
Bachelor’s Thesis

Model-Based Generation of Service Provider
Network Topologies

Spring Term 2023

Authors: Lukas Ribi
Pascal Christen

Advisor: Prof. Laurent Metzger
Co-Advisor: Severin Dellsperger

External Co-Examiner: Marcel Witmer
Internal Co-Examiner: Prof. Dr. Olaf Zimmermann

Project Partner: Cisco Systems - François Clad

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Abstract

Objective Researchers and network engineers working for service providers need to
validate network technologies to see how they scale on networks of varying sizes. Cur-
rently, these test networks are often created based on random graphs. Due to their
randomness, they often lack characteristics found in real service provider networks. The
goal was to develop an approach to generate network topologies with specific charac-
teristics of these service provider networks. Furthermore, the existing Graph Analyzer
system created during the previous term project had to be expanded to include edge
weights in graph property calculations. In addition, a new graph property indicating
robustness needed to be implemented.

Approach The MOST-Model (Mesh-Oriented Service Provider Topology) has been
developed to facilitate the generation of network topologies that structurally resemble
service provider networks. The model consists of eight steps and is parameterised to pro-
vide flexibility in the generation process. The model is inspired by existing methodologies
and uses approaches that lead to characteristics matching service provider networks. A
Gabriel graph is used to create the topology with additional optimisations to ensure
redundancy. In other published papers, it has been documented that this type of graph
reflects backbone networks well. The newly created Graph Generator application uses
the MOST-Model to generate topologies. An API provides the ability to interact with
it. The Frontend of the Graph Analyzer system has been extended to integrate the
Graph Generator. It allows the seamless generation and visualisation of topologies us-
ing adjustable model parameters. The generated result can subsequently be imported
into the Graph Analyzer system. Graph property calculations have been extended by
incorporating edge weights from imported topology data. An approach using a targeted
attack on high-degree nodes was chosen to calculate the robustness of a graph.

Conclusion During the bachelor’s thesis, the MOST-Model was developed to generate
network topologies with service provider network characteristics. Due to the underly-
ing use of the Gabriel graph, the number of edges is minimised while still providing
redundancy through alternative paths. This property reflects service provider network
requirements from a cost and availability perspective. Known issues of the Gabriel graph,
such as stub links, are mitigated through applied optimisations. The model has been
integrated into the Graph Analyzer system as a separate application. This separation
allows the straightforward integration of the MOST-Model via the Graph Generator ap-
plication into other systems and contexts. In addition, the results can be imported into
other applications by providing the generated topologies in the commonly used GEXF
and GraphML file formats. The resulting Graph Analyzer system provides an easy way
to examine how networks are structured and can generate new topologies through the
Graph Generator application. The source code is publicly available and published under
the permissive MIT license.

i

Management Summary

Initial Situation

In network research and engineering, an important part of validating network technolo-
gies is the evaluation of them on networks of various sizes. However, the often-used
method of generating random graphs for such assessments fails to capture the charac-
teristics of service provider networks. This thesis aimed at developing an approach to
generate network topologies that resemble service provider networks. In addition, the
existing Graph Analyzer system, created during the previous term project, had to be
extended with new features.

Procedure and Technology

In the initial inception and elaboration phases, the setup for the following phases was
done. Requirements were discussed with the advisors and evaluated. Based on them,
research was done into the subject area of topology generation. Potential solutions were
implemented as proof of concepts and presented to the advisors. Based on their feedback
it was decided what approach should be taken.

The following construction and transition phases contained the implementation of a
separate Python application to handle topology generation. In addition, the existing
Go and TypeScript-based applications of the Graph Analyzer system were extended to
support edge weights and a robustness metric.

ii

Results

The developed MOST-Model (Mesh-Oriented Service Provider Topology) defines a pro-
cess to generate network topologies with service provider network characteristics. The
model minimises the number of edges and incorporates optimisations resulting in redun-
dancy through alternative paths. This reflects the cost and availability requirements of
service provider networks. Figure 1 shows a simplified visualisation of the MOST-Model.

Figure 1: Simplified MOST-Model visualisation

A new application called Graph Generator was created to implement the MOST-Model.
This application provides an API for interaction and seamless generation of topologies
using adjustable model parameters. The Frontend of the Graph Analyzer system was
extended to integrate the Graph Generator as seen in figure 2.

Dashboard Generator

Figure 2: Integration into the Graph Analyzer Frontend

This enables the visualisation and export of generated topologies. Topologies can sub-
sequently be imported into the Graph Analyzer system for analysis. By providing the
generated topologies in the commonly used GEXF or GraphML file formats, they can
be used in other contexts too.
By including edge weights in graph property calculations and the newly added robust-
ness property, the accuracy and depth of the analysis are enhanced.

Overall, the thesis has achieved its objectives by developing a network topology gen-

iii

eration approach and expanding the capabilities of the Graph Analyzer system. The
MOST-Model and Graph Analyzer system provides researchers and network engineers
with tools to gather insights into network structures. This supports the efficient valida-
tion and assessment of network technologies.

Outlook

The developed MOST-Model and the integration of the Graph Generator into the Graph
Analyzer system provide a solid foundation for future enhancements. In the next step,
the model should be refined based on real service provider networks.

iv

Acknowledgments

Prof. Laurent Metzger

We want to thank Prof. Laurent Metzger for being our advisor. His guidance and
expertise in IT networks were especially appreciated, and his initial ideas and support
played an essential role during the research process.

Severin Dellsperger

We would like to thank our co-advisor Severin Dellsberger for his support, guidance and
feedback during our bachelor’s thesis. His assistance regarding organisational matters
was especially appreciated.

Prof. Dr. Olaf Zimmermann

We want to thank Prof. Dr. Olaf Zimmermann for his helpful and extensive feedback
during the interim presentation.

Prof. Oliver Augenstein

We would like to thank Prof. Oliver Augenstein for taking the time to discuss our chosen
approach regarding PoP placement and clustering. The insights and feedback gathered
from the discussion were extremely helpful.

v

Contents

Glossary and Abbreviations ix

Bibliography xi

List of Figures xiv

List of Tables xvi

I Technical Report 1

1 Introduction 2
1.1 Thesis Structure . 2

1.1.1 Technical Report . 2
1.1.2 Project Documentation . 2

1.2 Terms and Techniques . 3
1.2.1 Graphs . 3
1.2.2 Service Provider Networks . 4
1.2.3 Network Robustness . 4

1.3 Aims and Objectives . 5
1.3.1 Service Provider Network Topology Generation 5
1.3.2 Integration into Graph Analyzer System 5
1.3.3 Weighted Support in Graph Analyzer System 5
1.3.4 Robustness Property . 5

2 Results 6
2.1 Distinction . 6

2.1.1 System Structure . 7
2.2 Existing Software and Limitations . 8
2.3 Achievements . 8

2.3.1 MOST-Model . 8
2.3.2 Graph Generator . 9
2.3.3 Graph Generator Integration . 10
2.3.4 Weight Support . 10
2.3.5 Data Import Improvements . 11
2.3.6 Robustness Calculation . 11
2.3.7 Graph Analyzer System . 11

2.4 Research . 12
2.4.1 Random Graph Models . 12

vi

2.4.2 BRITE . 14
2.4.3 Waxman . 15
2.4.4 IGen . 15
2.4.5 Delaunay and Gabriel . 16
2.4.6 Robustness . 17

2.5 Implementation . 18
2.5.1 MOST-Model . 18
2.5.2 Graph Generator . 35
2.5.3 Integration into Graph Analyzer - Generator 38
2.5.4 Integration into Graph Analyzer - Upload 41
2.5.5 Weighted Support . 42
2.5.6 Robustness . 43

3 Conclusions 45
3.1 Retrospective . 45

3.1.1 Functional Requirements . 45
3.1.2 Non-Functional Requirements . 46
3.1.3 Discussion . 49

3.2 Outlook . 49
3.2.1 Improvements . 49

II Project Documentation 51

4 Requirements 52
4.1 Functional Requirements . 52

4.1.1 Actor - User . 52
4.1.2 Use Cases . 53

4.2 Non-Functional Requirements . 57
4.2.1 Validating NFRs . 58

5 Design Decisions 59
5.1 Graph Generator . 59

5.1.1 Programming Language . 59
5.1.2 Architecture . 60
5.1.3 Libraries . 60
5.1.4 API Framework . 61

6 Architecture 62
6.1 Architecture Model . 62

6.1.1 System Context Diagram . 63
6.1.2 Container Diagram . 64
6.1.3 Component Diagram - Single-Page Application 66
6.1.4 Component Diagram - API Application 68
6.1.5 Component Diagram - Data Collector Application 70
6.1.6 Component Diagram - Topology Generator Application 71

6.2 Deployment . 72
6.2.1 Helm Chart . 72

vii

6.2.2 Kubernetes . 73
6.3 UI and UX . 74
6.4 Quality Measures . 74

6.4.1 Graph Generator Tests . 74
6.4.2 Manual Tests . 74
6.4.3 Git Process . 74
6.4.4 Workflow . 75
6.4.5 Code Review . 75
6.4.6 CI/CD . 75

6.5 Metric Tools . 77
6.5.1 Test Coverage . 77
6.5.2 SonarQube . 77

7 Project Management 78
7.1 Project Plan . 78

7.1.1 Development Process . 78
7.1.2 Phases . 78
7.1.3 Project Milestones . 79
7.1.4 Application Milestones . 79
7.1.5 Roadmap . 80
7.1.6 Key Dates and Numbers . 81

7.2 Meetings . 81
7.2.1 Status Meetings . 81
7.2.2 Scrum Meetings . 81

7.3 Roles . 82
7.3.1 Details About The Assigned Roles 82

7.4 Risk Management . 83
7.4.1 Risks . 83
7.4.2 Risk Management and Mitigation 85
7.4.3 Risk Matrix . 86

7.5 Planning Tools . 86
7.5.1 Issue Tracker . 86
7.5.2 Time Tracker . 86

III Appendix 87

Test Protocol 88

viii

Glossary and Abbreviations

Backbone Also called a core network is part of a service provider network, which
consists of core routers, where no customers are directly connected, and very high
bandwidths are available.

CI/CD Continuous Integration/Continuous Deployment: It is an approach that is used
in software development to automate testing, deployment and be able to carry out
fast and reliable deployments.

Cut Vertex Also known as an articulation point is a node in a graph. Removing it
disconnects the graph.

Degree The number of edges connected to a node.

GDS Graph Data Science Library - A Neo4j graph database plugin that implements
common graph algorithms.

Gephi A popular application for the visualisation and exploration of graphs.

GEXF Graph Exchange XML Format - A graph file format based on XML that is used
to store graph structures.

GraphML A graph file format based on XML that is used to store graph structures.

gRPC Google Remote Procedure Calls - A remote procedure call framework.

Helm A package manager for Kubernetes that simplifies deployments.

iBGP Interior Border Gateway Protocol - Usage of the BGP protocol within an au-
tonomous system.

IGP Interior Gateway Protocol - Protocol used to exchange routing table information.

INS Institute for Network and Security - An institute at the Eastern Switzerland Uni-
versity of Applied Sciences.

ix

Jalapeño An open-source infrastructure platform for network services developed by
Cisco.

Kubernetes An open-source container orchestration system that automates the de-
ployment, scaling, and management of containerized applications.

Minimum spanning tree A subset of a graph that contains all nodes without any
cycles with the minimal amount of edge weights.

Neo4j A popular graph database.

NP-hard Describes computer science problems that have no solution that can be found
in polynominal-time.

OpenAPI OpenAPI (formerly known as Swagger) is a specification for building APIs
that allows developers to describe the structure and behaviour of APIs in a stan-
dardized way, enabling automated documentation and code generation.

PoP Point of Presence is a network location where service providers have equipment
and provide connectivity to customers.

Pydantic Python library that provides data validation functionality.

RTK Query A JavaScript tool that facilitates the fetching and caching of data in a
web application. It is designed to simplify the process of loading data, reducing
the need for manual coding of data fetching and caching logic.

TSP Travelling salesman problem - A popular problem in computer science.

x

Bibliography

[1] F. Menczer, S. Fortunato, and C. A. Davis, A First Course in Network Science,
1st edition. Cambridge University Press, 2020-01-30, 274 pp.

[2] V. Balakrishnan, Schaum’s Outline of Graph Theory: Including Hundreds of Solved
Problems, 1st edition. New York: McGraw Hill, 1997-02-22, 288 pp., isbn: 978-0-
07-005489-9.

[3] B. Quoitin, V. Van den Schrieck, P. Francois, and O. Bonaventure, “IGen: Gen-
eration of router-level Internet topologies through network design heuristics,” in
2009 21st International Teletraffic Congress, 2009-09, pp. 1–8.

[4] “Backbone - Infrastructure - SWITCHlan - SWITCH.” (), [Online]. Available:
https://www.switch.ch/network/infrastructure/backbone/ (visited on
2023-06-14).

[5] S. Freitas, D. Yang, S. Kumar, H. Tong, and D. H. Chau, “Graph Vulnerability and
Robustness: A Survey,” IEEE Transactions on Knowledge and Data Engineering,
pp. 1–1, 2022, issn: 1041-4347, 1558-2191, 2326-3865. doi: 10.1109/TKDE.2022.
3163672. arXiv: 2105.00419 [cs]. [Online]. Available: http://arxiv.org/abs/
2105.00419 (visited on 2023-05-10).

[6] P. Christen and L. Ribi, “Graph properties of a telecommunication network,”
other, OST Ostschweizer Fachhochschule, 2023. [Online]. Available: https://
eprints.ost.ch/id/eprint/1081/ (visited on 2023-05-24).

[7] M. E. J. Newman, “The structure and function of complex networks,” SIAM
Review, vol. 45, no. 2, pp. 167–256, 2003-01, issn: 0036-1445, 1095-7200. doi:
10 . 1137 / S003614450342480. arXiv: cond - mat / 0303516. [Online]. Available:
http://arxiv.org/abs/cond-mat/0303516 (visited on 2023-03-02).

[8] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
Nature, vol. 393, no. 6684, pp. 440–442, 6684 1998-06, issn: 1476-4687. doi: 10.
1038/30918. [Online]. Available: https://www.nature.com/articles/30918
(visited on 2023-06-12).

[9] A.-L. Barabási and M. Pósfai, Network Science, 1st edition. Cambridge, United
Kingdom: Cambridge University Press, 2016-08-05, 475 pp., isbn: 978-1-107-07626-
6.

xi

https://www.switch.ch/network/infrastructure/backbone/
https://doi.org/10.1109/TKDE.2022.3163672
https://doi.org/10.1109/TKDE.2022.3163672
https://arxiv.org/abs/2105.00419
http://arxiv.org/abs/2105.00419
http://arxiv.org/abs/2105.00419
https://eprints.ost.ch/id/eprint/1081/
https://eprints.ost.ch/id/eprint/1081/
https://doi.org/10.1137/S003614450342480
https://arxiv.org/abs/cond-mat/0303516
http://arxiv.org/abs/cond-mat/0303516
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://www.nature.com/articles/30918

[10] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach to universal
topology generation,” inMASCOTS 2001, Proceedings Ninth International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, 2001-08, pp. 346–353. doi: 10.1109/MASCOT.2001.948886.

[11] M. Naldi, “Connectivity of Waxman topology models,” Computer Communica-
tions, vol. 29, no. 1, pp. 24–31, 2005-12-01, issn: 0140-3664. doi: 10.1016/j.
comcom.2005.01.017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0140366405000630 (visited on 2023-05-15).

[12] E. K. Çetinkaya, M. J. F. Alenazi, Y. Cheng, A. M. Peck, and J. P. G. Sterbenz,
“A comparative analysis of geometric graph models for modelling backbone net-
works,” Optical Switching and Networking, Special Issue on RNDM 2013, vol. 14,
pp. 95–106, 2014-08-01, issn: 1573-4277. doi: 10.1016/j.osn.2014.05.001.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1573427714000356 (visited on 2023-03-10).

[13] H. Haddadi, M. Rio, G. Iannaccone, A. Moore, and R. Mortier, “Network topolo-
gies: Inference, modeling, and generation,” IEEE Communications Surveys & Tu-
torials, vol. 10, no. 2, pp. 48–69, 2008, issn: 1553-877X. doi: 10.1109/COMST.
2008.4564479.

[14] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A Modern Intro-
duction to Probability and Statistics: Understanding Why and How, First Edition.
London: Springer, 2005-06-15, 504 pp., isbn: 978-1-85233-896-1.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, ser. KDD’96,
Portland, Oregon: AAAI Press, 1996-08-02, pp. 226–231.

[16] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons, 2009-09-25, 369 pp., isbn: 978-0-470-31748-
8. Google Books: YeFQHiikNo0C.

[17] M. Krechetov. “Generating Gabriel graphs.,” Mikhail Krechetov. (2022-07-14),
[Online]. Available: https://mkrechetov.github.io/gabriel_graphs (visited
on 2023-06-06).

[18] F. Goulart, Python TSP Solver, 2023-06-04. [Online]. Available: https://github.
com/fillipe-gsm/python-tsp (visited on 2023-06-05).

[19] V. Gill and J. Mitchell, “AOL Backbone OSPF-ISIS Migration,” NANOG29, 2003-
10. [Online]. Available: https : / / archive . nanog . org / meetings / nanog29 /

presentations/gill.pdf.

[20] “GEXF File Format.” (), [Online]. Available: https://gexf.net/ (visited on
2023-06-10).

[21] “Introduction— Jalapeño API Gateway.” (), [Online]. Available: https://jalapeno-
api-gateway.github.io/jagw/docs/introduction (visited on 2023-06-10).

xii

https://doi.org/10.1109/MASCOT.2001.948886
https://doi.org/10.1016/j.comcom.2005.01.017
https://doi.org/10.1016/j.comcom.2005.01.017
https://www.sciencedirect.com/science/article/pii/S0140366405000630
https://www.sciencedirect.com/science/article/pii/S0140366405000630
https://doi.org/10.1016/j.osn.2014.05.001
https://www.sciencedirect.com/science/article/pii/S1573427714000356
https://www.sciencedirect.com/science/article/pii/S1573427714000356
https://doi.org/10.1109/COMST.2008.4564479
https://doi.org/10.1109/COMST.2008.4564479
http://books.google.com/books?id=YeFQHiikNo0C
https://mkrechetov.github.io/gabriel_graphs
https://github.com/fillipe-gsm/python-tsp
https://github.com/fillipe-gsm/python-tsp
https://archive.nanog.org/meetings/nanog29/presentations/gill.pdf
https://archive.nanog.org/meetings/nanog29/presentations/gill.pdf
https://gexf.net/
https://jalapeno-api-gateway.github.io/jagw/docs/introduction
https://jalapeno-api-gateway.github.io/jagw/docs/introduction

[22] “swissBOUNDARIES3D,” Bundesamt für Landestopografie swisstopo. (), [On-
line]. Available: https://www.swisstopo.admin.ch/de/geodata/landscape/
boundaries3d.html (visited on 2023-05-31).

xiii

https://www.swisstopo.admin.ch/de/geodata/landscape/boundaries3d.html
https://www.swisstopo.admin.ch/de/geodata/landscape/boundaries3d.html

List of Figures

1 Simplified MOST-Model visualisation . iii
2 Integration into the Graph Analyzer Frontend iii

1.1 Graph examples . 3
1.2 SWITCHlan backbone, Source: [4] . 4

2.1 System overview . 7
2.2 Simplified MOST-Model visualisation . 8
2.3 OpenAPI Specification - Graph Generator 9
2.4 Integration into Graph Analyzer . 10
2.5 Diameter property . 10
2.6 Robustness property . 11
2.7 Graphs with the Erdős-Rényi model . 12
2.8 Graphs with the Watts-Strogatz model . 13
2.9 Graphs with the Barabási-Albert model 14
2.10 Graph with the Waxman model . 15
2.11 IGen process, Source: [3] . 16
2.12 Delaunay triangulation . 16
2.13 Gabriel graph . 17
2.14 Probability distribution comparison . 19
2.15 Distribution comparison . 20
2.16 k-means clustering . 21
2.17 Adding core nodes to PoP regions . 22
2.18 Adding random core nodes . 23
2.19 Node contraction . 25
2.20 Gabriel optimisation comparison . 26
2.21 Gabriel result . 27
2.22 Ring result . 28
2.23 Add random core node edges . 29
2.24 Optimisations . 30
2.25 Level 1 PoP . 31
2.26 Level 2 PoP . 32
2.27 Adding PoP structures to Gabriel graph topology 33
2.28 Final topology . 34

xiv

2.29 Frontend Dashboard - Generator navigation 38
2.30 Frontend Generator - Validation . 39
2.31 Frontend Generator - Error . 40
2.32 Frontend Generator - Preview . 40
2.33 API upload endpoints . 41
2.34 Frontend Dashboard - GEXF upload . 41
2.35 Frontend - Diameter property . 42
2.36 Targeted attack with recalculated degree removal 44
2.37 Frontend - Robustness property . 44

3.1 Responsive Frontend on a smaller viewport 48
3.2 Possible topology of Switzerland, Source (Map): [22] 50

4.1 Use Case diagram . 53

6.1 C4 Model Level 1 - System context diagram 63
6.2 C4 Model Level 2 - Container diagram . 65
6.3 C4 Model Level 3 - Component diagram - Single-page application 67
6.4 C4 Model Level 3 - Component diagram - API application 69
6.5 C4 Model Level 3 - Component diagram - Data Collector application . . . 70
6.6 C4 Model Level 3 - Component diagram - Topology generator application 71
6.7 Kubernetes deployment . 73
6.8 Frontend - Generator page wireframe . 74
6.9 GitLab CI/CD . 76
6.10 GitLab merge request metrics . 77
6.11 SonarQube - Quality Gate status . 77

7.1 Roadmap . 80
7.2 RUP phases with project milestones and sprints 80
7.3 Risk matrix . 86

xv

List of Tables

3.1 Fulfilment of use cases . 45
3.2 NFR validation . 46

4.1 How NFRs are validated . 58

5.1 Framework comparison . 61

7.1 Project milestoness . 79
7.2 Application milestones . 79
7.3 Scrum meetings . 81
7.4 Scrum roles . 82
7.5 Risk management . 84
7.6 Risk mitigation . 85

7.7 Test protocol . 90

xvi

Listings

2.1 Generator output . 36
3.1 Generating a large network with at least 1’000 nodes 47
3.2 Self healing test output . 47
6.1 Helm deployment - values.yaml . 72

xvii

Part I

Technical Report

1

Chapter 1

Introduction

This chapter gives an introduction to the thesis. The thesis assumes that the reader
has existing knowledge of essential computer science topics such as computer networks,
algorithms, application architecture and distributed systems.

1.1 Thesis Structure

The following sections describe how the thesis is structured.

1.1.1 Technical Report

Three chapters make up the Technical Report. The Introduction provides a foundation
regarding the topic of this thesis and its goals. The Results chapter documents the
research and implementation of this thesis. Finally, the Conclusion chapter reflects on
what has been achieved. It also discusses known limitations and an outlook with possible
future steps.

1.1.2 Project Documentation

The Project Documentation consists of four chapters. The requirements that the final
result of the thesis needs to fulfil are documented in the Requirements chapter. Deci-
sions that shaped the implementation of the result are detailed in the Design Decisions
chapter. The Architecture chapter deals with the implementation structure and how
quality is maintained. The final Project Management chapter contains details regarding
the project management processes used while working on this thesis.

2

1.2 Terms and Techniques

In the following sections, several concepts are introduced in order to provide context for
this thesis.

1.2.1 Graphs

The concept of graphs is introduced in a short form below and is based on [1], [2]. The
intention is not to give a complete definition but a rough overview.
A graph can be defined as a set of elements that are connected in pairs. The elements
are called nodes, while their connections are described as edges. The following three
definitions define essential properties of a graph:

– Edges can be directed or undirected. Contrary to undirected edges, a graph with
directed edges can have two edges between a pair of nodes.

– These edges can have properties assigned to them, for example, numbers that
define a weight. However, what the weight represents depends on the context.

– A graph is a multigraph if multiple edges connect a pair of nodes.

Graphs and graph theory have applications in many areas, including computer networks.
When talking about nodes in this thesis, they generally represent routers.

Figure 1.1 illustrates two types of graphs. An unweighted undirected simple graph
and a weighted directed multigraph.

Figure 1.1: Graph examples

3

1.2.2 Service Provider Networks

Service providers offer internet or telecommunication services to customers. This re-
quires a robust, economic and scalable network. The network can be divided into two
parts.
The backbone, also known as the core network, is designed for large amounts of traffic
with high bandwidths. Since a failure of the backbone affects the entire service provider
network, it is usually designed with a high level of redundancy by using a mesh-like
topology.
The access network is designed to connect customers to the backbone. The bandwidths
are generally lower compared to the backbone. Customers connect via a point of pres-
ence, or PoP for short [3].

The SWITCHlan backbone that connects Swiss universities can be seen in figure 1.2.

Figure 1.2: SWITCHlan backbone, Source: [4]

1.2.3 Network Robustness

Robustness is a term that describes how resistant a network is to disruptive factors.
These can be natural failures of individual devices but also targeted attacks [5]. Often
a balance must be found between how robust a network should be and the financial
cost that it entails. Rating robustness is context-dependent. For example, a critical
healthcare provider network has different requirements than a private home network.

4

1.3 Aims and Objectives

This section introduces the problems and related goals of this thesis.

1.3.1 Service Provider Network Topology Generation

Network engineers and researchers develop new network technologies. These developed
methods must be tested in order to validate their functionality. While network engineers
of service providers can use a network topology resembling a real network for simulation
purposes, researchers often have other requirements. They need to test technologies on
a multitude of different network topologies as they are targeted at more general usage.
One such use case can be found in the area of software-defined networks. Software-
defined networking applications need to be tested on large networks in order to see how
they scale. In addition, service providers rarely disclose their network topology in detail
to be used for research purposes due to security concerns.
Currently, these topologies are often randomly generated and do not have properties
specific to service provider networks. The goal is to develop a process to create network
topologies that incorporate characteristics found in service provider networks such as
PoPs and backbone structure.

1.3.2 Integration into Graph Analyzer System

The existing Graph Analyzer system created in the term project [6] needs to be extended
to provide the functionality to generate network topologies. It should be based on
the solution developed for solving the problem described in section 1.3.1. It should
be possible to export generated topologies in the form of a commonly used graph file
format. Importing this file into the Graph Analyzer system should be possible in order
to visualise and analyse it.

1.3.3 Weighted Support in Graph Analyzer System

The Graph Analyzer system currently does not consider the weight of edges when im-
porting topology data. Thus, all calculated graph properties are based on an undirected
unweighted simple graph. The topology data import needs to be adjusted in order to
extract the edge weights. In addition, it should be evaluated which calculated graph
properties are affected by this change.

1.3.4 Robustness Property

In addition to the calculated graph properties in the term project [6], a new property
should be added. This property should quantify the robustness of a graph based on a
suitable metric.

5

Chapter 2

Results

This chapter gives an overview of what has been achieved in this thesis and how it has
been implemented.

2.1 Distinction

This section clarifies the scope of the work done in the previous term project. This is
done to better distinguish the extent of what has been achieved in this thesis.

During the term project [6] in the fall semester of 2022, a system composed of mul-
tiple applications was created that analyses graphs and displays selected properties. It
is composed of the Data Collector application that is responsible for importing topology
data into a graph database. Calculation of graph properties and providing them through
an interface is done by the API application. The graph properties are displayed in the
Frontend application.

This thesis builds upon this existing system by adding a new application responsible
for topology generation, that is integrated into the Frontend. In addition, adjustments
to include edge weights in graph property calculations have been made. Further, a new
graph property to indicate robustness was introduced. Changes related to this affect all
parts of the existing Graph Analyzer system.

6

2.1.1 System Structure

Following, a brief overview of the Graph Analyzer system is given. A visual overview is
shown in figure 2.1.

Figure 2.1: System overview

Frontend

The Frontend displays and explains graph properties. It communicates with the API in
order to display the values of the properties. As part of this thesis, it has been extended
to integrate the newly added Graph Generator.

API

The API analyses the graph persisted in the Graph Database and calculates graph
properties based on it. The functionality to forward graph files to the Data Collector
was added as part of this thesis.

Data Collector

The Data Collector is an independent application solely responsible for retrieving topol-
ogy data from different data sources. Logic related to the import from various data
sources is contained within it. The graph data is transformed into a defined structure
and saved in the Graph Database.

Graph Database

The Graph Database contains the graph data that the Data Collector has collected. The
API can retrieve the graph in order to calculate graph properties.

7

Graph Generator

The Graph Generator is a new application implemented as part of this thesis. It im-
plements the generation of service provider network topologies. Converting them into
graph file formats and delivering the results to the Frontend is also handled.

2.2 Existing Software and Limitations

A short investigation into existing software that provides service provider network topol-
ogy generation did not lead to any results. Consulted network engineers at the INS also
did not know of an existing product, their current approach is to generate the network
topologies randomly. It can be also argued that the specific type of network topology
that should be generated is too specific to have an existing software implementation.
In academic research, several approaches exist that try to solve a similar problem. More
about these existing approaches can be found in section 2.4.
Based on conversations with network engineers, it is assumed that in an enterprise en-
vironment, test networks are typically created based on existing production networks.

2.3 Achievements

This section will provide an overview of the achieved results. Detailed information about
their implementation can be found in section 2.5.

2.3.1 MOST-Model

To generate service provider network topologies, the MOST-Model was created. The
name stands for Mesh-Oriented Service Provider Topology Model or can also be under-
stood as a play on words with the Eastern Switzerland University of Applied Sciences,
OST for short. Details about the model can be found in section 2.5.1.

Figure 2.2 illustrates the process of the model in a simplified form.

Figure 2.2: Simplified MOST-Model visualisation

8

2.3.2 Graph Generator

An application called Graph Generator has been developed to handle the topology gen-
eration. It implements the MOST-Model mentioned in section 2.3.1 and expands on it
by parameterising it. In addition, a ring topology option is available as an option.
The decision to implement it separately from the existing applications as another mi-
croservice was made intentionally. The goal was to have the possibility to use the Graph
Generator in other contexts and not only in conjunction with the Graph Analyzer sys-
tem.
When generating a topology, it is returned in a simple proprietary JSON-based format.
To provide easy interoperability, data in the proprietary format can be submitted in
order to convert it to the broadly used GEXF or GraphML file formats.
The Graph Generator has been implemented as an HTTP API and uses the OpenAPI
3 specification to define interactions with it. The available endpoints can be seen in
figure 2.3.

Figure 2.3: OpenAPI Specification - Graph Generator

9

2.3.3 Graph Generator Integration

The Graph Generator application was successfully integrated into the existing Frontend.
The user has the option of adjusting parameters and generating topologies via a form
that can be seen in figure 2.4. A preview of the generated topology is shown with the
option to download it in the GEXF file format.

Figure 2.4: Integration into Graph Analyzer

2.3.4 Weight Support

The Graph Analyzer system has been adjusted to support edge weights. For both
currently supported topology data providers, Jalapeño and GEXF, the processing was
updated in order to persist the weight in the Graph Database.
Figure 2.5 shows the diameter property that has changed due to the inclusion of edge
weights. Other properties are not affected by it.

Values Description

Figure 2.5: Diameter property

10

2.3.5 Data Import Improvements

The option to use GEXF files as the data source for the Graph Analyzer system has
been reworked in order to be more flexible. Prior, the Data Collector only supported
the Jalapeño API Gateway and locally available GEXF files as data sources.
The implementation of a gRPC API for the GEXF data source option adds support for
importing custom GEXF files while the system is running.
To use this functionality, the Frontend and API have been adjusted to allow GEXF file
uploads which then get forwarded to the Data Collector through the API. In conjunction
with the integration of the Graph Generator into the Frontend mentioned in section 2.3.3,
a generated network can be subsequently imported into the Graph Analyzer system.

2.3.6 Robustness Calculation

The API and Frontend of the Graph Analyzer system have been extended with a new
property as seen in figure 2.6. The property quantifies the robustness of a network. How
robustness is quantified is explained in section 2.5.6.

Values Description

Figure 2.6: Robustness property

2.3.7 Graph Analyzer System

All components of the Graph Analyzer System are publicly available on GitHub under
an MIT license. The repositories are grouped in an organisation and are accessible here:
https://github.com/Graph-Analyzer

11

https://github.com/Graph-Analyzer

2.4 Research

This section documents the research and results that led to the creation of the MOST-
Model.

2.4.1 Random Graph Models

To generate random graphs, a multitude of different approaches exist. Three different
models are introduced briefly in the following sections.

2.4.1.1 Erdős-Rényi Model

The Erdős-Rényi model is characterised as a random graph, in which edges are generated
stochastically without adhering to any visible pattern.

Two closely related variants of the Erdős-Rényi random graph model exist [7].

G(n,M)

n is the number of nodes, and M is the number of edges in a graph. G(4, 2) for example
means that there are in total 6 possible graphs where the order of edges does not matter.
6 is the result of the following calculation

(
4
2

)
= 6.

G(n, p)

n is the number of nodes, and p is the probability of an edge creation. p is in the interval
[0, 1]. Such a graph will have an average of

(
n
2

)
p edges.

Figure 2.7 shows two generated graphs using the G(n, p) variant.

G(6, 1) G(6, 0.4)

Figure 2.7: Graphs with the Erdős-Rényi model

The Erdős-Rényi model is not suitable for modelling service provider networks because
it assumes that edges between nodes are created randomly. This does not reflect the
complex structure of real-world networks. In these types of networks, the nodes are often

12

specialised and have different functions. Connections between them are not random but
rather purposeful.

2.4.1.2 Watts-Strogatz Model

The Watts-Strogatz model is categorised as a random graph model. In comparison to
the Erdős-Rényi model, it produces so-called small-world graphs with high clustering
and short average path lengths [8].

G(n, k, p)

The graph to be constructed takes three parameters as arguments. The number of nodes
n, mean degree k and the probability of rewiring each edge p. The creation process starts
with a regular ring lattice of n nodes, where each node is connected to its k nearest neigh-
bours. Next, each edge is rewired to a random node in the network with probability
p. This rewiring process helps to capture the small-world phenomenon observed in real-
world networks.

Two examples can be found in figure 2.8.

G(10, 4, 0.2) G(10, 4, 0.5)

Figure 2.8: Graphs with the Watts-Strogatz model

The Watts-Strogatz model has some limitations regarding the representation of certain
characteristics of service provider networks. For instance, it does not explicitly capture
hierarchical structures and preferential attachment. In addition, the presence of hubs,
which are common in many service provider networks, is neither captured [1].

13

2.4.1.3 Barabási-Albert Model

The Barabási-Albert model is a network growth model that uses preferential attachment,
where nodes with higher degrees have a greater probability of attracting new connections.
It starts with a small number of nodes and adds new nodes iteratively, connecting each
new node to existing nodes with a probability proportional to their degree. This process
results in the emergence of scale-free networks with a power-law degree distribution,
where a few nodes have a higher degree, so-called hubs [9].

G(n,m)

n is the number of nodes, and m denotes the number of edges to attach from a new node
to existing nodes.

Figure 2.9 shows two examples.

G(10, 4) G(10, 1)

Figure 2.9: Graphs with the Barabási-Albert model

Despite its prevalent use when generating graphs for computer networks or the internet,
its use in an unmodified form is discouraged as intrinsics of a real network are not
incorporated [9].

2.4.2 BRITE

An important work in the area of topology generation is BRITE [10]. BRITE defined
an initial topology generation framework that was adapted in further works. It is a
universal topology generation tool targeted at researchers in the network community
doing research concerning internet topology. It incorporated various generation models
such as the Waxman model explained in section 2.4.3. It also implemented the placement
of the nodes as a separate step from connecting them, which is something that reappears
in future topology generator implementations.

14

2.4.3 Waxman

A Waxman graph is a generalised random geometric graph. In contrast to random
graphs, it not only relies on probabilities but incorporates the distances between nodes.
In the first step, all nodes of the graph are uniformly distributed over a plane. Pairs
of nodes are then connected based on a probability function that includes the distance
between the two nodes [11].

An example of a Waxman graph can be found in figure 2.10.

Figure 2.10: Graph with the Waxman model

It has often been used when generating topologies that should resemble telecommunica-
tion networks or to test routing algorithms. But more recent papers such as [12], [13]
show that other methods lead to better results than a Waxman graph.

2.4.4 IGen

Another topology generator has been implemented in the form of IGen [3]. It specialises
in generating topologies resembling service provider networks. It defines a network design
methodology composed of six steps.

1. Node placing

2. PoP identification based on the placed nodes

3. PoP topology creation

4. Backbone topology creation

5. Capacity planning

6. iBGP topology design

15

The visualised process can be seen in figure 2.11.

Figure 2.11: IGen process, Source: [3]

It defines concepts such as PoPs and a backbone in the generation process. Placement
of the nodes is done similarly to BRITE [10], but the following steps that separate
the nodes into specific service provider categories differentiate IGen. The logic of how
nodes in a PoP are connected is based on operational practice. Further, the backbone
creation step only targets nodes categorised as backbone nodes. In general, it is more
opinionated compared to purely degree-based generators like BRITE due to its focus on
service provider networks [13].

2.4.5 Delaunay and Gabriel

In IGen there are several backbone design heuristics present, the Delaunay triangulation
is one of them. It is classified as a geometric spanner and leads to a topology with alter-
nate paths between nodes. Due to its construction out of triangles, a node with only one
edge is impossible and leads to a naturally redundant network. The minimum spanning
tree is a subset of the Delaunay triangulation. The resulting topology is cost-effective
and redundant [3].

A Delaunay triangulation with 8 nodes is shown in figure 2.12.

Figure 2.12: Delaunay triangulation

16

Another type of graph is the Gabriel graph, which is a subset of the Delaunay trian-
gulation. It has been shown in [12] that it is one of the best options when generating
backbone network structures. A Gabriel graph is a subset of the Delaunay triangulation.
Each edge is only kept if there are no other nodes present in the circle with the start and
end node on the circumference. This leads to a reduction in the number of edges. There
have been several papers about the application of Gabriel graphs in network topologies.
It generates networks at a small cost but tends to generate grid-like structures and leaves
stubs that negatively affect redundancy [12].

A Gabriel graph with 8 nodes is shown in figure 2.13.

Figure 2.13: Gabriel graph

2.4.6 Robustness

Quantifying network robustness is a field of active research. There are many options to
define a metric, and it is difficult to find a generally applicable one. One of these metrics
is based on the removal of nodes until the graph splits. There are options on how the
to-be-removed nodes are chosen. One option is a random selection, and another is a
targeted attack based on certain properties, node degree for example [5].

17

2.5 Implementation

This section documents the implementation of features and explains major decisions
that had to be made.

2.5.1 MOST-Model

The Graph Generator’s approach for topology generation is based on the methodology
described by IGen [3]. However, several changes and additional steps have been intro-
duced into the generation process. Some of these changes cover specific use cases, and
others try to optimise and compensate for shortcomings of the topology.
The result should be a router-level topology composed of a backbone made up of core
nodes. Core nodes should be connected in a fitting mesh-like structure. Attached to the
core nodes are PoPs with predefined structures based on operational practice.

The result is the MOST-Model which is composed of 8 steps:

1. PoP placing

2. PoP region clustering

3. Add PoP region core nodes

4. Add random core nodes

5. Add core node edges

6. Add random core node edges

7. Topology optimisations

8. PoP structure creation

18

2.5.1.1 PoP Placing

In the initial step, the PoPs are placed onto a two-dimensional plane. This step is similar
to what happens in IGen [3], with the significant difference that the placed points are
not routers. This approach was taken as the goal of the model was to have specific PoP
structures predefined. As these structures are composed of routers, placing routers and
having predefined PoP structures can not be done simultaneously.

The coordinates are chosen randomly based on a defined probability distribution. Both
currently available distributions can not fully represent all intrinsics of how PoPs are dis-
tributed geographically. Integrating population centres and geographical blockers, such
as lakes, is a challenge that needs further research. An approach for better generating
these random coordinates can be found in section 3.2.

– The uniform distribution is a fundamental statistical concept. It represents a
probability distribution where all values within a specified interval have an equal
likelihood of occurrence [14].

– The normal distribution is a widely studied statistical concept. It is characterised
by a symmetrical bell-shaped curve determined by its mean and standard deviation
[14].

Figure 2.14 compares the two distributions. 1’000’000 samples were taken. The intervals
were set to [−1, 1] for the uniform distribution. The normal distribution was created
with a mean of 0 and a standard deviation of 1.

Figure 2.14: Probability distribution comparison

19

As mentioned, none of these distributions fully capture all aspects of how PoPs are
spatially placed and distributed. Compared to each other, the uniform distribution is
more suitable for distributing the PoPs. Generated topologies and feedback from net-
work engineers have shown that the uniform distribution tends to be the better choice.
Nevertheless, the normal distribution can also be a more appropriate choice depending
on the intended usage. Based on this, the model does not explicitly define a probability
distribution to be used.

A possible placement of 30 PoPs for both distributions can be seen in figure 2.15.

Uniform distribution Normal distribution

Figure 2.15: Distribution comparison

20

2.5.1.2 PoP Region Clustering

The placed PoPs are grouped into so-called PoP regions in the next step. A parameter
that determines the number of regions is part of the model. The regions should be
selected so that nodes in the vicinity (distance-based) are clustered together. PoP regions
are the base for the backbone of the generated topology and can be interpreted as
geographical areas that service providers cover. IGen [3] contains a similar step but
clusters routers into PoPs. Three clustering algorithms were evaluated.

– DBSCAN

– k-medoids

– k-means

DBSCAN was not considered suitable for the model. In contrast to the other two ”k-
algorithms”, the number of desired clusters (PoP regions) cannot be specified and is
determined as part of DBSCAN [15]. The model has the requirement to provide a pa-
rameter for the definition of the number of PoP regions.
While the k-medoids algorithm allows the definition of the number of clusters, it does
not fit the model in another aspect. The k-medoids algorithm represents each cluster by
an optimal data point within the cluster, known as the medoid. The medoid is usually
the most centrally located point or the one that minimises the sum of dissimilarities to
other points in the cluster.
K-means was chosen in the end due to the centroids it yields. These centroids are lo-
cated in the centre of all cluster points and not based on a point in the cluster. They
are more sensitive to outliers than medoids which is a desired property for the model [16].

Figure 2.16 shows how k-means divides the placed PoPs into 10 clusters. The arith-
metic mean of the PoP locations defines the centre of each cluster.

Figure 2.16: k-means clustering

21

2.5.1.3 Add PoP Region Core Nodes

Next, the core nodes are distributed around each PoP region’s centre, each cluster’s
centroid. These core nodes represent routers that make up the backbone of the service
provider network topology. The number of core nodes depends on the number of PoPs
in a PoP region. PoP regions are assigned two core nodes as a base value.
Depending on a threshold parameter, additional nodes are placed. For example, when
the threshold is set to 7, one core node is added for every seven PoPs in the region.
The scaling is based on the circumstance that network utilisation increases with each
PoP that is part of a PoP region. For larger PoP regions, the number of core nodes is
increased to prevent network congestion.

The core nodes of each region are connected internally in a final step. Due to the
possible scaling of the core nodes in a region, a method to connect them is needed. As
the core nodes have been distributed around the PoP region centre, it is possible to use
the Delaunay triangulation constrained to the PoP region core nodes to create a mesh
structure. The Delaunay triangulation was chosen due to its property to create naturally
redundant structures.

Figure 2.17 shows how core nodes (red dots) are placed, scaled if necessary and con-
nected.

Figure 2.17: Adding core nodes to PoP regions

22

2.5.1.4 Add Random Core Nodes

Additional core nodes are added based on a model parameter. These random core nodes
are defined by their own PoP regions and have no attached PoPs. They aim to improve
the topology by introducing additional edges and potentially alternative paths. They
are randomly distributed in the coordinate system using the same approach as in sec-
tion 2.5.1.1.

Figure 2.18 shows how random core nodes (orange dots) are placed.

Figure 2.18: Adding random core nodes

23

2.5.1.5 Add Core Node Edges

After placing all core nodes, edges are added to connect them. How these edges are
placed defines the resulting topology. The model sets these edges based on a Gabriel
graph. Two topologies are implemented in the model and are selected by a parameter. It
is important to mention that the model is intended to be used with the Gabriel topology,
as ring topologies do not scale very well and are thus not representative of service provider
network topologies. Regardless, the ring topology is available and implemented as an
option for smaller topologies.

Gabriel Based on the research in section 2.4.5, the topology that fits a service provider
network best is based on the Gabriel graph. There are multiple different approaches to
creating a Gabriel graph. The chosen approach is more sophisticated than a brute force
method but not as optimised as using a Voronoi diagram. The current approach creates
the Gabriel graph based on a Delaunay triangulation. This approach was chosen as it
optimises the calculation while still being understandable. It is based on and adapted
from [17]. Since the Gabriel graph is a subgraph of the Delaunay triangulation, first
the Delaunay triangulation is created based on the core nodes. Edges in a Delaunay
triangulation can be determined by applying the following simplified process:

– Select three nodes.

– Draw a circle that places all three nodes on its circumference.

– If no other node is present in the circle area, add the edges that connect the three
nodes and form a triangle.

– Go over all node combinations.

With the Delaunay triangulation present, the Gabriel graph can be extracted from it.
The following simplified process illustrates how the subgraph is determined:

– Select two nodes that are connected by an edge.

– Draw a circle that places both nodes on its circumference.

– Remove the edge if another node is in the circle area.

– Go over all edges.

The resulting topology will not entirely resemble a Gabriel graph. Additional edges are
present due to the added edges PoP region internally mentioned in section 2.5.1.3. In
addition, the following two optimisations further influence the topology.

An optimisation that is always applied is that only one edge will be added between
core nodes in separate PoP regions. Parallel edges that connect the same PoP regions
are avoided through this. Further, fewer edges are present when compared to the Gabriel

24

graph. This optimisation prevents parallel edges, leading to a more cost-efficient network.

In section 2.5.1.7, an optimisation adds additional edges to the topology to make it
robust. The addition of the edges in this current step of the model gets optimised to
reduce the later addition of edges in section 2.5.1.7. Note that this optimisation is ap-
plied only in conjunction with the latter one. As the addition of the edges is based on
the coordinates of the core nodes, it is possible that core nodes in a PoP region do not
have any edges that connect to other PoP regions. In the worst case, one core node in
the PoP region has all edges assigned that connect to other PoP regions.
This situation occurs naturally as the Gabriel graph removes the property of the natu-
rally redundant triangles of the Delaunay triangulation and is a known issue in a Gabriel
graph. Nodes are not biconnected as a consequence which reduces redundancy [12]. In
addition, the limitation of one edge between PoP regions also plays into it as edges are
removed.
To counteract this, when an edge is added, it is only guaranteed that the PoP regions
get connected by an edge. The core node with the lowest degree in the PoP region will
be selected to create the edge. If multiple core nodes with the same degree are present,
the core node that leads to the shortest edge is selected by calculating the distances.
The edges are distributed equally between the core nodes in the PoP region and create
redundancy.

This optimisation does not affect the number of edges. The structure of the edges
is affected but will match those of the Gabriel graph when all core nodes in a PoP region
are contracted. A contracted Gabriel graph can be seen in figure 2.19.

Figure 2.19: Node contraction

25

The optimisation is visualised in figure 2.20. The top image shows how the upper core
node in the triangle got both edges assigned while the second core node in the PoP
region has no edges connecting to other PoP regions. The bottom image shows the same
situation but with the optimisation applied. The edges are distributed between the two
available core nodes.

Optimisation disabled

Optimisation enabled

Figure 2.20: Gabriel optimisation comparison

26

The resulting topology with enabled optimisation is shown in figure 2.21.

Figure 2.21: Gabriel result

27

Ring An approach based on solving the travelling salesman problem is used to create
the ring topology. As that is a classic problem categorised as NP-hard, an approximated
solution creates the cycle. Regardless, even the approximated solution does not scale
well with more nodes. This limitation was accepted as the ring topology’s use case is
targeted at smaller topologies. In addition, a non-optimal solution satisfies the use case
of the ring topology. As this topology was not the focus of this thesis, the implementa-
tion is done using the python-tsp library [18].

A ring topology should have exactly two edges per node. Due to the added edges
in the PoP regions mentioned in section 2.5.1.3, the topology does not exactly match a
ring. However, if the core nodes in the PoP regions are contracted, the ring is going to
match. The resulting topology is shown in figure 2.22.

Figure 2.22: Ring result

28

2.5.1.6 Add Random Core Node Edges

On top of the edges added based on the topology, an amount of random core node edges
are added to the topology. The amount is a parameter of the model. Through the
introduction of these additional edges, redundancy is increased. The edges are added by
selecting two random core nodes and adding an edge between them. If an edge already
exists, another combination is tried.

In figure 2.23, the addition of a random core node edge (red) is illustrated.

Figure 2.23: Add random core node edges

29

2.5.1.7 Topology Optimisations

At this stage, a final optimisation is done on the topology to mitigate cut vertices that
negatively affect the robustness of the topology. As mentioned in section 2.5.1.5, the
first step of the process happens already in advance to reduce the needed amount of
added edges in this step. This optimisation step mitigates the shortcomings of using the
Gabriel graph to create a topology and is an essential part of the model. The following
process is applied until no cut vertices are present anymore:

1. Select a cut vertex.

2. Create a copy of the graph with the cut vertex removed. The graph will be com-
posed of at least two components.

3. The nearest node to the cut vertex of each component is determined. Nodes in
PoP regions that are not yet directly connected to the previously mentioned nearest
node are prioritised.

4. Edges are added to connect these nodes in the original graph. They provide an
alternative path between the potential components.

Figure 2.24 illustrates how a cut vertex is mitigated by adding an additional edge (green).

Figure 2.24: Optimisations

30

2.5.1.8 PoP Structure Creation

Each node represents a router, as the topology is on a router level. Until now, PoPs have
been referred to in an abstract form and are not yet actually part of the topology. The
PoPs will be transformed into their router structure and connected to the core nodes
of their assigned PoP region. Two types of structures get assigned to the PoPs. The
structures have been defined in collaboration with network engineers at the INS and are
based on operational practices [19].

Level 1 A level 1 PoP represents a large PoP. Larger PoPs are placed where it is
suspected that a higher data volume must be expected. These can be large cities or other
densely populated areas. It is divided into a PoP Core Border Layer, PoP Distribution
Layer and a PoP Access Layer. Using the PoP Access Layer customers connect to the
PoP while routers in the Core Border Layer connect to a core node from the region.
The structure is static for each level 1 PoP. It is composed of a total of 7 routers and is
divided into:

– PoP Core Border layer: 2 Routers

– PoP Distribution layer: 2 Routers

– PoP Access layer: 3 Routers

Figure 2.25 visualises the structure of a level 1 PoP.

Figure 2.25: Level 1 PoP

31

Level 2 Level 2 PoPs are smaller compared to level 1 PoPs. This type of PoP is
assigned to less dense areas. The PoP Core Border and PoP Distribution layers are
combined when compared to level 1 PoPs. It is composed of a total of 5 routers and is
divided into:

– PoP Core Border layer / PoP Distribution layer: 2 Routers

– PoP Access layer: 3 Routers

Figure 2.26 visualises the structure of a level 2 PoP.

Figure 2.26: Level 2 PoP

The number of level 1 and level 2 PoPs generated can be adjusted using parameters.
The distribution of level 1 and level 2 PoPs takes place as follows.
First, the PoP regions (where the core nodes are located) are sorted in descending order
of degree. This sorting ensures that PoPs in high-degree PoP regions are prioritised
when assigning level 1 PoPs. Thus, the available Level 1 PoPs are allocated to the high-
degree PoP regions. After the limit of level 1 PoPs is reached, the rest of the PoPs are
assigned level 2 structures.

32

The added PoPs can be seen in figure 2.27. Level 1 PoPs are coloured black, and level
2 PoPs are green. The zoomed boxes make it possible to show the structure of level 1
and level 2 since their spacing is otherwise minimal.

Figure 2.27: Adding PoP structures to Gabriel graph topology

33

2.5.1.9 Result

Based on IGen [3], the MOST-Model is able to create a multitude of network topologies
that incorporate properties present in service provider networks.
The introduction of additional core nodes in section 2.5.1.4 adds additional edges to
the topology that lead to alternative connections. Adding additional core node edges in
section 2.5.1.6 has the same effect.

By using the Gabriel graph to create the backbone of the network in section 2.5.1.5,
the topology is created based on a synthetic graph that yields low costs [12].
The Gabriel graph issue leading to stub links, mentioned in [12] is mitigated by optimi-
sation steps described in section 2.5.1.5 and section 2.5.1.7. Biconnected nodes provide
reliability and resistance against link failures. The topology minimises the costs associ-
ated with edges while still providing reliability.

The added PoP structures in section 2.5.1.8 are based on best practices [3]. They get
assigned based on their structure sizes to provide PoP regions with high degrees with
larger PoP structure sizes.

The final generated topology can be seen in figure 2.28.

Figure 2.28: Final topology

34

2.5.2 Graph Generator

The Graph Generator is a Python-based application that uses the FastAPI framework
to implement an HTTP API.
The MOST-Model is implemented as part of it using the NumPy, SciPy, scikit-learn
and NetworkX libraries. The generation has been implemented in a way that allows
easy extension concerning other clustering and topology options in the future. This has
been achieved by splitting the logic into separate Python packages and defining shared
function signatures.

The following three endpoints are available and can be interacted with:

– GET - health indicates the healthiness of the application. It is used in the Ku-
bernetes deployment to monitor the status of the container.

– POST - generate provides the functionality to generate topologies. It accepts
parameters based on the underlying MOST-Model implementation and returns a
list of nodes and edges. More details concerning the parameters can be found in
section 2.5.3.

– POST - convert accepts the structure returned by the generate endpoint as an
input and converts it into the GEXF or GraphML file format.

The Graph Generator uses the OpenAPI 3 specification to define interactions with it
and allows other applications to integrate it based on this quickly.

2.5.2.1 Graph Generator - Generate

The generate endpoint accepts multiple parameters. The following ones are available
directly as part of the implemented MOST-Model.

– Amount of level 1 and 2 PoPs. See section 2.5.1.1.

– Number of PoP regions in order to cluster the PoPs as described in section 2.5.1.2.

– Scaling threshold that increases the number of core nodes in a PoP region based
on the assigned PoPs. This is detailed in section 2.5.1.3.

– Amounts of random core nodes and core node edges to add. See section 2.5.1.4
and section 2.5.1.6.

In addition to the parameters defined as part of the MOST-Model mentioned in sec-
tion 2.5.1, further parameters are available in the generation process.

– As introduced in section 2.5.1.1, the normal probability distribution, based on a
standard normal distribution, is available as an alternative to the uniform distri-
bution. The MOST-Model uses a uniform probability distribution.

35

– As an alternative to the Gabriel graph that is part of the MOST-Model, the ring
topology can be chosen as described in section 2.5.1.5.

– The MOST-Model defines optimisation steps as described in section 2.5.1.5 and
section 2.5.1.7. For experimental purposes, it is possible to disable them.

The result of the generation is returned as a custom JSON data structure composed of
arrays for both nodes and edges. Listing 2.1 shows a shortened version of it.

1 {
2 "nodes": [

3 {
4 "node_id": "0_1",

5 "attributes": {
6 "pop_region": "0",

7 "node_type": "core",

8 "coordinate_x": 0.4671831947233605,

9 "coordinate_y": 0.36467550076790156

10 }
11 },
12 ...

13],

14 "edges": [

15 {
16 "node_from": "0_1",

17 "node_to": "0_2",

18 "attributes": {
19 "weight": 1.0,

20 "edge_type": "core_to_core"

21 }
22 },
23 ...

24]

25 }

Listing 2.1: Generator output

Nodes get an identifier and attributes based on the MOST-Model assigned:

– node id - Unique identifier of the node.

– pop region - Defines to which PoP region this node is assigned.

– node type - The type of the node. Can have the following types:

– core

– core random

– core border layer

– distribution core border layer

36

– distribution layer

– access layer

– coordinate x - Location that the node occupies on the x-axis.

– coordinate y - Location that the node occupies on the y-axis.

Edges have the following attributes:

– node from - Defines the node that is the start of the edge.

– node to - Defines the node that is the end of the edge.

– weight - The weight of the edge. The following weights are currently assigned:

– 1 - Edges between core nodes.

– 10 - Edges between nodes that are part of a PoP.

– 100 - Edges between nodes that are part of a PoP connecting to core nodes.

– edge type - The type of edge. Can have the following types:

– core to core

– core to core random

– core to core random optimization

– core to pop

– pop to pop

2.5.2.2 Graph Generator - Convert

The convert endpoint accepts the data as previously described in section 2.5.2.1 and
converts them into another format. Currently, the GEXF and GraphML file formats are
available as options. These two formats were chosen due to their common usage. The
functionality to export the generated topology into one of these file formats allows their
further use in external applications such as Gephi.

37

2.5.3 Integration into Graph Analyzer - Generator

Due to the microservice architecture, it is possible to use the Graph Analyzer Frontend
without the new Graph Generator integration. This subsection describes how the Graph
Generator was integrated into the existing Graph Analyzer system.

The Generator page is only available in the Frontend if the Graph Generator is available.
This is checked by calling the health endpoint of the Graph Generator.

When the Graph Generator indicates that it is available, a new navigation item is dis-
played in the navigation bar that leads to the Generator page, as seen in figure 2.29.

Figure 2.29: Frontend Dashboard - Generator navigation

On the Generator page, the parameters for the generation can be specified as described
in section 2.5.2. In the Frontend, the Graph Generator is defined as an additional RTK
Query API by using the OpenAPI 3 specification. The Frontend validates the input and
enforces value limits before initiating the topology generation. All fields are required for
the input validations in the Frontend and are validated as follows:

– L1 PoPs:

– Must be an integer

– Must be between 0 - 10’000

– L2 PoPs:

– Must be an integer

– Must be between 0 - 10’000

– PoP regions:

– Must be an integer

– Must be between 1 - 20’000

– Core node scaling threshold:

– Must be an integer

– Must be between 1 - 1’000

38

– Random core nodes:

– Must be an integer

– Must be between 0 - 10’000

– Random core node connections:

– Must be an integer

– Must be between 0 - 10’000

– Random distribution:

– Must be ’uniform’ or ’normal’

– Topology:

– Must be ’gabriel’ or ’ring’

– Topology optimization:

– Must be a boolean

The validation is visualised in figure 2.30.

Figure 2.30: Frontend Generator - Validation

39

The Graph Generator also performs the same validation checks to ensure that input
validation is not solely reliant on client-side validation. In addition to the previously
mentioned basic input validation, the Graph Generator also performs extended validation
checks. Context-dependent checks such as the total amount of edges exceeding that of a
complete graph or the number of PoP regions being higher than the total number of PoPs.
The situation mentioned first can be triggered by defining a value for the ”Random core
node connections” parameter that is too high in combination with the chosen topology.
This and other errors are displayed in the Frontend, as seen in figure 2.31.

Figure 2.31: Frontend Generator - Error

Upon the successful generation of the topology using the generate endpoint, it is dis-
played as a preview in the Frontend, as can be seen in figure 2.32. The topology can
be explored using the same component already used for the graph visualisation in the
Frontend. Nodes are coloured based on their type and display their identifier while edges
show what weight they have assigned.

Figure 2.32: Frontend Generator - Preview

Figure 2.32 also shows the option to download the generated topology. Using the
convert described in section 2.5.2.2, a GEXF file is provided as a download.

40

2.5.4 Integration into Graph Analyzer - Upload

In order to allow the import of generated topologies in the form of GEXF files into the
Graph Analyzer system via the Frontend, the existing Data Collector and API needed
to be adjusted.

The Data Collector GEXF data import option has been extended to provide a GEXF
listener option in addition to local files. When this option is active, a gRPC API is
started and accepts the contents of GEXF files in order to be imported.
The API has been extended with two new endpoints.

– GET - upload-status indicates if the upload functionality is supported.

– POST - upload accepts GEXF files for import.

These two new endpoints reflect the gRPC API of the Data Collector. They act as
intermediaries between the Frontend and Data Collector. The upload-status endpoint
is required as the Data Collector only accepts GEXF files when specifically configured.
When another topology data provider is selected, such as Jalapeño, GEXF imports are
not possible. The added endpoints are shown in figure 2.33.

Figure 2.33: API upload endpoints

Figure 2.34 shows how the Frontend handles the availability of the GEXF upload.

GEXF Upload enabled

GEXF Upload disabled

Figure 2.34: Frontend Dashboard - GEXF upload

41

2.5.5 Weighted Support

An additional requirement of the thesis was to extend the existing Graph Analyzer sys-
tem to support weighted graphs. To achieve this, the Data Collector was adjusted to
include the weight data when processing topology information. The GEXF processing
only needed minor adjustments as the weight is part of the GEXF file specification [20].
As a consequence of this change, the weight is now a required property when importing
GEXF files.
Contrasting this, the Jalapeño processing required some more work. The used NodeEdge

endpoints in the initial request and further subscription-based processing do not include
the weight as part of the response. The weight corresponds to the igp_metric property,
which is only available as part of LsLink [21].
When adding or updating an edge, an additional request is made to retrieve the LsLink
with the identifier provided by LsNodeEdge. This allows the retrieval of the weight when
using Jalapeño as the data source.

The weight from the data sources needs to be persisted in the Neo4j graph database
in order to process it in the API. The weights were solely added to the edges persisted
in the Neo4j graph database. The GDS projection, used to simplify the calculation of
certain graph properties in the API, was kept as is.
The requirements specified that the newly added weights should only affect the calcu-
lated diameter property. Other properties should keep being calculated based on an
unweighted undirected simple graph.
The diameter is newly calculated based on a directed weighted multi-graph. The short-
est longest path in the graph is based on the cumulative weight of all edges that are part
of the path. In addition, the amount of edges, or hops, is returned as a second value of
the diameter calculation.

The visualisation of the diameter in the Frontend displays both the cumulative weights
and the according hop count. See figure 2.35
To provide clarity, the API endpoints and graph property visualisations in the Frontend
have been extended to detail which type of graph they are calculated based upon.

Figure 2.35: Frontend - Diameter property

42

2.5.6 Robustness

In order to find a robustness measure for a graph, approaches described in [5] were
consulted. It describes two types of failures that affect a graph and thus defines how
robust it is.

– Isolated and cascading failures

– This type broadly covers malfunctions that occur frequently and can be char-
acterised as random. Failures of individual devices due to hardware defects
or defective links due to a fibre cut are examples of this.

– Targeted attacks

– In a targeted attack, nodes or edges are specifically selected in order to try
to disrupt a network with the lowest effort and biggest effects. This makes a
lot more sense in the context of a large network and was therefore chosen as
the method of choice.

In large networks, the amount of low-degree nodes usually outweighs high-degree nodes.
For isolating and cascading failures, the chances to remove a low-degree node are thus
higher. Removal of a low-degree node usually quickly leads to a disconnected graph, but
the resulting components are not necessarily proportional. For example, a disconnected
graph with two components, one being a multiple of the size of the other, has a lesser
effect on the operation of a network compared to equally sized components. The measure
is also not reproducible in a usable way due to its random nature.
Due to these reasons, an approach using targeted attacks was chosen. Two degree-based
types of targeted attacks are described in [5].

– Initial degree removal

– In the initial degree removal method, all node degrees are initially calculated
and subsequently removed in descending order until the network is discon-
nected. The degrees are only calculated once at the start. As a consequence
changes in degrees on node removals are not taken into account in the follow-
ing removals.

– Recalculated degree removal

– With recalculated degree removal, the list of node degrees is recalculated after
each removal. This introduces additional complexity but would reflect a more
realistic attacker that re-assesses the next target for each step.

Based on the reasons given above, in the end, a targeted attack with recalculated degree
removal was chosen.
The calculation works as follows. Before each removal, a list of nodes with descending
degrees is created. Based on it the node with the highest degree is removed and checked

43

if the graph is still connected. This is repeated until the graph is no longer connected. In
the case of multiple nodes with the same degrees, all removal combinations are evaluated
in order to determine the minimal number of needed node removals.

Figure 2.36 shows how the robustness is calculated. The graph starts with a total
of 6 nodes and the graph is connected as long as no more than 1 high-degree node is
removed. This corresponds to 16.66% of all present nodes.

Initial Graph - Graph
connected

Node 2 removed - Graph
connected

Node 3 removed - Graph
disconnected

Figure 2.36: Targeted attack with recalculated degree removal

The mentioned measures for robustness are visualised in the Frontend as can be seen in
figure 2.37.

Figure 2.37: Frontend - Robustness property

44

Chapter 3

Conclusions

The upcoming sections cover accomplished use cases. Subsequently, possible enhance-
ments are explored, and alternative approaches discussed.

3.1 Retrospective

3.1.1 Functional Requirements

Table 3.1 lists all defined use cases from section 4.1 and indicates via traffic light colours
if they have been fulfilled.

ID Use case

FR-01 Required: Generate topology

FR-01.a Required: Generate topology - Choose the number of level 1 PoPs

FR-01.b Required: Generate topology - Choose the number of level 2 PoPs

FR-01.c Required: Generate topology - Choose the number of PoP regions

FR-01.d Required: Generate topology - Choose the core node scaling threshold

FR-01.e Required: Generate topology - Choose the number of random core nodes

FR-01.f Required: Generate topology - Choose the number of random connections

FR-01.g Required: Generate topology - Choose the random distribution

FR-01.h Required: Generate topology - Choose the topology

FR-01.i Required: Generate topology - Toggling optimisation

FR-01.j Required: Generate topology - Weighted edges

FR-02 Required: Usage of generated topology

FR-02.a Required: Usage of generated topology - Download

FR-02.b Optional: Usage of generated topology - Graph Analyzer

FR-03 Optional: Extend Graph Analyzer to support weighted edges

FR-04 Optional: Extend Graph Analyzer to support a robustness property

Table 3.1: Fulfilment of use cases

45

3.1.2 Non-Functional Requirements

Table 3.2 contains the results of the NFR validation process defined in table 4.1. Traffic
light colours indicate if an NFR has been met.

ID Result

NFR-01 The API response time is logged by using a simple Curl command and the
output can be found in listing 3.1. A total of 2802 nodes were generated in
6.40 seconds

NFR-02 To test the self-healing capability of the application, it was tested if the Graph
Generator restarts after it has been killed. As can be seen in listing 3.2, the
Graph Generator was up and running again after about 10 seconds without
any manual intervention.

NFR-03 The input validation was described in detail in section 2.5.3 and was success-
ful.

NFR-04 Despite the likely usage of the Graph Analyzer system on desktop-sized de-
vices, the Frontend has been programmed in a responsive way that adapts to
smaller devices and viewports. Figure 3.1 shows the Generator on a mobile
device.

NFR-05 All applications were created cloud-native right from the start. Thus, all
applications run in containers and are created and validated by pipelines.
Logging takes place directly after stdout/stderr and the logic of the import
and the backend is divided into its services.

NFR-06 Each part of the system has its pipeline that performs linting, testing, build-
ing and tagging the container images.

NFR-07 All components were successfully deployed using a Helm chart in Kubernetes.

Table 3.2: NFR validation

46

curl -o /dev/null -s -w ’Total: %{ time_total}s\n’ -X ’POST’ \

’https ://graph -generator -api -jagw.stu.network.garden/generate ’ \

-H ’accept: application/json’ \

-H ’Content -Type: application/json’ \

-d ’{

"l1_pops ": 200,

"l2_pops ": 200,

"pop_regions ": 200,

"core_node_scaling_threshold ": 7,

"random_core_nodes ": 2,

"random_core_node_connections ": 2,

"random_distribution ": "uniform",

"topology ": "gabriel",

"no_cut_edges_and_nodes ": true

}’

Total: 6.405085s

Listing 3.1: Generating a large network with at least 1’000 nodes

while true; do date; curl -s -o /dev/null -w "%{ http_code}" "https ://

graph -generator -api -jagw.stu.network.garden/health"; sleep 1; echo;

done

Mon Jun 5 20:57:02 CEST 2023

200

Mon Jun 5 20:57:04 CEST 2023

200

Mon Jun 5 20:57:05 CEST 2023

404

Mon Jun 5 20:57:06 CEST 2023

404

Mon Jun 5 20:57:07 CEST 2023

404

Mon Jun 5 20:57:08 CEST 2023

404

Mon Jun 5 20:57:10 CEST 2023

404

Mon Jun 5 20:57:11 CEST 2023

404

Mon Jun 5 20:57:12 CEST 2023

404

Mon Jun 5 20:57:14 CEST 2023

404

Mon Jun 5 20:57:15 CEST 2023

404

Mon Jun 5 20:57:16 CEST 2023

200

Mon Jun 5 20:57:17 CEST 2023

200

Listing 3.2: Self healing test output

47

Figure 3.1: Responsive Frontend on a smaller viewport

48

3.1.3 Discussion

All functional requirements, as well as non-functional requirements, have been met in this
thesis. The creation of the MOST model showed a possible approach to generate service
provider-like networks. However, validating the generated results is challenging since
publicly available data is sparse. However, early feedback from network engineers and
visual comparisons with publicly available data have shown that the generated topologies
come close to service provider network topologies. Further validation in depth is needed
regardless.

3.2 Outlook

This section contains possible improvements and ideas for how it could be further de-
veloped.

3.2.1 Improvements

Below are the areas that could be improved in the future.

3.2.1.1 Robustness

Robustness is a big topic and could be a separate work integrating other factors into
the Graph Analyzer. Therefore, the current robustness integration is considered one of
many possibilities for integrating and calculating robustness.

3.2.1.2 Gabriel Graph

The Gabriel graph used for creating the backbone in the MOST-Model has several un-
desired properties as mentioned in [12]. Its tendency to leave stub links with a negative
influence on redundancy has been addressed in the model with optimisation steps.
However, the tendency to strictly create grid-like structures disregarding star-like struc-
tures are open issues that could be improved in potential following works.

49

3.2.1.3 PoP Placement

Instead of randomising the placement of the PoPs, they could be based on other data
sources or even user input. An example can be seen in figure 3.2. Swiss cities with a
population of more than 10,000 were randomly selected in the graphic on the left. In the
graphic on the right, random cities and municipalities were selected without population
restriction. For simplicity, only the backbone is shown without PoPs.

Swiss cities with a population ≥ 10’000 Random Swiss cities

Figure 3.2: Possible topology of Switzerland, Source (Map): [22]

The currently used uniform probability distribution is not ideal for representing cities or
population centres that would lead to a PoP. An approach to refine this was discussed
briefly but not implemented due to time constraints. In a first step, city sizes would have
been defined based on a Pareto distribution. The cities would have then been placed
uniformly on a 2D plane with constraints to prevent bordering large cities. Based on
the city sizes, PoPs would then be assigned.

50

Part II

Project Documentation

51

Chapter 4

Requirements

This chapter describes the various requirements that the final system created as part of
the thesis needs to fulfil.

4.1 Functional Requirements

4.1.1 Actor - User

The system has only one actor, a regular user. His goal is to generate a network topology
that resembles a service provider network topology. The generated topology should be
downloadable through the existing Graph Analyzer Frontend in the form of a commonly
used file format for graph representation.

52

4.1.2 Use Cases

The use cases are shown in figure 4.1 and are specified in a brief form.

Figure 4.1: Use Case diagram

53

FR-01

Use case: Generate topology
Brief: User accesses the application via the Graph Analyzer Frontend and is shown

a generator page that can generate a new network.
Electivity: Required

FR-01.a

Use case: Generate topology - Choose the number of level 1 PoPs
Brief: The number of level 1 PoPs can be chosen by the user.
Electivity: Required

FR-01.b

Use case: Generate topology - Choose the number of level 2 PoPs
Brief: The number of level 2 PoPs can be chosen by the user.
Electivity: Required

FR-01.c

Use case: Generate topology - Choose the number of PoP regions
Brief: The number of generated PoP regions can be chosen by the user.
Electivity: Required

FR-01.d

Use case: Generate topology - Choose the core node scaling threshold
Brief: The threshold of how core nodes in a PoP region scale can be chosen by the

user.
Electivity: Required

FR-01.e

Use case: Generate topology - Choose the number of random core nodes
Brief: The number of random core nodes can be chosen by the user.
Electivity: Required

54

FR-01.f

Use case: Generate topology - Choose the number of random connections
Brief: The number of random connections can be chosen by the user.
Electivity: Required

FR-01.g

Use case: Generate topology - Choose the random distribution
Brief: The type of random distribution that is used can be chosen by the user.
Electivity: Required

FR-01.h

Use case: Generate topology - Choose the topology
Brief: The type of the generated topology can be chosen by the user (ring, mesh).
Electivity: Required

FR-01.i

Use case: Generate topology - Toggling optimisation
Brief: The optimisation of the graph can be enabled or disabled by the user.
Electivity: Required

FR-01.j

Use case: Generate topology - Weighted edges
Brief: The edges must be weighted based on the provided ruleset.
Electivity: Required

FR-02

Use case: Usage of generated topology
Brief: After the network has been generated the user must be able to interact with

the network.
Electivity: Required

FR-02.a

Use case: Usage of generated topology - Download
Brief: The user can download the generated topology in a commonly used file format

for graph representation.
Electivity: Required

55

FR-02.b

Use case: Usage of generated topology - Graph Analyzer
Brief: The user can use the generated topology by importing it into the Graph An-

alyzer system.
Electivity: Optional

FR-03

Use case: Extend Graph Analyzer to support weighted edges
Brief: Extending the existing Graph Analyzer system to support weighted edges and

reflect them in the calculated graph properties.
Electivity: Optional

FR-04

Use case: Extend Graph Analyzer to support a robustness property
Brief: Extending the existing Graph Analyzer system to support a new robustness

property.
Electivity: Optional

56

4.2 Non-Functional Requirements

The non-functional requirements that the result of the thesis needs to meet are specified
below.

NFR-01

Category: Performance
Brief: The system should be able to generate topologies with at least 1000 nodes.
Electivity: Required

NFR-02

Category: Availability
Brief: In case of a software fault the system should be self-healing within 30 seconds

without manual interaction.
Electivity: Required

NFR-03

Category: Usability
Brief: The system should validate the input data of the user.
Electivity: Required

NFR-04

Category: Usability
Brief: The system should be usable on mobile devices by using a responsive design.
Electivity: Optional

NFR-05

Category: Maintainability
Brief: The system should be developed cloud-natively.
Electivity: Required

57

NFR-06

Category: Maintainability
Brief: The system should be tested and built through CI/CD.
Electivity: Required

NFR-07

Category: Scalability
Brief: The solution should be deployable to Kubernetes.
Electivity: Optional

4.2.1 Validating NFRs

Table 4.1 shows how and when the NFRs are validated.

ID How When

NFR-01 Generating a large network with at least 1’000 nodes. Before releasing the Alpha
version.

NFR-02 Kill a container and measure the time until a new
container has been spun up.

Before releasing the Alpha
version.

NFR-03 Test the system’s resistance regarding invalid user
input and ensure that it displays helpful error mes-
sages.

Before releasing the Beta
version.

NFR-04 Browser tools are used to check whether the website
is responsive and can be used on devices with differ-
ent screen sizes.

Before releasing the Beta
version.

NFR-05 With the help of available cloud-native concepts, it is
checked whether the architecture meets the require-
ments.

Before releasing the Alpha
version.

NFR-06 It is checked whether a sufficient CI/CD pipeline ex-
ists for each part of the system.

Before releasing the Alpha
version.

NFR-07 It is checked whether a method has been defined for
how deployment to Kubernetes works.

Before releasing the Beta
version.

Table 4.1: How NFRs are validated

58

Chapter 5

Design Decisions

This chapter contains design decisions that were made before and during the imple-
mentation. It focuses solely on the newly added Graph Generator application. Design
decisions concerning the other parts of the existing Graph Analyzer system can be found
in [6].

5.1 Graph Generator

This section describes the design decisions concerning the Graph Generator.

5.1.1 Programming Language

In the initially given task for this thesis, no programming language was given that had to
be used for the implementation. Due to the application’s scientific nature, performance
was not a major concern. Based on the existing experience and knowledge, Go and
Python were evaluated.
Python stands out compared to Go with its countless libraries. Extensive libraries are
available that support the implementation of the Graph Generator. The used libraries
are detailed in section 5.1.3. During the term project [6] it turned out that Go had
fewer useful libraries in this area and a lot had to be implemented manually. Because
of the reasons above, Python was chosen as the programming language for the Graph
Generator.

59

5.1.2 Architecture

A microservice architecture was used so that the Graph Generator can be used inde-
pendently from the existing Graph Analyzer system. This decision brings the following
advantages:

– Can be used independently.

– Individual components can be scaled better.

– Clear separation of the different used programming languages.

5.1.3 Libraries

All libraries and frameworks this thesis uses are published under an open-source license.
The list below shows the most important used libraries in the Graph Generator.

– NetworkX 1

– Used for the data structure and graph operations. It is also used for conversion
to common graph file formats, specifically GEXF and GraphML.

– NumPy 2

– Used for mathematical operations such as generating random points or dis-
tance calculations.

– SciPy 3

– Used for calculating the Delaunay triangulation.

– scikit-learn 4

– Used for clustering using k-means.

– python-tsp 5

– Used in the creation of the ring topology by using its implementation of an
approximated travelling salesman problem solver.

1https://networkx.org
2https://numpy.org
3https://scipy.org
4https://scikit-learn.org
5https://github.com/fillipe-gsm/python-tsp

60

https://networkx.org
https://numpy.org
https://scipy.org
https://scikit-learn.org
https://github.com/fillipe-gsm/python-tsp

5.1.4 API Framework

To implement the HTTP API for the Graph Generator the following Python frameworks
were analysed:

– FastAPI 6

– Flask 7

Framework Comparison

A short comparison of the two frameworks can be found in table 5.1.

FastAPI Flask

Github Stars 58’000 63’000

Built-in API documentation Yes No

Built-in data validation Yes No

License MIT BSD 3-Clause

Maintained Yes Yes

Table 5.1: Framework comparison

The short comparison did lead to a clear result, since these two are very frequently used
API frameworks and both meet the requirements. In the end, FastAPI was chosen be-
cause it offers features out-of-the-box, such as built-in docs (OpenAPI) or an integrated
validation using Pydantic.

6https://fastapi.tiangolo.com
7https://flask.palletsprojects.com

61

https://fastapi.tiangolo.com
https://flask.palletsprojects.com

Chapter 6

Architecture

This chapter explains the architecture of the implemented system. Decisions from chap-
ter 5 influence the chosen architecture.

6.1 Architecture Model

In order to visualise and conceptualise the system and application architecture, the C4
model was used. Only the first three levels are shown, as it was decided that the fourth
level is unnecessary. It can be automatically generated on-demand with tools in modern
IDEs. Large parts and main decisions have been taken from the previous term project
[6]. The following sections will focus on new and adjusted parts of this thesis.

62

6.1.1 System Context Diagram

The System Context diagram can be seen in figure 6.1. A user interacts with the Graph
Analyzer system, which depends on the data provided by network topology providers.

Figure 6.1: C4 Model Level 1 - System context diagram

63

6.1.2 Container Diagram

Figure 6.2 shows the Container diagram of the Graph Analyzer System. The user only
interacts with the Single-Page Application directly, which is responsible for data visu-
alisation and providing the interface for network topology generation. The Single-Page
Application interacts with the API Application and the Topology Generator Application.
The Topology Generator Application is intentionally not part of the API Application,
intending to provide the possibility to integrate it into other systems. The API Appli-
cation is mainly responsible for calculating graph properties from a graph stored in the
Graph Database. In addition, it is able to interact with the Data Collector Applica-
tion to trigger new imports. The Data Collector Application implements the logic for
processing network topology data and persists it in the Graph Database.

64

Figure 6.2: C4 Model Level 2 - Container diagram

65

6.1.3 Component Diagram - Single-Page Application

The Single-Page Application’s Component diagram can be found in figure 6.3. The
only change compared to the previous version in the term project [6] is the additional
communication to the newly added Topology Generator Application.

66

Figure 6.3: C4 Model Level 3 - Component diagram - Single-page application

67

6.1.4 Component Diagram - API Application

The Component diagram of the API Application can be seen in figure 6.4. Excluding the
newly added interaction with the Data Collector Application, it stayed the same as in
the term project [6]. The added interaction is present due to the possibility of uploading
GEXF files in the Single-Page Application to import them by forwarding them to the
Data Collector Application.

68

Figure 6.4: C4 Model Level 3 - Component diagram - API application

69

6.1.5 Component Diagram - Data Collector Application

The same interaction as described in section 6.1.4 can be seen in figure 6.5 as the only
difference compared to the term project [6]. The GEXF file data is forwarded by the
API Application and then processed by the Data Collector Application.

Figure 6.5: C4 Model Level 3 - Component diagram - Data Collector application

70

6.1.6 Component Diagram - Topology Generator Application

The Topology Generator Application implements the MOST-Model and provides an
interface to interact with the Single-Page Application. In addition, it provides the func-
tionality of converting the generated topology data into the form of a commonly used
graph file format. This can be seen in figure 6.6.

Figure 6.6: C4 Model Level 3 - Component diagram - Topology generator application

71

6.2 Deployment

This section describes how the Graph Analyzer system can be easily deployed in a
Kubernetes cluster using a Helm chart. It is based on previous work done in [6].

6.2.1 Helm Chart

The existing Helm chart was updated from the term project in order to integrate the
changes made during this thesis.
The Helm chart consists of five parts:

1. Frontend

2. Neo4j helm dependency

3. API

4. Graph Generator

5. Data Collector

As mentioned in section 2.3.2, it should be possible to use the existing Graph Analyzer
independently from the Graph Generator if desired. In order to achieve this, some
adjustments to the Helm Chart were necessary.
The configuration snippet in listing 6.1 shows how the Graph Generator can be excluded
entirely from deployment. It also shows how it is possible to run the Data Collector in
Jalapeño or GEXF listener mode.

1 graphGenerator:

2 enabled: true

3 config:

4 jalapeno:

5 enabled: false

6 jagwURL: "JAGW IP"

7 gexflistener:

8 enabled: true

Listing 6.1: Helm deployment - values.yaml

72

6.2.2 Kubernetes

Figure 6.7 gives an overview of which resources are used in Kubernetes. Three endpoints
are exposed to the outside via an ingress object:

1. Frontend

2. API

3. Graph Generator

The two services for the Neo4j graph database and the Data Collector are not exposed
externally and are only available within the Kubernetes namespace. These two services
do not have to be exposed since they are only called within the namespace, increasing
the system’s security.

Figure 6.7: Kubernetes deployment

73

6.3 UI and UX

The UI and UX of the Frontend integration were not required parts of this thesis. Despite
that, a basic wireframe was created to provide orientation during the implementation.
Figure 6.8 shows the Generator page embedded into the Graph Analyzer Frontend.

Figure 6.8: Frontend - Generator page wireframe

6.4 Quality Measures

The following sections describe measures taken to achieve a high standard of code quality.
Parts have been taken from the previous work done in [6].

6.4.1 Graph Generator Tests

It was decided to only have basic smoke tests covering the API endpoints of the Graph
Generator due to time constraints and the questionable advantages of more detailed
tests. Due to the nature of the Graph Generator, generated network topologies are
random and not predictable. Thus, testing the output is difficult and one could even
argue not feasible.

6.4.2 Manual Tests

At the end of the thesis the system is tested manually and the results are documented
in a test protocol. The test protocol can be found in table 7.7.

6.4.3 Git Process

It was decided to use a multi-repository approach, which involves splitting the system’s
source code across multiple repositories.

74

6.4.4 Workflow

An issue in Jira is present for every task to be done. A corresponding application
milestone is attached to the issue. A separate branch corresponding to an issue is created
for every task. After the task has been completed, the feature branch is merged into the
main branch. The person that is assigned to the issue needs to ensure that the feature
branch incorporates the latest changes from the main branch. Only then is the branch
considered mergeable. A merge request is then created and a reviewer is assigned. A
successful review is indicated by the reviewer’s approval message and the feature branch
can be merged into the main branch.

6.4.5 Code Review

Merge requests are used in GitLab as mentioned in section 6.4.4. Since the team is
only composed of two people, the non-author of the merge request is assigned as the
reviewer. The assigned reviewer is then responsible for checking the changes. When
all found issues have been resolved, the merge request is approved by the reviewer and
merged. GitLab features such as threads and suggestions are used during the review
process.

6.4.6 CI/CD

To ensure code quality standards and simplify processes the CI/CD pipeline of GitLab is
used. No significant changes were made concerning the existing Graph Analyzer system.
Details can be found in the term project [6]. Only the changes made for the Graph
Generator are detailed below.

6.4.6.1 Graph Generator

The Graph Generator CI/CD pipeline consists of 4 stages:

– lint

– black1 is used to check if the code is formatted correctly.

– flake82 checks the code for errors and styling issues.

– mypy3 checks the code for possible static-type errors.

– test

– Code Quality4 check from GitLab.

1https://github.com/psf/black
2https://github.com/PyCQA/flake8
3https://github.com/python/mypy
4https://docs.gitlab.com/ee/ci/testing/code_quality.html

75

https://github.com/psf/black
https://github.com/PyCQA/flake8
https://github.com/python/mypy
https://docs.gitlab.com/ee/ci/testing/code_quality.html

– Static Application Security Testing (SAST)5 check from GitLab to check for
known vulnerabilities.

– Secret Detection6 from GitLab to check for any leaked credentials in the code-
base.

– licensecheck7 to check if the licenses of the used Python libraries are compat-
ible with the project license.

– coverage8 to check the test coverage.

– build

– kaniko9 is used to build the container image and push it to the GitLab con-
tainer registry.

– release

– Depending on whether it is a commit in the main branch or a tag, the correct
image tag is set during the release stage.

To keep the code quality as high as possible, the whole pipeline fails when a single job
fails. For example, this can be the case if the code is not formatted correctly or a test
fails. The stages and the jobs of a successful run can be seen in figure 6.9.

Figure 6.9: GitLab CI/CD

5https://docs.gitlab.com/ee/user/application_security/sast/
6https://docs.gitlab.com/ee/user/application_security/secret_detection/
7https://github.com/FHPythonUtils/LicenseCheck
8https://github.com/nedbat/coveragepy
9https://github.com/GoogleContainerTools/kaniko

76

https://docs.gitlab.com/ee/user/application_security/sast/
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://github.com/FHPythonUtils/LicenseCheck
https://github.com/nedbat/coveragepy
https://github.com/GoogleContainerTools/kaniko

6.5 Metric Tools

The pipeline has been designed to show some code metrics and help the reviewer assess
the quality of the code during a review. Figure 6.10 shows an example of a merge request
with displayed metrics.

Figure 6.10: GitLab merge request metrics

6.5.1 Test Coverage

As seen in section 6.5, the test coverage is displayed in a merge request. To show whether
test cases cover new lines of code the test-coverage visualisation feature from GitLab is
used.

6.5.2 SonarQube

Since the SonarQube community edition has limited functionality, no continuous checks
are done. The checks are done on a manual basis. An A grade was received for the
Graph Generator, as seen in figure 6.11.

Figure 6.11: SonarQube - Quality Gate status

77

Chapter 7

Project Management

This chapter shows how the thesis is organised and planned.

7.1 Project Plan

This section provides an overview of how the thesis project was structured and ap-
proached.

7.1.1 Development Process

For the project, the Rational Unified Process (RUP) is used for planning in the long
term. For short-term planning within iterations, Scrum will be used. RUP splits the
project into the following 4 phases:

7.1.2 Phases

1. Inception: Vision, Initial risk assessment, Project description

2. Elaboration: Use-case model, Description of software architecture

3. Construction: Building the software

4. Transition: Rollout, Quality checks

78

7.1.3 Project Milestones

Progress is tracked via two milestone types, project and application. Project milestones
are based on the project phases and show the project’s progress. Application milestones
are more geared toward the actual development of the system. They track specific parts
or features of the to-be-developed system. Seven project milestones are defined for the
project. These are present as epics in the issue tracker. Epics are not exclusive to these
milestones and can contain issues spanning multiple project phases. Project milestones
are present as epics in the issue tracker, but no issues will be assigned to them. They
are mainly there to give a better context to the roadmap. Table 7.1 lists all project
milestones.

Milestone Planned

M1 - Project Plan Semester week 3 (09.03.2023)

M2 - Requirements & Research Semester week 6 (30.03.2023)

M3 - End of Elaboration Phase Semester week 7 (06.04.2023)

M4 - Architecture Semester week 8 (13.04.2023)

M5 - Alpha Semester week 13 (18.05.2023)

M6 - Beta Semester week 15 (01.06.2023)

M7 - Final Submission End of semester week 17 (16.06.2023)

Table 7.1: Project milestoness

7.1.4 Application Milestones

There are six application milestones defined. These application milestones also act as
epics in the issue tracker and can be mapped to system parts. Table 7.2 lists all appli-
cation milestones.

Milestone Planned

AM1 - Generator Proof of Concept 23.03.2023

AM2 - Generator Prototype 06.04.2023

AM3 - Generator 18.05.2023

AM4 - Directed and Weighted Support 04.05.2023

AM5 - Generator Integration 18.05.2023

AM6 - Robustness Property 18.05.2023

Table 7.2: Application milestones

79

7.1.5 Roadmap

The roadmap and schedule, which includes planned sprints and milestones, are presented
in figures 7.1 and 7.2.

Figure 7.1: Roadmap

Figure 7.2: RUP phases with project milestones and sprints

80

7.1.6 Key Dates and Numbers

– Project start: 20.02.2023

– Project end: 16.06.2023 17:00

– Time budget: 720 hours (1 ECTS = 30 hours)

– Working days: Wednesday, Thursday, Saturday, Sunday

7.2 Meetings

7.2.1 Status Meetings

It is planned that there will be weekly meetings with the advisors. They are scheduled
for each Thursday afternoon but can be skipped if there is no need for one (for example,
in the Construction phase). Physical presence at the meetings is preferred, but remote
participation is possible.

7.2.2 Scrum Meetings

A weekly scrum is done instead of a daily one. The reason for this is the different sched-
ules of the two part-time students involved in this project.
In addition, there are previously documented status meetings with the advisors. Ta-
ble 7.3 lists the planned Scrum meetings.

Meeting Frequency When Where

Sprint Plan-
ning

Every two weeks (before
every sprint)

Thursday, 13:00 - 17:00 Rapperswil

Sprint Review Every two weeks (after
every sprint)

Thursday, 13:00 - 17:00 Rapperswil

Sprint Retro-
spective

Every two weeks (after
every sprint)

Thursday, 13:00 - 17:00 Rapperswil

Weekly Scrum Every week Saturday, 15:00 - 16:00
(Backup: Sunday: 15:00 -
16:00)

Online

Backlog Re-
finement

Every other week (with
Weekly Scrum)

Saturday, 15:00 - 16:00
(Backup: Sunday: 15:00 -
16:00)

Online

Table 7.3: Scrum meetings

81

7.3 Roles

The role assignment can be seen in table 7.4.

Role Member(s)

Minute Keeper Pascal Christen

Scrum Master Lukas Ribi

Product Owner Pascal Christen

Developer Lukas Ribi, Pascal Christen

Advisors Laurent Metzger, Severin Dellsperger

Table 7.4: Scrum roles

7.3.1 Details About The Assigned Roles

– Scrum roles (Scrum Master, Product Owner, Developer) as defined in Scrum

– Managing the product backlog is the primary responsibility of the product
owner. However, the actual work is done collaboratively.

– Minute keeper: Takes notes during the status and team meetings.

82

7.4 Risk Management

Risks exist and must be recognised and, if possible, mitigated. This section covers both
risk detection and mitigation.

7.4.1 Risks

Legend (from Low to High):

– Likelihood: Rare, Unlikely, Possible, Likely, Certain

– Severity: Negligible, Marginal, Critical, Significant, Catastrophic

– Impact: Low, Medium, High, Very High

ID Topic Description Likelihood Severity Impact

R01 Knowledge The team members lack knowledge
concerning the technical or theoret-
ical aspects of the project. This
grievance can delay phases of the
project and lead to missed mile-
stones. Missing theoretical knowl-
edge influences the project, as un-
derstanding is crucial for generating
service provider networks correctly.

Unlikely Critical Medium

R02 Health and
Safety

A team member gets sick or is in-
volved in an accident. The mem-
ber cannot work for a certain period,
and the pressure on the other team
member increases significantly. This
fact can lead to project delays and
not implemented features.

Likely Critical High

R03 Communi-
cation

There is no or insufficient communi-
cation inside the team or with the
advisors. A misconception could be
the result of the lack of communica-
tion. Therefore, the final result may
not have the desired outcome.

Possible Critical Medium

83

R04 Scope There are too many mandatory re-
quirements that can not be fulfilled,
or the existing ones are too big for
the scope of this thesis. This cir-
cumstance can lead to not imple-
mented features.

Rare Marginal Low

R05 Technology In the middle of the construction
phase, the used technology stack
needs to be changed because of
technical or personal limitations.
The final result is at high risk be-
cause of this substantial concep-
tional change.

Possible Critical Medium

R06 External
Hazards

There is a non-influenceable outside
event happening that prevents work
on the project as is. For example,
this could be a snowstorm, energy
blackout, or even war. Work on the
project is impossible, as previously,
and the project’s final form will vary
significantly from the planned goals.

Likely Critical High

R07 Technology The provided ruleset has too few de-
tails or is incorrect in generating a
telecommunications network.

Possible Signif-
icant

High

Table 7.5: Risk management

84

7.4.2 Risk Management and Mitigation

Besides the external hazard risk, every mentioned risk in table 7.5, especially those with
”medium” and ”high” impact according to the risks in table 7.5, can be mitigated to
a certain degree by engaging via direct communication, frequent meetings and status
updates. The mitigations are listed in table 7.6.

ID Mitigation / Action

R01 Much time was invested in research during the inception and elaboration phases.
We were able to produce a prototype that showed that our goal was possible and
that we understood the theory. Therefore, the severity is decreased to marginal.

R02 There is nothing one can do about external hazard risks (besides good planning).

R03 After six weeks of working together, no apparent lack of communication or mis-
understandings occurred. Therefore, the likelihood is decreased to rare.

R04 We were able to produce a prototype that showed that our goal was possible and
that the set (required) goals were manageable. In this case, the severity decreased
to negligible.

R05 Technologies were evaluated with appropriate detail, and it is not expected that
anything breaks or does not fulfil defined requirements. Considering that, the
severity decreases to marginal and the likelihood to unlikely.

R06 As mentioned, there is nothing one can do about external hazard risks (besides
good planning).

R07 The ruleset had to be discussed several times since there were some ambiguities,
but these could be eliminated. We must tell our Prof. Laurent Metzger and
supervisor Severin about the correctness since we were not provided with real
network topologies. However, some references suggest the information is correct.
Considering that, the severity decreases to critical.

Table 7.6: Risk mitigation

85

7.4.3 Risk Matrix

The risks described in table 7.5 and the mitigations from table 7.6 are visualised in
figure 7.3.

Figure 7.3: Risk matrix

7.5 Planning Tools

7.5.1 Issue Tracker

Jira is used to track issues and handle project management.

7.5.2 Time Tracker

Time tracking is done directly in Jira on tickets. Every team member is responsible for
tracking his time on the correct ticket.

86

Part III

Appendix

87

Test Protocol

88

ID Description Expected result Actual result Status

Frontend - Dashboard

1 Data Collector in GEXF mode: Test if ”Upload GEXF”
button is visible.

Visible Visible Pass

2 Data Collector in JAGW mode: Test if ”Upload GEXF”
button is disabled.

Disabled Disabled Pass

3 Data Collector in GEXF mode: Test if the upload of a
valid GEXF is successful by using a generated topology.

Green banner: File up-
loaded successfully!

Green banner: File up-
loaded successfully!

Pass

4 Data Collector in GEXF mode: Test if the upload fails
when uploading an invalid GEXF topology.

Red banner: Error up-
loading file!

Red banner: Error up-
loading file!

Pass

5 Graph Generator deployed: Test if the ”Generator” but-
ton is visible.

Visible Visible Pass

6 Graph Generator not deployed: Test if the ”Generator”
button is not visible.

Not visible Not visible Pass

7 Diameter propertry is shown. Two values are visible Two values are visible Pass

8 Diameter propertry description is shown after a click on
”learn more”.

Description is shown Description is shown Pass

9 Robustness property is shown. Two values are visible Two values are visible Pass

10 Robustness property description is shown after a click on
”learn more”.

Description is shown Description is shown Pass

Frontend - Generator

11 Fields are validated when inserting characters in a nu-
meric field.

Error: [Field]1 must be
a number

Error: [Field] must be a
number

Pass

12 Error is thrown when more PoP regions than the sum of
L1 and L2 are chosen.

Error: Amount of
PoP regions can not
be higher than total
amount of PoPs.

Error: Amount of
PoP regions can not
be higher than total
amount of PoPs.

Pass

1Multiple fields included in this test

89

13 Error is thrown when more random edges are chosen than
a full graph can have.

Error: Number of ran-
dom core node connect-
ions is too high, would
exceed a full mesh
with XY edges: XXX
YY (current core node
edges) XY.

Error: Number of ran-
dom core node connect-
ions is too high, would
exceed a full mesh
with 36 edges: 500
13 (current core node
edges) 36.

Pass

14 Topology gets generated successfully when the input is
correct.

Preview and green ban-
ner are shown: If you
like the generated net-
work, download it here

Preview and green ban-
ner are shown: If you
like the generated net-
work, download it here

Pass

15 Generated topology can be downloaded. export.gexf file is saved
to Downloads folder

export.gexf file is saved
to Downloads folder

Pass

Table 7.7: Test protocol90

	Glossary and Abbreviations
	Bibliography
	List of Figures
	List of Tables
	I Technical Report
	Introduction
	Thesis Structure
	Technical Report
	Project Documentation

	Terms and Techniques
	Graphs
	Service Provider Networks
	Network Robustness

	Aims and Objectives
	Service Provider Network Topology Generation
	Integration into Graph Analyzer System
	Weighted Support in Graph Analyzer System
	Robustness Property

	Results
	Distinction
	System Structure

	Existing Software and Limitations
	Achievements
	MOST-Model
	Graph Generator
	Graph Generator Integration
	Weight Support
	Data Import Improvements
	Robustness Calculation
	Graph Analyzer System

	Research
	Random Graph Models
	BRITE
	Waxman
	IGen
	Delaunay and Gabriel
	Robustness

	Implementation
	MOST-Model
	Graph Generator
	Integration into Graph Analyzer - Generator
	Integration into Graph Analyzer - Upload
	Weighted Support
	Robustness

	Conclusions
	Retrospective
	Functional Requirements
	Non-Functional Requirements
	Discussion

	Outlook
	Improvements

	II Project Documentation
	Requirements
	Functional Requirements
	Actor - User
	Use Cases

	Non-Functional Requirements
	Validating NFRs

	Design Decisions
	Graph Generator
	Programming Language
	Architecture
	Libraries
	API Framework

	Architecture
	Architecture Model
	System Context Diagram
	Container Diagram
	Component Diagram - Single-Page Application
	Component Diagram - API Application
	Component Diagram - Data Collector Application
	Component Diagram - Topology Generator Application

	Deployment
	Helm Chart
	Kubernetes

	UI and UX
	Quality Measures
	Graph Generator Tests
	Manual Tests
	Git Process
	Workflow
	Code Review
	CI/CD

	Metric Tools
	Test Coverage
	SonarQube

	Project Management
	Project Plan
	Development Process
	Phases
	Project Milestones
	Application Milestones
	Roadmap
	Key Dates and Numbers

	Meetings
	Status Meetings
	Scrum Meetings

	Roles
	Details About The Assigned Roles

	Risk Management
	Risks
	Risk Management and Mitigation
	Risk Matrix

	Planning Tools
	Issue Tracker
	Time Tracker

	III Appendix
	Test Protocol

