
Bachelor’s Thesis

SAMT: Compiler and Tools for an
Extensible API Modeling Language

Date: 2023-06-16
Term: Spring 2023

Authors: Pascal Honegger
Marcel Joss
Leonard Schütz

Advisor: Prof. Dr. Olaf Zimmermann
External Co-Examiner: Dr. Daniel Lübke
Internal Co-Examiner: Prof. Laurent Metzger

Industry Partner: Zürcher Kantonalbank
André Lehner

Abstract

Zürcher Kantonalbank maintains various services built on diverse technologies, using
proprietary domain-specific languages to model technology-agnostic data and service
contracts. This proven approach is implemented using the Xtext framework, which pro-
vides the core infrastructure for parsing source code, validating the resulting model, and
integrating with the Eclipse IDE. As the maintenance roadmap for Xtext is uncertain,
Zürcher Kantonalbank faces a long-term operational risk and is looking for a sustainable
solution.

The goal of this project is to design and develop a new open-source domain-specific lan-
guage called Simple API Modeling Toolkit, or SAMT for short. It retains the technology-
agnostic modeling capabilities and employs custom generators that provide support for
a specific target language and technology. A Visual Studio Code extension is developed
to provide an easy-to-use and modern development experience. The development pro-
cess includes an initial requirements engineering and language design phase, guided by
developers familiar with the existing modeling language.

All critical requirements were fully met, with substantial “should-have” and “could-
have” requirements also realized. The project successfully developed the core systems
of the new language, including a proof-of-concept code generator for the Kotlin-based
Web framework Ktor and the SAMT Visual Studio Code Extension. Usability tests with
employees of Zürcher Kantonalbank have yielded positive feedback. Future work includes
improving the generator architecture and adding more functionality to the SAMT Visual
Studio Code Extension.

i

Management Summary

Zürcher Kantonalbank runs many services and applications that are based on different
technologies. They developed a custom domain-specific language used to model the
data and service contracts between the different services. A set of code generators can
automatically generate the client and server network interfaces required to communi-
cate and exchange information with each other. These tools have been very helpful in
organizing the inherent complexity associated with running a large number of intercon-
nected services. The language depends on the Xtext framework for its core functionality.
Unfortunately, the maintenance roadmap for Xtext is uncertain, which raises concerns
about the long-term maintainability of the language.

This project aims to develop a successor language, called Simple API Modeling Toolkit
(SAMT), that improves upon the existing design by providing a more pleasant developer
experience. SAMT retains the ability to model data and services in a technology-agnostic
manner but employs custom configurable generators that can provide support for any
technology. The new language leaves behind the dependency on the Xtext framework
and builds the entire toolchain from scratch. An editor extension developed for Visual
Studio Code replaces the existing customized version of the Eclipse IDE.

Figure 1: Example SAMT file being edited in Visual Studio Code

ii

An example of the new language is shown in Figure 1. SAMT has been implemented
in Kotlin, a modern programming language that runs on the Java Virtual Machine. To
avoid relying on yet another external framework, the core components of the language
processing pipeline, such as the lexer and parser, were built from scratch. Building these
components from scratch yielded fine-grained control over diagnostics and error report-
ing. The editor extension has been published to the official Visual Studio Marketplace
as shown in Figure 2, where it is available for anyone to download and use. It can also
be ported to other compatible editors with minimal effort, as it is built on top of the
Language Server Protocol (LSP).

Figure 2: Visual Studio Marketplace page for the SAMT extension

All the critical project requirements have been met, with a considerable number of
secondary tasks also completed. A set of example generators were developed, showcasing
the generation of Kotlin code with the Ktor framework. Feedback from developers
familiar with the old system has been positive. In addition, every feature and system
that has been worked on is accompanied by its own comprehensive test suite. Several
developer feedback sessions have been conducted, asking developers familiar with the old
language to perform certain tasks using our system, with mostly positive results. SAMT
was also presented at a developer conference within Zürcher Kantonalbank, where it
received positive feedback and interest from the audience.

Due to time constraints, several language features remain unimplemented, such as the
ability to model type inheritance. The current generator architecture works well for
simple use cases, but is still considered work-in-progress. The editor is still missing
context-aware autocompletion and refactoring support. Additionally, some sort of de-
pendency management system should be implemented to allow for the reuse of common
code between different projects. In conclusion, a solid foundation has been built for the
future of the language. The project is available as open-source software so that anyone
can contribute to its further development. Zürcher Kantonalbank can now decide how
to integrate SAMT, or parts of it, into their IT landscape.

iii

Acknowledgements

We would like to express our sincere gratitude to Prof. Dr. Olaf Zimmermann for his
valuable support and guidance throughout this project. His feedback and advice have
been instrumental in shaping our work and pushing us to do our best.

We would also like to thank André Lehner from Zürcher Kantonalbank for his support
and insights. His feedback helped us to better understand the needs and expectations
of the industry. Furthermore, we would like to thank Zürcher Kantonalbank and its
employees for giving us the opportunity to work on this project. The collaborative
environment and resources provided by the organization were critical to our success.

Finally, we extend our thanks to our friends and family for their unwavering support
and encouragement throughout this project.

Thank you all for your contributions and support throughout this endeavor!

Pascal Honegger, Marcel Joss, Leonard Schütz

iv

Table of Contents

1 Introduction 1

2 Functional Requirements 3

2.1 Language Features . 3

2.1.1 Type System . 3

2.1.2 Constraints . 5

2.1.3 Services . 6

2.1.4 Scalability . 7

2.1.5 Metadata . 8

2.2 Tooling Requirements . 8

3 Non-Functional Requirements 10

3.1 Stakeholder Archetypes . 10

3.2 Usability . 12

3.3 Compatibility . 12

3.4 Maintainability . 13

3.5 Security . 13

3.6 Performance . 14

3.7 Extensibility . 14

4 Deliverables 15

4.1 Source Code . 15

4.2 IDE Plugin . 15

v

4.3 Public Documentation . 15

4.4 Language Specification . 15

4.5 Project Report . 16

5 Quality Measures 17

5.1 Continuous Integration . 17

5.2 Continuous Delivery . 17

5.3 Code Review . 17

5.4 Working with Git . 17

5.5 Definition of Done (DoD) . 18

5.6 Definition of Ready (DoR) . 19

5.7 Test Concept . 19

5.8 Code Quality Tools . 20

5.8.1 Qodana . 20

5.8.2 Kover . 20

6 Language Design 21

6.1 Comparing Against Existing Solutions . 21

6.1.1 OpenAPI . 21

6.1.2 Microservice DSL . 23

6.1.3 Existing Xtext-Based Solution . 24

6.1.4 Other Solutions . 25

6.1.5 Capability Matrix . 31

6.2 Language Syntax . 32

6.2.1 EBNF Grammar . 32

6.2.2 Language Semantics . 34

6.2.3 Notable Design Decisions . 34

6.2.4 Full Example Model . 35

vi

7 Architecture 38

7.1 System Context . 38

7.2 Evaluation of Parser Variants . 40

7.2.1 ANTLR . 40

7.2.2 Handwritten Recursive Descent Parser 40

7.2.3 Decision . 42

7.3 IDE Support . 42

7.3.1 Requirements . 42

7.3.2 Evaluation of Target IDE . 42

7.3.3 Decision . 44

7.4 Technical Architecture . 45

7.4.1 Hard Architectural Problems . 45

7.4.2 Container . 47

7.4.3 Component . 50

7.4.4 Compiler Architecture . 51

7.4.5 Code Generator Architecture . 54

8 Implementation 60

8.1 Compilation Internals . 60

8.1.1 Lexer . 61

8.1.2 Parser . 61

8.1.3 Semantic Analysis . 61

8.1.4 Code Generation . 61

8.2 Ktor Generators . 62

8.3 HTTP Transport Configuration Parser . 62

8.4 SAMT CLI . 63

8.4.1 Commands . 63

8.4.2 Message Formatting . 64

8.5 Extending SAMT . 65

vii

8.5.1 Adding SAMT as a Dependency 65

8.5.2 Adding New Generators . 65

8.5.3 Adding New Transport Technology 68

8.5.4 Custom SAMT Frontend . 68

8.6 SAMT Wrapper . 68

8.6.1 Wrapper Script . 68

8.6.2 Distribution . 69

8.6.3 SAMT Template . 69

8.7 SAMT Visual Studio Code Extension . 70

8.7.1 Syntax Highlighting . 70

8.7.2 Snippets . 71

8.7.3 Task Provider . 71

8.7.4 Language Server . 71

8.7.5 SAMT Configuration . 72

8.8 Requirements Coverage . 73

8.8.1 Functional Requirements . 73

8.8.2 Non-Functional Requirements . 76

9 Summary and Outlook 80

9.1 Summary . 80

9.2 Outlook . 81

Appendices

A Task Assignment 85

B Development Instructions 89

B.1 SAMT Core . 89

B.1.1 Development IDE . 89

B.1.2 Build System . 89

B.1.3 Continuous Integration . 90

viii

B.1.4 Releasing . 91

B.1.5 Documentation . 91

B.2 SAMT Visual Studio Code Extension . 92

B.2.1 Development IDE . 92

B.2.2 Package Manager . 92

B.2.3 Scripts . 93

B.2.4 Continuous Integration . 93

B.2.5 Releasing . 93

B.2.6 Documentation . 95

C User Feedback 96

C.1 Developer 1 . 97

C.2 Developer 2 . 98

C.3 Developer 3 . 99

C.4 Developer 4 . 100

C.5 Internal Developer Conference . 102

C.6 Summary . 103

D Dependencies 105

D.1 SAMT Core . 105

D.2 SAMT Visual Studio Code Extension . 107

D.3 GitHub Actions . 110

Glossary 111

List of Figures 112

List of Tables 114

Listings 115

Bibliography 116

ix

Chapter 1

Introduction

Operating within an ecosystem of diverse technologies, Zürcher Kantonalbank has his-
torically employed a variety of different languages and tools to model data and service
contracts. These tools have proven to be difficult to manage, excessively complex and
often inaccessible to non-technical personnel. Furthermore, some of these languages
support only a single transport protocol, which reduces their applicability. Further
complications arise when you consider the need to adapt to new transport technologies
such as HTTP, Websockets, gRPC, and Kafka messaging. Every one of these requires
a unique modeling language and associated tools. Any migration to a new modeling
framework would be inherently costly and time-consuming. Not all projects within the
organization would want to upgrade to the new standard immediately, which ultimately
requires both the previous and new versions to be maintained concurrently.

Recognizing these challenges, Zürcher Kantonalbank has developed their own propri-
etary modeling languages which allow them to model their application interfaces in a
technology-agnostic manner. Code generation tools output the client and server in-
terfaces for a specific target programming language. Their project relies on Xtext to
implement its core functionalities (lexer, parser, semantic validation, and Eclipse IDE
integration). Xtext is also used to generate a custom distribution of the Eclipse IDE
that provides the development environment for the language. However, the maintenance
roadmap for Xtext is uncertain1, which raises concerns about the long term maintain-
ability of the project. Teams within Zürcher Kantonalbank are content with the value
the language provides, but look forward to a more modern tech stack.

The objective of this project is to establish a new open-source domain-specific language
that retains the technology-agnostic modeling capabilities of the current language while
being more modern, user-friendly, and extendable via custom generators. Additionally, a
new extension for Visual Studio Code will be developed that provides a sophisticated and

1C. Dietrich, Call to action: Secure the future maintenance of xtext, 2020-03. [Online]. Available:
https://github.com/eclipse/xtext/issues/1721 (visited on 2023-06-11).

1

https://github.com/eclipse/xtext/issues/1721

user-friendly development environment. This report details the development process of
the new language, starting from an initial requirements engineering and language design
phase and later describing the various aspects of our architecture. Several user feedback
studies will be conducted, with their results guiding the development.

2

Chapter 2

Functional Requirements

This chapter documents the functional requirements of the final product.

2.1 Language Features

This section describes the functional requirements related to the type system, con-
straints, scalability and metadata handling.

2.1.1 Type System

FR-LF-PRIMITIVETYPES

Description The following primitive data types are supported:
Int 32-bit whole number, signed
Long 64-bit whole number, signed
Float 32-bit floating point number, signed
Double 64-bit floating point number, signed
Decimal Arbitrary precision number, fixed amount of digits before

and after decimal point
Boolean Can be true or false
String UTF-8 encoded text
Bytes Arbitrary byte buffer
Date Timezone-agnostic date value
DateTime UTC timestamp, millisecond precision
Duration Time duration, millisecond precision

Priority Must have

3

FR-LF-RECORD

Description Records define a new data type that contains a list of fields. Records
must have a name. Each field in the record has an associated name and
type. Records can contain other records, however the overall structure
cannot be circular.

Priority Must have

FR-LF-INHERITANCE

Description Records can inherit from another record while keeping all the fields of
the parent record. Records can be declared abstract, which prevents
them from being used directly, but allows inheriting classes to use their
fields.

Priority Should have

FR-LF-MULTIPLEINHERITANCE

Description Records can inherit from multiple different records while keeping all
the fields of the parent records. No duplicate field names are allowed
in the parent records.

Priority Could have

FR-LF-ENUM

Description Enum types have a name and a set of values. Enums cannot define a
type for their values. Values are referenced only via their name. Target
language generators are free to represent enums as either integer or
string types.

Priority Must have

FR-LF-CONSTANTS

Description Constant declarations can be used to bind a single value to an identifier
(primitive values only, e.g. no records are allowed). This identifier
can then be used to reference that constant in the future (e.g. inside
constraint declarations, config parameters, etc.).

Priority Could have

FR-LF-FAULT

Description Operations can define errors that might occur and their structure.

Priority Could have

4

2.1.2 Constraints

FR-LF-NULLABILITY

Description Record fields, operation parameters, and return types can be marked
as nullable, making the presence of a value optional. Types them-
selves can also be marked as optional, retaining their nullability status
wherever they are used.

Priority Must have

FR-LF-TYPECONSTRAINTS

Description Type constraints restrict the set of possible values that are allowed in
a given type. Constraints can be either open- or close-ended. Close-
ended constraints must specify two values for the respective minimum
and maximum values. Open-ended constraints can omit either the
minimum or maximum value.
Range limit the value of a number between a minimum and maximum

value
Size limit string, list or map to min and max size, where string size

is defined as the number of unicode codepoints in a string
Value limit string, number or boolean to specific value
Pattern limit string to match regular expression

Priority Must have

FR-LF-MODULARCONSTRAINTS

Description Constraints are modular and can be arbitrarily combined to model any
sort of constraint relationship. Different building blocks are provided
to model any sort of boolean expression using the original constraint
limits.
And All child constraints must be satisfied
Or At least one child constraint must be satisfied
Xor Exactly one of the child constraints must be satisfied
Not All child constraints must not be satisfied

Priority Could have

FR-LF-RECORDCONSTRAINTS

Description Record constraints are used for constraints spanning across more than
one field. They can be defined for a record and reference any fields
within the record. In this way, modular constraints can be added to
fields conditionally, for example to ensure exactly one of two fields can
be optional.

Priority Could have

5

FR-LF-LIST

Description Lists are ordered containers of values, which can be of any type.

Priority Must have

FR-LF-MAP

Description Maps are unordered containers of key-value pairs. The key can only
be an Int, String or Enum. The value can be of any type.

Priority Could have

FR-LF-ALIAS

Description The alias can bind a complex type signature (such as a type with
constraints) to a new name. That name can then be used to reference
that type. The newly defined name and the original type signature are
identical and interchangeable.

Priority Must have

2.1.3 Services

FR-LF-SERVICE

Description Services group a set of operations under a common name. They are
protocol and technology agnostic.

Priority Must have

FR-LF-OPERATION

Description Operations are individual actions that can be performed within a ser-
vice. Each operation has a name, an optional list of parameters and
an optional return type. Each parameter has a type and a name. Con-
sumers will wait synchronously for the operation to complete, even if
no return type is specified.

Priority Must have

FR-LF-ONEWAYOPERATION

Description Operations can be defined as one way, allowing consumers to skip wait-
ing for the operation to complete. Oneway operations must not have
a return type.

Priority Could have

FR-LF-ASYNCOPERATION

Description Operations can be defined as asynchronous. For example, the gener-
ated consumer code could allow the caller to specify a callback, which
is called once a response is available. An optional timeout value can
be configured.

Priority Could have

6

FR-LF-PROVIDER

Description Providers expose a service via a specific network protocol and tech-
nology, for example, a combination of HTTP/Java or SOAP/Python.
Consumers of the provider must have the same network protocol, but
can have a different technology implementing that protocol. Providers
have a name, a service that is being provided and a set of configu-
ration options regarding which network protocol and technology the
given service is provided as.

Priority Must have

FR-LF-CONSUMER

Description Consumers use one or multiple services through a provider. They in-
herit the network protocol specified by the provider but are free to
choose their own technology. Consumers have a name and a set of
configuration options for the implementing technology.

Priority Must have

2.1.4 Scalability

FR-LF-PACKAGE

Description Packages provide a common namespace for types, services, providers
and consumers. Packages have a name. Packages can be included
in other packages. Definitions within the same package can be used
directly, while definitions from other packages must be referenced by
their package name.

Priority Must have

FR-LF-SEPARATIONOFFILES

Description A file can import an arbitrary amount of packages. Importing a pack-
age causes all definitions inside that package to become directly visible
to the compiler, without having to prefix them with their package
name. If there are any name ambiguities, definitions from the cur-
rent package are preferred. Import statements can also import specific
definitions from a package only.

Priority Must have

FR-LF-DEPENDENCIES

Description Packages can declare other packages as dependencies and import them.
Types, services and providers declared in the imported package become
accessible in the importing package. Packages contain meta informa-
tion such as name, description, and author. Packages are referenced
via a unique url (e.g. GitHub repository) and a version (e.g. hash, git
tag, semantic version identifier).

Priority Could have

7

2.1.5 Metadata

FR-LF-DOCUMENTATION

Description Ability to declare documentation about records, record fields, type
aliases, services, operations and providers in the source files. Docu-
mentation can come in two varieties, single-line and multi-line. Docu-
mentation should be included in the meta-information data structure
generated by the parser, allowing it to be used during subsequent pro-
cesses.

Priority Should have

FR-LF-ANNOTATION

Description Ability to mark certain elements with pre-defined annotations. These
annotations can have a wide range of purposes, for example @Secret
might prevent a value from being logged.

Priority Should have

2.2 Tooling Requirements

FR-T-PARSERLIB

Description A general parser library that can be used to easily parse and access the
meta information of a package. The exported data structure contains
all information necessary to generate code (e.g. a Java provider) from
the parsed SAMT model. It includes syntax validation and semantic
consistency checks.

Priority Must have

FR-T-CODEGENLIB

Description A SAMT model contains only technology-agnostic descriptions, which
can be used by a generator to output any desired format (e.g. Java
source code). A framework or library should exist to facilitate code-
generation from a given SAMT model, thus reducing the amount of
redundant work that each generator has to do.

Priority Must have

FR-T-IDESYNTAX

Description An IDE plugin that supports syntax highlighting.

Priority Must have

FR-T-IDEWARNERROR

Description The IDE plugin should provide realtime warnings and errors. Both
syntax and semantic problems should be detected.

Priority Should have

8

FR-T-IDEHINT

Description The IDE plugin can autocomplete types, names and other language
structures.

Priority Should have

FR-T-IDEFORMAT

Description The IDE plugin can automatically indent code and insert line breaks
where appropriate to decrease manual formatting work and increase
code readability.

Priority Should have

FR-T-IDEREFACTOR

Description The IDE plugin can automatically refactor code segments, jump to the
definition of a type and rename fields in all occurring places.

Priority Could have

9

Chapter 3

Non-Functional Requirements

This chapter documents the non-functional requirements of the final product.

3.1 Stakeholder Archetypes

To support the requirements engineering as well as the language and software design, we
establish a set of potential stakeholders for SAMT, partly inspired by the real use cases
of Zürcher Kantonalbank. The “Authored/Consumed SAMT Constructs” reference the
language features introduced in Section 2.1. The following stakeholder archetypes have
been defined:

Service Owner

Description Developer in charge of a service. Needs to provide
SAMT models of services and their implementations
to developers of other services. Additionally, code
generation may alleviate the need to manually create
endpoints and data types in code.

Authored SAMT Constructs records, faults, services, operations, providers

Consumed SAMT Constructs -

Estimated Frequency of Use weekly

System Integrator

Description Developer who wants to integrate their service with
another service that has SAMT models available.
Can use SAMT to generate client code.

Authored SAMT Constructs consumers

Consumed SAMT Constructs services, operations, providers, consumers

Estimated Frequency of Use monthly

10

Business Domain Expert

Description Non-technical person who wants to model their busi-
ness domain, without diving into technical details

Authored SAMT Constructs records, services, maybe faults

Consumed SAMT Constructs -

Estimated Frequency of Use a few times a year

Enterprise Integration Architect

Description Software architect responsible for managing integra-
tion of many different projects. Can use SAMT to
communicate the structure of services to their teams
in a clearly defined and formal way.

Authored SAMT Constructs records, services, providers, consumers, faults

Consumed SAMT Constructs -

Estimated Frequency of Use weekly

SAMT Expert

Description Developer with a high level of proficiency in the
SAMT DSL and familiarity with the tooling and in-
ternals. They may do things such as implementing
a custom generators, assisting other developers and
providing libraries of common types to their organi-
zation.

Authored SAMT Constructs records, services, providers, consumers, faults

Consumed SAMT Constructs -

Estimated Frequency of Use multiple times a week

Depending on the organization structure, the same person may have multiple of these
roles. For example, the same developer may act as a Service Owner when working on the
service development and as a System Integrator when integrating a service maintained
by another team.

11

3.2 Usability

NFR-U-SERVICEOWNER

Requirement SAMT should be easy to use for a service owner

Measure(s) A professional developer with no prior training in SAMT can define
a simple API in 30 minutes with the help of the documentation. A
simple API contains

• three structs
• one service
• two operations
• one provider

Priority High

NFR-U-SYSTEMINTEGRATOR

Requirement SAMT should be easy to use for a system integrator

Measure(s) A professional developer with no prior training in SAMT can consume
a SAMT service in 15 minutes with the help of the documentation,
create a single consumer for an already existing service and provider,
and integrate the generated code into their project.

Priority High

NFR-U-DOMAINEXPERT

Requirement SAMT should be easy to use for a domain expert

Measure(s) A non-technical person can define a simple business API in 30 minutes
with the help of the documentation. A simple business API contains

• six structs
• one service
• three operations

Priority High

3.3 Compatibility

NFR-C-OS

Requirement SAMT should work on all common desktop operating systems

Measure(s) SAMT and its tools runs on Windows 10 and 11, macOS Ventura and
Ubuntu 22.04 LTS

Priority High

12

3.4 Maintainability

NFR-M-TESTS

Requirement Expected behavior of all software deliverables is verified by tests

Measure(s) Automated tests should achieve line coverage within the following land-
ing zones:

1. Minimum: 70%
2. Target: 80%
3. Outstanding: 90%

Priority High

NFR-M-QUALITY

Requirement Code is maintainable

Measure(s) A code quality monitoring tool must report no problems when running
on the SAMT codebase

Priority Medium

3.5 Security

NFR-S-VULNERABILITIES

Requirement The dependencies of all software deliverables must not have known
vulnerabilities

Measure(s) A vulnerability scanner which checks against vulnerability databases
informs about vulnerable dependencies. From the point of discovery,
as soon as a fix is available, a fix version will be released within three
days.

Priority High

NFR-S-CODEGEN

Requirement The example generator must not generate insecure code

Measure(s) Code generated by the example generator does not contain any of the
vulnerabilities described in the OWASP Top 101

Priority High

13

3.6 Performance

NFR-P-COMPILATION

Requirement SAMT is performant and finishes tasks within a reasonable time

Measure(s) Given a benchmark project with the following content:
• 30 providers
• 30 interfaces
• 15 enums and typedefs
• 300 structs with 3 fields on average

SAMT can parse the model and generate code with the example gen-
erator in times defined by the following landing zones:

• Minimum: 30 seconds
• Target: 10 seconds
• Outstanding: 5 seconds

Compilation of the generated code is not included in these times.

Priority High

3.7 Extensibility

NFR-E-EXTENSIBILITY

Requirement SAMT is extensible with additional network protocols and technologies

Measure(s) There exists documentation, which shows how to create a new lan-
guage/protocol combination e.g. Kotlin/gRPC. Thus, an experienced
developer can create a new generator with functionality equivalent to
that of the example generator in one work week.

Priority High

14

Chapter 4

Deliverables

This chapter lists the deliverables that are expected by the end of the project.

4.1 Source Code

The source code of the SAMT compiler, code generator, and IDE-plugin must be pub-
lished under an open-source license. Every artifact must be accompanied by a README
file describing how to build and use it. The builds of each artifact must be reproducible.

4.2 IDE Plugin

A plugin must be provided to implement support for the SAMT language in a major
IDE. This plugin must be easy to install, ideally using the IDE’s built-in plugin manager.

4.3 Public Documentation

To make the SAMT language accessible to users, comprehensive user documentation
must be provided. This documentation must include the SAMT syntax and features,
setup instructions, and sample files demonstrating common usage patterns.

In addition to the user documentation, developer documentation must be provided. This
documentation must include an API reference that describes the programmatic interface
of SAMT.

4.4 Language Specification

To ensure that the SAMT language is well-defined, a specification of the SAMT lan-
guage must be provided. This specification must include an EBNF-style grammar which
describes the syntax of the SAMT language.

15

4.5 Project Report

The formal documentation of the project must be provided in the form of a bache-
lor’s thesis (this document). All guidelines and specifications set out by OST must be
followed.

16

Chapter 5

Quality Measures

This chapter documents the steps we have taken to ensure the quality of the final product.

5.1 Continuous Integration

Every commit pushed to the project repository is checked by a CI pipeline. Pull requests
can only be merged into the main branch if all checks are successful. The following checks
are part of the CI-pipeline:

• Compile whole project

• Run unit tests

• Run linter

5.2 Continuous Delivery

The artifacts of this project are regularly published to industry standard repositories.
This release process is automated as far as possible, and at most requires a single click
to publish an artifact.

5.3 Code Review

Code is frequently reviewed by other project members, which further improves code
quality.

5.4 Working with Git

In order to ensure a clean and consistent history, we adhere to the following rules when
working with git:

17

• We use conventional commits1

• We use pull requests in GitHub, direct pushes to main are forbidden

• We rebase our commits locally and create a merge commit when merging into main

5.5 Definition of Done (DoD)

The following listings define the criteria that must be met for a task to be considered
done.

Feature (Defect / Story)

• Acceptance criteria / issue of user story is met

• Code follows best practices and guidelines

• No TODOs without an issue number are allowed

• Project builds without errors or warnings

• Tests are written and all tests are passing

• Peer code review performed

• Documentation updated

• Associated with epic and release

• Hours worked on are logged correctly

Sprint

• DoD of each item included in the sprint is met

• Product backlog updated

• Sprint has a defined goal

Release

• Release is documented

• Code complete

• Environments are prepared for release

• QA is done and all issues resolved

• Manual tests pass

1https://www.conventionalcommits.org/en/v1.0.0/

18

https://www.conventionalcommits.org/en/v1.0.0/

• Check that no unfinished work has been left in any development or staging envi-
ronment.

5.6 Definition of Ready (DoR)

The following lists define the criteria that must be met for a task to be considered ready
to be prioritized in the backlog.

Defect

• Steps to reproduce

• Severity

• Screenshots

Story

• Use-Case (e.g. configure pretty-print for json transport)

• Estimate

• Epic link

• Acceptance criteria list specified

• Should be doable within a week, otherwise try to split it

5.7 Test Concept

This section describes the methodology and tools used to validate the correctness of the
software.

Unit Tests

• Business Logic will be unit tested

• Run on every push to GitHub, merging is blocked until failing tests are fixed

• Automated

Integration Tests

• Framework / technology dependent code will be integration tested

• Mainly targets IDE support and interactions with different terminals and operating
systems

• Manual

19

Usability Tests

• See Appendix C

• Project will be given to multiple people for testing (hallway testing)

• NFR-U-SERVICEOWNER: SAMT should be friendly to use for a service owner

• NFR-U-SYSTEMINTEGRATOR: SAMT should be friendly to use for a service
consumer

• NFR-U-DOMAINEXPERT: SAMT should be friendly to use for a domain expert

• Manual

5.8 Code Quality Tools

We have chosen to integrate a set of code quality tools to ensure we meet the requirements
from Section 3.4 mentioned below:

• NFR-M-TESTS: Desired behavior of all software deliverables is verified by tests

• NFR-M-QUALITY: Code is maintainable

• Automated

5.8.1 Qodana

To ensure the integrity of our code we have integrated Qodana into our CI pipeline.
Qodana’s community edition can be hosted in the cloud and is free for open-source
projects. Other reasons are the easy integration into our CI pipeline, compatibility with
IntelliJ and the fact that Qodana works well with all our other used technologies. As
a result, code smells, potential bugs, dead code and general potential improvements in
the overall code structure are reported.

5.8.2 Kover

To be able to reach our goal of 80% test-coverage, Kover2 was integrated. Kover is
a Gradle plugin for native Kotlin code coverage, and provides an easy setup. It is
important to note that Kover is still in its incubator phase, however multiple reviews
have shown promising results, which is why we decided it was fitting for our Kotlin
setup. We have integrated a job in our CI pipeline that fails if the code coverage does
not reach our specified minimum and provides a report that shows where the coverage
needs to be improved.

2https://github.com/Kotlin/kotlinx-kover

20

https://github.com/Kotlin/kotlinx-kover

Chapter 6

Language Design

This chapter documents the design phase for the SAMT language and the software
architecture of the final SAMT toolkit.

6.1 Comparing Against Existing Solutions

The goal of this section is to highlight the strengths and weaknesses of existing modeling
solutions, both from a conceptual and technical aspect.

To showcase the grammar of each solution, a simple example API is modeled that con-
tains a single operation. The greet operation accepts a GreetRequest and responds
with a GreetResponse. Due to conceptual differences between the solutions, the models
are not 100% identical.

6.1.1 OpenAPI

OpenAPI1 is a specification for building, documenting, and consuming HTTP APIs.2

It allows developers to describe the functionality of their APIs in a standardized way,
which makes it easier for other developers to understand and use their APIs. OpenAPI’s
biggest advantage is its standardization and widespread adoption. It is an open-source
specification that has been developed and maintained by a large community of contrib-
utors, which has led to its broad acceptance across industries and organizations.

However, one major drawback of OpenAPI is the dependency on HTTP APIs. Other
protocols like gRPC and SOAP cannot be modeled using OpenAPI. Lastly, the fact
that it relies heavily on YAML leads to a vast amount of characters required compared
to tailor-made DSLs, as shown in Listing 6.1.

1https://www.openapis.org/
2D. Miller et al., OpenAPI Specification v3.1.0, 2022-02. [Online]. Available: https://spec.openapi

s.org/oas/v3.1.0 (visited on 2023-06-14).

21

https://www.openapis.org/
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0

greeter.yml

openapi: 3.0.0

info:

title: Greeter OpenAPI

version: 1.0.0

paths:

/greet:

post:

summary: Greet the Server

description: Greet the Server , which greets you back

operationId: greetId

requestBody:

description: The caller

content:

application/json:

schema:

$ref: ’#/ components/schemas/GreetRequest ’

required: true

responses:

’200’:

description: The greeting response from the server

content:

application/json:

schema:

$ref: ’#/ components/schemas/GreetResponse ’

components:

schemas:

GreetRequest:

type: object

properties:

name:

type: string

GreetResponse:

type: object

properties:

message:

type: string

Listing 6.1: OpenAPI greeter model

22

6.1.2 Microservice DSL

The Microservice DSL3 (MDSL) is a Domain-Specific Language to specify (micro-)service
contracts, data representations and API endpoints.4 Instead of only focusing on API
modeling in isolation, MDSL also incorporates design principles and API patterns. An
example of the Microservice DSL is shown in Listing 6.2.

greeter.mdsl

API description GreeterMDSL

data type GreetRequest (

"name":D<string >

)

data type GreetResponse (

"message":D<string >

)

endpoint type GreetEndpoint

exposes

operation greet

expecting payload "in": GreetRequest

delivering payload GreetResponse

API provider GreetProvider

offers GreetEndpoint

at endpoint location "https :// localhost :8080"

via protocol HTTP

binding resource GreetResource at "/greet"

operation greet to POST

API client GreetConsumer

consumes GreetEndpoint

from GreetProvider

via protocol HTTP

Listing 6.2: MDSL greeter model

3https://microservice-api-patterns.github.io/MDSL-Specification/
4O. Zimmermann et al., Patterns for API design (Addison-Wesley Signature Series (Vernon)). Boston,

MA: Addison Wesley, 2023-01, Appendix C.

23

https://microservice-api-patterns.github.io/MDSL-Specification/

6.1.3 Existing Xtext-Based Solution

The existing modeling languages, which SAMT is supposed to replace, was developed
around 2012 using the Xtext framework. At the time, Xtext was a very prominent and
widely used framework for developing textual DSLs, which made it a good choice for the
project. However, the maintenance roadmap for Xtext is uncertain5, which poses a risk
for the long-term maintainability of the existing solution. An example of the existing
Xtext-based solution is shown in Listings 6.3 to 6.6.

greeter.sstdsl

package greeter

interface Greeter {

GreetResponse greet(request: GreetRequest)

}

struct GreetRequest {

name: string

}

struct GreetResponse {

message: string

}

Listing 6.3: Existing Xtext-based greeter core model

greeter-provider.srvdsl

package greeter

provider GreeterRest {

implements: Greeter

transport: REST {

rest -mappings: GreeterMapping

}

protocol: JSON

target -platform: JAVA

}

Listing 6.4: Existing Xtext-based greeter provider

5Dietrich, Call To Action: Secure the future maintenance of Xtext .

24

greeter-consumer.srvdsl

package greeter

consumer GreeterRestConsumer {

consumes: {

from GreeterRest: greet

}

target -platform: JAVA

}

Listing 6.5: Existing Xtext-based greeter consumer

greeter.srvdsl

package greeter

mapping GreeterMapping {

path: ""

operation: greet {

http -method: POST

path: "/greet"

}

}

Listing 6.6: Existing Xtext-based greeter rest mapping

6.1.4 Other Solutions

There exists a plethora of other API modeling solutions, each with their own strengths
and weaknesses. The following modeling and programming languages provide a broad
overview of ways to model APIs.

WSDL

Web Services Description Language (WSDL) is a platform, programming language, and
protocol independent description language for web services.6 The main problem with
WSDL is its verbose XML notation. An example of WSDL is shown in Listing 6.7.

6R. Chinnici et al., “Web services description language (wsdl) version 2.0 part 1: Core language,”
W3C recommendation, vol. 26, no. 1, p. 19, 2007.

25

greeter.xml

<?xml version ="1.0" encoding ="utf -8"?>

<definitions name="Greet the Server"

targetNamespace="greeter.wsdl"

xmlns:tns="greeter.wsdl"

xmlns:soap="http :// schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http ://www.w3.org /2001/ XMLSchema"

xmlns="http :// schemas.xmlsoap.org/wsdl/">

<!-- definition of datatypes -->

<types>

<schema targetNamespace="greeter.xsd"

xmlns="http ://www.w3.org /2000/10/ XMLSchema">

<element name="GreetRequest">

<complexType ><all>

<element name="name" type="string"/></all></

complexType >

</element >

<element name="GreetResponse">

<complexType ><all>

<element name="message" type="string"/></all></

complexType >

</element >

</schema >

</types>

<!-- request messages -->

<message name="GreetRequestMessage">

<part name="request" type="xsd:GreetRequest"/>

</message >

<!-- response messages -->

<message name="GreetResponseMessage">

<part name="response" type="xsd:GreetResponse"/>

</message >

<!-- server ’s services -->

<portType name="Greeter">

<operation name="greet">

<input message="tns:GreetRequestMessage"/>

<output message="tns:GreetResponseMessage"/>

</operation >

</portType >

<!-- server encoding -->

<binding name="Greeter_webservices" type="tns:Greeter">

<soap:binding style="rpc" transport="http :// schemas.

26

xmlsoap.org/soap/http"/>

<operation name="greet">

<soap:operation soapAction="urn:xmethods -delayed -quotes#

greet"/>

<input ><soap:body use="encoded" namespace="urn:xmethods -

delayed -quotes"

encodingStyle="http :// schemas.xmlsoap.org/soap/

encoding/"/></input >

<output ><soap:body use="encoded" namespace="urn:xmethods

-delayed -quotes"

encodingStyle="http :// schemas.xmlsoap.org/soap/

encoding/"/></output >

</operation >

</binding >

<!-- access to service provider -->

<service name="GreeterProvider">

<port name="GreeterProvider_Port" binding="

Greeter_webservices">

<soap:address location="https :// localhost :8080/ greet"/>

</port>

</service >

</definitions >

Listing 6.7: WSDL greeter

27

Protocol Buffers

Protocol Buffers7 are a language-neutral, platform-neutral extensible mechanism for se-
rializing structured data.8 It is commonly used in conjunction with gRPC9, a high-
performance RPC framework. This combination is not transport agnostic, but still
represents a modern and relatively simple way of modeling an API, as shown in List-
ing 6.8.

greeter.proto

syntax = "proto3";

package greeter;

service Greeter {

rpc Greet(GreetRequest) returns (GreetResponse);

}

message GreetRequest {

string name = 1;

}

message GreetResponse {

string message = 1;

}

Listing 6.8: gRPC greeter model

7https://protobuf.dev/
8K. Varda, “Protocol Buffers: Google’s Data Interchange Format,” 2008-07. [Online]. Available:

https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html (visited on
2023-06-14).

9https://grpc.io/

28

https://protobuf.dev/
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://grpc.io/

Jolie

Jolie10 is a service-oriented programming language.11 Although the language does not
focus on API modeling, it does provide some nice features that are relevant to the topic.
An example of Jolie is shown in Listing 6.9.

greeter.ol

type GreetRequest {

name: string

}

type GreetResponse {

message: string

}

interface GreeterInterface {

requestResponse:

greet(GreetRequest)(GreetResponse)

}

service GreeterService {

execution: concurrent

inputPort GreeterInput {

location: "https :// localhost :8080"

protocol: http { format = "json" }

interfaces: GreeterInterface

}

}

Listing 6.9: Jolie greeter model

10https://www.jolie-lang.org/
11F. Montesi et al., “Composing services with JOLIE,” in Fifth European Conference on Web Services

(ECOWS’07), IEEE, 2007, pp. 13–22.

29

https://www.jolie-lang.org/

AsyncAPI

AsyncAPI12 is a specification for building, documenting, and consuming asynchronous
APIs.13 It allows developers to describe the functionality of their asynchronous APIs in
a standardized way. Different transport technologies are supported, including AMQP,
HTTP, JMS, Kafka and MQTT. A simple example of an AsyncAPI specification is
shown in Listing 6.10.

greeter.yml

asyncapi: 2.0.0

info:

title: Greeter AsyncAPI

version: 1.0.0

channels:

greet:

publish:

operationId: greetRequest

message:

$ref: ’#/ components/messages/GreetRequest ’

subscribe:

operationId: greetResponse

message:

$ref: ’#/ components/messages/GreetResponse ’

components:

messages:

GreetRequest:

payload:

type: object

properties:

name:

type: string

GreetResponse:

payload:

type: object

properties:

message:

type: string

Listing 6.10: AsyncAPI greeter model

12https://www.asyncapi.com/
13AsyncAPI Specification, AsyncAPI Initiative, 2023-02. [Online]. Available: https://www.asyncapi

.com/docs/reference/specification/v2.6.0 (visited on 2023-06-14).

30

https://www.asyncapi.com/
https://www.asyncapi.com/docs/reference/specification/v2.6.0
https://www.asyncapi.com/docs/reference/specification/v2.6.0

6.1.5 Capability Matrix

Table 6.1 highlights the main conceptual differences between a chosen subset of API
modeling solutions, focusing on the features shared by SAMT.

OpenAPI MDSL
Existing

Xtext DSL
Feature-Complete

SAMT

Model
Syntax

YAML and JSON Custom Grammar

IDE Support Very broad
Eclipse Plugin
Web-Editor

Eclipse-Based
IDE

Visual Studio Code
Plugin

Generator Extensible Part of Core Package Extensible

Programming
Language

If Supported
by Generator

If Supported
by Core Package

If Supported
by Generator

Transport
Protocol

Only HTTP
If Supported

by Core Package & Generator

Type
Constraints

Yes No Yes

Intra-Model
References

Via Published
Schema

No Via Published Model

Enforced File
Separation

No Enforced Compiler Warning

Table 6.1: Comparison of modeling language concepts

31

6.2 Language Syntax

Since our language is primarily intended to replace and extend the implementation cur-
rently used by Zürcher Kantonalbank, the new syntax should not deviate too much from
the original. While it is our goal to simplify and modernize the existing grammar, we
aim to keep it as close to the original as possible.

6.2.1 EBNF Grammar

Figure 6.1 shows the grammar of the SAMT language in EBNF syntax. The grammar
does not include the syntax for model comments, as they are filtered out in an early step
in the compiler and thus allowed everywhere. Likewise, the following grammar nodes
are also omitted from the listing, as describing them with a sentence is more concise
than using EBNF syntax:

• ⟨Letter⟩: Upper and lowercase latin letters as well as the underscore character.

• ⟨Number⟩: Either an ⟨Integer⟩ (whole number) or a ⟨Float⟩ (number with decimal
point), includes the negative sign for negative numbers.

• ⟨String⟩: A sequence of UTF-8 code-points or escaped special characters (e.g. \n
for a newline character), enclosed in double quotes.

32

⟨File⟩ → { TopLevelStatement }
⟨TopLevelStatement⟩ → ⟨ImportStatement⟩ | ⟨PackageDeclaration⟩ | ⟨Declaration⟩
⟨ImportStatement⟩ → “import” ⟨ImportBundleIdentifier⟩ [“as” ⟨Identifier⟩]

⟨PackageDeclaration⟩ → “package” ⟨BundleIdentifier⟩
⟨Declaration⟩ → ⟨RecordDeclaration⟩ | ⟨EnumDeclaration⟩ | ⟨TypeAliasDeclaration⟩

| ⟨ServiceDeclaration⟩ | ⟨ProviderDeclaration⟩ | ⟨ConsumerDeclaration⟩
⟨RecordDeclaration⟩ → {⟨Annotation⟩} “record” ⟨Identifier⟩ [“extends” ⟨BundleIdentifier⟩
{“,” ⟨BundleIdentifier⟩}] [“{” { RecordField } “}”]

⟨RecordField⟩ → {⟨Annotation⟩} ⟨Identifier⟩“:” ⟨Expression⟩
⟨EnumDeclaration⟩ → {⟨Annotation⟩} “enum” ⟨Identifier⟩ “{” [⟨IdentifierList⟩] “}”

⟨TypeAliasDeclaration⟩ → {⟨Annotation⟩} “typealias” ⟨Identifier⟩ “=” ⟨Expression⟩
⟨ServiceDeclaration⟩ → {⟨Annotation⟩} “service” ⟨Identifier⟩ “{” { ⟨OperationDeclaration⟩
| ⟨OnewayOperationDeclaration⟩ } “}”

⟨OperationDeclaration⟩ → {⟨Annotation⟩} [“async”] ⟨Identifier⟩“(”⟨OperationParameterList⟩“)”
[“:” ⟨Expression⟩] [“raises” ⟨ExpressionList⟩]

⟨OnewayOperationDeclaration⟩ → {⟨Annotation⟩} “oneway” ⟨Identifier⟩“(”⟨OperationParameterList⟩“)”
⟨OperationParameterList⟩ → [⟨OperationParameter⟩ {“,” ⟨OperationParameter⟩ }]

⟨OperationParameter⟩ → {⟨Annotation⟩} ⟨Identifier⟩“:” ⟨Expression⟩
⟨ProviderDeclaration⟩ → “provide” ⟨Identifier⟩ “{” { ⟨ProviderDeclarationStatement⟩ } “}”

⟨ProviderDeclarationStatement⟩ → ⟨ProviderImplementsStatement⟩ | ⟨ProviderTransportStatement⟩
⟨ProviderImplementsStatement⟩ → “implements” ⟨BundleIdentifier⟩ [“{” [⟨IdentifierList⟩] “}”]
⟨ProviderTransportStatement⟩ → “transport” ⟨Identifier⟩ [⟨Object⟩]

⟨ConsumerDeclaration⟩ → “consume” ⟨BundleIdentifier⟩ “{” {⟨ConsumerUsesStatement⟩} “}”
⟨ConsumerUsesStatement⟩ → “uses” ⟨BundleIdentifier⟩ [“{” [⟨IdentifierList⟩] “}”]

⟨Annotation⟩ → “@” ⟨Identifier⟩[“(”[⟨ExpressionList⟩]“)”]
⟨Expression⟩ → ⟨BundleIdentifier⟩ | ⟨Number⟩ | ⟨Boolean⟩ | ⟨String⟩ | ⟨Range⟩

| ⟨Object⟩ | ⟨Array⟩ | ⟨CallExpression⟩ |
| ⟨GenericSpecialization⟩ | ⟨OptionalPostOperator⟩ | ⟨Wildcard⟩
| (“(”⟨Expression⟩“)”)

⟨CallExpression⟩ → ⟨Expression⟩ “(”[⟨ExpressionList⟩]“)”
⟨GenericSpecialization⟩ → ⟨Expression⟩ “⟨” ⟨ExpressionList⟩ “⟩”
⟨OptionalPostOperator⟩ → ⟨Expression⟩ “?”

⟨Range⟩ → ⟨Expression⟩ “..” ⟨Expression⟩
⟨Object⟩ → “{” [ObjectFieldDeclaration {“,” ObjectFieldDeclaration }] “}”

⟨ObjectFieldDeclaration⟩ → ⟨Identifier⟩“:” ⟨Expression⟩
⟨Array⟩ → “[” [⟨ExpressionList⟩] “]”

⟨ExpressionList⟩ → ⟨Expression⟩ {“,” ⟨Expression⟩ }
⟨IdentifierList⟩ → ⟨Identifier⟩ {“,” ⟨Identifier⟩ }

⟨Wildcard⟩ → “*”
⟨Identifier⟩ → [“∧”] ⟨Letter⟩ { ⟨Letter⟩ | ⟨Digit⟩ }

⟨BundleIdentifier⟩ → ⟨Identifier⟩ { “.” ⟨Identifier⟩ }
⟨ImportBundleIdentifier⟩ → ⟨Identifier⟩ { “.” ⟨Identifier⟩ } [“.” “*”]

⟨Boolean⟩ → “true” | “false”

Figure 6.1: EBNF grammar of the SAMT language

33

6.2.2 Language Semantics

In addition to being syntactically valid, some semantic conditions have to be met in
order for a SAMT model to be considered valid:

Unique names Each name in a package, namely for records, enums, type aliases, ser-
vices and providers, must be unique. Multiple fields in the same record or values
of an enum must not have the same name. Each operation of a service and each
parameter of an operation must have a unique name.

No cycles Records must not have cyclic field types. For example, if a record A has a
field of type B and B has a field of type A, that is an error. However, a record may
have a list of its own type, as that recursion can be terminated by an empty list
at runtime and is a common use case for hierarchical structures. Similarly, type
aliases must not be cyclic either.

Types Record fields, operation parameters, and return types must be a valid data type,
meaning no services or provider types. Each implements-statement in a provider
must refer to a service. If an implements-statement specifies operations, they must
actually exist in the service. Consumers can only consume a provider, and each
uses-statement must refer to a service. If a uses-statement specifies operations,
they must actually exist in the service and be implemented by the provider.

Constraints Type constraints can only be applied in the ways described in the require-
ment FR-LF-TYPECONSTRAINTS in Section 2.1.1.

Ranges The start of a range must be smaller than the end of a range and both ends of
the range cannot be a wildcard.

Annotation @Description and @Deprecated annotations are supported and can only
be applied once to each element. @Description annotations must have a string
as its only argument. @Deprecated annotations can have an optional deprecation
message as their argument.

6.2.3 Notable Design Decisions

Extensible Transport Configuration

A key aspect of SAMT is its extensibility by allowing users to write their own generators.
However, in order to extend SAMT in a corporate setting, the underlying transport
protocol must be extensible as well. An initial proposal to allow generators to define
their own transport configuration has been rejected as it is impossible to guarantee
interoperability. If every generator defines its own transport, one can imagine a scenario
where a Java generator encodes a boolean as either “1” or “0” while the corresponding
python generator uses “true” or “false”.

After more careful consideration, it was decided that both generators and transport
protocols can be extended through plugins. These plugins can be written in any JVM-

34

compatible language and are loaded at runtime. This allows for a standardized transport
configuration within SAMT, as well as custom transport configurations by the commu-
nity or a corporation. As a result, code generators can reference transport configurations
at runtime to ensure that two generators, which rely on the same transport, are com-
patible with each other.

Due to time constraints, this architecture was not fully implemented. Instead, the trans-
port configuration and code generators are encapsulated in their own modules with the
plugin system not yet implemented. Although extending SAMT currently requires a
fork of the project, we are confident that this feature can be implemented in the future.

Dedicated Generator Configuration

The existing Xtext-based DSL used by Zürcher Kantonalbank contains a target con-
figuration for the provider and consumer that specifies programming language-specific
things, such as package names in Java. An example of this feature is shown in List-
ing 6.11.

provide GreetProvider {

implements GreetService

target java {

sourcePackage: "com.enterprise.example"

}

}

Listing 6.11: Example target declaration in existing language

This violates the separation of concerns between the transport modeling and generator
invocation. Hence, it was decided to remove generator-specific entries from the DSL and
instead configure such entries in a more appropriate dedicated generator configuration.

Short-form Constraints

In the grammar, constraints are defined as a CallExpression with a name and an
argument. This was done to make the language more expressive, especially when using
multiple constraints on the same type. To keep the language from becoming too verbose,
we decided to allow omitting the name of the constraint as long as it is unambiguous.
For example, String(size(1..100)) is equivalent to String(1..100).

6.2.4 Full Example Model

Listings 6.12 to 6.14 model an example greeter API which is similar to the ones in Sec-
tion 6.1. Additional constraints and types were created to showcase more language fea-
tures. This simple model does not showcase all possible language features, but includes
additional constraints and types to demonstrate the essential features of the language.

35

greeter.samt

package samt.greeter

// define type alias for names

typealias Name = String(size (20..100))

record GreetRequest {

name: Name

}

record GreetResponse {

message: String(pattern("[a-z]*"))

@Description("

This message should be destroyed once this date time is

reached.

If it is null , this response can live on forever.

")

validUntil: DateTime?

}

service GreetService {

greet(request: GreetRequest): GreetResponse

}

Listing 6.12: SAMT greeter core model

36

greeter-http.samt

package samt.greeter

provide GreeterHttpEndpoint {

// The "{ greet }" is optional if all operations are

implemented

implements GreetService { greet }

transport HTTP {

serialization: "JSON"

operations: {

GreetService: {

// More complex patterns and configuration is

possible

greet: "POST /greet"

}

}

}

}

Listing 6.13: SAMT greeter provider model

greeter-consumer.samt

import samt.greeter .*

package samt.foo

consume GreeterHttpEndpoint {

// The "{ greet }" is optional if all operations are used

uses GreetService { greet }

}

Listing 6.14: SAMT greeter consumer model

37

Chapter 7

Architecture

This chapter documents the software architecture of the final product. The C4 model1

is used to visualize the architecture.

7.1 System Context

SAMT has different stakeholders, potentially across different organizational boundaries
(for a full list see Section 3.1). Figure 7.1 shows how different teams might interact with
SAMT in the future, placing an emphasis on the way different teams have dependencies
on each other. The service owner and business domain expert both use SAMT to model
their service provider, for example, a central API for fetching account details. On the
other end, team B wants to consume those services and uses SAMT to specify which
parts of the API they are interested in. Both teams also use SAMT to generate code in
the target programming language they like, for example, the provider code for Team A
could be a Java HTTP server while the consumer code for Team B could be a Python
HTTP client.

1https://c4model.com

38

https://c4model.com

Figure 7.1: C4 system context diagram

39

7.2 Evaluation of Parser Variants

When implementing a parser one has to decide between using a parser generator or
writing the parser by hand.

7.2.1 ANTLR

ANTLR2 is a widely used parser generator.3 To use ANTLR, one has to specify the
desired grammar in ANTLR’s grammar format. Subsequently, ANTLR emits the code
for a lexer and parser that can recognize the desired grammar. Additionally, ANTLR
generates classes that represent the AST class hierarchy along with traversal helper
classes. Such code is often repetitive, which is why a parser generator can save time.
The generated parser code represents the underlying state machine and can be difficult
to read compared to a carefully handwritten parser. Furthermore, generated classes still
require ANTLR’s runtime library to function, which would run counter to our stated goal
of minimal dependencies. Lastly, ANTLR’s parse trees are a one-to-one representation
of the grammar, whereas an abstract syntax tree (AST) can be easier to work with in
the semantic steps. Thus, when using ANTLR, it may still be desirable to convert the
parse tree to an abstract syntax tree.

7.2.2 Handwritten Recursive Descent Parser

Writing a parser by hand requires additional effort compared to using a generator, but
gives full control over the parser’s behavior. Handwritten code is often more read-
able than generated code, though one could argue that the readability of generated
code is less important as it can be treated as a sort of black box. Recursive de-
scent parsing refers to the implementation of a procedure for each non-terminal sym-
bol in the grammar, which returns the corresponding node type in the syntax tree.
This approach results in a code structure that mirrors the language’s formal grammar,
which makes it easy to understand for anyone familiar with the grammar. For exam-
ple, if there is a rule called IfStatement in the grammar of a programming language,
such as IfStatement = "if", Expression, "then", Statement, then there will be
a method called parseIfStatement in the parser which returns an object of the type
IfStatementNode. Listing 7.1 shows an example of what the parse method for this
IfStatement might look like.

2https://www.antlr.org
3T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL (k) parser generator,” Software: Practice

and Experience, vol. 25, no. 7, pp. 789–810, 1995.

40

https://www.antlr.org

abstract class StatementNode

class IfStatementNode(

val condition: ExpressionNode ,

val statement: StatementNode

) : StatementNode

...

class Parser {

...

fun parseIfStatement (): IfStatementNode {

consume <IfToken >()

val condition: ExpressionNode = parseExpression ()

consume <ThenToken >()

val statement: StatementNode = parseStatement ()

return IfStatementNode(condition , statement)

}

...

}

Listing 7.1: Excerpt of a recursive descent parser in Kotlin

Error handling can be fully customized to provide a helping hand to users facing syntax
errors. Widely used compilers such as javac, as well as the C and C++ frontends
in the GNU Compiler Collection (GCC) have handwritten recursive descent parsers.4

GCC switched from generated parsers to handwritten ones – reported benefits were
better parsing infrastructure, improved handling of extensions and a cleaner separation
between parsing and semantic analysis.

4G. Li, The comment of the class JavacParser is not appropriate, 2021-06. [Online]. Available: ht

tps://github.com/openjdk/jdk/commit/b98e52a49191cfbb7d954646cd80a6711daeaca6 (visited on
2023-06-14); J. Myers, New C Parser, 2008-01. [Online]. Available: https://gcc.gnu.org/wiki/New

_C_Parser (visited on 2023-06-14).

41

https://github.com/openjdk/jdk/commit/b98e52a49191cfbb7d954646cd80a6711daeaca6
https://github.com/openjdk/jdk/commit/b98e52a49191cfbb7d954646cd80a6711daeaca6
https://gcc.gnu.org/wiki/New_C_Parser
https://gcc.gnu.org/wiki/New_C_Parser

7.2.3 Decision

We decided to implement a handwritten recursive descent parser instead of relying on a
parser generator based on the following criteria.

Maintainability While designing and building a handwritten parser introduces ad-
ditional up-front development and design effort, maintaining and extending the
handwritten parser becomes much easier than working with a parser generator.
Although there are no formal scientific studies to support this claim, we have
found enough anecdotal evidence on the Internet to justify this opinion.

Performance Older parser generators tend to produce slow performing code. One of
our key NFRs is an improved performance over the existing Xtext based imple-
mentation. While modern parser generators like ANTLR easily outperform Xtext,
a finely tuned handwritten parser will be even faster.

Independence Using a parser generator would permanently add another dependency
to the project, and new engineers working on the project would have to familiarize
themselves with the chosen library. By writing a custom parser, engineers only
need to have a basic understanding of how a recursive descent parser works.

Experience Each team member has experience in compiler construction and has built
a recursive descent parser by themselves at least once. We wanted to make good
use of this knowledge and apply it to this project. We believe that if one cannot
build something, one does not fully understand it, and we strive to fully understand
every step of the SAMT code generation pipeline.

7.3 IDE Support

7.3.1 Requirements

The functional requirements for IDE support, shown in Section 2.2, are the following:

• FR-T-IDESYNTAX: Syntax Highlighting

• FR-T-IDEWARNERROR: Real time warnings and errors

• FR-T-IDEHINT: Code completion

• FR-T-IDEFORMAT: Code formatting

• FR-T-IDEREFACTOR: Code refactoring

7.3.2 Evaluation of Target IDE

IntelliJ and Visual Studio Code were considered as possible targets for an IDE plugin.
Frameworks like JetBrains MPS5 and Eclipse Xtext6 also allow IDE integration, but

5https://www.jetbrains.com/mps/
6https://www.eclipse.org/Xtext/

42

https://www.jetbrains.com/mps/
https://www.eclipse.org/Xtext/

would tie the entire language to a specific ecosystem, which is a problem of Zürcher
Kantonalbank’s current solution that we are trying to avoid.

IntelliJ

IntelliJ is the most widely used IDE at Zürcher Kantonalbank, which makes it an at-
tractive target for IDE support, but it is also resource intensive and slow to start. It has
a plugin API which supports the following features, among others:7

• Syntax highlighting

• Real time warnings and errors

• Code completion

• Code formatting

• Code refactoring

These features would suffice to fulfill our functional requirements for tooling.

The APIs require implementing IntelliJ’s lexer and parser formats and work done on an
IntelliJ plugin may not be easily transferred to other tools. The plugin APIs occasionally
have breaking changes which may be a concern for the stability of the tooling.8

Visual Studio Code

Visual Studio Code is the most widely used editor according to the Stack Overflow
survey9 and has a plugin API. Additionally, it supports LSP which could be leveraged
by SAMT to support VS Code and other editors with LSP support.

LSP was originally developed for Visual Studio Code, but many other tools support the
protocol as well or have plugins which enable them to. It supports the following features
among others:10

• Real time warnings and errors

• Code completion

7Intellij Platform Plugin SDK - Custom Language Support, JetBrains s.r.o, 2023. [Online]. Available:
https://plugins.jetbrains.com/docs/intellij/custom- language- support.html (visited on
2023-03-03).

8Incompatible Changes in Intellij Platform and Plugins API, JetBrains s.r.o, 2023. [Online]. Available:
https://plugins.jetbrains.com/docs/intellij/custom-language-support.html (visited on 2023-
03-03).

9Stack Overflow Developer Survey 2022, Stack Overflow, 2022. [Online]. Available: https://sur

vey.stackoverflow.co/2022/#most-popular-technologies-new-collab-tools-prof (visited on
2023-03-02).

10Language Server Protocol Specification - 3.17, Microsoft, 2022-05. [Online]. Available: https://mi

crosoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/ (visited
on 2023-03-03).

43

https://plugins.jetbrains.com/docs/intellij/custom-language-support.html
https://plugins.jetbrains.com/docs/intellij/custom-language-support.html
https://survey.stackoverflow.co/2022/#most-popular-technologies-new-collab-tools-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-new-collab-tools-prof
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/

• Code formatting

• Code refactoring

Syntax highlighting is not a part of the LSP, but Visual Studio Code supports syntax
highlighting with TextMate grammars.11 A combination of a language server and a
TextMate grammar in a Visual Studio Code plugin could thus fulfill our functional
requirements concerning IDE support.

Using a language server reduces the API surface to Visual Studio Code itself and the
server could be reused to build plugins for other editors. One such candidate would be
JetBrains Fleet12, which is currently in public preview and does support LSP, although
this is out of scope for this project.

7.3.3 Decision

We ultimately settled on implementing a VS Code plugin with a language server and a
TextMate grammar summarized in the following Y-Statement:

In the context of IDE support for SAMT, facing usability and compatibility needs, we
decided for implementing a VS Code plugin with a Language Server and a TextMate
grammar and neglected implementing an IntelliJ plugin, to achieve easy portability to
other tools, accepting downside no first class support in JetBrains IDEs.

Because IntelliJ also supports TextMate grammars, it may still be possible to create a
simple syntax highlighting plugin for IntelliJ, although this is not a priority.

11Visual Studio Code - Syntax Highlight Guide, Microsoft, 2023-03. [Online]. Available: https://cod
e.visualstudio.com/api/language-extensions/syntax-highlight-guide (visited on 2023-03-03).

12https://www.jetbrains.com/fleet/

44

https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://www.jetbrains.com/fleet/

7.4 Technical Architecture

The technical architecture provides a framework for the implementation as part of this
thesis as well as future development.

The following subsections paint a holistic picture of SAMT, including future enhance-
ments that could not be implemented due to time constraints. Such elements are ex-
plicitly designated as out-of-scope for this project, but are nevertheless relevant due to
their importance for the potential integration into Zürcher Kantonalbank.

7.4.1 Hard Architectural Problems

The following section explains hard architectural problems and how they are solved in
SAMT.

Supporting Multiple Generators

A key feature of SAMT is the extensible support for different generators, allowing the
community to add support for new programming languages with ease. One way to
achieve this would be to implement an extensible architecture within SAMT and expect
open-source contributions to add new generators into the public source code, but this
would not work for enterprise customers like Zürcher Kantonalbank. Another idea would
be to distribute SAMT as a library instead of an executable. However, this would have
a negative impact on the usability of SAMT as shown in Figure 7.2.

(a) SAMT as a library (b) Single SAMT CLI

Figure 7.2: Comparing different CLI approaches

Version mismatches pose another problem, as a newer project might depend on a project
using an older version and so on. This problem also exists in the opposite direction: what
if a user wants to run a generator which was not built against the latest version of SAMT?
Our final decisions are summarized in the following Y-statement:

In the context of core architectural decisions, facing extendability, simplicity and main-
tainability needs, we decided to create a single CLI and implementing a plugin-system
for generators and neglected having standalone generators for every language. This was

45

done to achieve a uniform and simple end-user experience, accepting downside of added
implementation complexity and backwards compatibility handling.

Managing Dependencies Within SAMT Models

In the context of dependency resolution, facing programming language independence,
ease-of-use and corporate needs, we decided for implementing plugin and package de-
pendency resolution within the SAMT CLI and neglected integrating an existing package
manager (e.g. Maven or Gradle). This was done to achieve a single entry-point for the
end-user and ensure SAMT has minimal exposure to other tools, accepting downside of
greatly increased implementation effort and additional server infrastructure costs.

SAMT itself provides a documented API to interact with the compiler, extract metadata
and facilitate code generation. The installation and management of SAMT plugins and
packages is not yet implemented.

Future-Proofing Generator Framework

Based on experience within Zürcher Kantonalbank, a new transport technology is in-
troduced every few years. This means that SAMT and the community generators need
to be able to adapt to new technologies at a rapid pace. Unfortunately, there is no
way to predict what the next technology will be, so we need to make sure that the
generator framework is as flexible as possible. This comes at the cost of increased com-
plexity for generator developers, as they’ll need to implement more features themselves.
For example, if a transport protocol does not support the concept of packages (e.g.
tools.samt.v1.Person and tools.samt.v2.Person can coexist), the generator must
handle name collisions across different packages.

SAMT Configuration

In addition to the SAMT model, the user will also need to provide a configuration for
SAMT itself. For example, the user has to specify which generator to use or where the
generated code should be placed. Passing such configuration as command line arguments
is not user-friendly, as the user would need to remember the arguments and type them
out every time. For this reason, a configuration file called samt.yaml is used. This file is
located in the root of the project and contains all the configuration options. Listing 7.2
shows an example configuration file.

46

source: src

generators:

- name: kotlin -ktor -provider

output: ../ktor -server/src/main/kotlin

options:

removePrefixFromSamtPackage: tools.samt

addPrefixToKotlinPackage: tools.samt.server.generated

skipKtorServer: "true"

- name: kotlin -ktor -consumer

output: ../ktor -client/src/main/kotlin

options:

removePrefixFromSamtPackage: tools.samt

addPrefixToKotlinPackage: tools.samt.client.generated

Listing 7.2: Example samt.yaml configuration file

In addition, a .samtrc.yaml for style configuration is planned. This file would be
used to configure style and linter rule, for example, the maximum line length or the
allowed number of parameters for an operation. The style configuration has not yet
been implemented.

7.4.2 Container

With the different uses of SAMT in mind, the target architecture has to be both exten-
sible and well-defined. In order to enable this, a detailed architecture was created, which
is shown in Figure 7.4. SAMT Core represents a single git repository, but the contained
components are still distributed separately. The Visual Studio Code Extension is in
separate git repositories and released independently. The SAMT Wrapper only consists
of a few script files and is not further discussed here, see Section 8.6 for more details.

Every SAMT User interfaces with SAMT through either Visual Studio Code or the
SAMT Wrapper. The Visual Studio Code Extension enables the user to edit SAMT
models with a good user experience. To enable this, the extension downloads the Lan-
guage Server at runtime and communicates with it through LSP. Alternatively, the
user can interact with the SAMT CLI, either through the SAMT Wrapper or the Visual
Studio Code Extension.

Both the CLI and the Language Server rely on the compiler to do most of the heavy
lifting. In addition, they also both depend on the SAMT Config to load configuration
files. The CLI will forward the parsed model to the code-generation stage, which will
then call the appropriate generator at runtime. A generator can also provide a custom
transport technology parser, maximizing the flexibility of the generator framework.¨
Potential plugins are shown in Figure 7.3, illustrating the extensibility of the architecture.

The plugins with their respective generator and transport technology parsers will be

47

loaded at runtime through a plugin loader in the future. Due to the project scope,
the example generator is part of the Codegen component. Still, a dedicated Public
API library is provided to enable the creation of custom generators against a binary-
compatible API.

SAMT Core also contains the Common component, which was omitted here for brevity.
It is used by most of the components and contains common types and utilities which are
used across the SAMT ecosystem.

Figure 7.3: C4 container plugins diagram

48

Figure 7.4: C4 container diagram 49

7.4.3 Component

An architectural overview of the Compiler, the most crucial part of SAMT, is shown in
Figure 7.5. Full control over the input, output and error handling is obtained by the
component that executed the Compiler. That is, the CLI, Language Server, or software
depending on the library. For example, the CLI always parses all the files from start to
finish, while the Language Server only parses the files which have been updated.

If we assume the CLI as the Compiler Client, the following steps are executed as part of
the compilation process:

1. The CLI parses the command line arguments and loads the SAMT model from the
file system.

2. The CLI calls the Lexer with the SAMT source code as input, which returns a
token sequence.

3. The CLI calls the Parser with the token sequence as input, which returns an
Abstract Syntax Tree (AST).

4. The CLI aggregates all the ASTs into a list.

5. The CLI calls the Semantic Checker with the list of ASTs as input, which returns
the type information.

Figure 7.5: C4 component diagram for compiler

50

7.4.4 Compiler Architecture

This chapter focuses on the code structure of the compiler. The data models are ordered
left-to-right as shown in Figure 7.5.

Lexer

The UML class diagram in Figure 7.6 shows the Token class hierarchy produced by the
Lexer component. All Token subtypes are shown, except for the various StaticToken
(representing language keywords) and StructureToken (representing punctuation char-
acters such as braces and commas), which were omitted for brevity.

Figure 7.6: Tokens class diagram

Parser

The simplified UML class diagram in Figure 7.7 shows the Node class hierarchy produced
by the Parser component. Given that a full class diagram of the AST nodes would not
fit on a single page, the AST’s structure is shown in an example instead. Figure 7.8
shows a simple SAMT source file, Figure 7.9 enhances the previous figure to show each
line of code side by side with the corresponding node of the AST.

51

Figure 7.7: Nodes class diagram

Figure 7.8: Example SAMT model

52

Figure 7.9: Example SAMT model side by side with AST produced by the SAMT
Parser

53

Semantic

Finally, the UML class diagram in Figure 7.10 shows the Type class hierarchy produced
by the Semantic component.

Figure 7.10: Types class diagram

7.4.5 Code Generator Architecture

This section describes various code generator architectures we considered, their advan-
tages and disadvantages, and our final decision.

54

Existing Approach

The implementation of the existing language used at Zürcher Kantonalbank, shown in
Figure 7.11, relies on a runtime library to interface with the required transport technol-
ogy. A runtime library in their respective target language is responsible to serialize /
deserialize messages and to provide a common interface for sending and receiving mes-
sages. Code generation tools emit calls into the runtime libraries to perform actual
communication work.

Figure 7.11: Generator architecture of the current DSL

55

Monolithic

With the monolithic architecture, shown in Figure 7.12, each generator implements
a single combination of target language and transport technology. This generator is
responsible for generating all the code required to interface with the transport technology.
To implement support for a new target language or transport technology, a new generator
must be written for that combination.

Figure 7.12: Monolithic generator architecture

56

Intermediate Representation

The intermediate representation (IR) architecture, shown in Figure 7.13, is based on
the idea of a common intermediate representation that is shared among all generators.
Instead of generating code from the SAMT model directly, each generator transforms
the IR into the target language. This essentially relocates the complexity of the code
generation from the generator to the IR. Due to the potential complexity introduced,
this approach is by far the hardest to implement. It is also difficult to estimate the
configurability of this approach, since each feature in the emitted code needs to be
represented in the IR itself – whether as a dedicated node or as a collection of other
primitive nodes.

Figure 7.13: Intermediate representation (IR) generator architecture

57

Transport Buddy

The “Transport Buddy” approach, shown in Figure 7.14, is based on the idea of a sepa-
rate actor that handles all transport related work. Generators emit code that interfaces
with this actor to perform any network operations and serialization work. This approach
is similar to the “Existing Approach” of Section 7.4.5 in the regard that language gen-
erators refrain from handling transport specifics and instead rely on the runtime. Con-
versely, the runtime is no longer part of a library which is implemented for each platform.
Instead, a separate entity is implemented once, which enables new language generators
to immediately gain access to all previously supported transport protocols. Additionally,
new transport protocols become available to all previously supported languages.

The exact implementation of the transport buddy is left unspecified, but possible im-
plementations include a separate worker process or a background thread. It is unclear
how this approach would work in an environment that does not support communication
between external processes and threads, such as a web browser. The configurability prob-
lem present with the IR approach becomes apparent as each possible transport-related
feature relies on an implementation in the transport buddy.

Figure 7.14: Transport buddy generator architecture

58

Decision

The different approaches listed above all have their own advantages and disadvantages.
For our purpose, we decided to implement a proof-of-concept monolithic architecture,
shown in Figure 7.15. Our rationale is summarized in the following Y-statement: In the
context of the code generator architecture, facing the need for an easy implementation
we decided for a proof of concept monolithic architecture and neglected the IR and
transport-buddy approaches to achieve a functional proof of concept accepting that this
decision will have to be revisited at a later date. Additionally, choosing the simplest
approach allowed us to focus on other issues. This architecture is not intended to be
final and a suitable replacement must be evaluated in the future. The implementation
of this architecture is described in Section 8.2.

Figure 7.15: Proof of concept generator architecture

59

Chapter 8

Implementation

This chapter documents the final state of the product.

8.1 Compilation Internals

The Compiler as described in Section 7.4.3 consists of three components: The Lexer,
Parser, and Semantic. Since the Codegen component finalizes this compilation pro-
cess, the entire process can be thought of as a pipeline, where the output of one stage
corresponds to the input of the subsequent stage.

Figure 8.1 shows the simplified compilation process with a focus on the data flow between
the components. The SAMT model is provided by the SAMT CLI, the SAMT Visual
Studio Code Extension or a custom frontend. Similarly, the code generator could be a
custom generator. This section focuses on the middle part of the compilation pipeline,
where no dynamic components are involved.

SAMT Model

Lexer Parser Semantic Codegen

Generator Generated
Code

Figure 8.1: Simplified SAMT compilation pipeline

60

8.1.1 Lexer

The Lexer is the first stage of the compilation process. Each source file is split into
a sequence of tokens, representing the smallest meaningful units of the language. The
Lexer performs some basic source processing, such as expanding escape sequences within
strings, removing comments and whitespace, and checking for unclosed strings and in-
valid characters. This has the intended side effect of making the language whitespace
insensitive and therefore provides developers more freedom to format their code.

The Lexer generally reads character by character from the source file with the exception
of the range syntax. When the Lexer encounters a period after a number (1.), it looks
ahead one additional character and decides whether to produce a token corresponding
to a floating point number literal (1.2) or the start of a range (1..2).

8.1.2 Parser

The Parser takes in the sequence of tokens produced by the Lexer and constructs an
Abstract Syntax Tree (AST). The AST is a tree-like data structure that represents the
syntactic structure of the source code. Each node in the tree represents a different
construct, such as a string literal or a type declaration. The Parser checks for syntax
errors pertaining to the order of statements, invalid grammatical constructs, and missing
tokens.

The Parser is implemented as a recursive-descent parser, which is a type of top-down
parser. Only a single token is consumed at a time, making the code relatively simple
and easy to understand. The implementation itself mostly follows the structure of the
grammar in Section 6.2.1. Since type information is not yet available during the parsing
phase, the Parser is unable to check for semantic errors. Transport configuration objects
are parsed as general dictionaries of values and are not yet validated. The complete AST
is then passed to the semantic analysis stage.

8.1.3 Semantic Analysis

The semantic analysis stage is responsible for checking the AST for semantic errors and
inconsistencies. An initial pass checks for duplicate elements, parameters and other
errors that can be detected without type information. Subsequent passes resolve type
declarations, type references, and aliases. During this stage, all semantic rules laid out
in Section 6.2.2 are enforced. If the model is absent of any errors, this stage yields a
fully resolved SAMT model that can be passed to the configured code generator.

8.1.4 Code Generation

SAMT can be configured to run with any generator that supports the public API. These
generators can implement support for any target language and transport technology.
Each generator can provide custom transport configuration parsers, which consume the
configuration objects provided by the model. Multiple generators can be invoked at once,

61

allowing one generator to build on top of the work of the previous one. As mentioned
in Section 7.4.5, we decided to implement a proof of concept architecture based on the
monolithic approach. This means that the generator is responsible for generating all the
code for the chosen target language and transport protocol.

8.2 Ktor Generators

We built three separate generators for the Kotlin programming language, implementing
support for the Web framework Ktor.1

KotlinTypesGenerator Emits type and interface declarations

KotlinKtorProviderGenerator Emits a Ktor server application

KotlinKtorConsumerGenerator Emits a Ktor client application

The generators all share their core structure. Each generator iterates over all the pack-
ages that are provided by the model, extracts the relevant providers and consumers and
emits the required client and server bindings. The HTTP transport configuration de-
scribed in Section 8.3 is used to configure the Ktor server, such as HTTP methods, path
and type of parameters.

8.3 HTTP Transport Configuration Parser

As part of the generator built for the Web framework Ktor, a transport configuration
parser for HTTP was implemented. The parser is responsible for extracting the HTTP
method, path and parameters of each operation. Parameters can be declared either as
inline path parameters, being passed as part of the URL, or as query, header, cookie
or body parameters. Non-path parameters are declared via the {parameterName in

parameterType} syntax. Multiple parameters can be declared by separating their names
with commas.

Figure 8.2: Screenshot of an example HTTP transport configuration inside Visual Stu-
dio Code

Figure 8.2 shows an example transport configuration with three operations. If no con-
figuration entries are present for an operation, the parser will default to HTTP POST
and a unique path based on the service and operation names.

1https://ktor.io/

62

https://ktor.io/

8.4 SAMT CLI

As decided in Section 7.4.1, a CLI interface to SAMT has been developed. The CLI
can be used to initialize, inspect, and compile projects. It is usually invoked using the
SAMT Wrapper described in Section 8.6.

8.4.1 Commands

The following commands are available in the CLI:

compile
Used to compile a SAMT project and generate the corresponding target files. If
any errors occur during compilation, they will be displayed in the CLI.

dump
Used to dump various types of debug information, such as the parsed AST and
the type hierarchy, as shown in Figures 8.3 and 8.4.

wrapper
Used to initialize an instance of the SAMT wrapper in the current directory. An
optional flag can be set to control the location from which the initial “samtw”,
“samtw.bat” and “samt-wrapper.properties” files will be downloaded from.

Figure 8.3: Visual representation of
the AST

Figure 8.4: Type structure of an ex-
ample todo application

63

8.4.2 Message Formatting

Error messages shown via the CLI interface should be just as intuitive and easy to
read as the ones displayed in an IDE. For this purpose, a custom error formatter was
written that can highlight individual sections of a source file and draw accompanying
error messages with a small red arrow pointing them toward the location in the source
code. Because the file location is URI encoded, the link can be clicked to open the file
in the default editor.

Figure 8.5: Error message containing
two highlighted code sections

Figure 8.6: Error message with info
and help line

The diagnostic formatter draws each error with colorized highlights of the relevant source
code and corresponding messages. The surrounding code is printed in a gray color to
provide context but not distract too much. Figure 8.5 shows how a duplicate declaration
of an enum value shows up in the CLI. Figure 8.6 shows an info line displayed below the
highlighted source code, providing the user with further information about the error.

Error Warning Info

Figure 8.7: Different types of diagnostic output types

Messages can be displayed in three different types, depending on their severity, as shown
in Figure 8.7. Errors block the compilation process until the problem is resolved. Warn-
ings can be ignored but provide useful suggestions. Info messages contain log output
from different stages.

64

8.5 Extending SAMT

A key feature of SAMT is its extensibility. It was designed to be easily extensible by
third-party developers without requiring them to modify the SAMT source code. There
are three intended ways to extend SAMT:

1. Add new generators

2. Add new transport technology

3. Custom SAMT frontend

8.5.1 Adding SAMT as a Dependency

The first step to extend SAMT is to add it as a dependency to your project. To enable
this, different SAMT artifacts are published to the Maven Central Repository.2 The
available artifacts are listed in Table 8.1.

Group ID Artifact ID Description

tools.samt public-api Public API of SAMT, used when creating
a SAMT plugin

tools.samt compiler Library for compiling any SAMT source
files

tools.samt samt-config Library to parse SAMT project configura-
tion files

tools.samt common Library containing common utility func-
tions and classes for SAMT

tools.samt codegen Library for invoking the appropriate code
generators

Table 8.1: Descriptions of the packages published to Maven Central

8.5.2 Adding New Generators

The easiest way of extending SAMT is to build a new generator. Generators are classes
that implement the Generator interface from the public-api package. A generator
receives the root SAMT package as an input and returns a list of generated files as an
output.

The model types within the public-api are designed to be easily usable for code gener-
ation. A simplified meta model is shown in Figure 8.8. Some details have been omitted
for brevity, but the general structure is still visible. A Java generator might loop over all
the record instances and generate a Java class for each. For usages of types, for example
the type of a field, a TypeReference is used. While every Type only exists once, there
can be multiple TypeReference instances pointing to the same Type.

2https://central.sonatype.com/namespace/tools.samt

65

https://central.sonatype.com/namespace/tools.samt

When generating network code, the TransportConfiguration instances can be used to
generate the appropriate code for the selected transport technology. The generator sim-
ply checks whether the TransportConfiguration is an instance of the desired transport
technology and generates the appropriate code. Currently only one transport technology
is implemented, SamtHttpTransport. The process of adding a new transport technol-
ogy is described in Section 8.5.3. A more detailed explanation of how to apply the meta
model is given in the SAMT Authoring Generators guide on GitHub.3

3https://github.com/samtkit/core/wiki/Authoring-Generators

66

https://github.com/samtkit/core/wiki/Authoring-Generators

Type

ListType UserType

+ name: String
+ qualifiedName: String

MapType LiteralType

EnumType

+ values: List<String>
RecordType ServiceType

ConsumerType

+ samtPackage: String

AliasType

RecordField

+ name: String

0..*

1

1

0..*
referenced type

TypeReference

+ isOptional: Boolean
+ constraints: List<Constraint>

0..*

1

field type

ServiceOperation

+ name: String

0..*

1

ServiceOperationParameter

+ name: String

0..*1

OnewayOperation
RequestResponseOperation

+ isAsync: Boolean

0..1

1
return type

1

1

parameter type
0..1

1

aliased type

0..*0..*

ProviderType

+ transport: TransportConfiguration

0..*

1

implemented via "ProvidedService"

0..*

0..*

implemented via "ConsumedService"

2

1

key and value types

1

1

element type

Figure 8.8: Class diagram of the SAMT meta model

67

8.5.3 Adding New Transport Technology

Configuration parsers for new transport technologies can be added to SAMT by im-
plementing the TransportConfigurationParser interface from the public-api pack-
age. A transport configuration parser receives the transport configuration data from a
Provider as input and returns a TransportConfiguration instance as output. The con-
figuration data is wrapped in a ConfigurationObject instance from the public-api

package. The purpose of this wrapper is to provide a unified interface for accessing
configuration data, independent of the format that the previous stages consume (e.g. an
AST).

8.5.4 Custom SAMT Frontend

If you want to extend SAMT in any other way, for example, by providing an API
portal, a web-based editor, or a custom CLI, you can use the published packages to do
so. The public interfaces of every module are designed to be easily usable by third-
party developers from any JVM language, such as Java, Kotlin, Scala, or Groovy. As a
caller of the SAMT Compiler component, you also get full control over error handling,
dependency management, and so on.

8.6 SAMT Wrapper

SAMT is supposed to be simple and usable. This means that it should be easy to get
started with SAMT, without having to install a lot of dependencies. The SAMT CLI
described in Section 8.4 is a good example of this approach, requiring only the download
of a single JAR file to run SAMT. However, downloading a JAR file and placing it in the
correct directory is not very user-friendly. Another approach would have been to create
a SAMT installer and distribute the SAMT CLI as a full-featured application, which is
not very user-friendly either. Instead, we decided to use a more simple approach used
by other popular build tools in the Java ecosystem.

8.6.1 Wrapper Script

We decided to follow the path of other build tools and implemented a wrapper script.
Prominent examples of this approach are the Gradle Wrapper4 and Maven Wrapper5.
The wrapper is a way to automatically download and run the required binaries without
requiring the user to install any additional software. In our case, the wrapper is imple-
mented using a shell script for Linux and macOS and a batch script for Windows. They
are about 40 and 60 lines of code respectively and should rarely need to be changed.

4https://docs.gradle.org/current/userguide/gradle_wrapper.html
5https://maven.apache.org/wrapper/index.html

68

https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://maven.apache.org/wrapper/index.html

8.6.2 Distribution

The wrapper needs a defined location to download the SAMT CLI from. We decided
to use GitHub releases6 for this purpose. Whenever a release is created, the CI pipeline
automatically builds and attaches the necessary files to the release. To allow users to
easily upgrade to a newer SAMT version, they can simply run the ./samtw wrapper

--version <version> command. Alternatively, the ./samtw wrapper command is
used to automatically fetch the latest stable version from GitHub.

All resource locations are configurable, so users can choose where to download the CLI
from if they are behind a corporate proxy. If an organization uses SAMT internally,
they can also host the CLI on their own servers and configure the wrapper to download
it from there.

8.6.3 SAMT Template

To get started with the SAMT Wrapper, an initial set of the start script files is required.
Based on personal experience, we decided to create a template repository7, which con-
tains a basic set of files to get started with SAMT. The template repository contains
the following set of starter files:

.

.samt

.gitignore...Ignore SAMT binaries
samt-wrapper.properties..................SAMT version & download url

.samtrc.yaml......................................SAMT style configuration
README.md

samt.yaml.......................................SAMT project configuration
samtw...Linux & MacOS
samtw.bat...Windows
src

greeter.samt...Example model
greeter-provider.samt

greeter-consumer.samt

A user can click the Use this template button within GitHub to not only fork this
template, but also run a cleanup script. This script will remove all unnecessary files
and replace the SAMT version in the samt-wrapper.properties file with the latest
stable version. Using this approach allows users to get started with SAMT in a matter
of seconds without having to manually edit a version in a “Getting Started” guide.

When a user runs any ./samtw command, the wrapper will download the SAMT CLI
and place it in the .samt directory. This will create the following temporary files:

6https://github.com/samtkit/core/releases
7https://github.com/samtkit/template

69

https://github.com/samtkit/core/releases
https://github.com/samtkit/template

.samt

wrapper

version.txt..........Installed version, used to prevent duplicate download
cli-shadow...Extracted SAMT files

bin

cli..Linux & MacOS
cli.bat..Linux & MacOS

lib

samt-cli.jar...SAMT CLI

8.7 SAMT Visual Studio Code Extension

As decided in Section 7.3.3, we implemented a Visual Studio Code extension for SAMT
which has been published on the official marketplace.8 Figure 8.9 shows the extension in
use with syntax highlighting, hover information, diagnostics, the document outline and
a preview from the Goto Definition feature.

Figure 8.9: Screenshot of the SAMT Visual Studio Code Extension in use

8.7.1 Syntax Highlighting

An expected feature of a language extension is syntax highlighting to help the developer
discern different elements of the language. The syntax highlighting is implemented using
the TextMate grammar9 format. This format is supported not only by Visual Studio

8https://marketplace.visualstudio.com/items?itemName=samt.samt
9https://macromates.com/manual/en/language_grammars

70

https://marketplace.visualstudio.com/items?itemName=samt.samt
https://macromates.com/manual/en/language_grammars

Code, but also by many other editors and IDEs, meaning that the TextMate grammar
could be repackaged in an extension for other tools or included manually by a developer.

8.7.2 Snippets

Visual Studio Code snippets allow the developer to reduce typing by providing a quick
way to insert a piece of code, such as a record declaration, with predefined customization
points (such as its name) that can be tabbed through. There are snippets available for
records, enums, type-aliases, services, providers and consumers.

8.7.3 Task Provider

The task provider allows the developer to run the SAMT compiler and code generation
through Visual Studio Code’s “Run Build Task” command. If the SAMT Wrapper,
documented in Section 8.6, is located in the opened folder, the task provider will auto-
matically use it to run the SAMT compiler.

8.7.4 Language Server

VS Code supports LSP, which allows implementing IDE features in a separate process.
The main benefit of a separate process is that we are not limited to the Node.js runtime
that Visual Studio Code uses and can instead use the JVM, where the SAMT compiler
library is available. An additional benefit is that the language server could be used in
other editors and IDEs that support the LSP. To minimize manual setup the extension
attempts to automatically detect a Java installation on the system, which can also be
overridden in the extension’s settings. The language server itself is then automatically
downloaded from GitHub and started in the background. The following paragraphs
describe the various features that the language server supports at this time.

Diagnostics The language server forwards all diagnostics from the SAMT compiler
to Visual Studio Code. These diagnostics are the same as the ones shown in the SAMT
CLI, but are updated in real time as the user types. Diagnostics from the code generation
step, like an invalid HTTP configuration, are not displayed.

Document Synchronization The language server supports document synchroniza-
tion, which allows it to keep track of changes to the document and update its internal
model accordingly. Up-to-date diagnostics can be displayed to the user as they are
typing, because Visual Studio Code sends changes even before a file is saved to disk.

File Watching Changes might not only be made through the editor, but also through
other means such as a version control system. To keep up with such changes, the language
server registers a file watcher for all SAMT files in the workspace.

71

Semantic Highlighting While syntax highlighting is handled mainly through the
TextMate grammar, its regex-based approach lacks the context required to properly
highlight type system dependent elements of the language. For this purpose, the lan-
guage server supports so called Semantic Tokens requests. The IDE uses these to query
the language server for certain context-sensitive labels to apply to each syntax token.
Depending on the chosen theme, a record identifier can be highlighted differently than
an enum identifier.

Goto Definition & Find References To facilitate navigating around a complex
data model, it is essential to be able to quickly jump between related elements. To go
from a type usage to its definition, we implemented the Goto Definition request. Users
can simply Ctrl+Click on a type to jump to the definition of that symbol.

Conversely, users can find all references to a symbol by Ctrl+Clicking on its definition.
For this purpose, the language server supports Find References requests, which use the
same code for the lookup as the Goto Definition implementation.

Hover When hovering over a symbol, the user expects to see a tooltip with additional
information about the symbol. For this purpose, the language server supports Hover
requests, which display a code snippet of the declaration and a description if one was
provided with the @Description annotation. Visual Studio Code also applies syntax
highlighting to the code snippet, using the TextMate grammar described in Section 8.7.1.

Document Symbols To give an overview of a file’s contents and to allow quick nav-
igation, the language server supports Document Symbols requests. Visual Studio Code
then displays the symbols in the outline view and in the breadcrumb view at the top of
the editor as seen in Figure 8.9.

8.7.5 SAMT Configuration

The SAMT configuration files introduced in Section 7.4.1 are written in YAML and are
not part of the SAMT language. However, Visual Studio Code has support for YAML
files thanks to the popular YAML extension.10 To provide a better user experience
when editing YAML configuration files, a JSON Schema11 can be used to provide auto-
completion and validation. In order to make the user experience seamless, this schema
can be embedded in the JSON Schema Store12, which is automatically referenced by
the YAML extension. As SAMT has two YAML configuration files, a matching JSON
Schema was created for both the SAMT configuration file13 and the SAMT style config-
uration file.14

10https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
11https://json-schema.org/
12https://www.schemastore.org/
13https://json.schemastore.org/samt.json
14https://json.schemastore.org/samtrc.json

72

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://json-schema.org/
https://www.schemastore.org/
https://json.schemastore.org/samt.json
https://json.schemastore.org/samtrc.json

8.8 Requirements Coverage

This section givens an overview of the status of the requirements.

8.8.1 Functional Requirements

In Chapter 2 we defined a set of functional requirements for SAMT. Because it seemed
unlikely to meet all functional requirements in the given time frame, we set one of three
priorities “must have”, “should have” and “could have”. In the end, all “must have”
requirements were implemented, as well as a majority of “should have” requirements
and some “could have” requirements.

Comments on Notable Requirements

This section gives an overview of notable requirements that were not met or only partially
met.

Inheritance The inheritance feature was implemented only in the parser, but is not
supported in the type system. Users are informed about this limitation by an error
message, as shown in Figure 8.10.

Figure 8.10: Error message when using inheritance

Faults Faults are ways of modeling what kind of errors can occur during an operation.
The fault feature was implemented in the parser and operations in the type system have
their faults set, but some semantic validation is missing. In addition, there was supposed
to be a Fault type from which to extend from, but this is currently not possible due to
the lack of an inheritance feature. Because of this, faults were omitted from the Public
API explained in Section 8.5.1, meaning that generators do not know about them.

File Separation To ensure separation of concerns, the existing Xtext based solution
provides multiple DSLs for different purposes, ensuring that they are kept in different
files. SAMT, on the other hand, is a single language, which means that everything could
be written in a single file. We decided to implement this feature as a compiler warning,
but only warn about models of a certain size to allow simple examples and unit tests to

73

keep their code in a single file. Zürcher Kantonalbank would prefer to emit the warning
unconditionally, which could easily be achieved by changing a single line of code. As a
team, we feel that this would be too restrictive and raise the barrier of entry for new
users. When configurable linting rules are implemented in the future, the threshold will
be made configurable on a per-project basis.

IDE Features The more advanced IDE features, namely context-aware autocomple-
tion, formatting and refactoring were not implemented. These features are supported
by LSP, which means that they can be implemented in the future.

In contrast, additional features that were not specified in the requirements were im-
plemented, such as Hover and Document Symbols. Thanks to this solid foundation,
implementing the missing IDE features should be relatively easy. For example, refac-
torings would be straightforward to implement, as finding all references to a symbol is
already implemented for the Find References feature.

74

Full Overview

Table 8.2 gives an overview of the status of all functional requirements.

Requirement Priority State

FR-LF-PRIMITIVETYPES Must Done

FR-LF-RECORD Must Done

FR-LF-ENUM Must Done

FR-LF-NULLABILITY Must Done

FR-LF-TYPECONSTRAINTS Must Done

FR-LF-LIST Must Done

FR-LF-ALIAS Must Done

FR-LF-SERVICE Must Done

FR-LF-OPERATION Must Done

FR-LF-PROVIDER Must Done

FR-LF-CONSUMER Must Done

FR-LF-PACKAGE Must Done

FR-LF-SEPARATIONOFFILES Must Done

FR-T-PARSERLIB Must Done

FR-T-CODEGENLIB Must Done

FR-T-IDESYNTAX Must Done

FR-LF-DOCUMENTATION Should Done

FR-LF-ANNOTATION Should Done

FR-T-IDEWARNERROR Should Done

FR-LF-INHERITANCE Should Mixed

FR-T-IDEHINT Should Not Done

FR-T-IDEFORMAT Should Not Done

FR-LF-MAP Could Done

FR-LF-ONEWAYOPERATION Could Done

FR-LF-FAULT Could Mixed

FR-LF-ASYNCOPERATION Could Mixed

FR-LF-MULTIPLEINHERITANCE Could Not Done

FR-LF-CONSTANTS Could Not Done

FR-LF-MODULARCONSTRAINTS Could Not Done

FR-LF-RECORDCONSTRAINTS Could Not Done

FR-LF-DEPENDENCIES Could Not Done

FR-T-IDEREFACTOR Could Not Done

Table 8.2: Overview of all functional requirements with their priority and state

75

8.8.2 Non-Functional Requirements

This section contains a review of the non-functional requirements defined in Chapter 3.

Usability

Each stakeholder archetype, namely the Service Owner, System Integrator and Domain
Expert, has a specific usability requirement defined for that role. For verification, user
testing was performed with four different developers at Zürcher Kantonalbank, who were
not familiar with the project. The results of this testing are discussed in Appendix C.6.
Unfortunately, all four developers would fit the Service Owner role, which means that
the NFRs for the System Integrator and Domain Expert stakeholder were not tested.

Compatibility

To verify operating system compatibility, a Continuous Integration pipeline was config-
ured to run on the latest versions of Windows, Ubuntu and macOS. As SAMT Core
runs on Java 17, it should be compatible with any operating system that has an im-
plementation of Java 17 available, but this was not explicitly verified. However, basic
functionality has been tested on all three operating systems, as evidenced by the data
in Figure 8.12.

Maintainability

For maintainability, a line coverage target of 80% was set, which was narrowly exceeded
in the SAMT Core project as shown in Figure 8.11. In the SAMT Visual Studio Code
Extension, a few tests were written to protect against certain oversights in the TextMate
grammar, but the TypeScript code was left untested. However, the most complex IDE
functionality is implemented in the Language Server, which is a part of the well-tested
SAMT Core project. To put the size of the two codebases into perspective, the SAMT
Core project has close to 5000 lines of code, while the Visual Studio Code extension has
less than 600 lines of code.

76

Figure 8.11: Code coverage report of the SAMT Core project

JetBrains Qodana was chosen as our static code analysis tool. Qodana is configured
as part of our GitHub Actions CI pipeline. All pull requests are required to pass the
Qodana analysis before merging, which ensures that the code quality does not degrade
over time. In conclusion, we consider the maintainability requirements to be fulfilled.

Security

There are two main aspects of security for SAMT, namely the security of SAMT and its
dependencies, and the security of the generated code. To reduce the risk of supply chain
vulnerabilities, the SAMT libraries do not have any dependencies besides the Kotlin
Standard Library. The CLI has a few dependencies for command line parsing and
output formatting, while the Language Server uses the LSP4J library to handle protocol
concerns. Gradle dependencies are submitted to the GitHub dependency submission
API, which checks them for known vulnerabilities.

In the SAMT Visual Studio Code Extension, the GitHub Dependabot15 checks all de-
pendencies for known vulnerabilities. A sample GitHub repository with generated code
was created16 and equipped with GitHub code scanning to check for vulnerabilities in
the generated code. The code scanning did not find any vulnerabilities in the generated
code. Of course, this does not mean that there are no vulnerabilities, as such tools can
only be used to assert the presence of vulnerabilities, not their absence.

15https://docs.github.com/en/code-security/dependabot
16https://github.com/samtkit/ktor-demo

77

https://docs.github.com/en/code-security/dependabot
https://github.com/samtkit/ktor-demo

Given these results, we consider all security requirements to be fulfilled.

Extensibility

An extensibility guide was written and published on the SAMT GitHub wiki.17 Due
to time constraints, we were unable to verify the measure if an experienced developer
could implement a new code generator in a work week. The code generator we built was
finished in a couple of days. This however is not a fair comparison, as we were already
intimately familiar with the codebase.

Performance

To assess the performance of SAMT, benchmark files with the size and complexity
specified in the performance NFR defined in Section 3.6 were created.18 The benchmark
consists of running the SAMT compilation 100 times with the help of the benchmarking
tool Hyperfine.19 The benchmark was run on three different machines:

• MacBook Pro with Apple M1 Max running macOS 13.4

• Desktop PC with AMD Ryzen 7 7700X running Windows 11

• Desktop PC with Intel Core i7 6700K running Linux 6.3

The results of the benchmark are shown in Figure 8.12.

Figure 8.12: Whisker chart of the performance benchmark

17https://github.com/samtkit/core/wiki
18https://github.com/samtkit/core/tree/main/specification/benchmarks/todo-service
19https://github.com/sharkdp/hyperfine

78

https://github.com/samtkit/core/wiki
https://github.com/samtkit/core/tree/main/specification/benchmarks/todo-service
https://github.com/sharkdp/hyperfine

The maximum run time was under 0.6 seconds, which is well below the 5 seconds “Out-
standing” landing zone specified in the NFR. In addition, variance between the slowest
and the fastest run on each machine was less than 0.1 seconds, indicating a high level of
consistency. Overall, we consider the performance requirements to be fulfilled.

Full Overview

Table 8.3 gives an overview of the status of all non-functional requirements.

Requirement Priority State

NFR-C-OS High Done

NFR-M-TESTS High Done

NFR-P-COMPILATION High Done

NFR-S-CODEGEN High Done

NFR-S-VULNERABILITIES High Done

NFR-U-SERVICEOWNER High Done

NFR-E-EXTENSIBILITY High Mixed

NFR-U-SYSTEMINTEGRATOR High Mixed

NFR-U-DOMAINEXPERT High Mixed

NFR-M-QUALITY Medium Done

Table 8.3: Overview of all non-functional requirements with their priority and state

79

Chapter 9

Summary and Outlook

This chapter provides a comprehensive summary of the results achieved, followed by an
outlook on future work.

9.1 Summary

The project started with defining the requirements that set the objectives and scope
and will serve as the foundation for the subsequent development phases. To address
these requirements, we created a language specification that outlined the syntax, struc-
ture, and key features of SAMT. We iteratively refined this specification to ensure its
effectiveness in addressing the requirements. Many trade-offs were considered and eval-
uated, which resulted in a language design that provides a balance between simplicity
and expressiveness.

Furthermore, we developed an architecture that provides a robust and flexible framework
to support the language implementation and subsequent development phases. Based on
the language specification and architecture, a compiler was implemented from scratch,
including a lexer, a parser, and a semantic analyzer. The decision to not rely on existing
tools and libraries was challenged several times during the development process, however,
based on the outcome of the evaluations performed, this choice was eventually deemed
justified.

To improve the developer experience and increase their productivity, we implemented
a Visual Studio Code extension that was published to the Visual Studio Marketplace.
This extension provides several features to help developers model in SAMT, such as
syntax highlighting and snippets. In addition, we implemented a language server to
enable advanced code editing features such as code navigation and real-time error check-
ing. A dedicated language server simplifies development, separates compiler and editor
concerns, and enables seamless integration with other IDEs that support LSP.

A sample Ktor generator demonstrates the extensibility and versatility of the internal

80

SAMT model for one of the most complex transport protocols, HTTP. The implemen-
tation of this generator further highlighted the need for a refinement of the generator
API and architecture, in order to achieve widespread adoption.

We conducted usability testing to evaluate the effectiveness and usability of the lan-
guage, compiler, and associated tools. Valuable feedback helped to identify areas for
improvement and fine-tuning, improving the overall quality and usability of the tools
developed.

To provide the required extensibility to Zürcher Kantonalbank, and potentially to the
open-source community, we published the SAMT libraries to Maven Central. These
libraries provide access to the functionality offered by SAMT and allow developers to
extend or integrate the SAMT compiler into their own projects. In addition, we created
extensive documentation and implemented a sample plugin in Java to make contributions
as easy as possible.

Finally, all deliverables of this thesis were produced and published under an open-source
license wherever required by the project guidelines. SAMT was also presented at a
developer conference within Zürcher Kantonalbank, where it received positive feedback
and interest from the audience.

9.2 Outlook

The future of SAMT is influenced by the interest of the open-source community and
the needs of Zürcher Kantonalbank. It requires extensive further development to be
applicable in a large organization. Zürcher Kantonalbank will evaluate the use of SAMT,
which will determine whether they will either continue the development of SAMT, create
a fork for their specific needs, or use another solution altogether. Regardless of the
future of SAMT, we hope that the results from this thesis will be valuable for Zürcher
Kantonalbank.

Independent of its actual use in Zürcher Kantonalbank or else, there are several feature
enhancements that could be developed in the future. They are briefly explained in the
following paragraphs:

Fault Handling Implement fault handling for operations to handle errors and excep-
tions that may occur during their execution. This is similar to explicit exception
handling in Java, but with a focus on the communication of errors between ser-
vices. User feedback from usability testing has shown that this is a desired feature,
however, the details of this implementation are still unclear (e.g. some users prefer
the terminology exceptions instead of faults).

Security Support a security configuration within SAMT models, for example to limit
a certain operation to a subset of users.

API Versioning Add API versioning for models written in SAMT to alleviate the need

81

to maintain multiple versions of the same API.

Inheritance Support Introduce support for inheritance, allowing to create hierarchies
to model complex data structures.

Improved Parser Error Recovery Improve the parser error recovery mechanism to
provide clearer error messages and better strategies for recovering from syntax
errors.

Expanded Built-in Constraints Expand the set of built-in constraints for standard
library types to meet specific requirements such as number precision, date time
zones, and string encoding.

Finalized Generator Architecture Finalize the generator API and architecture, re-
solving any outstanding issues identified during development to enhance code gen-
eration. Possible solutions are discussed in Section 7.4.5.

Plugin Mechanisms Implement plugin installation and loading mechanisms to allow
modular extensions and integration with third-party libraries. The interfaces for
these mechanisms have already been defined, but the implementation is still miss-
ing. Particularly, the distribution of plugins is a challenge, as it requires a central
repository for plugins.

Model Dependencies Establish dependencies between models, enabling the referenc-
ing of types from other models and facilitating the creation of more complex sys-
tems. The main challenge here is to define a mechanism for resolving these de-
pendencies, given that the compiler needs to know where to find the referenced
models. Possible solutions are discussed in Section 7.4.1.

Extend Language Server By implementing more interfaces provided by the Lan-
guage Server Protocol (LSP), such as code completion and code formatting, the
development experience can be greatly improved.

API Portal Provide an API portal for SAMT to centralize documentation and re-
sources related to published APIs. This is a unique opportunity for SAMT, as the
API portal can be automatically generated from the SAMT model and provide a
single source of truth for a broad range of APIs. Whereas other API portals are
often limited to a single technology, the SAMT API portal can provide a unified
view of all APIs within an organization.

In case SAMT is adopted for production use within Zürcher Kantonalbank, the following
steps are needed specifically for a large organization:

• Implement SAMT Plugins to support the required transports and frameworks spe-
cific to the organization’s needs.

• Analyze the possibility of developing an IntelliJ IDEA Plugin as a complementary
tool to the SAMT Visual Studio Code Extension.

82

• Roll out the SAMT Visual Studio Code Extension to all developers, ensuring
widespread adoption and usage within the organization.

• Distribute the required SAMT binaries to a private repository, ensuring secure
access and distribution of the associated tools.

• Create a custom SAMT Template for internal use, enabling rapid development of
projects based on predefined patterns and best practices.

In conclusion, this thesis has established a foundation for further development and uti-
lization of SAMT, both within Zürcher Kantonalbank and potentially by the broader
developer community. The implemented requirements demonstrate the viability and
potential impact of the proposed language and associated tools. With the outlined fu-
ture steps, SAMT could evolve into a powerful and widely adopted solution for efficient
model-based development workflows.

83

Appendices

84

Appendix A

Task Assignment

This chapter contains the task assignment as originally written by the thesis advisor.

85

OST Studiengang Informatik Frühjahrssemester 2023
Bachelorarbeit Pascal Honegger, Marcel Joss, Leonard Schütz

Seite 1/3

Olaf Zimmermann 2023-FS-BA-AufgabenstellungHJSv10.docx Ausgabe: 1.0 Letzte Änderung: 22.02.23

Aufgabenstellung Bachelorarbeit
Pascal Honegger, Marcel Joss, Leonard Schütz

Neuentwicklung einer erweiterbaren Schnittstellen-
Modellierungssprache

1. Auftraggeber und Betreuer

Diese Bachelorarbeit wird in Zusammenarbeit mit der Firma Zürcher Kantonalbank (ZKB)

durchgeführt.

Ansprechpartner (extern):

André Lehner, Projektleiter seitens ZKB, andre.lehner@zkb.ch

Betreuer (OST):

Prof. Dr. Olaf Zimmermann, OST Dept. I, Institut für Software, olaf.zimmermann@ost.ch

2. Ausgangslage
Der Industriepartner verwendet eine intern entwickelte Modellierungssprache für die Definition von

Schnittstellen zwischen Applikationen. Ein Kernaspekt dieser Modellierungssprache ist die Plattform-

und Technologieunabhängigkeit, welche bestehende Tools via OpenAPI nicht bieten. Die technische

Plattform für die Sprach- und Werkzeugentwicklung, das auf Eclipse basierende DSL-Framework

Xtext, stellt aufgrund seiner Komplexität und Zukunftsunsicherheit allerdings ein Risiko für die

Weiterentwicklung und Pflege dieser Schnittstellen-Modellierungssprache dar.

3. Ziele der Arbeit und Liefergegenstände
In der Bachelorarbeit geht es um die Erarbeitung und Entwicklung einer neuen Modellierungssprache

und dazu passendes Tooling. Ziel ist es, die bestehende Abhängigkeit von Xtext mit einer

Neuentwicklung zu beseitigen. Die neu zu erstellende Modellierungssprache muss die bestehende

funktional ersetzen, kann aber technisch frei entwickelt werden. Zudem muss eine entsprechende

Sprachunterstützung in einem etablierten Editor (Bsp. IntelliJ oder Visual Studio Code) sichergestellt

werden. Beispiele der existierenden Modellierungssprache und Anforderungen an das erwartete

Produkt der Arbeit sind vorhanden.

Liefergegenstände. Die zentralen Deliverables der Arbeit sind:

• Sprachspezifikation (Grammatik) sowie Source Code und zugehörige Dokumentation (z.B.

Tutorials, Beispiele, Starthilfe für die Nutzung, API- bzw. Programmierreferenz)

• IDE-Plugin

• BA-Bericht

Kritische Erfolgsfaktoren. Für die Bewertung der Arbeit sind folgende Kriterien besonders relevant:

OST Studiengang Informatik Frühjahrssemester 2023
Bachelorarbeit Pascal Honegger, Marcel Joss, Leonard Schütz

Seite 2/3

Olaf Zimmermann 2023-FS-BA-AufgabenstellungHJSv10.docx Ausgabe: 1.0 Letzte Änderung: 22.02.23

• Angemessener, priorisierter Funktionsumfang von Sprache und Werkzeugen (Bsp. muss,

kann, soll)

• Benutzbarkeit und Lernaufwand

• Wartbarkeit und Betreibbarkeit der Lösung, insbesondere Erweiterbarkeit (zukünftige

Integrierbarkeit, z.B. Generatoren) und Zukunftssicherheit

• Software Engineering-Hygienefaktoren wie Versionsverwaltung, automatisierte Builds und

Tests sowie zielgruppengerechte Dokumentation

4. Unterstützung

Die erwartete und effektiv erhaltene Unterstützung wird durch die Studierenden protokolliert.

5. Zur Durchführung

Mit dem Betreuer finden in der Regel wöchentlich Besprechungen statt (Treffen an der OST, beim

Industriepartner oder Videokonferenz). Zusätzliche Besprechungen sind nach Bedarf zu veranlassen.

Alle Besprechungen, bei denen eine Vorbereitung durch den Betreuer nötig ist, sind von den

Studierenden mit einer Traktandenliste vorzubereiten. Beschlüsse sind in einem Protokoll zu

dokumentieren.

Für die Durchführung der Arbeit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuierlichen

und sichtbaren Arbeitsfortschritt zu achten. Arbeitszeiten sind zu dokumentieren. Sofern nicht in

dieser Aufgabenstellung vorgeben, sind die Studierenden für die Auswahl und korrekte Anwendung

Ihrer Hilfsmittel (also Werkzeuge, Libraries, Frameworks, SaaS-Angebote, etc.) selbst verantwortlich.

Auf Wunsch kann eine an der OST gehostete virtuelle Maschine zur Verfügung gestellt werden.

Die Spezifikation der Anforderungen geschieht durch die Studierenden in Absprache mit dem

Betreuer. Bei Disputen entscheidet der Betreuer in Rücksprache mit den Studierenden über die

definitiv für die Bachelorarbeit relevanten Anforderungen.

Vorstudie, Anforderungsdokumentation und Architekturdokumentation sollten im Laufe des

Projektes mittels Milestone mit dem Auftraggeber und dem Betreuer in einem stabilen Zustand

abgenommen werden. Zu den abgegebenen Arbeitsresultaten wird ein vorläufiges Feedback

abgegeben. Eine definitive Beurteilung erfolgt auf Grund der am Abgabetermin abgelieferten

Dokumentation.

Die Rechte an den Ergebnissen der Bachelorarbeit werden in einer separaten Vereinbarung definiert

(Bericht öffentlich, Implementierung open source; kein Non-Disclosure Agreement erforderlich).

6. Dokumentation

Über diese Arbeit ist eine Dokumentation gemäss den Richtlinien des Studiengangs Informatik zu

verfassen. Die zu erstellenden Dokumente sind im Projektplan festzuhalten. Alle Dokumente sind

nachzuführen, d.h. sie sollten den Stand der Arbeit bei der Abgabe in konsistenter Form

dokumentieren.

OST Studiengang Informatik Frühjahrssemester 2023
Bachelorarbeit Pascal Honegger, Marcel Joss, Leonard Schütz

Seite 3/3

Olaf Zimmermann 2023-FS-BA-AufgabenstellungHJSv10.docx Ausgabe: 1.0 Letzte Änderung: 22.02.23

Bei der Projektdokumentation und deren Abgabe sind die allgemeinen Informationen zu Studien-

und Bachelorarbeiten sowie insbesondere die "Orientierungshilfe für die Dokumentation einer

Studien- oder Bachelorarbeit" und der "Leitfaden für Studien- und Bachelorarbeiten" des

Studiengangs zu beachten.

7. Termine

Die Termine wurden vom Sekretariat des Studiengangs Informatik in MS Teams veröffentlicht im

Dokument "Bachelorarbeiten: Termine Frühjahrssemester 2023". Sie sollen in einem

Sitzungsprotokoll dokumentiert werden.

Erste Semesterwoche,
beginnend mit dem 20.02.23

Beginn der Bachelorarbeit,
Ausgabe der Aufgabenstellung durch die Betreuer

16.06.2023 Hochladen aller verlangten Dokumente auf https://avt.i.ost.ch/

Abgabe des Berichts an den Betreuer/die Betreuerin bis 17.00 Uhr.

bis 31.08.2023 Mündliche BA-Prüfung

8. Beurteilung
Eine erfolgreiche Bachelorarbeit zählt 12 ECTS-Punkte pro Studierenden. Für 1 ECTS-Punkt ist eine

Arbeitsleistung von 30 Stunden budgetiert.

Es gelten die Bestimmungen des Studiengangs Informatik zur Durchführung und Bewertung von

Bachelorarbeiten (siehe "Leitfaden für Studien- und Bachelorarbeiten").

Rapperswil, 22. 02. 2023

Prof. Dr. Olaf Zimmermann

Institut für Software

OST

Appendix B

Development Instructions

This chapter contains instructions for developing and maintaining SAMT.

B.1 SAMT Core

The samtkit/core repository1 hosts the code for the SAMT libraries, the CLI, and the
language server. Only members of the Simple API Modeling Toolkit GitHub organi-
zation2 have write access to this repository. The architecture of the codebase itself is
explained in more detail in Section 7.4.

B.1.1 Development IDE

So far all development has been done in IntelliJ IDEA, so it is recommended to use
this IDE for development. Using another IDE is not recommended because JetBrains
Qodana is used as part of the CI pipeline. Qodana reports most of the same issues as
IntelliJ IDEA, so using another IDE may cause surprises when running the CI pipeline.
The Community Edition of IntelliJ IDEA is sufficient for development.

B.1.2 Build System

SAMT Core is a Gradle project which uses the Gradle wrapper. Because of this, a
local Gradle installation is not necessary to build the project, instead you can run the
Gradle wrapper script (./gradlew.bat on Windows and ./gradlew on other platforms)
to execute tasks. If you prefer to use a GUI, you can also choose tasks from a list in
IntelliJ IDEA. The most commonly used build tasks are the following:

assemble Assembles the JAR files, which is useful if you need to run the CLI or language
server outside of an IDE

1https://github.com/samtkit/core
2https://github.com/samtkit

89

https://github.com/samtkit/core
https://github.com/samtkit

check Runs tests

koverVerify Runs tests and verifies that code coverage goals are met

koverHtmlReport Runs tests and generates a code coverage report in HTML format,
which is useful for finding untested code

publishToMavenLocal Publishes the SAMT libraries to the local Maven repository,
which is useful to see what would be published in a release

The project uses Gradle toolchains3, which will automatically find a Java 17 installation
on the system or download it if necessary. You still need to have a Gradle compatible
Java installation on your system for this to work, but you do not need to install Java 17
specifically for this project.

B.1.3 Continuous Integration

The repository uses GitHub Actions for continuous integration. The CI pipeline runs
on every push to the main branch and on every pull request. The following workflows
exist:

Build and Test Builds the project, runs tests and verifies that code coverage goals are
met. Runs on Ubuntu, Windows and macOS.

Qodana Runs static analysis of the Kotlin code using JetBrains Qodana.

Security Scanning Performs GitHub CodeQL analysis to find security vulnerabilities
and quality issues. This task is also run weekly on the main branch in case of new
security issues.

Gradle Dependency Submission Submits the Gradle dependencies to GitHub, which
allows viewing them in the GitHub UI and getting notified about security issues
in dependencies. This task runs only on the main branch because the repository
can have only one set of dependencies.

Publish Snapshot Publishes a snapshot version of the SAMT libraries to the Sonatype
OSSRH repository. This worflow runs only on the main branch.

Publish Release Publishes a draft release of SAMT on GitHub with the packaged
versions of the CLI and language server and publishes the SAMT libraries to the
Sonatype OSSRH staging repository. This task runs only after pushing a tag of
the form vX.Y.Z.

Pull requests can only be merged after a successful run of the CI pipeline and at least
one approval of another project member. Figure B.1 shows the CI pipeline in progress
on a pull request.

3https://docs.gradle.org/current/userguide/toolchains.html

90

https://docs.gradle.org/current/userguide/toolchains.html

Figure B.1: Continuous integration pipeline in GitHub’s UI

B.1.4 Releasing

GitHub Because the Publish Release task only creates a draft release on GitHub,
the release must be published manually. To do this, open the created draft release on
GitHub, edit it, and click the Publish release button. By default, the release notes
mention all pull requests which have been merged since the last release, but they can
also be adjusted manually.

Sonatype OSSRH The Publish Release task only publishes the SAMT libraries to
the Sonatype OSSRH staging repository.4 To release the libraries to Maven Central,
they must be promoted from the staging repository to the release repository.

B.1.5 Documentation

The documentation is kept in the wiki of the SAMT Core repository, where it can be
edited in a Markdown format with a live preview as shown in Figure B.2.

4https://s01.oss.sonatype.org/

91

https://s01.oss.sonatype.org/

Figure B.2: Homepage of the SAMT wiki in editing view

B.2 SAMT Visual Studio Code Extension

The samtkit/vscode repository5 hosts the code for the SAMT Visual Studio Code
Extension. Its implementation is explained in more detail in Section 8.7.

B.2.1 Development IDE

The development of the extension is done with Visual Studio Code itself, because it makes
it easy to start a separate instance with the developed extension active. To launch the
extension open the Run and Debug panel and select the Run Extension configuration.

B.2.2 Package Manager

The pnpm6 package manager is used to manage dependencies and build the extension.
It is recommended to enable Corepack7 on a development machine to automatically use
the same version of pnpm as other developers. If you have Node.js installed, simply run
corepack enable in a terminal. If this fails, you may have to uninstall any existing
Yarn or pnpm installations first.

5https://github.com/samtkit/vscode
6https://pnpm.io/
7https://nodejs.org/api/corepack.html

92

https://github.com/samtkit/vscode
https://pnpm.io/
https://nodejs.org/api/corepack.html

B.2.3 Scripts

The package.json file contains scripts which can be run with the pnpm run command.
The most important ones are the following:

format Formats the TypeScript source files using the Prettier8 code formatter.

lint Checks if the files are formatted correctly according to Prettier and runs ESLint9

to find problems in the code.

test Runs the lint script and unit tests.

build Builds the extension for development.

package Packages the extension into a VSIX file, which can be installed locally into
Visual Studio Code or manually uploaded to the marketplace.

publish Publishes the extension to the marketplace. Requires an Azure DevOps per-
sonal access token with the Publish permission.

B.2.4 Continuous Integration

Just like the core repository, the vscode repository uses GitHub Actions for continuous
integration and imposes the same rules for merging pull requests. Workflows are the
following:

Build and Test Builds the extension and runs the test script. Runs on Ubuntu, Win-
dows and macOS.

Security Scanning Performs GitHub CodeQL analysis to find security vulnerabilities
and quality issues. This workflow is also run weekly on the main branch in case of
new security issues.

B.2.5 Releasing

Prerequisites

First an owner of the SAMT publisher must add you to the publisher, to do that they
need your User Id. To find your User Id open the Visual Studio Marketplace10 and move
the mouse cursor over your name at the top of the screen as seen in Figure B.3.

8https://prettier.io
9https://eslint.org

10https://marketplace.visualstudio.com

93

https://prettier.io
https://eslint.org
https://marketplace.visualstudio.com

Figure B.3: User Id in the Visual Studio Marketplace

If you want to publish directly from the command line, you need an Azure DevOps
personal access token. To access Azure DevOps, you can click on your name in the
Visual Studio Marketplace. If you want to create a token, you need to be a member of
an organization, which you can create for free. Note that the actual token is not tied
to the organization, you only need an organization because you cannot access the token
creation page without one.

On your organization page click on the User Settings in the top right corner and then
on Personal access tokens as shown in Figure B.4.

Figure B.4: Azure DevOps user settings

On the personal access tokens page click on New Token, under scopes select Custom
defined, click Show all scopes, scroll to Marketplace and choose Manage as shown in
Figure B.5. After clicking Create you can copy the token and use it to publish the
extension. The token cannot be viewed again after closing the page, so make sure to

94

save it somewhere, preferably a credentials manager.

Figure B.5: Azure DevOps personal access token

Publishing

Before publishing the extension you need to update the version number in the package.json
file and document the changes and additions in the CHANGELOG.md file. Now run pnpm

run publish in the terminal, which will prompt you for your personal access token if
you are running it for the first time. Afterwards it will take a few minutes for the new
version to appear in the marketplace, because extensions have to pass an automated
validation process. Once that is done you will be notified by email.

B.2.6 Documentation

The user documentation of the extension is the README.md file in the repository, which
is also displayed on the marketplace. Additional documentation for developers is kept in
the wiki of the repository, where it is also explained how to debug the SAMT Language
Server.11

11https://github.com/samtkit/vscode/wiki/Debugging-the-Language-Server

95

https://github.com/samtkit/vscode/wiki/Debugging-the-Language-Server

Appendix C

User Feedback

This chapter documents the complete user feedback collected during the testing phase.
Participants were given 30 minutes to implement a simple service in SAMT and pro-
vide feedback on the language and tooling. The feedback and our observations have
been translated into English, categorized by topic, and anonymized, but otherwise left
unchanged.

Every statement is also categorized into one of the following categories:

+ Positive feedback

− Negative feedback

= Neutral feedback

• Observation

96

C.1 Developer 1

Developer 1 works at Zürcher Kantonalbank and modeled different APIs in the existing
infrastructure.

IDE Features

+ Word autocompletion works well

+ Snippets are very useful

= Variable rename would be nice

• Mostly copy-pasted example code and modified it

• Was happy with autocompletion, even though it is just the standard VS Code
functionality with no language specific intelligence

Data Types

= Generate enum with default value to enable backwards compatibility

• Created dedicated data types for every request and response to enable backwards
compatibility

Syntax

− Does not like the possibility to have both regular and short-form constraints, would
only allow one to prevent mixed usage

− Did not find the alias Foo: Type syntax intuitive

Technical Issues

− Error messages for incomplete range syntax (e.g. String(5..)) are not very
helpful

− Find references for enum does not work

Other

= Would be interested in how interceptors, proxy objects and other features are
implemented

97

C.2 Developer 2

Developer 2 works at Zürcher Kantonalbank and has been working on integrating gRPC
into the existing infrastructure.

IDE Features

− Autocomplete for types of record field is missing

• Did not use snippets (not aware of them)

Data Types

− Decimal precision specification is missing (e.g. Decimal(10,2))

• String(5) was assumed to mean a string with exactly 5 characters (equal to
String(5..5))

Syntax

+ Record keyword analogous to modern Java concept

− Question mark placed before type instead of after (e.g. ?String, how it is in other
tools within Zürcher Kantonalbank)

= Maybe rename query to queryParam to avoid confusion

• Tried to write throws instead of raises to indicate an error

• Read the first part of the transport configuration (e.g. header: foo) as the
parameter name

Error Handling

− Why is it called fault and not exception?

• A snippet or tooling assistance for faults would be nice

Technical Issues

− Why not implement it with ANTLR to make maintenance easier?

• Language server crashed in some edge-cases and did not correctly restart

Other

= Not much better, not worse either, just a different language

98

C.3 Developer 3

Developer 3 works at Zürcher Kantonalbank and has been using the existing infrastruc-
ture for a long time.

IDE Features

+ Word completion is nice

− No formatter for SAMT

• Spent a lot of time writing import statements by hand

• Did not use snippets (not aware of them)

• Initially interpreted the name after consume as the consumer name

Data Types

− Trailing comma in transport configuration causes error

= Tried to use String[] to indicate an array of strings, but quickly learned the
correct syntax

= Naming best practices for data types would be nice (e.g. ending with Service for
services)

• Initially tried to write types in lower case (e.g. string instead of String)

Syntax

= Maybe use a different syntax for the transport configuration (e.g. foo, bar as

header)

= The ability to specify the return encoding would be nice (e.g. application/pdf

for binary, or send a string in a header)

Technical Issues

• Error messages for incomplete range syntax (e.g. String(5..)) are not very
helpful

Other

= Would not recommend trying to support every possible use case, but rather focus
on the most common ones and use transport specific solutions for the rest

99

C.4 Developer 4

Developer 4 works at Zürcher Kantonalbank and works in the environment of the existing
integration infrastructure.

IDE Features

− Wanted to autocomplete all available data types, which is not possible

Data Types

• Tried to add a : void to mark a operation as not returning anything

• Initially tried to write types in lower case (e.g. boolean instead of Boolean)

• String(5) was assumed to mean a string with exactly 5 characters, but after
some thought it would make more sense to interpret it as a max length (equal to
String(0..5))

Syntax

+ Initially placed question mark before type, but actually finds our version with the
question mark after the type more readable

+ Approves of the generic List<T> syntax which is more flexible than T[] (e.g.
Map<K, V>)

− The usage of consume and provide seems inconsistent compared to implements

and uses

− Strongly is against the use of * in range syntax (e.g. String(5..*)) as it is not
clear what it means

− Would not allow the use of star at the beginning of length constraints as it makes
no sense (e.g. String(*..10) should be replaced with String(0..10))

− Does not like that the package is placed after the import statements, it gives the
wrong impression that more than one package per file can be specified

− Code documentation should be easy to write and read, but the current syntax is
quite verbose when documenting an operation parameter, would prefer a system
like JavaDoc

− Does not like the use of the = in the type alias syntax, would prefer a more verbose
version (e.g. type Foo as String)

• Tried to add second service implementation comma separated, which is not sup-
ported (e.g. implements A, B)

100

Technical Issues

− Created the same operation name hi in two services which are implemented by
the same provider, which resulted in the same runtime URL, which should have
caused at least a warning

Other

+ The existing infrastructure has a weird model-package to java-package behavior,
which is now fixed

101

C.5 Internal Developer Conference

Züricher Kantonalbank performs internal developer conferences several times a year
to share their latest experiences. Fortunately, SAMT was allocated one of the four
presentation slots on June 13, 2023, which was used to present SAMT to 130 attendees.

Show of Hands During the presentation, the audience was asked to raise their hands
in response to the questions listed in Table C.1. In summary, the majority had used the
existing integration infrastructure, but relatively few had enjoyed the process.

Question Response rate

Who has used the existing integration infrastructure before? 60%
Who used the official IDE to do so? 40%
Who enjoyed the process? 20%

Table C.1: Conference feedback by show of hands

Feedback Form At the end of the presentation, the audience was asked to fill out
a short questionnaire to gather feedback for all presentations. Of the 130 attendees,
57 filled out the presentation questionnaire with overwhelmingly positive feedback. As
these responses do not focus on SAMT itself, they are not included in this report.

In addition, 30 attendees left a comment, both focusing on the SAMT language and the
presentation itself. All comments which had any reference to SAMT as a project were
translated into english and listed here:

+ Very interesting presentation and interesting project

+ Goooo SAMT

+ I like SAMT

+ I really like that SAMT is open-source

+ Great project and interesting topic for a bachelor thesis

+ Great topic and also solution for a bachelor thesis. It would be a pity if it is not
developed further. Very well presented.

+ Very awesome, wold like to use it immediately!

+ Very nice! Just added a star on GitHub and hope that we can use it here soon.

+ Once again great presentation! Please continue this SAMT project.

= Will keep an eye on SAMT

− Besides the context of a Bachelor’s thesis it would be interesting to ask: why a
custom solution instead of using an existing one?

102

C.6 Summary

This section summarizes the feedback from all participants along with the actions we
have taken. We selected the following feedback as the most important, each of which is
discussed in more detail in the following paragraphs.

Lack of IDE Features The lack of certain IDE features was the most common com-
plaint. The most important missing features are listed in order of priority:

1. Context-aware autocompletion

2. File formatting

3. Global rename

4. Add import for missing types

All of these features can be implemented in the SAMT Visual Studio Code Extension,
but were not implemented due to time constraints. Especially the lack of context-aware
autocompletion was mentioned by almost every participant, which is why it was added
as a high priority in the outlook section of the report.

Range Syntax The use of the * character to define open-ended ranges can be con-
fused with cardinality indicators. A participant proposed to just leave out the upper or
lower bound to indicate an open-ended range. This was discussed and rejected in the
design phase, both because of syntax ambiguity and visual incompleteness. However,
the feedback is still valid and should be considered in future iterations.

One improvement was implemented to reduce the ambiguity of the range syntax. The
lower bound for sizes now reports a warning if the * character is used, as it is always
identical to 0. For example, String(*..5) should now be modeled as String(0..5).

Minor Syntax Inconsistencies Some feedback was given on minor syntax incon-
sistencies, such as the use of = for type alias which is not used anywhere else in the
language. Another example is the use of provide and consume instead of provides and
consumes. These inconsistencies would be easy to fix, but require further discussion to
ensure that the language is consistent throughout. Depending on the outcome of the
discussion, these changes may be implemented in future iterations and require a breaking
change.

Advanced REST Features One participant expressed the desire to model more
advanced HTTP endpoints, such as an operation which accepts a JSON and returns a
PDF. This is currently not possible in SAMT, as the request and response body must
be of the same type. Luckily, this is a problem with the implementation of the SAMT
HTTP transport configuration parser and not the language itself. This means that a

103

community provided plugin could also implement this feature, which is why it was not
prioritized.

Improved Error Handling On many occasions, participants caused errors in their
SAMT code which were not anticipated by the team. One reoccurring example is the
improper use of the ? operator in front of the type instead of after. This specific error
is now reported with a helpful error message, instead of a generic syntax error.

Order of Package A participant suggested to change the order of the package decla-
ration to be the first element in a SAMT file. This way, it is easier to see which package
a file belongs to, especially since every file must be in a package. It would also be con-
sistent with Java, which shares many other syntax elements with SAMT surrounding
package declarations and imports. The implementation of this change is trivial, but
requires updating all existing examples and documentation. Because of this, the change
was not implemented in this iteration due to time constraints.

104

Appendix D

Dependencies

This chapter lists all of the direct dependencies.

D.1 SAMT Core

This section lists the direct dependencies of the SAMT Core project. For a full list of all
dependencies including transitive ones, you can run ./gradlew project :dependencies

for each subproject.

105

Libraries

Listing D.1 lists the libraries used in the SAMT Core project, with the project’s website
and Maven Central page linked.

Kotlin Standard Library JDK8 Extension

https :// kotlinlang.org/api/latest/jvm/stdlib/

https :// central.sonatype.com/artifact/org.jetbrains.kotlin/

kotlin -stdlib -jdk8 /1.8.22

jCommander

https :// jcommander.org

https :// central.sonatype.com/artifact/com.beust/jcommander

/1.82

Mordant

https :// ajalt.github.io/mordant/

https :// central.sonatype.com/artifact/com.github.ajalt.

mordant/mordant /2.0.0 - beta13

kotlinx.serialization -json

https :// github.com/Kotlin/kotlinx.serialization

https :// central.sonatype.com/artifact/org.jetbrains.kotlinx/

kotlinx -serialization -json /1.5.1

Kaml

https :// github.com/charleskorn/kaml

https :// central.sonatype.com/artifact/com.charleskorn.kaml/

kaml /0.54.0

Eclipse LSP4J

https :// projects.eclipse.org/projects/technology.lsp4j

https :// central.sonatype.com/artifact/org.eclipse.lsp4j/org.

eclipse.lsp4j /0.21.0

kotlin.test

https :// kotlinlang.org/api/latest/kotlin.test/

https :// central.sonatype.com/artifact/org.jetbrains.kotlin/

kotlin -test /1.9.0 - Beta

Listing D.1: Libraries used in SAMT Core

106

Plugins

Listing D.2 lists the Gradle plugins used in the SAMT Core project, with the project’s
website and Gradle Plugin Portal or Maven Central page linked.

Gradle Shadow

https :// github.com/johnrengelman/shadow

https :// plugins.gradle.org/plugin/com.github.johnrengelman.

shadow

Kover - Kotlin Code Coverage Tool

https :// kotlin.github.io/kotlinx -kover/gradle -plugin/

https :// central.sonatype.com/artifact/org.jetbrains.kotlinx.

kover/org.jetbrains.kotlinx.kover.gradle.plugin /0.7.1

Gradle Git Versioning Plugin

https :// github.com/qoomon/gradle -git -versioning -plugin

https :// plugins.gradle.org/plugin/me.qoomon.git -versioning

Listing D.2: Gradle plugins used in SAMT Core

D.2 SAMT Visual Studio Code Extension

Listing D.3 lists the direct dependencies of the SAMT Visual Studio Code Extension,
using the output of pnpm run list --depth 0 --long stripped of local paths. To get
a full tree of all depedencies including transitive ones, run pnpm run list --depth

Infinity.

dependencies:

@microsoft/vscode -file -downloader -api 1.0.1

Wrapper package for the VS Code File Downloader extension

git+https :// github.com/microsoft/vscode -file -downloader -

api.git

https :// github.com/microsoft/vscode -file -downloader -api#

readme

axios 1.4.0

Promise based HTTP client for the browser and node.js

git+https :// github.com/axios/axios.git

https ://axios -http.com

get -port 7.0.0

Get an available port

git+https :// github.com/sindresorhus/get -port.git

https :// github.com/sindresorhus/get -port#readme

jdk -utils 0.4.6

JDK related utils for Java related development.

107

git+https :// github.com/Eskibear/node -jdk -utils.git

https :// github.com/Eskibear/node -jdk -utils#readme

vscode -languageclient 8.1.0

VSCode Language client implementation

git+https :// github.com/Microsoft/vscode -languageserver -

node.git

https :// github.com/Microsoft/vscode -languageserver -node#

readme

which 3.0.1

Like which (1) unix command. Find the first instance of an

executable in the PATH.

git+https :// github.com/npm/node -which.git

https :// github.com/npm/node -which#readme

devDependencies:

@types/mocha 10.0.1

TypeScript definitions for mocha

git+https :// github.com/DefinitelyTyped/DefinitelyTyped.git

https :// github.com/DefinitelyTyped/DefinitelyTyped/tree/

master/types/mocha

@types/node 16.18.34

TypeScript definitions for Node.js

git+https :// github.com/DefinitelyTyped/DefinitelyTyped.git

https :// github.com/DefinitelyTyped/DefinitelyTyped/tree/

master/types/node

@types/vscode 1.78.1

TypeScript definitions for Visual Studio Code

git+https :// github.com/DefinitelyTyped/DefinitelyTyped.git

https :// github.com/DefinitelyTyped/DefinitelyTyped/tree/

master/types/vscode

@types/which 3.0.0

TypeScript definitions for which

git+https :// github.com/DefinitelyTyped/DefinitelyTyped.git

https :// github.com/DefinitelyTyped/DefinitelyTyped/tree/

master/types/which

@typescript -eslint/eslint -plugin 5.59.9

TypeScript plugin for ESLint

git+https :// github.com/typescript -eslint/typescript -eslint

.git

https :// github.com/typescript -eslint/typescript -eslint#

readme

@typescript -eslint/parser 5.59.9

An ESLint custom parser which leverages TypeScript ESTree

108

git+https :// github.com/typescript -eslint/typescript -eslint

.git

https :// github.com/typescript -eslint/typescript -eslint#

readme

@vscode/test -electron 2.3.2

git+https :// github.com/Microsoft/vscode -test.git

https :// github.com/Microsoft/vscode -test#readme

@vscode/vsce 2.19.0

VSCode Extension Manager

git+https :// github.com/Microsoft/vsce.git

https :// code.visualstudio.com

esbuild 0.17.19

An extremely fast JavaScript and CSS bundler and minifier.

git+https :// github.com/evanw/esbuild.git

https :// github.com/evanw/esbuild#readme

eslint 8.42.0

An AST -based pattern checker for JavaScript.

git+https :// github.com/eslint/eslint.git

https :// eslint.org

eslint -config -prettier 8.8.0

Turns off all rules that are unnecessary or might conflict

with Prettier.

git+https :// github.com/prettier/eslint -config -prettier.git

https :// github.com/prettier/eslint -config -prettier#readme

glob 10.2.7

the most correct and second fastest glob implementation in

JavaScript

git :// github.com/isaacs/node -glob.git

https :// github.com/isaacs/node -glob#readme

mocha 10.2.0

simple , flexible , fun test framework

git+https :// github.com/mochajs/mocha.git

https :// mochajs.org/

prettier 2.8.8

Prettier is an opinionated code formatter

git+https :// github.com/prettier/prettier.git

https :// prettier.io

typescript 5.1.3

TypeScript is a language for application scale JavaScript

development

git+https :// github.com/Microsoft/TypeScript.git

109

https ://www.typescriptlang.org/

Listing D.3: NPM packages used in the SAMT Visual Studio Code Extension

D.3 GitHub Actions

Listing D.4 lists the GitHub Actions used by both respositories alongside their GitHub
respositories.

actions/checkout@v3

https :// github.com/actions/checkout

actions/setup -java@v3

https :// github.com/actions/setup -java

gradle/gradle -build -action@v2

https :// github.comm/gradle/gradle -build -action

mikepenz/gradle -dependency -submission@main

https :// github.com/mikepenz/gradle -dependency -submission

github/codeql -action/init@v2

https :// github.com/github/codeql -action

github/codeql -action/analyze@v2

https :// github.com/github/codeql -action

github/codeql -action/upload -sarif@v2

https :// github.com/github/codeql -action

softprops/action -gh-release@v1

https :// github.com/softprops/action -gh-release

actions/setup -node@v3

https :// github.com/actions/setup -node

actions/upload -artifact@v3

https :// github.com/actions/upload -artifact

pnpm/action -setup@v3

https :// github.com/pnpm/action -setup

Listing D.4: GitHub Actions used by SAMT

110

Glossary

ANTLR is a popular parser generator tool.

API Application Programming Interface.

AST Abstract Syntax Tree.

C4 is a framework used in visualizing the architecture of a software system. It stands
for Context, Container, Component and Code..

CI Continuous Integration.

CLI Command-Line Interface.

DSL Domain-Specific Language.

Extended Backus–Naur form (EBNF) is a notation to express a context-free gram-
mar.

FR Functional Requirement.

Gradle is a build automation tool used primarily for Java projects.

gRPC is a high-performance open-source framework developed by Google that enables
server-side communication..

HTTP Hyper Text Transport Protocol.

IDE Integrated Development Environment.

IR Intermediate Representation.

JAR Java Archive.

JVM Java Virtual Machine.

111

Kafka is an open-source distributed event streaming platform for high-performance data
pipelines, streaming analytics, data integration, and mission-critical applications..

Kotlin is an open-source framework for building servers and clients in connected sys-
tems using the Kotlin programming language.

Ktor is an open-source framework for building servers and clients in connected systems
using the Kotlin programming language.

Lexer performs lexical analysis. It takes a stream of characters as input and converts
it into a stream of tokens.

LSP Language Server Protocol.

Maven is a build automation tool used primarily for Java projects.

MDSL Microservice Domain Specific Language.

NFR Non Functional Requirement.

OWASP Open Web Application Security Project.

Parser performs syntactic analysis. It takes a stream of tokens as input and converts
it into an abstract syntax tree.

RPC Remote Procedure Call.

SAMT Simple API Modeling Toolkit.

Semantic Analyzer performs semantic analysis. It takes an abstract syntax tree as
input and performs semantic checks, such as type checking.

SOAP Simple Object Access Protocol.

TextMate is a text editor for macOS.

URI Uniform Resource Identifier.

Vertical Prototype focuses on implementing a single subsystem or function through-
out all layers.

VSCode Visual Studio Code.

WSDL Web Services Description Language.

Xtext is a framework for the development of domain-specific languages..

112

List of Figures

1 Example SAMT file being edited in Visual Studio Code ii

2 Visual Studio Marketplace page for the SAMT extension iii

6.1 EBNF grammar of the SAMT language 33

7.1 C4 system context diagram . 39

7.2 Comparing different CLI approaches . 45

7.3 C4 container plugins diagram . 48

7.4 C4 container diagram . 49

7.5 C4 component diagram for compiler . 50

7.6 Tokens class diagram . 51

7.7 Nodes class diagram . 52

7.8 Example SAMT model . 52

7.9 Example SAMT model side by side with AST produced by the SAMT
Parser . 53

7.10 Types class diagram . 54

7.11 Generator architecture of the current DSL 55

7.12 Monolithic generator architecture . 56

7.13 Intermediate representation (IR) generator architecture 57

7.14 Transport buddy generator architecture 58

7.15 Proof of concept generator architecture . 59

8.1 Simplified SAMT compilation pipeline . 60

113

8.2 Screenshot of an example HTTP transport configuration inside Visual
Studio Code . 62

8.3 Visual representation of the AST . 63

8.4 Type structure of an example todo application 63

8.5 Error message containing two highlighted code sections 64

8.6 Error message with info and help line . 64

8.7 Different types of diagnostic output types 64

8.8 Class diagram of the SAMT meta model 67

8.9 Screenshot of the SAMT Visual Studio Code Extension in use 70

8.10 Error message when using inheritance . 73

8.11 Code coverage report of the SAMT Core project 77

8.12 Whisker chart of the performance benchmark 78

B.1 Continuous integration pipeline in GitHub’s UI 91

B.2 Homepage of the SAMT wiki in editing view 92

B.3 User Id in the Visual Studio Marketplace 94

B.4 Azure DevOps user settings . 94

B.5 Azure DevOps personal access token . 95

114

List of Tables

6.1 Comparison of modeling language concepts 31

8.1 Descriptions of the packages published to Maven Central 65

8.2 Overview of all functional requirements with their priority and state . . . 75

8.3 Overview of all non-functional requirements with their priority and state . 79

C.1 Conference feedback by show of hands . 102

115

Listings

6.1 OpenAPI greeter model . 22

6.2 MDSL greeter model . 23

6.3 Existing Xtext-based greeter core model 24

6.4 Existing Xtext-based greeter provider . 24

6.5 Existing Xtext-based greeter consumer . 25

6.6 Existing Xtext-based greeter rest mapping 25

6.7 WSDL greeter . 26

6.8 gRPC greeter model . 28

6.9 Jolie greeter model . 29

6.10 AsyncAPI greeter model . 30

6.11 Example target declaration in existing language 35

6.12 SAMT greeter core model . 36

6.13 SAMT greeter provider model . 37

6.14 SAMT greeter consumer model . 37

7.1 Excerpt of a recursive descent parser in Kotlin 41

7.2 Example samt.yaml configuration file . 47

D.1 Libraries used in SAMT Core . 106

D.2 Gradle plugins used in SAMT Core . 107

D.3 NPM packages used in the SAMT Visual Studio Code Extension 107

D.4 GitHub Actions used by SAMT . 110

116

Bibliography

[1] C. Dietrich, Call to action: Secure the future maintenance of xtext, 2020-03. [On-
line]. Available: https://github.com/eclipse/xtext/issues/1721 (visited on
2023-06-11).

[2] D. Miller, J. Whitlock, M. Gardiner, M. Ralphson, R. Ratovsky, and U. Sarid,
OpenAPI Specification v3.1.0, 2022-02. [Online]. Available: https://spec.opena
pis.org/oas/v3.1.0 (visited on 2023-06-14).

[3] O. Zimmermann, M. Stocker, D. Lübke, U. Zdun, and C. Pautasso, Patterns for
API design (Addison-Wesley Signature Series (Vernon)). Boston, MA: Addison
Wesley, 2023-01.

[4] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web services descrip-
tion language (wsdl) version 2.0 part 1: Core language,” W3C recommendation,
vol. 26, no. 1, p. 19, 2007.

[5] K. Varda, “Protocol Buffers: Google’s Data Interchange Format,” 2008-07. [On-
line]. Available: https://opensource.googleblog.com/2008/07/protocol-buf
fers-googles-data.html (visited on 2023-06-14).

[6] F. Montesi, C. Guidi, and G. Zavattaro, “Composing services with JOLIE,” in
Fifth European Conference on Web Services (ECOWS’07), IEEE, 2007, pp. 13–
22.

[7] AsyncAPI Specification, AsyncAPI Initiative, 2023-02. [Online]. Available: https
://www.asyncapi.com/docs/reference/specification/v2.6.0 (visited on
2023-06-14).

[8] T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[9] G. Li, The comment of the class JavacParser is not appropriate, 2021-06. [Online].
Available: https://github.com/openjdk/jdk/commit/b98e52a49191cfbb7d954
646cd80a6711daeaca6 (visited on 2023-06-14).

[10] J. Myers, New C Parser, 2008-01. [Online]. Available: https://gcc.gnu.org/wi
ki/New_C_Parser (visited on 2023-06-14).

[11] Intellij Platform Plugin SDK - Custom Language Support, JetBrains s.r.o, 2023.
[Online]. Available: https://plugins.jetbrains.com/docs/intellij/custom-
language-support.html (visited on 2023-03-03).

117

https://github.com/eclipse/xtext/issues/1721
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://www.asyncapi.com/docs/reference/specification/v2.6.0
https://www.asyncapi.com/docs/reference/specification/v2.6.0
https://github.com/openjdk/jdk/commit/b98e52a49191cfbb7d954646cd80a6711daeaca6
https://github.com/openjdk/jdk/commit/b98e52a49191cfbb7d954646cd80a6711daeaca6
https://gcc.gnu.org/wiki/New_C_Parser
https://gcc.gnu.org/wiki/New_C_Parser
https://plugins.jetbrains.com/docs/intellij/custom-language-support.html
https://plugins.jetbrains.com/docs/intellij/custom-language-support.html

[12] Incompatible Changes in Intellij Platform and Plugins API, JetBrains s.r.o, 2023.
[Online]. Available: https://plugins.jetbrains.com/docs/intellij/custom-
language-support.html (visited on 2023-03-03).

[13] Stack Overflow Developer Survey 2022, Stack Overflow, 2022. [Online]. Available:
https://survey.stackoverflow.co/2022/#most-popular-technologies-new

-collab-tools-prof (visited on 2023-03-02).
[14] Language Server Protocol Specification - 3.17, Microsoft, 2022-05. [Online]. Avail-

able: https://microsoft.github.io/language-server-protocol/specificat
ions/lsp/3.17/specification/ (visited on 2023-03-03).

[15] Visual Studio Code - Syntax Highlight Guide, Microsoft, 2023-03. [Online]. Avail-
able: https://code.visualstudio.com/api/language-extensions/syntax-hi
ghlight-guide (visited on 2023-03-03).

118

https://plugins.jetbrains.com/docs/intellij/custom-language-support.html
https://plugins.jetbrains.com/docs/intellij/custom-language-support.html
https://survey.stackoverflow.co/2022/#most-popular-technologies-new-collab-tools-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-new-collab-tools-prof
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide

	Introduction
	Functional Requirements
	Language Features
	Type System
	Constraints
	Services
	Scalability
	Metadata

	Tooling Requirements

	Non-Functional Requirements
	Stakeholder Archetypes
	Usability
	Compatibility
	Maintainability
	Security
	Performance
	Extensibility

	Deliverables
	Source Code
	IDE Plugin
	Public Documentation
	Language Specification
	Project Report

	Quality Measures
	Continuous Integration
	Continuous Delivery
	Code Review
	Working with Git
	Definition of Done (DoD)
	Definition of Ready (DoR)
	Test Concept
	Code Quality Tools
	Qodana
	Kover

	Language Design
	Comparing Against Existing Solutions
	OpenAPI
	Microservice DSL
	Existing Xtext-Based Solution
	Other Solutions
	Capability Matrix

	Language Syntax
	EBNF Grammar
	Language Semantics
	Notable Design Decisions
	Full Example Model

	Architecture
	System Context
	Evaluation of Parser Variants
	ANTLR
	Handwritten Recursive Descent Parser
	Decision

	IDE Support
	Requirements
	Evaluation of Target IDE
	Decision

	Technical Architecture
	Hard Architectural Problems
	Container
	Component
	Compiler Architecture
	Code Generator Architecture

	Implementation
	Compilation Internals
	Lexer
	Parser
	Semantic Analysis
	Code Generation

	Ktor Generators
	HTTP Transport Configuration Parser
	SAMT CLI
	Commands
	Message Formatting

	Extending SAMT
	Adding SAMT as a Dependency
	Adding New Generators
	Adding New Transport Technology
	Custom SAMT Frontend

	SAMT Wrapper
	Wrapper Script
	Distribution
	SAMT Template

	SAMT Visual Studio Code Extension
	Syntax Highlighting
	Snippets
	Task Provider
	Language Server
	SAMT Configuration

	Requirements Coverage
	Functional Requirements
	Non-Functional Requirements

	Summary and Outlook
	Summary
	Outlook

	Task Assignment
	Development Instructions
	SAMT Core
	Development IDE
	Build System
	Continuous Integration
	Releasing
	Documentation

	SAMT Visual Studio Code Extension
	Development IDE
	Package Manager
	Scripts
	Continuous Integration
	Releasing
	Documentation

	User Feedback
	Developer 1
	Developer 2
	Developer 3
	Developer 4
	Internal Developer Conference
	Summary

	Dependencies
	SAMT Core
	SAMT Visual Studio Code Extension
	GitHub Actions

	Glossary
	List of Figures
	List of Tables
	Listings
	Bibliography

