Eastern Switzerland

University of Applied Sciences

Bachelorarbeit

Fithess Gamification

Department of Computer Science
OST - University of Applied Sciences

Campus Rapperswil-Jona

Author(s) Joel Suter & Lucas von Niederhausern
Advisor Frank Koch
Project Partner Michael Glintensperger

External Co-Examiner Hansjorg Huser
Internal Co-Examiner Mitra Purandare

OST : o
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Abstract

Initial Situation In today’s world, gamification is used and implemented in more and more as-
pects of daily life. The purpose of gamification is to motivate users to do certain things. Another
growing market is physical exercise, especially with young people. An increasing amount of peo-
ple are trying to do more physical exercise. Everyone agrees that physical exercise is the key
to a healthy life, but the main problem is that people often need more motivation. So we see
massive potential in solutions that address this problem. A potential solution to motivate people
to do more sports is a platform that gamifies physical exercise and makes it a fun, competitive
game that can be played between friends and other users. The need for physical exercise and
motivation to do it will draw people to platforms and solutions like this.

Objective With this project, we aim to build a platform mobile app of this type. The main goal is
to create an initial version of such a platform. That means we want to create an app that allows
users to challenge their friends and other users to do physical exercises. We will implement
various gamification aspects, such as allowing users to achieve milestones, track their data, and
display that to other users. We plan to use a "turn-based" approach for the challenges, allowing
users to play with users in an "async" fashion. That means participants can be online at different
times.

Conclusion In this project, we created a prototype for a mobile app that gamifies exercise. We
created this mobile App using React Native and Expo in our Frontend and Firebase as our Back-
end. Our App allows users to create an account using their phone number and challenge anyone
in their contact list or a random user. The user can select the challenge type and duration one
has to perform in the challenge. Challenges then get completed in a turn-based fashion. A user
performs a challenge, and it gets sent to his opponent. The opponent can then perform, and it
will get sent back. This goes back and forth until one user cannot beat the other user’s score.
We will track various statistics for the user, which will be displayed in his profile and displayed
to other users to generate a more competitive and gamified environment. We implemented one
challenge type for this initial version, "Pull-ups." In the future, this should be extended to allow the
user to perform various challenges and can generally be expanded upon due to the modularity
we considered while implementing it.

h Firebase

Figure 1: Firebase

Figure 2: React Native

Joel Suter & Lucas von Niederhausern Page 10f 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Management Summary

Promoting fitness and health while making it fun is a rare combination. Our project aimed to
develop a mobile application that achieves this by incorporating gamification elements to moti-
vate users to exercise and enjoy a sense of gratification. The application we created is simple
and user-friendly. It allows you to Challenge your friends, family, or even random individuals to
participate in various physical activities.

In our context, a Challenge involves daring your chosen Opponent to partake in physical activity.
The chosen Opponent will then receive a Notification on his phone that he got challenged. He
then has 12 hours to perform the chosen activity as best as he can. Once he is done, the challenge
will get sent back to the Creator, and he will be able to try to beat the score. This process will
repeat until someone is not able to outperform his Opponent. If a user cannot beat the score,
he will lose the Challenge, and his Opponent will be crowned as the winner. To detect repetitions
(score) of the exercise accurately, our application requires you to place your mobile device in your
pocket or another suitable location.

As you engage in activities within the app, you can earn Badges (Milestones) and increase your
statistics that will be showcased on your Banner. The Banner is a part of the profile and will
be displayed to all your Opponents before they perform on a Challenge. This way the users can
see their Opponent’s experience before competing. This incentivizes each user to maximize his
statistics and win as many Challenges as possible so that other users see their achievements.
It creates a more competitive environment and encourages users to participate in physical ex-
ercise. Additionally, you can personalize your Banner with your profile picture, making it unique
to you. The app also provides a comprehensive overview of your key statistics and performance
metrics and identifies your favorite Opponent.

Furthermore, the app incorporates a global ranking feature that showcases the top 100 players
based on their performance. You will be included in this prestigious ranking if your performance
is exceptional.

Currently, our application supports a "pull-ups Challenge", but we have designed it with modu-
larity in mind, allowing for efficient integration of additional Challenges in the future. Looking
ahead, the plan is to explore the utilization of machine learning or Al to enhance the detection
of repetitions in various physical activities, ensuring more efficient and reliable tracking while
implementing safeguards against cheating.

Joel Suter & Lucas von Niederhdusern Page 2 of 152

OST

Eastern Switzerland
University of Applied Sciences

Fitness Gamification

[} \
- |
114 @ @ 5 *an
Profile (o IES

¥ Y W oa

Total Wins: 9 Repetitions 1014~ Win/Loss 0.09 Total Pla

Favorite Opponent
Q

fan Max Mustermann

Pull-ups of the last 10 weeks

m o I

.
a b4 a
Home. Rankings Profile
i
A I
\E _— . =

Figure 3: User Profile

e \
- |
516 @@ 5 v4n
< Details D ®

Your Opponent

L Joel

2\

¥ Y M

Total Wins: 9 Repetitions 1014 ~ Win/Loss 0.09 Total Pla I

Challenge Type: Pull-ups

Duration: 5 Minutes |

Most Repetitions: 0 ‘
I

Completed: No

I

\ I
N — - - /.,,4,’

Figure 5: Challenge Details Screen with Oppo-
nents Banner

Joel Suter & Lucas von Niederhausern

® AN
o |
102 @ @5 *d4n
Challenges
1
— YourTurn ——————— |

o | MaxMustermann 10h
* Repetitions: 13

—— TheirTum —
o [MaxMustermann 7h
l Repetitions: 22

— Completed ————

Max Mustermann

‘o

Oh

e

Repetitions: 12

|
||
\l/ Max Mustermann
Repetitions: 9

A 4 a
Home Rankings Profile
1l
A I
\ N - - -’

Figure 4: Home Screen

518 @ @ 5 *an

Do Pull-ups!

0

Pull-ups

A I
\ﬁ — - _ o /4,,{,4

Figure 6: Challenge Perform Screen

Page 3 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Glossary

Agile Agile is a project management and product development approach that prioritizes flexi-
bility, collaboration, and customer satisfaction. The methodology is adaptive rather than
predictive, with changes and iterations being a normal part of the development process..
17

Apple Push Notification Service Apple Push Notification service (APNSs) is a service provided by
Apple that enables developers to send push notifications to i0S, macOS, watchOS, and tvOS
devices. It allows developers to send lightweight, timely, and relevant notifications to users
even when the app is not running in the foreground. APNs acts as a mediator between the
server and the device, ensuring secure and efficient delivery of notifications. To implement
push notifications in an iOS app, developers need to integrate the APNs APl and configure
the necessary certificates and permissions in the Apple Developer Portal.. 34, 75

backend The part of a computer system or application that is not directly accessed by the user,
typically responsible for storing and manipulating data. 20, 22, 25, 27, 30, 32-34, 37-39,
44, 49, 50, 52, 56

Badges In the context of this paper the term "Badges" is used to mean a "Badge" a user earns
after completing a specific milestone. For example a user earns a badge for winning his
first challenge. A badge could be compared to a medal someone earns after achieving
some kind of goal.. 2, 4,18, 29, 36, 41,72, 80-83, 91, 94, 95, 98

Banner Inthe context of this project "Banner" is the upper half of the users profile. It displays the
avatar, Badges and Tracked Data. The Banner can be viewed by other users in the challenge
details. It's used to show off the achievements and experience of a user to his opponents..
2,18,19, 41,42, 69-72, 80, 84, 94, 95, 98,102

Blob A term commonly used in computer science and data storage to refer to a binary large ob-
ject. It represents a collection of binary data, typically stored as a single entity in a database
or file system. Blobs can include various types of data, such as images, audio files, or seri-
alized objects.. 71

Challenge In the context of this paper, a challenge is a sports game played between two of our
users. A user can challenge another user to a certain sport activity. The challenged user
then has the opportunity to perform the sport activity to his best abilities. It then gets sent
back to the creator which then has to perform on it. It goes back and fourth until someone
can't beat the other users score.. 2,18-20, 29, 34, 40, 42, 58-62, 65, 66, 69, 72, 76—78, 80,
81,90, 91,94-96

Collection In the context of Firestore, a "Collection" is a grouping of documents that share a
common path. It is a fundamental concept in Firestore’s data model. Collections can con-
tain zero or more documents, and each document within a collection is uniquely identified
by its document ID. Collections provide a way to organize and query related data in Fire-
store. They are often used to represent entities or categories within an application, such
as users, products, or posts. Firestore allows for hierarchical structuring of collections to
create subcollections within a collection.. 29, 32, 35, 49, 50, 54, 57, 59, 76, 79, 80, 83

Component In the context of React Native, a "Component" is a reusable building block used to
create user interfaces. It represents a self-contained piece of Ul functionality that can be
composed and reused across different parts of an application. Components in React Native

Joel Suter & Lucas von Niederhausern Page 4 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

are typically written in JavaScript or TypeScript and encapsulate a combination of visual el-
ements, logic, and state management. They help promote code reusability, maintainability,
and a modular approach to Ul development.. 38, 39, 51,72, 87

Creator In the context of this project the creator is always refered to as the person that created
a challenge.. 2,18, 29, 59

Document In the context of Firestore, a "Document” is a unit of data storage and retrieval. It rep-
resents a set of key-value pairs, where each key is a field name and each value is the corre-
sponding field value. Documents are stored within collections and are uniquely identified by
their document ID. Firestore uses a flexible, schema-less data model, allowing documents
within a collection to have different structures. Documents can contain nested fields, ar-
rays, and other complex data types. They serve as the main building blocks for organizing
and retrieving data in Firestore.. 28, 29, 32, 49-51, 57, 66, 71, 76—80, 82, 83, 87

Document Reference Inthe context of Firestore, a "Document Reference" is an object that points
to a specific document within a Firestore database. It represents a handle to a document
and provides access to read, write, and listen to changes in the referenced document. A
Document Reference consists of the collection path and the unique identifier (document
ID) of the document it references. It allows developers to perform operations on a specific
document, such as retrieving its data, updating fields, or deleting the document. Document
References are commonly used for navigating and interacting with documents in Firestore..
28, 59

Expo Expois afree and open-source platform for building native mobile applications using JavaScript
and React Native. It provides a set of tools, libraries, and services that simplify the devel-
opment process, allowing developers to create high-quality cross-platform apps with ease.
Expo offers features like easy app setup, hot reloading, and access to device APIs, making
it a popular choice for rapid mobile app development.. 25, 34, 38, 44, 45, 48, 56, 65, 71, 75,
76,92, 95,107

Firebase Google Firebase is a comprehensive mobile and web application development plat-
form that provides a wide range of backend services, including authentication, real-time
database, cloud messaging, and more. It offers developers an easy way to build high-quality
applications with built-in scalability, security, and offline support.. 25-27, 30, 32, 34, 36—-39,
44-46, 48, 49, 53, 55-57, 85-91, 95, 96, 98, 107

Firebase Admin SDK The Firebase Admin SDK is a set of server-side libraries provided by Google
Firebase that enables developers to build server applications that interact with Firebase
services. It allows for programmatic access to Firebase functionality, including managing
user authentication, reading and writing data in the Realtime Database, and interacting with
Cloud Firestore and Cloud Storage. The Firebase Admin SDK supports multiple program-
ming languages, such as Node.js, Java, Python, and Go, and provides powerful tools for
server-side integration with Firebase services.. 33, 46, 85

Firebase CLI Tools The Firebase CLI Tools, also known as the Firebase Command-Line Interface
(CLI), is a set of command-line tools provided by Google Firebase. It offers a convenient
way to interact with Firebase services from the command line or terminal. With the Firebase
CLI, developers can perform various tasks such as deploying web applications, managing
Firebase projects, configuring security rules, and accessing Firebase features and services.

Joel Suter & Lucas von Niederhdusern Page 5 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

It simplifies common development tasks and enables automation and scripting capabili-
ties for Firebase projects. The Firebase CLI is an essential tool for Firebase developers to
streamline their workflow and manage Firebase resources efficiently.. 33, 44

Firebase Cloud Functions Firebase Cloud Functions is a serverless compute platform provided
by Google Firebase. It allows developers to write and deploy server-side code in JavaScript
or TypeScript that runs in response to events in Firebase services, such as changes to the
database, user authentication, or file uploads. Firebase Cloud Functions enables develop-
ers to extend their Firebase applications with custom server-side logic without the need to
manage infrastructure.. 26, 27, 33, 37, 44, 46, 52, 54, 57, 67,76, 78, 80, 85, 95, 96

Firebase Cloud Messaging Firebase Cloud Messaging (FCM) is a cross-platform messaging so-
lution that allows developers to reliably deliver messages and notifications to Android, iOS,
and web applications. It provides a simple and reliable way to send messages to devices
and handle downstream messages from them. FCM handles all aspects of message deliv-
ery, including message routing, security, and scaling, allowing developers to focus on the
application logic. FCM supports various types of messages, including notification mes-
sages, data messages, and topic-based messaging.. 34, 75

Firebase JavaScript SDK The Firebase JavaScript SDK is a library provided by Google Firebase
that allows developers to easily integrate Firebase services into web applications. It pro-
vides a set of client-side APIs and tools that enable real-time data synchronization, user
authentication, cloud storage, and other Firebase features. The Firebase JavaScript SDK
supports JavaScript and TypeScript and simplifies the process of interacting with Firebase
services in web development projects.. 26—-28, 32, 36, 48, 49, 53

Firebase Storage Firebase Storage is a cloud-based storage service provided by Google Fire-
base. It offers developers a secure and scalable solution for storing and serving user-
generated content, such as images, videos, and other files, in their applications. Firebase
Storage integrates seamlessly with other Firebase services, allowing developers to easily
manage and access files from their web and mobile applications. It provides features like
file uploads, downloads, and security rules to control access to stored content.. 28, 36, 71,
80, 83

Firestore Firestoreis a flexible and scalable NoSQL document database provided by Google Fire-
base. It is designed to store, sync, and query data for client- and server-side applications.
Firestore offers real-time data synchronization, offline capabilities, and powerful querying
with automatic scaling, making it suitable for building modern, cloud-based applications..
27-29, 32, 34-36, 38, 46, 48-53, 57, 59, 70-72, 80, 83, 86, 87, 95, 96, 99

Floating Action Button A Floating Action Button (FAB) is a circular button commonly used in
user interfaces to promote a primary action. It is a prominent and elevated button that
"floats" above the content, usually positioned at the bottom right corner of the screen. The
FAB provides a quick and easily accessible way for users to perform the most important
action within an application. It is often used to trigger actions such as creating a new item,
composing a message, or initiating a call to action. The appearance and behavior of the
FAB can vary depending on the platform and design guidelines.. 58, 62

Jest Jest is a popular JavaScript testing framework developed by Facebook. It is widely used
for testing JavaScript applications, including frontend applications built with frameworks
like React, Vue, and Angular, as well as backend Node.js applications. Jest provides a com-
prehensive set of features for writing and running tests, including test runners, assertion
libraries, mocking capabilities, and code coverage analysis. It offers a simple and intuitive

Joel Suter & Lucas von Niederhdusern Page 6 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

syntax for writing test cases and supports powerful features such as snapshot testing and
parallel test execution. Jest is known for its fast and efficient test execution, making it a
preferred choice for many JavaScript developers.. 89

Jira Cloud Jira Cloud is a cloud-based project management and issue tracking solution provided
by Atlassian. It offers a comprehensive set of features for teams to plan, track, and manage
their projects, tasks, and workflows. Jira Cloud provides a web-based interface accessible
from any browser, eliminating the need for self-hosted infrastructure. It offers features
such as customizable issue tracking, agile project management, real-time collaboration,
reporting and analytics, and integration capabilities with other popular tools. Jira Cloud is
a scalable and flexible solution that caters to teams of all sizes and industries, enabling
effective project management and streamlined workflows.. 17

Method Swizzling A technique used in object-oriented programming to dynamically change the
behavior of methods in a class at runtime. It involves swapping the implementation of one
method with another, usually within a class hierarchy. This technique is commonly used
in languages like Objective-C and Swift, where dynamic runtime features are supported.
Method swizzling can be employed for various purposes, such as adding new function-
ality, modifying existing behavior, or intercepting method calls for debugging or profiling.
However, method swizzling should be used judiciously, as it can introduce complexity and
make code harder to understand and maintain. Improper use of method swizzling can lead
to unexpected behavior and difficult-to-debug issues.. 75

Multiplatform In the context of mobile development, "Multiplatform" refers to the ability to de-
velop and deploy applications that can run on multiple platforms, such as iOS and Android,
using a single codebase. It typically involves utilizing frameworks or technologies that allow
developers to write shared code in a common programming language, while still maintain-
ing a native look and feel on each platform. Multiplatform development can help reduce
development time, effort, and costs by enabling code reuse across different platforms.. 15,
24,71

NoSQL NoSQL, short for "Not only SQL," is a term that refers to a type of database manage-
ment system that diverges from the traditional relational database model. Unlike relational
databases, NoSQL databases are designed to handle large volumes of unstructured or
semi-structured data, providing high scalability, performance, and flexibility. NoSQL databases
use various data models, such as key-value, document, columnar, and graph, to store and
retrieve data. They are often used in modern applications requiring agility, horizontal scal-
ability, and the ability to handle rapidly changing data schemas.. 25, 29, 35

Opponent In the context of this paper, a opponent is refered to as the other player in a challenge,
from the perspective of the currently logged in user. It is also refered to as the person that
received the challenge, but did not create it.. 2, 18, 29, 41, 50, 58-60, 62, 66, 69, 72, 77, 94

Profile Inthe context of this project "Profile" is the dashboard of the user where the user can see
various statistics and his avatar. 29, 36, 57, 68-72, 91

React Native React Native is an open-source mobile application framework developed by Face-
book, Inc. It is used to develop applications for Android, i0S, Web and UWP by enabling
developers to use React along with native platform capabilities.. 24, 25

Joel Suter & Lucas von Niederhdusern Page 7 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Real-time Updates Real-time Updates refer to the capability of Firebase to provide instantaneous
and synchronized data updates across connected devices or clients. Firebase offers real-
time updates by utilizing a real-time database, where changes made to the data are imme-
diately propagated to all connected clients. This enables real-time collaboration, instant
messaging, live data synchronization, and other real-time features in Firebase-powered ap-
plications. Real-time Updates in Firebase are achieved through web sockets or other effi-
cient data synchronization mechanisms, ensuring that all connected clients have the latest
data in real-time.. 35, 36, 49, 50, 69-71, 78, 88-90

Realtime Database Firebase Realtime Database is a NoSQL cloud-hosted database provided by
Google Firebase. It allows developers to store and synchronize data in real time between
clients and servers. The database uses a JSON-based structure and provides real-time
data synchronization, offline support, and powerful querying capabilities. Firebase Real-
time Database simplifies the development of collaborative and real-time applications by
handling data synchronization and conflict resolution automatically.. 34, 35

Single Page Application In the context of React Native, a "Single Page Application” (SPA) is a
web application that dynamically updates its content without requiring a full page reload.
In a React Native SPA, the user interface is built using a single HTML page, and naviga-
tion between different views or screens is managed through JavaScript, typically using a
library like React Navigation. SPAs provide a seamless and responsive user experience by
loading data and updating the Ul asynchronously, resulting in faster and more interactive
applications.. 39

System Context The environment in which a system operates. This encompasses the bound-
aries of the system, interactions with users and other systems, and external conditions
impacting system operations. Understanding the system context is vital in system design
and analysis, as it helps to clarify the operational conditions and requirements for the sys-
tem.. 15

Tracked Data In the context of this paper the term "Tracked Data" is used to mean all the data
we track of a user, while he plays challenges on our Application. "Tracked Data" contains
information like, challenges played, challenges won and the favorite opponent of a user.
This data is then displayed or used for further calculations. 4, 69, 72, 76, 77, 81, 89, 91

Acronyms

API Application Programming Interface. 15, 16, 25

DoD Definition of Done. 23, 113, 114
DoR Definition of Ready. 113

NFR Non-Functional Requirements. 19, 21, 23

Joel Suter & Lucas von Niederhdusern Page 8 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Contents
1 Starting Position 12
2 Conceptual Formulation 13
3 Framework Conditions 14
4 System Context 15
5 Requirements 17
5.1 Functional Requirements 17
511 UseCaseDescription 17
5.1.2 Evolution of Functional Requirements 19
5.2 Non-Functional Requirementso 21
521 DisregardedandUntestedNFRs 23
5.2.2 Verification 23
5.3 Optional Requirements 23
6 Design and Architecture 24
6.1 ContainerDiagram e 24
6.1.1 Client e 24
6.1.2 Backend 25
6.1.3 External Dependencies 25
6.2 ComponentDiagram. 26
6.2.1 Backend Access 27
6.3 DomainModel 28
6.3.1 TypesofReferences 28
6.3.2 Description L 29
6.4 Backend-Firebase. 30
6.4.1 Authentication 31
6.4.2 Functions. 32
6.4.3 Firebase Cloud Messaging And Notifications 34
6.4.4 Database-Firestore 34
6.4.5 FirebaseStorage. 36
6.4.6 Scaling 36
6.4.7 Pricing e e 37
6.5 AppArchitecture 38
6.5.1 Multiplatform-Expo. 38
6.5.2 Structure 38
6.5.3 UlDesign e e 39
6.5.4 CodingStyleGuide 43
6.6 Deployment. 44
6.6.1 FirebaseFunctions 44
6.6.2 Mobile App 44

Joel Suter & Lucas von Niederhdusern Page 9 of 152

O

OST

Eastern Switzerland
University of Applied Sciences

Fitness Gamification

6.7

7.1

7.2

7.3

7.4

7.5

7.6
7.7

7.8

7.9

7.10
7.1

7.12
7.13

7.14

7.15
7.16

Security
6.7.1 FirestoreAccess
6.7.2 Storage Access
6.7.3 InputValidation

Implementation
Firebase Initialization
711 SettingUp Services,
7.1.2 Frontend Configuration
71.3 FirebaseSDK.
Frontend Firestore Access
7.2.1 Read Operations and Real-time Updates
Firebase Functions
7.3.1 Implemented Functions
7.3.2 Firebase AdminSDK
Authentication o L
7471 Setup
7.4.2 Implementation
7.4.3 Firebase Phone Auth Limitations
ChallengeCreation.
7.5.1 OpponentSelection
7.5.2 Challengingrandomuser
HomeScreen
ChallengeDetails
7.71 ChallengeHistory
Performachallenge
7.8.1 Implementnew Challenge
7.8.2 Userdid not Performon Challenge
7.8.3 Shortcomings
Profile
7.91 10WeekHistory,
7.9.2 ProfilePicture
793 Banner
7.9.4 ComponentStructure
Chat e
Rankings
7.11.1 ExtendingtheRankings
Push Notifications
TrackedData
7.13.1 Challengecompleted
7.13.2 User Performedon Challenge
713.3 TracknewData
Badges-Milestones
70471 SequenCe e
7142 AddnewBadge
7.14.3 Badge Copyrights
Localization
Technical Test Dokumentation
7.16.1 Firebase Cloud Functions Testing
7.16.2 Frontend Testing.

Joel Suter & Lucas von Niederhausern

Page 10 of 152

O

OST

Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

7.16.3 Testing concessSioNs e 90

7.16.4 Manual TestProtocol 90

717 Deployment 92
7077 AppStore. e e 92

717.2 GooglePlayStore 92

8 Result 94
9 Conclusion 98
9.1 NeedstobeAdressed 98
9.2 FutureVision e 99
10 Project and Time Management 101
10.1 ProjectPlan e 101
10.1.1 Deviations 102

10.2 Projectorganization 103
10.2.1 Issuemanagement 103

10.2.2 Timetracking 103

10.2.3 Divisionof Tasks 104

10.3 Risk Management 104
10.3.1 Realizedrisks 106

10.4 TestConcept e e 108
10.4.1 Additional 109

10.4.2 System e 109

10.4.3 Integration 109

10.4.4 Component. e 109

10.4.5 Unit 10

10.4.6 Deviations 110

10.4.7 End User Usability Tests, 110

10.5 Definition of Ready / DefinitionofDone 113

11 Meeting Minutes 119
12 Personal Reports 135
13 Screenshots 136
14 Usability Test Protocols 141
15 Task 149

Joel Suter & Lucas von Niederhdusern Page 11 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

1 Starting Position

As gymnasium, sports, video game, and IT enthusiasts, we are interested in projects combin-
ing our passions. We have worked on a previous project with the same partner and advisor and
achieved great results, and we are more than thankful to be able to work with them again for our
bachelor thesis.

A mobile application that combines sports with challenges and games in a digital aspect is some-
thing we think is missing in the industry and a great opportunity to encourage all kinds of people
to compete against each other in friendly competitions.

This project aims to build a mobile application with which a player can challenge other players to
play in friendly competitions. The competitions consist of exercise, time duration, and players.
The goal is to beat the score of your opponent. Each challenge has to be performed in a given
time frame and will be sent back to the original challenger, who has to beat the score again. As
long as no user can beat the other user’s score, the challenge will be sent back and forth until one
user cannot beat the other user’s score. He will lose if a player cannot beat the score or exceeds
the given time.

Joel Suter & Lucas von Niederhausern Page 12 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

2 Conceptual Formulation

To motivate people to exercise more sports, we want to implement a mobile application where
friends and groups of people can challenge each other. A player creates a challenge, including the
exercise, duration, and opponent, to determine who can do more repetitions of a given exercise in
a specific duration. The opponent can do the challenge and return the challenge with his score to
his original challenger. This cycle is repeated until someone cannot defeat his opponent’s score
or the timer runs out to perform the challenge. On the dashboard, the player can see his statistics
regarding how often he wins or loses, his history for a given challenge type, and an overview with
whom he has played challenges the most.

Joel Suter & Lucas von Niederhdusern Page 13 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

3 Framework Conditions

This project is part of the bachelor thesis which is required for the eligibility of the bachelor. The
planned time budget for this project is 360 hours per person and equals to 12 ECTS.

Joel Suter & Lucas von Niederhausern Page 14 of 152

OSsT

Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

4 System Context

Fitness Gamification User

[Person]
A user who uses the functionality of our

App

Create Account and Log In,
Create Challenges,
Receives Challenges,
Perform Challenges,

View Personal Data,

View Data of other users,
View Ranking

Fitness Gamification App
[Software System]

Allows users to create and perform
challenges in a competitive
environment, against friends and other
random users.

) . . Uses various apis and sensoric data
Uses various apis and sensoric data

10S API
[External API]

Android API
[External API]

Allows access to platform specific data
and features of 10S

Allows access to platform specific data
and features of Android

Figure 4.1: System Context

The above graphic 4.1 shows the System Context of our application. The person "Fitness Gam-
ification User" represents our software system user. We only have one type of user since there
is currently no plan to implement users with different functionality or elevated privileges. Our
Software System, "Fitness Gamification App,' contains all the code and infrastructure we control,
manage, and develop. The System will run as an app on both Android and IOS, allowing for a
Multiplatform approach. We have two external Systems, specifically, two external Application
Programming Interfaces (APIs) that we use. These are platform-specific, and which API is used

Joel Suter & Lucas von Niederhdusern Page 15 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

depends on the app’s platform. These APIs are primarily used to create a cross-platform app that
runs on both these platforms, and the core APl we will use from them is the sensor AP, but there
are other APIs we use such as contacts.

Joel Suter & Lucas von Niederhausern Page 16 of 152

OST

Eastern Switzerland
University of Applied Sciences

Fitness Gamification

5 Requirements

We use Agile Methodologies to keep track of our functional requirements. These are tracked as
User-Stories or issues in Jira Cloud. We prioritize the User-Stories and issues in our Jira Cloud-
Backlog.

5.1 Functional Requirements

This section will show all our project’s Functional Requirements as Use Cases. It shows the
latest version of the functional requirements. Any changes made to functional requirements in
the duration of the project will be covered in 5.1.2

With
1:Sign Up ' Phonenumber

extend

6: Create

14: Send Download

5: Perform
Challenge

7: Receive
Push
Notification
for Challenge

’
: include

Z_ New Challenge or send

AAAAAAAAAAAA existing one back /

e 4:Send with |extme:sage and
Challenge !

C

Overview Screen chalienges

: View Challenge | Overview

10: Earn
Milestones/Badges

of running

12: View their own

Visible in
Dashboard/Banner

Dashboard/Banner of

Challenge 3: Create include X N
. T extend -+ Link to unregistered
against random Challenge)
user with challenge
user . A
include invitation ' challenges sentto

unregistered user will
link them to our
application download

13: View

their friends

Ne;/:‘(ei)lzizltliinge 8:Receive U,
: i Challenge

Fitness Gamification

11: View Dashboard/Banner
Banner of

Opponent

Can see the Banner of
the Opponent in the
challenge he received

include

Figure 5.1: Use Case Diagram Final
Our Application only contains a single type of user. This user is anyone that downloads our

Application or receives a link to download the Application. All use cases extend the "1: Sign
Up" use case since, to use the functionality of our App, a user needs to have an account.

5.1.1 Use Case Description

| Nr | Use Case | Description

Joel Suter & Lucas von Niederhdusern Page 17 of 152

Eastern Switzerland

University of Applied Sciences

Fitness Gamification

Sign Up

The user expresses the wish to be registered on the platform. Reg-
istration will contain their Name and their phone number.

Sign In

The user wants to be able to sign into our application after he cre-
ates an account.

Create Challenge

The user wishes to create a "Challenge" and send it to another
user. While creating the Challenge, the user can select the type of
challenge/exercise, the time to complete the exercise and choose
a single user. After creating the Challenge, the Opponent will be
prompted to perform the exercise in the given period. After com-
pleting it, it will be returned to the Challenge’s Creator.

Send Challenge

The user wants to be able to send a Challenge to a user. Sending a
Challenge can be either one he just created and completed or one
he received and responded/participated in. When receiving the
Challenge, the user will be able to perform his best for the given
exercise and send it back to the user he received the Challenge
from.

Perform Challenge

The user wants to be able to perform a Challenge. That means he
wants to be able to participate in the given exercise type and that
our app will record his result and, when completed, sent it to the
other user

Create Challenge
against random user

The user wants to be able to create and perform a Challenge
against a random user that also uses the App.

Receive Push Notifi-
cation for Challenge

A user wants to be notified when he is challenged to a new Chal-
lenge or if it is his turn to attempt it. The user also wants to be
notified if he won the Challenge if no one could beat his score.

Receive Challenge

Users can receive a Challenge from a user. There are two distinct
cases when receiving the Challenge in this use case. The user re-
ceives a Challenge that was either newly created or the previous
attempt of the user was topped, and he will be prompted to at-
tempt to beat the current high score of the Challenge. In the other
case, the user receives the Challenge where the other participants
were unable to best his attempt/score, and he will be declared a
winner and unable to respond/attempt to best the score again.

View Challenge
Overview Screen

The user wants to be able to view a screen (home page) where all
his running challenges are listed and where he can open specific
challenges and view their details. The user will see if it is his turn
to perform the Challenge or if he has to wait for the other user to
complete his turn

10

Earn Mile-

stones/Badges

The user wishes to earn Badges for completing certain milestones
and achievements, which he can then view in his Banner on his
Dashboard and show to other users.

1

View Banner of Op-
ponent

The user wishes to see the Banner of his Opponent, where he can
see the earned Badges and some tracker of statistics of his Op-
ponent so that he can guess his Opponent'’s skills.

12

View their own Dash-
board/Banner

The user wants to be able to view a Dashboard of his most impor-
tant information, including the Banner that will be displayed to his
opponents.

Joel Suter & Lucas von Niederhdusern Page 18 of 152

OST : o
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

13 | View Dash- | The user wants to be able to view the Dashboard of his friends.
board/Banner of
their friends

14 | Send Download Link | A user wants to be able to challenge users that are currently not
to unregistered User | registered with the application. In that case, the challenged user
will receive a download link to the store page of our application.

Table 5.1: Use Case Description

5.1.2 Evolution of Functional Requirements

The functional requirements represent the requirements provided in the initial task formulation.
Some requirements were removed, changed, or added during the project’s first few weeks. The
changes done to them and the reason for that will be listed here. The Use Cases from the original
task formulation looked like this:

Challenges sent to
unregistered user will
link them to our
application download

9: Send Download
Link to unregistered
user with challenge
invitation

With
Phonenumber

1: Sign Up

extend 2: Create
.
Challenge
extend eXiend

.
; extend include
sextend w

include

1 extend

New Challenge

3:Send or send existin
] g
S;SCfeate Challenge one back
roup
: 4: Receive
E cha Hengﬂ .mcutle
6: View New Challenge
E Dashboard Personal or existing

Information Only

8: Receive
Push
Notification
for Challenge

: 7: View Challenge | overiew
¥ . of running
1 Overview 5Creen | goajenges
H
H
|
‘\

and groups

Fitness Gamification

Figure 5.2: Use Cases Version 1

In the first three weeks, we worked on finalizing the requirements, Non-Functional Requirements
(NFR)s, and setting up infrastructure. When we discussed the functional requirement in our meet-
ings with our professor and customer, we realized that some of the functional requirements were
more complex than we thought in the beginning and that many edge cases would arise. The
functional requirements that caused us to overthink if we should implement them had to do with
groups. In short, a user could create a group, manage that group, send a Challenge to all group

Joel Suter & Lucas von Niederhdusern Page 19 of 152

Eastern Switzerland

University of Applied Sciences

Fitness Gamification

members, and view the ranking inside a group. When trying to specify these requirements more,
we noticed that there would be some edge cases and questions regarding the flow and manage-
ment of the group. A lot of our time would have to go into finding solutions for these edge cases
and also the group’s management with invitations, removing members, etc. That means a lot of
the work would go into the backend away from the Ul, and the Ul would suffer for that reason. We
were not as interested in the group management personally but more in the Challenges, achieve-
ments, and being able to focus more on the look and feel of our application.

The specific issues that arose are:

« How do we handle participants in a group that do not participate in the Challenge (aka
Bums)?

* How is the flow of the Challenge inside of a group? When is a winner selected? Is there a
fixed amount of turns?

+ How will placement in a group Challenge be counted in the global ranking?

After discussing these issues we made two proposals to our customers. One proposal where we
implement other functionalities instead of groups. The other proposal was how to address the
"problems" that arose with the groups. with our recommendation being implementing other use
cases and disregarding the group functionality. We will show the mind map 5.3 with alternative
functionalities that we used to specify our new functional requirements. This suggesting was
accepted and resulted in the functionality and use cases listed in the section 5.1

Without Groups
Chat Implement
funktion more
challenge challenge
Friends Global TOté‘ — random types
list ' ranking player from
i Rankings A= layerbase
ranking ranking By
More
tested and
Seasons
old plated
(Rankings get g \pt‘
reset after a solution
fixed time) More Banner
S See other Information system
dashboards on — (apex
Dashboard legends)
Anti
| cheesing
(cheating)
More S methods \
; adges
detailed "ac8 —
. Milestones .
profile Limit
Anzahl
aktiver
challenges

Figure 5.3: Mind Map Alternatives

Joel Suter & Lucas von Niederhausern

Page 20 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

5.2 Non-Functional Requirements

We express our Non-functional requirements as defined in FURPS+. While this project progresses,
this table will be updated with new NFR’s according to the knowledge of the domain and its tech-
nologies. We will give each NFR a priority of must, should, can. Where must is any NFR that has
to be implemented and taken into account and tested. Should is a NFR that as the name sug-
gests should be considered and implmented but in some cases can be disregarded and won't be
tested as heavily as the should requirements. And can are all the truly optional NFR’s. All NFR’s
listed here are a must unless explicitly stated otherwise. Below is the List of NFR’s in our project:

Joel Suter & Lucas von Niederhausern Page 21 of 152

Eastern Switzerland

University of Applied Sciences

Fitness Gamification

(backend, Database, Frontend)
must be deployed

Type Description Acceptance Criteria Priority
Functionality The App must run on both An- | Manual Testing and de- | Must
droid and 10S velopment on both plat-
forms
Functionality The Backend is deployed and | Manual Testing and de- | Must
frontend must be published in | velopment on both plat-
the App Store and Play Store forms
Functionality All exceptions are handled and | All Exceptions occur- | Must
logged. ring in the tests are
handled and logged.
Furthermore, all possi-
ble exceptions should
be tested.
Reliability Errors do not cause Systemfail- | Automated Testing /| Must
ures, but generate an error mes- | Manual Deployment
sage and re- set the system to a | Testing
previous state
Performance backend is able to handle 50 re- | Tested with Perfor- Can
quests per second mance Testing Frame-
work
Performance App content should not take | Performance Testing | Should
longer then 150ms to load Framework
Performance The Database should be able to | Testing at scale (manu- Can
support 10000 challenges and | ally)
2000 user
Supportability The Business logic must be built | Business Reviews Must
inamodular way so that it can be
easily extended
Supportability Backend-APlI must be tested | Api Testing tool Must
with an API-Testing tool
Usability At least three test users out of 4 | Usability Tests Should
should rate the Application with
a grade of 8 from 10 (layout, re-
sponsiveness, colour, content)
Usability Push notifications should be | Unit and Manual Test- | Must
sent ongoing ing
Others (Security) | Data entered in input fields must | SQL Injection tests Must
be validated before it is passed
to the backend
Others (Security) | User passwords are not save in | Review Database | Must
plain text records
Others (Security) | Data should only be visible to | Manually tested Must
users that should have access to
it
Others Implemented functionality | CI/CD Must

Table 5.3: Non-Functional Requirements

Joel Suter & Lucas von Niederhausern

Page 22 of 152

Eastern Switzerland

University of Applied Sciences

Fitness Gamification

5.2.1 Disregarded and Untested NFRs

In the course of the project we decided to disregard some of the NFR, for various reasons which

are mainly driven by 10.3.1. The NFRs that were not implemented can be viewed in 8.

5.2.2 Verification

If possible the NFRs will be checked automatically via automated tests. If that is not a possibility
we will check each NFR after each sprint, and if not all are met the Sprint does not meet the DoD

and has to be fixed as soon as possible.

5.3 Optional Requirements

This section describes the optional and additional requirements that were either known at the
beginning of the project or were ideas and inputs that came up during the project’s duration.

They are not part of the functional requirements and have low priority.

Type Description

Functional Implement additional challenge types

Functional User is able to delete his account and data associated with
his account

Functional Authentication possible with Google / Facebook / Apple-
Account

Functional User is able to capture challenge types manually that are not
implemented by our application

Functional User is able to view a timeline of all his challenges

Functional User is able to send a video message with the challenge

Non-Functional Implementation of anti cheating measures

Table 5.5: Optional Requirements

Joel Suter & Lucas von Niederhdusern Page 23 of 152

OST
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6 Design and Architecture

6.1 Container Diagram

The container diagram 6.1 shows what technologies we chose to implement our application and
how the code is split up, and how the different components interact with eachother. It should be
viewed in the context of our system context 4.1

Fitness Gamification User

erson]
A user who uses the functionality of our
App

Android API
Uses App Functionality [External API]
< Allows access to platform specific data
s Uses various apis and sensoric data and features of Android
[expo-*(sensor, contacts etc), Library)

'
105 API
i ot [External API]
Multi Platform Applicat .
[Conlai:elr: J:v::“crip:r;;::clloaative] nsor, contacts etc), Library) Allows access to platform specific data

Provides all funcionality of Fitness and features of 10S
Ganmification User to the users

Uses various apis and sensoric data

makes api calls
[HTTP, SON]

Cloud Functions (Backend)
Firebase Authentication Wavascript, Google Cloud Functions] Subscribe directly to certain database records (wat for
[Google Firebase Service] changes) / read and write certain data (data assosiated with

! application f Also listens to oths
S pplication to use. Also listens to other
! Aliibeptcation as';dwl.'lcs:' Magiagsient triggers and certain events in firebase to user)
' ‘execute functionality such as push [Firebase SDK]
: notifications
1
'
N Triggers Push Notifications
'
: Uploads and reads files
| Firebase Cloud Messaging [Firebase SDK, and HTTP]
, [Google Firebase Service]
' Notification Service of Firebase to send Firebase Firestore
' notifications to client [Google Firebase Service, NoSQL]
1 Database where all data that needs to
1 be persisted is saved
1
'
1
'
1
' Firebase Storage
' [Google Firebase Service]
\ Used to store files in a file system
\
\ N)
\ N Firebase ,

\ S\ [Backend]

N Fitness Gamification Application .,
~_ [Software System] .

Figure 6.1: Container Diagram

6.1.1 Client

Our mobile client is implemented using React Native a Multiplatform language that allows us
to share one codebase for several platforms; in our case, these would only be Android and 10S.
React Native could be separated into different containers since its architecture is very complex,
but that is not our goal to show the internal architecture of React Native. We are not writing

Joel Suter & Lucas von Niederhdusern Page 24 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

separate code for Android or 10S, so there is no need to split it into two containers for each
platform. We only have very few lines of platform-specific code, and this is because we use the
Expo toolset on top of React Native that abstracts the platform-specific API calls and allows us
to access android and ios API in the same way. More on Expo in chapter 6.5.1

6.1.2 Backend

As the backend we chose Firebase, a so-called backend as a service provided by Google. For a
detailed explanation of what Firebase is and why we chose it, refer to 6.4. The container diagram
shows the various Firebase services we use in our application. The services we use are:

+ Firebase Authentication: Firebase service that implements authentication logic, and which
we use to authenticate our users. 6.4.1.

 Firebase Firestore: Firebase NoSQL Database service. The client will subscribe, read and
write data directly from the client. 6.4.4

+ Firebase Cloud Messaging: Service that is used to send push notifications to our client.
6.4.3

+ Google Cloud Functions for Firebase: Code that cannot be run in the client and code that
gets triggered by listening to certain events. These are on-demand functions, which means
a "instance" gets spun up every time a function is triggered, and after that, it gets torn
down. Contains mostly computation heavy code and calculations and general operations
that don't belong in the client code. 6.4.2

+ Firebase Storage: Service that allows us to store files on the google cloud. 6.4.5

6.1.3 External Dependencies

We use two "external resources". These are various apis from the android and 10S platforms. The
APIs we use vary from contacts to sensors, notifications, etc. We always use a Expo abstraction
library of the API which allows us to not write separate code for the two platforms.

Joel Suter & Lucas von Niederhausern Page 25 of 152

https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/functions#:~:text=Cloud%20Functions%20for%20Firebase%20is,runs%20in%20a%20managed%20environment.
https://firebase.google.com/docs/storage

OSsT

Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6.2 Component Diagram

Fitness Gamification User

Auser who uses the functionality of our
App.

Uses App Funcionality

Displays

Uploads images and uses

scroens Reposi i
(Component: Javascrpt, React Native] [Repository: Javascrip, React Native] ' images from
S eens ha need 16 be dispayed oo o conricion o4 Frebase Froetrs
- database [Firebase S SDK, HTTP]

Displays

Reads/Writes and
subscribes to changes

Component Ser '
[Component: Javascript, React Native] Ser i Re: ' [Firebase JS SDK]
‘Components to be displayed used by the Scroens ‘ogic. connection

Pushes Notificapn
*~<__ Multi Platform Application [Mobile App]

Calls
[HTTPJSON]

Firebase Authentication
reba
‘and User

Reads/Writes
[Firebase Admin SDK]

1
Uses 1
[Firebase Admin SDK]

h

Firebase Cloud Messaging

[Google Firebase Service]

Notification Service of Firebase to send
nolifications to client

M N e e -7 Firebase [Backend]

Fitness Gamification Application
N [Software System]

Figure 6.2: Component Diagram

Figure 6.2 represents the structure of our frontend code, our Firebase Cloud Functions code,
and represents how we use the various Firebase services. It is a generalization and there might
be deviation in the actual implementation and code. We tried to only represent the key files,
components and services in our application, to give a feel how our interal interactions of our
application work. Generally communication of our frontend with Firebase is done with the Fire-
base JavaScript SDK. For more specific details refer to the specific design and implementation
chapters you want more information on.

Joel Suter & Lucas von Niederhdusern Page 26 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6.2.1 Backend Access

Since the design decision of how we access our Firebase backend services from the frontend
influences the whole design, from backend to frontend, it fits in this section most appropriately.

In short, we access most of the backend services from the frontend directly using an SDK, unlike
a lot of other projects that expose and abstract them through an API. The main reason is that
Firebase is designed to be used in that way. The Firebase JavaScript SDK, which is used in the
frontend allows you to access them directly. It could be argued that it still is an API, but an API
that is exposed through an SDK instead of a REST API. The SDK uses HTTPS to communicate
with the backend, and does this in a secure way that is encrypted.

It also allows us to do small workloads that use small resources directly on the user’s system,
which will not hinder the user’s performance, but could accumulate and shoot up costs if there
is a large user base and all these have to be run on our servers.

This decision might also raise some valid security concerns, which will be addressed in more
detail in section 6.7. In short, security is not the primary concern of this project, and we do not
have actual requirements regarding that. That does not mean we will not consider security, but
it is not our focus. For that reason and the reason that we do not collect sensitive data from the
user, it is of low concern. Still, Firebase is considered very secure, and unwanted manipulation
of data, or injections, are generally checked by the SDK we use. In short, the benefit of accessing
the backend through the SDK directly from the frontend, especially for the database, outweighs
the valid drawbacks in security that might arise from that decision. For our in-depth security
decisions and more on that, refer to 6.7.

Authentication

We use the Firebase JavaScript SDK to authenticate the user and use the Firebase authentication
service from the frontend. The Firebase JavaScript SDK then manages the token and authenti-
cation for us, which we can access and use in our logic.

Database

In most backend-frontend projects, the backend directly accesses the database and exposes it
through an API, such as a REST API, and the frontend requests this API. We do this completely
differently, and the main reason for that is that we use Firebase as our backend. Firebase and
it's database Firestore allows us to leverage the advantages of real-time updates. Data can be
directly accessed from the frontend using the Firebase JavaScript SDK. It allows us to then sub-
scribe to the data we requested. If implemented correctly, Firestore will now push updates to
subscribed data if this data changes, and the Ul can then be updated to display the new data.

For us to directly access the data from the frontend looks pretty unorthodox. However, from
our research, this is very common, and the suggested way to access the database is to use all
features from Firebase to their full extent. Of course, we have exceptions and do not do all the
database access directly in the frontend. We also have Firebase Cloud Functions as a Node.js
backend, and work that is heavy on performance or security sensitive will be done in the Fire-
base Cloud Functions. The frontend generally only does basic read and writes, and some small
workloads that could accumulate on our backend systems but do not affect the client. For im-
plementation details on how we access the database, refer to 7.2

Joel Suter & Lucas von Niederhdusern Page 27 of 152

https://firebase.google.com/docs/firestore/query-data/listen

OST

Eastern Switzerland
University of Applied Sciences

Fitness Gamification

Storage

We also use the Firebase JavaScript SDK to access Firebase Storage and allow the user to upload
directly to them. This mainly concerns the glsprofile pictures of the user. Of course, we control
what a user can upload and what he can read from the storage. Restrictions are listed in 6.4.5.

6.3 Domain Model

trackedl {id} ySummary ion)

id: date string (yyyy.mm.dd monday of week)

users pullups: number

uid: string (generated)

displayName: string

phoneNumber: string

contains

Created for each week a us:

performed in a challenge. Curl

week gets incremented by
performance

1 trackedData

Firebase Authentication id: string (matches users id)

totalChallengesPlayed: number

0.1
challenges totalWins: number
id: string (generated) 1 totalRepetitions: number
ion: users

challengeDuration: number winLossRatio: number
challengeType: string id: string (matches auth id) |

. it
creator: reference(users) displayName: string 1 contains

0.
opponent; reference(users) random: number - N 5
\ trackedData/{id}/playedAgainst (;)
turn: reference phoneNumber: string 0.+
1 . id: string (matches user it references)
o L —
wonBy: reference (users, set if completed) expoToken: string
1 ; numberOfGamesPlayed: number Created for every unique user
completed: boolean (true if completed) \ another user plays against
'score: number (score to beat) 0.1 | badges
earnedBadges | I~ N
0. 0..* id: string (badge name)

id: string (matches users id)

imageUrl: url string (to firebase storage)

contains 0.7 listOfBadges: Array<reference(badges)>

challenges/{id}/history (subcollection)

id: string (generated)

Isers)

performedBy:

performedOn: Timestamp
Created everytime a user performs

achievedScore: number on a challenge

Figure 6.3: Domain Model

The graphic 6.3 serves both as a representation of our domain but also as a database model.

6.3.1 Types of References

We use two types to reference another Document from a Document. We will explain these quickly
here since to understand the diagram, one has to understand the types of references:

+ Firestore reference type: Firestore provides a type called Document Reference which can
be used to reference another Document. Strictly seen, this type is a string that points to
another Document. For example, the "creator” field in "challenges” could have a value like
"users/12dafn2123avnneran384". The neat part about that is even though this is a string
when loading a Document from Firestore with the Firebase JavaScript SDK, this field will
directly be resolved as a DocumentReference. With this type we can directly resolve to the
document it points to and read the data from it.

+ Id of Document matches the id of the Document it points to: We use this type of reference
for 1to 1, or 1to 0..1 relationship. For example, a user will only ever have at maximum one

Joel Suter & Lucas von Niederhdusern Page 28 of 152

https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentReference

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

trackedData Document. A very efficient way to model this relationship is to use the users’
id as the id of the trackedData Document. Because the user will have a maximum of one
Document in trackedData, there is no problem with duplicated ids in the same Collection.
Also, NoSQL has no problem with duplicated ids as long as they are not in the same Collec-
tion, since the "unique key" of a Document is as follows: "/documentName/documentid”.
The main benefit for us to model such relationships in that way, is performance and cleaner
code. Suppose, for example, we want to retrieve the trackedData of a user. In that case, we
can directly reference the Document, since we know the Collection name "trackedData" and
the id "the users id", and therefore the absolute path of the Document. The need to query
a whole Collection to find the Document that belongs to a user is not needed anymore.
Therefore, we get more performance, no need for complex queries, and less code.

6.3.2 Description

At the center of it all is the user. Since we want to save other data for the user and reference
the user in other Documents, we have to mirror the user in our Firestore database. The user
object in Firebase authentication cannot be extended. Furthermore, it cannot be referenced from
inside Firestore. That is the reason we need to mirror it in our database (forum post that lead us
to this decision). The Document id will match the uid of the user in the Firebase Authentication
Service . The user contains only their phone number, display name, a expoToken used for sending
notifications and a random number used for challenges against random users. There is no need
for a password since the authentication is done via a one-time password sent by sms to the user’s
phone.

The most central part of the domain next to the user is the challenges. In this Collection, all active
and completed Challenges are stored. The Challenge holds all the most essential information,
such as the duration each user has to complete the Challenge, which Challenge type it is, the
Creator, and the challenged Opponent of the Challenge. As seen in the model 6.3, the association
with the user is not the typical association one sees in a domain model. A Challenge must have
precisely two users, not more or less. A Challenge also contains a subcollection named history,
where everytime a user performs on a Challenge, a Document is saved. This subcollection is
a history of all performances in a Challenge. The path to this can be seen in the diagram. The
benefit of having this saved in a subcollection instead of an array is that not all history is loaded
when we load the Challenge. It helps with the performance.

trackedData and earnedBadges is the persisted data that will be shown in the Profile of a user
and their Banner. We have on one side trackedData. This is data like the win/loss ratio, a user’s
total wins, Etc. The Documents in this Collection can be extended to track more data in the future.
The data in this Collection is used to determine if a user earned a badge or to evaluate a user’s
rankings. badges are all the Badges we will make available for the user to earn. It contains the
url to the image/icon as a string. In earnedBadges, we will track the Badges the users obtained.

weeklySummary is a subcollection of trackedData and tracks the performances per week of a
user. The id is always the Monday of that week as a date, which is also a field in the document.
There the total performances for each challengeType for that week are tracked.

playedAgainstis a subcollection of trackedData and tracks all the users a user has played against.
The id of the Documents in this collection are the id’s of the users a user has played against.
These Documents track the number of times a user has played against a specific Opponent.

Joel Suter & Lucas von Niederhdusern Page 29 of 152

https://stackoverflow.com/questions/58964099/reference-firebase-user-objects-in-firestore
https://docs.expo.dev/versions/latest/sdk/notifications/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjw-IWkBhBTEiwA2exyO1poJXYtPM-2iPBQsXBi2PwSym0bFLFd82RNd2I5NrCQp9YPbTcXLhoCJvAQAvD_BwE

OST : L
Eastern Switzerland Fl'l'neSS Gamlﬁcat’on

University of Applied Sciences

6.4 Backend - Firebase

In the Task formulation 15, it is stated that we use Node.js as our Backend technology. This
requirement changed during the project elaboration phase. Our Industry Partner suggested Fire-
base as a possible backend technology. Since we thought it looked exciting and would match
our project well, we used Firebase instead of Node.js.

For the backend we chose Firebase. Firebase allows for a certain abstraction of the backend.
It is a Development-Plattform for mobile and web applications, and can be called a "Backend
as a Service". It allows developers to manage and create a backend for their application more
easily. Their tools cover many services developers normally build themselves, such as analytics,
authentication, databases, configuration, file storage, push messaging, etc. These services get
abstracted by Firebase and allow the developers to focus on functionality and Ul instead of using
time and resources to build yet another authentication service. With Firebase developers can
‘click" these services into existence and then use them without the overhead of writing them
themselves.

We chose this for the exact reasons mentioned above. It allows us to focus on functionality and
Ul and use existing, tested and performative solutions.

This section will cover our Firebase setup, including the database and all the code that runs on
Firebase and how it is triggered. It will not cover how we specifically use Firebase in our client
applications. This will come in the following section 6.5 and 6.2.1. Below is a screenshot of the
Firebase console for our project:

B Firebase Fitness-Challenge ~ P L (J

& Sie kdnnen E-Mail-Benachrichtigungen iiber neue Funktionen, Forschungsergebnisse und Veranstaltungen von

Firebase erhalten Anmelden X

Schnellzugriff ausblenden

Fitness-Challenge « saze

iii 3 Anwendungen | & Fitness Challenge . Fitness Challenge -+ App hinzufiigen

Authentication
Firestore Database
Realtime Database

) Functions Entwickeln

=

() Functions Firestore

Entwickeln

Aufrufe (Insgesamt 7 T) Schreibvorgange (aktue

O -100%

Lesevorgange (aktuell)

41 s6z

Verdffentlichen und 25 3167
beobachten

Analytics

Einbeziehen

25 Alle Produkte

M Storage

Speicher (aktuell) &

288KB

Figure 6.4: Firebase Console

Joel Suter & Lucas von Niederhdusern Page 30 of 152

https://firebase.google.com/

OST : o
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6.4.1 Authentication

We used the Firebase Authentication Service for the authentication. We activated the phone
number authentication method, so users can log in with their phone number and deactivated
the default authentication method of email/password. This authentication method was agreed
upon as the only authentication method the users can use. Initially, we also wanted to use Google
authentication. However, after some discussion with our Industry Partner, we chose not to im-
plement it since it would make the whole management of the users, choosing an opponent, Etc,
that much harder.

We activated specific phone numbers for testing, so no sms must be sent when running the
application locally.

Below 6.5 is a screenshot of all possible authentication methods:

A & B — X
Native Anbieter Zusatzliche Anbieter ndividuelle Anbieter
E-Mail-Adresse/Passwort v Google v n Facebook p Play Spiele
Telefon v 5 Game Center Q Apple C} GitHub
2. Anonym = Microsoft Twitter ﬂ Yahoo!

Figure 6.5: Possible Authentication Methods

Monitoring

Firebase Authentication allows for easy monitoring of active users and the usage of the phone
verification instances. Depending on which authentication methods are enabled, this monitoring
screen will look different and track more metrics.

Joel Suter & Lucas von Niederhausern Page 31 of 152

https://firebase.google.com/docs/auth

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Authentication

Users Sign-in method Templates Usage Settings ¥ Extensions P
Current blling period
Daily Active Users i [S
/\
-
e AN / RN
N
Daily Active U
Currert bill d
Monthly Active Users () _ff"e_,,;w‘"ggf‘ﬂ‘
Current billing period
Phone verification instances B e o
- No Dat
Usage and Billing

Figure 6.6: Authentication Monitoring

6.4.2 Functions

Most of the functionality is implemented in the client app, but some code must be run in the
backend. To create custom backend code for Firebase, we use Google Cloud Functions for Fire-
base. It is a Nodejs backend, but different from typical Nodejs backends; it is not "running" as
long as no code is running. Each function created exists on its own and is spun up in its instance
when it is triggered and then torn down again when it finishes. That means we have a completely
stateless backend. That way, the costs are very low, and no resources are consumed as long as
no one uses them. It also automatically scales since each call creates an instance of a function.
We use three types of triggers that trigger the functions:

« HTTPS callable Function: A function triggered through an HTTP request. It differs from a
standard Rest Endpoint that the function can only be triggered through an application that
uses our Firebase configuration, which is internal. That means it is not publicly available
and cannot easily be triggered from an unknown source. We call these functions through
the Firebase JavaScript SDK "firebase/functions" library. It uses the HTTP protocol to send
the request.

+ Firestore Triggers: Firebase listens to changes in specific Collections and Documents we
specify and run the function if the event matches the trigger. This is mainly used to send

Joel Suter & Lucas von Niederhdusern Page 32 of 152

https://firebase.google.com/docs/functions#:~:text=Cloud%20Functions%20for%20Firebase%20is,runs%20in%20a%20managed%20environment.
https://firebase.google.com/docs/functions#:~:text=Cloud%20Functions%20for%20Firebase%20is,runs%20in%20a%20managed%20environment.

OST

Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

notifications to the client if something specific is called.
+ Scheduled Triggers: Gets triggered/run in a predefined interval.

The functions are written with Nodejs and either javascript or typescript. We chose javascript
since our frontend is implemented with javascript. We changed the default configuration of Fire-
base Cloud Functions so that we can use the same javascript syntax that we use in our frontend.
We also use almost the same Linting to have the same coding style. This allows for easier de-
velopment between frontend and backend.

Structure
e TTTTTTTTTTTTTTTTTEmmTTEE I T AT TS ~o
. N
. N
4
7’
’ . . f Firebase Cloud Messaging
, index.js Listens to Events " i

1 [File: Javascript, Nodejs] . . . - [G_oogls Firebase Service]
l File that exports all google cloud Triggers if certain take place Notification Service of Firebase to send

notifications to client

funtions, defining their region and what
triggers them

Uses (depending if token is fromg

device)

[exp-server-sdk] Firebase Firestore
[Google Firebase Service, NoSQL]

Database where all data that needs to
be persisted is saved

[

1

1

1

1

1

1

1

1

1

1

1

I Services
1 [Component: Javascript, Nodejs]
| Implements business logic and
! accesses the repositories
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Reads/Writes
[Firebase Admin SDK]

firebaseinstances.js
[File: Javascript, Nodejs]
Initializes the instances used to access
firestore

Repositories
[Component: Javascript, Nodejs]
Accesses the firestore database

Figure 6.7: Firebase Functions Structure

The above 6.7 structure is an excerpt from the component diagram 6.2. It represents the structure
of our Firebase Cloud Functions code. There is a mandatory index.js, where you must export all
your Firebase Cloud Functions. This file calls the services it needs, which do some business logic
and call the repositories to read and write data. The file "firebaseinstances.js" correctly initializes
the Firebase Admin SDK.

For development details for the Firebase Cloud Functions refer to 7.3.

Deployment

We chose to deploy the functions currently locally from the CLI using the Firebase CLI Tools.
To deploy the functions to the backend, go into the functions directory and run the following
command:

Joel Suter & Lucas von Niederhdusern Page 33 of 152

OST : L
Eastern Switzerland Fl'l'neSS Gamlﬁcat’on

University of Applied Sciences

firebase deploy —-only functions

6.4.3 Firebase Cloud Messaging And Notifications

Firebase Cloud Messaging is another component of the Firebase economy which allow us to
send notifications to devices. It is versatile because it allows you to send notifications to single
devices, groups of devices, or devices that are subscribed to a specific topic.

Message building FCM Platform-level SDK
and targeting backend message transport on device

Android
/6/ ’ transport layer ’ D
Notifications |
Console GUI
Send to topic >
or instance @ e

Admin SDK l I

HTTP/XMPP
—
Trusted

Environment

Figure 6.8: FCM Architectural Overview

To send notifications, we will implement triggers using the expo-server-sdk. The backend, de-
pending on the destination device, will use either Firebase Cloud Messaging for Android or Apple
Push Notification Service for 10S to deliver the notification. We do not differentiate between the
platform in our code since we chose to use the Expo abstraction, the expo-server-sdk package.
This package does this for us; for details on that, refer to expo-push-notifications.

We chose to send Notifications for the following events:
+ User receives Notification if he got challenged.

+ User receives Notification when it’s his turn to perform in a Challenge.

6.4.4 Database - Firestore

The decision for which kind of data persistence we use to persist our data was between two
kinds of databases, Firebase provides.

* Firestore
+ Realtime Database

Google provides a documentation which helps to choose which database to use. Realtime Database
was created before the Firestore; therefore, Firestore is newer and not as much "battle-tested."

Joel Suter & Lucas von Niederhausern Page 34 of 152

https://firebase.google.com/docs/cloud-messaging
https://www.npmjs.com/package/expo-server-sdk
https://www.npmjs.com/package/expo-server-sdk
https://docs.expo.dev/push-notifications/sending-notifications/
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database/rtdb-vs-firestore

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Firestore builds on top of the Realtime Database, generally providing everything the Realtime
Database can provide and more. In a lot of articles and blog posts, also mentioned in this one,
it is recommended for newer applications to use the new Firestore database, since there is no
functionality that the real-time database provides that the Firestore cannot. However, there are
still a few reasons to choose the real-time database over the Firestore. According to the previous
mentioned blog post by Todd Kerpelman [Ker17] the following applies:

+ Detecting presence: Native support to detect if a user has gone online or offline. Also
possible with Firestore but less elegant.

+ Better latency: Slightly better latency than Firestore, but not by much.

+ Pricing model: Due to their different pricing model, applications that perform large numbers
of reads and writes per second can be significantly cheaper using the Realtime Database.

Any of these reasons above did not apply enough to our application to justify using the older
Realtime Database. Detecting presence is also possible with Firestore; slightly higher latency is
not a problem since we do not deal with bulk data or require the fastest possible data access,
and we do not perform enough reads and writes that would impact the price significantly. The
most significant factor that spoke for Firestore was its data model, the NoSQL model. Compared
to the Realtime Database where data is written into a single json tree, the NoSQL model with its
Collections is much more readable, and we have much more experience with it. This structure
allows for better expansion of the application in the future and better maintainability.

Key features of the Firestore are:

+ NoSQL Datamodel: Easy to read and maintain data structure that is familiar to most devel-
opers.

+ Expressive Querying: Vast filter and sorting possibilities.

+ Real-time Updates: The client can subscribe to persisted data and gets updated if the data
changes in the Firestore database. (Key Feature for our Application)

« Offline Support: Caches data that the app actively uses. The app can still be used, and
when the device comes back online, the data is synchronized with the Firestore data.

- Designed to Scale: Automatically scales are replicated across different regions (depending
on the chosen option). It is designed to handle workloads from the world’s biggest apps.

These reasons are why we chose and are satisfied with our decision to use Firestore.

Reference 7.2 on how we implemented database access in our application, and 6.3 to see how
we modeled our data structure.

Redundancy and Transaction

We chose to host our Firestore as a multi-regional database. This means it is replicated across
multiple regions. We chose the Europe multi-region, which uses a Belgium, Netherlands, and
Finland data center. The various regions are listed here. This allows for better availability and
durability.

Each operation in Firestore is atomar. That means if it fails, nothing happens. Firestore provides
transactions that one can use. We did not use them since no write to the database depends on
another write to succeed. Therefore we do not use any transactions in our operations since those
operations are transactional and do not depend on others.

Joel Suter & Lucas von Niederhdusern Page 35 of 152

https://firebase.blog/posts/2017/10/cloud-firestore-for-rtdb-developers/#the-tldr-just-tell-me-what-to-use
https://firebase.google.com/docs/firestore/locations

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Monitoring

The usage of the database can be easily monitored through the Firebase console.

Cloud Firestore

Data Rules Indexes Usage % Extensions @B

& Last7days
Apr 16- Apr23

Billable Metrics &
Does net include imports/exports and may not match billing and quota usage

2.2K o

Write

Delets

24

View in Usage and Billing

Subscription Metrics

Figure 6.9: Firestore Monitoring

In a specified period, it is possible to examine the number of read, write, and delete operations
that have been performed. The lower graph also shows how many subscriptions to data in the
Firestore from a client are active. Those subscriptions are there so that the user gets Real-time
Updates if the data he subscribed changed.

6.4.5 Firebase Storage

We also use the Firebase Storage service to mainly store pictures, such as the Profile pictures
the users upload. Firebase Storage can be directly accessed by the Firebase JavaScript SDK,
which allows downloading and uploading files to and from the storage. Like in the other services,
Firebase Storage configures security rules to strictly control who can read and write fromiit. There
is also already a setup monitoring dashboard to view the reads and writes to storage.

What is stored:
- badges/{badgeName}: Images of the Badges a user can earn.

- profile/{userUid}: glsprofile picture of the users (if they uploaded one).

6.4.6 Scaling

Firebase automatically scales and bills you as you go. On the developers ' end, there is little to
do to scale up the application, Firebase does that automatically depending on data, traffic, and
user volume.

Joel Suter & Lucas von Niederhdusern Page 36 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6.4.7 Pricing

We began using the "Spark Plan" when we created the Firebase project. This plan is entirely free,
but some features are unavailable, and most features are limited to monthly usage volume.

Since we also need to use the Firebase Cloud Functions to implement certain features such as
push notifications, and this feature is not possible to use under the "Spark Plan," we changed it to
the "Blaze plan." This plan is generally also free until the usage volume that the "Spark Plan" pro-
vides, but instead of blocking further usage, it will continue to work and start billing our account.
The specifics of the plan we use and costs that could arise are detailed here.

Detailed billing and cost of the current and past billing period can be viewed in the Firebase
console. It details the usage of the different Firebase services, the cost that arose, and how
much percentage of the free resources were used up. In the screenshot 6.10 below, in the time
around 25.04.23, you can see that we are far from where costs would arise.

Usage and billing &

Overview Details & settings

f™ April 2023 - Plan updated +

Project cost

Project cost = Blaze © CHF0.00

No-cost tier

2 Cloud Firestore

Figure 6.10: Usage and Billing for Firebase

Generally for "small apps" (compared to apps like twitter, reddit etc) Firebase is very cost com-
petitive, especially if you consider that the initial setup cost of the backend is much smaller. The
maintainability and monitoring of your backend are much easier and come with less setup. For a
massive application with an enormous user base, the costs compared to self-hosted or other ser-
vices are considerably higher, especially since the setup cost is more negligible than the hosting
cost. In a small app, the setup and development cost is much higher than the hosting costs.

Joel Suter & Lucas von Niederhdusern Page 37 of 152

https://firebase.google.com/pricing

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6.5 App Architecture

We use React Native to develop our App. React Native is an open-source software Framework.
It is used to develop applications on various platforms such as Android, I0S, Windows, Web,
and more. It allows developers to develop apps using the React Framework and native plat-
form capabilities—developers program in JavaScript, which will be converted to native code. The
cross-platform and seamless integration on different operating systems and the ability to use the
operating-specific APls and capabilities made React Native a perfect choice. It has a ton of doc-
umentation and allows us to easily integrate our Firebase backend to our App. We will focus on
two platforms specifically:

« Android
- |10S

That means we will implement a mobile app.

6.5.1 Multiplatform - Expo

The need for platform-specific code in our app can be summed up to a couple of lines of code,
where differentiating between platforms was absolutely mandatory. That can be explained by
our choice to use Expo. Expo is a set of tools and services that can be used to allow developers
to develop one codebase that can be used on multiple platforms. We do not directly access
platform-specific APIs but use an abstracted API from Expo to access APIs like the file system
across multiple platforms using the same codebase.

6.5.2 Structure

This section will describe our app’s general folder structure and the contents of these different
folders.

+ assets: Contains icons and pictures.
« components: Contains our own written Components that are used by the screens.
+ constants: Contains constants such as translations, navigational strings, configs etc.

+ models: Models the data we want to use from Firestore, and defines converters, that con-
vert from and to Firestore.

* repositories: Access to the backend data. Different from other frontends, we directly ac-
cess certain backend data 7.2. These files subscribe to specific datasets, which allows the
backend to push realtime updates 7.2.1 if these datasets change.

+ routes: Contains everything needed for navigation across different screens.
+ screens: Contains files which each represent a different screen in our app.

+ services: Contains service files that do data manipulation, communication with firbase
functions, and other general work and business logic.

For a diagram view on how this structure communicates, refer to 6.2.

Generally all files are considered equal, but there are a few key files worth mentioning:

Joel Suter & Lucas von Niederhdusern Page 38 of 152

https://reactnative.dev/
https://docs.expo.dev/

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

« app/index.js: This is the root Component of our application. Once the Javascript is loaded,
this Component will be activated and the remaining Component tree will be initialized.

+ app/App.js: This is the only child of our root Components. It has as its child Component
the routes/main/MainNavigator.js. React Native is a Single Page Application, that means
App.js will always be displayed to our user, just with different child Components.

+ app/routes/main/MainNavigator.js: This Component is the main navigational Component.

« app/firebase.js: This file contains the configuration and initialization of Firebase that allows
our app to communicate and connect with our Firebase backend.

6.5.3 Ul Design

This section will show the initial draft at the beginning of the project. Designing a Ul is an evolu-
tionary process; therefore, the final product may differ from our mockups. We will still include the
initial state of the draft at the beginning of the project to give a feeling of our design’s evolution
over this project. The Design of the Ul might change with reviews from our customers and with
the beginning of the actual implementation and with the consideration that it's a prototype. It
serves as an initial guide for our App.

Inspirations

We were inspired and guided by several different applications while designing the product and
refining the use cases with our customers. The three applications are:

Whats App Mobile

Joel Suter & Lucas von Niederhdusern Page 39 of 152

O

OST

Eastern Switzerland
University of Applied Sciences

Fitness Gamification

WhatsApp

28 cCchatz= @
2 Lockedehats

£ Archived i
Ayesha
- m Video
Dog Walk Meatups
L Jordan: Who's free around.
[Martin 145
i «# | wonder who | can talk to about...
4 Greg 1.23
¥ Hey, let me know when we can me.

Andrea &37

¢} ®GIF (]

Gardening Club Yesterday
., .« Just got some new flower seeds.

Micah 1 1
L & Wow! Thats so amazing!

Figure 6.11: Whats App Inspiration

The widely used messaging app WhatsApp served as a general inspiration and guide on how to
structure our app. It influenced the placement of the navigation elements, hover buttons, and the
look and feel of the app. We choose this as a guide since everyone with a smartphone uses it,
and structuring our app this way allows users to easily use and understand the structure of our
app since they are already familiar with it.

Polytopia

When designing the Challenge screen, where users see their Challenges, we immediately thought
of Polytopia. Polytopia is a turn-based strategy game that can have turn times of up to one week.
Since our Challenges are also turn-based, in the sense that one performs a Challenge and then
waits, sometimes several hours, for the other users to perform the Challenge, we thought a similar
approach to the one Polytopia has would make perfect sense.

Joel Suter & Lucas von Niederhausern

Page 40 of 152

https://www.whatsapp.com/
https://polytopia.io/

OST . L
Eastern Switzerland FltneSS Gam’ﬁcat’on

University of Applied Sciences

e MULTIPLAYER-

Reploys

-Your Turn-

\ r: Lands & Destruction h23

Your tumn ours

' Oosamiian Sea 23
Your tum hours

-Their Turn-

: Archers of Kooopi
¢

r: Fields & Sleds

Figure 6.12: Polytopia Inspiration

As one can see in the screenshot 6.12, several games are listed. The screen is divided into two
sections. The "Your Turn" section shows the games where the Player is on their turn. The "Their
Turn" section shows all the games where the User waits for the Opponent to complete their turn.

Apex Legends

In the elaboration phase of the project, where we discussed the specifics of the functionality of
our App, we thought implementing some way for the user to "show off" his statistics and a system
where a user can earn rewards would make much sense. After all, we are trying to gamify fitness
exercises. For this reason we chose to display a Banner of a user that his opponents can see. A
game that we know does that excellently is Apex Legends. It is a highly competitive shooter with
a high skill ceiling and encourages users to improve. One way it does that is by allowing users to
show their achievements with Badges or trackers of specific statistics for other users to see.

Joel Suter & Lucas von Niederhdusern Page 41 of 152

https://www.ea.com/de-de/games/apex-legends

O

OST

Eastern Switzerland
University of Applied Sciences

Fitness Gamification

§)Crypt Astro
$)Mellow Weed
§)Oragon Kanna

(Mellow Weed)

CHAMPION SQUAD

A

N7

FINISHERS

1938

LS \ GAS TRAP: TIMES ACTIVAT

19216 Y’ 15848
\ d SEASON2WINS

766

CHAMPION SLAYER BONUS

Figure 6.13: Apex Legends Banner

As seen in the screenshot 6.13, players can show off their achievements in their player Banner
for other people to see. In the game, the Banner is customizable, but we decided against that
feature to focus on the application’s core, which is the performing of Challenges.

Ul Mockup

In this section, we will list the initial draft of our Ul mockup and, where needed, give some descrip-
tions and elaborations about our reasoning for this initial draft. These mockups where created
in the first 2 weeks of the project. As seen, the design was heavily influenced by our inspirations.

Figure 6.14: Register Screen Mockup

(=
C
[
[

AN N W

Or

[SSign up:]

Already have an account? Siar

(G Sign inj L Sign in)

Don't have an account?

Joel Suter & Lucas von Niederhausern

-'-|._:' Up

Figure 6.15: Login Screen Mockup

Page 42 of 152

Eastern Switzerland

University of Applied Sciences

Fitness Gamification

Your Turn

®

I Juan 4h 15m

Needed Reps: 6

=

Max
I Needed Reps: 10

=

&))@

\xo¥ Jorg
| kIlr‘ | Needed Reps: 11
—— Their Turn
Max
|| i i II Waiting For: Max
Completed

Challenges Rankings

L
L

Figure 6.16: Challenge Screen Mockup

Profile

Matches won: 334
Win/Loss: 4.56
Total reps: 4299
Global Pos: 1

Badges

e
&
OO«

(More Graphs and Details about
user and his stats)

P
AL

Challenges Rankings

Figure 6.18: Profile/Dashboard Screen with Ban-

ner Mockup

6.5.4 Coding Style Guide

s Max
<P

e

Matches won: 334
Win/Loss: 0.8
Total reps: 4299
Global Pos: 1

= B B B

Score

Timeline

Resign

Type: |W1| Pullups

Challenge Time: 5min

[Start

)

Figure 6.17: Challenge Details Screen Mockup

S

[Global ¥

(o

Pos Name
Max
Jorg
Fritz

W oW N

Lucas
Max
Max

Max

I€3C3¢3¢€3¢€3¢3¢)

Max

L
i

as Max
i

© o N O 9 oA

& Max

10. O Max
You

Score
120
110
920
90
20
20
20
20
20
20
20

354. 3 Hans

20

Challenges Rankings

5
AL

Figure 6.19: Rankings Screen Mockup

To guarantee that our code has a coherent coding style that makes our code more readable and
maintainable, we use an eslint for automatic coding rule enforcement and styling. Since there is
already much research on how to style your code and a set of best practices exists and is agreed

Joel Suter & Lucas von Niederhausern

Page 43 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

upon by most developers, it did not make sense to define all our styling guidelines on our own,
so we chose two styling packages we use in our linter to help us format the code:

* Plugin react Recommended
+ Airbnb code style guidelines

We chose these two since the first is recommended for all react applications, and the second one,
Airbnb, is probably the most commonly used pre-prepared set of linter rules. In the link above for
Airbnb, any developer developing this application can read up on the styles and rules we use for
our coding. We use the default rules enforced by our linter and adhere to the suggestions by
Airbnb that are not enforceable by rules. Any deviations in the linting rules can be read in the
rules section of our ".eslintrc.json" file in the root of our client application

6.6 Deployment

6.6.1 Firebase Functions

Deploying our backend code, which is our Firebase Cloud Functions, we can just run "firebase
deploy —only functions" or "npm run deployfunctions" in the "firebase" directory of our code. Re-
member that the Firebase CLI Tools has to be installed, logged in, and connected to the correct
Firebase project. A guide on how to do that can be seen here.

The rest of our Firebase services do not need any deployment, and can be directly modified in
the Firebase console.

6.6.2 Mobile App

One of our requirements was to deploy our application to both the Google Play Store for our
Android distribution and also to the I0S App Store. We create two different builds for Android
and ios, which are then published in the respective store. The file responsible for building the
application is the "app/eas.json" file. We specify two different builds: A preview build, which is
only used for internal testing, and a production build, which builds the application that should be
published.

Building the App

To build the application, we use the EAS cli. Noteworthy is that the one running the command is
logged in to his Expo account and that his account has access to the Expo project.

One can then run the following command in the project root:
eas build --platform <all/android/ios> --profile <preview/production>

The application is then built in the Expo project. The progress can be tracked there.

Joel Suter & Lucas von Niederhdusern Page 44 of 152

https://www.npmjs.com/package/eslint-plugin-react
https://github.com/airbnb/javascript/tree/master/react
https://firebase.google.com/docs/functions/get-started?gen=1st
https://play.google.com/store/games?hl=de
https://www.apple.com/chde/app-store/
https://expo.dev/eas?utm_source=google&utm_medium=cpc&utm_content=search&gclid=Cj0KCQjwj_ajBhCqARIsAA37s0zWg5PWUKvT6xSgCjuElKabzMRLQgEcoxAr36JYwxuIk4iVQnI35mQaAovKEALw_wcB

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

@ Builds

Channel Platform

All v

T fitnessChallenge Android Play Store build
preview 1.0.0 1 149a5b0* 10m 59s

% fitnessChallenge Android Play Store build about 4 hours ago
Profile Version Versioncode Commit Duration

production 1.0.0 1 f49a5b0* 10m 3s

% fitnessChallenge Android internal distribution build about 7 hours ago
Profile Version Version code Commit Duration

preview 1.00 1 f49a5b0* 10m 51s

% fitnessChallenge Android internal distribution build about 8 hours ago
Profile Version ~ Version code ~ Commi Duratior

preview 1.00 1 f49a5b0* 10m 558

Figure 6.20: Expo Build

Once the build is done, we can open the build, download the generated file, and install it on our
devices for testing.

Publishing

Both the ios and Google credentials used for publishing to these app stores were provided to us
by our Industry Partner. We saved these in our Expo project, which then allows us to deploy the
latest production build from our CLI with the following command:

eas submit --platform android
eas submit --platform ios

Note that to deploy to ios, the field "appleld” in the "app/eas.json" file has to be set to the correct
Apple ID. We purposely do not track them anywhere for security reasons.

6.7 Security

Security was not the biggest factor in our project, and there were a few reasons for that:

* It's a prototype and not intended to be launched in full production in the duration of the
project. The goal as explained by our Industry Partner was to create a prototype which can
then be expanded upon.

+ The nature of the application does require the biggest security considerations (no financial
information, health information). It's no banking or health software where breaches or down
time would cause huge damages.

+ Firebase is generally very secure in itself.

+ As explained in 10.3.1, Joel was unavailable for a considerable amount of time. We dis-
cussed this with our Industry Partner, and the decision was to focus on features and not on
security.

Joel Suter & Lucas von Niederhdusern Page 45 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

For those reasons, we chose to not implement the full security measures, that Firebase provides.
Still, we made sure that our Firebase Cloud Functions can only be accessed by a authenticated
user, and that our database can generally only be accessed by an authenticated user.

For further development, security should of course be addressed more. This page explains very
well which kind of security measures should and can be implemented in a Firebase project.

6.7.1 Firestore Access

Firestore allows for very detailed rules, on who can access which records, under specific condi-
tions. In this documentation is everything a developer needs to understand on how to write and
read Firestore rules.

For development purposes, every record is available to everyone (every registered client). We
changed these rules in the progress of our development, to expose only as much data to cer-
tain clients to make the app functional, and keep everything else hidden from the clients and
inaccessible, to prevent unwanted manipulation.

The rules we chose to implement are (refer to domain model 6.3 to see all collections). :
+ Global rule: Every access has to be authenticated.
+ challenges: Only allow read or write if user is part of challenge.
+ challenges/history: Only allow read or write if user is part of the parent challenge.

« trackedData: Only all reads, but no writes (data is only updated by Firebase Cloud Functions,
7.13)

« trackedData/playedAgainst: Allow all reads, but no writes (™)

« trackedData/weeklySummary: Allow all reads, but no writes (™)

+ users: Allow all reads, but only writes from the user it belongs to.

+ badges: Allow all reads, no writes (is only changed manually in the console 7.14.2)

- earnedBadges: Allow all reads, no writes (data is only updated by Firebase Cloud Functions,
7.14)

+ messages: Allow reads and writes only for user that message belongs to.

The reasoning for those rules will become evident in this paper, when one sees what and when a
user should be able to see, or what we write from the client.

Keep in mind that these rules do not apply to our Firebase Cloud Functions backend. The Firebase
Admin SDK "ignores" these rules.

6.7.2 Storage Access

Similar to the Firestore security rules 6.7.1, we can define rules for storage access to. The rules
we defined are:

+ Global rule: Allow authenticated read access, but no writes.
+ badges/: Allow authenticated reads, but no writes.

« profile/: Allow authenticated reads, but only writes to files that match the users id.

Joel Suter & Lucas von Niederhdusern Page 46 of 152

https://developers.google.com/learn/pathways/firebase-security-layers
https://firebase.google.com/docs/firestore/security/get-started

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

6.7.3 Input Validation

As mentioned earlier, we had a big step back when Joel injured himself. Moreover, to still imple-
ment all functionalities, we had to make some compromises 10.3.1. One of them was the decision
not to implement frontend data validation. The reason for that was that we were running out of
time. Of course, this should be addressed and listed in 9.1. However, even without Frontend data
validation, Firebase does not allow any "code" input or any input that could create any security
risk. So in our opinion this is not a big security risk, and can therefore be ignored in the context
of a prototype.

Joel Suter & Lucas von Niederhausern Page 47 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

7 Implementation

This chapter will describe the most important implementation details and implementation as-
pects of our project.

7.1 Firebase Initialization

The Firebase project was created by our Industry Partner, and then access was provided to us.

7.1.1 Setting Up Services

We needed to use several Firebase services for our Application. These can be easily initialized
by selecting the services from the Firebase console. This is all we needed to do for Firestore and
storage. We recommend setting up the database first since we had to choose our final region,
which will be used for all the other services. We will go into a little more detail for the initialization
of firebase functions in section 7.3, and authentication in section 7.4.1.

7.1.2 Frontend Configuration

The next step was registering an application in our Firebase project. Since we use React Native
with Expo 6.5.1 and do not have separate code bases, we have to create a web app in Firebase as
required by Expo. When creating a web app, the Firebase dashboard will display a quick how-to
to get our app running, which we will expand upon to show how we initialized it in our case.

1. Install the Firebase JavaScript SDK. We chose the latest version, 9.21.0, which is a preview
version. We choose a preview version because it contains more functionality, such as more
complex queries.

2. Copy the Firebase configuration from the web app we created in Firebase and paste it into
a variable in the frontend. This configuration should be recopied if new services are used
from Firebase. We configured the whole Firebase connection in the app/firebase.js file:

export const firebaseConfig = {
apiKey: "someKey",
authDomain: "domain",
projectId: "projectId",
storageBucket: "url",
messagingSenderId: "id",
appId: "id",

s

3. Use this configuration to initialze the app:

const firebaseApp = initializeApp(firebaseConfig) ;

Joel Suter & Lucas von Niederhausern Page 48 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

4. Initialize the Firebase services we use:

initializeAuth(firebaseApp, {
// Keeps users logged in on app close
persistence: getReactNativePersistence(AsyncStorage),
1)
export const functions = getFunctions(firebaseApp, "europe-westl");
export const db = getFirestore(firebaseApp);
export const storage = getStorage(firebaselpp);

We have to specify the region for the firebase functions, since they cannot run multi region
like the other services do.

After these configurations, we are able to use Firebase and all the services we specified from it.

7.1.3 Firebase SDK

We use the Firebase JS SDK to connect and use our Firebase backend functionality from the
frontend. The Firebase JavaScript SDK can be found on npm. We currently use the "9.21.0" ver-
sion of the Firebase SDK. At the beginning of the project, this was a preview version and was not
considered stable. We chose to use the preview version since, before this version; you could not
use "or" in query conditions, which made it hard for us to query the data we needed. It is since
then the new stable version.

7.2 Frontend Firestore Access

As explained in our design decision 6.2.1 we access most of the data directly from the frontend
using the Firebase JavaScript SDK API, specifically "firebase/firestore". In this section, we will
show how we access the data in our frontend and how we can receive Real-time Updates from
Firestore.

7.2.1 Read Operations and Real-time Updates

We have two ways to retrieve data from a Document or multiple Documents.

Referencing the Document directly

For some read operations, we know the absolute path of the Document we want to retrieve. This
is often the case when thereis a1to 1or 1to 0..1 relationship between the "user" Collection and
another Collection as explained in 6.3.1. Since we know the Collection name, and the id of the
Document (same as the userUid) we want to retrieve, we therefore know the absolute path of the
Document. We can then directly reference the Document as seen in the example below, and also
add a converter which becomes relevant later 7.2.1 (app/repositories/UserRepository.js):

import { doc } from "firebase/firestore";

export function getDocReferenceForUid(uid) {
return doc(db, userCollectionName, uid).withConverter (userConverter);

}

Joel Suter & Lucas von Niederhdusern Page 49 of 152

https://firebase.google.com/docs/reference/js
https://www.npmjs.com/package/firebase

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

The function above returns a DocumentReference using the doc() function. We pass the Firestore
instance we initialized 7.1.1, the Collection path (mostly collection name), and the path to the
Document (document id). We do not know if the Document exists yet, and have not retrieved
the data yet. No request was sent to the backend. To retrieve the data, we can do this (example
code):

import { getDoc } from "firebase/firestore";

export async function retrieveUserData(uid) {
const userDocRef = getDocReferenceForUid(uid);
const userDocSnap = await getDoc(userDocRef);
if (docSmnap.exists()) {
return docSnap.data();

¥

return undefined

We first generate the reference to the Document we want to retrieve. After that, we use getDoc()
toretrieve a DocumentSnapshot from the reference. We now have access to the actual Document
that is stored. To check if the Document exists, we use the exists() call. We can just call .data()
on the snapshot to read the data. A more in-depth overview to retrieve a Document can be viewed
here.

Querying a Collection

As in all databases, we can also run complex queries to retrieve specific Documents that meet a
particular condition. Here is an example of a query that retrieves all the challenges a user is a part
of, either as the glscreator or Opponent (app/repositories/ChallengeRepository.js (outdated)):

export function getQueryResultForAllChalengesBelongingToUser (uid) {
const userDocReference = getDocReferenceForUid(uid);
const q = query(collection(db, challengeCollectionName)
.withConverter (challengeConverter), or(

where(creatorField, "==", userDocReference),
where (opponentField, "==", userDocReference),
));
return qg;

//use getDocs(q) to retrieve a querySnapshot that contains all documents.

}

Firestore allows using all the standard query operators and conditions. A list of them and a more
in-depth overview of queries can be viewed here (make sure to view for Web Version 9).

Real-Time Updates

We are able to receive Real-time Updates, on queries or Document references, if we do the fol-
lowing (app/repositories/TrackedDataRepository.js):

//For document reference

Joel Suter & Lucas von Niederhdusern Page 50 of 152

https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentReference
https://firebase.google.com/docs/reference/js/firestore_.md#doc_3
https://firebase.google.com/docs/reference/js/firestore_.md#getdoc
https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentSnapshot
https://firebase.google.com/docs/firestore/query-data/get-data
https://firebase.google.com/docs/firestore/query-data/queries#web-version-9_1

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

export function getTrackedDataForUser (userUid, trackedDataCallback) {
const docRef = doc(db, trackedDataCollectionName, userUid)
.withConverter (trackedDataConverter) ;
const unsubscribe = onSnapshot(docRef, (docSnap) => {
if (docSnap.exists()) {
const newData = docSnap.data();
trackedDataCallback(newData) ;
}
D;
return () => {
Log.info("Unsubscribed from tracked data updates");
unsubscribe();
s
}

As seen above, "'onSnapshot" returns a function. This function can then be used to unsubscribe
from the updates.

To see how we can subscribe to a whole query, go to "app/services/challenge/ChallengeSer-
vice.js" function "getChallengesForUserToDisplay".

After we run a query or get the reference for a Document, we can then pass this reference or
query to the onSnapshot function, and also pass a callback function. This callback function will
run every time the provided Document or query gets updated in Firestore. We usually want our
Components to rerender if new data gets pushed. We must run a state update in the callback
function (app/components/trackedDatalList/TrackedDataList.js) to do that.

const [trackedData, setTrackedData] = useState(new TrackedData());

useEffect (() => {
const unsubscribe = getTrackedDataForUser(userUID, setTrackedData);
return unsubscribe;

s

As seen, we provide our update function with a callback that updates the state of our Compo-
nents. This way, the Components will update with the new data. It is also essential that it is
run in a useEffect with no dependencies (seen by the []). Such a useEffect function is called an
"onMount" function, which will only get run once when the component is mounted. If we sub-
scribed outside of a useEffect we would subscribe to the data again each time the component
rerenders (for example, if a state changes). It is also essential to return the unsubscribe function
inside of the useEffect. Everything returned in this useEffect is used to clean up if the component
unMounts. So when the component unMounts we want to unsubscribe from any new updates.

Converters

We can add a converter to a Document reference, which could look like this:

export const trackedDataConverter = {
toFirestore: (trackedData) => ({
totalWins: trackedData.totalWins,
totalChallengesPlayed: trackedData.totalChallengesPlayed,
winLossRatio: trackedData.winLossRatio,
totalRepetitions: data.totalRepetitions,

Joel Suter & Lucas von Niederhdusern Page 517 of 152

https://firebase.google.com/docs/firestore/query-data/listen
https://legacy.reactjs.org/docs/hooks-effect.html

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

b,
fromFirestore: (snapshot, options) => {
// Todo: Try to use return of promise.then() (see functions index.js)
const data = snapshot.data(options);
return new TrackedData(
data.totalWins 7?7 O,
data.totalChallengesPlayed 77 O,
data.winLossRatio 77 O,
data.totalRepetitions 77 O,
)3
3,
s

This allows us to use a format we can control in our code and add logic to the conversion, like
reformatting timestamps, default values if a document does not have all values set, and more.

7.3 Firebase Functions

Setup

There is a good guide on how to setup the firebase functions, which we followed. When running
“firebase init function" to initialize the functions, the cli will prompt you to choose some options.
An important option we selected was JavaScript as our functions language. We chose JavaScript
over TypeScript since using the same language in the backend as we use in the frontend makes
sense. After the initialization of the functions, we have a Node.js project, which can be used as
a normal Node.js project. It will run differently internally. We listed these differences in 6.4.2.
We changed two significant things after the initialization that differed from the default functions
setup because we wanted the syntax of the functions project to be as similar to the frontend as
possible. That way, there is no need to code in two different "dialects" of javascript. Those are:

+ We added the line "type: "module™ in the package.json file. The reason for that is being able
to use export/import instead of module.exports/require("x").

+ We added the airbnb eslint package to guide our coding style, since we use that in the
frontend too.

+ Copied other eslint rules from the frontend to the functions project.

Implementation

For a overview of the structure we implemented for the Firebase Cloud Functions refer to 6.7.

This section will cover high-level implementation details for our Firebase functions. We have
several different functions that are being used. Each function has to be defined in the same
way in the index.js file at the root of our functions project. Here are two examples of functions
(firebase/functions/index.js); the first is an httpOnCall function (HTTP Callable Function 6.4.2) ,
the second is a Firestore trigger 6.4.2:

import functions from "firebase-functions";

export const completeChallenge = functions
.region("europe-westl")//

Joel Suter & Lucas von Niederhdusern Page 52 of 152

https://firebase.google.com/docs/functions/get-started?gen=1st

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

.https
.onCall((data, context) => {

3

export const newPerformanceAddedToHistory = functions
.region("europe-westli")
.firestore
.document ("challenges/{challengeId}/history/{historyId}")
.onCreate(async (snap, context) => {

B

We have to use the functions library, seen imported above, to initialize a function. We can can
define a region where this function should run. The default is "us-central1". Unfortunately, multi-
region support, as we have in Firestore is yet to be a functionality. So, for now, we have the
requirement that our functions run on "europe-west1". After defining the region, we can specify
the type of trigger and the event the function is triggered. Functions defined with a Firestore
trigger are background functions and are not actively called, but passively through an event in our
Firestore database. The HTTP onCall functions, on the other hand, are called from our application
in the following way, where we have to pass the instance of our firebase functions which we
initialized in the firebase file as seen in 7.1.2, and pass the exact name of the function as a string.
(app/services/cloudfunctions/cloudFunctionsService.js):

import { httpsCallable } from "firebase/functions";

export default function runJobAfterChallengeCompletion(challengeUid) {
const challengeCompletionCall = httpsCallable(functions, "completeChallenge");
challengeCompletionCall({ challengeUid }).then(() => {

}) .catch((err) => {

B
}

This is different from a regular http REST API that we do not provide a path but the exact name
of the function we want to call. The requested path is generated by the Firebase JavaScript SDK
through the function name and the configuration we initialized the SDK with 7.1.1. To call this
function, the application must be able to initialize Firebase with our internal configuration. So
this function is not publically available and at less risk for DDos attacks than a standard REST
APl might be.

Very important to keep in mind is that all promises must be completed as soon as the Firebase
function returns. In regular Node.js backends that stay up and running, this is not a problem,
and work can be done even if the request to the api has already returned. This is not the case
with Firebase functions. If a firebase functions returns/completes, the instance is torn down.
Each promise or async function that is still running will be abruptly terminated. This can lead to
incomplete tasks and confusing errors.

Joel Suter & Lucas von Niederhdusern Page 53 of 152

Fitness Gamification

Eastern Switzerland

University of Applied Sciences

7.3.1 Implemented Functions

The following list 7.1 represents all the implemented functions in Firebase, their triggers and what

their implementations does.

Function

Trigger

Description

completeChallenge

Manually by the frontend when a
challenge is completed

Updates relevant statistics for
both parties and checks for any
badges that got earned

newPerformance
AddedToHistory

Automatically when a new history
document is created

Updates the total repetitions of
the user that performed and also
his total repetitions of the current
week. Sends a push notification
to the opponent to inform him that
it is their turn now.

checkForAccount | Gets called manually by the au- | Will check for account associated

WithAssociated thentication process with the phone number in our user

Number database

sendChallenge Automatically when a challenge | Sends the opponent a push noti-

Notification document is created fication to inform them about the
challenge

scheduled Automatically every 10 minutes Checks for any expired chal-

ExpirationChecker lenges in the database and

updates them accordingly

Table 7.1: Implemented Cloud Functions

7.3.2 Firebase Admin SDK

We do not use the same Firebase SDK as we use for the frontend development. In the Firebase
Cloud Functions, we use the Firebase Admin SDK. Since the functions are entirely under our
control and run on "our" servers, it is best to use this SDK. With this SDK, we can read and write to
any Collection storage path and "ignore" the security rules set on the users. Itis the recommended
SDK by Google to be used in the Firebase Cloud Functions.

7.4 Authentication

This section will explore how we setup and implemented authentication and user management
using Firebase Authentication.

7.4.1 Setup

Before we can use authentication in our application, we have to set up the Firebase Authentication
service 6.4.1. After setting up the service, we enabled authentication by phone number using a
one-time password verification sent by sms. To enable easier testing, we also configured some
testing numbers with predefined one-time passwords that we can enter without needing an sms.
We then initialized the authentication in our frontend as explained in 7.1.2. In the code segment
there, a line is visible where we use getReactNativePersistence. Adding this line allows us to
keep the user logged in even if he closes the app.

Joel Suter & Lucas von Niederhdusern Page 54 of 152

https://firebase.google.com/docs/reference/admin
https://firebase.google.com/docs/reference/js/auth.md#getreactnativepersistence

OST : o
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

These testing numbers should be removed when the application goes into production.

7.4.2 Implementation

To explain the authentication implementation, we will go through an example and register a new
user. Logging in as an existing user will use the same one-time password functionality from
Firebase; therefore, we will only focus on registering.

Auserwhois notlogged in will see the Login Screen (app/screens/authentication/LoginScreen.js).
The user can then navigate to the Register Screen 7.1 (app/screens/authentication/Register-
Screen.js) using the link.

612 @ 685 v4dl

Enter your credentials

Firstname

+417897878

Send verification code

| already have an account.

1 2 aec 3 o - ‘
4 cni 5 6 vno — ;
7 Pars 8 v Q wxvz &

A I

\iﬁ _— . - /74,,4,'

Figure 7.1: Register Phone Authentication

The user then has to enter his first name and a valid phone number. When he presses the button
below "Send verification code", the following code is run:

(app/screens/authentication/RegisterScreen. js)

//expo-firebase-recaptcha

<FirebaseRecaptchaVerifierModal
ref={recaptchaVerifier}
firebaseConfig={firebaseConfig}

/>
(app/services/auth/phoneAuthService. js)

export function sendPhoneAuthVerificationCode/(

Joel Suter & Lucas von Niederhdusern Page 55 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

phoneNumber,
recaptchaVerifier,
verificationIDCallback,

) A
const phoneProvider = new PhoneAuthProvider(getAuth());

return phoneProvider.verifyPhoneNumber (
phoneNumber,
recaptchaVerifier.current,
) .then((verificationI) => {
verificationIDCallback(verificationI);
}) .catch((err) => {
Log.error("Was not able to verify phone number", err);

3

The entered phone number is passed, and a reference to areCAPTCHA (using Expos reCAPTCHA).
reCAPTCHA has to be used to avoid spam attacks to our backend. This reference is then used
and further passed in the function call "verifyPhoneNumber (api reference not up to date)" of the
PhoneAuthProvider. It will then open the reCAPTCHA which will most of the time prompt the user
to check a checkbox and then solve a puzzle. After the user completes the reCAPTCHA, "verify-
PhoneNumber" will return a verificationld, and the Firebase backend will then send a sms to the
provided phone number. The user can then enter the sms in the following textfield and confirm
his input.

617 @ @ 5 A]

Enter the verification code

Enter your code

Confirm verification code

A I

Figure 7.2: Register OTP Challenge

When the user inputs his one time password, the following code section will get run:

Joel Suter & Lucas von Niederhdusern Page 56 of 152

https://docs.expo.dev/versions/v47.0.0/sdk/firebase-recaptcha/
https://firebase.google.com/docs/reference/kotlin/com/google/firebase/auth/PhoneAuthProvider.html#verifyPhoneNumber(com.google.firebase.auth.PhoneAuthOptions)

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

export async function phoneAuthVerifyVerificationCodeForRegister(
verificationId,
verificationCode,
name,
) o
const credential = PhoneAuthProvider.credential(
verificationId,
verificationCode,
);
await signInWithCredential(getAuth(), credential).then((user) => {
initializeUser (user.user, name);
}) .catch((err) => {
Log.error("Was not able to log in user", err);
D
}

We pass the "verificationld" from before. This id has to be passed with the "verificationCode"
when generating the credentials for this login. That way, even if someone knows the phone num-
ber and can read the one-time password, he cannot use it on any device other than the one where
the OTP challenge was initialized. Finally, we sign in the user with the generated credentials, and
if the user is successfully logged in, we will initialize the user’s default Profile configuration. We
set the displayName of the user as the name he provided and set a default Profile picture for the
user.

Furthermore, as seen in the domain model 6.3, we mirror the user in our Firestore database. So
when the user registers, we will create a default Document for the user in our Firestore "users"
Collection.

7.4.3 Firebase Phone Auth Limitations

Something that we overlooked while doing our research about phone authentication using Fire-
base was that there is no separate process/code flow for registering and Login. The same func-
tions and logic have to be used in both cases. Since we do not want to allow a user to use Login
for registering or vice versa (because they have to choose a display name), we had to develop a
workaround.

We wrote a Firebase Cloud Functions 7.3.1 that gets called if a user tries to log in or register. The
function returns a true or false, depending on if the account the user tries to log in or register with
exists. If, for example, the account already exists, we do not allow the user to use our registration
form, and vice versa.

Here is an example for registering:

checkForAccountWithAssociatedPhoneNumber (phoneNumber) .then((result) => {
if (!'result.data.exists) {
sendPhoneAuthVerificationCode (
phoneNumber,
recaptchaVerifier,
setVerificationID,
)3
} else {

Joel Suter & Lucas von Niederhdusern Page 57 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

setDoesAccountExist (true) ;
}
b;

Development Hurdles

This issue took us longer to resolve than expected since firebase authentication for React Native
and Expo was not documented well, and we had problems finding an existing example. Therefore,
we overshot our estimation quite a bit, as stated in 10.3.1.

7.5 Challenge Creation

A user can create a Challenge from the home screen by pressing the Floating Action Button with
the "+" symbol. A button of this kind is used in various applications to create a new post in a
forum, a new chat in a chatting app, and more. Also, WhatsApp uses a similar Floating Action
Button, and since we use it as inspiration, we chose to implement a similar button. The Floating
Action Button can be seen in 7.7. Once the user presses the button, a new screen opens with a
form the user has to input:

® \
- i
659 @ @ 5 40 |

< Create new Challenge

Challenge Type

Challenge time: 5min

No opponent selected

Select Opponent

Random Opponent

Figure 7.3: Create Challenge Form

The user can then input three different values. He can also switch the slider to create a challenge
against a random user, which will be covered in 7.5.2. The user can choose the challenge type
from a dropdown (currently only one value), select the time each competitor has to perform in the
Challenge (1min-10min), and select an Opponent, which will be discussed in the following chapter
7.5.1. The user is required to select a Challenge type and choose an Opponent; the default value

Joel Suter & Lucas von Niederhausern Page 58 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

of the Challenge duration is already selected (5 min). If the user has not entered the needed
values, a red text will be displayed below the input field he needs to enter a value.

Once the user creates a Challenge, the Challenge will be saved into the "challenges” Firestore
Collection. It gets saved with the following values:

Field Name Saved Value

challengeDuration The duration selected from the slider
(number)

challengeType The type of the Challenge selected
from the Dropdown (string)
completed Marks if Challenge is completed, ini-
tialized with false (boolean)

Creator The user that filled out the form and
created the challenge (Document Ref-
erence)

Opponent The Opponent the user selected, or
a random opponent 7.5.2 (Document
Reference)

score The current high score of the Chal-
lenge, initialized with 0 (number)

turn Which user has to perform next on the
Challenge. Initialized with the oppo-
nent field value (Document Reference)
lastPerformed The date when the last performance
on challenge happened. s initialized
with the server timestamp of Firestore
turn Which user has to perform next on the
Challenge. Initialized with the oppo-
nent field value (Document Reference)

Table 7.2: Challenge Document after Creation

7.5.1 Opponent Selection

Since we use phone authentication 6.4.1, we do not have to manage a friends list but can directly
access the user’s contacts and use that as a friends list. When creating a Challenge the user
has to select an Opponent, which opens a screen where all his contacts from his phone are
displayed. The user can then search the list for the contact name he wants to choose. There
are three different cases we had to consider.

+ Contact has only one phone number saved: Is displayed directly.
+ Contact has no phone number: We display a text that says Contact has no number.

+ Contact has multiple numbers saved: We display that the Contact has multiple phone num-
bers.

Joel Suter & Lucas von Niederhausern Page 59 of 152

OSsT

Eastern Switzerland FltneSS Gamlﬁcatlon

University of Applied Sciences

e —)

73 @ @ S *40

< Contacts
Q

CEO CFO
Multiple Phone Numbers

Frank Castle
No Phone Number

Hans Ridiger
(555) 555-5555

Joel
+417978911 11

Joel2
+4179 789 97 96

Lucas
Multiple Phone Numbers

IR
|
N y

Figure 7.4: Opponent Selection Screen

If the user selects a contact with only one number, this number is used to search the Opponent
in our system. If the selected contact has multiple numbers, the following dialog 7.5 opens up,
where the user has to decide which phone number he wants to Challenge:

Select a number

(273) 312-3123

1 (323) 113-131

Figure 7.5: Choose Number Dialog

A user cannot choose a contact with no number saved. If he tries to select one, we display a hint,
as a snackbar 7.6 at the bottom of the screen, that he has to choose a contact with a number:

Joel Suter & Lucas von Niederhausern Page 60 of 152

OST : o
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Lucas
Multiple Phone Numbers

Cannot select contact that has no number

Figure 7.6: Contact not allowed Snackbar

7.5.2 Challenging random user

We considered multiple approaches to implement the functional requirement to challenge a ran-
dom user from our database. The first approach was to retrieve the whole user collection and
calculate its size. We used this size to generate a random number between 1 and said size and
pick the user that way. We quickly realized that this approach would significantly impact per-
formance once our user collection grows, so we deviated to the approach of saving a randomly
generated number for each user between 1 and 100°000’000. On our backend, we will also gen-
erate a random number between 1 and 100°000°000 and retrieve the user document closest to
that generated number. We also covered the edge case of challenging oneself in this approach,
which could happen very frequently if the user collection is small.

7.6 Home Screen

The Home Screen 7.7 is the screen displayed to the user once he logged in. The home screen
displays all the Challenges of the user.

Joel Suter & Lucas von Niederhdusern Page 61 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

®
[) i
102 @ @ 8 v4in
Challenges
Your Turn
Max Mustermann
\l’ 10h
Repetitions: 13
Their Turn
o, Max Mustermann 7h
/l\ Repetitions: 22
—— Completed ————
@ | MaxMustermann o
)\ Repetitions: 12

.| MaxMustermann |
A Repetitions: 9 |

k4 a

Rankings Profile

o

I
)
=

\;_ . - - g

Figure 7.7: Home Screen

It is divided into three different sections, which was inspired by the game "Polytopia" 6.12:

* Your turn (Du bist dran): Under this section it displays all the Challenges which are the
current users turn. He is able to perform 7.8 on these Challenges.

« Their turn (Spielt): These are all the Challenges which the current user waits for his Oppo-
nent to perform his turn.

« Completed (Beendet): All the Challenges that are already completed. Marked green if the
user won, red if the user lost.

The user can press on each of these Challenges to view the Challenge details 7.7 and also the
history 7.7.1.

On the bottom right it also displays a Floating Action Button, which is the "main action" of our
application, and allows a user to create a new Challenge 7.5.

The challenges are displayed in so called Card components from our react-native-paper library.
We modified the component so it displays relevant information about the challenge and also
made it pressable. To display the challenges, we first fetch all the challenges related to the cur-
rent user and sort them by their completion status and turn status. Afterwards we map those
challenges each into their own card component.

Joel Suter & Lucas von Niederhdusern Page 62 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

7.7 Challenge Details

When a user clicks a challenge card from the home screen 7.7, they will be directed to our chal-
lenge details screen 7.8 where we present important information about the challenge.

) \
- i

1040 @ @ B *40
|
< Details LONN I

Your Opponent

¥ Y M

Total Wins: 9 Repetitions 1014 Win/Loss 0.09 Total Pla | ¢

Challenge Type: Pull-ups
Duration: 5 Minutes
Most Repetitions: 0
Completed: Yes
Challenge won by: Max Mustermann

A I

Figure 7.8: Challenge Details Development

The screen is divided into two sections.
The upper half of the screen showcases the opponent’s banner (refer to section 7.9.3).

The lower half of the screen contains a collection of details about the challenge, including the
challenge type, duration, current score, whether the challenge has been completed or not, and
the winner of the challenge.

From this screen, the user has several options. They can navigate to the chat screen 7.10, the
challenge history screen 7.7.1, or directly initiate the challenge 7.8.

7.7.1 Challenge History

When the user chooses to access the history screen from the challenge details screen 7.8, they
will be presented with a simplified view of cards.

Joel Suter & Lucas von Niederhdusern Page 63 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

® \
- i
105 @ % @5 L] [

< Challenge History

Joel

Score: 9

06/09/23, 2:15 PM

Max Mustermann

Score: 8

06/09/23, 2:08 PM

Joel

Score: 7
06/09/23, 2:01 PM

Max Mustermann

Score: 6 |
06/09/23, 1:58 PM

\ I

Figure 7.9: Challenge History Screen

Each card represents a user’s performance on a challenge (details on that 7.8). The color scheme
of the cards will vary depending on the performer.

Itis important to note that the history screen is limited to the current challenge, meaning only the
performances related to the ongoing challenge will be displayed here.

7.8 Perform a challenge

The challenge will commence immediately when the user initiates a challenge by pressing the
corresponding button on the challenge details screen (refer to section 7.7).

Joel Suter & Lucas von Niederhausern Page 64 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

® \
- §
518 @ @ 5 A 74 | i
Do Pull-ups!
0
Pull-ups

\ I

Figure 7.10: Challenge Perform Screen

A large circular countdown timer will appear in the center of the screen, indicating the remaining
time for the challenge. Concurrently, the currently detected repetitions will be displayed at the
center of the countdown timer.

Our requirement was 5.1 to implement one challenge type. We chose to implement a "pull-ups”
Challenge. We use the acceleration of the y-axis to detect repetitions and, for that, the user’s
score. As with all platform-specific APl access, we used Expo 6.5.1, specifically expo-sensors. We
access the "Accelorometer” sensor to detect the pull-ups. As with everything else, we considered
modularity and extendability highly in this requirement. The code that implements the screen
7.10, is the file "app/screens/challenge/challengePerform/ChallengePerform.js". If the screen
opens it initializes the challenge, as follows:

useEffect (() => {
const unsubscribe = initialize(challenge.challengeType, setScore);
return () => unsubscribe();

o)

It calls the function "initialize" from the file "app/services/challenge/PerformChallengeService.js"
with the requested challenge type and a callback to set the score (state update). Even though
we prevent the user from going back (he has to wait until the timer runs down), we make sure
to "unsubscribe" from challenge detection if the screen unmounts for some reason (more on
umounting in 7.2.1).

export function initialize(challengeType, setScoreCallback) {
if (challengeType === "pullups") {
return initializePullUpPerform(setScoreCallback) ;

Joel Suter & Lucas von Niederhdusern Page 65 of 152

https://docs.expo.dev/versions/latest/sdk/sensors/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjw4ZWkBhA4EiwAVJXwqbW18YmQuayWzNoNr32XnVTcj9VB_ZNEdeNUNdNFBlCXUcI_pAQ1PxoCHeYQAvD_BwE

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

}
return null;

}

First, we check which challenge type is requested, and depending on Challenge, we initialize the
detection differently. For pull-ups, we do the following initialization:

function initializePullUpPerform(setScoreCallback) {
const accelerationThreshold = 1.5;
const handleAccelerometerDataForPullUp = ({ x, y, z }) => {
const accelerationMagnitudeY = Math.abs(y);

if (accelerationMagnitudeY >= accelerationThreshold) {
setScoreCallback((prevCount) => prevCount + 1);
Vibration.vibrate();
Log.debug("Pull-up detected with acceleration in y: ",

accelerationMagnitudeY) ;

Log.debug("Current accelerations in x, y, z: ", X, y, 2);

}

+;

Accelerometer.addListener (handleAccelerometerDataForPullUp) ;
Accelerometer.setUpdateInterval(100);
return () => {

Accelerometer.removeAllListeners();

};

In this function, we provide a listener to listen to the Acceloremeter and set a updatelnterval,
on how many times we check if a pull-up was performed. We also return a correct tear-down
function that removes all the listeners from the sensor.

Once the countdown completes, the following is run:

const handleCountdownComplete = () => {
tearDownChallenge(challenge.challengeType) ;
updateChallengeWithPerformance (challenge.key, score);
setChallengePerformanceCompleted(true);

};

It tears down the repetitions detection and updates the Challenge with the performed score, and
adds the performance to the history 7.7.1) (which will trigger newPerformanceAddedToHistory
7.3.1). A push notification will be sent to his Opponent, who tells him that he has performed on
the challenge and it is now his turn to perform 7.12. While updating the challenge ("app/reposi-
tories/ChallengeRepository" -> "updateChallengeWithPerformance") two cases can apply:

+ Challenge is lost: The challenge is considered lost if the user cannot beat his opponent’s
score. The challenge Document is updated accordingly and marked as won and completed.

Joel Suter & Lucas von Niederhdusern Page 66 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Furthermore, we also run the "completeChallenge" Firebase Cloud Functions task (what it
does listin 7.3.7)

+ User was able to beat the score: If this occurs, the challenge will be sent back to the
other user in the challenge, which now has to perform on the challenge and try to beat the
achieved score.

7.8.1 Implement new Challenge

We mentioned earlier that modularity was also highly considered while implementing the "per-
form on a challenge" requirement. This section will explain in great detail how new challenges
could be implemented.

First, add a new challenge type to the Dropdown in challenge creation 7.3. Note down the value
you used as the new challenge type.

Generally, mirror all the translations as we did for the pull-ups. Do that in the "translations.js" file
7.15.

Now navigate to the "app/screens/challenge/challengePerform/ChallengePerform.js" file. Make
sure you add a new set of strings as we did for the pullups in the variable "challengeStrings".

Now it is time to add performing logic. Navigate to "app/services/challenge/PerformChallenge-
Service.js." Implement a function called "initialiaze<NewChallengeType>." Ensure it has the same
parameter signature as "initializePullUpPerform" and returns a teardown function. In this func-
tion, implement your challenge to perform logic (for example, repetition detection).

Write a teardown function "tearDown<NewChallengeType>Challenge" in the same file. Make sure
you tear down the perform logic correctly.

Modify the "initialize" function as follows:

export function initialize(challengeType, setScoreCallback) {
if (challengeType === "pullups") {
return initializePullUpPerform(setScoreCallback) ;
}
//Your new challenge perform logic
if (challengeType === <NewChallengeType>) {
return initialize<NewChallengeType>(setScoreCallback) ;
}
return null;

}
Also modify the "tearDownChallenge" as follows:

export function tearDownChallenge(challengeType) {
if (challengeType === "pullups") {
tearDownPullUpChallenge () ;
3
//Your new challenge tear down logic
if (challengeType === <NewChallengeType>) {
tearDown<NewChallengeType>Challenge () ;
X
+

Joel Suter & Lucas von Niederhdusern Page 67 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Everything should be functional, and users can perform your new challenge type.

Optionally: If you want the 10-week history 7.9.1 to display your new challenge type, you would
have to refactor it as explained in 7.9.1.

7.8.2 User did not Perform on Challenge

Each challenge remains active for 12 hours until it expires. If the user currently required to perform
the challenge does not do so within these 12 hours, the challenge will automatically be marked
as complete, and the opponent will be declared the winner.

We have implemented a scheduled cloud function in our Firebase backend to address any expired
challenges. This function is triggered every 10 minutes (can be lowered for production), check
for any challenges that have reached their expiration time, and completes those. For a high-level
overview what this function generally does, refer to 7.3.1.

7.8.3 Shortcomings

While we can detect repetitions, "hardcoding” detection like this is not the optimal way to detect
repetitions. A repetition may not be detected, or for one repetition, two are detected. Unfortu-
nately, there is no way around it with how we currently implement it. The best way to improve
it would be machine learning. However, since this is a prototype and adding machine learning
would completely explode our scope, we decided not to do it. However, we recommend consid-
ering it for further development 9.1.

7.9 Profile

Each user has their own Profile, which can be accessed through the main navigation at the bottom
of the screen. The final Profile looks like this:

Joel Suter & Lucas von Niederhausern Page 68 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

® \
- i

217 @ ¢ @ 8 v
Profile a = |

Y Y &,

Total Wins: 10 Repetitions 1014 Win/Loss 0.11 Total Pl |

0 Max Mustermann

Pull-ups of the last 10 weeks

S S
sa:_____:__-__-_:___-_:_/.T_:__,
ST 1 W T S (R

A A 4 a ‘

Home Rankings Profile

Figure 7.11: Profile Screen

The user sees his most important information in this Profile. It is divided into two sections. The
section above the divider is called the Banner, which we will expand upon in 7.9.3. The section
below the divider is only visible to the user it belongs to. It displays two things, the Opponent the
user played the most against and the pull-ups per week for the last ten weeks. How the data is
tracked can be viewed in chapter Tracked Data 7.13. If more Challenge types are implemented
in the future, the graph could easily be extended with a dropdown to change the Challenge type
it displays. This section of the Profile is vertically scrollable since only some content can be
displayed simultaneously.

The Profile contains two interactive actions, both of which are located in the top right. The user
can log out, which will clear his session, cancel all Real-time Updates and return him to the login
screen. The second is changing the profile picture which we will expand more onin 7.9.2.

7.9.1 10 Week History

How we track this data can be viewed in 7.13. The complete graph looks as follows:

Joel Suter & Lucas von Niederhdusern Page 69 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Pull-ups of the last 10 weeks

111 P

83
L]

56

°®
28 g

W

le o * @ =
A\ 9
(3) . 4 -
Home Rankings Profile

Figure 7.12: 10 Week history graph

The graph fetches data for the last ten weeks from Firestore for the user. This data can have
gaps or miss entirely. So before we display the graph, we interpolate data for each week we want
to display where no data is available. We interpolate data with O pull-ups. We also subscribe
to Real-time Updates of the last ten weeks for the user. If a new weekly summary is pushed, for
example, a new week begins, and the graph will update accordingly. The code regarding this logic
can be viewed in "app/repositories/TrackedDataRepository.js -> getTotalRepetitionsByWeek".

Extend with new Challenge Type

This is probably the only component we did not write fully extendible. At the moment, it is
only able to show the pull-ups. One only would have to refactor the "app/repositories/Tracked-
DataRepository.js -> getTotalRepetitionsByWeek" function.

The reason for that is that time was running out, and we had to focus on more critical aspects of
the project.

7.9.2 Profile Picture

We display a Profile picture in the Banner 7.9.3 of the user, which he can change. When the user
first creates his account, the user is initialized with some values 7.4.1, one of them a default
glsprofile picture. For more information about the initialization, refer to 6.4.1—the default Profile
picture points to a picture inside the application itself. The user can change his glsprofile picture,
which is displayed in the Banner 7.9.3. We chose to use the expo-image-picker to allow the user
to choose a new picture.

Joel Suter & Lucas von Niederhdusern Page 70 of 152

https://docs.expo.dev/versions/latest/sdk/imagepicker/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjwsvujBhAXEiwA_UXnAAdHGbFRHyrtYSdLTOKjw4zlB9eKjXVJaI5U1ORCQw5mLhIyy9uS_hoC3sAQAvD_BwE

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

. \\.
754 5 @ A Fdl |
= Recent Q
> Largefiles £ This week

BROWSE FILES IN OTHER APPS

A &

Drive Photos

Recent images E

No items

\ I

Figure 7.13: Profile Screen

Since it is a Expo package, it is Multiplatform 6.5.1 and works for both our targeted platforms.
It allows the user to select an image from almost all familiar sources. It also works with other
apps, such as an additional file manager, galleries, onedrive, google drive, and much more apps
the user has installed.

Everything to do with selecting a new Profile picture is coded in the "app/services/profilePicture-
Service.js." We allow the user to crop his picture to the size he wants. He can only choose a single
picture, but we still check if more than one picture is selected and do not proceed with the pro-
cess. The selected image is then converted to a Blob. We upload this Blob to Firebase Storage
6.4.5 with the UID of the user as the file name. After it is uploaded, we retrieve the "download url,'
a URL pointing to the picture in our storage. Those images are publicly readable. We save that
URL in the Firestore 6.4.4 Document of the user that just uploaded the picture. The field in the
Document is called "photoURL". Since we subscribe to the users Document when displaying the
Banner 7.9.3, every user that currently is viewing the Profile picture of that user, including the user
that changed it, Real-time Updates 7.2.1 are pushed, and the image gets updated in realtime. If
the image cannot be fetched for some reason, we fall back to the default Profile picture.

Joel Suter & Lucas von Niederhausern Page 71 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

7.9.3 Banner

The Banner 7.14 is the upper portion of the user’s Profile.

Joel

ye
¥ Y Mol

Total Wins: 7 Repetitions 48 Win/Loss 0.2 Total Played: |

Figure 7.14: Banner

This part of the Profile is not just visible in the Profile of the user but also in the Challenge details
7.7. When a user opens the Challenge details, he sees the banner of his Opponent. So the banner
is to show off to other users and motivate the user to get the best results possible. It makes the
whole App more competitive since other users can see the statistics. The inspiration to imple-
ment a Banner was "Apex Legends," which we discussed in 6.13. The banner displays four kinds
of information:

* Profile Picture: The image the user selected 7.9.2
+ Display Name: The display name the user entered while registering 6.4.1

+ Badge List: The milestones a user has earned. Details how these are calculated in chapter
7.14. It is horizontally scrollable if the user has many Badges.

+ Tracked Data List: Some metrics we track for the user. Details how those are tracked are
calculated in chapter 7.13. Is horizontally scrollable if the Tracked Data can not be fully
displayed or if more would be tracked in the future.

7.9.4 Component Structure

Here we will show the rough structure of the Profile screen, and how it is split into it's own Com-
ponents. "app/screens/main/profile/ProfileScreen.js" structure:

+ Banner (app/components/banner/Banner.js)
- Horizontal Badges List (app/components/badges/HorizontalBadgeList.js)
- Tracked Data List (app/components/trackedDatalList/TrackedDataList.js)
+ Favorite Opponent (app/components/favoriteOpponent/FavoriteOpponent.js)

+ History Line Chart (app/components/historyLineChart/HistoryLineChart.js)

7.10 Chat

When users navigate to the chat screen (through the challenge details screen 7.8), they encounter
a straightforward chat application. The screen comprises an input field for entering messages
and a chat history section. The messages are stored in our Firestore database containing the

Joel Suter & Lucas von Niederhdusern Page 72 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

message, receiver, sender and a timestamp. Depending on the user and their opponent, we will
filter out the corresponding message and sort them by their timestamp.

As long as the screen does not get unmounted, the user is subscribed to the messages and will
get real-time updates on the chat screen.

We also included the profile picture, a formatted timestamp and the display name at each mes-
sage to identify who sent the message and at what time as depicted in the figure 7.15.

® \
643 @ ¢ @ 5 van

< Chat
i 4

L hallo
Joel, 5:06:42 PM
Hey wie gahts?
Max Mustermann, 2:00:34 PM
Ready fiird Challenge?
Max Mustermann, 2:00:47 PM

Type your message Submit

\ I

Figure 7.15: Chat Screen

Unlike the challenge history screen, the chat history will persist across multiple challenges. How-
ever, only the latest 100 messages will be displayed in the chat history for performance reasons.
This can be addressed in the future.

7.11 Rankings

The rankings screen presents the top 100 players who have achieved the highest number of to-
tal wins. The screen features a ranking table with columns for Rank, Player, and total wins. The
function that fetches the rankings is "app/repositories/TrackedDataRepository.js -> getTracked-
DataOrderedByTotalWins".

Joel Suter & Lucas von Niederhdusern Page 73 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

®
- i
300@ ¢ @5 v4n
Rankings
Rank Player Total wins
1 Joel 10
2 Max Mustermann 5
a [] ‘
f 4 a
Home Rankings Profile
i |
\ I

Figure 7.16: Rankings Screen

The table is sorted based on the total wins (tracked by 7.13), allowing us to calculate the rank
for each user. Any changes in the ranking table are immediately reflected in real time as we
have subscribed to the database for updates. This ensures that the rankings screen dynamically
updates whenever there are changes to the players’ win counts.

Due to time limitations partly driven by a realized risk 10.3.1 we were not able to implement a
friends ranking list as we do not have a friends list feature.

7.11.1 Extending the Rankings

Should the rankings be extended to display a ranking based on different statistics, one could
add something like a dropdown to allow the user to select what ranking he wants to use. This
value should then be used to retrieve a different set of data in the following code section of the
RankingsScreen (app/screens/main/ranking/RankingsScreen.js):

useEffect (() => {
//Add rankings selection logic here
const unsubscribe = getTrackedDataOrderedByTotalWins(setPlayers);
Log.info("Updated rankings");
return () => {

Joel Suter & Lucas von Niederhausern Page 74 of 152

OST . L
Eastern Switzerland FltneSS Gam’ﬁcat’on

University of Applied Sciences

Log.info("Unsubscribed from tracked data");
unsubscribe();
};
}, D

7.12 Push Notifications

This section explains how push notifications are implemented for both iOS and Android plat-
forms. A user can receive notifications for several events, outlined in 6.4.3. Here is an example
of a notification a user received because he got challenged:

Swisscom @0 il T o 310:43% @)

. FitChallenge Just now

Fitness Challenge
Max Mustermann has challenged you to Pull-ups!

& Google 32 min ago
26° in Bubikon

Mostly cloudy - See full forecast

(O WhatsApp *+ 4 messages from 3 chats 13:58

A\

9 9GAG 10:20

Manage notifications

m

Figure 7.17: Android Notification Example

As explained in 6.4.3, for Android devices, push notifications are sent using Firebase Cloud Mes-
saging, which generates a unique key for each user and handles the notification delivery process.

In the case of iOS devices, push notifications are sent through the Apple Push Notification Ser-
vice. Although Firebase Cloud Messaging offers Method Swizzling to send notifications to i0S
devices, for this project, we decided to utilize the push notification service provided by Expo.

Joel Suter & Lucas von Niederhausern Page 75 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

This service can be viewed in detail here. As explained in 6.5.1, Expo allows us to use a single
codebase for both platforms. Using this SDK, Expo uses the correct notification service for the
targeted platform 6.4.3.

When a user logs in or opens the app, we generate an expo-token, which we save in the user’s
Document. This token will be updated every time a user changes his device. We do this by uti-
lizing the package expo-notification. We first request Notification permission, and if permission
is granted, we generate an expo-token ("app/services/notification/Notification.js" -> "registerFor-
PushNotificationsAsync"). We can then use this token to send Notifications to Android and iOS
devices.

We then listen to specific events in the Firebase Cloud Functions 7.3.1 and push notifications to
the correct user.

7.13 Tracked Data

This section will describe what kind of data we track for each user in our application. The data
we track can have multiple purposes and be used by other functional requirements. The data we
decided to track finally, and were discussed with our stakeholders, are the following (listed with
their name in the database, "trackedData" collection 6.3):

- Total Challenges played (totalChallengesPlayed): The number of all Challenges a user
played. Incremented after Challenge is completed.

* Number of Challenges won (totalWins): The number of Challenges a user won. Incre-
mented after Challenge is completed and if a user is the winner of that Challenge

+ Win to Loss ratio (winLossRatio): The ratio of wins to losses of Challenges. Calculated
with the totalChallengesPlayed and totalWins. Wins divided by losses.

+ Total number of repetitions (totalRepetitions): A total of all the repetitions a user has done
across all his Challenges, active or completed. It gets incremented each time a user per-
forms on a Challenge.

+ Weekly Summary (/weeklySummary subcolllection): A summary of the repetitions per-
formed for a user for each week for each challenge type. Used for 7.9.1.

+ Played Against (/playedAgainst subcollection): A document is created in this subcollec-
tion for each unique user a user has played against. Counts the total games played against
a user. Used in 7.9 to calculate the favorite opponent.

We collect the Tracked Data of the users in the Collection "trackedData." A user may only have at
maximum one Document. A user may not have any trackedData Document if he never played in
a Challenge.

7.13.1 Challenge completed

One event that triggers an updating of the Tracked Data is if a Challenge is completed. The
metrics updated are:

+ totalChallengesPlayed

- totalWins

Joel Suter & Lucas von Niederhausern Page 76 of 152

https://www.npmjs.com/package/expo-server-sdk
https://docs.expo.dev/versions/latest/sdk/notifications/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjw4ZWkBhA4EiwAVJXwqbzdfeylodRkbAG2q-KPj0YaqiclfNvXAyoCNiZoutnqaGfH8fWHvhoCX4sQAvD_BwE

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

+ winLossRatio
+ playedAgainst/id of user played against -> numberOfGamesPlayed

We use http onCall trigger after a Challenge is completed. If a user cannot beat the score of his
Opponent, he lost the Challenge, and the Challenge is completed. We use an HTTP onCall trigger
since no firebase trigger can listen to a certain field. With a onWrite trigger, the "completeChal-
lenge" task would be invoked every time something is written into the Challenge Document. That
means unnecessary invocations and costs that could be avoided. Keep in mind that this call
does update not only the Tracked Data of a user, but also other tasks that need to be done if
a Challenge is completed (outlined in 7.3.1). To see how these tracked data are displayed view
7.13.

Sequence

Suppose the user could not beat the score, which is checked in the frontend. In that case, the
frontend will complete the Challenge and send a httpsCallable request to our firebase functions
7.3.1, specifically the "completeChallenge” function. After this request is sent, the following se-
quence of code is run:

indes js tracked-data- challenge- tracked-data-
- sernvice Js repository.js repository js
: T
o challengeCompleted (onCall)
. o
updateStatisticsForParticipanisinChallenge
getDataForChallenge
return (challenge data)
| updateStatisticsAfterChallengeComplefion
(for both members in challenge, async)
1
getTrackedDataForUser
return (challenge data)]J
T TSR ritop g3 Py riy=. ity AR IR RS RRRRRRR
——calculateTotalWinsForUser
----- return (updated tracked data)
e :
lculate TotalChall Played
------ return (updated fracked data)
'
______________ |
+—=calculateNew\WinLossRatio
----- return (updated fracked data)
L et '
setNewTrackedDataForUser
L return (challenge data) | |
return (promise resolved)
'
return {promise resoclved)
More Work>
return (empty json)

Figure 7.18: Tracked Data Update After Challenge Completion

Keep in mind that there is more work done in the "completeChallenge" function, which is not
displayed in the above graphic 7.18 and can be viewed in 7.1.

Joel Suter & Lucas von Niederhausern Page 77 of 152

https://firebase.google.com/docs/functions/callable?gen=1st
https://firebase.google.com/docs/functions/firestore-events?gen=1st

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

Even though a firebase function should only return a result to the caller when all promises are
resolved as described in 7.3, the frontend calls the function but does not wait for its completion.
The updates this function does will automatically be displayed in the frontend, through subscrip-
tion and Real-time Updates we do on specific datasets. So there is no need to respond to the
function completion

The function "updateStatisticsForChallengeCompletion" is run two times for both users in the
Challenge. They run parallel to each other.

7.13.2 User Performed on Challenge

When a user performs on a challenge, two metrics are updated:
+ totalRepetitions: Gets incremented by the amount performed.

+ weeklySummary/<date of current monday> -> pullups: The amount of pull-ups the user
performed, will be added to the summary of the current week.

The Firebase Cloud Functions that gets triggered when a user performs is called "newPerfor-
manceAddedToHistory" 7.3.1. It gets triggered whenever a new Document is created in the "his-
tory" subcollection in a Challenge document 6.3.

Since we currently only have one challenge type, only pull-ups are counted towards the weekly
summary. But as with everything, we programmed it to allow it to track different challenge types.
So this code does not have to be altered in any way to track different challenge types since we
use the challenge type as the field name in the weekly summary document 6.3 (how to add a new
challenge is explained in 7.8.1). The weekly summaries are displayed in the 10-week summary
visible in the profile 7.12. As the document’s id, we use the date of the Monday of the week it
references (format: yyyy.mm.dd). This value is also saved in the field "startDateOfWeek," which
is used for ordering.

As in the "challengeCompletion” function 7.13.1, this function is not only designed to track metrics
but do general work that needs to be done after performing on the Challenge, such as sending
notification to the other user 7.12. Complete outline what this function does is explained in: 7.3.1.

7.13.3 Track new Data

The data tracking was intentionally designed in a way that can be easily extended in the future.
We only track data after a Challenge is completed or when a user performed on a Challenge.

Track more Data after challenge completion

The function that needs to be extended if we want to track more data for a user after a Challenge is
completed is the following (firebase/functions/services/datatracking/tracked-data-service.js):

async function updateStatisticsAfterChallengeCompletion (
userUid,
challengeSnapShotData,

) A

let trackedDataToBeUpdated = await getTrackedDataForUser (userUid);

// Devtipp: add new method call that calculates new metrics

Joel Suter & Lucas von Niederhdusern Page 78 of 152

OST : I
Eastern Switzerland FltneSS Gamlﬁcat’on

University of Applied Sciences

// for the user here (similar structure)
trackedDataToBeUpdated = calculateNewTotalWinsForUser (
userVUid,
challengeSnapShotData,
trackedDataToBeUpdated,
)

trackedDataToBeUpdated = calculateTotalChallengesPlayed(trackedDataToBeUpdated) ;

trackedDataToBeUpdated = calculateNewWinToLossRatio(trackedDataToBeUpdated);

await incrementAmountPlayedAgainstUser (userUid, challengeSnapShotData);

await setNewTrackedDataForUser (userUid