenAPI Schema . ��
�.�.6 Email Templates . ��

vi

�.�.� Improved Error Handling . ��
�.�.8 Responsiveness . ��
�.�.� Route Protection . ��
�.�.�� New Staging Deployment . ��
�.�.�� Extraction of Common Code . �6

�.8 Test Plan . �8
�.� Non-Functional Requirements . ��

�.�.� Functionality . ��
�.�.� Extensibility . ��
�.�.� Robustness . ���
�.�.� Code Quality . ���
�.�.� Maintainability . ���
�.�.6 Operability . ���

� Conclusion ���
�.� Summary . ���
�.� Future Work . ��6

�.�.� Update DAO to OpenZeppelin v�.� . ��6
�.�.� Check Integration with NOWPayments ��6
�.�.� Tackle Remaining Major Library Updates ��6
�.�.� Activate Alerting in Grafana . ���
�.�.� Secure Metric Endpoints . ���
�.�.6 Auto-Close Discussions . ���

Glossary ��8

List of Figures ���

List of Listings ���

List of Tables ���

Bibliography ���

A Project Documentation ���
A.� Assignment . ���
A.� Project Plan . ���
A.� Time Tracking Report . ���
A.� Personal Re�ections . ���
A.� Meeting Minutes . ���

vii

B Documents ���
B.� Eigenständigkeitserklärung . ��6
B.� Urheberrecht . ���

C Testing ��8
C.� Testing Plan . ���
C.� Testing Protocol � . �6�
C.� Testing Protocol � . �6�

D Architecture ���
D.� Architecture Initial . ���
D.� Architecture Final . ���

viii

Chapter �

Introduction

The FlatFeeStack website makes donating to open-source projects more accessible and
transparent. Open-source refers to software, code, or any intellectual property that is freely
available, accessible, and adaptable to anyone Developers can support any open-source
project for an annual fee of $���, with the donation being equally split among them. The
donation is divided proportionately if a developer chooses to support multiple projects.
This �at fee per developer makes budgeting easier for companies, with a budget of $����
for ten developers. There is no need for organizational overhead in selectingwhich projects
to support, as developers can choose the libraries and frameworks that make their work
more ef�cient. Additionally, the supported projects of the developers can serve as an indi-
cator for the company of which pieces their IT landscape is built. The funds are distributed
based on the contribution of each developer, with the FlatFeeStack application calculat-
ing a contribution score based on lines of code and other metrics. Another advantage is
that donation payouts are made with cryptocurrencies. Compared to a classic bank trans-
fer, crypto currencies ensure transparency in the payout process and allow everybody to
retrieve their funds promptly.

�.� Assignment

The primary assignment of this thesis is to launch the FlatFeeStack platform. This objec-
tive includes bringing it to a polished state and adding missing functionalities.

�.� Basic Conditions

This work was done as part of a Bachelor’s thesis (Bachelorarbeit). A time budget of ��8�
hours is reserved for the work on this assignment and will be rewarded with twelve ECTS
credits.

�

Chapter �

Problem Analysis

Functional and non-functional requirements are essential components of any software
system. They de�ne the capabilities and characteristics that a system must possess in
order tomeet the needs of its users and stakeholders. This chapter describes the different
types of functional and non-functional requirements and how they are used to guide the
design and development of a system.

�.� Functional Requirements

This section contains all functional requirements for the FlatFeeStack platform. Section�.�.�
documents the different personas that interactwith the FlatFeeStack platform. Section�.�.�
documents the existing features. Section �.�.� describes the functional requirements that
yield from the primary assignment: launching the FlatFeeStack platform.

�.�.� Persona

• Open-Source Contributor: Wants to claim their earnings for their contributions to
open-source projects.

• Company: Wants to sponsor open-source projects they use in their products.

• Individual: Wants to sponsor open-source projects they use.

• Developer:Wants to participate in the further development of the FlatFeeStack plat-
form.

• Admin:Wants to do administrative tasks for the FlatFeeStack platform, for example,
monitoring.

�

Chapter �. Problem Analysis �

For the DAO, different personas are used to describe the use-cases. Any of the personas
listed above can be one of the following personas in the DAO [�]:

• User: A user is a person who is not already part of the DAO, but has the intention of
joining it.

• Member: A member is part of the DAO. They have the right to vote and make pro-
posals.

• Council Member: A council member is a member who has further obligations. They
must hold the ballot vote and represents the association to the outside.

�.�.� Use Cases

The use cases help display FlatFeeStack’s functionality and what different components
do in more detail. Furthermore, the use cases are well suited as an input for a test plan. A
similar approach to the C� Model� notation is used to show a broad overview and go fur-
ther into detail about every component. A similar approach like with the C�Model notation
is used, to show a broad overview and go further into detail of every component.

�https://c4model.com/

https://c4model.com/

Chapter �. Problem Analysis �

Top Level View

Figure �.�: Use case diagram top level view.

Nr. Name Description

� Reset Password User can reset their password by entering their email
and setting a new password.

� Sign Up User can signup for the application by entering their
email and setting a password.

� Login User can login if an account already exists.
� View home Any user can visit the FlatFeeStack home site.
� View DAO home Any user can visit the DAO home site.
6 User functionalities More details in section: User Functionality
� DAO functionalities More details in section: DAO Functionalities [�]
8 Sign Out User can sign out again if logged in.

Table �.�: Description for the top level view use cases.

Chapter �. Problem Analysis �

Figure �.� displays a zoomed out overview of the FlatFeestack use cases with Table �.�
providing the accompaning use cases.

User Functionality

Figure �.�: Use case diagram with user functionality overview.

Chapter �. Problem Analysis 6

Nr. Name Description

� Settings User can access the settings page and its functional-
ities. More under User Functionality - Settings

� Search User can access the search page and its functionali-
ties. More under User Functionality - Search

� Payments User can access the payments page and its function-
alities. More under User Functionality - Payments

� Income User can access the income page and its functionali-
ties. More under User Functionality - Income

� Invitations User can access the invitations page and its function-
alities. More under User Functionality - Invitations

6 Badges User can access the badges page and its functionali-
ties. More under User Functionality - Badges

� Admin Admin can access the settings page and its function-
alities. More under User Functionality - Admin

Table �.�: Description for the user functionalities use cases.

Figure �.� shows the overview of the user functionality use cases with Table �.� providing
the accompaning use cases.

User Functionality - Settings

Figure �.�: Use case diagram user functionality search.

Chapter �. Problem Analysis �

Nr. Name Description
� Email is displayed User can view their email address in the settings.

� Username can be
changed User can change their username.

� Upload pro�le picture User can upload and change their pro�le picture.

� Add Git email User can add an email address that will be used to �nd
Git contributions.

� Remove Git email User can remove their added Git email addresses.

Table �.�: Description for the settings use cases.

The use case diagram for the user settings page are provided in Figure �.� and the ac-
cording description is in Table �.�.

User Functionality - Search

Figure �.�: Use case diagram user functionality search.

Nr. Name Description

� Search for repository User can search for any repository on GitHub that they
potentially want to support.

� Star repository User can star (support) any amount of repositories.

� Unstar repository User can unstar (stop supporting) a repository at any
time.

Table �.�: Description for the search use cases.

Figure �.� provides a use case diagram for the search page and Table �.� describes the
use cases in further detail.

Chapter �. Problem Analysis 8

User Functionality - Payments

Figure �.�: Use case diagram user functionality payments.

Nr. Name Description

� Choose payment
plan/seats

User can choose between a one and a �ve year pay-
ment and decide howmany seats (voting power) they
want to purchase.

� Payment by crypto User can do the payment in crypto (ETH or NEO).
� Payment by credit card User can do the payment via credit card (via Stripe�).

Table �.�: Description for the payments use cases.

The payment page use case diagram is displayed in Figure �.� with the detailed use case
information in Table �.�.

User Functionality - Income

Figure �.6: Use case diagram user functionality income.

Chapter �. Problem Analysis �

Nr. Name Description

� List all income User can list all income they received through contri-
butions.

� Request payout in ETH User can request a signature to withdraw their earn-
ings in ETH from the respective smart contract.

� Request payout in NEO
GAS

User can request a signature to withdraw their earn-
ings in NEO GAS from the respective smart contract.

� Request payout in USD User can request a signature to withdraw their earn-
ings in USD from the respective smart contract.

Table �.6: Description for the income use cases.

Figure �.6 shows the use case diagram for the income page and detailed information is
provided in Table �.6.

User Functionality - Invitations

Figure �.�: Use case diagram user functionality invitations.

Nr. Name Description
� Invite per email User can invite another user via email.
� Remove invitation User can remove an invited user again.
� Accept invite User can accept an invitation.
� Reject invite User can reject (remove) an invitation.

Table �.�: Description for the invitations use cases.

The use case diagram for the invitations page is visible in Figure �.� and accompanying
Table �.� provides a description for each use case.

Chapter �. Problem Analysis ��

User Functionality - Badges

Figure �.8: Use case diagram user functionality badges.

Nr. Name Description
� Display repositories User can see their starred repositories in a list.

� Display contribution
graph

User can see the contribution details of a repository
by clicking on a button in the list.

� Display contributions User can list all contributions they have made.

� Display Public URL User can access and share their public badge URL
with information about them and their contributions.

Table �.8: Description for the badges use cases.

Figure �.8 displays a zoomed out overview of the FlatFeeStack use cases with Table �.8
providing the accompaning use cases.

Chapter �. Problem Analysis ��

User Functionality - Admin

Figure �.�: Use case diagram user functionality admin.

Chapter �. Problem Analysis ��

Nr. Name Description

� Display backend / fron-
tend time

Admin can view the frontend and backend time as it
can differ if a timewarp took place.

� Timewarp Admin can timewarp into the future for testing pur-
poses.

� Login as User Admin can login as any user on the site.
� Fake User Admin can create a new user.

� Fake Payment Admin can create a fake payment for testing pur-
poses.

6 Fake Contribution Admin can fake a contribution for testing purposes.

� Fake payout Admin can fake a payout of contributions for testing
purposes.

Table �.�: Description for the admin use cases.

Figure �.� presents the admin page use case diagram. More information on the individual
use cases is in Table �.�.

Chapter �. Problem Analysis ��

DAO Functionalities [�]

Figure �.��: Use case diagram DAO.

Chapter �. Problem Analysis ��

Nr. Name Description

� User can join DAO
A User can request to be a member of the DAO. It is
necessary to do a KYC validation before a user is al-
lowed to join.

� Member can leave DAO A member can leave the association with immediate
effect.

� Member can create a
proposal A member can create a proposal.

� Member can vote for a
proposal

Amember can vote for a proposal. Amember can only
vote once per proposal.

� Member can propose
and vote for newbylaws

If amember wants to change the bylaws, they can cre-
ate a proposal.

6

Member can propose
and vote to add or re-
move a council mem-
ber

A member can create a proposal to add or remove a
council member.

�
Member can propose
and vote to dissolve the
DAO

A member can create this speci�c proposal to dis-
solve the DAO. The speci�c steps to dissolve are writ-
ten in the bylaws. It requires a ��% quorum and a sim-
ple majority

8
Member can propose
and vote to expel a
member

A member can create a proposal to expel a member.

�
Council member can
de�ne date for a ballot
vote

A council membermust set a date for next ballot vote.
They must set the date at least one month before the
vote.

��
Member can request
an extraordinary ballot
vote

Members can request an extraordinary ballot vote.
This proposal passes if one �fth of all members ac-
cept it. The voting duration is two weeks.

�� Council member can
cancel a ballot vote

If the council member has a good reason, they can
cancel a ballot. There must be a replacement date. All
agenda items must be moved to the next vote.

Table �.��: Description for the DAO use cases.

Figure �.�� exhibits the use case diagram for the DAO and the descriptions are listed in
Table �.��.

�.�.� Requirements for this Thesis

As mentioned in section �.�, the primary objective of this thesis is to launch the Flat-
FeeStack platform. This objective includes the following stories:

�. Merge the existingGit repositories of the different services into onemono-repository.

Chapter �. Problem Analysis ��

�. Evaluate a PaaS provider to deploy the production instances of the different ser-
vices.

�. Deploy the FlatFeeStack platform to the chosen PaaS provider.

�. Evaluate and set up a solution to monitor the health of the FlatFeeStack platform.

�. Evaluate a discussion platform for the FlatFeeStack DAO.

6. Set up or implement the chosen discussion platform.

�. Find and squash bugs by verifying the existing functionalities on the platform.

Chapter �. Problem Analysis �6

�.� Non-Functional Requirements

The following non-functional requirements have been identi�ed for this project:

�. Functionality: Each story represents a functional component and does not disrupt
the functionality of others.
Acceptance criteria:

• Unit Tests are executed for all subsystems in the main branch.

• The application passes all acceptance tests before release.

• User feedback and bug reports are regularly reviewed and addressed to im-
prove functionality.

• Changes to functionality are carefully communicated and documented to avoid
confusion or unexpected behavior.

�. Portability: The application must be portable and capable of running on multiple
platforms or devices without signi�cant modi�cation.
Acceptance criteria:

• Manual testing conducted on different devices and browsers.

• The application does not use components or services that are only available
on a single platform.

• The application’s user interface adapts seamlessly to different screen sizes
and resolutions.

�. Extensibility: The application must be easily maintainable and updatable over time,
with clear documentation and support processes.
Acceptance criteria:

• Time required to �x bugs or install updates is within the speci�ed limits.

• The application’s architecture supportsmodular design and component reusabil-
ity.

• Regular code reviews are conducted to ensure adherence to extensibility best
practices.

�. Robustness: The application must be robust and able to handle unexpected or in-
valid input without crashing or exhibiting unexpected behavior.
Acceptance criteria:

• Manual testing performed with invalid or malicious input.

Chapter �. Problem Analysis ��

• Automated testing performed with invalid or malicious input.

• Robust exception handling and error recovery mechanisms are implemented.

�. Code quality: The application must be developed using clean, well-organized code
that is easy to understand and maintain.
Acceptance criteria:

• Static analysis executed with each commit.

• Code follows established coding conventions and style guidelines.

• Code complexity is regularly reviewed and minimized where possible.

6. Maintainability: The application should have a continuous integration and deploy-
ment process in place to ensure smooth and ef�cient development, testing, and
deployment cycles.
Acceptance criteria:

• Deployment pipelines are set up to automatically deploy the application to stag-
ing or production environments.

• Every commit is built and tested automatically.

• Environment con�gurations and dependencies are version controlled and eas-
ily reproducible.

�. Operability: The application should be designed and developed with a focus on op-
erability, ensuring ease of management, monitoring, and troubleshooting in produc-
tion environments.
Acceptance criteria:

• The application provides robust logging and monitoring capabilities, allowing
administrators to track and analyze system behavior and performance.

• Proper error handling and informative error messages are implemented to fa-
cilitate troubleshooting and debugging processes.

• Regular health checks are performed on the application to ensure its opera-
tional status.

• System metrics are collected and analyzed to detect performance bottlenecks
or resource constraints.

Chapter �. Problem Analysis �8

�.� Initial Application Architecture

This chapter provides an overview of the architecture of the existing system FlatFeeStack,
using the C�Model Notation�. This architecture was present when the project started. The
goal is to provide a starting point for the project, which can be used to identify the changes
made to the architecture during the project.

�.�.� System Context Diagram

Figure �.�� shows a system context diagram, where the system is displayed in its envi-
ronment and its interactions with external systems and users. The diagram includes the
system boundary, actors, and external systems and shows how they interact with the sys-
tem.

�https://c4model.com/

https://c4model.com/

Chapter �. Problem Analysis ��

Figure �.��: System context.

Chapter�.
Problem

Analysis
��

�.�.� Container

Figure �.�� lists a container diagram using the C� Model Notation, which shows the high-level components of the system and their
relationships.

Figure �.��: Container diagram.

Chapter �. Problem Analysis ��

�.�.� Component Diagrams

The chapter provides detailed component diagrams for each of the system’s components.
For clarity, the diagrams are split into parts. Each part shows the component’s internal
structure and the relationships between internal and external components. The diagram
showing all the components is in the appendix (D.�).

Frontend

The component diagram for the frontend can be seen in Figure �.��. In order to interact
with the ETH blockchain, the frontend requires the MetaMask� browser plugin. The fron-
tend is built as a single page application (SPA) using the Svelte� framework. The routes
component de�nes each page, which utilizes Svelte stores and other reusable Svelte com-
ponents. REST-API calls are abstracted in the services component.

Figure �.��: Component diagram frontend.

�https://metamask.io/
�https://svelte.dev/

https://metamask.io/
https://svelte.dev/

Chapter �. Problem Analysis ��

Backend

Figure �.�� displays the backend component diagram, which is the largest microservice
in the system. It offers a REST-API for the frontend and employs WebSocket communica-
tion to handle credit card payments. Themain component constructs the server, manages
REST-API routes, and initiates Cron jobs. The Cron jobs distributemoney to users and initi-
ate new Git repository analysis. The PaymentNow and PaymentStripe components commu-
nicate with external payment providers NOWPayments� and Stripe�. The database com-
ponent abstracts the database connection and provides SQL query execution functions.
The email component communicates with the external SMTP server SendGrid�. The API
component abstracts communication with the payout (�.�.�) and analyzer (�.�.�) com-
ponents. It also abstracts calls to the GitHub API when users search for repositories to
sponsor.

Figure �.��: Component diagram backend.

Analyzer

Figure �.�� displays the diagram for the analyzer component, which examines Git reposi-
tories. It evaluates the commits in the repository and assigns a weight to each user based

�https://nowpayments.io/
�https://stripe.com/
�https://sendgrid.com/

https://nowpayments.io/
https://stripe.com/
https://sendgrid.com/

Chapter �. Problem Analysis ��

on their contributions. The more a user contributes, the higher their weight. The backend
components assign tasks to the analyzer, and upon completion, it sends the results back
to the backend.

Figure �.��: Component diagram analyzer.

FastAuth

The fastauth component, displayed in Figure �.�6, is in charge of authenticating users.
To achieve this, it offers a REST-API to the frontend. During the sign-up process, it uti-
lizes the email component to send a veri�cation email to the user. The main component
routes the calls to the API component, which implements the business logic. Additionally,
the database components abstract the connection and provide functions to execute SQL
queries.

Chapter �. Problem Analysis ��

Figure �.�6: Component diagram fastauth.

Payout

The payout component, seen in Figure �.��, distributes money to the users. To initiate a
payout, the backend component (�.�.�) contacts the payout component through a REST-
API. Depending onwhether the payout is in ETHorNEO, the component calculates a signa-
ture that allows users to withdraw their money by calling the appropriate smart contracts.

Chapter �. Problem Analysis ��

Figure �.��: Component diagram payout.

Smart Contracts

The smart contracts portion in Figure �.�8, includes the smart contracts deployed on the
ETH and NEO blockchains. More information about the DAO smart contracts is provided
in [�]. The payout contracts are utilized by the payout component, which is discussed fur-
ther in section �.�.�.

Chapter �. Problem Analysis �6

Figure �.�8: Component diagram smart contracts.

�.�.� Potential for Improvement

For the creation of these diagrams, the existing code was deeply analyzed. The architec-
ture itself is clean and well-structured. The code is also well-structured inside the compo-
nents, but there is room for improvement.

Database

The backend and the fastauth component use the database. Both components have code
for connecting to the database and code for executing SQL froman external �le. This code
should be refactored into a separate package that both components can use.

Also, in a microservice architecture, each service should have its database, which differs
from the existing system However, a good thing is that the services only access certain
database tables. So the fastauth component only accesses the table auth, which is also
created by it. Accordingly, the backend also only accesses the which it created.

Chapter �. Problem Analysis ��

JWT

Each go microservice has code to validate JWT tokens. This code should be refactored
into a separate package that all microservices can use.

Email

The backend and the fastauth component email users using SendGrid� as an SMTPserver.
Both components have code for sending emails and reading templates for these emails.
Creating a separate package that both components can use will improve the code.

�https://sendgrid.com/

https://sendgrid.com/

Chapter �

Research

For various tasks that should be completed until the Go-Live, research is necessary to get
an overview of existing functionalities and products.

Section �.� describes a set of evaluation criteria for the PaaS provider where FlatFeeStack
should be hosted. Afterward, three providers are compared, and a platform is chosen for
implementation.

Section �.� summarises the existing work on the payout functionality of the platform of
different theses. Questions about the design of the solution are examined, and an imple-
mentation proposal is presented.

Section �.� evaluates a platform for discussions for the DAO. The previous work on the
FlatFeeStack DAO concluded that a platform was needed to discuss topics about the
DAO [�]. A list of criteria is conducted before different solutions are compared against
it, choosing a solution for the discussions.

�.� Evaluation PaaS Provider

�.�.� Why a PaaS Provider?

During the �rst meeting, the project team and advisor discussed how to host the produc-
tion environment for FlatFeeStack while discussing the tasks for the go-live. The current
staging environment runs on a dedicated server in the of�ce of Axelra� with containers.
One idea was to host the production environment on an additional server in the Axelra
of�ce.

�https://www.axelra.com/

�8

https://www.axelra.com/

Chapter �. Research ��

Below is the outcome of the discussion on why not to self-host the production environ-
ment:

• One static IP address is assigned to the Axelra of�ce and must be shared between
the staging and production environments. This necessitates routing traf�c through
a combined reverse proxy, which creates an unhealthy dependency between the two
domains.

• Self-hosting means somebody needs to invest time to install software updates and
to ensure the service runs.

Therefore, as part of this thesis, a suitable, cloud-basedPaaS provider should be evaluated
where the FlatFeeStack platform can be deployed.

�.�.� Evaluation Criteria

�. Container support (��%weight): The provider should provide container deployment
and management support, and they should reuse the existing Docker�les and built
containers.

�. Ease of deployment (��% weight): The provider should offer an easy way to deploy
and manage containers without requiring you to write more extensive con�guration
�les (like the YAML de�nition for a Kubernetes� deployment). Con�guring environ-
ment variables and other settings should be simple and intuitive.

�. Scalability (��% weight): The provider should offer easy scaling of your application
horizontally and vertically. Autoscaling based on metrics such as CPU and memory
usage should be available.

�. Metrics and monitoring (��% weight): The provider should offer a dashboard to re-
view metrics such as CPU and memory usage, with the ability to set automated
alerts.

�. Database as a service (��%weight): The provider should offer a managed database
service, ideally PostgreSQL�, with easy provisioning, scaling, and backups.

6. Self-service portal (��% weight): The provider should offer a self-service portal to
manage services, including provisioning and scaling of resources and managing
user access and permissions.

�. Pricing (��%weight): The provider should offer a fair pricingmodel for their services.

�https://kubernetes.io/
�https://www.postgresql.org/

https://kubernetes.io/
https://www.postgresql.org/

Chapter �. Research ��

For each criterion, a number between � (not ful�lled) and � (expectations exceeded) will
be assigned based on the offerings of a cloud provider.

The points for the price will be examined based on costs per month �� hours uptime.
The highest price will receive � points, while the cheapest will get �. Points for prices
in-between will be calculated as follows:

Highest Price ´ Price

Highest Price ´ Lowest Price
¨ 3 (�.�)

�.�.� Pre-Selection of Providers

Based on internet research and discussions with the advisor, a list of providers has been
conducted for the evaluation:

• DigitalOcean App Platform�

• Google App Engine�

• Flow Swiss App Engine�

�.�.� Evaluation

DigitalOcean App Platform

DigitalOcean App Platform allows publishing applications using various languages, but
also Docker. Two points for Container support.

For testing, only the backend was deployed to DigitalOcean. The setup wizard connects
to existing repositories on GitHub and GitLab. Although DigitalOcean claims to support
mono repositories with their approach [�], adding the FlatFeeStack mono repository and
pointing the source folder for the code to the backend did not work. The build process
claimed not to �nd a Docker�le. Selecting the version of the backend before the mono
repositorymergeworked �ne. If DigitalOceanwere chosen, a copy of the Docker container
would have to be pushed to their registry.

DigitalOcean can watch changes on a branch and trigger a redeployment. This function-
ality can help implement continuous deployment for the project later.

Environment variables can be con�gured using the web interface. A great bene�t is that
variables can be encrypted and are not readable once saved, as shown in Figure �.�. This

�https://www.digitalocean.com/products/app-platform
�https://cloud.google.com/appengine
�https://flow.swiss/app-engine

https://www.digitalocean.com/products/app-platform
https://cloud.google.com/appengine
https://flow.swiss/app-engine

Chapter �. Research ��

feature is good for the HS��6 secret encrypting JWT headers in the backend. Overall �
points for ease of deployment.

Figure �.�: Management of environment variables on DigitalOcean.

DigitalOcean allows scaling horizontally and vertically. Existing instances of a service can
be allocatedmore resources. If another instance is needed, a service can be copied. How-
ever, scaling is not automated. Two points for scalability.

DigitalOcean offers a simple dashboard for resource consumption, mainly CPU andmem-
ory usage, as shown in Figure �.�. Additionally, one can de�ne mail noti�cations if certain
thresholds are passed — � points for metrics and monitoring.

DigitalOcean composes multiple services as one app. For apps, one or multiple Post-
greSQL databases can be attached. Afterwards, a variable is available for each service
in the app with the database URL to make a connection. This comes in convenient for
FlatFeeStack, where it is meant that two of the services (backend and fastauth) connect
to the same database. The cheapest database comes without automated failover, which
is something to consider when evaluating the price. Two points for the database as a
service.

The self-service portal is designed in an easy way to �nd all essential functions quickly.
All services can be inspected as well as edited. Created apps usually belong to a team
and not an individual account. This would prevent access issues compared to only one
person owning an application—three points for the self-service portal.

Given the pricing information, hosting FlatFeeStack on DigitalOcean would create the fol-
lowing monthly cost:

• $�� for a database with failover, one vCPU, �GB of RAM, and �� GB of storage.

• $�� for hosting all four services (backend, frontend, payout, analyzer, fastauth), with
the smallest instance size available (� vCPU, ��� MB RAM).

Chapter �. Research ��

Figure �.�: Metrics for a service on DigitalOcean.

• $� for hosting the container images.

Given a currency conversion rate from the US dollar to Swiss francs of �.��, the monthly
price for DigitalOcean would be ��.�� CHF. This is the lowest price of all three providers,
giving three points for the pricing.

Google Cloud App Engine

Google App Engine allows the deployment of applications using Docker�les—two points
for Container support.

Google Cloud divides cloud resources by projects. One project in Google Cloud then has
many resources. In the case of App Engine, a user can deploy multiple applications to the
same project. Each application can be assigned traf�c rules. New deployments create
new versions, where mechanisms like A/B testing or Canary deployment can be applied
using the dashboard.

To test the App Engine, the backend of FlatFeeStack was deployed. Two �les must be
de�ned in the source repository: an app.yaml, where the runtime environment is speci�ed,
and an additional �le with environment variables, which should not be committed to the
Git repository. For production deployment, an encrypted version of this �le could be added

Chapter �. Research ��

to the FlatFeeStack repository, and the secret shared over another channel with all the
developers.

A developer can deploy the application using the gcloud CLI with thementioned �le. There
are also ways to connect the application with the GitHub repository, so automated deploy-
ments can be triggered when pushing to Git.

Overall, two points for ease of deployment, as the amount of required con�guration to
deploy an application is low.

Google offers con�guration options for auto-scaling [�]. They continuously measure re-
sources used by the instances, and based on set criteria, more services are created, or
existing ones are destroyed when no longer needed—two points for scalability.

App Engine offers the most extensive metrics dashboard of all the evaluated tools. A se-
lection of the available metrics is shown in Figure �.�. Additionally, the metrics dashboard
looks good—three points for metrics and monitoring.

Figure �.�: Metrics for the database on Google Cloud.

Databases for App Engine are in a separate service called Cloud SQL. Google offers Post-
greSQL as a service, including many con�guration options for the number of resources
for the server, high availability, and target deployment zones. Afterwards, there are vari-
ous ways to connect from an App Engine instance to the database: The recommended
way is to create a service account for it and give it permissions. Then a UNIX socket will
be mounted into the container [�].

Security-wise, this is a suitable mechanism, as the authentication happens outside the
main container. However, getting all the con�guration up and running is more effort than
other services—two points for the database as a service.

The user interface is generally easy to navigate. The main pain point is to know how to
�nd matching services or settings on this platform. Google makes this up by providing
numerous tutorials to do various things, but for example, the dashboard never showed
that the initial deployment failed for one of the test instances. It was only visible from the

Chapter �. Research ��

local developer console. Also, connecting a database from App Engine are two separate
tutorials. Google Cloud is a vast product, and this shines through in the user interface—one
point for the self-service portal.

The application’s hosting prices have been calculated with the Google Cloud Pricing Cal-
culator, with the price list from March ��th, ����, and using us-central as the base zone.

• Running �ve App Engine instances costs $���.��. There isn’t any speci�cation of
how many resources are guaranteed for the services.

• Running one PostgreSQL with � GB of RAM and � CPU, including high availability, is
$���.8� a month.

Given a currency conversion rate from the US dollar to Swiss francs of �.��, the monthly
price for Google Cloudwould be ���.�8CHF. This is the highest price of all three providers,
giving zero points for the pricing.

Flow Swiss App Platform

Flow’s platform is based on a software named Virtuozzo. Therefore, references to docu-
mentation in this section often point to their website.

Flow supports deploying from a container registry, two points for Container support.

For testing, an instance of Nextcloud� was deployed. Flow can usually connect to a con-
tainer registry directly. However, something did not work with the authentication against
theGitHub container registry, where theDocker images for FlatFeeStack are saved.Nextcloud
started as a platform to store �les but is extensible with add-ons like video chat. The ap-
plication requires a permanent data store and a database, and some con�guration using
environment variables, similar to the use case of a service in FlatFeeStack.

Flow organizes deployment in the so-called environments. An interface allows users to
select a load balancer, one or more applications, and database services. The interface ex-
poses multiple customization options and is kept close to the underlying technology. For
instance, a menu point shown in Figure �.� named variables, which takes one to con�g-
ure the environment variables, which looks similar to a dotenv �le that can be passed to
a Docker container.

Once an environment is con�gured, a developer can trigger a redeployment from the user
interface or via CLI [�].

Overall two points for ease of deployment.

�https://nextcloud.com/

https://nextcloud.com/

Chapter �. Research ��

Figure �.�: Interface to con�gure a new environment on Flow.

Flow can scale the application automatically. When creating application services, a user
has to select a range of how many so-called cloudlets should run for an application, as
seen in Figure �.�. This mechanism works for load balancers and databases as well. Trig-
gers can be de�ned to de�ne criteria when scaling should happen, but automated scaling
is not possible based on current resource consumption [6] — two points for scalability.

Figure �.�: Resource consumption interface on �ow.swiss.

Flow offers good insights into current resource consumption, as shown in Figure �.�. Two
points for metrics and monitoring.

As mentioned in ease of deployment, services are composed together as environments.
The database is part of this environment and is con�gured and deployed in the same
way as an application service. To enable the database to be available to a system, the

Chapter �. Research �6

containers must be linked, similar to Docker networks — � points for the database as a
service.

Figure �.6: Environment overview in Flow.

As mentioned in ease of deployment, the user interface exposes many con�guration op-
tions to manage an environment. Nevertheless, at the same time, it is often cluttered, and
menu points could be more intuitive. Many menus are hidden behind symbols that need
to be clari�ed. For instance, to add SSL to one’s load balancer, an add-on menu is avail-
able that is abstracted using a hexagon symbol, as seen in Figure �.6. One point for the
self-service portal.

Pricing for Flow could look as follows:

• Four cloudlets per service (���MBand �.6 GHz) are�.���CHFper hour. FlatFeeStack
has �ve services (backend, frontend, payout, analyzer, fastauth), and as monthly
costs should be compared, this gives a total of 0.039 CHF per hour ¨24 hours a day ¨
30 days a month ¨ 5 services “ 140.40 CHF.

• Adatabasewith three cloudlets (�8�MBand �.�GHz) is�.���CHFper hour.Monthly
costs, therefore, are 0.029 CHF per hour ¨ 24 hours a day ¨ 30 days a month “
20.88 CHF.

This calculation results in a total cost of �6�.�8 CHF per month. Using the formula to
evaluate the points, Flow receives �.�� points for the pricing.

Summary

Table �.� summarizes the evaluation of the different hosting providers.

Chapter �. Research ��

Criteria Weight DigitalOcean Google Cloud �ow.swiss
Container support ��% � �.� � �.� � �.�
Ease of deployment ��% � �.�� � �.� � �.�

Scalability ��% � �.� � �.� � �.�
Metrics and monitoring ��% � �.� � �.� � �.�
Database as a service ��% � �.� � �.� � �.�
Self-service portal ��% � �.� � �.� � �.�

Pricing ��% � �.� � � �.�� �.���
�.�� �.� �.8��

Table �.�: Comparison of the hosting providers.

Therefore, the FlatFeeStack production environment will be hosted on DigitalOcean, as
they scored the most points in the evaluation.

Chapter �. Research �8

�.� Complete Payout Functionality

While testing the existing functionalities, it was discovered that the payout functionality
no longer works. Before this thesis, two other theses have been written about payouts
within FlatFeeStack. This chapter will summarise the state of this functionality prior to
this thesis. Additionally, section �.�.� describes the changes between the two theses and
the start of this Bachelor’s thesis. Afterward, the goals of this task are discussed, including
ideas for implementation.

�.�.� Prior Work

Kryptowährungen als Zahlungsmittel bei FlatFeeStack, Lesi and Endres, SAHS��

Lesi and Endres added the pay-in functionality using cryptocurrencies in FlatFeeStack.
Because the pay-in and payout processes in FlatFeeStack are tightly coupled, their thesis
also changed how the payout works.

Prior to their thesis, pay-in was only possible using a credit card with Stripe. This process
was extended by integrating FlatFeeStack with NOWPayments�, which allows receiving
payments in cryptocurrencies. FlatFeeStack runs a daily calculation to distribute the pay-
ins of a user to a repository. The daily deduction was previously a �xed amount of ��
cents of the user’s current credit on the platform. They changed the system to divide the
payed-in amount by the number of days for which the pay-in is valid (either �� or �6� days)
and also to allow the distribution of the newly integrated cryptocurrencies. This system
also allows one to accept new currencies or add other durations for pay-in periodswithout
changing much code.

Before their thesis, the payout service sent a daily status update to a smart contract on
the ETH blockchain about how many contributions a user has received, using their wal-
let address as uniquely identifying information. This mechanism has been changed to a
batch payout mechanism: Each month, the payout service submits the contributions for
a user directly to their wallet, bypassing the need for a smart contract on the respective
blockchain. Pay-ins in US dollars get converted into ETH by calling the CoinGecko� API.

Additionally, as their thesis focused on allowing pay-ins and payouts using the Tezos cryp-
tocurrency, they implemented a new payout microservice in NodeJS, as no library was
available in Go to interact with Tezos [�].

�https://nowpayments.io/
�https://www.coingecko.com/

https://nowpayments.io/
https://www.coingecko.com/

Chapter �. Research ��

Design and Implementation of a Fee Optimization Mechanism in Blockchain-
based Payments for an Open Source Donation Platform, Michael Bucher, HS��

The content of the thesis from Michael Bucher was to optimize the transaction costs for
sending the contributions from FlatFeeStack to the respective recipients. This thesis was
written parallel to the one of Lesi and Endres, described in section �.�.�.

Michael Bucher references a work by Jonas Brunner [8], where they initially decided to use
blockchains for a transparent payout process. However, the fee to place a transaction on
the blockchain can be substantial. Asmentioned in �.�.�, as the FlatFeeStack platformcur-
rently handles the payout, it also covers the transaction fees on the respective blockchain.
However, the question remains if the transaction fee should be deducted from the total
payout or if FlatFeeStack covers the fees themselves.

The thesis explores implementing a signaturemechanism, where the payout service signs
a message containing the payout amount for a user who received contributions. The pri-
vate key with which the message is signed is identical to the owner of the smart contract
on the respective blockchain.

The signature is returned to the user, who is instructed to send it to the smart contract
on the respective blockchain. Within the smart contract, the message is recreated from
the provided parameters. The signer of the message and the signature parameter is then
recovered and compared to the smart contract owner. In case the recovered signer and
the smart contract owner match, the parameters are valid.

Since the developer needs to request the withdrawal at the smart contract instead of Flat-
FeeStack sending the earned amount to them, the developers pay the transaction fees,
circumventing the question of how FlatFeeStack should pay the transaction fees.

Another important detail is that themessage contains the developer’s total earned amount,
sometimes referenced as TEA. The TEA has the signi�cant bene�t of the payout service
not communicating with the smart contracts on the chain to tell how much the developer
is eligible to withdraw. Instead, the smart contracts also track the total earned amount for
each developer. Once a new withdrawal is requested and the provided signature is valid,
they update the total earned amount and pay the difference between the old and new TEA.

As a result of their thesis, Michael Bucher implemented two smart contracts, one for the
NEO blockchain and one for ETH, which implement the signature mechanism described
above [�].

Chapter �. Research ��

Changes in ���� / Early ����

Thomas Bocek worked by himself on FlatFeeStack during ���� and early ����. The most
notable changes to the payout functionality were:

�. He �nished the integration of the work done by Lesi and Endres.

�. He changed the mapping in the ETH smart contracts where the TEA is tracked from
ETH addresses to user IDs used in the FlatFeeStack backend, eliminating the need in
FlatFeeStack to track the wallet addresses of the developer. Michael Bucher imple-
mented the necessary changes in the NEO smart contract in early January ���� [��].

�. Disabled the integration in the payout service for the NEO blockchain.

�.�.� Goal / Initial Position

This task aims to wire the previous work together, allowing the developers to withdraw
their contributions with the signature mechanism as proposed by Michael Bucher. This
results in the following tasks:

�. Add a new API endpoint in the backend, which calculates the total earned amount
for a user and calls the payout service to generate a valid signature to retrieve the
contributions.

�. Extend the existing Income page in the frontend to display the option to generate a
signature for a currency and display the generated signature.

�. For the payout service, re-activate the integration with the NEO blockchain and im-
plement a sign endpoint.

Figure �.� shows the existing income page in the frontend.

Figure �.�: Existing income page in the frontend.

Chapter �. Research ��

�.�.� Design Questions

Tezos Integration

As mentioned in section �.�.�, Lesi and Endres implemented a new payout service in
NodeJS to handle the payout in Tezos. After discussions with the advisor, it was decided
to launch the project without Tezos’ support.

Payout of US Dollars

As described in section �.�.�, before the thesis of Endres and Lesi, pay-ins were only avail-
able in US dollars, and the contributions were converted to ETH for the payout.

After their thesis, they kept converting US dollars to ETH but combined the payout of both
ETH and US dollars. The payout was converted to a manual job, started by an adminis-
trator of FlatFeeStack, where they needed to pass the USD conversion rate to ETH. Addi-
tionally, users need to withdraw the contributions in their original currency. For example,
if a user receives contributions in NEO and Tezos, they must have a Tezos and NEO wallet
and make two withdrawal requests.

Each time a payout is triggered, the backend updates the paid-out amount for each user
in the respective database table. A user can later see in the frontend how big their next
payout will be. This number is calculated by getting the sum of all contributions and sub-
tracting the paid-out amount from the database table mentioned before.

As the work of Lesi and Endres was based upon FlatFeeStack doing the payout, a spike
was implemented to see if there was a way to allow users to receive payouts in one cur-
rency using the signature mechanism of Michael Bucher. The design included the follow-
ing steps performed by the backend:

• Convert the contributions received in different currencies to one target currency us-
ing conversion rates retrieved from CoinGecko.

• Generate a signature in the target currency.

• Add a database entry to a new table named payout_requests with the amount in the
target currency.

• Link the individual contributions to the created entry in payout_requests to mark
them as claimed.

This systemwould have allowed recalculating the total earned amount needed for the sig-
nature based on the information from the payout_requests table. However, in discussions
with the advisor, amajor issue was discovered regarding the volatility of cryptocurrencies.

Chapter �. Research ��

�. Assume that today, $� yields �.�� ETH. A user generates a signature using this con-
version rate.

�. They are not required to use the signature on the blockchain immediately, so they
wait for another four weeks.

�. After four weeks, $� yields only �.�� ETH, which means the ETH price increased by
�ve times.

�. Now the user retrieves the payout from the smart contract with the signature gener-
ated four weeks ago. As the signaturewas created four weeks ago and FlatFeeStack
likely also transferred the necessary amount four weeks ago, the price increase is
at the expense of FlatFeeStack.

Therefore, it was decided with the advisor and external co-examiner to also payout the US
dollars in something close to the original �at currency. This requires an additional payout
contract that can interact with the USDC stablecoin on ETH. The stablecoin mimics the
dollar price and therefore is not subject to �uctuating exchange rates.

Chapter �. Research ��

�.� Evaluation Form of Discussion on Proposals

The previous work on the FlatFeeStack DAO [�] concluded that a thorough discussion
regarding the proposal is necessary. This chapter will delve into a detailed analysis of
different potential solutions.

�.�.� Introduction

The FlatFeeStack DAO operates on a decentralized decision-making model, where every
member can propose changes to the organization. While this method gives members
more control over how the DAO develops, it occasionally results in ambiguous sugges-
tions or calls for additional discussion. In situations like this, it is critical to have a reliable
mechanism to evaluate and rank the suggested solutions. This guarantees that the DAO
chooses the best course of action for attaining its goals and makes informed judgments.
This thesis explores various solutions for discussing proposals within the FlatFeeStack
DAO, aiming to provide recommendations for the decision-making process.

Figure �.8: Current proposal lifecycle.

The current proposal lifecycle, depicted in Figure �.8, relies on the FlatFeeStack DAO’s cur-
rent implementation. Under this lifecycle, a DAO member can generate a proposal, which

Chapter �. Research ��

is promptly written to the blockchain and linked to a ballot vote in the smart contract.
Notably, there is no provision for discussion within the current proposal lifecycle, which
means that DAO members cannot deliberate on the proposal before casting their votes
unless they resort to external communication platforms. Additionally, the member who
initiates the proposal has already spent time writing it and money for the transaction to
create the proposal on the ETH blockchain.

Figure �.�: Goal proposal lifecycle.

Figure �.� shows the goal proposal lifecycle. The main difference is the DAOmember can
choose to create a proposal directly on the blockchain or to create a proposal off-chain.
When the member chooses to create a proposal directly on the chain, the system will au-

Chapter �. Research ��

tomatically start a discussion thread and write the proposal to the blockchain. Therefore,
the members also can discuss the proposal before voting.

If the member chooses to create a discussion thread �rst, they will create it and can sub-
sequently discuss the proposal. Themember who initiates the proposal can wait for feed-
back from the community. If the idea gets enough support, the member can create the
proposal on the chain. Alternatively, the member can close the discussion thread, pre-
venting the proposal from being created on the chain. This procedure can save time and
money for the member.

The evaluated solution must support the lifecycle, shown in Figure �.�.

�.�.� Evaluation Criteria

The solution must meet the following identi�ed criteria.

�. Cost: The solution must be cost-effective.

�. Ease of use: The solution must be easy to use and intuitive for the DAO members.

�. Integration: Integrating the solution within the current FlatFeeStack frontend is nec-
essary.

�. Restrictions: Only users with a login to the FlatFeeStack platform should be able to
participate in the discussions.

�.�.� Pre-Selection of Possible Solutions

The evaluation criteria, internet research, and discussions with the external co-examiner
and advisor led to the identi�cation of the following solutions as potential candidates for
solution:

• Discourse� - An open-source discussion platform which is widely used.

• GitHub Issues� - GitHub Issues is used as a discussion platform by the GrantShares-
DAO. This DAO is maintained by AxLabs, the company of the external co-examiner.

• Microservice - A new microservice with a database for the discussion.

�https://www.discourse.org/
�https://github.com/features/issues

https://www.discourse.org/
https://github.com/features/issues

Chapter �. Research �6

�.�.� Results

Discourse

Discourse is an open-source discussion forum software that offers a modern and user-
friendly interface with mobile optimization and �exibility for customization. It also prior-
itizes trust and safety with built-in features like user moderation tools and community
guidelines. Discourse provides community-building tools, including badges, user pro�les,
and private messaging, to encourage participation and create a community among mem-
bers. In addition, the platform offers detailed analytics on user engagement, topics, and
discussions, which enables community managers to monitor the performance of their
community and make improvements where necessary.

Cost
Discourse is ���% open-source and free to use, except for hosting costs. Discourse also
offers to host their product for interested customers. Pricing plans start at $��permonth [��],
which is not feasible for a small community like FlatFeeStack.

Ease of use
The user experience of discourse is excellent. It is a widely used software with over ��k
stars on GitHub.

Integration
There is no integration possible into the current FlatFeeStack frontend. The application
would have a different URL, requiring the user to go to another page to engage in dis-
cussion. It is possible to have single sign-on, but one must con�gure it and choose the
provider, such as GitHub or Google.

Restrictions
This restriction is not possible out of the box. As previously mentioned, verifying whether
the user is a FlatFeeStack user must be done at another point, even with the option for
single sign-on.

GitHub Issues

A feature of thewell-known code hosting serviceGitHub calledGitHub Issues allows users
to discuss a particular project or repository, raise issues, and make improvement sugges-
tions. It offers a cooperative and open channel for users and developers to discuss a

Chapter �. Research ��

project and cooperate on its improvement. Each issue receives a unique number to aid in
management and prioritization and can be tagged, assigned to speci�c users, and cate-
gorized.

Cost
This solution would be free, but it would need some time to implement the GitHub REST
API�.

Ease of use
Most of the developers are familiar with GitHub and the GitHub Issues. It is easy to use
and user-friendly.

Integration
With the GitHub REST API, it would also be possible to integrate the content of the GitHub
Issues into the FlatFeeStack frontend. This would be a nice feature, but it would need
some time to implement. Without this integration, the user must go to another page to
discuss.

Restrictions
Restricting access to the project in GitHub with the issues is possible for certain individ-
uals. However, someone must sync the GitHub users with the FlatFeeStack users.

Microservice

The FlatFeeStack platform will have a new microservice added to it that will provide a
REST API with all relevant endpoints for creating, reading, updating, and deleting discus-
sion threads. The PostgreSQL� database will store discussion threads, and the microser-
vice development will use Go, similar to the other microservices.

Cost
Hosting themicroservice and the database would add little to the costs, but implementing
the microservice would take some time.

Ease of use
The user experience can be adjusted and simpli�ed to the needs.

�https://docs.github.com/en/rest/issues?apiVersion=2022-11-28
�https://www.postgresql.org/

https://docs.github.com/en/rest/issues?apiVersion=2022-11-28
https://www.postgresql.org/

Chapter �. Research �8

Integration
This solution allows discussion threads to be easily integrated into the FlatFeeStack fron-
tend.

Restrictions
The restriction is easily possible with this solution. We can check the user authentication
without the need to implement something different.

�.�.� Conclusion

Discourse (�.�.�) can not be integrated into the current FlatFeeStack frontend, and the
user must go to another page to discuss. Furthermore, another application without prior
experience would need to be hosted.

GitHub Issues (�.�.�) can be integrated into the FlatFeeStack frontend, but the user man-
agement would be complex. Also, the users would have to authenticate themselves on
GitHub in the FlatFeeStack platform to be able to participate in the discussions.

A new microservice (�.�.�) can be integrated into the FlatFeeStack frontend, and the user
management will be simple to implement as there is already a microservice in place. Im-
plementing the goal proposal lifecycle (�.�) would be simple, and the user would not have
to go to another page to discuss.

Chapter �

Solution

This chapter provides an overview of the outcomes and solutions achieved in this thesis.
The results encompass a range of tasks that were addressed, and their corresponding
solutions are presented in detail.

�.� Application Architecture

This chapter presents the �nal architecture of the application, which has undergone a
series of refactorings based on the analysis conducted in �.� and the outcomes of dis-
cussions with the advisors. The C� Model� notation clearly and concisely represents the
architecture’s components and relationships.

The architecture is structured to facilitatemodularity and separation of concerns, allowing
independent development and deployment of different components. It emphasizes the
use of well-de�ned interfaces for loose coupling and improved �exibility.

�.�.� System Context

The system context diagram, representing the external systems and people interacting
with the application, remains unchanged throughout the refactorings. No alterations or
modi�cations were made to the external systems or the individuals involved in the sys-
tem’s operation.

Please refer to the diagram provided in �.�.� for a visual representation of the system
context diagram.

�https://c4model.com/

��

https://c4model.com/

Chapter �. Solution ��

�.�.� Container

Figure �.� shows the container diagram of the application. The green color signals a new
container, component, or relation.

The analysis results from �.� is the new forum container and its relations to the frontend,
backend, and database. Detailed information about the implementation of the forum can
be found in �.�.

The WebSockets were removed entirely due to reducing complexity.

The use of a common go library is also new but not shown in the diagram. Usage of this
shared go library will be displayed in the component diagrams in �.�.�. More on this topic
is described in �.�.��.

Chapter�.
Solution

��

Figure �.�: Container diagram.

Chapter �. Solution ��

�.�.� Component

This section shows the component diagramsof the different containers of the application.
The green color signals a new container, component, or relation. For a better overview, the
diagrams are split by container and only show the direct relations. The entire component
diagram can be found in Appendix D.�.

Frontend

The frontend now interactswith the forumcomponent to retrieve, show, and edit data. This
is illustrated in Figure �.�. The payout service is called to generate to allow developers
retrieve their retrieved funds and to get the contract addresses for the DAO.

Figure �.�: Component diagram frontend.

Backend

Figure �.� shows the component diagram of the backend. Thomas Bocek did most of
these refactorings. The forum component (�.�.�) calls the backend to retrieve user data.
As mentioned, the WebSockets were removed and replaced by pulling the backend ser-
vice in an interval. The API component is now responsible for the full implementation of
the REST API. The original API component was renamed to clients and serves as an ab-

Chapter �. Solution ��

straction layer for used services. The sending of emails was moved to the new clients
component. The calls to NOWPayments� and Stripe� have been relocated to the API com-
ponent.

Figure �.�: Component diagram backend.

Analyzer

The architecture of the analyzer component, shown in �.�, has remained the same, except
it makes use of the go-library (�.�.��).

�https://nowpayments.io/
�https://stripe.com

https://nowpayments.io/
https://stripe.com

Chapter �. Solution ��

Figure �.�: Component diagram analyzer.

FastAuth

The architecture of the fastauth component, shown in �.�, has remained the same, except
it makes use of the go-library (�.�.��). Additionally, over ���� lines of unused code were
removed.

Figure �.�: Component diagram fastauth.

Chapter �. Solution ��

Payout

The architecture of the payout component, shown in �.6, has remained the same, except
it makes use of the go-library (�.�.��).

Figure �.6: Component diagram payout.

Smart Contracts

The smart contract component shown in �.� has had a minor change in the payout con-
tracts. The new payout USDC contract is an adapted version of the original payout con-
tract. They share the same interface and signature algorithm, but since the methods to
interact with USDC, which is an ERC�� token in its core, and native ETH are different, this
refactoring was necessary. The payout USDC contract has been written to work with any
ERC�� token. For example, if FlatFeeStack wants to support pay-ins with CHF at some
point, the payout could be done with the CCHF stablecoin, which is also an ERC�� token.

Chapter �. Solution �6

Figure �.�: Component diagram smart contracts.

Forum

The component diagram of the forum is shown in section �.�.�.

Chapter �. Solution ��

�.� Mono Repository Merge

This task aimed to merge all services of FlatFeeStack into one repository. Additionally,
continuous integration and automated dependency updates should be added.

A repository had to be chosen to start with themono repositorymerge, where all the repos-
itories would be added. As the central FlatFeeStack repository already had a script that
downloaded all dependent services into subdirectories and a docker-compose �le to start
thewhole platform, it was decided to use that repository. It would allowmerging the repos-
itories one by one without disrupting much of the existing development work�ow.

The merge process for one of the services looked as follows [��]:

• Rewrite the Git history of the service locally to move everything into a subdirectory.

• From the FlatFeeStack repository, add the local service repository as a remote.

• Merge the state of the local repository using --allow-unrelated-histories, as the
initial commit for the service and FlatFeeStack repository are different.

• Additionally, for each service, continuous integration has been added.

• Each service already had a Docker�le to build a Docker image and usually unit tests.
The continuous integration runs with GitHub Actions and only when �les of said
service have been changed, as shown in Listing �.�. Sometimes tests in the source
Git repository were broken, but they were �xed before the merge.

� name: Test and build analyzer
�

� on:
� push:
� paths:
6 - ".github/workflows/analyzer.yaml"
� - "analyzer/**"
8 pull_request:
� paths:

�� - ".github/workflows/analyzer.yaml"
�� - "analyzer/**"
�� workflow_dispatch:
��

�� jobs:
�� build-test:
�6 runs-on: ubuntu-latest
�� steps:
�8 - name: Checkout code
�� uses: actions/checkout@v3
��

Chapter �. Solution �8

�� - name: Set up QEMU
�� uses: docker/setup-qemu-action@v2
��

�� - name: Set up Docker Buildx
�� uses: docker/setup-buildx-action@v2
�6

�� - name: Build test container
�8 uses: docker/build-push-action@v4
�� with:
�� context: analyzer
�� load: true
�� target: builder
�� tags: ghcr.io/flatfeestack/flatfeestack/analyzer:test
��

�� - name: Run tests
�6 run: docker run -v $(pwd)/analyzer:/app --rm ghcr.io/flatfeestack/ ê

flatfeestack/analyzer:test go test -v ./...
��

�8 - name: Build container
�� uses: docker/build-push-action@v4
�� with:
�� context: analyzer
�� load: true
�� tags: ghcr.io/flatfeestack/flatfeestack/analyzer:test
��

�� - name: Run analyzer
�6 run: docker run --env-file analyzer/.example.env --rm -d -p ê

9083:9083 ghcr.io/flatfeestack/flatfeestack/analyzer:test
��

�8 - name: Check if analyzer is reachable
�� uses: nick-fields/retry@v2
�� with:
�� timeout_seconds: 15
�� max_attempts: 5
�� command: curl -v localhost:9083

Listing �.�: Continuous integration pipeline for the analyzer service.

For automating dependency updates, Renovate� was chosen and added via GitHub apps�.
Renovate scans the repository for various dependency �les, a signi�cant advantage com-
pared to GitHub’s built-in Dependabot�, where every dependency �le must be con�gured
manually. Renovate opens a pull request for each dependency update. As shown in List-

�https://github.com/renovatebot/renovate
�https://docs.github.com/en/apps
�https://github.com/dependabot

https://github.com/renovatebot/renovate
https://docs.github.com/en/apps
https://github.com/dependabot

Chapter �. Solution ��

ing �.�, the con�guration was adapted to group path and minor dependency updates per
service, reducing the number of pull requests created.

� {
� "groupName": "analyzer - all non-major dependencies",
� "matchPaths": [
� "analyzer/"
�],
6 "matchUpdateTypes": [
� "minor",
8 "patch"
�]

�� }

Listing �.�: Renovate con�guration to group dependency updates for the analyzer service.

In total, six services have been merged into one repository:

• analyzer

• backend

• fastauth

• frontend

• smart-contracts-eth (renamed from daa)

• smart-contracts-neo (renamed from payout-neo)

�.�.� Payout

The payout service is the notable exception to the process outlined in section �.�. Before
the merge, it contained a go server to handle payouts from the FlatFeeStack platform to
the different blockchains, a smart contract for ETH for the payout, and a compiled version
for the NEO payout contract. The payout service also deployed both the NEO and ETH
contracts.

The following refactoring has been applied before the merge into the main repository to
align the payout service to the general structure of the mono repository, where every sub-
directory represents one service:

• The payout contract in ETH has been moved to the smart-contracts-eth directory
and integrated into the existing development setup of the FlatFeeStack DAO.

• The process of deploying smart contracts has been eliminated. It is recommended
that the deployment of smart contracts be managed independently by each respec-
tive technology.

Chapter �. Solution 6�

• The payout repository still has a copy of the ETHcontract ABI and a compiled version
of the NEO payout contract. It needs them to interact with the smart contracts on
their respective blockchains.

Chapter �. Solution 6�

�.� Production Deployment

This chapter documents the deployment of the FlatFeeStack platform to the DigitalOcean
App platform. The �nal solution consists of two parts: The con�guration, as described in
section �.�.�, and the deployment from GitHub Actions, as described in section �.�.�.

�.�.� DigitalOcean App Platform

As documented in section �.�.�, different services can be grouped into one application.
One application has one domain under which the services are reachable.

Section �.�.� lists issues with the deployment from the mono repository. The evaluation
suggests that Docker images are built from the existing Docker�le from GitHub Actions
and pushed to the DigitalOcean Docker registry (section �.�.�). Those images are then ref-
erenced as the image for each service that composes the architecture of FlatFeeStack.
Each service always uses the tag main, and auto-deploy of the tag has been disabled,
so deployments to production are manually controlled through GitHub Actions (see sec-
tion �.�.�).

The FlatFeeStack container supports two ways to pass variables for con�guration: Either
environment variables or a .env �le. Environment variables are used to pass the required
con�guration to align the DigitalOcean deployment with the staging deployment. Secrets
like the JWT auth secret or credentials for the different APIs are marked as encrypted,
which ensures that the values cannot be retrieved nor read from the user interface for
security reasons.

The staging environment uses a Caddy� reverse proxy to route the different subpaths to
the respective services. DigitalOcean App platform allows the de�nition of the subpaths
per service, which means the reverse proxy is built into the product. It allows later to
quickly scale the services when necessary, as the reverse proxy of DigitalOcean knows
how many instances are available for a particular service and can route the traf�c cor-
rectly. The different subpaths are also shown in Figure �.8.

The con�guration on the App platform is extensive. DigitalOcean allows exporting this
con�guration in a YAML �le called app-spec; a copy is available in the Git repository. In the
worst case, the whole con�guration can be rebuilt from this YAML �le.

�.�.� GitHub Actions

GitHub Actions play two critical parts in deployment architecture.

�https://caddyserver.com/

https://caddyserver.com/

Chapter �. Solution 6�

Figure �.8: Overview of the con�gured application on DigitalOcean.

The �rst jobs build and push the Docker images of the different services to the DigitalO-
cean registry. A con�guration can look like the one shown in Listing �.�.

� build-and-push-analyzer:
� runs-on: ubuntu-latest
� steps:
� - name: Checkout code
� uses: actions/checkout@v3
6

� - name: Set up QEMU
8 uses: docker/setup-qemu-action@v2
�

�� - name: Set up Docker Buildx
�� uses: docker/setup-buildx-action@v2
��

�� - name: Install doctl
�� uses: digitalocean/action-doctl@v2
�� with:

Chapter �. Solution 6�

�6 token: ${{ secrets.DIGITALOCEAN_ACCESS_TOKEN }}
��

�8 - name: Login to DigitalOcean container registry
�� run: doctl registry login --expiry-seconds 10000
��

�� - name: Build container
�� uses: docker/build-push-action@v4
�� with:
�� context: analyzer
�� load: true
�6 tags: "registry.digitalocean.com/flatfeestack/analyzer:${{ github. ê

ref_name }}"
�� cache-from: type=gha
�8 cache-to: type=gha,mode=max
��

�� - name: Run analyzer
�� run: docker run --env-file analyzer/.example.env --rm -d -p ê

9083:9083 "registry.digitalocean.com/flatfeestack/analyzer:${{ github. ê
ref_name }}"

��

�� - name: Check if analyzer is reachable
�� uses: nick-fields/retry@v2
�� with:
�6 timeout_seconds: 15
�� max_attempts: 5
�8 command: curl -v localhost:9083
��

�� - name: Push
�� uses: docker/build-push-action@v4
�� with:
�� context: analyzer
�� push: true
�� tags: "registry.digitalocean.com/flatfeestack/analyzer:${{ github. ê

ref_name }}"

Listing �.�: Build and push job for the analyzer component.

A few essential details:

�. The setup is mainly based on the of�cial example of Docker [��].

�. As a tag for the images, the current branch name, exposed as a GitHub Action vari-
able named ref_name is used. Most Docker images usually use Git tags for version-
ing, but since the platform is continuously improved, having one tag is suf�cient.
One can avoid discussing how and when to add a new Git tag. It also allows build-
ing Docker tags for feature branches without introducing another tag/versioning
scheme.

Chapter �. Solution 6�

�. Before pushing the images to production, the containers are started using a set of
example environment variables, and a smoke test is conducted to spot issues with
the runtime.

Parts of the code listed in �.� are similar to the continuous integration work�ow for each
service listed in section �.�. The main differences are that the build and push job always
runs for all services on themain branch, ignores unit tests and pushes the Docker images.

This GitHub Action work�ow is run automatically for all services on each push to themain
branch and can be manually started for a feature branch.

The deployment to production is handled in a separate work�ow which a developer can
start manually.

� name: Deploy to production
�

� on:
� workflow_dispatch:
�

6 jobs:
� deploy-to-production:
8 runs-on: ubuntu-latest
� steps:

�� - name: Install doctl
�� uses: digitalocean/action-doctl@v2
�� with:
�� token: ${{ secrets.DIGITALOCEAN_ACCESS_TOKEN }}
��

�� - uses: actions/setup-python@v4
�6 with:
�� python-version: "3.11"
�8

�� - name: Trigger production deployment
�� run: doctl apps create-deployment --wait $(doctl apps list --output ê

json | python3 -c "import sys, json; print(json.load(sys.stdin)[0]['id'])")

Listing �.�: Deployment to production work�ow.

This script, listed in �.�, will trigger a new deployment on DigitalOcean. Behind the scenes,
DigitalOcean will pull the new images for each service, start them parallel to the existing
ones and, once stable, delete the old ones.

Notably, this work�ow can be started from any branch, but the tag that will be used is
always main, as the con�guration of the DigitalOcean App platform enforces it. If one
wants to change the tag for a particular reason in production, one must change the used
tag in the mentioned con�guration.

Chapter �. Solution 6�

�.�.� Increased Price

Due to additions during the thesis, the monthly price of DigitalOcean is $�� instead of the
projected $�� (see section �.�.�). This increase has the following reasons:

�. One additional service, the forum (see section �.�), costs $�.

�. The droplet for the monitoring (see section �.6) costs $6.

�. With the forum component, the usable amount of Docker registry images of the eval-
uated pricing plan was exceeded. An upgrade to the next plan was needed, which
costs an additional $�� per month.

Chapter �. Solution 66

�.� Complete Payout Functionality

This chapter documents the additions to the different components of FlatFeeStack to
�nish the payout functionality.

�.�.� Smart Contracts

As documented in section �.�.�, the payout contract should be adapted to work with the
USDC stablecoin. The USDC stablecoin uses the ERC�� interface [��], which differs from
sending native Ethers.

Beforemodifying the existing contract, automated tests with the existing Hardhat environ-
ment were written to verify the functionalities. Then, standard methods were extracted to
a new base payout contract before implementing a new variant that can handle ERC��
tokens.

Additionally, the signature was extended to must include a symbol, which is currently ei-
ther ETH or USDC. This addition prevents users from withdrawing multiple assets at dif-
ferent smart contracts with the same signature.

�.�.� Payout Service

In the payout service, the mentioned NEO endpoint was implemented according to the
code mentioned in the thesis of Michael Bucher [�]. Another endpoint was added to gen-
erate the signature for payouts with the USDC stable tokens.

� func getEthSignature(data PayoutRequest, symbol string) (PayoutResponse, ê
error) {

� var arguments abi.Arguments
� arguments = append(arguments, abi.Argument{
� Type: abi.Type{T: abi.FixedBytesTy, Size: 32},
� })
6 arguments = append(arguments, abi.Argument{
� Type: abi.Type{T: abi.StringTy},
8 })
� arguments = append(arguments, abi.Argument{

�� Type: abi.Type{Size: 256, T: abi.UintTy},
�� })
�� arguments = append(arguments, abi.Argument{
�� Type: abi.Type{T: abi.StringTy},
�� })
��

�6 correspondingPrivateKey, err := privateKeyFromOpts(symbol)
�� if err != nil {
�8 return PayoutResponse{}, err

Chapter �. Solution 6�

�� }
��

�� privateKey, err := crypto.HexToECDSA(correspondingPrivateKey)
�� if err != nil {
�� return PayoutResponse{}, err
�� }
��

�6 encodedUserId := [32]byte(crypto.Keccak256([]byte(data.UserId.String())))
�� packed, err := arguments.Pack(encodedUserId, "#", data.Amount, symbol)
�8 hashRaw := crypto.Keccak256(packed)
��

�� // Add Ethereum Signed Message prefix to hash
�� prefix := []byte("\x19Ethereum Signed Message:\n32")
�� prefixedHash := crypto.Keccak256(append(prefix, hashRaw[:]...))
��

�� signature, err := crypto.Sign(prefixedHash[:], privateKey)
�� if err != nil {
�6 return PayoutResponse{}, err
�� }
�8

�� return PayoutResponse{
�� Amount: data.Amount,
�� Currency: symbol,
�� EncodedUserId: hexutil.Encode(encodedUserId[:]),
�� Signature: hexutil.Encode(signature),
�� }, nil
�� }

Listing �.�: The adapted signature function in the payout service.

The existing signature implementation for ETH had to be adapted, as the message now
needed to contain a symbol (see section �.�.�). This work led to another discovery that the
UUIDs used as IDs for users in FlatFeeStack are too long for the bytes32 type de�ned for
the user IDs in the ETH contract. Therefore, an additional hashing step was introduced for
the user IDs in both the signing endpoints and the smart contracts. The used keccak256

hashing algorithm shortens the UUID to the required �� bytes. The adapted code is shown
in Listing �.�.

�.�.� Backend

Theneededbackend endpointwas implemented according to the instruction listed in�.�.�.

�. The user needs to be authenticated and provide a valid target currency.

�. All contributions received in the target currency for the current user are summed up.

Chapter �. Solution 68

�. Submit a request to the payout service to generate a signature in the target currency
with the calculated total earned amount.

�. Mark the contributions as claimed in the database.

�. Return the generated signature, encoded user ID, and the amount.

�.�.� Frontend

The existing Income component was extended with a short question-and-answer section
about the payout process. Buttons were added to request a signature in each supported
currency, as shown in �.�.

Figure �.�: Adapted income component in the frontend. The table with the received con-
tributions have been cropped to save space in the documentation.

Additionally, when requesting a signature in ETH or USDC, a button was added to call
MetaMask� to do the payout directly.

�https://metamask.io/

https://metamask.io/

Chapter �. Solution 6�

�.� Discussion Implementation

As decided in �.�, the discussion will be implemented as a microservice. The following
chapter will describe the architecture and design of the discussion microservice.

�.�.� API Design

The discussion microservice should be as simple as possible within this project’s scope.
Therefore, a simple REST API is implemented with a CRUD interface. Libraries should be
used to generate as much code as possible. The API design should be made with the
API-First approach. This approach says that the API should be designed before the imple-
mentation starts.

Requirements

• Everyone must be able to read the forum.

• Only authenticated users can create and update posts and comments.

• Administrators can delete posts and comments.

• If the discussion is �nished, the post can be closed.

• Closed posts can not be reopened or edited.

These requirements lead to the API endpoints shown in Figure �.��.

Figure �.��: Forum endpoints.

Chapter �. Solution ��

�.�.� Architecture

Figure �.�� shows the architecture of the discussion microservice.

Figure �.��: Component diagram forum.

Main
The main component is the entry point of the microservice. It constructs everything and
starts up the server.

JWT
The JWT component is responsible for the user’s authentication because some functions
are only available for authenticated users (see �.�.�). Depending on the endpoint, it checks
whether the user needs to be authenticated or even admin to access it.

DB
The DB component is responsible for communication with the database. It establishes
the connection to the database and executes the database creation on startup. Also, it
provides functions to access the database.

Types
The types component de�nes the global type de�nitions that the microservice uses.

Utils
The utils component offers useful functions implemented in many components.

Chapter �. Solution ��

API
The API-Component is responsible for providing the code for the API endpoints.

Globals
The globals component declares and holds global variables used in other components.

DAO
The DAO component manages the calls to the FlatFeeStack DAO on the blockchain.

�.�.� Implementation

The OpenAPI �.�� standard is used to de�ne the API. OpenAPI �.� is a highly prevalent
and industry-accepted standard designed to streamline the process of designing and doc-
umenting RESTful APIs. It offers a structured and machine-readable framework that en-
ables developers to de�ne various aspects of an API, including its endpoints, requests
and response payloads, and authentication mechanisms.

OpenAPI �.� has a great community and many tools to generate code from the API de�-
nition. The tool oapi-codegen� generates code from the OpenAPI �.� de�nition for the go
environment.

The generated code was separated into model and server code to improve the code orga-
nization and for a more straightforward overview.

With the con�guration shown in Listing �.6, the model code can be generated:

� package: api
� generate:
� models: true
� output: ./api/forum-types.gen.go

Listing �.6: Model generation con�guration �le.

This generates all models de�ned in the OpenAPI �.� de�nition, the request types, and the
error models. A section of this �le can be seen in Listing �.�.

� // Package api provides primitives to interact with the openapi HTTP API.
� //
� // Code generated by github.com/deepmap/oapi-codegen version v1.12.4 DO NOT ê
EDIT.

� package api
�

6 import (
� "time"
8

�https://swagger.io/specification/
�https://github.com/deepmap/oapi-codegen

https://swagger.io/specification/
https://github.com/deepmap/oapi-codegen

Chapter �. Solution ��

� openapi_types "github.com/deepmap/oapi-codegen/pkg/types"
��)
��

�� const (
�� BearerAuthScopes = "bearerAuth.Scopes"
��)
��

�6 // Comment defines model for Comment.
�� type Comment struct {
�8 Author openapi_types.UUID �json:"author"�
�� Content string �json:"content"�
�� CreatedAt time.Time �json:"created_at"�
�� Id openapi_types.UUID �json:"id"�
�� UpdatedAt *time.Time �json:"updated_at,omitempty"�
�� }
��

�� ...
�6

�� // BadRequest defines model for BadRequest.
�8 type BadRequest struct {
�� Error string �json:"error"�
�� }
��

�� ...
��

�� // PostPostsJSONRequestBody defines body for PostPosts for application/json ê
ContentType.

�� type PostPostsJSONRequestBody = PostInput
�6

�� ...

Listing �.�: Generated model from OpenAPI.

With the con�guration shown in Listing �.8, the server code can be generated:

� package: api
� generate:
� gorilla-server: true
� strict-server: true
� embedded-spec: true
6 output: ./api/forum-server.gen.go

Listing �.8: Server generation con�guration �le.

This oapi-codegen con�guration generates a Go language server implementation using
the Gorilla toolkit, enforces strict server code generation, and embeds the OpenAPI spec-
i�cation within the generated server code.

Chapter �. Solution ��

It generates an interface for the user to implement. Due to the strict-server option, users
are compelled to utilize the generated types, which handle the parsing of request and
response objects. A section of the generated server code can be seen in Listing �.�.

� // Interface
� type StrictServerInterface interface {
� // Get metrics
� // (GET /metrics)
� GetMetrics(ctx context.Context, request GetMetricsRequestObject) (ê

GetMetricsResponseObject, error)
6 // Get all posts
� // (GET /posts)
8 GetPosts(ctx context.Context, request GetPostsRequestObject) (ê

GetPostsResponseObject, error)
� // Create a new post

�� // (POST /posts)
�� ...
�� }
�� // Implementation
�� ...
�� func (s *StrictServerImpl) GetMetrics(ctx context.Context, request ê

GetMetricsRequestObject) (GetMetricsResponseObject, error) {
�6 return GetMetrics200Response{}, nil
�� }
�8

�� func (s *StrictServerImpl) GetPosts(ctx context.Context, request ê
GetPostsRequestObject) (GetPostsResponseObject, error) {

�� posts, err := database.GetAllPosts()
�� if err != nil {
�� log.Error(err)
�� return GetPosts500Response{}, nil
�� }
�� if posts == nil {
�6 return GetPosts204JSONResponse{}, nil
�� }
�8 var response GetPosts200JSONResponse
�� for _, dbPost := range posts {
�� post := mapDbPostToPost(dbPost)
�� response = append(response, post)
�� }
�� return response, nil
�� }
��

�6 func (s *StrictServerImpl) PostPosts(ctx context.Context, request ê
PostPostsRequestObject) (PostPostsResponseObject, error) {

�� id := getCurrentUserId(ctx)

Chapter �. Solution ��

�8 newPost, err := database.InsertPost(id, request.Body.Title, request.Body. ê
Content)

�� if err != nil {
�� log.Error(err)
�� return PostPosts500Response{}, nil
�� }
�� return PostPosts201JSONResponse{
�� Author: newPost.Author,
�� Content: newPost.Content,
�6 CreatedAt: newPost.CreatedAt,
�� Id: newPost.Id,
�8 Open: newPost.Open,
�� Title: newPost.Title,
�� UpdatedAt: newPost.UpdatedAt,
�� }, nil
�� }
�� ...

Listing �.�: Server interface and implementation code.

Listing �.�� shows how the server can be initiated using the generated code.

� ...
� // Create an instance of the implementation of the server interface
� server := api.NewStrictServerImpl()
� ...
� //Create a new router
6 router := mux.NewRouter()
� ...
8 // Define options for the Gorilla Server
� serverOptions := api.GorillaServerOptions{

�� BaseURL: "",
�� BaseRouter: router,
�� Middlewares: []api.MiddlewareFunc{
�� jwt.AuthMiddleware,
�� },
�� ErrorHandlerFunc: func(w http.ResponseWriter, r *http.Request, err error) ê

{
�6 utils.WriteErrorf(w, http.StatusInternalServerError, "Internal Server ê

Error: %v", err.Error())
�� return
�8 },
�� }
�� ...
�� // Create an http handler with an interface and options
�� handler := api.HandlerWithOptions(serverInterface, serverOptions)
�� ...
��

Chapter �. Solution ��

�� // Start the server
�6 log.Fatal(http.ListenAndServe(":"+strconv.Itoa(globals.OPTS.Port), handler))

Listing �.��: Http handler code.

A simple authentication middleware, shown in Listing �.��, is used to know if the client is
authenticated and authorized. The generated code provides a �eld in the request context
where the information is stored if the user needs authentication and authorization. This
can be generated because the security schemes are de�ned in the OpenAPI �.� de�nition.

� func AuthMiddleware(next http.HandlerFunc) http.HandlerFunc {
� return func(w http.ResponseWriter, r *http.Request) {
� // Get the context from the request
� ctx := r.Context()
�

6 scopes := ctx.Value(api.BearerAuthScopes)
�

8 // If no scopes are defined, the endpoint is not protected and is ê
publicly available

� if scopes == nil {
�� next.ServeHTTP(w, r)
�� return
�� }
��

�� ...
�� // Slice the scopes
�6 scopesSlice, ok := scopes.([]string)
�� ...
�8 // If the scope is admin, we have to check that the user is admin
�� // If the scope is user, it is enough to know that the JWT validation ê

was successful
�� switch scopesSlice[0] {
�� case "Admin":
�� if dbUser.Role == "Admin" {
�� next.ServeHTTP(w, r.WithContext(ctx))
�� return
�� }
�6 utils.WriteErrorf(w, http.StatusUnauthorized, "You are not admin: %v ê

", claims.Subject)
�� return
�8 case "User":
�� next.ServeHTTP(w, r.WithContext(ctx))
�� default:
�� utils.WriteErrorf(w, http.StatusInternalServerError, "Unknown scope")
�� return
�� }

Listing �.��: Authentication middleware function.

Chapter �. Solution �6

�.�.� Ethereum Event Listener

When certain events happen on the blockchain, the forum takes automated action accord-
ing to the proposal lifecycle shown in �gure �.�.

First, the forum needs an active connection to the ETH blockchain to receive such events.
This connection is handled with WebSockets. Both the local ganache development envi-
ronment and Infura offer those endpoints. Once a proposal is created, the DAO emits an
event containing all its metadata, like a description or the ID.

The event listener in the forum is set up only to receive the proposal created events. It will
inspect its description and looks for a discussion URL, as shown in Listing �.��. If a valid
URL is found, the forum will try to save the proposal ID to the discussion in its database,
so the frontend can later display a link. If no link is found or the UUID of the discussion is
invalid, the forum creates a new post.

� func LinkOrCreateDiscussion(event ContractDAOProposalCreated) {
� // if the user selects a discussion in our "Create proposal" mask in the ê

frontend
� // a line like "Original discussion: http://localhost:8080/dao/discussion ê

/21a3c381-4bcf-4f4b-a341-a28365518af1" is added to the discussion
� linkPattern := regexp.MustCompile(�Original discussion\: [a-zA-Z\:\/\.\d ê

]+\/dao\/discussion\/([0-9a-fA-F]{8}\b-[0-9a-fA-F]{4}\b-[0-9a-fA-F]{4}\b ê
-[0-9a-fA-F]{4}\b-[0-9a-fA-F]{12})$�)

� matches := linkPattern.FindStringSubmatch(event.Description)
6

� if len(matches) == 0 {
8 _, err := createPostForProposal(event)
� if err != nil {

�� log.Errorf("Unable to create post for proposal: %s", err)
�� }
�� } else {
�� // discussion is linked, check if reference is valid.
�� updateExistingDiscussion(event, matches)
�� }
�6 }

Listing �.��: Regular expression to detect a discussion link.

�.�.� Frontend Implementation

The forum is added to the existing DAO navigation. An overview of all discussions is
shown when opening it, as seen in Figure �.��.

Figure �.�� shows a detailed view of a discussion. At the top, links to the different pro-
posals are provided, if any are linked. As the currently logged-in user is the creator of the

Chapter �. Solution ��

Figure �.��: Discussion overview.

discussion, a lock icon is shown to allow closing the discussion. The pencil icon is dis-
played when the current user is the post creator or comment. Upon clicking it, a form
is shown that allows the creator to edit the content. An edited remark on the post also
indicates an edited entity.

As the logged-in user is also an administrator, the trash icon is displayed, allowing one to
delete a post or comment.

Figure �.�� shows the post creation form, which is identical to the form to update a post.
It contains the two required �elds, title and content.

The form uses client-side validations, which are aligned with the constraints implemented
in the backend, so the user has a quicker feedback loop if something is not goodwith their
provided text.

Chapter �. Solution �8

Figure �.��: Detail view for a discussion.

�.6 Monitoring

Monitoring is critical tomanaging the health and performance ofmicroservices-based ap-
plications and their underlying databases. In this chapter, the focus is on the implemen-
tation of the monitoring for the different microservices in FlatFeeStack and the database.

Microservices architecture has gained signi�cant popularity due to its ability to facilitate
agile development, scalability, and fault isolation. However, the distributed nature of mi-
croservices poses monitoring challenges, as we need to track the performance and be-
havior of individual services and ensure the overall system’s stability.

Prometheus� addresses these challenges as an open-sourcemonitoring and alerting solu-
tion. Prometheus follows a pull-based model, where it regularly scrapes metrics from tar-
gets, such as microservices and databases, and stores them in a time-series database.
It offers a �exible query language for querying and aggregating metrics and provides a
powerful alerting mechanism to notify us of potential issues.

�https://prometheus.io/

https://prometheus.io/

Chapter �. Solution ��

Figure �.��: Form to create a new discussion.

Grafana�, a popular data visualization and dashboarding tool, complements Prometheus
by allowing us to create visually appealing and insightful dashboards. With Grafana, users
canmonitor keymetrics, display real-time and historical data, and gain actionable insights
into the performance and behavior of microservices and databases.

Prometheus and Grafana are widely used and have a large community. The community
offers a rich set of exporters, dashboards, and alerts for monitoring and managing mi-
croservices and databases.

�.6.� Instrumenting PostgreSQL

ThePostgreSQLdatabase provides greatmetrics but does not expose them in aPrometheus-
compatible format. To address this issue, the PostgreSQL Exporter� is used to scrape
metrics from the database and expose them in a Prometheus-compatible format.

�https://grafana.com/
�https://github.com/prometheus-community/postgres_exporter

https://grafana.com/
https://github.com/prometheus-community/postgres_exporter

Chapter �. Solution 8�

�.6.� Changes in Go-Code

A library called client_golang� can be used to receive metrics for a go application. This li-
brary provides functions to registermetrics and expose them in a Prometheus-compatible
format. Per default, this library collects data about the go runtime, like memory usage,
garbage collection and more. Nevertheless, it is also possible to register custommetrics.
Each microservice registers three custom metrics.

�. Request Duration: This metric measures the duration of the HTTP requests in the
microservice.

�. Total Requests: This metric counts the requests to the different HTTP endpoints in
the microservice.

�. Response Status: This metric counts the different response status codes the mi-
croservice sends.

The microservices had to extend a new endpoint to enable Prometheus to scrape the
metrics. This endpoint is called /metrics and can be seen in Listing �.��.

� router.Path("/metrics").Handler(promhttp.HandlerFor(
� registry,
� promhttp.HandlerOpts{
� Registry: registry,
� // Opt into OpenMetrics to support exemplars.
6 EnableOpenMetrics: true,
� },
8))

Listing �.��: Code to de�ne metrics endpoint.

The registry contains all the metrics that should be collected and exposed.

Also, each microservice had to register a new middleware (shown in Listing �.��) in its
router. The middleware �lls in data for the three custom metrics.

� func PrometheusMiddleware(next http.Handler) http.Handler {
� return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
� route := mux.CurrentRoute(r)
� path, _ := route.GetPathTemplate()
�

6 timer := prometheus.NewTimer(HttpDuration.WithLabelValues(path))
� rw := &responseWriterWrapper{ResponseWriter: w}
8 next.ServeHTTP(rw, r)
�

�� statusCode := rw.statusCode

�https://github.com/prometheus/client_golang

https://github.com/prometheus/client_golang

Chapter �. Solution 8�

��

�� ResponseStatus.WithLabelValues(strconv.Itoa(statusCode)).Inc()
�� TotalRequests.WithLabelValues(path).Inc()
��

�� timer.ObserveDuration()
�6 })
�� }

Listing �.��: Prometheus middleware de�nition.

Common code for the metric endpoints has been extracted to the FlatFeeStack go-lib ê
(�.�.��).

�.6.� Dashboards

Based on the available metrics, the decision was made to create four different dash-
boards.

FlatFeeStack Dashboard

Figure �.�� shows the FlatFeeStack-Dashboard. It shows metrics which are collected di-
rectly from the database.

Figure �.��: FlatFeeStack dashboard.

PostgreSQL Database Dashboard

Figure �.�6 shows the metrics collected by the postgres-exporter. This board is based on
a dashboard published by Lucas Estienne [��].

Chapter �. Solution 8�

Figure �.�6: PostgreSQL database dashboard.

HTTP Dashboard

Figure �.�� shows the HTTP Dashboard with an example of the backend service. On the
left side, the pie chart shows which endpoints are called how many times. The right side
shows the average response time of the endpoints.

Figure �.��: HTTP dashboard - backend.

In the dropdown in the top left corner, it is possible to select a different microservice.
Figure �.�8 shows the same dashboard for the forum microservice.

The query, shown in Listing �.��, calculates the average response time. They are shown
on the right side of the dashboard �.�8.

Chapter �. Solution 8�

Figure �.�8: HTTP dashboard - forum.

� sum(http_response_time_seconds_sum{job="$job", path!="/metrics"}) by (path) ê
/ sum(http_response_time_seconds_count{job="$job", path!="/metrics"}) by (ê
path)

Listing �.��: Prometheus query average response time.

It does this by summing the response time for each path and dividing it by the count of
requestsmade to each path. The $job variable is provided by Grafana and is used to select
the correct microservice.

Go Runtime Dashboard

This dashboard, shown in Figure �.��, shows the go runtime metrics. This dashboard is
based on the dashboard provided by Go Runtime Metrics.

With a switch of the job in the top left corner, it is possible to select a different microser-
vice.

�.6.� Provisioning

Listing�.�6 shows theYAML�le used to provisionPrometheus. TheYAML�le getsmounted
into the Docker container, and Prometheus reads it on startup.

� global:
� scrape_interval: 15s
� evaluation_interval: 15s
�

� scrape_configs:
6 - job_name: database

https://grafana.com/grafana/dashboards/14061-go-runtime-metrics/

Chapter �. Solution 8�

Figure �.��: Go runtime dashboard - backend.

� metrics_path: /metrics
8 static_configs:
� - targets: ['postgres-exporter:9187']

�� - job_name: analyzer
�� metrics_path: /metrics
�� static_configs:
�� - targets: ["host.docker.internal:9083"]
�� labels:
�� hostname: 'go-analyzer-server'
�6 service: 'analyzer'
�� ...

Listing �.�6: Prometheus con�guration �le.

As shown in �.�6, a new job is de�ned for each microservice. One must also de�ne the
endpoint target and provide the service name and hostname.

Two different things are needed to provision the Grafana instance. Firstly, the data source
must be de�ned. This project has two data sources: the PostgreSQL database and the
Prometheus instance.

Listing �.�� shows the datasource con�guration for the PostgreSQL database. Important
to note is the �eld uid because this is used to identify the data source in the dashboard.
So if the uid is changed, the dashboard must also be updated. The options provided here
are for the setup in a local environment.

� apiVersion: 1
�

� datasources:

Chapter �. Solution 8�

� - name: Postgres
� type: postgres
6 url: host.docker.internal:5432
� user: grafanareader
8 uid: 0YSE7REVz
� secureJsonData:

�� password: 'password'
�� jsonData:
�� database: flatfeestack
�� sslmode: 'disable'
�� maxIdleConns: 2
�� connMaxLifetime: 14400
�6 postgresVersion: 1500
�� timescaledb: false

Listing �.��: Postgres datasource con�guration �le.

The con�guration of the Prometheus data source is shown in Listing �.�8.

� apiVersion: 1
�

� datasources:
� - name: Prometheus
� type: prometheus
6 # Access mode - proxy (server in the UI) or direct (browser in the UI).
� access: proxy
8 url: http://prometheus:9090
� uid: 14c03580

Listing �.�8: Prometheus datasource con�guration �le.

The second thing needed is to provide the dashboards. The dashboards are de�ned in
JSON �les. These JSON �les are mounted into the Docker container, and Grafana reads
them on startup. The path property is de�ned for Grafana to �nd the �les inside the con-
tainer, as shown in Listing �.��.

� apiVersion: 1
�

� providers:
� - name: 'FFS'
� folder: 'FlatFeeStack'
6 folderUid: 'b8976d22'
� type: file
8 disableDeletion: false
� updateIntervalSeconds: 20

�� allowUiUpdates: true
�� options:

Chapter �. Solution 86

�� path: /etc/grafana/provisioning/dashboards

Listing �.��: Grafana dashboards con�guration �le.

�.6.� Deployment

It was decided to deploy the monitoring stack on a separate server. The decision was
made to deploy the monitoring stack on DigitalOcean, just like the rest of the application,
to maintain consistency. A virtual machine is used instead of deploying the stack to the
App Platform. On the App Platform, deploying the necessary con�guration �les proved
to be complicated, as App Platform does not allow adding �les to a service. The virtual
machine is only accessible via SSH and runs Ubuntu ��.��. DigitalOcean calls these virtual
machines droplets.

The monitoring stack is deployed with docker-compose. It consists of the following four
services:

• Prometheus

• Grafana

• Caddy

• Postgres-Exporter

The Grafana container is con�gured via environment variables. The full docker-compose
service de�nition is shown in Listing �.��.

� grafana:
� image: grafana/grafana:9.5.3
� restart: unless-stopped
� volumes:
� - ${BASE_PATH:-.}/.grafana_data:/var/lib/grafana
6 - ${BASE_PATH:-.}/grafana/provisioning:/etc/grafana/provisioning
� environment:
8 GF_SECURITY_ADMIN_USER: ${GRAFANA_ADMIN_USER:-admin}
� GF_SECURITY_ADMIN_PASSWORD: ${GRAFANA_ADMIN_PASSWORD:-admin}

�� GF_USERS_ALLOW_SIGN_UP: false
�� GF_USERS_DISABLE_INITIAL_ADMIN_CREATION: true
�� ports:
�� - "3001:3000"

Listing �.��: Grafana environment variables.

GRAFANA_ADMIN_USER and GRAFANA_ADMIN_PASSWORD are only set in the deployment pipeline.
If one wants to use the monitoring stack locally, the fallback values are used, which is
admin for both username and password.

Chapter �. Solution 8�

The postgres-exporter also needs an environment variable DATA_SOURCE_NAME to de�ne the
connection to the database.

To set up the droplet with the needed software, Ansible� is used. One playbook is respon-
sible for installing Docker on the droplet and provisioning the YAML �les described in
section �.6.�.

The deployment itself is done via GitHub Actions. The action has the following steps:

• Checkout the repository

• Install SSH Keys for the droplet

• Setup Python to run Ansible

• Install Ansible

• Install Docker and provision the YAML �les with Ansible

• Start the services with docker-compose

�https://www.ansible.com/

https://www.ansible.com/

Chapter �. Solution 88

�.� Various Improvements

During the Bachelor’s thesis, various improvements have been implemented across the
different services unrelated to any of the big topics listed earlier in this chapter. This chap-
ter summarises those changes.

�.�.� Feedback From the Semester Assignment

A couple of feedbacks were received regarding the DAO after the semester assignments
were implemented.

(a) Modal before accepting the bylaws. (b) Modal after accepting the bylaws.

Figure �.��: Modal asking to accept the bylaws before the request to join the DAO.

• When a member wants to join the DAO, a new checkbox is displayed that they read
the bylaws, as seen in Figure �.��.

• Most modals have been removed from the DAO as accessibility improvement.

• The DAO smart contract received a new property to store the URL to the bylaws.
Previously, only the hash was saved. The frontend reads this property to display a
link to the current bylaws. The proposal to change the bylaws has been updated to
require a URL.

Additionally, a couple of improvements outside the feedback have been added:

• Loading the voting slots and proposals in the frontend has been optimized. Previ-
ously, voting slots have been loaded individually without indicating when all have
been loaded. As the Ethereum blockchain is relatively fast when loading data, even
with more signi�cant amounts, this view has been changed to show a loading indi-
cator when retrieving the data, only showing the view once all data has been fetched.

• The addresses for the DAO contracts are now loaded from the payout service. Pre-
viously, those were hardcoded in the frontend, but a more �exible mechanism is
needed since the addresseswill differwhendeploying the contract to different blockchains.

• MetaMask, which the DAO frontend uses to interact with the Ethereum blockchain,
exposes two events to the window object notifying when users change the account
or connected network in MetaMask. The DAO frontend now listens to those events

Chapter �. Solution 8�

and can re-initialize the information that change based on those events. Also, an
appropriate message is shown if the chain identi�er differs betweenMetaMask and
the contract addresses provided by the payout.

�.�.� Frontend Improvements

• Svelte checks the site automatically for accessibility issues. Those have been ad-
dressed.

• Hot module reload has been implemented to enable faster development.

• Client-side validations were missing in a few places, like when adding a new Git
email. Those have been added.

• FlatFeeStack has a page to show all dependencies used in the frontend. This func-
tionality was broken at the start of the thesis but has been restored now.

• A user can review a graph displaying the different contributions for each sponsored
repository. This graph did not load correctly but now properly displays contribution
weights again, as shown in Figure �.��.

• The style of the admin page has been aligned with the rest of the site.

• FlatFeeStack now has a favicon.

• Allow users to clear username and remove their pro�le picture.

• Fix issue were the public badges were only viewable when authenticated, although
they should be public.

• Optimized background image to save 8�kB.

• Optimized loading of ChartJS to save 8�kB.

�.�.� Logging

All components now write their logs in a standard JSON format. This format allows later
to better search and �lter the logs across different parts when aggregated in a system like
Papertrail�.

�.�.� No-Reply Addresses

When the analyzer component checks a Git repository, it creates a list of all contribu-
tors, including the weight of their contributions. This list previously contained no-reply ad-

�https://www.papertrail.com/

https://www.papertrail.com/

Chapter �. Solution ��

Figure �.��: Fixed contribution graph.

dresses from GitHub. Commits with those addresses can happen when, e.g., committing
something directly from GitHub or merging/squashing pull requests.

FlatFeeStack wants to send an email informing users about received contributions, and
those addresses are unreachable, so a �lter has been added not to include those ad-
dresses in the weight calculation.

�.�.� OpenAPI Schema

OpenAPI� schemas for the backend and forumcomponent have been added. Those schemas
are consumed by the frontend to automatically generated TypeScript types. This change
uncovered type inconsistencies between the three components, which have also been
�xed.

�.�.6 Email Templates

The fastauth and backend components sent various emails informing users about actions
on FlatFeeStack, like receiving contributions, con�rming the sign-up, or adding a Git email
address.

Figure �.�� shows the previous version of the email template. All these emails were text
only, and the combination with the Click on this link text made them appear untrustworthy.

�https://swagger.io/specification/

https://swagger.io/specification/

Chapter �. Solution ��

Figure �.��: Previous email template used for sign up con�rmation.

Actual HTML templates were implemented with the FlatFeeStack corporate style to �x
these appearance problems. The email-sending mechanism in the backend and the fas-
tauth had to be optimized to allow this. On the one hand, it had to be allowed to sendHTML
emails and not only plain text; on the other hand, email templates had to be created. The
mechanism to allow email templates already existed. Therefore only the correct template
path had to be provided.

Figure �.��: New email template used in Git email con�rmation.

Figure �.�� shows the new email template. Corporate styling portrays a professional im-
age and is more inviting.

�.�.� Improved Error Handling

Error handling existed, but only in some places. Initially, only a generic error message
(standard HTTP error dependent on the HTTP status code) got displayed, disregarding
whatever the request returned. This disallowed any control over what the user receives.

Chapter �. Solution ��

At �rst, the assumption was that this came from the backend, respectively, the fastauth
services. Through debugging, it was discovered that the Ky library, used for API calls, han-
dles and displays these messages and ignores the actual response from the API.

� hooks: {
� afterResponse: [
� async (request: Request, options: any, response: Response) => {
� if (response.status !== 200) {
� const body = await response.json();
6 if (body.error) {
� throw new Error(body.error);
8 }
� }

�� },
��],
�� },

Listing �.��: Throw actual response error message instead of Ky error message.

Therefore, an afterResponse hook (shown in Listing �.��) had to be implemented to dis-
play the actual error message from the request instead of a generic one. In this hook, the
HTTP status of the requests gets checked. If it is not ���, the HTTP status for a success-
ful request, then the response should have an error message that can be accessed in the
body. It had to be ensured that the backend and fastauth services always return an error
message in the body in case of an error, even if it is just a generic one.

The error messages should be mainly done via the backend and fastauth services, as this
allows for more control over what is displayed instead of handling this via the frontend.
The services only returned error messages in test environments, which was changed to
always return error messages. At the start, the error messages were misleading or pro-
vided too many potentially risky insights into the application. The decision was made to
log every error in detail and return a generic and safe error message for the user.

Figure �.��: Existing git email error message (initial).

Figure �.��: Existing git email error message (new).

Chapter �. Solution ��

Figure �.�� is an example of the error message before, and Figure �.�� is the new error
message. No database information gets displayed to the user anymore, and the errors are
more helpful.

�.�.8 Responsiveness

The UI is relatively simple, displaying various functionalities out-of-the-box correctly on
mobile devices. Nevertheless, a multitude of display problems still existed. HTML tables
are the main issue. If not set up for mobile display, these easily break the site and cause
a vertical over�ow of the content, allowing the user to scroll from side to side instead of
only up and down. To tackle this over�ow caused by HTML tables, a standard HTML/CSS
solution got implemented. Add a label data attribute to the individual row columns with
the column’s name onmobile, hide the table header, display the stacked rows, and add the
label data attributed. The usability increased drastically with only thismodi�cation applied
to all used tables. Additional �xes had to be implemented to ensure all the functionalities
were usable on mobile, most of which were minor padding/margin or �xed width issues.
As the use of mobile devices increases, it is essential that all the main functionalities can
be accessed and used well on smaller view-ports and not only in desktop view.

Figure �.�6 displays the navigation and the invitation table before, and the same view after
the changes. The navigation is now displayed correctly, given the current width and the
table is displayed in the stacked design, and no vertical scroll is possible anymore.

�.�.� Route Protection

While exploring all functionalities, it was discovered that routes could be directly accessed
via the URL. No sensitive data was visible to the unauthenticated user. Nevertheless, the
page structure was visible, giving a not very con�dent impression if no route handling
exists. As most routes load data with Svelte’s onMount() hook, these requests will imme-
diately fail as no auth token is available, displaying an error message.

The �rst approach, checking the user state in the components and routes, did not work
as expected. For example, most routes implement a Navigation component around the
actual content. Checking in the Navigation component wouldmake sense, but because of
how the data is loaded, the navigation’s onMount() function is loaded after the onMount()

function of the route itself. This allows the page to �icker and be visible for a few seconds
to the user before the check takes place.

As no generic middleware exists to handle this authorization, other options were evalu-
ated, such as SvelteKit�. This approach was investigated further, as it would allow a de-

�https://kit.svelte.dev/

https://kit.svelte.dev/

Chapter �. Solution ��

(a) Badges - supported repositories
table display on mobile (initial)

(b) Badges - supported repositories
table display on mobile (new).

Figure �.�6: Badges - supported repositories table initial and new.

fault template that all sub-pages use to handle the authentication. After investing some
time, this approach was disregarded, as too much time would have to be invested in
making the current setup work with SvelteKit. The �nal solution was to create a custom
PrivateRoute component and a route middleware component.

� <PrivateRoute path="/user/admin" admin={true}>
� <Admin />
� </PrivateRoute>

Listing �.��: Wrap route with auth guard.

Listing �.�� shows the wrapping the Admin component with a PrivateRoute. Furthermore,
it is possible to add the admin parameter, with which the user role additionally gets veri�ed.
This authentication guard ensures that the user is authenticated and, if set, an admin. The

Chapter �. Solution ��

routeing middleware then checks if the user is authenticated. This check was done with
the user grabbed from the state. The issue with this approach is that the state needs a few
milliseconds to load, and the check often came before the user was fully loaded, causing
it to think no user was available.

The solution to this was �rst to check if a user is in the state. If yes, take it; if not, create
an asynchronous call to fetch the user from the fastauth service.

� onMount(async () => {
� try {
� userFromStoreOrAPI = $user.id == undefined
� ? await API.user.get() : $user;
� if (!userFromStoreOrAPI.id) {
6 navigate("/login");
� }
8 if (admin &&
� (!userFromStoreOrAPI.role || userFromStoreOrAPI.role != "admin")

��) {
�� $error = "Oops you are not allowed to view this resource";
�� navigate("/user/search");
�� }
�� } catch (e) {
�� $error = "Log in or create an account to access FlatFeeStack.";
�6 navigate("/login");
�� }
�8 });

Listing �.��: Check if user is available or load async from API.

Listing �.�� provides the code of how this check is implemented. The async call ensures
that we have the correct data, either a user or know that the call should be blocked and
forwarded to the login page. With the help of this implementation, hard reload and regular
reloads, and link clicks work as expected and do not cause false redirecting because of
loading issues.

�.�.�� New Staging Deployment

As many components were changed during the preparation of the deployment to Digi-
talOcean, the existing staging deployment was no longer working. According to discus-
sions with the advisor and external co-examiner, a new deployment has been set up that
connects to a MacMini in the Axelra of�ce and deploys an updated version of the Flat-
FeeStack deployment using docker-compose. The old deployment retrieved the images
from the GitHub container registry. This reference was changed to get the images from
DigitalOcean.

Chapter �. Solution �6

The newdeployment, like the old one, is based onGitHubActions. For each feature branch,
a button is available to deploy to staging directly. For each push on the main branch, a
deployment to staging is automatically started.

�.�.�� Extraction of Common Code

The initial architecture analysis (�.�.�) identi�ed a signi�cant presenceof duplicated code.
This redundancy negatively impacts the system’s ef�ciency, maintainability, and consis-
tency.

Moreover, while working on implementing the forum (�.�) andmonitoring endpoints (�.6),
it became apparent that there is an urgent requirement for a centralized codebase. This
codebase would serve as a repository for standard functionalities that can be leveraged
across various services. Consolidating these functionalities enhances code reuse, stream-
lines development efforts, and promotes uniformity across the system.

To address these concerns, a dedicated GitHub repository� has been created to house the
extracted code, which now serves as a dependency for the various services.

The repository encompasses several go-modules, each ful�lling a distinct role:

• auth
This module contains the necessary code for validating JWT tokens and an imple-
mentation for utilizing BasicAuth.

• database
This module contains the code that establishes connections to the database and
executes SQL statements from a �le.

• email
The email module encapsulates the code required for sending emails via SendGrid�

and facilitates the retrieval and application of email templates.

• environment
This module provides the necessary code for reading environment variables, ensur-
ing the availability of default values when needed.

• prometheus
In this module, the code creates a Prometheus registry and registers the default
metrics utilized by all services.

�https://github.com/flatfeestack/go-lib
�https://sendgrid.com/

https://github.com/flatfeestack/go-lib
https://sendgrid.com/

Chapter �. Solution ��

The advantages it brings during the build process drove the decision to maintain this
codebase as an external repository, separate from the mono repository. By utilizing go-
modules, the integration and management of this common code become signi�cantly
smoother and more streamlined.

Chapter �. Solution �8

�.8 Test Plan

As the frontend has no automated testing, manual testing is required. A testing plan was
derived from the use cases to ensure the functionalities worked as expected.

The test plan, attached in Appendix C.�, goes through each use case and gives concise
test cases to ensure the functionalities work as intended. Edge cases and problematic
inputs are also included to ensure that different cases and inputs are tested. These include
various options for submitting an email address or negative values in numeric �elds and
more.

Before the application goes live, testingwill be done on the staging environment instead of
the local development environment. The environment should be as close to the production
environment as possible to prevent problems arising from the different setups.

The �rst testing protocol was created before the initially planned go-live on May �th. Be-
cause there were too many unknowns and open issues, the decision was made to re-
schedule the go-live. A detailed testing protocol can be found in Appendix C.�.

During the �rst execution of the test plan, various validation problems were found. For
example, foo@barwas considered a valid email address, empty values could be submitted
in forms or negative values for the number of seats one wants to purchase.

Amore signi�cant problemwas the possibility that users could block Git email addresses.
Once a Git email was added, it could not be added by any other users, although it was not
con�rmed. This would have allowed blocking contributions for the actual owner of the Git
email address. The issue was solved, by allowing the Git email address to be added, if the
user has not added it themselves yet (to prevent duplicate Git email addresses) and if the
email was not yet con�rmed.

Before the next planned go-live on June �nd, another round of testing was completed,
and the detailed testing protocol can be found in Appendix C.�. The mentioned issues
could be resolved, and the test was successful. Nevertheless, certain test cases could
not be tested for various reasons (f.e. crypto payout is not fully implemented with the
new planned version).

After the �rst test protocol was created and the problems were addressed, more test
cases were found and added, ensuring better overall coverage of the functionalities. This
explains why certain test cases were not �lled out in the �rst protocol but in the second
one.

Chapter �. Solution ��

�.� Non-Functional Requirements

This section veri�es the non-function requirements listed in �.� against the �nal product.

�.�.� Functionality

• Acceptance criteria: Unit Tests are executed for all subsystems in the main branch.
Result: Partially ful�lled.

No unit tests were written in the frontend, and veri�cation was conducted manually.
This sometimes resulted in code getting merged, which broke functionality in other
parts of the application. Unit tests partially cover new code in the backend services
(backend, forum, payout).

• Acceptance criteria: The application passes all acceptance tests before release.
Result: Partially ful�lled.

There are no automated acceptance tests. Nevertheless, the test protocol (�.8) is
executed manually before a production release.

• Acceptance criteria: User feedback and bug reports are regularly reviewed and ad-
dressed to improve functionality.
Result: Ful�lled.

At this stage of development, most feedback came from the advisors. These were
collected in GitHub Issues� and addressed.

• Acceptance criteria: Changes to functionality are carefully communicated and doc-
umented to avoid confusion or unexpected behavior.
Result: Ful�lled.

With the help of pull requests� andGitHub Issues�, changes to functionality are com-
municated and documented.

�.�.� Extensibility

• Acceptance criteria: Time required to �x bugs or install updates is within the speci-
�ed limits.
Result: Ful�lled.

For library updates, there is the Renovate� in place.

�https://github.com/flatfeestack/flatfeestack/issues?q=is%3Aissue+
�https://github.com/flatfeestack/flatfeestack/pulls?q=is%3Apr+
�https://github.com/flatfeestack/flatfeestack/issues?q=is%3Aissue+
�https://www.mend.io/renovate/

https://github.com/flatfeestack/flatfeestack/issues?q=is%3Aissue+
https://github.com/flatfeestack/flatfeestack/pulls?q=is%3Apr+
https://github.com/flatfeestack/flatfeestack/issues?q=is%3Aissue+
https://www.mend.io/renovate/

Chapter �. Solution ���

• Acceptance criteria: The application’s architecture supports modular design and
component reusability.
Result: Ful�lled.

This requirement is ful�lled given the microservice architecture of the system. Also,
some timewas invested in extracting code into a library to reuse in all microservices
(�.�.��).

• Acceptance criteria: Regular code reviews are conducted to ensure adherence to
extensibility best practices.
Result: Ful�lled.

This requirement is ful�lled because no code getsmergedwithout a code review and
passing tests. Pushes to the main branch without a pull request have been disabled
to enforce code reviews.

�.�.� Robustness

• Acceptance criteria: Manual testing with invalid or malicious input.
Result: Ful�lled.

The manual testing as outlined in section �.8 was conducted with invalid input.

• Acceptance criteria: Automated testing performed with invalid or malicious input.
Result: Partially ful�lled.

The tests were designed to test positive cases and also negative cases. However,
there are no special tests for every edge case.

• Acceptance criteria: Robust exception handling and error recoverymechanisms are
implemented.
Result: Partially ful�lled.

Robust exception handling was already implemented. There were some changes
made to make it consistent across the microservices.

�.�.� Code Quality

• Acceptance criteria: Static analysis runs with each commit.
Result: Partially ful�lled.

No static analysis tools were added, but the ones in place are running during the
build process.

Chapter �. Solution ���

• Acceptance criteria: code follows established coding conventions and style guide-
lines.
Result: Partially ful�lled.

Prettier� is used to format the ETH smart contracts and the frontend code. The
code style and conventions are examined during pull requests. However, they were
not documented. Neither style nor coding conventions are documented for the NEO
smart contract and the Go microservices.

• Acceptance criteria: Code complexity is regularly reviewed and minimized where
possible.
Result: Not ful�lled.

Where possible, the code was simpli�ed following the Boy Scout Rule guidelines.
However, any untouched code was not analyzed or refactored.

�.�.� Maintainability

• Acceptance criteria: Deployment pipelines are set up to automatically deploy the
application to staging or production environments.
Result: Ful�lled.

There are GitHub Actions that can be used to deploy to staging (section �.�.��) or
production (section �.�.�).

• Acceptance criteria: Every commit is built and tested automatically.
Result: Ful�lled.

Every commit is built and tested automatically with GitHub Actions. Depending on
the service, unit, integration or smoke tests are used.

• Acceptance criteria:Environment con�gurations and dependencies are version con-
trolled and easily reproducible.
Result: Ful�lled.

This requirement is ful�lled because all resources are in version control.

�.�.6 Operability

• Acceptance criteria: The application provides robust logging and monitoring capa-
bilities, allowing administrators to track and analyze system behavior and perfor-
mance.
Result: Ful�lled.

�https://prettier.io/

https://prettier.io/

Chapter �. Solution ���

This requirement is ful�lled because all microservices use the same logging frame-
work, and DigitalOcean collects the logs. The monitoring is done with Grafana and
Prometheus (�.6).

• Acceptance criteria: Proper error handling and informative error messages are im-
plemented to facilitate troubleshooting and debugging processes.
Result: Ful�lled.

Every error is logged with a stack trace and a message.

• Acceptance criteria: Regular health checks are performed on the application to en-
sure its operational status.
Result: Partially Ful�lled.

Monitoring is con�gured, but health thresholds are not set. Also, there is no alerting
in place (�.�.�).

• Acceptance criteria: System metrics are collected and analyzed to detect perfor-
mance bottlenecks or resource constraints.
Result: Ful�lled.

Various system metrics are collected and analyzed with Grafana and Prometheus
(�.6).

Chapter �

Conclusion

This chapter re�ects on the outcome of this Bachelor’s thesis. The work done is sum-
marised and compared with the original assignment by the advisor. Finally, the chapter
explores further developments to enhance or complete existing functionality.

�.� Summary

This Bachelor’s thesis revolved around making FlatFeeStack available to the public. A set
of tasks were de�ned at the start with the advisor, which are needed to complete the plat-
form. The main focus was evaluating a suitable PaaS provider to run a new production
instance and deploying the platform afterwards. However, there were also additions to
the existing DAO or merging the different microservices into a mono repository. During
the whole thesis, existing functionalities were documented and tested, resulting in use-
case diagrams and bug �xes/improvements to those functionalities. Finally, parts of the
platform were silently launched on June �nd, and the �rst open-source projects were sup-
ported. The platform is available at �atfeestack.io�.

At the start of the project, most of the work was research. Existing papers about Flat-
FeeStack were read, functionalities reverse-engineered, and a suitable development envi-
ronment for each project member was set up. This work resulted in the list of tasks to do
until the go-live, initially scheduled for April �8th.

Evaluating the different PaaS providers was an exciting task, as it highlighted that despite
all of them offering the same at the core, user-friendliness and usability differ a lot. Digi-
talOceanwas a solid choice for the needs of FlatFeeStack. A few issueswere encountered
at the initial deployment, like services not starting at all, but there, customer support was
quick and eager to help.

�https://flatfeestack.io/

���

https://flatfeestack.io/

Chapter �. Conclusion ���

The additions to the DAO primarily conducted the addition of the new forum component.
Using the API-�rst approach to develop the new microservice proved to be a good deci-
sion, as it allowed the generation of most of the usual repetitive code needed for an HTTP
server, and the OpenAPI speci�cation also served as a base to generate parts of the fron-
tend code. Listening to events on the ETH blockchain from the forum component was an
exciting challenge, as the documentation on the topic is sparse, and the connection is not
straightforward.

As the focus was making FlatFeeStack public, a big emphasis was put on testing the ex-
isting functionalities. Some of the time was initially allocated to this task, but it was much
more than anticipated. The papers documented different platform parts, so a complete
overview was needed. The behavior documented in those papers has been altered as the
advisors continued to work on the project by themselves. However, after this thesis, all of
FlatFeeStack’s functionality is documented and tested, giving an excellent base to con-
tinue iterating on the project.

The go-live was postponed several times.

• From April �8th to May �th, the team underestimated the work for the go-live and
needed additional time to polish their work.

• The advisor proposedmoving the date fromMay �th to May ��th as he was working
on a new iteration of the DAO that still needed to be prepared.

• On May ��th, during the initial testing of the test system, it was found that the pay-
in using Stripe was not functioning correctly. This issue arose because the advisor
made recent code changes that the project team had not validated.

• After May ��th, it was decided to launch the platform on June �nd, including the
necessary payout USDC contract, leaving the DAO out for now as its revision was
ongoing.

After all, comparing the �nal result to the original assignment, most of the original tasks
have been ful�lled:

• The new discussion platform is implemented.

• Most of the used libraries for the existing components have been updated. There
are a couple of leftovers, like Gradle v8. The reason for this could be accounted to
two factors:

�. Their release was towards the end of the thesis (like hardhat-toolbox v�).

�. Other dependencies, like neow�j with Gradlev8, did not have compatibility with
each other at that time.

Chapter �. Conclusion ���

• The deployment infrastructure has been built using GitHub Actions and Docker. De-
ployments to test and production can be done using one click from GitHub.

• The silent go-live was, with a few exceptions, successful.

Inheriting an existing platform with several years of development proved challenging.
However, the platform is nowavailable and ready to sponsor awesomeopen-source projects.

Chapter �. Conclusion ��6

�.� Future Work

�.�.� Update DAO to OpenZeppelin v�.�

The FlatFeeStack DAO currently works with ETH block numbers as its clock. As the block
time can vary, it is dif�cult to approximate when an activity like voting on proposals will
happen in real-world time. The DAO frontend, implemented in the semester assignment,
calculates the difference between the current block number and a given block number,
multiplies thiswith the average block time, and uses this value to display in the frontend [�].

The FlatFeeStack DAO is built upon amodi�ed version of the OpenZeppelin Governor con-
tracts. A new version of those was released on May ��rd, allowing customizing the clock
mode [�6]. Internally, the Governor contracts now call a clock function which the user can
overwrite. That clock function needs to return an integer value, so it would be possible to
use Unix timestamps natively in the contract. Using unix timestamps for ETH contracts
is typically not recommended, as the miner can in�uence this value by several seconds.
However, as FlatFeeStack DAO has quite long time ranges (one day for voting, several
weeks to hand in proposals), a difference of several seconds does not matter. Overall,
using unix timestamps in the contract would simplify the DAO and its frontend.

Once the clockmode change has been integrated, the FlatFeeStack DAOwill also be ready
for launch.

�.�.� Check Integration with NOWPayments

With the semester assignment of Endres and Lesi, NOWPayments was integrated into
FlatFeeStack to allow pay-ins using various cryptocurrencies, right now ETH and NEO
GAS [�]. This integration was not tested during this thesis. However, it is expected that
some updates need to be applied, as the integration ismostly the same since they handed
in their assignment.

�.�.� Tackle Remaining Major Library Updates

As mentioned in section �.�, a couple of major library updates still need to be applied in
FlatFeeStack.

hardhat-toolbox v� has been mentioned already. This release was published late into the
thesis on June 8th [��]. It makes the Hardhat suite run with ethers.js v6. However, the test-
ing suite for the ETH smart contracts for FlatFeeStack uses the hardhat-upgrades pack-
ages from OpenZeppelin, where ethers v6 still needs to be supported [�8]. The package
by OpenZeppelin enables proxy contracts in the testing suite to match the production en-

Chapter �. Conclusion ���

vironment. Once the OpenZeppelin package is updated, the smart contract testing suite
must also be adapted to work with ethers v6 [��].

Gradle is a build tool for Java and is used for the NEO smart contracts, where v8 has been
released. Currently, the neow3j library does not support it, so this update is postponed.

@tsconfig/svelte in the frontend also received a major update. Here, the frontend runs
into a type error with the new con�guration. The QR code library, used for the pay-in with
NOWPayments, provides invalid types which have been ignored by TypeScript so far. Do-
ing this updatemight be obsoletewhen revising the integrationwithNOWPayments (�.�.�).

�.�.� Activate Alerting in Grafana

Grafana has a feature called Alerting. This feature makes sending alerts to channels like
Slack, Mail, and others possible. Implementing this feature would be a signi�cant im-
provement. So the FlatFeeStack team would be noti�ed if a service stops working or the
database is unreachable.

�.�.� Secure Metric Endpoints

Currently, the metric endpoints used for Prometheus are publicly available, which can
be a potential security risk. Therefore, making the endpoints only reachable from the
Prometheus instance would be better.

�.�.6 Auto-Close Discussions

Figure �.� that the forum component automatically closes discussions when the voting
for a proposal is done. This functionality was not implemented during the thesis.

Generally, the state of a proposal is a calculated value. Therefore, the forum would need
a pulling mechanism to regularly query the state of proposals linked to open discussion,
only to close them when the state function returns that the voting is completed.

The required engineering work to properly implemented this mechanism did not �t into
the available time for the Bachelor’s thesis.

Glossary

BasicAuth Basic authentication is a simple method of user authentication where
credentials (username and password) are encoded and sent in the HTTP header
for each request. �6

Boy Scout Rule When it comes to programming, the Boy Scout rule suggests that
developers should always leave the codebase in a better condition than it was
before. This means making small improvements like code refactoring, cleaning,
and updating documentation to maintain the overall quality and manageability of
the codebase. ���

bylaws Bylaws ("Statuten") containing the main rules and regulations governing an
association and its activities, including its goals, structure, membership,
decision-making processes, and the responsibilities of its organs. ��, 88

CCHF Centi Franc stablecoin (CCHF) is a coin that maintains a value tied to that of
swiss francs. It is a digital currency that uses blockchain technology, allowing for
secure and transparent storage, transfer, and transactions with swiss francs in the
digital space. ��

Cron In Unix-like operating systems, Cron is a job scheduler that enables users to
automate command or script execution at scheduled intervals or predetermined
times. ��

CRUD CRUD represents four fundamental operations commonly used when working
with data in a software system or database. These operations include creating
new records, retrieving existing data, updating or modifying existing records, and
deleting unnecessary data. 6�

DAO A Decentralized Autonomous Organization (DAO) is a type of organization that is
run using a set of rules encoded as smart contracts on a blockchain. These rules
allow the organization to operate in a transparent and democratic manner, without

��8

Glossary ���

the need for a central authority or traditional management structure. i–iii, �, �, ��,
��, ��, �8, ��–��, ��, ��, ��, �6, 88, ���, ���, ��6

ECTS ECTS stands for the European Credit Transfer and Accumulation System. It is a
standardized system used by higher education institutions in the European Union
and other countries to evaluate, transfer, and recognize academic credits. �

ERC�� ERC�� is a standard protocol for creating and using tokens on Ethereum, making
digital assets compatible and easy to integrate within the network. ��, 66

ETH Ethereum, also known as ETH, is a blockchain platform that allows for the creation
and execution of smart contracts and decentralized applications (DApps).
Transactions and computational services within the network are conducted using
its native cryptocurrency, Ether (ETH). ii, 8, �, ��, ��, ��, �8–��, ��, ��, ��, 6�,
66–68, �6, ���, ���, ��6, ��6, �6�, �6�

HS��6 The HMAC-SHA��6 algorithm is used in JSON Web Tokens (JWTs) to create a
digital signature using a shared secret key and the SHA-��6 hashing algorithm.
This ensures that the token’s authenticity and integrity are maintained. ��

JWT JSON Web Token (JWT) is a concise and self-contained way of transmitting
authentication and authorization data between parties in the form of a JSON
object, while maintaining security. ��, ��, 6�, ��, �6

KYC Know your customer (KYC) is a process to verify the identity of a person. ��

NEO NEO is a blockchain platform that seeks to revolutionize the economy by offering a
platform for creating and executing smart contracts and DApps. It also includes
features like digital identity and asset digitization to enhance its functionality. 8, �,
��, ��, ��–��, ��, 6�, 66, ���, ��6, ���, ��6, �6�, �6�

PaaS Platform-as-a-Service (PaaS) is a cloud computing model that simpli�es the
application development process for developers. It provides pre-con�gured
platforms and tools to build, deploy, and manage applications without the need for
extensive infrastructure setup and management. PaaS also offers scalability, load
balancing, and automatic updates, making it a convenient option for developers.
��, �8, ��, ���, ���

RESTful RESTful (Representational State Transfer) is a popular architectural style for
designing networked applications. It prioritizes principles like statelessness and

Glossary ���

uniform resource representation, allowing for effective communication between
clients and servers over the Internet that is scalable and interoperable. ��

SMTP SMTP, which stands for Simple Mail Transfer Protocol, is a commonly used
method for sending and receiving email messages across the internet. It ensures
dependable delivery between mail servers. ��, ��

SPA A Single Page Application (SPA) is a type of web application designed to �t all its
components within a single web page. This design utilizes JavaScript to update
the content dynamically without reloading the whole page. As a result, it provides a
more seamless and interactive user experience. ��

Tezos Tezos is a blockchain platform that facilitates the development and management
of smart contracts and decentralized applications (DApps). It employs a
self-modifying protocol that enables stakeholders to vote on suggested
improvements and modi�cations to the network, ensuring its durability and
�exibility in the long run. �8, ��

USDC USD Coin (USDC) is a stablecoin that maintains a value tied to that of the US
dollar. It is a digital currency that uses blockchain technology, allowing for secure
and transparent storage, transfer, and transactions with US dollars in the digital
space. ��, ��, 66, 68, ���

WebSocket Websockets allow for real-time, two-way data exchange between a client
and server through a single, persistent connection. ��, ��, ��, �6

List of Figures

�.� Use case diagram top level view. �
�.� Use case diagram with user functionality overview. �
�.� Use case diagram user functionality search. 6
�.� Use case diagram user functionality search. �
�.� Use case diagram user functionality payments. 8
�.6 Use case diagram user functionality income. 8
�.� Use case diagram user functionality invitations. �
�.8 Use case diagram user functionality badges. ��
�.� Use case diagram user functionality admin. ��
�.�� Use case diagram DAO. ��
�.�� System context. ��
�.�� Container diagram. ��
�.�� Component diagram frontend. ��
�.�� Component diagram backend. ��
�.�� Component diagram analyzer. ��
�.�6 Component diagram fastauth. ��
�.�� Component diagram payout. ��
�.�8 Component diagram smart contracts. �6

�.� Management of environment variables on DigitalOcean. ��
�.� Metrics for a service on DigitalOcean. ��
�.� Metrics for the database on Google Cloud. ��
�.� Interface to con�gure a new environment on Flow. ��
�.� Resource consumption interface on �ow.swiss. ��
�.6 Environment overview in Flow. �6
�.� Existing income page in the frontend. ��
�.8 Current proposal lifecycle. ��
�.� Goal proposal lifecycle. ��

�.� Container diagram. ��

���

List of Figures ���

�.� Component diagram frontend. ��
�.� Component diagram backend. ��
�.� Component diagram analyzer. ��
�.� Component diagram fastauth. ��
�.6 Component diagram payout. ��
�.� Component diagram smart contracts. �6
�.8 Overview of the con�gured application on DigitalOcean. 6�
�.� Adapted income component in the frontend. The table with the received

contributions have been cropped to save space in the documentation. . . . 68
�.�� Forum endpoints. 6�
�.�� Component diagram forum. ��
�.�� Discussion overview. ��
�.�� Detail view for a discussion. �8
�.�� Form to create a new discussion. ��
�.�� FlatFeeStack dashboard. 8�
�.�6 PostgreSQL database dashboard. 8�
�.�� HTTP dashboard - backend. 8�
�.�8 HTTP dashboard - forum. 8�
�.�� Go runtime dashboard - backend. 8�
�.�� Modal asking to accept the bylaws before the request to join the DAO. . . . 88
�.�� Fixed contribution graph. ��
�.�� Previous email template used for sign up con�rmation. ��
�.�� New email template used in Git email con�rmation. ��
�.�� Existing git email error message (initial). ��
�.�� Existing git email error message (new). ��
�.�6 Badges - supported repositories table initial and new. ��

A.� Breakdown per person . ��6

D.� Componet Diagram Initial . ���
D.� Component Diagram Final . ���

List of Listings

�.� Continuous integration pipeline for the analyzer service. ��
�.� Renovate con�guration to group dependency updates for the analyzer ser-

vice. ��
�.� Build and push job for the analyzer component. 6�
�.� Deployment to production work�ow. 6�
�.� The adapted signature function in the payout service. 66
�.6 Model generation con�guration �le. ��
�.� Generated model from OpenAPI. ��
�.8 Server generation con�guration �le. ��
�.� Server interface and implementation code. ��
�.�� Http handler code. ��
�.�� Authentication middleware function. ��
�.�� Regular expression to detect a discussion link. �6
�.�� Code to de�ne metrics endpoint. 8�
�.�� Prometheus middleware de�nition. 8�
�.�� Prometheus query average response time. 8�
�.�6 Prometheus con�guration �le. 8�
�.�� Postgres datasource con�guration �le. 8�
�.�8 Prometheus datasource con�guration �le. 8�
�.�� Grafana dashboards con�guration �le. 8�
�.�� Grafana environment variables. 86
�.�� Throw actual response error message instead of Ky error message. ��
�.�� Wrap route with auth guard. ��
�.�� Check if user is available or load async from API. ��

���

List of Tables

�.� Description for the top level view use cases. �
�.� Description for the user functionalities use cases. 6
�.� Description for the settings use cases. �
�.� Description for the search use cases. �
�.� Description for the payments use cases. 8
�.6 Description for the income use cases. �
�.� Description for the invitations use cases. �
�.8 Description for the badges use cases. ��
�.� Description for the admin use cases. ��
�.�� Description for the DAO use cases. ��

�.� Comparison of the hosting providers. ��

C.� Testing plan for use case: sign up. ���
C.� Testing plan for use case: login. ���
C.� Testing plan for use case: logut. ���
C.� Testing plan for use case: reset password. ���
C.� Testing plan for use case: email displayed. ���
C.6 Testing plan for use case: change username. ���
C.� Testing plan for use case: pro�le picture. ���
C.8 Testing plan for use case: add Git email. ���
C.� Testing plan for use case: remove Git email. ���
C.�� Testing plan for use case: search for repository. ���
C.�� Testing plan for use case: star repository. ���
C.�� Testing plan for use case: unstar repository. ���
C.�� Testing plan for use case: choose payment plan. ���
C.�� Testing plan for use case: payment by crypto. ���
C.�� Testing plan for use case: payment by credit card. ���
C.�6 Testing plan for use case: income. ��6
C.�� Testing plan for use case: invite per email. ���

���

List of Tables ���

C.�8 Testing plan for use case: remove invitation. ��8
C.�� Testing plan for use case: display repositories. ��8
C.�� Testing plan for use case: display contribution graph. ��8
C.�� Testing plan for use case: display contributions. ���
C.�� Testing plan for use case: display public badge URL. ���
C.�� Testing protocol for use case: sign up. �6�
C.�� Testing protocol for use case: login. �6�
C.�� Testing protocol for use case: logut. �6�
C.�6 Testing protocol for use case: reset password. �6�
C.�� Testing protocol for use case: email displayed. �6�
C.�8 Testing protocol for use case: change username. �6�
C.�� Testing protocol for use case: pro�le picture. �6�
C.�� Testing protocol for use case: add Git email. �6�
C.�� Testing protocol for use case: remove Git email. �6�
C.�� Testing protocol for use case: search for repository. �6�
C.�� Testing protocol for use case: star repository. �6�
C.�� Testing protocol for use case: unstar repository. �6�
C.�� Testing protocol for use case: choose payment plan/seats. �6�
C.�6 Testing protocol for use case: payment by crypto. �6�
C.�� Testing protocol for use case: payment by credit card. �6�
C.�8 Testing protocol for use case: income. �6�
C.�� Testing protocol for use case: invite per email. �6�
C.�� Testing protocol for use case: remove invitation. �6�
C.�� Testing protocol for use case: display repositories. �6�
C.�� Testing protocol for use case: display contribution graph. �6�
C.�� Testing protocol for use case: display contributions. �6�
C.�� Testing protocol for use case: display public badge URL. �6�
C.�� Testing protocol for use case: sign up. �6�
C.�6 Testing protocol for use case: login. �6�
C.�� Testing protocol for use case: logout. �66
C.�8 Testing protocol for use case: reset password. �66
C.�� Testing protocol for use case: email displayed. �66
C.�� Testing protocol for use case: change username. �66
C.�� Testing protocol for use case: pro�le picture. �6�
C.�� Testing protocol for use case: add Git email. �6�
C.�� Testing protocol for use case: remove Git email. �6�
C.�� Testing protocol for use case: search for repository. �6�
C.�� Testing protocol for use case: star repository. �68

List of Tables ��6

C.�6 Testing protocol for use case: unstar repository. �68
C.�� Testing protocol for use case: choose payment plan/seats. �68
C.�8 Testing protocol for use case: payment by crypto. �68
C.�� Testing protocol for use case: payment by credit card. �68
C.6� Testing protocol for use case: income. �6�
C.6� Testing protocol for use case: invite per email. �6�
C.6� Testing protocol for use case: remove invitation. �6�
C.6� Testing protocol for use case: display repositories. �6�
C.6� Testing protocol for use case: display contribution graph. ���
C.6� Testing protocol for use case: display contributions. ���
C.66 Testing protocol for use case: display public badge URL. ���

Bibliography

[�] P. Knecht and A. P�ster, “Flatfeestack as a decentralized autonomous organization,”
Februar ����.

[�] “How to deploy from monorepos,” https://docs.digitalocean.com/products/app-
platform/how-to/deploy-from-monorepo/, DigitalOcean, accessed: ����-��-��.

[�] “Scaling elements,” https://cloud.google.com/appengine/docs/legacy/standard/
python/con�g/appref#scaling_elements, Google Cloud, accessed: ����-��-�8.

[�] “Connect from app engine standard environment,”
https://cloud.google.com/sql/docs/postgres/connect-app-engine-standard,
Google Cloud, accessed: ����-��-�8.

[�] “Container redeploy,” https://www.virtuozzo.com/application-platform-
docs/container-redeploy/?lang=en, Virtuozzo, accessed: ����-��-�8.

[6] “Automatic vertical scaling,”
https://www.virtuozzo.com/application-platform-docs/automatic-vertical-scaling/,
Virtuozzo, accessed: ����-��-�8.

[�] M. Endres and A. Lesi, “Kryptowährungen als zahlungsmittel bei �atfeestack,”
Studenarbeit, Ostschweizer Fachhochschule, April ����.

[8] J. Brunner, “Payment �ow for an open source donation platform,” Master’s thesis,
University of Zurich, February ����.

[�] M. Bucher, “Design and implementation of a fee optimization mechanism in
blockchain-based payments for an open source donation platform,” Master’s thesis,
University of Zurich, December ����.

[��] “Simplify neo contract to store a user id instead of address,”
https://github.com/�atfeestack/payout-neo-
contracts/commit/c�ebfdab��e��c8e�c6fdcef�8�6����������6�, FlatFeeStack,
accessed: ����-�6-��.

���

https://docs.digitalocean.com/products/app-platform/how-to/deploy-from-monorepo/
https://docs.digitalocean.com/products/app-platform/how-to/deploy-from-monorepo/
https://cloud.google.com/appengine/docs/legacy/standard/python/config/appref#scaling_elements
https://cloud.google.com/appengine/docs/legacy/standard/python/config/appref#scaling_elements
https://cloud.google.com/sql/docs/postgres/connect-app-engine-standard
https://www.virtuozzo.com/application-platform-docs/container-redeploy/?lang=en
https://www.virtuozzo.com/application-platform-docs/container-redeploy/?lang=en
https://www.virtuozzo.com/application-platform-docs/automatic-vertical-scaling/
https://github.com/flatfeestack/payout-neo-contracts/commit/c2ebfdab24e97c8e2c6fdcef0816174045375969
https://github.com/flatfeestack/payout-neo-contracts/commit/c2ebfdab24e97c8e2c6fdcef0816174045375969

Bibliography ��8

[��] “Discourse pricing,” https://www.discourse.org/pricing, Discourse, accessed:
����-�6-��.

[��] “How do you merge two git repositories?” https://stackover�ow.com/a/����8���,
StackOver�ow, accessed: ����-��-��.

[��] “Introduction to github actions,” https://docs.docker.com/build/ci/github-actions/,
Docker, accessed: ����-�6-��.

[��] “Usd coin (usdc),”
https://etherscan.io/token/�xa�b86���c6��8b�6c�d��d�a�e�eb�ce�6�6eb�8,
Etherscan, accessed: ����-�6-��.

[��] “Misc grafana dashboards,” https://github.com/lstn/misc-grafana-dashboards,
Lucas Estienne, accessed: ����-�6-��.

[�6] “v�.�.�,” https://github.com/OpenZeppelin/openzeppelin-contracts-
upgradeable/releases/tag/v�.�.�, OpenZeppelin, accessed: ����-�6-�6.

[��] “Hardhat toolbox v�.�.�: ethers v6, bigints and more!”
https://github.com/NomicFoundation/hardhat/releases/tag/%��nomicfoundation/
hardhat-toolbox%���.�.�, Nomic Foundation, accessed: ����-�6-��.

[�8] “Support ethers@6.�.�,”
https://github.com/OpenZeppelin/openzeppelin-upgrades/issues/8��,
OpenZeppelin, accessed: ����-�6-��.

[��] “Migrating from v�,” https://docs.ethers.org/v6/migrating/, ethers, accessed:
����-�6-�6.

https://www.discourse.org/pricing
https://stackoverflow.com/a/10548919
https://docs.docker.com/build/ci/github-actions/
https://etherscan.io/token/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
https://github.com/lstn/misc-grafana-dashboards
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/releases/tag/v4.9.0
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/releases/tag/v4.9.0
https://github.com/NomicFoundation/hardhat/releases/tag/%40nomicfoundation/hardhat-toolbox%403.0.0
https://github.com/NomicFoundation/hardhat/releases/tag/%40nomicfoundation/hardhat-toolbox%403.0.0
https://github.com/OpenZeppelin/openzeppelin-upgrades/issues/805
https://docs.ethers.org/v6/migrating/

	1 Introduction
	1.1 Assignment
	1.2 Basic Conditions

	2 Problem Analysis
	2.1 Functional Requirements
	2.2 Non-Functional Requirements
	2.3 Initial Application Architecture

	3 Research
	3.1 Evaluation PaaS Provider
	3.2 Complete Payout Functionality
	3.3 Evaluation Form of Discussion on Proposals

	4 Solution
	4.1 Application Architecture
	4.2 Mono Repository Merge
	4.3 Production Deployment
	4.4 Complete Payout Functionality
	4.5 Discussion Implementation
	4.6 Monitoring
	4.7 Various Improvements
	4.8 Test Plan
	4.9 Non-Functional Requirements

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	Glossary
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	A Project Documentation
	A.1 Assignment
	A.2 Project Plan
	A.3 Time Tracking Report
	A.4 Personal Reflections
	A.5 Meeting Minutes

	B Documents
	B.1 Eigenständigkeitserklärung
	B.2 Urheberrecht

	C Testing
	C.1 Testing Plan
	C.2 Testing Protocol 1
	C.3 Testing Protocol 2

	D Architecture
	D.1 Architecture Initial
	D.2 Architecture Final

