

Link Management Tool with

Internet Archive Integration

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Spring semester 2023

Authors Benny Joe Villiger and Thomas Zahner

Advisor Prof. Dr. Olaf Zimmermann

External Co-Examiner Dr. Hans-Peter Hoidn

Internal Co-Examiner Prof. Laurent Metzger

Abstract

Hyperlinks, also known as URLs or links, are the foundation of the Internet, they allow seamless navigation be‑
tween online resources with a single click. They make the Web a web. However, the content behind a link can
change, move or be deleted without notice. This, combined with the often short‑lived nature of content on the
Internet, can lead to problematic situations. The phenomena of disappearing content and unannounced changes
are known as link rot and content drift respectively.

This thesis addresses the challenges of both link rot and content drift. We develop a command‑line tool called
Link Management Tool (LMT) to provide an automated approach to detecting and fixing broken links and drifted
content. Additionally, we extend an existing free and open source link‑checking tool called lychee. In both imple‑
mentations, we integrate the Wayback Machine, a digital web archive, to provide access to archived snapshots of
websites from the past.

Link Management Tool with Internet Archive Integration 16. June 2023

Contents

1 Introduction 8

2 Background 9
2.1 Broken link . 9
2.2 Content drift . 10
2.3 Limitations . 10
2.4 Internet archives . 11
2.5 Introduction to lychee . 12

3 Requirements 13
3.1 Functional requirements . 13
3.2 Non‑functional requirements . 14

4 Architecture 17
4.1 Technical decisions . 17
4.2 C4 Architecture model . 20

5 Implementation 24
5.1 Check command . 25
5.2 Suggest command . 29
5.3 Fix command . 31
5.4 Configuration file . 33
5.5 Exit codes . 34
5.6 Integration with CI/CD Pipelines . 34
5.7 Dependencies . 35
5.8 Contribution to lychee . 35

6 Results 39
6.1 Release . 39
6.2 User stories . 39
6.3 Comparison with other tools . 40

7 Discussion and summary 42
7.1 Wayback Machine API stability . 42
7.2 Support additional Internet archives . 42
7.3 Extension of LMT . 42
7.4 Plugin system for lychee . 43
7.5 Summary . 43

Glossary 45
Response status code . 45
Sed . 45
Glob patterns . 45
Exit codes . 46

Benny Joe Villiger, Thomas Zahner 3

Link Management Tool with Internet Archive Integration 16. June 2023

C4 . 46

Bibliography 47

Appendix 48
Test results . 48
Project plan . 54
Risk management . 56
LMT user guide . 57
Input and output format reference . 61

Benny Joe Villiger, Thomas Zahner 4

Link Management Tool with Internet Archive Integration 16. June 2023

List of Figures

1 URL classification . 9
2 Searching for URLs with the Wayback Machine . 11
3 Browsing the Web of the past with the Wayback Machine . 12
4 System Context Diagram . 20
5 Container Diagram . 21
6 Component Diagram . 23
7 Sequence diagram of the check command . 25
8 Sequence diagram of the suggest command . 29
9 Sequence diagram of the fix command . 31
10 Project plan . 54

List of Tables

1 URL classification . 10
2 Evaluation table technology . 17
3 Exit codes . 34
4 Dependencies . 35
5 Check results of websites . 40
6 Check results of local files . 41
7 List of possible risks . 56

Benny Joe Villiger, Thomas Zahner 5

Link Management Tool with Internet Archive Integration 16. June 2023

Management Summary

Context

In today’s digital age, the World Wide Web has become the indispensable platform for accessing and sharing in‑
formation. At the heart of the Web are hyperlinks, also known as URLs or simply links. They are the threads that
connect webpages and allow users to traverse the landscape of online content.

However, online content tends to be short‑lived, and changes often go unnoticed. The phenomena of disappear‑
ing content and unannounced changes are known as link rot and content drift. Rotten or dead links are URLs
pointing to resources that show obvious signs of malfunction. Content drift can result in linked information that
is misleading or that differs significantly from the original intent of the linker. They can undermine the accuracy
and credibility ofwebsites, degrade the user experience anddamage the reputation of thewebsite or organisation.
Checking and fixing links manually on a regular basis is time‑consuming and error‑prone.

Approach

We develop a command‑line tool called Link Management Tool (LMT) providing a semi‑automatic approach to
detecting and fixing rotten links and drifted content. Additionally, we extend lychee, a free and open‑source link‑
checker. We integrate theWaybackMachine, adigitalWebarchive, intoLMTand lychee toobtainaccess toarchived
snapshots of websites taken in the past. The project is executed using an agile methodology, emphasizing flexi‑
bility, collaboration, and iterative development. This allows for continuous feedback, and a fast adaptation to
potentially changing requirements.

Results

LMTwas released to the public onGitLab under theMIT licence. Themetadata snapshot feature provides function‑
ality to store a website’s metadata (such as the title). When checking a website again, those stored metadata can
be compared to the current ones, which enables the detection of content drift. Themodular design of LMT allows
integrating it into scripts, providing the flexibility to schedule the link checking process at strategic intervals such
as before each publication or release. Scheduling the link checking supports the continuousmonitoring of links.

In addition, lychee was extended with a new feature that offers recommendations for broken URLs by utilising
snapshots from the Wayback Machine.

Early user feedback and testing confirmed the reliability of LMT to identify and resolve broken links.

Benny Joe Villiger, Thomas Zahner 6

Link Management Tool with Internet Archive Integration 16. June 2023

Acknowledgements

First and foremost, we would like to thank our project supervisor, Olaf Zimmermann, for his invaluable support
and guidance, throughout the thesis. His expertise andmentorship helped us a lot during the project.

We would also like to express our gratitude to Matthias Endler from the lychee project for his valuable support.
Thanks to his cooperation, the helpful discussions and his quick answers to our questions, we were able to suc‑
cessfully contribute to lychee.

Additionally, we would like to thank Thomas Villiger for proofreading this thesis and providing valuable sugges‑
tions. His attention to detail has improved the clarity of our writing.

Benny Joe Villiger, Thomas Zahner 7

Link Management Tool with Internet Archive Integration 16. June 2023

1 Introduction

Hyperlinks, also called URLs or simply links, are the fundamental concept of the internet. They allow users to
easily navigate between different resources with a single click. They essentially are what makes the Web a web.
While the hyperlinks are the reason the internet is so powerful compared to traditional media, they also introduce
a new problem. Content on the internet is hosted by a third party who has control over the content. This means
that hyperlinks point to content that can be changed,moved or deleted entirely without notice. Such changes can
accumulate over time andmight make the original information inaccessible.

This often‑irreversible decay of web content is commonly known as link rot. It comes with a similar prob‑
lem of content drift, the often‑unannounced changes–retractions, additions, replacement–to the content at
a particular URL. (Zittrain, Bowers, and Stanton 2021)

A study from2014 found that link rot is a significant issue,within legal journals andevenwithinU.S. SupremeCourt
opinions. It showed that over 70%of the URLswithin three selected andwell‑known legal journals and 50%of the
URLs within U.S. Supreme Court opinions are experiencing link rot and content drift. (Lessig, Zittrain, and Albert
2014)

While link‑rotting is a phenomenon that cannot be stopped there are ways to mitigate the effects on one’s own
content andwebsites. There are automatic link checking tools that candetect broken links. Also, there are internet
archiving projects that aim to capture and preserve web content, so that the original version can be accessed
even if the web page changes. This thesis explores different ideas on how to alleviate the problem of linkrot and
attempts to provide a technical solution for it.

Namely, the objective is to create a link checking tool or use an existing one and integrate it with the Wayback
Machine, a well‑known internet archive, in such a way that broken or rotten links can be detected and fixed.

Benny Joe Villiger, Thomas Zahner 8

Link Management Tool with Internet Archive Integration 16. June 2023

2 Background

2.1 Broken link

A uniform resource locator (URL) also known as hyperlink, web address or simply link, is a string used to identify a
resource. (World Wide Web Consortium 2009) The World Wide Web Consortium (W3C) defines URL validity, which
refers to whether a given URL is correctly formatted and follows the syntax rules.

A URL is considered to be “broken”, “dead” or “rotten” when the underlyingwebserver is unavailable or returns an
erroneous HTTP return status code.

Figure 1: URL classification

Figure 1 illustrates the nomenclature used in this document in relation to links. This definition was taken into
account when planning and implementing the tool, as described in the “Implementation” chapter.

At the top level a distinction between valid and invalid URLs, as defined by W3C, is made. Invalid URLs are not
classified further as they are also not discussed further in this thesis. Any text or data that does not correspond to
a valid URL can be considered an invalid URL. Valid URLs are split into three categories: broken links, dead links
andworking links. A link is considered broken if an invalid or unofficial status code is returned. When receiving an
invalid status code, such as “400 Bad Request”, then the linkmost likely doesn’t work as intended. When receiving
an unofficial status code, i.e. a code not defined in RFC 9110, it cannot be known if the link works as intended. If
no response is received within a specified time frame, the URL is considered “dead”. Finally, if a successful status
code is received, the link should work as intended. However, it is still possible that the content of the webpage
has changed and no longer represents the original meaning of the article when it was linked. This phenomenon is
known as “content drift”.

Table 1 contains examples for the link classifications used in Figure 1.

Benny Joe Villiger, Thomas Zahner 9

Link Management Tool with Internet Archive Integration 16. June 2023

Table 1: URL classification

URL Status Code Type Comment

I am not a link ‑ Invalid URL This text does not follow the syntax rules of
W3C.

https://www.i‑do‑not‑
exist.ch

No response Dead link This URL is valid, but there’s no server listening.

https://www.example.com/no‑
exist

404 (Not
found)

Broken link The page couldn’t be found, but the server
responded.

https://www.ost.ch/de 200 (OK) Working
link

2.2 Content drift

A link is considered to be broken or rotten if there is any obvious sign ofmalfunction. However, those types of links
are not the only concern.

They are accompanied by a more subtle but no less insidious phenomenon called “content drift”. Content drift
refers to unannounced modifications such as retractions, additions, or replacements made to the content asso‑
ciated with a specific URL. Such changes can make the content at the end of a URL misleading ‑ or dramatically
divergent from the original linker’s intentions. (Zittrain, Bowers, and Stanton 2021)

2.3 Limitations

When checking Web links in practice, HTTP requests have to be made. When requesting a server with an HTTP
request it can process the request in anyway, and it can create any HTTP response, or even none at all. Sowhile in
theory HTTP status codes and their meaning are well‑defined, in practice Web servers can return arbitrary status
codes and their meaning can bemisused. For example, a “400 Bad Request” or an unofficial status codemight be
returned even though the request was successful. Also, there are websites which tell the user that a page cannot
be found, when navigating to a non‑existent page, but still return a “200 OK” response instead of the designated
“404 Not Found” response.

Additionally, manyWeb servers and websites today are stateful or require authentication. For example, a website
may return a “401 Unauthorized” status code, when requesting a resource where authentication is expected but
not provided. SomeWeb servers implement rate‑limiting to prevent denial‑of‑service attacks whichmight lead to
unpredictable return status codes, when checkingmultiple URLs of the same domainwithin a given time frame.

Because of all these reasons, the scheme depicted in Figure 1 is not applicable to every single URL and HTTPWeb
server. It should however be a good generalisation applicable to Web servers following the official meaning of
status codes as defined in RFC 9110. Some limitations such as rate‑limiting cannot be easily handled or only to
some extent. These limitations must be taken into account in the planning and development of the tool.

Benny Joe Villiger, Thomas Zahner 10

Link Management Tool with Internet Archive Integration 16. June 2023

2.4 Internet archives

A research paper from 2014 conducted a lifespan study of 10 million webpages that were collected in 2001. They
found that more than 90% of the webpages had disappeared in the last 12 years and determined that the average
lifespan of a webpage is just over three years, or 1,132.1 days. (Agata et al. 2014)

This study illustrates the severity of the link rot problem. To preserve content on the internet and to prevent the
potential loss of knowledge and information websites can be archived. The most notable example of such a Web
archiving project is the Internet Archive with their Wayback Machine.

The Internet Archive began archiving websites in 1996. As of 2016 they have stored over 510 billion time‑stamped
Web objects, also calledWeb captures. At that time they held 273 billionwebpages fromover 361millionwebsites,
taking up 15 petabytes of storage. (Goel 2016)

With the Wayback Machine it is possible to easily access the Web captures of the Internet Archive. The Wayback
Machine allows for the retrieval of any URL through a search bar, as depicted in Figure 2. If the specified URL has
been captured in the past, a calendar view will display the available captures along with their respective dates
and times. Users can then access these snapshots, as shown in Figure 3, enabling them to browse the website as
it appeared during those specific points in time.

Figure 2: Searching for URLs with the Wayback Machine

TheWaybackMachine also provides a publicly accessible RESTful HTTP API, allowing it to programmatically check
if a given URL is archived and accessible in the Wayback Machine.

Benny Joe Villiger, Thomas Zahner 11

Link Management Tool with Internet Archive Integration 16. June 2023

Figure 3: Browsing the Web of the past with the Wayback Machine

2.5 Introduction to lychee

lychee is a popular, free and open source link checking tool written in the Rust programming language1. It is able
to find broken hyperlinks and email addresses in Markdown, HTML, reStructuredText and other text files and also
supports checking websites. It focuses on being fast and resource‑efficient by making use of asynchronous and
stream‑based mechanisms. lychee is available as a command‑line utility, Docker image, Rust library and GitHub
Action. 2

In the course of this thesis, we will be providing further explanations as we extend the functionality of lychee.

1A general‑purpose programming language that emphasises performance, type safety, and concurrency: https://rust‑lang.org/
2Features of lychee: https://github.com/lycheeverse/lychee#features

Benny Joe Villiger, Thomas Zahner 12

https://rust-lang.org/
https://github.com/lycheeverse/lychee#features

Link Management Tool with Internet Archive Integration 16. June 2023

3 Requirements

This chapter discusses the functional and non‑functional requirements.

3.1 Functional requirements

For the functional requirements user stories are defined using two different personas.

Personas

Code owner

• A person who writes the source of their documents in a regular text file (e.g. Markdown or LaTeX).
• Uses a version control system tomaintain the source files.
• Is technically proficient.
• Doesn’t like to spend time on repetitive tasks and therefore automates everything as far as possible.

Content management system user (CMS user)

• Uses a content management system3 (CMS) to write andmaintain the content of their website or blog.
• Doesn’t maintain source files locally.

User story 1

As a codeowner, I want to check the source code forbroken links in an automatedway, so that both the source
code and the final artifacts (e.g. compiled programor built website) do not contain any broken links to ensure
functionality and a good user experience while at the same time increasing productivity.

Importance: essential

User story 2

As a code owner, I want to find and replace broken links with links that point to the intended content in an
automatedmanner so that I don’t have tomanually check (andpossibly replace) all the links in the repository.

Importance: essential

User story 3

As a CMS user, I want to check my website for broken links so that visitors have an enjoyable experience.

Importance: essential

3Content management system, often abbreviated as CMS. WordPress for example is a well known CMS.

Benny Joe Villiger, Thomas Zahner 13

Link Management Tool with Internet Archive Integration 16. June 2023

User story 4

As a code owner or a CMS user, I would like to be notified of links where the underlying resource has changed
in some way (e.g. owner or metadata changes), so that I can re‑examine the resource and decide, if it is still
an intended target.

Importance: optional

User story 5

As a code owner I want to periodically check for broken links and receive suggestions for corrected links in
the form of amerge request, all in an automatedmanner, so that the effort for linkmaintenance isminimised
and the time saved can be spent onmore important tasks.

Importance: optional

User story 6

As a CMS user or a code owner working with LMT & lychee, I would like to see a list of all broken links that do
not have a corresponding archived version, so that I can immediately start working on updating the links that
require manual intervention.

Importance: optional

User story 7

As a CMS user or a code owner, I want to be able to check links to websites even if they implement a rate‑
limiting mechanism, so that LMT & lychee work consistently and I don’t have to manually check rate‑limited
websites.

Importance: optional

User story 8

As aCMSuser or a codeowner, I want to be able to configure LMT& lycheewith credentials to be able to check
links to websites even if they require authentication, so that I don’t have to check those websites manually.

Importance: optional

3.2 Non‑functional requirements

This section describes the non‑functional requirements and the approaches to meeting them.

Portability

The Link Management Tool (LMT) is usable on the current LTS4 version of the following three major (x64 architec‑
4Long‑term support

Benny Joe Villiger, Thomas Zahner 14

Link Management Tool with Internet Archive Integration 16. June 2023

ture5) desktop operating systems: GNU/Linux, macOS and MicrosoftWindows.

Realisation

Making use of Deno and Deno’s compile6 command ensures that the aforementioned platforms are all sup‑
ported.

Interoperability

The Link Management Tool (LMT) is capable of being integrated into development pipelines and is interoperable
with other command line programs.

Realisation

The command‑line interface (CLI) program achieves this interoperability by adhering to the GNU standard7 for
command line interfaces and by returning appropriate exit status codes8.

LMT supports multiple common formats for input and output, such as JSON and CSV.

The output of the “fix” command is directly usable with the UNIX sed9 command.

No reserved keywords are used as separator for formatted output (or input) of any command URL encoding.

Regulatory

The Link Management Tool (LMT) doesn’t use unlicensed software components and required attributions are in‑
cluded in the documentation. Both LMT and lychee should prefer the use of software components licensed under
free and open source licences. The licences should also be business friendly, meaning it should not force a com‑
pany to publish their changes to the application. Namely, the MIT, Apache and Eclipse licences are fine while the
GPL licence should be avoided.

Realisation

Dependency reports are generated for LMT. All licences of direct dependencies are checked and documented in
this report.

Usability

LMT has clear and comprehensive documentation for each of the supported operating systems, including user
guides, technical specifications, and developer documentation. Help commands with usage examples exist for
each command. It doesn’t take more than fifteen minutes for a technically proficient person to get used to the
LMT.

Realisation

User testing is carried out to ensure that the above requirements are met.
564‑bit version of different processors: https://en.wikipedia.org/wiki/X86‑64
6Compiling executables with Deno: https://deno.land/manual@v1.31.1/tools/compiler
7GNU Standards for Command Line Interfaces: https://www.gnu.org/prep/standards/html_node/Command_002dLine‑Interfaces.html
8Exit status codes: https://www.gnu.org/software/bash/manual/html_node/Exit‑Status.html
9A UNIX command to perform functions on files, including searching and replacing. SED stands for “stream editor”: https://www.gnu.or
g/software/sed/manual/sed.html

Benny Joe Villiger, Thomas Zahner 15

https://developers.google.com/maps/url-encoding
https://en.wikipedia.org/wiki/X86-64
https://deno.land/manual@v1.31.1/tools/compiler
https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html
https://www.gnu.org/software/bash/manual/html_node/Exit-Status.html
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html

Link Management Tool with Internet Archive Integration 16. June 2023

Maintainability

It is possible to detect and diagnose a bug of any kind in one working day.

Changes to the source code don’t break existing features.

Realisation

SonarCloud10 is used to provide a measure of the source code’s quality. All measures of Sonar, that is reliability,
maintainability and security, must be graded with the highest grade in the final product.

Additionally, automated unit‑ and integration testing is used to ensure the quality of the product. Deno’s cover‑
age11 command is used tomeasure test coverage. Git12 and GitLab13 are used for source code version control and
every change to the source code or documentation on the main branch is reviewed by one of the teammembers
using merge requests.

Reliability

LMT provides accurate and reliable link‑checking results, meaning links are classified correctly as described in the
broken link definition, when used by the code owner or CMS user persona.

Realisation

Error handling, unit, integration and user tests ensure that the program works when used in an intended way.
Being able to configure LMT, allows the user to work with LMT in different ways.

10Software for continuous code quality and security: https://www.sonarsource.com/products/sonarcloud/
11Collecting test coverage with Deno: https://deno.land/manual@v1.31.1/basics/testing/coverage
12Free and open source distributed version control system: https://git‑scm.com/
13Free and open source DevOps software package: https://about.gitlab.com/

Benny Joe Villiger, Thomas Zahner 16

https://www.sonarsource.com/products/sonarcloud/
https://deno.land/manual@v1.31.1/basics/testing/coverage
https://git-scm.com/
https://about.gitlab.com/

Link Management Tool with Internet Archive Integration 16. June 2023

4 Architecture

4.1 Technical decisions

In this section the most important technical decisions taken at the beginning of the project are described.

Programming language

The decision of the programming language is summarised with the following Y‑statement 14:

In the context of the LinkManagement Tool, we decided to use TypeScript as the programming language and
against JavaScript, Kotlin and Rust to achieve the most risk‑free developer experience because we are the
most experienced with TypeScript, while at the same time guaranteeing a fully typed code base, accepting
the downside of having to choose an additional runtime environment.

Runtime environment

Since it was previously decided to use the TypeScript programming language, a runtime environment had to be
chosen. The following three major frameworks were considered:

• Deno 15

• Node.js 16

• Bun 17

The decision for the best fitting technology is made using an evaluation table (Table 2) which consists of criteria
with different weights. For each criterion, a score between 0 and 2 is set. The final score consists of all criteria
scores, multiplied with their weight and summed up.

Table 2: Evaluation table technology

Topic Weight Deno Node.js Bun

Maturity 3 2 2 0

Maintainability 3 2 1 2

Third‑party integration 2 2 2 2

Performance 2 2 0 2

Experience 1 0 2 0

Compile to executable 1 2 0 2

Score Max=36 22 15 16

14A light template for architectural decision capturing: https://medium.com/olzzio/y‑statements‑10eb07b5a177
15V8‑based runtime for JavaScript, TypeScript and WebAssembly written in Rust: https://deno.land/
16V8‑based runtime for JavaScript written in C++: https://nodejs.org/
17JavaScriptCore‑based runtime for JavaScript and TypeScript written in Zig: https://bun.sh/

Benny Joe Villiger, Thomas Zahner 17

https://medium.com/olzzio/y-statements-10eb07b5a177
https://deno.land/
https://nodejs.org/
https://bun.sh/

Link Management Tool with Internet Archive Integration 16. June 2023

Each criterion is explained in more detail below. The final decision can be summed up with the following
Y‑statement 18:

In the context of the TypeScript runtime environment for LMT, facing the need to easily create a compiled
and fast executable, we decided to use Deno and neglected Node.js and Bun, tominimise the time and effort
required for set‑up and maintenance, accepting a small risk of encountering problems due to lack of experi‑
ence.

Maturity While Node.js andDeno can be consideredmature and stable as of 2023, Bun is still not quite complete
yet. The README of the official repository states: “Bun is still under development.”

Maintainability The setup for both Deno and Bun are easier compared to Node.js. Both support compilation
and execution of TypeScript without additional configuration. With Node.js additional manual configuration is
required.

Third‑party integration All threeof the frameworksare compatiblewith thehugeNPMregistry19 therefore third‑
party integration should not be a problem.

Performance For performance comparison, the denosaurs/bench repository was consulted. This benchmark is
automatically updated on a daily basis with the latest framework versions. In this benchmark Deno performs the
fastest (100%) closely followed by Bun (92%) and Node.js (54%).

Experience Both teammembers haveworkedwith Node.js before but not with Deno or Bun. Since the different
runtime environments only affect how the project is configured, for example with a package.json file, but not how
the program code will look (with a few exceptions) the experience was given less weight.

Compile to executable Node.js doesn’t have a built‑in feature to compile a project into a binary executable.
Deno and Bun both support compilation into a self‑contained executable without requiring any third‑party pro‑
grams.

Contribution to lychee

In the third week of work on the bachelor thesis, we searched for existing link checking tools. Most of the tools we
came across were either proprietary or only available as web applications. There are however quite a few free and
open source tools available. One of the most notable projects is the lychee project. Its README file also contains
an informative feature comparison table of different link checking tools. This comparison table makes clear how
powerful and configurable lychee is.

18A light template for architectural decision capturing: https://medium.com/olzzio/y‑statements‑10eb07b5a177
19Default package manager of Node.js: https://www.npmjs.com/

Benny Joe Villiger, Thomas Zahner 18

https://github.com/oven-sh/bun/blob/a819e3b7230d71e3936d9b43f7aa147ab322366a/README.md
https://github.com/denosaurs/bench/tree/38693ad536901a63a2711fd7b5c03b880d582a95
https://github.com/lycheeverse/lychee/blob/0fc833c094258685508fb3f74211ae191ca229b8/README.md#features
https://medium.com/olzzio/y-statements-10eb07b5a177
https://www.npmjs.com/

Link Management Tool with Internet Archive Integration 16. June 2023

As the task assignment allowed us to extend or integrate existing link checking tools we decided to do this with
lychee. Firstly, wemade the Link Management Tool usable in combination with lychee. Secondly, we contributed
to lychee itself to fix problemsandextend its functionality. More information canbe found in the “Implementation”
chapter.

There were multiple reasons why we chose to extend and integrate lychee:

• lychee is a fast and feature‑rich link checking tool
• it is already well‑known and established
• it has an active maintainer and community
• it is licensed under the MIT and Apache licences
• by integrating lychee, its functionality and configurability can be leveraged

Benny Joe Villiger, Thomas Zahner 19

Link Management Tool with Internet Archive Integration 16. June 2023

4.2 C4 Architecturemodel

The followingdiagrams from theC4Architecturemodel are used to visualise the structure and relationships of LMT
at different levels of abstraction. We have chosen to exclude the class diagram from the C4 Architecture Model
in this document, as the level of detail provided in the component diagram is sufficient for the purpose of this
document.

System Context

An overview of LMT, its users and the systems it interacts with is given by Figure 4. The personas “Code Owner”
and “CMS User” are described in the persona section of the functional requirements chapter.

Figure 4: System Context Diagram

Benny Joe Villiger, Thomas Zahner 20

Link Management Tool with Internet Archive Integration 16. June 2023

Container

The container view depicts a closer look into the system. Each container represents a separate application, which
in this case includes lychee and LMT. Figure 5 especially shows the relationship between lychee and LMT.

Figure 5: Container Diagram

Benny Joe Villiger, Thomas Zahner 21

Link Management Tool with Internet Archive Integration 16. June 2023

Component

Figure 6 depicts a closer look into the internal structure of the LMT container.

Every interaction between a user and LMT begins in the “Entrypoint” component. The “Entrypoint” is responsi‑
ble to accept a command through the command‑line, validate it using the “Input Error Validation”, and invoke
the corresponding “Command”. The “Fix Command” component depends on “Suggest Command” and “Check
Command”, it combines the functionalities of both and is capable of replacing links in files on the “File System”
using the “File System Facade” component, which abstracts common file operations. The “Suggest Command”
component provides functionality to suggest link replacements available in the Wayback Machine. It checks the
availability of links using the “Wayback Machine Facade” which uses the “Fetch Service”, abstracting calls to the
“WaybackMachine” API. The “Check Command” component provides functionality to check files andwebsites for
broken links, which implies the reading of files from the file system, using “File System Facade” and fetching web
content, using “Fetch Service”. The “Suggest Command” and “Check Command” components both rely on the
“Config Component”, which is responsible for reading configuration files using the “File System Facade”. Finally,
the “Snapshot Component” provides functionality for creating and reading snapshot files, used by the “Check
Command” Component”.

Benny Joe Villiger, Thomas Zahner 22

Link Management Tool with Internet Archive Integration 16. June 2023

Figure 6: Component Diagram

Benny Joe Villiger, Thomas Zahner 23

Link Management Tool with Internet Archive Integration 16. June 2023

5 Implementation

A big part of this project is the implementation and design of the Link Management Tool (LMT) and the contri‑
butions to the lychee project. This chapter describes the implementation details of LMT and the additions to ly‑
chee.

We decided to split the functionality of LMT into three commands: lmt check, lmt suggest and lmt fix.
Eachcommandcanbeusedaloneor in combinationwith theother commands. Byusing threedifferent commands
the different concerns are separated. By allowing the configuration of different input and output formats, the
commands canbecombinedandused ina flexiblemanner. For example, it is possible to chainall three commands,
and it is possible to use the suggest and fix command in combination with lychee.

Benny Joe Villiger, Thomas Zahner 24

Link Management Tool with Internet Archive Integration 16. June 2023

5.1 Check command

Figure 7 shows the most important steps of the “check” command.

Figure 7: Sequence diagram of the check command

When the user executes the command lmt check [<target>...] the functionality of the “Check” class is
invoked. At the very first, the user input is validated. If the input is valid, the Check class first resolves the files
and glob file patterns. If a file does not exist, or the user input is not valid, LMT will exit early with exit code 1
and the corresponding errormessage. Next, the “Check” class invokes the “LinkExtractor” which gathers the links
from the provided targets. The LinkExtractor is selected depending on whether the web flag has been provided
(--web). If the flag is set, then the URLs are queried and extracted with the “HtmlLinkExtractor”. Otherwise, the
URLs are extracted from the local files with another class, implementing the “LinkExtractor” interface, which is
selected depending on the file extension. For example, a Markdown file (.md file extension) is extracted by the
“MarkdownLinkExtractor” class, while a HTML file (.html) is extracted with the “HtmlLinkExtractor” class. Both of
these use a third‑party parser to first parse the files into a tree of nodes, where links can easily be searched for.
For any other file extension, a fallback “PrimitiveLinkExtractor” is used, which uses a regular expression to find the
URLs in files.

Onceall the linkshavebeenextracted fromthe targets (files orwebpages), the links are checkedusing “ILinkCheck‑
Service”. “ILinkCheckService” creates HTTP requests with the help of “IFetchService”. After the content of a page
has been fetched, metadata are extracted with “ISnapshotService”. Both steps are performed asynchronously, in
a non‑serial and non‑blocking manner, so that many websites can be scanned simultaneously. When all websites
have been checked, a result map is returned from “ILinkCheckService”. The “Check” class then handles the previ‑
ously registeredmetadata, if either the create-snapshot or the verify-snapshot flag was provided.

Finally, the check command returns an appropriate exit code and message, depending on the value of the result
map and the handling of snapshotmetadata. The output format can be configuredwith the--output-format
flag.

Benny Joe Villiger, Thomas Zahner 25

Link Management Tool with Internet Archive Integration 16. June 2023

LMT supports two different output formats for the check command, the “default” output format is a simple string
containing newline‑separated URLs, and is therefore easier for humans to read, while the “json” output format is
more detailed and easier to be reused by other programs. The input‑ and output formats are explained in more
detail later in this chapter.

Result map

The resultmap is thedata structureused to represent the result of the check command. It is usedas an internal rep‑
resentation of LMT but can also be shownwhen specifying the output format as JSONwith: --output-format
json The structure is inherited from the lychee project and was reused for LMT. On the topmost level the result

map contains a fail_map and a success_map, where all broken links are contained in the fail_map and
functional links are contained in the success_map. The results in both maps are grouped by their target name,
i.e. the corresponding file name or URL.

The following example of a result map is obtained by running lmt check --web https://example.com
--output-format json.

1 {
2 "fail_map": {},
3 "success_map": {
4 "https://example.com": [
5 {
6 "url": "https://www.iana.org/domains/example",
7 "status": 200
8 }
9]

10 }
11 }

In summary, https://example.com contains a single link. This link returns a 200 OK status code, meaning the link
is not broken.

Supported file formats

Supported and tested file formats for the check command are: Markdown, HTML and LaTeX. As shown previously,
the link extractor is responsible for extracting URLs from files. There are dedicated link extractors for HTML and
Markdown files. The appropriate link extractor is selected depending on the file extension. To extract links from
HTML or Markdown files, the files are parsed with a parser library.

HTML andMarkdown are both structured languages with syntax and rules, so URLs can for example be embedded
within nested elements. To capture this complex structure and the potential URLswithin those structures a parser
is required.

Formally speaking, HTML and Markdown are not a regular language so they cannot be detected by a regular ex‑
pression. Therefore, it is necessary to use a parser that is capable of recognising additional grammar structures.
This concept of different levels of grammar classes is formally defined by the Chomsky hierarchy.

The following example illustrates, an example link within Markdown.

1 [link description](https://example.com/home).

Benny Joe Villiger, Thomas Zahner 26

https://math.uchicago.edu/~may/REU2019/REUPapers/Kim.pdf

Link Management Tool with Internet Archive Integration 16. June 2023

Given the syntaxofMarkdown, theaboveexample shouldpoint to theURL“https://example.com/home”. However,
when ignoring the Markdown syntax and using a regular expression to detect a URL, there is no way of knowing
whether the trailing “).” characters belong to the URL or if they have a Markdown specific meaning.

When the check command is used with unsupported file formats, a “primitive” link extractor is used as a fallback.
This link extractor uses a regular expression to try to recognise URLs and works well for some file types, but can
also produce inaccurate results. For example, recognition of LaTeX files proved to be accurate.

Status code handling

The check command considers all HTTP status codes in the range between 200 and 299 to be “working”. This is
because Deno’s Response.ok property from the fetch result is reused internally. The living standard for fetch
is defined byWeb Hypertext Application TechnologyWorking Group (WHATWG). This definition of “working” URLs
is used, because it is suitable for most use cases.

A configuration file can be used if a user wishes to override this behaviour for specific URLs and status codes. More
information can be found in the config file section.

Metadata verification

To realise user story 4 we created a “metadata snapshot” function. Two additional command flags are added to
the check command:

1 -c, --create-snapshot create a snapshot and write a file with the specified
name. Default value: snapshot.json

2 -v, --verify-snapshot verify that the specified snapshot matches the current
metadata. Default value: snapshot.json

A snapshot refers to a file which records certainmetadata for each URL checked with the check command. Snap‑
shot files arewritten in the JSON format. Each snapshot file contains a “version”, “name” and “snapshot” property.
The “version” and “name” properties are used to determine themetadata extractionmethod. At themoment, the
only recognised combination is thename“website‑title”with versionnumber 1. The two fields ensure extensibility
and future backward compatibility. The “snapshot” property is an object containing themetadata extracted from
each URL. Below is an example of a snapshot file where two URLs inside a file have been checked. The following
command was used to create the snapshot file: lmt check MyFile -c

1 {
2 "version": 1,
3 "name": "website-title",
4 "snapshot": {
5 "https://about.gitlab.com/": "The DevSecOps Platform | GitLab",
6 "https://api-patterns.org/": "Microservice API Patterns"
7 }
8 }

The “website‑title” extraction method extracts the value of the HTML title tag20. HTML title tags are used by web‑
pages to display the title bar in the browser.

20HTML title tag: https://developer.mozilla.org/en‑US/docs/Web/HTML/Element/title

Benny Joe Villiger, Thomas Zahner 27

https://fetch.spec.whatwg.org/#ref-for-dom-response-ok%E2%91%A1
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title

Link Management Tool with Internet Archive Integration 16. June 2023

If the title of a website changes, it can be assumed that the contentmay no longer reflect the original intentions of
the linker. Of course, this assumption is notperfect, and theremaybe changes to the content of awebpagewithout
a change to the title, and vice versa. However, testing has shown that the title tag is a fairly reliable indicator
of content drift. In addition, the functionality is designed to be extensible so that different metadata extraction
methods can be easily implemented in the future.

To make use of a snapshot file, the “check” command can be rerun with the -v flag to verify that the metadata of
the webpages do not differ from the metadata stored in the snapshot file. If the metadata of the websites remain
unchanged the command will exit successfully. However, if a change is detected, LMT will exit with an exit code
value of 3, as defined in exit codes. When lmt check MyFile -v is run and one of the website titles has been
changed, LMT’s output may look as follows.

1 The following snapshot values didn't match the actual values.
2
3 [MyFile]: https://about.gitlab.com/
4 Snapshot value: The DevSecOps Platform | GitLab
5 Actual value: A totally new website

Output formats

The --output-format (-o) flag specifies how the output of the check command is formatted. Both formats
can be reused by the suggest command:

• Default
• JSON

Benny Joe Villiger, Thomas Zahner 28

Link Management Tool with Internet Archive Integration 16. June 2023

5.2 Suggest command

Figure 8 illustrates the steps involved when running the suggest command, starting with the input of the suggest
command in the command line interface (CLI) and ending with the output to the CLI.

Figure 8: Sequence diagram of the suggest command

When the suggest command is invoked, one or more URLs are expected as input. The input must be in one of the
input formats described later in this chapter. An input format can be changed using the input-format flag. At
thebeginning, the input is validated. An invalid input leads to theprogramexitingwithanexit codeof1. Perdefault,
the URLs are expected to be space‑separated, for example lmt suggest link1 link2. After this, the URLs
are extracted from the input, which then are used in the further process. The “IWayBackMachineService” interface
expects an inheriting class to implement the checkAvailability method, which takes a URL as argument
and requests a response from the Wayback Machine API21 using “IFetchService” for the request, which includes
whether theWaybackMachine has stored a snapshot of the URL in question, and if so, it includes a timestamp and
the URL to the snapshot.

A GET request to http://archive.org/wayback/available?url=example.com, will return the following:

1 {
2 "archived_snapshots": {
3 "closest": {
4 "available": true,
5 "url": "http://web.archive.org/web/20130919044612/http://example.com/",
6 "timestamp": "20130919044612",
7 "status": "200"
8 }
9 }

10 }

21Wayback Machine API: https://archive.org/help/wayback_api.php

Benny Joe Villiger, Thomas Zahner 29

https://archive.org/help/wayback_api.php

Link Management Tool with Internet Archive Integration 16. June 2023

If the URL has been archived in the past by the Wayback Machine, then the URL pointing to the snapshot is added
to the suggestLinkMap. The suggestLinkMap is a list of key‑value pairs, where the key is the checked URL
and the value is the response of the API.

Finally, when all URLs were checked, the suggestions are formatted according to the output format, which can be
defined using the output-format flag, and written to the standard output.

Input formats

The--input-format (-i) flag specifies the formatof the inputwhich is expectedbyLMT.Forexamplebyadding
--input-format json

The suggest command supports the output of the check command, which means that the input formats are the
same as the output formats of the check command:

• Default
• JSON

Output formats

The --output-format (-o) flag specifies how the output of the suggest command is formatted. The flag ex‑
pects one of the following values:

• Default
• JSON
• CSV
• Sed

Benny Joe Villiger, Thomas Zahner 30

Link Management Tool with Internet Archive Integration 16. June 2023

5.3 Fix command

The fix command combines the check and suggest commands to automatically replace all the broken links with
the received suggestions in all the provided files. It takes a list of files or glob patterns as input and then runs the
replacement procedure.

Figure 9: Sequence diagram of the fix command

When the fix command is invoked, first the input is checked for its correctness by the “Fix” class, which will return
an Error when the input is not valid. “Fix” expects one or more files or glob patterns.

If the input is valid, “Fix” invokes “Check”,which checks theentered files for broken links. If theResultMap returned
by “Check” includes broken links, “Suggest” will be invoked, providing the fail_map as an argument.

Finally, if the suggestLinkMap returned by “Suggest” is not empty, and therefore contains replacement sug‑
gestions, “Fix” will read the affected files, using “IFileService” and replace the broken link occurrences with the
corresponding suggestions.

Benny Joe Villiger, Thomas Zahner 31

Link Management Tool with Internet Archive Integration 16. June 2023

Linkmap

It is possible to provide a link‑map with the --link-map or short -l flag. The link map is a mapping of broken‑
to replacement‑links.

If a link map is defined, only links in this mapping will be replaced in the given files, for example:

lmt fix -l "https://www.example.com https://www.ost.ch"README.md replaces all occur‑
rences of the URL https://www.example.comwith https://www.ost.ch in the README.md file. Multiple mappings
are expected to be newline separated, such as:

1 lmt fix -l "https://www.example.com https://www.ost.ch
2 https://www.google.com https://www.bing.com" readme.md

Benny Joe Villiger, Thomas Zahner 32

Link Management Tool with Internet Archive Integration 16. June 2023

5.4 Configuration file

LMT recognises .lmt.json as a configuration file if it is located in the same directory where LMT is run. This
path is currently not configurable. The configuration file must be valid JSON. The root object must contain the
"ignore" and "ignoreMetadataForUrls" property.

With the "ignore" option it’s possible to specify status codes which should be ignored for a given URL. It’s also
possible to ignore all status codes with the option "all". The value of "ignore" is an object, where all keys
specify a URL as string and all values are of type StatusCodes. StatusCodes is either an array of status
codes or "all". (type StatusCodes = Array<number> | 'all')

The "ignoreMetadataForUrls" option specifies an array of URLs which should be ignored when using the
check command with the --create-snapshot or --verify-snapshot flag. This can be useful, for exam‑
ple, when using a permalink to the latest version of a product where new releases are expected at regular inter‑
vals.

In the following example, three URLs are configured to be ignored by LMT. For the last URL all status codes should
be ignored, including DNS errors, connection errors, etc. so that effectively thewhole URL is ignored. Additionally,
the metadata snapshot functionality should be disabled for one URL.

1 {
2 "ignore": {
3 "https://example.com": [
4 418,
5 500
6],
7 "https://example.com/something": [
8 404
9],

10 "https://deno.land/std@0.182.0/": "all"
11 },
12 "ignoreMetadataForUrls": [
13 "https://gitlab.com/lmt7360522/lmt/-/releases/permalink/latest/"
14]
15 }

Benny Joe Villiger, Thomas Zahner 33

Link Management Tool with Internet Archive Integration 16. June 2023

5.5 Exit codes

To facilitate the use of LMT with automated scripts and integration with CI/CD pipelines, two special exit code
values were defined. Exit codes indicate the state of the program after completion and allow pipeline automation
and scripts to react accordingly. Table 3 depicts every possible exit code of LMT.

Table 3: Exit codes

Exit Code Meaning

0 Success

1 Unexpected error or user error

2 Broken link(s) detected (lmt check)

3 Snapshot mismatch detected (lmt check)

5.6 Integration with CI/CD Pipelines

LMT is designed to integrate seamlessly with Continuous Integration and Continuous Deployment (CI/CD)
pipelines. Using the “check” command for example, ensures that broken links are caught early in the pipeline,
preventing them from reaching production environments. Any command of LMT can be easily integrated into
different stages of a pipeline.

Docker imageWe have published a Docker image containing the binary executable of the Link Management Tool
on DockerHub, which allows LMT to be easily integrated into CI/CD pipelines.

General script When using the Docker image, any LMT command can be run. For example lmt check <
filename(s)> can be used to check for broken links.

Failures If a use case requires the pipeline to use or return the correct exit code, set +e should be added at the
beginningof the script, so that itwill not exit immediately, if a non‑zero exit codewas returnedbya command. This
could be the case, if a script should behave differently, when broken links have been detected or when a pipeline
is allowed to fail on occurrence of specific exit codes.

The user guide contains sample files for GitLab pipelines and GitHub actions.

Benny Joe Villiger, Thomas Zahner 34

https://hub.docker.com/r/thomaszahner/lmt

Link Management Tool with Internet Archive Integration 16. June 2023

5.7 Dependencies

To provide transparency and facilitate licence compliance, we examine the direct dependencies of LMT and its
associated licences. Table 4 lists all the direct dependencies of LMT.

Table 4: Dependencies

Name Usage Version License

Alosaur Deno Land Dependency
Injection

0.38.0 MIT

Deno std Deno Land Deno
Standard
Library

0.182.0 MIT

Deno dom Deno Land HTML parser 0.1.38 MIT

Rusty markdown Deno Land Markdown
parser

0.2.2 MIT

Progress Deno Land Progress bar 1.3.8 MIT

5.8 Contribution to lychee

This section documents all the changes, additions and bug fixes that have beenmade to the lychee project.

Since the additions to lychee were not a specific requirement for this bachelor thesis, and the benefits of using
lychee were only discovered during the thesis, a first contact had to be made before considering contributing to
thisopensourceproject. The first contact took the formofadiscussiononGitHub, followedbyavideocall between
us and the maintainer of lychee.

In the end four pull requests weremade. Theywere all accepted andmerged into themaster branch. The changes
to lychee are listed and explained below.

• Use standard error for error output
• Wayback Machine integration
• Concurrent archives
• Status codes in maps

Use standard error for error output

While trying to make LMT compatible with lychee, we ran into a problem. When piping the standard output of
lychee into other programs, we noticed that lychee printed information to the standard output it shouldn’t. This
included the progress bar and various informative messages for the user. In practice, this meant that LMT would
receive invalid JSON with the following command.

1 lychee deno.json -f json | lmt suggest -i json

Benny Joe Villiger, Thomas Zahner 35

https://github.com/alosaur/alosaur
https://deno.land/x/alosaur@v0.38.0/src/injection
https://github.com/denoland/deno_std
https://deno.land/std@0.182.0
https://github.com/b-fuze/deno-dom
https://deno.land/x/deno_dom@v0.1.38
https://github.com/arguablykomodo/deno_rusty_markdown
https://deno.land/x/rusty_markdown@v0.4.1/mod.ts
https://github.com/deno-library/progress
https://deno.land/x/progress@v1.3.8
https://github.com/lycheeverse/lychee/pull/990
https://github.com/lycheeverse/lychee/pull/1003
https://github.com/lycheeverse/lychee/pull/1027
https://github.com/lycheeverse/lychee/pull/1014

Link Management Tool with Internet Archive Integration 16. June 2023

As a quick first workaround, all characters before the first valid JSON character were filtered out. Additionally, we
filed a bug report. After researching, we found that POSIX defines standard error for writing diagnostic output. This
means that standard error is, unlike its name suggests, not only intended for writing errors but also for writing
diagnostic information, like progress messages.

After abrief discussionwith the lychee community, itwas agreed that printing the affected information to standard
error instead of standard output was the optimal solution. The changes were kindly made by lychee’s maintainer,
after which we were able to test the changes. After successful testing, it was possible to remove the workaround
in LMT.

The changes were merged to lychee’s master branch on April 11th: Use standard error for error output. The
changes make it possible to pipe lychee’s output into LMT or other programs and scripts, without the need for
a workaround.

Wayback Machine integration

Creating an integration for the Wayback Machine in lychee was our main contribution. Before our contribution it
was possible to detect broken links as follows.

1 echo 'https://google.com/jobs.html' | lychee -

This command behaves as if lychee was checking a file containing the single link “https://google.com/jobs.html”.
The provided link is no longer valid and returns a “404 Not Found” HTTP code. Running the command yields:

1 [stdin]:
2 x [404] https://google.com/jobs.html | Failed: Network error: Not Found
3
4 1 Total, 0 OK, 1 Error (HTTP:1)

With our contribution two new flags are added to lychee: --suggest and --archive. The --suggest flag
tells lychee to suggest link replacements for broken links, using aWeb archive. The --archive flag specifies the
Web archive to use for searching the link suggestions. Its default value, and currently only option, is “wayback” to
use the Wayback Machine. The flag was added to allow easy extension in the future.

With the newWayback Machine integration it is now possible to run the following command.

1 echo 'https://google.com/jobs.html' | lychee - --suggest

The output includes “suggestions” for each broken link recorded by the Wayback Machine in the past. If a link
cannot be found by the Wayback Machine it will not be displayed.

1 [stdin]:
2 x [404] https://google.com/jobs.html | Failed: Network error: Not Found
3
4 Suggestions
5 https://google.com/jobs.html http://web.archive.org/web/20070623165349/http://

www.google.com/jobs.html
6
7 1 Total, 0 OK, 1 Error (HTTP:1)

Benny Joe Villiger, Thomas Zahner 36

https://github.com/lycheeverse/lychee/issues/984
https://pubs.opengroup.org/onlinepubs/9699919799/functions/stderr.html
https://github.com/lycheeverse/lychee/pull/990

Link Management Tool with Internet Archive Integration 16. June 2023

The suggestions are included in all the different output formats lychee knows: compact, detailed, json and mark‑
down. To cover the new functionality, unit and integration tests were created. The Wayback Machine integration
was merged on March 28th: Wayback Machine integration.

Concurrent archives

In the initial implementationof theWaybackMachine integration, theHTTP requests to theWaybackMachinewere
made in a sequential manner. This meant that every single request was awaited, before the next request was sent
to theWaybackMachine. To reduce the time it takes to check all broken links for possible alternatives, wemodified
the previous implementation. We made use of the for_each_concurrent22 function of the futures crate23 in
order to perform the HTTP requests in an asynchronous and concurrent way.

In addition, we added a CLI test (a kind of user acceptance test) for a previously uncovered code path. The changes
were merged into the main branch on May 11th: Concurrent archives

Status codes inmaps

lychee provides a url and a status property for each checked link in the result map. Previously, the status
propertywasa string type. When runninglychee www.example.com --format json -v, the resultmap
contained the following success_map:

1 {
2 "success_map": {
3 "http://www.example.com/": [
4 {
5 "url": "https://www.iana.org/domains/example",
6 "status": "OK (200 OK)"
7 }
8]
9 }

10 }

However, for programmatic reuse of the result map, the numeric status code should be available. We changed the
status property to an object with the properties text and code. The text property keeps the value of the
original status property. The code property contains the numeric HTTP response status code. When running
the above command again with our changes the result looks as follows.

22Run a stream to completion, executing the provided asynchronous closure for each element on the stream concurrently: https://docs.r
s/futures/0.3.28/futures/stream/trait.StreamExt.html#method.for_each_concurrent

23A Rust implementation of futures and streams featuring zero allocations, composability, and iterator‑like interfaces: https://docs.rs/fu
tures/latest/futures/

Benny Joe Villiger, Thomas Zahner 37

https://github.com/lycheeverse/lychee/pull/1003
https://github.com/lycheeverse/lychee/pull/1027
https://docs.rs/futures/0.3.28/futures/stream/trait.StreamExt.html#method.for_each_concurrent
https://docs.rs/futures/0.3.28/futures/stream/trait.StreamExt.html#method.for_each_concurrent
https://docs.rs/futures/latest/futures/
https://docs.rs/futures/latest/futures/

Link Management Tool with Internet Archive Integration 16. June 2023

1 {
2 "success_map": {
3 "http://www.example.com/": [
4 {
5 "url": "https://www.iana.org/domains/example",
6 "status": {
7 "text": "OK (200 OK)",
8 "code": 200
9 }

10 }
11]
12 }
13 }

This enabled us to reuse lychee’s output for the suggest command. The changes were merged on March 27th:
Status codes in maps

Benny Joe Villiger, Thomas Zahner 38

https://github.com/lycheeverse/lychee/pull/1014

Link Management Tool with Internet Archive Integration 16. June 2023

6 Results

Testingof LMTwith various sites and repositories has shown its link checkingand suggestion features tobe reliable.
However, some sites use rate limiting or other mechanisms to restrict automated crawling of sites. In many cases,
these URLs are classified as broken because the site‑specific mechanisms are not directly handled by LMT. As a
workaround, LMT can be configured to ignore the affected URLs. The detailed test results can be found in the
appendix.

6.1 Release

We released LMT to the public on the 5th of June 2023. It is available on GitLab under the MIT licence24. We chose
to release LMT under the MIT licence because it encourages open collaboration and allows flexible use. With the
public release of LMT, we hope that individuals and organisations can benefit from the project’s capabilities and
functionality. Furthermore, we look forward to receiving feedback, suggestions, and contributions from the com‑
munity to improve and extend LMT.

Our changes to lychee were released with version 0.12.0 and 0.13.0. By integrating the Wayback Machine into
lychee,wehaveextendedawell‑knownandestablished link checking tool, so thatawide rangeofusers canbenefit
from it.

6.2 User stories

In the following it is described, if and how LMT implements the user stories listed in the Requirements chapter.

The first three user stories, tagged as “essential”, are implemented with the lmt check, lmt fix and lmt
check --web commands respectively. User story 4 is implemented with the metadata verification functional‑
ity. For user story 5 no complete solution is provided. However, an example of how to check for broken links with
Continuous Integration and Continuous Deployment (CI/CD) pipelines is provided for GitLab and GitHub. These
examples can be adapted so that user story 5 is fulfilled. Unfortunately, there was not enough time to implement
user stories 6 and 8. User story 7 can partially be addressed by configuring LMT to ignore the “429 Too Many Re‑
quests” HTTP return status code, as explained in the Configuration file section.

lychee offers more possibilities to handle rate‑limited sites. For example, concurrency can be reduced and a retry
mechanismwith an exponential backoff algorithm is used by default. 25 Additionally, lychee allows the configura‑
tion of basic authentication26 with the use of the --basic-auth command line flag.27

Thismeans that user stories 7 and 8 are addressed by lychee. Therefore, it is recommended to use lychee either in
combination with LMT or standalone for user stories 7 and 8.

24A permissive free software licence: https://mit‑license.org/
25How lychee handles rate‑limiting: https://lychee.cli.rs/#/troubleshooting/rate‑limits
26Basic HTTP authentication scheme RFC 7617: https://datatracker.ietf.org/doc/html/rfc7617
27lychee configuration options: https://lychee.cli.rs/#/usage/cli?id=options

Benny Joe Villiger, Thomas Zahner 39

https://gitlab.com/lmt7360522/lmt
https://github.com/lycheeverse/lychee/releases/tag/v0.12.0
https://github.com/lycheeverse/lychee/releases/tag/v0.13.0
https://mit-license.org/
https://lychee.cli.rs/#/troubleshooting/rate-limits
https://datatracker.ietf.org/doc/html/rfc7617
https://lychee.cli.rs/#/usage/cli?id=options

Link Management Tool with Internet Archive Integration 16. June 2023

6.3 Comparison with other tools

Broken link detection

Currently, LMT’s link detection is quite conservative. Meaning that only URLs are detected which clearly are URLs.
This means that “example.com” will not be detected as URL, because the scheme, such as “http” or “https” is
not defined. In HTML and Markdown files, only hyperlinks formatted as such will be detected. For instance, in
Markdown this includes the link syntax, while in HTML it corresponds to the “href” attribute. This behaviour is
intended to prevent false positives, at the expense of missing potential URLs within text segments.

Checking websites In the following example LMT is compared with lychee and deadlinkchecker.com28 when
checking the website https://wikipedia.org for broken links. The results are displayed in table 5

Table 5: Check results of websites

Tool name Total link count Broken link count Time

LMT 334 1 6s

lychee 335 4 5s

deadlinkchecker.com 652 3 11s

All the tools successfully identified the single broken link that was confirmed to be non‑functional. dead‑
linkchecker.com performs additional checks on websites, including validating URLs within Cascading Style
Sheets for correctness. It identified two broken links in the CSS file, which were confirmed to be broken. lychee
erroneously reported three false positives by incorrectly identifying URLs as email addresses, as shown below.

1 Failed: Unreachable mail address: portal/wikipedia.org/assets/img/Wikipedia-logo
-v2@1.5x.png: Invalid: Email does not exist or is syntactically incorrect

2 Failed: Unreachable mail address: portal/wikipedia.org/assets/img/Wikipedia-logo
-v2@2x.png: Invalid: Email does not exist or is syntactically incorrect

3 Failed: Unreachable mail address: portal/wikipedia.org/assets/img/Wikinews-
logo_sister@2x.png: Invalid: Email does not exist or is syntactically
incorrect

This bug, causing false positives, was reported on GitHub: URLmisinterpreted as email.

Checking local files Table 6 shows the results of checking the API Design Practice Repository29 with LMT and
lychee. The following pattern was used to check all Markdown and BibLaTeX files: */**/*.md *.bib.

28Free broken link checking tool: https://www.deadlinkchecker.com/
29API Design Practice Repository: https://github.com/socadk/design‑practice‑repository

Benny Joe Villiger, Thomas Zahner 40

https://github.com/lycheeverse/lychee/issues/1111
https://www.deadlinkchecker.com/
https://github.com/socadk/design-practice-repository

Link Management Tool with Internet Archive Integration 16. June 2023

Table 6: Check results of local files

Tool name Total link count Broken link count Time

LMT 629 21 79s

lychee 917 34 48s

Lychee is capable of detecting links within plain text in Markdown, without the Markdown syntax for URLs,
which explains why it identified and checked a higher number of URLs compared to LMT. There are three
reasons for the difference in the number of broken links detected. One link, namely in the “activities/SDPR‑
StepwiseServiceDesign.md” file, was not checked because it was not using the link syntax for Markdown. Four
additional broken links were checked by lychee but not by LMT, because they are located inside of HTML
comments. LMT currently does not check links within comments. lychee identified additional broken links that
were not detected by LMT, specifically links to the website “https://doi.org”. These links were flagged as broken,
accompanied by the message “Failed: Too many redirects” in the checking result. Upon manual verification,
these links were found to be fully functional, indicating that lychee’s result regarding this site was inaccurate.

Detection of content drift

Themetadata verification functionality of LMTallows thedetectionof content drift. Currently, the implementation
tries to detect content drift of web pages by the document title. With this feature in LMT, any modifications to
a website’s title will result in an error, increasing user’s confidence in the accuracy of their links. However, not
all instances of content drift may be detected, as the website’s body is not included as metadata for verification.
Unfortunately, given the timeframe,wewere not able to test the detection accuracy of the current implementation
in its entirety. We have not identified any other tools with a content drift detection feature, making LMT unique in
this regard.

Fixing broken links

LMT’s “fix” command allows to quickly find and fix broken links for given files, provided that theWaybackMachine
has archived the broken links in the past. This feature is unique, as we have found no other tools that have the
ability to automatically replace broken links with working links to the Wayback Machine.

Benny Joe Villiger, Thomas Zahner 41

Link Management Tool with Internet Archive Integration 16. June 2023

7 Discussion and summary

This chapter discusses the findings and shortcomings identified in the previous chapter and throughout the
project.

7.1 Wayback Machine API stability

No issues were encountered regarding the reliability of the Wayback Machine during the development of LMT.
However, after the extension of lychee, namely after the Concurrent archives feature was merged into the master
branch of lychee, it was discovered that a test making use of the Wayback Machine API30 was failing in some rare
cases. Based on the investigation, the inconsistency observed during testing can be attributed to issues with the
reliability of the Wayback Machine API. Since the test failure occurred so infrequently, no further modifications
were made to the code or test.

The discussion and findings can be viewed on GitHub.

7.2 Support additional Internet archives

The aim of this project was specifically to integrate the Wayback Machine to handle broken links. Throughout the
project, we found the Wayback Machine to be a highly capable Internet archive with a well implemented RESTful
HTTP API. Our experience with the Wayback Machine was positive, as we encountered no shortcomings or draw‑
backs, with the exception of the rare stability problemmentioned above.

Nevertheless, there are other useful Internet archives which could be supported by both LMT and lychee in the
future. Popular alternatives to the Wayback Machine are Archive.today31 and the Memento Project32.

The implementation of LMT and the extension of lychee have been designed with the addition of other Internet
archives in mind. For lychee, we have already included a flag to specify which Internet archive should be used, al‑
though it is currently only possible to specify theWaybackMachine. The integration of additional Internet archives
would benefit both projects.

7.3 Extension of LMT

Throughout the planning and implementation of LMT, we came across numerous ideas that have potential for
further development.

Currently, HTML and Markdown files have designated link extractor classes in LMT so that links are reliably de‑
tected. If other file types are encounterd, a fallback class is used for link extraction. As discussed in the implemen‑
tation chapter, this fallback implementation can be unreliable depending on the file type. Support for additional
file types, such as reStructuredText, would make LMTmore useful.

30Wayback Machine API: https://archive.org/help/wayback_api.php
31A time capsule for web pages: https://archive.is/
32An archive supported by the United States National Digital Information Infrastructure and Preservation Program: http://www.mement

oweb.org/

Benny Joe Villiger, Thomas Zahner 42

https://github.com/lycheeverse/lychee/pull/1027#issuecomment-1547027528
https://archive.org/help/wayback_api.php
https://archive.is/
http://www.mementoweb.org/
http://www.mementoweb.org/

Link Management Tool with Internet Archive Integration 16. June 2023

Later, we implemented a metadata verification feature to detect content drift. For the implementation, we chose
the website title as an indicator of content drift because it seemed like a simple but effective approach. Due to
time constraints, we were unable to assess the detection accuracy of this approach. For future work, it would be
useful to implement additional detectionmethods. These could for example include the content ofwebpages and
make use of deep‑learning algorithms. The accuracy of the different approaches could then be compared, so that
content drift would be detected in the most reliable way.

During the implementation of the configuration file feature in LMT, we considered the inclusion of additional op‑
tions. Several different ideas came up even before the featurewas implemented In the end, wewere able to imple‑
ment the two options that we considered to be themost important. The following configuration optionswould be
very useful additions to LMT:

• Connection timeout
• HTTP basic authentication33 credentials
• Custom HTTP headers34

Finally, when checking websites, link detection could be improved by executing JavaScript tomore closely mimic
a web browser. At the moment, both LMT and lychee extract links directly from the HTML, without the execution
of client‑side JavaScript. This is a limiting factor asmanymodernwebsites are interactive single page applications
that rely on client‑side rendering. By adding the execution of JavaScript and emulating a web browser, for exam‑
ple with V835, it would be possible to reliably check single page applications and therefore provide a better link
checking experience.

7.4 Plugin system for lychee

Afterdiscussionswith themaintainerof the lycheeproject, itwasdecided that certain features, like thedetectionof
content drift, do not align with the concept of lychee, despite their potential value. As a solution, the creation of a
plugin system for lychee was proposed, so that lychee’s functionality could be extended using separate plugins.

One way to implement such a system in lychee is to use the Extism36 plugin system. Extism allows the creation of
plugins with seven different programming languages. Before adding Extism to lychee, the plugin system should
be specified inmore detail. Thiswould include the definition of types used for the communication between lychee
and the plugins and the specification of hooks. Hooks are the different stages at which lychee could invoke the
plugins, such as before checking a link and after checking a link. This would for example allow the creation of a
plugin for lychee, capable of detecting content drift.

7.5 Summary

Wedeveloped LMT to provide an automated approach to detecting and fixing broken links and drifted content. Ad‑
ditionally, we extended the free and open source link‑checking tool lychee. Early feedback from users and testing
has shown that LMT is a useful tool. There are still areas for improvement andmany ideas have been found during
the project as to how LMT and lychee could be developed further.

33Basic HTTP authentication scheme RFC 7617: https://datatracker.ietf.org/doc/html/rfc7617
34Headers allow to pass additional information with HTTP requests: https://developer.mozilla.org/en‑US/docs/Web/HTTP/Headers
35High‑performance JavaScript and WebAssembly engine: https://v8.dev/
36A universal plug‑in system: https://extism.org/

Benny Joe Villiger, Thomas Zahner 43

https://datatracker.ietf.org/doc/html/rfc7617
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://v8.dev/
https://extism.org/

Link Management Tool with Internet Archive Integration 16. June 2023

LMThasbeen released to thepublic on the5thof June2023under theMIT licence. With thepublic release,wehope
that individuals and organisations can benefit from the project’s capabilities and functionality. Our additions to
lychee have been released with versions 0.12.0 and 0.13.0, bringing the benefits of the integration with the Way‑
back Machine to a wider user base. Given the many ideas and potential improvements discussed in this chapter
for both LMT and lychee, we look forward to future work that builds on LMT or explores the concepts presented in
this chapter.

Benny Joe Villiger, Thomas Zahner 44

https://github.com/lycheeverse/lychee/releases/tag/v0.12.0
https://github.com/lycheeverse/lychee/releases/tag/v0.13.0

Link Management Tool with Internet Archive Integration 16. June 2023

Glossary

Response status code

The status code of a response is a three‑digit integer code that describes the result of the request and the
semantics of the response, including whether the request was successful and what content is enclosed (if
any). All valid status codes are within the range of 100 to 599, inclusive. The first digit of the status code
defines the class of response. The last two digits do not have any categorization role. There are five values
for the first digit:

• 1xx (Informational): The request was received, continuing process
• 2xx (Successful): The request was successfully received, understood, and accepted
• 3xx (Redirection): Further action needs to be taken in order to complete the request
• 4xx (Client Error): The request contains bad syntax or cannot be fulfilled
• 5xx (Server Error): The server failed to fulfill an apparently valid request

(Fielding, Nottingham, and Reschke 2022)

Sed

Sed is a stream editor. A stream editor is used to perform basic text transformations on an input stream (a file
or input from a pipeline). While in some ways similar to an editor which permits scripted edits (such as ed),
sedworks bymaking only one pass over the input(s), and is consequentlymore efficient. But it is sed’s ability
to filter text in a pipeline which particularly distinguishes it from other types of editors.

(Fenlason et al. 2022)

Sed can perform many different commands on a stream of text. Using the s/regexp/replacement/ syntax
allows to replace text matching regular expressions. For example running echo "Hello there"| sed "s/
there/world/"will result in Hello world.

Glob patterns

Globs, also known as glob patterns are patterns that can expand a wildcard pattern into a list of paths that match
the given pattern.

A string is a wildcard pattern if it contains one of the characters ‘?’, ‘’, or ’[’. Globbing is the operation that
expands a wildcard pattern into the list of pathnames matching the pattern. Matching is defined by: ‑ A ’?’ (not
between brackets) matches any single character. ‑ A ’’ (not between brackets) matches any string, including
the empty string.

(Brouwer 2020)

As an illustration, consider the glob pattern ?at.*. The pattern first matches a single character (case‑insensitive)
followed by the characters at.. *matches any number of characters. So this pattern would match the following
files: Cat.png, Bat.jpg and cat.bmp.

Benny Joe Villiger, Thomas Zahner 45

Link Management Tool with Internet Archive Integration 16. June 2023

Exit codes

An exit code, or exit state, is an integer between 0 and 255which is returned to the parent process by an executable
program to indicate whether it was successfully executed. There are conventions for what sorts of status values
certain programs should return. The most common convention is simply 0 for success and 1 for failure. Numbers
from 2‑255 can be used to represent various other negative results or problems.

(Free Software Foundation, n.d.)

C4

The C4model, developed by Simon Brown, provides a practical and scalable approach to visualising and commu‑
nicating the architecture of a software system. It provides a clear and concise way of understanding the structure,
behaviour and interactions of the system at four different levels of abstraction.

The model consists of a series of hierarchical diagrams, including System Context, Container, Component and
Class. Each diagram is based on the previous one, and provides an increasing level of detail and granularity.

(Brown 2018)

Benny Joe Villiger, Thomas Zahner 46

Link Management Tool with Internet Archive Integration 16. June 2023

Bibliography

Agata, Teru, YosukeMiyata, Emi Ishita, Atsushi Ikeuchi, and Shuichi Ueda. 2014. “Life Span of Web Pages: A Survey
of 10 Million Pages Collected in 2001.” In IEEE/ACM Joint Conference on Digital Libraries, 463–64. https://doi.or
g/10.1109/JCDL.2014.6970226.

Brouwer, Andries. 2020. “Glob(7) — Linux Manual Page.” August 2020. https://man7.org/linux/man‑pages/man7
/glob.7.html.

Brown, Simon. 2018. “C4 Architecture Model.” June 2018. https://www.infoq.com/articles/C4‑architecture‑
model/.

Fenlason, Jay, Tom Lord, Ken Pizzini, Paolo Bonzini, Jim Meyering, and Assaf Gordon. 2022. “Sed(1) — Linux Man‑
ual Page.” November 2022. https://man7.org/linux/man‑pages/man1/sed.1.html.

Fielding, Roy T., Mark Nottingham, and Julian Reschke. 2022. “RFC 9110.” RFC 9110: HTTP Semantics. https:
//www.rfc‑editor.org/rfc/rfc9110.html#name‑status‑codes.

Free Software Foundation, Inc. n.d. “Exit Status (the GNU c Library): Exit Status.” https://www.gnu.org/software/l
ibc/manual/html_node/Exit‑Status.html.

Goel, Vinay. 2016. “DefiningWebPages,WebSitesandWebCaptures,”October.https://blog.archive.org/2016/10/23/defining‑
web‑pages‑web‑sites‑and‑web‑captures/ .

Lessig, Lawrence, Jonathan Zittrain, and Kendra Albert. 2014. “Scoping and Addressing the Problem of Link and
Reference Rot in Legal Citations: How to Make Legal Scholarship More Permanent.” March 2014. https://perm
a.cc/D29D‑MV4L.

World Wide Web Consortium. 2009. Web Addresses in HTML 5. May 2009. https://www.w3.org/html/wg/href/draf
t#url.

Zittrain, Jonathan, John Bowers, and Clare Stanton. 2021. “The Paper of Record Meets an Ephemeral Web: An
Examinationof Linkrot andContentDriftWithin theNewYorkTimes.” April 2021. https://nrs.harvard.edu/URN‑
3:HUL.INSTREPOS:37367405.

Benny Joe Villiger, Thomas Zahner 47

https://doi.org/10.1109/JCDL.2014.6970226
https://doi.org/10.1109/JCDL.2014.6970226
https://man7.org/linux/man-pages/man7/glob.7.html
https://man7.org/linux/man-pages/man7/glob.7.html
https://www.infoq.com/articles/C4-architecture-model/
https://www.infoq.com/articles/C4-architecture-model/
https://man7.org/linux/man-pages/man1/sed.1.html
https://www.rfc-editor.org/rfc/rfc9110.html#name-status-codes
https://www.rfc-editor.org/rfc/rfc9110.html#name-status-codes
https://www.gnu.org/software/libc/manual/html_node/Exit-Status.html
https://www.gnu.org/software/libc/manual/html_node/Exit-Status.html
%0A%20%20%20%20%20%20%20%20%20https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/%0A%20%20%20%20%20%20%20%20%20
%0A%20%20%20%20%20%20%20%20%20https://blog.archive.org/2016/10/23/defining-web-pages-web-sites-and-web-captures/%0A%20%20%20%20%20%20%20%20%20
https://perma.cc/D29D-MV4L
https://perma.cc/D29D-MV4L
https://www.w3.org/html/wg/href/draft#url
https://www.w3.org/html/wg/href/draft#url
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367405
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367405

Link Management Tool with Internet Archive Integration 16. June 2023

Appendix

Test results

At the beginning of the project, the team has examined a list of example repositories and websites, which would
be suitable for testing with LMT once it is in a stable state.

Most of the examples are in a way related to the Eastern Swiss University of Applied Science (Ost).

API Patterns Website
lmt check -w https://api-patterns.org/

1 [https://api-patterns.org/]:
2 https://twitter.com/leanpub/status/1383156883654021120/
3 https://twitter.com/api_patterns
4
5 101 total, 99 OK, 2 Errors

Conclusion

Checking a productive website with LMT works, however, since LMT isn’t capable of recursively check further sub‑
pages, it would still be a big manual effort to check the whole site. Most of the link checking tools, which have a
productive website checking support don’t have such a feature either.

The result shows that something is not correct with two Twitter links. Twitter seems to implement a special mech‑
anism, where it redirects requests, as long as a cookie is not set.

In this case it would make sense to ignore the two URLs by creating a configuration file.

Benny Joe Villiger, Thomas Zahner 48

https://api-patterns.org/

Link Management Tool with Internet Archive Integration 16. June 2023

Interface Refactoring
lmt check -w https://interface-refactoring.github.io/

1 [https://interface-refactoring.github.io/]:
2 https://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4
3 https://au.linkedin.com/in/andreifurda
4 https://twitter.com/m_st
5
6 80 total, 77 OK, 3 Errors

Result

The result shows an actual broken link to https://www.ifs.hsr.ch. In this case, the website’s certificate is not valid
anymore.

The Twitter link is once again considered broken, because of their redirect mechanism. LinkedIn seems to im‑
plement a similar mechanism to prevent automatic website crawling as Twitter, but in the case of LinkedIn, they
return an erroneous status code (999).

Suggest

Using suggest on the results of this check, returned following working suggestions:

1 https://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4 http://
web.archive.org/web/20220130062633/https://ifs.hsr.ch/Architectural-
Refactoring-for.12044.0.html

2 https://twitter.com/m_st http://web.archive.org/web/20221226070737/https://
twitter.com/m_st

Conclusion

LMT found a broken link and was able to suggest a working replacement.

Benny Joe Villiger, Thomas Zahner 49

https://interface-refactoring.github.io/

Link Management Tool with Internet Archive Integration 16. June 2023

Design Practice Repository
This repository is publicly available and contains .md source files, which are used to generate the website. The

repository can therefore be checked locally using LMT, while limiting it to the Markdown files.

lmt check ./**/*.md

1 [./activities/DPR-ArchitecturalDecisionCapturing.md]:
2 http://resources.sei.cmu.edu/asset_files/Presentation/2012_017_001_31349.pdf
3
4 [./activities/DPR-ArchitectureModeling.md]:
5 http://agilemodeling.com/essays/barelyGoodEnough.html
6
7 [./activities/DPR-SMART-NFR-Elicitation.md]:
8 https://www.researchgate.net/publication/329760910

_Capturing_Architectural_Requirements
9

10 [./artifact-templates/DPR-CRCCard.md]:
11 https://www.ifs.hsr.ch/Olaf-Zimmermann.11623.0.html?&L=4
12
13 [./background-information/README.md]:
14 https://www.researchgate.net/publication/220349352

_Situational_Method_Engineering_State-of-the-Art_Review/link/0912
f508a5a083e5bc000000/download

15 http://semat.org/what-is-it-and-why-should-you-care-
16 http://semat.org/essence-1.2
17 http://www.software-engineering-essentialized.com/home
18 https://download.eclipse.org/technology/epf/OpenUP/published/openup_published_1

.5.1.5_20121212/openup/index.htm
19 https://ifs.hsr.ch/index.php?id=13195&L=4
20
21 and more...
22
23 614 total, 594 OK, 20 Errors

Conclusion

LMT displays broken links for every single file. The result again includes a couple of LinkedIn and Twitter links,
which we know are false positives and could be ignored using a configuration file The Researchgate website uses
similar redirect mechanism to prevent simple bots from scraping, as Twitter does. In this case it would also make
sense to ignore the URLs by creating a configuration file.

Benny Joe Villiger, Thomas Zahner 50

https://github.com/socadk/design-practice-repository

Link Management Tool with Internet Archive Integration 16. June 2023

Medium blog
lmt check -w https://medium.com/@docsoc

1 [https://medium.com/@docsoc]:
2 https://medium.com/followers?source=user_profile

3 https://medium.com/how-to-create-architectural-decision-records-adrs-and-how-not

-to-93b5b4b33080?source=user_profile---------0----------------------------
4 https://medium.com/how-to-create-architectural-decision-records-adrs-and-how-not

-to-93b5b4b33080?source=user_profile---------0----------------------------
5 https://medium.com/api-patterns-website-redesigned-and-sample-book-chapter-

available-df9daf4b5e15?source=user_profile
---------1----------------------------

6 https://medium.com/api-patterns-website-redesigned-and-sample-book-chapter-
available-df9daf4b5e15?source=user_profile
---------1----------------------------

7 https://medium.com/a-checklist-for-api-design-reviews-5f7db45b0cb3?source=
user_profile---------2----------------------------

8 https://medium.com/a-checklist-for-api-design-reviews-5f7db45b0cb3?source=
user_profile---------2----------------------------

9
10 and many more...
11
12 130 total, 77 OK, 53 Errors

Result

According to LMT, a lot of links were broken here. Upon manual inspection, it was found that the links were ac‑
tually functional. After having a closer look, at the problem here, it was figured out, that medium automatically
redirected “https://medium.com/@docsoc” to “https://docsoc.medium.com/” and thus, the root path which is
reused for the relative links on the website was wrong, and therefore couldn’t resolve the links.

Retrying with correct URL

lmt check -w https://docsoc.medium.com/

1 130 total, 130 OK, 0 Errors

Conclusion

When a website containing relative links redirects itself, the wrong root path is used by LMT to resolve the relative
links. This bugwas not fixed until the end of this thesis. As aworkaround, the resolvedURL should be used instead
of the redirecting URL.

Benny Joe Villiger, Thomas Zahner 51

https://docsoc.medium.com/

Link Management Tool with Internet Archive Integration 16. June 2023

Cloud Application Lab
lmt check -w https://www.ost.ch/de/forschung-und-dienstleistungen/informatik

/ifs-institut-fuer-software/labs/cloud-application-lab

Result

The server seems to implement a kind of rate‑limiting, checking this website resulted in a temporary ban on
https://www.ost.ch related pages. This is a technical limitation of the process of checking productive websites
which could only be bypassed by rate‑limiting LMT itself.

Conclusion

The results in this caseare inaccurate. TheOSTwebsite couldbe ignored in theconfig file, so that thiswon’t happen
again.

ozimmer.ch
lmt check -w https://ozimmer.ch

1 67 total, 67 OK, 0 Errors

Conclusion

No broken links detected

Benny Joe Villiger, Thomas Zahner 52

https://www.ost.ch/de/forschung-und-dienstleistungen/informatik/ifs-institut-fuer-software/labs/cloud-application-lab
https://ozimmer.ch

Link Management Tool with Internet Archive Integration 16. June 2023

Jolie Language Documentation
lmt check -w https://www.jolie-lang.org/

1 [https://www.jolie-lang.org/]:
2 https://twitter.com/jolielang
3 https://www.jolie-lang.org/news
4 https://pixis.co/
5 mailto:webmaster@jolie-lang.org
6
7 40 total, 36 OK, 4 Errors

Result

The result once again includes a Twitter link, which can be ignored using a configuration file. The other links are
broken.

Suggest

lmt check -w https://www.jolie-lang.org/ | lmt suggest

1 https://twitter.com/jolielang http://web.archive.org/web/20190930232612/https://
twitter.com/jolielang

2 https://www.jolie-lang.org/news http://web.archive.org/web/20220129051520/https
://www.jolie-lang.org/news

3 https://pixis.co/ http://web.archive.org/web/20220625170906/https://pixis.co/

Conclusion

LMT found broken links on the productive website, and was able to suggest working replacements. The Twitter
link is once again considered broken, because of their redirect mechanism.

Benny Joe Villiger, Thomas Zahner 53

https://www.jolie-lang.org/

Link Management Tool with Internet Archive Integration 16. June 2023

Project plan

Figure 10: Project plan

As shown in figure 10 phases and milestones were defined to help keep the project on track. Each phase ends
with a milestone to mark the end of the phase. Four different layers were defined to give a better overview of the
different project tasks.

Milestones

Below is the definition of eachmilestone. The definition specifies which tasks must be completed in order for the
milestone to be considered completed.

Evaluated

• Tech stack was defined
• Documentation repository was set up
• Core repository was set up

Prototyped

• Prototype with previously defined tech stack exists
• Most important user stories & NFRs were defined
• Third‑party integrations were tested

Implemented

• Most essential user stories covered (potentially with the use of a third‑party program)
• Most essential features implemented

Extended

Benny Joe Villiger, Thomas Zahner 54

Link Management Tool with Internet Archive Integration 16. June 2023

• Additional user stories implemented
• Additional features implemented

Polished

• User guide finished
• Code ready to be released
• Code documented where necessary

Released

• Licence for the project is defined
• Project published as FOSS project, publicly available on GitLab or GitHub

Benny Joe Villiger, Thomas Zahner 55

Link Management Tool with Internet Archive Integration 16. June 2023

Riskmanagement

Table 7 is used to document technical and project risks. The risk’s likelihood of occurrence and its impact is esti‑
mated and ranked using a numerical score between 1 (Lowest) and 5 (highest). The risk’s severity score is based
on the likelihood and impact rating. For each risk, a mitigation and contingency action is defined.

Table 7: List of possible risks

Description Likelihood Impact Severity Action

1 Wayback Machine API37 availability
issues

2 5 4 Mitigation: Assess the reliability of the
Wayback Machie API and identify alternative
web archives.
Contingent: Use an alternative source of data.

2 Wayback Machine API changes 1 3 2 Mitigation: Create automated tests and sign up
to mailing list.
Contingent: Adapt code to API changes.

3 Target group and assumptions about
user behaviour change during the
project, so that the requirements and
tech choices are no longer adequate

3 3 3 Mitigation: Creation of a prototype.
Contingent: Change tech stack.

4 Requirements turn out to be more
complex than planned

2 3 3 Mitigation: Careful planning and react quickly
when encountering problems.
Contingent: Reduce the scope of the project.

5 lychee38 has less functionality than
planned

1 4 3 Mitigation: Test lychee’s functionality before
committing to contribute and use lychee.
Contingent: Fully focus on the prototype,
change the scope of the project accordingly.

6 lychee cannot be extended, because
the team is not very experienced with
the employed technologies and
libraries and the overall complexity
was underestimated

2 3 3 Mitigation: Assess lychee’s code and
architecture before committing and contact
community or main developer when
encountering problems.
Contingent: Look for a different link checker to
extend or focus fully on the prototype instead.

7 Changes to lychee are rejected or
ignored because the code is not
accepted or the community or main
developer is inactive

2 2 2 Mitigation: Check how active lychee’s
community is and contact the main developer
before committing to contribute to lychee. Also
create small pull requests early and improve
them iteratively with the help of the community
instead of creating big pull requests.
Contingent: Focus on the prototype instead of
lychee or work with the forked project rather
than the upstream version of lychee.

37Wayback Machine API: https://archive.org/help/wayback_api.php
38Open source broken link checking tool: https://github.com/LycheeOrg/Lychee/

Benny Joe Villiger, Thomas Zahner 56

https://archive.org/help/wayback_api.php
https://github.com/LycheeOrg/Lychee/

Link Management Tool with Internet Archive Integration 16. June 2023

LMT user guide

Installation

Pre‑built binaries (recommended) We provide binaries for Linux, macOS, andWindows for every release. The
binaries can be downloaded from the releases page.

Make accessible from any location The rest of this guide assumes that LMT has been added to the PATH. If you
skip this part you will have to execute LMT with specifying its location. So instead of just invoking lmt you will
need to run ./lmtwhen the binary is located in the current working directory.

Adding an executable to the PATH allows for easy and direct execution of the command from any directory in the
command‑line interface without specifying its full path.

• Rename the downloaded binary to lmt(lmt.exe onWindows)
• Follow this guide to add the directory to PATH: Add directory to PATH

Compile LMT yourself Firstly, make sure that Deno is installed locally:

Deno installation

And this repo has to be cloned on your site as well:

git clone git@gitlab.com:lmt7360522/lmt.git

Finally, run the build command:

deno task compile

The binary should now be created in the project’s source. To check whether it works, run the following command
from the project’s source directory:

./lmt --help

Tomake LMT accessible from any location, follow the steps in Make accessible from any location

Usage

Make sure you have installed LMT, as described in Installation Currently, it’s only possible to use LMT from the
command line.

Check for broken links Themain use case of LMT is to check for broken links in source files.

To check a local file for broken links, use:

lmt check <path-to-file>, for example lmt check README.md

Glob patterns are also supported by LMT, which allows the checking of multiple files at once:

lmt check <glob-pattern>, for example lmt check foldername/**.html

Benny Joe Villiger, Thomas Zahner 57

https://gitlab.com/lmt7360522/lmt/-/releases/permalink/latest/
https://zwbetz.com/how-to-add-a-binary-to-your-path-on-macos-linux-windows/
https://deno.com/manual@v1.33.4/getting_started/installation

Link Management Tool with Internet Archive Integration 16. June 2023

It is important to note that when utilizing the pattern from the same directory where the file(s) that should match
the pattern are located, there is generally no need to include a ./prefix. In the context of glob patterns, the ./
prefix holds the same significance as it does in regular expressions, potentially matching a file with precisely one
character.

Instead of checking local files, it is also possible to check links on websites:

lmt check -w <url>, e.g. lmt check -w https://www.example.com

Suggest changes LMT is capable of suggesting replacements for broken links, which exist on the WayBack ma‑
chine.

The suggest command can be used by:

• piping the output of a check command:

After successfully checking a file for broken links, the output can be piped into the suggest command. LMT will
now search for replacements in theWayBackmachine for each of the broken links provided. lmt check <glob
-pattern> | lmt suggest, e.g. lmt check foldername/**.html | lmt suggest

• providing the links as arguments:

lmt suggest <broken-url(s)>, e.g. lmt suggest "https://www.example.com https://
www.ost.ch"
Note that when entering multiple urls manually, they have to be newline separated (Each link on a single line). In
most of the terminals, this can be achieved by wrapping the urls in quotation marks (” “).

Fixing files automatically Results of thesuggest command provide recommendations for changes of broken
links, which can be automatically replaced in all files provided, when using lmt fix

lmt fix <glob-pattern>, e.g. lmt fix src/**/*.md

Providing a link map If you want to check source files with another link checker, or have a file prepared with
mappings of “broken links” to “replacement links”, you can simply use this map as an argument for lmt fix

lmt fix --link-map "<broken-link> <replacement-link>", e.g. lmt fix --link-map "
https://www.example.com/broken https://www.example.com/working"

Using with lychee The output of lychee --suggest can be used as the link‑map argument for lmt fix.
In that case, LMT will only replace the links, which were checked and suggested by lychee.

lmt fix --link-map "$(lychee <file(s)> --suggest)"<file(s)-to-replace>

Help The help command can be used after each command, and will display the possible arguments which can
be applied to any command.

Usage

lmt -h

Benny Joe Villiger, Thomas Zahner 58

https://archive.org/web/
https://archive.org/web/
https://github.com/lycheeverse/lychee

Link Management Tool with Internet Archive Integration 16. June 2023

lmt check -h

lmt suggest -h

lmt fix -h

Configuration file

LMT recognises .lmt.json as config file if it is located in the same directory where LMT is run. The path is cur‑
rently not configurable, but feature requests and contributions are welcome. The config file must be valid JSON.
The root object must contain the "ignore" and "ignoreMetadataForUrls" property.

With the "ignore" option it’s possible to specify status codes which should be ignored for a given URL. It’s also
possible to ignore all status codes with the option "all". The value of "ignore" is an object, where all keys
specify a URL as string and all values are of type StatusCodes. StatusCodes is either an array of status
codes or "all". (type StatusCodes = Array<number> | 'all')

The "ignoreMetadataForUrls" option specifies an array of URLs which should be ignored when using the
check command with the --create-snapshot or --verify-snapshot flag.

In the following example, three URLs are configured to be ignored by LMT. For the last URL all results should be
ignored, (including DNS errors, connection errors, etc.) so that effectively the whole URL is ignored. Additionally,
the metadata snapshot functionality should be disabled for one URL.

1 {
2 "ignore": {
3 "https://example.com": [
4 418,
5 500
6],
7 "https://example.com/something": [
8 404
9],

10 "https://deno.land/std@0.182.0/": "all"
11 },
12 "ignoreMetadataForUrls": [
13 "https://example.com"
14]
15 }

CI/CD

LMT is designed to integrate seamlessly with Continuous Integration and Continuous Deployment (CI/CD)
pipelines. Using the “check” command for example, ensures that broken links are caught early in the pipeline,
preventing them from reaching production environments. Any command of LMT can be easily integrated into
different stages of a pipeline.

Docker imageWe have published a Docker image containing the binary executable of the Link Management Tool
on DockerHub, which allows LMT to be easily integrated into CI/CD pipelines.

General script When using the Docker image, any LMT command can be run. For example lmt check <
filename(s)> can be used to check for broken links.

Benny Joe Villiger, Thomas Zahner 59

https://hub.docker.com/r/thomaszahner/lmt

Link Management Tool with Internet Archive Integration 16. June 2023

Failures If a use case requires the pipeline to use or return the correct exit code, set +e should be added at the
beginningof the script, so that itwill not exit immediately, if a non‑zero exit codewas returnedbya command. This
could be the case, if a script should behave differently, when broken links have been detected or when a pipeline
is allowed to fail on occurrence of specific exit codes.

GitLab

.gitlab‑ci.yml:

1 stages:
2 - check-for-broken-links
3
4 check-for-broken-links-job:
5 image:
6 name: thomaszahner/lmt
7 entrypoint: [""]
8 stage: check-for-broken-links
9 script:

10 - lmt check ./**/*.md

GitHub

AnexampleGitHubActionwas created to test anddemonstrate the functioningof LMT insideaGitHubAction. Note
that it is expected the pipeline to fail, since a couple of broken links have been added to the demo files.

ci.yml:

1 name: LMT
2
3 on:
4 push:
5 branches:
6 - master
7 - main
8 pull_request:
9 branches:

10 - master
11 jobs:
12 check-for-broken-links:
13 runs-on: ubuntu-latest
14 container:
15 image: thomaszahner/lmt
16 steps:
17 - uses: actions/checkout@v1
18 - name: Check for broken links
19 run: |
20 lmt check ./**/*.md

Benny Joe Villiger, Thomas Zahner 60

https://github.com/vilben/lmt-demo/actions/runs/5156181944/jobs/9286830837

Link Management Tool with Internet Archive Integration 16. June 2023

Input and output format reference

Default

The default format is used as output for the check command, or as input for the suggest command. It is meant to
be a human‑readable format and consists of a space separated list of urls in the following form. [<url>...];

Example:

1 https://www.example.ch/ https://www.ost.ch/

Usage: lmt suggest https://www.example.ch/ https://www.ost.ch/

JSON

The JSON format can be used as output for the check command, or as input for the suggest command. It consists
of a JSON object, with at least a property called fail_map and success_map. They both are an object with
key‑value pairs of relative file paths as the key, and an array of URL objects as the value. The URL object contains
at least an url string property, but can also include a status string property.

This format is meant to be used by the suggest command or third‑party software.

Example:

1 {
2 "success_map":{},
3 "fail_map": {
4 "./readme.md": [
5 {
6 "url": "https://www.example.com",
7 "status": 404
8 }
9]

10 }
11 }

The JSON input is adapted to lychees JSON output format and therefore implicitly compatible, which means that
json output of a lychee command can directly be used with LMT.

Default suggest output

The default output format of a suggest command consists of the target URL, followed by a space, which is then
followed by the suggested URL. A separate line is used for each target URL.

Example:

1 www.example.com https://web.archive.org/web/20230307000355/http://www.example.
com/

2 www.ost.ch https://web.archive.org/web/20230202101609/https://www.ost.ch/

Benny Joe Villiger, Thomas Zahner 61

Link Management Tool with Internet Archive Integration 16. June 2023

JSON suggest output

The suggest command’s JSON output format consists of an array of objects, which each contains the properties
url and suggestion

Example:

1 [
2 {
3 "url": "www.example.com",
4 "suggestion": "https://web.archive.org/web/20230307000355/http://www.example

.com/"
5 },
6 {
7 "url": "www.ost.ch",
8 "suggestion": "https://web.archive.org/web/20230202101609/https://www.ost.ch

/"
9 }

10]

CSV suggest output

A comma‑separated string, which is compatible with common spreadsheet programs.

Example:

1 "Url","Suggestion"
2 "www.example.com","https://web.archive.org/web/20230307000355/http://www.example

.com/"
3 "www.ost.ch","https://web.archive.org/web/20230202101609/https://www.ost.ch/"

Sed suggest output

The “sed” output format is designed to be used in combinationwith the sed command. When doing so, the follow‑
ing flags must be used with sed:

• --in-place (-i) which specifies to directly replace matched content in‑place
• --extended-regex (-E) which specifies that the expression is written in the POSIX‑Extended Regular
Expression (ERE) flavor

Example:

1 s/([^][!*'();:@&=+$,/?%#[:alnum:]]+|[[:space:]]+|^)(www.example.com)([^][!*'();:
@&=+$,/?%#[:alnum:]]+|[[:space:]]+|$)/\1https://web.archive.org/web
/20230307000355/http://www.example.com/\3/g;s/([^][!*'();:@&=+$,/?%#[:alnum
:]]+|[[:space:]]+|^)(www.ost.ch)([^][!*'();:@&=+$,/?%#[:alnum:]]+|[[:space
:]]+|$)/\1https://web.archive.org/web/20230202101609/https://www.ost.ch/\3/g

Usage:

1 sed -i -E "$(cat testLinks | lmt suggest --output-format sed)" example.html

Benny Joe Villiger, Thomas Zahner 62

https://www.regular-expressions.info/posix.html
https://www.regular-expressions.info/posix.html

	Introduction
	Background
	Broken link
	Content drift
	Limitations
	Internet archives
	Introduction to lychee

	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	Technical decisions
	C4 Architecture model

	Implementation
	Check command
	Suggest command
	Fix command
	Configuration file
	Exit codes
	Integration with CI/CD Pipelines
	Dependencies
	Contribution to lychee

	Results
	Release
	User stories
	Comparison with other tools

	Discussion and summary
	Wayback Machine API stability
	Support additional Internet archives
	Extension of LMT
	Plugin system for lychee
	Summary

	Glossary
	Response status code
	Sed
	Glob patterns
	Exit codes
	C4

	Bibliography
	Appendix
	Test results
	Project plan
	Risk management
	LMT user guide
	Input and output format reference

