
Barrierelos
Release 0.0.1

Michael Hofmann, Pascal Lehmann

Jan 12, 2024

TABLE OF CONTENTS

1 Abstract 1

2 Management Summary 3

3 Introduction 5
3.1 The State of Accessibility in Switzerland . 5
3.2 Goal of the Project . 5
3.3 Task . 5

4 Requirements 7
4.1 User Stories . 7

4.1.1 User Types . 7
4.1.2 Epic: Basic Features . 7
4.1.3 Epic: Automated Testing . 8
4.1.4 Epic: Statistics and Changes Over Time . 9
4.1.5 Epic: Moderation . 9
4.1.6 Epic: Maintenance . 10
4.1.7 Epic: Implement Additional Features . 10

4.2 Non-functional Requirements . 10
4.2.1 Usability . 11
4.2.2 Reliability . 11
4.2.3 Performance . 11
4.2.4 Supportability . 12

5 Design 13
5.1 Scoring . 13

5.1.1 Automated accessibility assessments . 13
5.1.2 Existing solutions . 13
5.1.3 Conclusion . 14
5.1.4 Inspiration . 15
5.1.5 Methodology . 16
5.1.6 Barrierelos-Score . 16

5.2 User Interface . 17
5.3 Database . 17

5.3.1 Logical . 17
5.3.2 Physical . 18

6 Architecture 19
6.1 C4 Model . 19

6.1.1 Context . 19
6.1.2 Container . 20

i

6.2 Pipeline . 21

7 Decisions 23
7.1 Automated a11y analysis tool . 23

7.1.1 Lighthouse . 23
7.1.2 WAVE API . 23
7.1.3 Axe-core . 24
7.1.4 Conclusion . 24

7.2 Barrierelos-Score Calculation . 24
7.2.1 Webpage Scoring . 25
7.2.2 Website Scoring . 25
7.2.3 Implementation . 26

7.3 Website Categories . 26
7.3.1 Government Websites . 26
7.3.2 Private Websites . 26

8 Implementation 29
8.1 Code Metrics . 29

8.1.1 Backend Code Metrics . 29
8.1.2 Frontend Code Metrics . 32
8.1.3 Scanner Code Metrics . 33

8.2 Dependencies . 35
8.2.1 3rd Party Runtime Libraries . 35
8.2.2 Tools for Continued Operation . 36

8.3 Repositories . 37

9 Testing 39
9.1 Requirements Testing . 39

9.1.1 Test Functional Requirements . 39
9.1.2 Test Non-functional Requirements . 43

9.2 Usability Testing . 44
9.2.1 Test Script . 45
9.2.2 Task Description . 46
9.2.3 Test Report . 46

10 Conclusion 49

11 Glossary 51

Index 53

ii

CHAPTER

ONE

ABSTRACT

In December 2023, a revision of regulations was announced by the Swiss Federal Council, also mandating private com-
panies to enhance the accessibility of their digital services. Therefore, a far greater number of actors will now have to
adhere to these rules. Despite existing regulations, accessibility issues persist, particularly in government services at the
cantonal and municipal levels.
The project aims to address this gap by recording and scoring accessibility issues on websites, categorizing them by region
and other factors, and making the data publicly available. The project also aids website maintainers in resolving these
issues by providing a list of issues found in an easy-to-use format.
This thesis presents a software system, incorporating crowdsourcing, scanning for accessibility issues using the axe-core
engine, and a scoring algorithm named Barrierelos-Score. The system comprises a React-based web application fron-
tend, a Spring Boot-based backend with a RESTful web API, and a scanner implemented in TypeScript running on
Node.js. Containerization and temporal decoupling ensure scalability, while a modularized architecture facilitates easy
implementation of new requirements.
The project embraces an agile workflow, with automated testing and deployment, enabling continuous integration and
continuous deployment. The documentation is made available online through GitLab Pages. The result is a comprehensive
approach to enhance web accessibility awareness and facilitate issue resolution in Switzerland and Liechtenstein.

1

Barrierelos, Release 0.0.1

2 Chapter 1. Abstract

CHAPTER

TWO

MANAGEMENT SUMMARY

In response to the revised regulations announced by the Swiss Federal Council in December 2023, private companies
will also be mandated to improve the accessibility of their digital services. Therefore, a far greater number of actors will
now have to adhere to these rules. Despite existing regulations, accessibility challenges persist, particularly in government
services at the cantonal and municipal levels.
To address this gap, our project focuses on identifying and scoring accessibility issues on websites, categorizing them by
region, and making the data publicly available. The initiative also supports website maintainers by offering a user-friendly
list of identified issues for resolution.
The thesis introduces a software system that utilizes crowdsourcing, the axe-core engine for scanning accessibility issues,
and a scoring algorithm called Barrierelos-Score. The system comprises a React-based web application frontend, a Spring
Boot-based backend with a RESTful web API, and a TypeScript-based scanner running on Node.js. A modularized
architecture allows for the seamless implementation of new requirements.
The project follows an agile workflow with automated testing and deployment, enabling continuous integration and con-
tinuous deployment. Documentation is hosted online through GitLab Pages. The result is a comprehensive approach to
raise awareness about web accessibility and streamline issue resolution in Switzerland and Liechtenstein.

3

Barrierelos, Release 0.0.1

4 Chapter 2. Management Summary

CHAPTER

THREE

INTRODUCTION

This project was created as a bachelor thesis at the Eastern SwitzerlandUniversity of Applied Sciences (OST) in the subject
area of computer science, or more precisely in the field of software engineering. The official project title is “Crowdsourced
E-Accessibility Dashboard” and was posted by Prof. Dr. Markus Stolze.

3.1 The State of Accessibility in Switzerland

According to the Swiss Federal Statistical Office (BFS), almost 18% of the population have disabilities as defined under
the Disability Discrimination Act (BehiG). The Federal Council of Switzerland announced in December 2023 that they
are working on a revision of these regulations also obligating private companies to make their digital services accessible.
Similar legislative changes have already been adopted in the EU and will come into effect in 2025 in Germany for example.
Therefore, a far greater number of actors will now have to adhere to these rules. Despite existing regulations, there are
clear deficits with the accessibility of digital services in Switzerland, especially with government services at the cantonal
and municipal levels. However, the extent of these deficits cannot currently be determined.

3.2 Goal of the Project

For this reason, our project aims to: record accessibility issues on websites, score these websites based on their accessibility
and classify them by region and other categories. The collected data is made available to the public to raise awareness of
web accessibility and help website maintainers resolve such issues.

3.3 Task

Our task for this thesis included the following main points: - Creating a web dashboard, that would provide an overview
of the state of web accessibility in Switzerland. - Collecting websites and categorizing through a crowdsourcing approach,
enabling users to add websites to the system and categorize them. - Automatically assessing the accessibility of websites,
with a focus on websites on the three government levels in Switzerland: federal, cantonal and municipal. - Allowing
moderation of the crowdsourced data, to ensure the quality of the data.

5

Barrierelos, Release 0.0.1

6 Chapter 3. Introduction

CHAPTER

FOUR

REQUIREMENTS

4.1 User Stories

As part of the requirement analysis we identified a number of user stories which we’ve grouped into epics. Each user
story is described with a sentence in the form of “As a <user type>, I want <goal>, so that <benefit>.”. The user stories
were used to analyze the requirements from the view of a user and to discuss them with the supervisor.
Since the user stories act as functional requirements, they are updated as the project progresses.

4.1.1 User Types

A user types are fictional characters that represent the different user types that might use our application. A person can
belong to multiple user types. They are used to better understand the needs of the users and to design the application to
meet their needs.
We identified the following user types:

User Type Description
User A user represents a generic person using the system. This user type is used when the user type is not

important. The term registered user is used to refer to a user who has an account on the system.
Viewer A viewer represents a person who wants to learn more about the current state of accessibility of

websites. They’re not required to have account on the system.
Contributor A contributor represents a person who wants to contribute by: adding new websites and webpages

to the system, maintaining categories, tagging websites, initiating automated analyses or reporting
unwanted behavior or content.

Moderator A moderator represents a person who is responsible for the quality of the data in the system and
removing inappropriate content.

Administrator An administrator represents a person who is responsible for the operation of the system.

4.1.2 Epic: Basic Features

This epic contains the basic features to enable all other user stories.

7

Barrierelos, Release 0.0.1

ID Description
ST-1 As a user, I want to be able to sign up for an account, so that I can use the service as a registered user.
ST-2 As a user, I want to be able to use an already existing account from another platform, so that I can start

using the service.
ST-47 As a user, I want to be able to create a dedicated account on the platform, so that I don’t have to use an

account from another platform.
ST-43 As a user, I want to be able to delete my account on the system, so that it will be marked as such.
ST-48 As a user, I want to be able to see my profile, so that I can see what data is stored in it.
ST-49 As a user, I want to be able to change my profile, so that I can update my contact information.
ST-50 As a user, I want to be able to change my password, when using a dedicated account on the platform, so

that I can change my password on a regular basis.
ST-3 As a user, I want to be able to sign in, so that I can use restricted features.
ST-4 As a user, I want to be able to sign out, so that my account is protected when I’m not using the service.
ST-6 As a user, I want the application to be responsive, so that I can use it on my mobile phone.
ST-7 As a user, I want the application to be accessible, so that I can use it despite my disability.
ST-8 As a user, I want the application to be self-explanatory, so that I can use it without any prior knowledge.
ST-9 As a user, I want the application to load quickly, so that I can use it without having to wait.
ST-41 As a user, I want the application to be in my native language, so that I can understand it better.

4.1.3 Epic: Automated Testing

This epic contains the user stories to enable automated testing of websites.

ID Description
ST-5 As a contributor, I want to add a website, so that I can analyze its a11y.
ST-10 As a contributor, I want to initiate an automated analysis of a website, so that I can check how accessible

it is with respect to WCAG guidelines.
ST-11 As a viewer, I want to inspect the results of an analysis in a report, so that I can see how the website

performed and what issues were found.
ST-12 As a viewer, I want the report to include a score, so that I can compare the accessibility of different

websites.
ST-13 As a contributor, I want to be able to see the results after a website has been re-analyzed, so that I can

see if the website’s score has changed.
ST-14 As a contributor, I want the system to handle large numbers of automated analyses, so that I can analyze

many websites.
ST-66 As a contributor, I want to know the status of a scan, so that I know whether a scan succeeded or failed.

8 Chapter 4. Requirements

Barrierelos, Release 0.0.1

4.1.4 Epic: Statistics and Changes Over Time

This epic contains the user stories to add statistics about a single website or a group of websites and to be able to track
changes over time.

ID Description
ST-15 As a viewer, I want the system to track how a website’s score has changed over time, so that it is possible

to assess whether the website’s score is improving or getting worse.
ST-16 As a viewer, I want the system to track how a category’s average score has changed over time, so that it

is possible to assess if the group’s score is improving or getting worse.
ST-17 As a viewer, I want to see a ranking of websites by the score, so that I can see which websites are most

accessible.
ST-18 As a viewer, I want to see a ranking of regions by average score, so that I can see which regions handle

accessibility best.
ST-57 As a viewer, I want to be able to search for a website, so that I can find the website im looking for without

having to go through the entire list.
ST-58 As a viewer, I want to be able to see when a website was added, so I can see how long the website has

been tracked.
ST-59 As a viewer, I want to be able to see when a website was last scanned, so that I know how relevant the

scan still is.
ST-60 As a viewer, I want the scoring system to be transparent, so that I know roughly how the score is calcu-

lated.

4.1.5 Epic: Moderation

This epic contains the user stories to moderate the system.

ID Description
ST-30 As an administrator, I want to appoint moderators, so that they can moderate the system.
ST-42 As an administrator, I want to dismiss moderators, so that they can no longer moderate the system.
ST-33 As a registered user, I want to report websites, so that I can report incorrect, misleading or inappropriate

content.
ST-51 As a registered user, I want to report the webpages of a website, so that I can report incorrect, misleading

or inappropriate content.
ST-52 As a registered user, I want to report other users, so that I can report incorrect, misleading or inappro-

priate content.
ST-34 As a moderator, I want to be able to review websites that have been reported, so that I can verify the

claims and remove the website if necessary.
ST-53 As a moderator, I want to be able to review webpages that have been reported, so that I can verify the

claims and remove the website if necessary.
ST-54 As a moderator, I want to be able to review users that have been reported, so that I can verify the claims

and remove the website if necessary.
ST-55 As a registered user, I want to be able to communicate to the moderators when reporting, so that I can

explain to them why I reported the website, webpage or user.
ST-56 As a registered user, I want to be able to communicate with the moderators when I was reported, so that

I have the chance to justify myself to the moderator and/or the user who reported me.

4.1. User Stories 9

Barrierelos, Release 0.0.1

4.1.6 Epic: Maintenance

This epic contains the user stories to operate and maintain the system.

ID Description
ST-35 As an administrator, I want to maintain the system without any help from the original developers, so that

I can keep the costs of the project low.
ST-36 As an administrator, I don’t want to have to pay license fees, so that I can keep the costs of the project

low.
ST-37 As an administrator, I want to keep resource consumption on my infrastructure to a limit, so that I can

keep the costs of the project low.
ST-38 As an administrator, I want to be able to easily deploy the system, so that I can move it to a different

infrastructure if necessary.
ST-39 As an administrator, I want the source code to have automated tests, so that I can add or modify features

without breaking existing functionality.

4.1.7 Epic: Implement Additional Features

This epic contains the user stories for additional features that are not part of the project scope.

ID Description
ST-40 As a viewer, I want to see where exactly on the website a11y issues were found, so that I can fix them

more easily.
ST-61 As a viewer, I want to know what those issues mean, so that I can fix them more easily.
ST-62 As a viewer, I want to know the weight of webpages on the scoring, so that I know which page is most

relevant to fix the issues there.
ST-63 As a user, I want to know about the privacy policy of the platform, so that I know how my data is

handled.
ST-64 As a user, I want to know who is behind this platform, so that I can contact them if necessary, and to

know what the legal basis is.
ST-65 As a user, I want to knowwhat legal basis applies to this platform, so that I know the place of jurisdiction.

4.2 Non-functional Requirements

The following table lists the non-functional requirements (NFR) for this project. They were formulated with the SMART
criteria in mind, meaning that the NFRs are:

• Specific
• Measurable
• Agreed upon
• Realistic
• Time-bound

In accordance with FURPS, the NFRs are categorized into the following categories:
• Functionality (not relevant for NFRs)
• Usability

10 Chapter 4. Requirements

Barrierelos, Release 0.0.1

• Reliability
• Performance
• Supportability

4.2.1 Usability

ID Description User Stories
NR-1 The application must be responsive. Meaning that the application must be usable

both on mobile devices and on desktop computers. This will be verified through a
usability test.

US-6

NR-2 The application must be usable by disabled people, especially people with visual
impairments. Meaning that the application must be accessible and usable with a
screen reader. This will be verified through an a11y test by a visually impaired person
with a screen reader.

US-7

NR-3 The application must be usable without any prior knowledge. Meaning that the ap-
plication must be self-explanatory. This will be verified through a usability test with
a person who has no prior knowledge of the application.

US-8

4.2.2 Reliability

ID Description User Stories
NR-4 The application should be containerized and run in a container orchestration system.

Meaning that the application should be able to recover from a failure of a single
instance.

US-38

NR-5 The software should not get overloaded by a high number of automated a11y analysis.
Instead the software should queue the analysis requests and process them one by one.

US-14

4.2.3 Performance

ID Description User Stories
NR-6 The application must be able to run on a server with 2 vCPUs, 4 GB of RAM and

30 GB of storage. This are the specifications of the server we were provided for the
project.

US-37

NR-7 The page load time of all webpages must be below 2 seconds 95% of the time, when
accessed from Switzerland.

US-9

4.2. Non-functional Requirements 11

Barrierelos, Release 0.0.1

4.2.4 Supportability

ID Description User Stories
NR-8 The application must be maintainable without consulting the original developers.

Meaning that the development setup und deployment process must be documented.
Additionally, the code and all produced artifacts must comply with the quality stan-
dards as per the quality_assurance section.

US-35

NR-9 The application may not cause any running costs beyond those for the server the
application is running on. Meaning that the applicationmay not use any paid services.

US-36

NR-10 The source code must have 60% test coverage through automated unit tests. US-39
NR-11 The application must support i18n. Meaning that the application could be translated

into another language just by adding another language file with translations.
US-41

12 Chapter 4. Requirements

CHAPTER

FIVE

DESIGN

5.1 Scoring

The primary task of this thesis was to create a web dashboard, that would provide an overview of the state of web
accessibility in Switzerland. In order to capture the whole picture, we would need to be able to assess large numbers of
websites. Performing a manual accessibility assessment takes a considerable amount of time and the testing protocol has
to be adjusted based on the functionality present on the website. Additionally, both manual and automated accessibility
assessments are relatively short-lived. Websites often change many times a year or even get completely refurbished after
some years. So the assessment has to be repeated regularly to stay up to date. This fact, combined with the large number
of websites to assess meant it would not be feasible to employ manual testing to capture the state of accessibility in
Switzerland. As such, we were tasked to create a system that could automatically determine the accessibility of websites.
Additionally, it should be able to aggregate the results, so that different cantons could be compared to each other for
example.

5.1.1 Automated accessibility assessments

During our research for this thesis, we looked at many existing projects that assess the accessibility of websites. Many
of these employed a hybrid between manual and automated testing, some were based entirely on manual tests and only a
few were entirely relying on automated tests. One such example is the well-known The WebAIM Million project, which
we will discuss in more detail later in this chapter. Through our research, as well as talking to experts in the field of web
accessibility, we discovered that it is largely impossible to exactly determine the accessibility of a website through auto-
mated testing. Some issues can currently only be detected by humans, especially those concerning interactive elements.
As such, our system would not be able to provide an exact assessment of the accessibility of a website but serve approxi-
mation or indicator of the accessibility of a website. Since we want to capture the state of accessibility in Switzerland, we
concluded that we need a quantification of the accessibility of a website. This would allow us to compare the accessibility
of different websites and aggregate the results of different categories and groups.

5.1.2 Existing solutions

Since we are not experts in the field of web accessibility and we had limited experience from lectures and exercises from
courses at OST, we wanted to get familiar with existing solutions and approaches to automatically assess the accessibility
of websites.
There are a lot of companies offering automated accessibility testing services. We looked at many examples, like Accesible
Web, acessiBe or AccessibilityChecker.org. These services are usually offered as a Software as a Service (SaaS) and start
with a free tier, with additional features available through paid subscription to the service. Unfortunately, none of these
services offer any information on how they perform their tests, what criteria they consider or how they calculate their
metrics.

13

https://accessibleweb.com/website-accessibility-checker/
https://accessibleweb.com/website-accessibility-checker/
https://accessibe.com/accessscan
https://www.accessibilitychecker.org/

Barrierelos, Release 0.0.1

There are some more sophisticated solutions, like the Wave web accessibility evaluation tool from WebAIM. This tool is
available as a browser extension for Chrome and Firefox and also, as a web API and a standalone engine. We evaluated
the API as a candidate for use in our system. More information on this can be found in the Automated a11y analysis tool
section. This tool is also used by The WebAIM Million project. They do however not provide any scoring and only offers
a list of issues found on the website and doesn’t report on the severity of the issues.
We also looked at LightHouse, which is a tool developed by Google and directly integrated into the developer tools of the
Chrome browser. Due to this reason, it is widely used and does also provide a scoring system. It is based on the axe-core
accessibility engine by Deque Systems. Lighthouse’s scoring mechanism is based on the Axe engine’s impact assessment,
which rates issues based on their severity. It does however not take into account how often an issue occurs on a website.
The WebAIM Million is possibly the most well-known, large-scale automated accessibility assessment project. They
publish a yearly report on the accessibility of the top 1 million most visited websites on the internet. They use the Wave
engine to perform their tests but don’t provide a score but a ranking of the websites. They summarize how their ranking
works but don’t provide exact details. We evaluated their scoring system based on 41 websites that were tested in the
Swiss Accessibility Study 2020 by Access for All. We also compared the ranking to the issues found by the Wave engine.
However we found some inconsistencies, in that websites that ranked high in the WebAIM Million but had many issues
reported by the Wave engine. We read through their whole publication and could not find any mention of how they filter
issues or how they calculate their ranking. Another issue with their approach is that they only test the homepage of a
website. While the homepage is certainly important, they are missing out on many issues that might be present on other
pages of the website.

5.1.3 Conclusion

Based on our findings, there is no existing solution that would provide a scoring system that would be suitable for our use
case. Many of the existing solutions are not transparent in how they perform their tests and how they calculate their scores
or rankings. This appears to be an issue with many automated accessibility assessment tools.1

Therefore, we decided to derive our own scoring system. Also implementing an accessibility engine was out of scope for
this thesis, so we decided to instead use one of the more sophisticated existing engines, that would scan the websites for
accessibility issues. We would then use the issues found by the engine and process the results. Since we had no good
references to compare our scoring system with, we wanted to rely on an established solution as much as possible. The
axe-core engine is developed by Deque Systems, which is a company specializing in providing accessibility services. It’s
integrated into many existing solutions, like the Lighthouse tool from Google. Additionally, it uses a large number of
rules to detect issues and categorizes them based on their severity. Their rules are largely based on the Web Content
Accessibility Guidelines (WCAG) which is also the basis of most regulations concerning web accessibility in Switzerland
and Europe in general. This means that the issues found are relevant to our use case and can also help organizations to
improve the accessibility of their services according to the new regulations described in the Introduction. By processing
the results, we can also determine how often an issue occurs on a website and use this information to weigh the issues.
For this reason, we decided to use the axe-core engine as the basis for our scoring system.

1 Marco Manca, Vanessa Palumbo, Fabio Paternò, and Carmen Santoro. 2023. The Transparency of Automatic Web Accessibility Evaluation
Tools: Design Criteria, State of the Art, and User Perception. ACM Trans. Access. Comput. 16, 1, Article 3 (March 2023), 36 pages. https:
//doi.org/10.1145/3556979

14 Chapter 5. Design

https://wave.webaim.org/
https://webaim.org/
https://developers.google.com/web/tools/lighthouse
https://github.com/dequelabs/axe-core
https://github.com/dequelabs/axe-core
https://www.deque.com/
https://developer.chrome.com/docs/lighthouse/accessibility/scoring
https://webaim.org/projects/million/
https://access-for-all.ch/publikationen/accessibility-studie/accessibility-studie-2020/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://doi.org/10.1145/3556979
https://doi.org/10.1145/3556979

Barrierelos, Release 0.0.1

5.1.4 Inspiration

For our scoring to be meaningful, we wanted to base it on existing research. This is why we took inspiration from the
studies conducted by Access for All. They are a Swiss foundation that advocates for technology access and use by people
with disabilities. They also act as an independent certification authority for the accessibility of websites and apps. They
release a study every 3-5 years, where they assess the accessibility of a sample of relevant Swiss websites and apps.
They are mainly focused on manual testing but have sometimes augmented their assessments with automated tests. Their
Swiss Accessibility Study 20162 describes how they quantify the accessibility of websites, which can be found in chapter
7.1.1.3.1.
They describe four aspects they considered:

1. How often is a test criterion violated?
2. To which degree is it being violated?
3. Is it only a minor issue or does it make an entire process inaccessible?
4. Which kinds of disabilities are affected to what extent?

We are able to address aspect 1 since axe-core does not only provide a list of issues, but also a list of tested elements that
passed the tests. We can therefore determine how many elements passed the tests and how many failed.
Aspect 2 is not directly addressed by the axe-core engine. The output for an issue also includes metadata about the
occurrence, but this is not standardized and not always present. Considering a contrast issue, for example, we could
determine the contrast ratio of the text and the background color. So we would be able to tell if the contrast is only
slightly off or if it is completely unreadable. However since this information is not always present, we would implicitly
weight certain issues lower than others, thus skewing our results. Additionally, we would have to intervene with specific
rules used by axe-core, which means that a future update of the engine could break our implementation. We therefore
decided to not consider this aspect in our scoring system.
Aspect 3 is well addressed by the axe-core engine. The engine categorizes issues based on their severity. It uses four
categories: minor, moderate, serious and critical. We associate an impact value with each category, which we use to
weigh the issues. We tested several values based on 41 websites that were tested in the Swiss Accessibility Study 2020 by
Access for All and compared the results to the score in the study. We finally settled on the following values:

• minor: 2
• moderate: 4
• serious: 8
• critical: 16

This means that to compensate for a serious issue, for example, 8 elements would have to pass the same rule. These values
are based on a limited sample of websites. Since we’re relying on crowdsourcing the websites to test, the data collection
will only really start once our thesis is completed and the system is deployed. So we integrated these values into our
scoring system in such a manner that they can be easily adjusted in the future.
Aspect 4 is unfortunately not addressed by the axe-core engine. The engine does not provide any information on the type
of disability that is affected by an issue.

2 Anton Bolfing, Bernhard Heinser, Gianfranco Giudice, Petra Ritter. 2016. Schweizer Accessibility-Studie 2016. 152 pages. https://access-for-all.
ch/wp-content/uploads/2022/11/SchweizerAccessibilityStudie2016.pdf

5.1. Scoring 15

https://access-for-all.ch/
https://access-for-all.ch/publikationen/accessibility-studie/accessibility-studie-2020/
https://access-for-all.ch/wp-content/uploads/2022/11/SchweizerAccessibilityStudie2016.pdf
https://access-for-all.ch/wp-content/uploads/2022/11/SchweizerAccessibilityStudie2016.pdf

Barrierelos, Release 0.0.1

5.1.5 Methodology

The biggest challenge in creating our scoring system was that there are few existing solutions to compare it to. This means
that we are not able to empirically determine how well our scoring system works. To remedy this as much as possible, we
based our approach on existing research like the studies conducted by Access for All and we used the established axe-core
engine as the basis for our scoring system. This section further describes the aspects that we take into account to make
our scoring system as meaningful as possible.
As mentioned in the Introduction, we employ a crowdsourcing approach to collect the websites to test. We allow users to
record multiple webpages for a website. We emphasize to users, that they should record pages that are relevant for the
website and avoid adding many pages with the same structure. This gives us the advantage that we can test multiple pages
of a website and that these webpages are not just a random sample, but are chosen based on their relevance.
In this chapter so far we have only talked about the axe-core output in a simplified manner for better understanding.
Now we’ll go into more detail on how we process the output of the axe-core engine to determine the score of a website.
Axe-core doesn’t have a concept of a website with multiple webpages. It only takes a single URL as input and then tests
the webpage at that URL. So we execute the axe-core engine for each webpage that was recorded for a website.
The output of a single webpage is four lists of test results: passed, incomplete, inapplicable and violated. Each of these
lists contains several rules that were tested on the website. Each rule contains a list of tested elements on the website.
Since one element can violate a rule, but another element can pass the same rule, the same rule can be present in multiple
lists. So we have to process the lists and link the rules together. We only consider results that are present in the passed
and violated lists. Since those contain the rules with the elements that passed or violated respectively.
This is because the incomplete-list contains those rules for which axe-core could not determine if they are violated or
not. This is due to the fact that axe-core was designed not to produce any false positives. So if it is not sure if a rule
is violated, it will put it in the incomplete-list. We decided to ignore these potential issues to prevent us from scoring a
website worse than it is. This also means that we might miss some issues, but we consider this an acceptable trade-off. Or
to put it jokingly, in the words of William Blackstone: “It is better that ten guilty [websites] escape than that one innocent
suffer”.3 The inapplicable-list contains those rules for which axe-core could not find any elements to test on the website.
So to extract the number of times an issue occurs on a webpage, we have to count the number of tested elements in
the violated-list. The size of the different webpages can also be very different. To take this into account, we weigh the
webpages based on the number of elements that axe-core tested on the webpage. We can determine this by linking up
the in the passed- and violated-lists and then summing up the number of elements in each rule. Additionally, we also take
into account the axe-core impact severity of the issues, as was described in the previous section.

5.1.6 Barrierelos-Score

The result of this scoring system is a score between 0 and 100. We call this score the Barrierelos-Score. We first intended
to call it the Accessibility-Score, but we decided against it since we want our score to be interpreted as an exact measure
of the accessibility of a website. We want to emphasize that our score is only an approximation of the accessibility of a
website. As such an individual score should not be interpreted as an exact measure. But it is a useful indicator and can
also be used to capture the state of accessibility in Switzerland. Also allowing us for example to compare the aggregated
results of different cantons.
The condensed technical documentation on the implementation of our scoring system can be found in theBarrierelos-Score
Calculation section.

3 Blackstone, Sir. Commentaries on the Laws of England in Four Books, vol. 2. J. B. Lippincott. 1753. https://oll.libertyfund.org/title/
sharswood-commentaries-on-the-laws-of-england-in-four-books-vol-2

16 Chapter 5. Design

https://oll.libertyfund.org/title/sharswood-commentaries-on-the-laws-of-england-in-four-books-vol-2
https://oll.libertyfund.org/title/sharswood-commentaries-on-the-laws-of-england-in-four-books-vol-2

Barrierelos, Release 0.0.1

5.2 User Interface

We created an extensive wireframe that was used to create a visual representation of the user interface. The wireframe
includes all possible functionality that we were able to identify. Not all of it was implemented in the end, due to the time
constraints of the project.
Figma was used to design the wireframe. Figma is a collaborative web application for interface design, therefore the
wireframe is only available online under the following link: Wireframe on Figma

5.3 Database

5.3.1 Logical

Logical structure of the data with entities and their properties and relationships with each other:

User

PK userID

username

firstname

lastname

email

roles

deleted

modified

created

ScanJob

PK scanJobID

userFK

modelVersion

websiteBaseUrl

webpagePaths

modified

1

0..*

0..*

0..*

0..*

0..*

1

0..*

1

0..*

1

0..*

WebsiteResult

PK websiteResultID

FK scanJobFK

modelVersion

website

scanStatus

errorMessage

modified

WebpageResult

PK webpageResultID

FK analysisResultFK

path

scanStatus

errorMessage

modified

Rule

PK ruleID

FK webpageResultFK

description

code

modified

Check

PK checkID

FK ruleFK

code

type

impact

testedCount

passedCount

violatedCount

incompleteCount

modified

CheckViolatingElement

PK checkViolatingElementID

FK checkFK

FK checkElementFK

CheckViolatingElement

PK checkViolatingElementID

FK checkFK

FK checkElementFK

CheckElement

PK checkElementID

target

html

issueDescription

data

modified

Element

PK elementID

checkElementFK

target

html

modified

Website

PK websiteID

FK userFK

domain

url

category

status

deleted

modified

created

Webpage

PK webpageID

FK websiteFK

FK userFK

path

url

status

deleted

modified

created

0..*

0..*

Tag

PK tagID

name

WebsiteTag

PK websiteTagID

FK websiteFK

FK tagFK

FK userFK

modified

created

Report

PK reportID

FK userFK

reason

state

modified

created

0..*

1

0..*

WebsiteScan

PK websiteScanID

FK websiteFK

FK websiteStatisticFK

FK websiteResultFK

FK userFK

modified

created

0..*

WebpageScan

PK webpageScanID

FK webpageFK

FK webpageStatisticFK

FK webpageResultFK

FK userFK

modified

created

0..*

0..*

0..*

1 1

1

1

ReportMessage

PK reportMessageID

FK reportFK

FK userFK

message

modified

created

1..*

WebsiteReport

PK websiteReportID

FK websiteFK

FK reportFK

WebpageReport

PK webpageReportID

FK webpageFK

FK reportFK

0..*

0..*

0..*

0..1

0..1

WebsiteStatistic

PK websiteStatisticID

score

modified

created

WebpageStatistic

PK webpageStatisticID

score

modified

created

1

0..*

1

0..*

UserReport

PK userReportID

FK userFK

FK reportFK

1
0..1

1

0..*

Credential

PK credentialsID

FK userFK

password

issuer

subject

modified

created

1

1

1

1

1

1

1

0..*

1

1

WcagReferences

PK wcagReferencesID

FK ruleFK

version

level

criteria

1

0..1

Fig. 1: Database Logical

5.2. User Interface 17

https://www.figma.com/file/ZyiUre2Kghfn9Mv9sjlSnH/Wireframe?type=design&node-id=0%3A1&mode=design&t=rNIW3iIX8QQZT6J5-1

Barrierelos, Release 0.0.1

5.3.2 Physical

Physical structure of the data with entities, their relationships with each other, their properties, and descriptions of what
type these properties are:

user

PK user_id BIGSERIAL

username VARCHAR

firstname VARCHAR

lastname VARCHAR

email VARCHAR

roles ROLE_ENUM ARRAY

deleted BOOLEAN

modified TIMESTAMP

created TIMESTAMP

0..1

1

0..1

0..1

0..1

0..1

0..1

1

0..1

1

0..1

1

scan_job

PK scan_job_id BIGSERIAL

FK userFK BIGSERIAL

model_version VARCHAR

website_base_url VARCHAR

webpage_paths VARCHAR

modified TIMESTAMP

website_result

PK analysis_result_id BIGSERIAL

FK scanJobFK BIGSERIAL

model_version VARCHAR

website VARCHAR

scan_status SCAN_STATUS_ENUM

error_message VARCHAR ARRAY

modified TIMESTAMP

webpage_result

PK webpage_result_id BIGSERIAL

FK analysis_result_fk BIGSERIAL

path VARCHAR

scan_status SCAN_STATUS_ENUM

error_message VARCHAR

modified TIMESTAMP

rule

PK rule_id BIGSERIAL

FK webpage_result_fk BIGSERIAL

description TEXT

code VARCHAR

modified TIMESTAMP

element

PK element_id BIGSERIAL

FK check_element_fk BIGSERIAL

target VARCHAR

html VARCHAR

modified TIMESTAMP

check_element

PK check_element_id BIGSERIAL

target VARCHAR

html VARCHAR

issue_description VARCHAR

data VARCHAR

modified TIMESTAMP

check_violating_element

PK check_violating_element_id BIGSERIAL

FK check_fk BIGSERIAL

FK check_element_fk BIGSERIAL

check_incomplete_element

PK check_incomplete_element_id BIGSERIAL

FK check_fk BIGSERIAL

FK check_element_fk BIGSERIAL

check

PK check_id BIGSERIAL

FK rule_fk BIGSERIAL

code VARCHAR

type CHECK_TYPE_ENUM

impact IMPACT_ENUM

tested_count INTEGER

passed_count INTEGER

violated_count INTEGER

incomplete_count INTEGER

modified TIMESTAMP

0..1

0..1

0..1

0..1

0..1

1..*

0..1

1

0..1

1

0..1

0..1

0..1

website_statistic

PK website_statistic_id BIGSERIAL

score DOUBLE

modified TIMESTAMP

created TIMESTAMP

website_scan

PK website_scan_id BIGSERIAL

FK website_fk BIGSERIAL

FK website_statistic_fk BIGSERIAL

FK website_result_fk BIGSERIAL

FK user_fk BIGSERIAL

modified TIMESTAMP

created TIMESTAMP

website_report

PK website_report_id BIGSERIAL

FK website_fk BIGSERIAL

FK report_fk BIGSERIAL

webpage_scan

PK webpage_scan_id BIGSERIAL

FK webpage_fk BIGSERIAL

FK webpage_statistic_fk BIGSERIAL

FK webpage_result_fk BIGSERIAL

FK user_fk BIGSERIAL

modified TIMESTAMP

created TIMESTAMP

webpage_report

PK webpage_report_id BIGSERIAL

FK webpage_fk BIGSERIAL

FK report_fk BIGSERIAL

webpage_statistic

PK webpage_statistic_id BIGSERIAL

score DOUBLE

modified TIMESTAMP

created TIMESTAMP

1 1

1

1

website_tag

PK website_tag_id BIGSERIAL

FK website_fk BIGSERIAL

FK tag_fk BIGSERIAL

FK user_fk BIGSERIAL

modified TIMESTAMP

created TIMESTAMP

tag

PK tag_id BIGSERIAL

name VARCHAR
0..1

1

website

PK website_id BIGSERIAL

FK user_fk BIGSERIAL

domain VARCHAR

url VARCHAR

category CATEGORY_ENUM

status STATUS_ENUM

deleted BOOLEAN

modified TIMESTAMP

created TIMESTAMP

0..1

webpage

PK webpage_id BIGSERIAL

FK websiteFK BIGSERIAL

FK user_fk BIGSERIAL

path VARCHAR

url VARCHAR

status STATUS_ENUM

deleted BOOLEAN

modified TIMESTAMP

created TIMESTAMP

0..1

0..1

report_message

PK report_message_id BIGSERIAL

FK report_fk BIGSERIAL

FK user_fk BIGSERIAL

message TEXT

modified TIMESTAMP

created TIMESTAMP

1

report

PK report_id BIGSERIAL

FK user_fk BIGSERIAL

reason REASON_ENUM

state STATE_ENUM

modified TIMESTAMP

created TIMESTAMP

user_report

PK user_report_id BIGSERIAL

FK user_fk BIGSERIAL

FK report_fk BIGSERIAL

credential

PK credential_id BIGSERIAL

FK userFK BIGSERIAL

password VARCHAR

issuer VARCHAR

subject VARCHAR

modified TIMESTAMP

created TIMESTAMP

1
0..1

0..1

1

1

0..1

1 1

1

wcag_references

PK wcag_references_id BIGSERIAL

FK rule_fk BIGSERIAL

version VARCHAR

level VARCHAR

criteria VARCHAR ARRAY

1

1

1

0..1

0..1

1

0..1

1

Fig. 2: Database Physical

18 Chapter 5. Design

CHAPTER

SIX

ARCHITECTURE

This section focuses on the architecture and concepts used to achieve the goals of this project. Besides addressing the
core concepts on a high level, it also goes into detail on the implementation of the core functionality.
What is not included in this section is the reasoning of why certain decisions were made. This is instead covered in the
decision section.

6.1 C4 Model

The overall architecture of the system is documented using the C4 model. The C4 model was created as a way to help
software development teams describe and communicate software architecture, by creating maps of the code, at various
levels of detail (like zooming in and out of an area of interest).
The C4 model is an “abstraction-first” approach to diagramming software architecture. The software system is made up
of one or more containers (applications, data stores), each of which contains one or more components (library, module),
which in turn are implemented by one or more code elements (classes, interfaces, objects, functions). And people (actors,
roles, personas) who may use the software system.

• Person: Represents one of the human users of the software system. People correspond to the roles of the system.
• Container: Represents an application or a data store. Containers are separately runnable/deployable units that
need to be running in order for the overall software system to work.

• Component: Represents a grouping of related functionality encapsulated behind a well-defined interface. Com-
ponents are not separately deployable units.

6.1.1 Context

The starting point of the architecture documentation. It allows to step back and see the big picture. It is a zoomed out
view showing a big picture of the system landscape. The focus is on people and software systems rather than technologies,
protocols and other low-level details.

19

https://c4model.com/

Barrierelos, Release 0.0.1

Admin
[Person]

Manages the system. Performs all the
administrative work.

Moderator
[Person]

Moderates the platform. Reviews and
edits reports. Removes and adds
websites. Protects against abuse.

Contributor
[Person]

Contributes by adding websites or
initiating automated analyses of

websites.

Viewer
[Person]

Only views information on the
platform. Does not contribute in any

way. Has no account.

Barrierelos
[Software System]

Crowdsourced e-accessibility platform.
Performs automated accessibility checks.

Allows manual accessibility checks. Provides
statistics and information about accessibility.

Accessibility Testing Engine
[Software System]

Accessibility testing engine for websites and
other HTML-based user interfaces.

manages and administersmoderates, reviews and protectscontributesviews

Authentication Service
Provider

[Software System]

Authenticates resource owners and issues
access tokens.

check
accessibility

authenticate
user

grant
authorization

Fig. 3: C4 Context Diagram

6.1.2 Container

How the system fits in to the overall IT environment. It’s a zoom-in to the system boundary. Shows the high-level shape
of the software architecture and how responsibilities are distributed across it. It also shows the major technology choices
and how the containers communicate with one another.

20 Chapter 6. Architecture

Barrierelos, Release 0.0.1

Admin
[Person]

Manages the system. Performs all the
administrative work.

Moderator
[Person]

Moderates the platform. Reviews and
edits reports. Removes and adds
websites. Protects against abuse.

Contributor
[Person]

Contributes by adding websites or
initiating automated analyses of

websites.

Viewer
[Person]

Only views information on the
platform. Does not contribute in any

way. Has no account.

Accessibility Testing Engine
[Software System]

Accessibility testing engine for websites and
other HTML-based user interfaces.

manages and administersmoderates, reviews and protectscontributesviews

Authentication Service
Provider

[Software System]

Authenticates resource owners and issues
access tokens.

check
accessibility

authenticate
user

Database
[Container: PostgreSQL]

Stores all user data and accessibility analyses
of websites.

Message Queue
[Container: RabbitMQ]

Message broker providing work queues
to avoid doing resource-intensive tasks
immediately. Stores encapsulated tasks

as messages in queues.

Backend
[Container: Kotlin, Spring]

Provides the functionality of the platform to
the frontend via a web API.

Frontend
[Container: TypeScript, React, Vite]

Provides a user interface for the people
using the platform.

Barrierelos
[Software System]

Scanner
[Container: TypeScript, Node.js]

Automatically analyses a website for
accessibility.

get
access
tokenenqueue

work

dequeue
result

dequeue
work

enqueue
result

grant
authorization

provide
access
token

use apiaccess database

Fig. 4: C4 Container Diagram

6.2 Pipeline

The documentation for the pipeline can be found in the README.md file in the deployment.

6.2. Pipeline 21

https://gitlab.ost.ch/barrierelos/deployment

Barrierelos, Release 0.0.1

22 Chapter 6. Architecture

CHAPTER

SEVEN

DECISIONS

This section contains the most important decisions made during the course of the project.

7.1 Automated a11y analysis tool

In order to perform automated a11y analysis of websites we rely on a third party tool to do the heavy lifting. Developing
our own tool would be a huge undertaking, that would warrant its own project. So we decided to use an existing tool and
integrate it with our system. For this purpose we chose to evaluate three different tools:

• Lighthouse
• WAVE API
• Axe-core

7.1.1 Lighthouse

Lighthouse is an open-source, automated tool for improving the quality of web pages by Google. We chose to evaluate
it because it’s a popular tool and we were already familiar with it from courses at OST. Unlike the other two tools we
evaluated, Lighthouse is not a dedicated accessibility tool, but rather a general purpose tool for improving the quality of
web pages. But it’s also possible to only run the accessibility audit. It is available as a browser extension, a Node module,
and a CLI tool which are released under the Apache 2.0 license. Since it is available as a standalone tool there is no
additional cost associated with using it.
Lighthouse’s a11y engine is based on the open-source Axe-core. The resulting report can be retrieved as JSON or HTML
and contains a list of accessibility issues, their severity, and a description of how to fix them. It even contains screenshots
of the areas of the page that are affected by the issue.

7.1.2 WAVE API

WAVE® is a suite of evaluation tools that helps authors make their web content more accessible to individuals with
disabilities by WebAIM. We chose to evaluate it because that’s the engine that was used by the WebAIMMillion project.
They release an annual report on the accessibility of the top 1 million websites so they have a lot of experience with
analyzing websites efficiently. The engine is available as a browser extension, an API or a standalone testing engine. The
API uses a pricing model that is based on a per-page fee, that varies depending on the level of detail of the report.

• For 0.04 USD per page you get a report that contains only the number of violations per issue category.
• For 0.08 USD per page you get a report that contains everything from above as well as the number of violations
per guideline.

23

https://developers.google.com/web/tools/lighthouse/
https://wave.webaim.org/api/
https://github.com/dequelabs/axe-core
https://webaim.org/projects/million/

Barrierelos, Release 0.0.1

• For 0.12 USD per page you get a report that contains everything from above as well as a list of all violating elements
in the page per guideline.

So to analyze a whole website containing dozens or even hundreds of pages would run up a huge bill quite quickly. The
standalone testing engine can only be licensed annually and the license covering our use case would cost 12’000 USD a
year. The ruleset used by the engine is explicitly based on WCAG and each rule contains a link to the corresponding
WCAG guideline. The resulting report can be retrieved as JSON or XML.

7.1.3 Axe-core

Axe-core is an open-source accessibility testing engine by Deque Systems. We chose to evaluate it because it is quite
popular and it’s the engine that is used by Lighthouse. So we figured we could cut out the middleman and use it directly.
It is available as a JavaScript library which is released under the Mozilla Public License 2.0. It is intended to be integrated
into a testing framework (e.g. Mocha) or a library to control a headless browser (like Puppeteer). Since it is available as
a standalone tool there is no additional cost associated with using it.
The engine contains multiple different rule sets that are mostly based on WCAG. There are not quite as many WCAG
rules as in the WAVE API, but it also contains rules that are not based onWCAG. Additionally, it’s possible to implement
custom rules. The resulting report can be retrieved as JSON and contains a list of accessibility issues, their severity, and
a description of how to fix them. It’s also possible to retrieve a list of all violating elements in the page per guideline.

7.1.4 Conclusion

All three tools are capable of covering our use case and they are licensed in a way that would allow us to use them. But
there are some differences between them that we have to consider. Since Lighthouse a11y audit simply uses Axe-core
under the hood, there would have had to be a very compelling reason to use it instead of Axe-core. Besides the ability
to generate screenshots of the affected areas of the page, we didn’t find any reason to use Lighthouse. And said feature
could also be implemented using Axe-core in combination with a tool like Puppeteer. Additionally, the violations in the
report are not linked to the corresponding WCAG guidelines. So we decided to not use Lighthouse and were therefore
left with the WAVE API and Axe-core.
The WAVE API is a very powerful tool, that quality-wise returned the best results. But since OST would like to use the
application after the project is finished, we wanted to avoid any recurring costs. And since the WAVE API is licensed
on a per-page basis, it would have been very expensive and we would have had to strictly limit the number of pages that
can be analyzed. Which would have reduced the usefulness of the application quite considerably. And since axe-core can
cover our use case and is free to use, we decided to use it for our project. The option to implement custom rules is another
advantage of axe-core, since it allows us to implement rules that are specific to our needs.

7.2 Barrierelos-Score Calculation

This section will explain how the Barrierelos-Score is calculated.

24 Chapter 7. Decisions

Barrierelos, Release 0.0.1

7.2.1 Webpage Scoring

Each automated analysis is run over multiple webpages of a website. So the first step is to calculate the score for a single
webpage. Since the size of the webpages and the number of contained elements can vary, we need to account for that.
Hence, we also calculate a weight for each webpage.
The results of Axe-core are grouped according to their outcome into the following lists:

• passes: These results indicate what elements passed the rules
• violations: These results indicate what elements failed the rules
• inapplicable: These results indicate which rules did not run because no matching content was found on the page.
For example, with no video, those rules won’t run.

• incomplete: These results were aborted and require further testing. This can happen either because of technical
restrictions to what the rule can test or because a JavaScript error occurred.

For our calculations, we’re only interested in the passes and violations because these are the results of the rules that were
applicable to the webpage in question. Each rule in these two lists also contains a count of how many elements were tested
for that rule.
The weight is calculated by summing up the number of tested elements for each rule in the passes- and violations-list.

webpage_weight =
n∑

i=1

(passes_tested_elementsi) +
m∑
i=1

(violations_tested_elementsi)

Now to calculate the score, Axe-core provides another useful value for each rule: the impact. The impact describes the
severity of a rule violation. So each rule has an impact belonging to one of four categories, which we’ve each mapped to
a numeral value for our calculations:

• minor: 1
• moderate: 2
• serious: 4
• critical: 8

To calculate the score for a webpage, we sum up the impact values of all rules in the passes-list. Then we divide that by
the sum of all impact values in the passes- and violations-list. Finally, we multiply that by 100 to get a score between 0
and 100.

webpage_score =
∑n

i=1(passes_impact_valuei)∑n
i=1(passes_impact_valuei) +

∑m
i=1(violations_impact_valuei)

· 100

So each webpage is assigned a score and a weight.

7.2.2 Website Scoring

Now that we have the score and weight for each webpage, we can calculate the score for the whole website. This is done
by calculating the weighted arithmetic mean of the webpage scores:

website_score =
∑n

i=1(webpage_scorei · webpage_weighti)∑n
i=1 webpage_weighti

7.2. Barrierelos-Score Calculation 25

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean

Barrierelos, Release 0.0.1

7.2.3 Implementation

The processing of the axe-core results as well as the calculation of the Barrierelos-Score is implemented in the backend.
However, the calculations are executed in the database, using an SQL Query. The reason for this is that the axe-core
results contain a list of all tested elements. For large websites, i.e. websites with a lot of associated webpages, this list can
become very large. If we were to process the results in the backend, in the form of Kotlin objects, this process would take
a very long time and would require a lot of memory. Many concurrent scans could slow down the system significantly.
Additionally, when rescans of existing webpages are performed, we don’t have to load the data into the backend first to
do the calculations.

7.3 Website Categories

When adding a new website, the user has to indicate which category the website belongs to. This gives us the ability to
enable statistics on a per category basis. For example, we can compare how the different cantons are doing in terms of
accessibility. It also allows users to search for websites by filtering on the category.
We distinguish between government and private websites and further divide them into specific categories. All categories
are mutually exclusive, so a website can only belong to one category.

7.3.1 Government Websites

We define a government website as a website that is fully owned and controlled by a government entity, i.e. the federal
government, a canton or a commune. This excludes websites controlled by other entities, even if those entities are partially
or fully owned by the government, e.g. public universities. Note that despite these categories being hierarchical, they are
still mutually exclusive. So a communal website can’t also be a cantonal website because we categorize the websites based
on the entity that owns the website. There might however be statistics, that for example show the aggregated data of all
communal websites of a canton.

Category Description
Federal Government (DE: Bund) Websites of the federal government.
Canton (DE: Kanton) Websites of one of the 26 Swiss cantons. This category consists of 26 sub-

categories, one for each canton.
Commune (DE: Gemeinde) Websites of the communes. This category consists of many subcategories,

one for each commune.

7.3.2 Private Websites

We define a private website as a website that is not in direct control of a government entity. The controlling entity might
however be partially or fully owned by the government. Unlike the categories in the Government Websites section, the
categories of private websites don’t have a hierarchical structure and don’t consist of subcategories. Hence they can easily
be extended in the future.
These categories are based on those used in the Accessibility-Studie 2016. They are intended to capture websites that
either receive public funding or have a public mandate. News portals that are subsidized for example, are required to
provide their services in a way that is accessible to all people.
Note that some websites could be assigned more than one category. But to keep things simple, we decided to only allow
one category per website. So if a website could be assigned to multiple categories, we choose the one that we think is the
most appropriate. For example, SRG SSR is both a news portal and a federally affiliated company. But categorizing it as
as a news portal is more specific and more fitting because it’s main purpose is to provide news.

26 Chapter 7. Decisions

https://access-for-all.ch/publikationen/accessibility-studie/accessibility-studie-2016/

Barrierelos, Release 0.0.1

Category Description
Federally Affiliated Company (DE:
Bundesnaher Betrieb)

Websites of companies that are partially or fully owned by the federal gov-
ernment. Examples of such companies are SBB, Swisscom or Swiss Postal
Service.

University Websites of universities. Examples of such websites are ETH Zürich, Uni-
versität Zürich or Ostschweizer Fachhochschule (OST).

News Portal Websites that provide news. Examples of such websites are SRG SSR, NZZ
or Blick.

Online Shop Websites that sell products online. Examples of such websites are Digitec,
Interdiscount or Migros.

Others Websites that don’t fit into any of the other categories. Examples of such
websites are those of private Swiss companies.

7.3. Website Categories 27

Barrierelos, Release 0.0.1

28 Chapter 7. Decisions

CHAPTER

EIGHT

IMPLEMENTATION

8.1 Code Metrics

Besides using automated tools to check the code quality, we also used SonarQube to manually check the code quality and
to get code metrics. We performed this manual check every time we reached a code milestone and refactored the code
accordingly. In this section, we will showcase some quality indicators and code metrics of the code base at the end of the
project. We decided in agreement with the examiner that we would only analyze the code metrics down to the file-level.

8.1.1 Backend Code Metrics

Overview

Table 1: Overview
Metric Value
Number of classes (implementation) 203
Number of classes (tests) 323
LOC (implementation) 3’507
LOC (tests) 8’824
Test coverage 71%
Number of test cases 870

Classes per Package (CPP)

Here we will look at the number of classes of the 10 packages with the highest number. All the packages below are listed
relative to the backend root package ch.barrierelos.backend to make package name easier to read.

29

Barrierelos, Release 0.0.1

Table 2: The 10 packages with the most CPP
Package LOC
entity 17
model 16
service 15
converter 15
controller 14
exception 14
entity.scanner 10
model.scanner 8
message 8
message.scanner 8

According to an article from DZone about Rule 30 from the book Refactoring in Large Software Projects, the number of
CPP should not exceed 30. Admittedly this project would not be considered a large software project as described in the
book, but our biggest packages only slightly exceed the midpoint of this rule. So at this point, it would not make sense to
further split up the packages in our opinion. This decision might have to be revisited when we continue working on this
project in the future.

Lines of Code (LOC)

Here we will look at the LOC of the 10 files with the highest values. All the files below are listed relative to the backend
root source directory src/main/kotlin/ch/barrierelos/backend/ to make file names easier to read.

Table 3: The 10 files with the most LOC
File LOC
service/WebsiteService.kt 276
configuration/SecurityConfiguration.kt 164
repository/Repository.kt 135
security/Security.kt 134
service/WebpageService.kt 134
service/UserService.kt 123
service/StatisticService.kt 94
service/CredentialService.kt 85
converter/scanner/RuleConverter.kt 75
converter/WebsiteConverter.kt 74

All files other than service/WebsiteService.kt are in a range that is completely acceptable. The service/
WebsiteService.kt file contains 17methods, which is a bit toomuch, though 6 of them are short validationmethods.
It contains the logic to perform CRUD operations on websites and a lot of validation logic for this purpose. The biggest
method has 21 LOC, which is reasonable. Now, 276 LOC is bit too large but still below the threshold of all test tools
listed in this Stack Exchange answer. Because of the more detailed metrics above and because the logic in this file belongs
together, we decided to not split up this file.

30 Chapter 8. Implementation

https://dzone.com/articles/rule-30-%E2%80%93-when-method-class-or
https://www.amazon.com/Refactoring-Large-Software-Projects-Restructurings/dp/0470858923
https://softwareengineering.stackexchange.com/a/66598/329421

Barrierelos, Release 0.0.1

Cyclomatic Complexity (CC)

Here we will look at the CC of the 10 files with the highest values. All the files below are listed relative to the backend
root source directory src/main/kotlin/ch/barrierelos/backend/ to make file names easier to read.

Table 4: The 10 files with the highest cyclomatic complexity
File CC
service/WebsiteService.kt 51
security/Security.kt 45
repository/Repository.kt 34
service/WebpageService.kt 29
service/UserService.kt 21
service/CredentialService.kt 20
service/ReportService.kt 12
security/AuthenticationDetails.kt 10
service/TagService.kt 9
util/Common.kt 8

The first four files with the highest values stand out, since they have the highest CC by far. Let’s look at them in more
detail:
The service/WebsiteService.kt file with a CC of 51, consists of 276 LOC and 17 methods, though 6 of them
are just short validation methods. It contains the logic to perform CRUD operations on websites and a lot of validation
logic for this purpose. Even if we divide 51 by 11, ignoring the small validation methods, we get an acceptable average
CC of 4.6 per method and this value is of course a little inflated because of the methods we ignored. Since the logic in
this file belongs together, we wanted to retain its cohesion and decided to not split up this file.
The security/Security.kt file with a CC of 45, consists of 134 LOC and 27 methods. It contains the logic that
the services use to perform fine-grained access control. Now 27 methods sounds like a lot, however all but two of them
contain only a single LOC with a conditional to check for some type of access. This also explains the high CC value and
means that it would not make sense to splitt up this file just for a better CC score, since it easily understandable as it is.
The repository/Repository.kt file with a CC of 34, consists of 135 LOC and 19 methods. It is the base
interface for all our Spring Repositories and includes pagination, sorting and filtering functionality. 12 of these are only
marker method definitions which make Spring generate the required code. The 7 remaining methods implement the
pagination, sorting and filtering functionality based on the code generated by Spring. They contain many conditionals
to differentiate between different parameters and use the appropriate Spring classes in response. This is necessary for
performance reasons so that Spring / JPA is able to generate efficient SQL queries. The 7 methods have an average CC of
6.4, which is acceptable. The code is easily understandable and mostly consists of long if-else-if chains with single LOC
bodies. For this reason, we decided to not split up this file.
The service/WebpageService.kt file with a CC of 29, consists of 134 LOC and 11 methods, though 5 of them
are just short validation methods. It contains the logic to perform CRUD operations on webpages and a lot of validation
logic for this purpose. Even if we divide 29 by 6, ignoring the small validation methods, we get an acceptable average CC
of 4.8 per method and this value is of course a little inflated because of the methods we ignored. Since the logic in this
file belongs together, we wanted to retain its cohesion and decided to not split up this file.

8.1. Code Metrics 31

Barrierelos, Release 0.0.1

8.1.2 Frontend Code Metrics

Overview

Table 5: Overview
Metric Value
LOC 4’723

Note: Since the frontend is using React JSX / TSX the LOC also include the HTML markup.

Lines of Code (LOC)

Here we will look at the LOC of the 10 files with the highest values.

Table 6: The 10 files with the most LOC
File LOC
src/pages/ProfilePage.tsx 449
src/pages/SignupPage.tsx 236
src/pages/PrivacyPolicyPage.tsx 200
src/pages/website/OverviewTab.tsx 186
src/components/ReportComponent.tsx 183
src/pages/reports/ReportsPage.tsx 174
src/App.tsx 166
src/components/GoogleLoginComponent.tsx 140
src/pages/LoginPage.tsx 133
src/components/nav_bar/NavBar.tsx 129

All files other thansrc/pages/ProfilePage.tsx are in a range that is completely acceptable. Thesrc/pages/
ProfilePage.tsx file contains 9 functions and 10 overloads for those functions. It contains the profile page and the
validation logic for the user details and the password change. 215 of the 449 LOC are just HTML markup. Leaving as
at 234 LOC for the actual logic, which is acceptable. Since the validation logic is unique to this component, we decided
to leave it in this file, even though it is quite large.

Cyclomatic Complexity (CC)

Here we will look at the CC of the 10 files with the highest values.

32 Chapter 8. Implementation

Barrierelos, Release 0.0.1

Table 7: The 10 files with the highest cyclomatic complexity
File CC
src/pages/ProfilePage.tsx 67
src/components/ReportComponent.tsx 47
src/pages/reports/ReportsPage.tsx 42
src/components/nav_bar/NavBar.tsx 32
src/services/AuthenticationService.ts 29
src/pages/SignupPage.tsx 28
src/pages/website/OverviewTab.tsx 27
src/components/GoogleLoginComponent.tsx 24
src/util/formatter.tsx 20
src/pages/website/IssuesTab.tsx 19

The first three files with the highest values stand out, since they have the highest CC by far. Let’s look at them in more
detail:
The src/pages/ProfilePage.tsx file with a CC of 67, consists of 449 LOC and 9 functions and 10 overloads
for those functions. It contains the profile page and the validation logic for the user details and the password change. 215
of the 449 LOC are just HTML markup. Leaving as at 234 LOC for the actual logic. The reason the CC is quite high is
because of the validation logic and the 10 overloads for the functions. The logic itself is not very complex and it is only
needed for this component, so we decided to leave it as is for the time being, but if more features were to be added, this
would become a candidate for refactoring.
The src/components/ReportComponent.tsx file with a CC of 47, consists of 183 LOC. It contains the logic
to report a website, webpage or a user. The reason the CC is so high is that it contains the logic for all three types of
reports and conditions. Keeping this logic together allows us to prevent some duplication of code. When reading through
the code it is still easily understandable and the LOC are not too high either. Thus, we decided to leave it as.
The src/pages/reports/ReportsPage.tsx file with a CC of 42, consists of 174 LOC and 10 functions. It
contains the reports page that displays the website, webpage and user reports a user is involved in as well as the logic to
retrieve this data from the backend. When we divide the CC of 42 by the 10 functions, we get an average CC of 4.2 per
function, which is acceptable. Reading through the code, it is easily understandable and therefore, we decided to leave it
as is.

8.1.3 Scanner Code Metrics

Overview

Table 8: Overview
Metric Value
LOC (implementation) 474
LOC (tests) 395
Test coverage 88%
Number of test cases 26

8.1. Code Metrics 33

Barrierelos, Release 0.0.1

Lines of Code (LOC)

Here we will look at the LOC of the 10 files with the highest values.

Table 9: The 10 files with the most LOC
File LOC
src/formatter.ts 188
src/__tests__/formatter.test.ts 142
src/scanner.ts 86
src/model.ts 82
src/__tests__/scanner.test.ts 53
src/__mocks__/axeResults.ts 46
src/logger.ts 44
src/rabbitmq.ts 42
src/__tests__/rabbitmq.test.ts 34
src/__tests__/util.test.ts 33

These are all completely acceptable values so no action was taken.

Cyclomatic Complexity (CC)

Here we will look at the CC of the 10 files with the highest values.

Table 10: The 10 files with the highest cyclomatic complexity
File CC
src/formatter.ts 41
src/__tests__/formatter.test.ts 25
src/scanner.ts 13
src/logger.ts 6
src/__tests__/scanner.test.ts 6
src/__tests__/rabbitmq.test.ts 5
src/__tests__/util.test.ts 5
src/util.ts 5
src/rabbitmq.ts 3
src/__mocks__/axeResults.ts 2

The first three files with the highest values stand out, since they have the highest CC by far. Let’s look at them in more
detail:

• The src/formatter.ts file with a CC of 41, consists of 188 LOC and 10 functions. It contains the logic to
transform the axe-core output into our internal representation. It has an average CC of 4.1 per function and is thus
not very problematic. Also, splitting it up would reduce the cohesion so we decided against it.

• The src/formatter.ts file with a CC of 25, consists of 142 LOC and 19 functions. It contains the tests for
the src/formatter.ts file. It has an average CC of 1.3 per function making it non-problematic.

• The src/scanner.ts file with a CC of 13, consists of 53 LOC and 3 functions. It contains the logic to interact
with axe-core and puppeteer. It has an average CC of 4.3 per function. The reason for this is that it includes
error-recovery and retry logic which needs conditionals. We decided against splitting it up since it would make the
code too fragmented and keeping it as-is makes it easier to follow the logic flow.

34 Chapter 8. Implementation

Barrierelos, Release 0.0.1

8.2 Dependencies

8.2.1 3rd Party Runtime Libraries

This section lists all the 3rd party runtime libraries that are used by the Barrierelos application. This excludes development
libraries.

Scanner

All runtime libraries that are used by the scanner are npm packages. They are recorded in the package.json file at
the root of the scanner repository.

Table 11: Scanner Runtime Libraries
Name License
@axe-core/puppeteer MPL-2.0
@cloudamqp/amqp-client Apache-2.0
axe-core MPL-2.0
dotenv BSD-2-Clause
puppeteer Apache-2.0
winston MIT

Frontend

All runtime libraries that are used by the frontend are npm packages. They are recorded in the package.json file at
the root of the frontend repository.

Table 12: Scanner Runtime Libraries
Name License
@emotion/react MIT
@emotion/styled MIT
@fontsource/roboto Apache-2.0
@mui/icons-material MIT
@mui/lab MIT
@mui/material MIT
@mui/x-data-grid MIT
@react-oauth/google MIT
i18next MIT
i18next-browser-languagedetector MIT
i18next-http-backend MIT
i18next-resources-for-ts MIT
jwt-decode MIT
react MIT
react-dom MIT
react-helmet-async Apache-2.0
react-i18next MIT
react-router-dom MIT
swr MIT

8.2. Dependencies 35

https://www.npmjs.com/package/@axe-core/puppeteer
https://www.npmjs.com/package/@cloudamqp/amqp-client
https://www.npmjs.com/package/axe-core
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/puppeteer
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/@emotion/react
https://www.npmjs.com/package/@emotion/styled
https://www.npmjs.com/package/@fontsource/roboto
https://www.npmjs.com/package/@mui/icons-material
https://www.npmjs.com/package/@mui/lab
https://www.npmjs.com/package/@mui/material
https://www.npmjs.com/package/@mui/x-data-grid
https://www.npmjs.com/package/@react-oauth/google
https://www.npmjs.com/package/i18next
https://www.npmjs.com/package/i18next-browser-languagedetector
https://www.npmjs.com/package/i18next-http-backend
https://www.npmjs.com/package/i18next-resources-for-ts
https://www.npmjs.com/package/jwt-decode
https://www.npmjs.com/package/react
https://www.npmjs.com/package/react-dom
https://www.npmjs.com/package/react-helmet-async
https://www.npmjs.com/package/react-i18next
https://www.npmjs.com/package/react-router-dom
https://www.npmjs.com/package/swr

Barrierelos, Release 0.0.1

Backend

All runtime libraries that are used by the backend are Maven artifacts managed by Gradle. They are recorded in the
build.gradle.kts file at the root of the backend repository.

Table 13: Scanner Runtime Libraries
Name License
commons-validator:commons-validator Apache 2.0
com.fasterxml.jackson.module:jackson-module-kotlin Apache 2.0
me.paulschwarz:spring-dotenv MIT
org.flywaydb:flyway-core Apache 2.0
org.jetbrains.kotlin:kotlin-reflect Apache 2.0
org.jetbrains.kotlinx:kotlinx-datetime Apache 2.0
org.jetbrains.kotlinx:kotlinx-serialization-json Apache 2.0
org.springdoc:springdoc-openapi-starter-webmvc-ui Apache 2.0
org.springframework.amqp:spring-rabbit Apache 2.0
org.springframework.boot:spring-boot-starter-amqp Apache 2.0
org.springframework.boot:spring-boot-starter-data-jpa Apache 2.0
org.springframework.boot:spring-boot-starter-security Apache 2.0
org.springframework.boot:spring-boot-starter-web Apache 2.0
org.springframework.security:spring-security-oauth2-jose Apache 2.0
org.springframework.security:spring-security-oauth2-resource-server Apache 2.0
org.yaml:snakeyaml Apache 2.0

8.2.2 Tools for Continued Operation

This section lists all tools that are needed to continue the operation and maintenance of the Barrierelos application.
More detailed information about the usage of these tools can be found in the READMEs of the corresponding repositories.

Table 14: Tools for Continued Operation
Name Description
GitLab All code, scripts and documentation is stored in the corresponding GitLab repos-

itory.
GitLab CI/CD The GitLab CI/CD pipeline is used to build and test the application. It is also

used to build and publish the Docker images to the Gitlab container registry. The
deployment to the server is also handled by the CI/CD pipeline.

Docker All application components are containerized with Docker.
JetBrains IDEs The JetBrains IDEs were used to develop the application. We used PyCharm for

the documentation, IntelliJ for the backend and WebStorm for the scanner and
frontend. We highly recommend continuing to use these IDEs for development,
since our workflow is very well integrated with them and there are many pre-
defined running configurations.

Make The Make utility is used for various scripts and commands.

36 Chapter 8. Implementation

https://mvnrepository.com/artifact/commons-validator/commons-validator
https://mvnrepository.com/artifact/com.fasterxml.jackson.module/jackson-module-kotlin
https://mvnrepository.com/artifact/me.paulschwarz/spring-dotenv
https://mvnrepository.com/artifact/org.flywaydb/flyway-core
https://mvnrepository.com/artifact/org.jetbrains.kotlin/kotlin-reflect
https://mvnrepository.com/artifact/org.jetbrains.kotlinx/kotlinx-datetime
https://mvnrepository.com/artifact/org.jetbrains.kotlinx/kotlinx-serialization-json
https://mvnrepository.com/artifact/org.springdoc/springdoc-openapi-starter-webmvc-ui
https://mvnrepository.com/artifact/org.springframework.amqp/spring-rabbit
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-amqp
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-jpa
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-security
https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-web
https://mvnrepository.com/artifact/org.springframework.security/spring-security-oauth2-jose
https://mvnrepository.com/artifact/org.springframework.security/spring-security-oauth2-resource-server
https://mvnrepository.com/artifact/org.yaml/snakeyaml

Barrierelos, Release 0.0.1

8.3 Repositories

The Barrierelos project consists of the three primary components which each have their own Git repository. The docu-
mentation and the deployment configuration are also stored in their own repositories.

• scanner: The Typescript / Node.js application that runs the Axe-core a11y scan jobs submitted by the backend via
RabbitMQ and provides a REST API for the frontend.

• backend: The Kotlin / Spring backend API used by the frontend, which also submits Axe-core a11y scan jobs to
the scanner via RabbitMQ.

• frontend: The Typescript / React frontend which uses client-side-rendering (CSR) and retries its data from the
backend API.

• deployment: The deployment configuration and instructions to run specific components locally in Docker.
• documentation: The ReStructuredText / Sphinx documentation for the Barrierelos project which is published to
GitLab Pages.

For more details about the individual components, look at the README.md files in the respective repositories.
The Barrierelos project also includes the following additional repositories:

• tools/scripts: Contains some helper scripts to add example websites via the backend API and to scrape information
we needed while developing the project.

• tools/bruno: Contains the Bruno configuration. Bruno is an open-source API tool similar to Postman.

8.3. Repositories 37

https://gitlab.ost.ch/barrierelos/scanner
https://gitlab.ost.ch/barrierelos/backend
https://gitlab.ost.ch/barrierelos/frontend
https://gitlab.ost.ch/barrierelos/deployment
https://gitlab.ost.ch/barrierelos/documentation
https://gitlab.ost.ch/barrierelos/tools/scripts
https://gitlab.ost.ch/barrierelos/tools/bruno
https://www.usebruno.com/

Barrierelos, Release 0.0.1

38 Chapter 8. Implementation

CHAPTER

NINE

TESTING

9.1 Requirements Testing

All functional and non-functional requirements were tested in detail. The results of these tests is recorded in the following
test protocols. This includes a textual test feedback and whether the test failed or passed.

9.1.1 Test Functional Requirements

Each functional requirement was tested individually and represents a test case. Each test case refers to the corresponding
user story in which the functional requirement was defined.

39

Barrierelos, Release 0.0.1

Basic Features

Func-
tional
Require-
ment

Feedback Re-
sult

ST-1 Sign up for new users is implemented. After an account is created, the services for registered
users become available.

passed

ST-2 Users can use their existing Google account to login to the system, using the OAuth standard. passed
ST-47 Users can create a new account on the platform with username and password. passed
ST-43 Users can delete their account in the profile page. passed
ST-48 Users can access their profile after login and view all their profile data. passed
ST-49 Users can update their contact information in the profile page. passed
ST-50 Users can change their password in the profile page. passed
ST-3 Users can login to their account with username and password, or with their Google account via

OAuth.
passed

ST-4 Users can logout using the logout button. After logging out, restricted features become unavail-
able.

passed

ST-6 The website is responsive and usable on both desktop computers and mobile devices. passed
ST-7 Manual tests have ensured that the entire website is keyboard navigable and used appropriate

labels and ARIA properties whenever necessary. Also, we used the MUI library, that already
covers many accessibility features.

passed

ST-8 The entire website is designed to be self-explanatory using simple language, no prior knowledge
is necessary. There is also an FAQ with the most frequent questions users may have.

passed

ST-9 The website is a single-page application with client-side rendering. In this test, all the network
requests took 232 ms to load and 233 ms to load the DOM content. After the initial loading,
further page loads were much quicker. Loading Websites for example took 46 ms. Which is
sufficiently fast to fulfill this requirement.

passed

ST-41 The website supports both German and English. Users can switch between those two languages.
As agreed with the supervisor, these are the languages to be supported.

par-
tially
passed

40 Chapter 9. Testing

Barrierelos, Release 0.0.1

Automated Testing

Func-
tional
Require-
ment

Feedback Re-
sult

ST-5 After signing up, users can add a website. Once the website is added, an automated scan is started.
As soon as that scan is completed, the results become available for all viewers and contributors to
see.

passed

ST-10 Users can initiate a scan of a website by adding that website. Once the website is added, an
automated scan is started. As soon as that scan is completed, the results become available for all
viewers and contributors to see. These results include accessibility issues with respect to WCAG
guideline.

passed

ST-11 For each added website there is a report with all the results of the scan, including what issues
where found and how the website performed otherwise.

passed

ST-12 Each report includes a Barrierelos-Score to compare the accessibility of different websites. passed
ST-13 When a website is re-scanned, the results become available. The scan infos also provide informa-

tion about when the last scan was performed.
passed

ST-14 Temporal decoupling is used for the resource-intensive scanning via a message broker. This way
the system can handle a large number of requests simultaneously.

passed

ST-66 The status of a scan is displayed for each website. The scan infos also provide information about
the scan status of each webpage.

passed

Statistics and Changes Over Time

Func-
tional
Require-
ment

Feedback Re-
sult

ST-15 The system keeps previous scan results enabling it to track how a website’s score has changed over
time. As agreed with the supervisor, a statistic to visualize this change over time has not been
implemented.

par-
tially
passed

ST-16 The system keeps previous scan results enabling it to track how a category’s average score has
changed over time. As agreed with the supervisor, a statistic to visualize this change over time
has not been implemented.

par-
tially
passed

ST-17 All the websites can be sorted by their Barrierelos-Score, resulting in a ranking of the websites,
so that the users can see which websites are most accessible.

passed

ST-18 Websites can be grouped by region, an average Barrierelos-Score is provided for each group. The
groups are already sorted by their Barrierelos-Score, resulting in a ranking of the regions, so that
the users can see which regions handle accessibility best.

passed

ST-57 The website provides the ability to search for websites by domain name and then open the details
page for that website.

passed

ST-58 The website details for each website provide information about when the website was added. passed
ST-59 The scan infos for each website provide information about when the last scan was performed. passed
ST-60 The Barrierelos-Score and how it is calculated is explained in the FAQ. passed

9.1. Requirements Testing 41

Barrierelos, Release 0.0.1

Moderation

Func-
tional
Require-
ment

Feedback Re-
sult

ST-30 There is a moderator role on the system. Moderators have more rights than contributors that allow
them to moderate the system.

passed

ST-42 Moderators can be marked as deleted, blocking them from the system. passed
ST-33 Users can report websites, give a reason (incorrect, misleading or inappropriate) and provide a

written explanation.
passed

ST-51 Users can report webpages, give a reason (incorrect, misleading or inappropriate) and provide a
written explanation.

passed

ST-52 Users can report other users, give a reason (incorrect, misleading or inappropriate) and provide a
written explanation.

passed

ST-34 Moderators can review websites and remove them if necessary. But this is only possible via the
Web API, no graphical user interface has been implemented for this task.

par-
tially
passed

ST-53 Moderators can review webpages and remove them if necessary. But this is only possible via the
Web API, no graphical user interface has been implemented for this task.

par-
tially
passed

ST-54 Moderators can review users and remove them if necessary. But this is only possible via the Web
API, no graphical user interface has been implemented for this task.

par-
tially
passed

ST-55 Users can provide a written explanation with every report. passed
ST-56 Users can exchange text messages within a report, so that reporter, reported and moderators can

communicate with each other prior to any action by the moderator.
passed

Maintenance

Func-
tional
Require-
ment

Feedback Re-
sult

ST-35 All the code is available on GitLab. The entire deployment pipeline is automated vai GitLab
CI/CD. And all the projects include extensive documentation in their README.md files.

passed

ST-36 All the software used in this project is free software. No licences have been purchased, no non-
free licences are required. More information about this can be found in the Dependencies section.

passed

ST-37 All the software runs in docker containers, as such they can be scaled individually. The server we
were provided by OST for development also only had 1 core and 2 GB of RAM and the system
ran sufficiently fast.

passed

ST-38 All the software runs in docker containers. Images are created for the frontend, backend, scan-
ner, database, RabbitMQ and the documentation so that they can easily be moved to a different
infrastructure.

passed

ST-39 Large suites of automated unit and integration tests were written to improve quality and maintain-
ability of the code. These tests run everytime code gets pushed to GitLab. Only for the frontend,
did we employ manual testing after each sprint. More information about the test coverage can be
found in the Code Metrics section.

par-
tially
passed

42 Chapter 9. Testing

Barrierelos, Release 0.0.1

Implement Additional Features

Func-
tional
Require-
ment

Feedback Re-
sult

ST-40 Issues are presented per webpage. passed
ST-61 For each issue, a link is provided to a detailed explanation what this issue entails. passed
ST-62 A weight is shown for each webpage next to the scoring. passed
ST-63 A privacy policy is provided for the users. passed
ST-64 Contact information is provided as part of the legal notice. passed
ST-65 The place of jurisdiction, legal form, exclusion of liability and copyright information is provided

in the legal notice.
passed

9.1.2 Test Non-functional Requirements

Usability

Non-
Functional
Require-
ment

Feedback Re-
sult

NR-1 The website is responsive and usable on both desktop computers and mobile devices. passed
NR-2 Manual tests have shown that the entire website is keyboard navigable and uses labels and ARIA

properties whenever necessary. Also, we used the MUI library, that already covers many acces-
sibility issues.

passed

NR-3 The entire website is designed to be self-explanatory using simple language, no prior knowledge
is necessary. There is also an FAQ the most frequent questions users may have.

passed

Reliability

Non-
Functional
Require-
ment

Feedback Re-
sult

NR-4 All the software runs in docker containers. The frontend, backend, scanner, database and Rab-
bitMQ automatically restart on failure.

passed

NR-5 Temporal decoupling is used for the resource-intensive scanning via a message broker. This way
the system can handle a large number of requests simultaneously.

passed

9.1. Requirements Testing 43

Barrierelos, Release 0.0.1

Performance

Non-
Functional
Require-
ment

Feedback Re-
sult

NR-6 The entire system is able to run on a such a system. passed
NR-7 The website is a single-page application with client-side rendering. In this test, all the Network

requests took 232 ms to load and 233 ms to load the DOM content. After the initial loading,
further page loads were much quicker. Loading Websites for example took 46 ms. Which is
sufficiently fast to fulfill this requirement.

passed

Supportability

Non-
Functional
Require-
ment

Feedback Re-
sult

NR-8 All the code is available on GitLab. The entire deployment pipeline is automated vai GitLab
CI/CD. And all the projects include extensive documentation in their README.md files.

passed

NR-9 All the software used in this project is free software. No licences have been purchased, no non-
free licences are required.

passed

NR-10 The targeted test coverage of 60% has surpassed by the scanner and the backend. More infor-
mation about the test coverage can be found in the Code Metrics section. In the frontend manual
testing was used at the end of every sprint.

par-
tially
passed

NR-11 The website supports both German and English. Users can switch between those two languages.
As agreed with the supervisor, these are the languages to be supported.

par-
tially
passed

9.2 Usability Testing

To test the usability of the application, we have created a set of tasks that the participant should be able to complete. For
this purpose, we have created a Test Script for us to perform the test in a consistent manner.
Additionally, we have created a Task Description for the participant to guide him through the tasks independently so that
we can observe the participant’s actions and reactions and so we’re not giving away any hints or influencing the participant’s
actions. We purposely did use the terms used on the website in the task description as to not give implicit hints. One
participant was asked to navigate the website on his smartphone, so that we could also test the responsiveness of the
website.
The results of the tests are documented in the Test Report this includes details about the participants, the findings from
the tests, the feedback from the participants and the changes we implemented based on the findings and the feedback.

44 Chapter 9. Testing

Barrierelos, Release 0.0.1

9.2.1 Test Script

Introduction

Tell the participant the following information:
• Purpose of the test: This test aims to evaluate the usability of the “Barrierelos” system, in particular how a user
that has never used the system before can operate the Website and find the information he is looking for.

• Data recording: During the test, usability issues are recorded manually. There is no audio or video recording.
The observed problems are presented in an anonymized and aggregated form in the bachelor thesis report.

Pre-Test Questionnaire

Ask the participant for the following details about him:
• Age
• Experience with web accessibility: Describe your experience with web accessibility Have you already checked
or designed websites for accessibility?

• Technical affinity: How would you describe your technical affinity or more specifically your experience with using
websites?

Role description for the tasks

Explain to the participant the he will perform the task in the role described below, since this is one of the main target
groups of the Barrierelos website and it allowed us to create a more realistic scenario.

• Role: You are the webmaster of the Exlibris website and you live in Rümlang.
• Background: A colleague has informed you that the Exlibris website has achieved a less than favorable rating on
the Barrierelos website. Your task is now find more about this rating and the website in general.

Tasks

At this point, tell the participant that you have prepared a list of tasks for him to perform. Explain that he should read the
tasks out load and to also think out loud while performing them. Mention that he can ask questions at any time but that
would like to ask him to try to solve the tasks on his own first, since we are interested whether a user who has never used
the Barrierelos website before can operate it without any help.
Ask if he has any questions before starting the tasks, then hand him the Task Description.

Post-Test Questionnaire

1. Satisfaction with the website: How satisfied are you with the user-friendliness of the Barrierelos website?
2. Comprehensibility of the information: How easy was it for you to understand the information on the website?
3. Suggestions for improvement: Do you have any suggestions on how the usability of the Barrierelos website could

be improved?
4. Experience with the tasks: How did you find the implementation of the tasks in terms of comprehensibility and

difficulty?

9.2. Usability Testing 45

Barrierelos, Release 0.0.1

Conclusion of the test

• Thank the participant for taking part in the usability test.
• Explain that the data collected will be used to improve the usability of the Barrierelos website.

9.2.2 Task Description

1. The language of the website will be set according to your browser settings. How could you change to another
language?

2. Search for the Exlibris website and take a look at the evaluation.
• What is the Barrierelos-Score of the website?
• In which area are there the most problems?
• Which webpage has the greatest influence on the rating?
• Where can you find a description of specific problems that were found on that webpage.
• How do you find out exactly what the Barrierelos-Score measures?
3. You want to get an overview of state of accessibility in Switzerland. Look for a list of all evaluated websites.
• How many websites have been evaluated?
• Which website has the worst score?
• Which canton has the best score?
4. You’re interested in how the website of the municipality of Rümlang, where you live, is rated. Try and find out.

The website’s URL is https://www.ruemlang.ch.
• Has the website already been evaluated?
• How could you get the website evaluation even if it hasn’t been evaluated previously?
• Why are there no evaluation results for this website (yet)?
5. How can you contact the Barrierelos team?
6. How can you find out how the data that you enter on the website is used?

9.2.3 Test Report

This is the test report for the usability test that was conducted with two participants on the 6th of January 2024.

Participant Details

We refer to all participants as he / him since we feel that the gender of the participants is not relevant for the test and this
way don’t have to disclose that information unnecessarily.
Participant 1 is 26 years old and stated that he has no prior experience with accessibility. He has however heard about
the topic and is interested in learning more about it. Concerning his technical affinity, he stated that he works in a semi-
technical role and is very familiar with computers and the usage of websites.
Participant 2 is 51 years old and stated that he has no prior experience with accessibility. The the topic was only known
to him from news articles about SBB making train stations more accessible. Concerning his technical affinity, he stated
that he works in a non-technical role and is not very familiar with computers and the usage of websites.

46 Chapter 9. Testing

https://www.ruemlang.ch

Barrierelos, Release 0.0.1

Findings

Both participants were able to understand the purpose of the usability test and how to go about it. They were both able to
change the language of the website and to navigate to the evaluation page of the Exlibris website, via the search function
on the homepage without any issues. This participant was asked to perform the test on his smartphone, which was an
iPhone 14, so that we could also test the responsiveness of the website.
Participant 1 was able to answer all the questions in task 2 correctly. He was confused however, why the webpages have
different weights assigned to them. He was able to tell which area there are the most issues in, but asked himself what
WCAG principles are. When looking for how the Barrierefreie Website is evaluated, he looking for the information on
the evaluation page for quite a while, before he figured out that he needed to go to the FAQ page for this. This participant
performed the test on a Laptop with a 15.6” screen.
Participant 2 found the Barrierelos-Score of the Exlibris website, but wasn’t sure of it, because the word “Barrierelos-
Score” was not present where the score was displayed. He was able to answer the other questions except for how the
Barrierelos-Score is calculated. After giving him a hint that he should look at the FAQ page, he was able to find the
information. He stated however, that he found the explanation quite complicated.
On task 3, both participants were able to answer the questions correctly. Participant 2 didn’t notice that the list could be
ordered and clicked through all the pages to get to the website with the lowest score.
On task 4, both participants figured out that website hadn’t been evaluated yet.
Participant 1 was recognized that he needed to add a new website to get its evaluation. We was confused at first when he
was taken directly to the login page, but when he clicked on the button to add a website again and was taken to the login
page again, he realized that he probably needed to log in / sign up first. He opted to Login with Google. The process of
adding the website went smoothly for him. He also notices the chip with the status “Initial Scan Pending” and therefore
knew that the evaluation was still in progress. When he later compared the two websites, he was switching back and forth
between the language settings and noticed that the entries in the navigation bar were not translated.
Participant 2 didn’t make the connection, that he needed to add a new website to get its evaluation. When the search didn’t
turn anything up and he couldn’t locate the website in the list, we gave him a hint that he needed to add the website first.
He also didn’t know why button to add a website took him to the login page. After some attempts, we gave him the hint
that he needed to log in / sign up first. He opted to create an account with email and password instead of logging in with
Google, since he had no Google Account. The sign up process went smoothly for him. He was able to add the website
and also noticed the chip with the status “Initial Scan Pending”.
Both participants were able to find the legal notice (impressum) with the information on how to contact the website owner
in task 5. Participant 2 noted that to his knowledge, the term “impressum” is German and not English.
And on task 6, participant 1 was able to find the privacy policy, while participant 2 only stumbled upon it by accident. He
noted the term “Privacy Policy” meant nothing to him and he was looking for “data… something”.

Feedback

1. Satisfaction with the website: How satisfied are you with the user-friendliness of the Barrierelos website?
• Participant 1 was satisfied with the overall usability and mentioned that he thought it looked quite nice and is
relatively easy to navigate because there are not that many options.

• Participant 2 stated that he was a little overwhelmed by the amount of information on the website and that
there were too many terms he didn’t understand.

2. Comprehensibility of the information: How easy was it for you to understand the information on the website?
• Both participants stated that information was visually presented in a way that was easy to understand, but that
some explanations of terms and concepts were missing.

3. Suggestions for improvement: Do you have any suggestions on how the usability of the Barrierelos website could
be improved?

9.2. Usability Testing 47

Barrierelos, Release 0.0.1

• Participant 1 suggested adding explanations about WCAG principles and webpage weights. He also suggested
adding some sort of hint that you have to log in / sign up before being able to add a website.

• Participant 2 also suggested adding explanations for all uncommon terms and concepts used on the website.
He also mentioned it would be nice to be able to add websites without having to log in / sign up first.

4. Experience with the tasks: How did you find the implementation of the tasks in terms of comprehensibility and
difficulty?

• Participant 1 stated that the tasks were easy to understand and that he didn’t have any problems with them.
• Participant 2 stated that he would have liked the tasks to be more specific, but other than that he deemed them
okay.

Resulting Changes

• We extended the introductory text on the homepage to better explain the purpose of the website.
• We fixed the translation of the navigation bar entries.
• We added a tooltip to the Barrierelos-Score on the evaluation page, to label it.
• We added a link to the relevant FAQ page next to the Barrierelos-Score.
• We added a link to the relevant FAQ page under the Issues by WCAG principles.
• We added a question mark tooltip to the webpage weight column explaining what the weight means and how it is
derived.

• We split up the explanation of the Barrierelos-Score into two separate questions, one explaining what the score
means in simpler terms and one explaining how the score is calculated which goes into more detail.

• We added a hint to the add website button, that you need to log in / sign up first.
• We added a link to add a website to the empty search results text.
• We changed the term “impressum” to “legal notice” in the footer for the English version of the website.

48 Chapter 9. Testing

CHAPTER

TEN

CONCLUSION

The result of this thesis is a software system to automatically determine the accessibility of websites and a web dashboard
to highlight these results. Crowdsourcing is employed to collect and categorize websites. The system was developed
from scratch but uses the axe-core accessibility engine to search for accessibility issues. The work on this thesis included
software engineering, requirements engineering, software architecture, database modeling, wireframing, UX design and
the development of a scoring algorithm. The score quantifies the accessibility of websites (from 0 to 100) and was given
the name Barrierelos-Score. It is based on the number of accessibility issues found on the website and the severity of
these issues.
The frontend is a web application providing an overview of the state of web accessibility in Switzerland and Liechtenstein,
that also allows collaboration and moderation. It is a React single- page application with client-side rendering written in
TypeScript. The backend implements the business logic that commissions website scans, assesses the results and calculates
the score. It is a Spring Boot application written in Kotlin that provides a RESTful web API with OAuth 2.0 offered for
authorization. A PostgreSQL database and JPA is used to manage persistence. The scanner receives jobs from the
backend via a RabbitMQ message broker, to temporally decouple the resource-intensive scanning tasks. It searches for
accessibility issues and returns the findings to the backend via RabbitMQ. The scanner is implemented in TypeScript and
runs on Node.js.
Thanks to the containerization and temporal decoupling of resource intensive tasks, the system is easily scalable. The
highly modularized architecture is designed so that new requirements can be implemented with little effort. Large suites
of automated unit and integration tests were written to improve quality and maintainability of the code. An agile workflow
was fully embraced, with an automated pipeline for building, testing and deployment with GitLab CI/CD, and Flyway for
automated database migration, enabling both continuous integration and continuous deployment. Writing the documen-
tation with RST and Sphinx allowed making it available online as a web-documentation through GitLab Pages.

49

Barrierelos, Release 0.0.1

50 Chapter 10. Conclusion

CHAPTER

ELEVEN

GLOSSARY

a11y
Common abbreviation for accessibility as in, “a”, then 11 characters, and then “y”. Pronounced “a-eleven-y”.

website
A website is a collection of web pages and related content that is identified by a common domain name.

webpage
A webpage is a single page of a website.

category
A category to differentiate different types of websites, e.g. all websites from a particular canton. For more details,
have a look at theWebsite Categories section.

RI-n
The ID of a RIsk, where n denotes the sequence number.

ST-n
The ID of a User Story, where n denotes the sequence number.

FR-n
The ID of a Functional Requirement, where n denotes the sequence number.

NR-n
The ID of a Non-functional Requirement, where n denotes the sequence number.

LOC
The Lines Of Code metric, which is a measure of the size of a computer program, i.e. the number of lines of text
in the program’s source code. Excluding empty lines and comments.

CC
The Cyclomatic Complexity metric, which is a quantitative measure of the number of linearly independent paths
through a program’s source code.

CPP
The Classes per Package metric, which is a measure of the number of classes a package contains. Classes in a
subpackage are not counted.

51

https://developer.mozilla.org/en-US/docs/Web/Accessibility

Barrierelos, Release 0.0.1

52 Chapter 11. Glossary

INDEX

A
a11y, 51

C
category, 51
CC, 51
CPP, 51

F
FR-n, 51

L
LOC, 51

N
NR-n, 51

R
RI-n, 51

S
ST-n, 51

W
webpage, 51
website, 51

53

	Abstract
	Management Summary
	Introduction
	The State of Accessibility in Switzerland
	Goal of the Project
	Task

	Requirements
	User Stories
	User Types
	Epic: Basic Features
	Epic: Automated Testing
	Epic: Statistics and Changes Over Time
	Epic: Moderation
	Epic: Maintenance
	Epic: Implement Additional Features

	Non-functional Requirements
	Usability
	Reliability
	Performance
	Supportability

	Design
	Scoring
	Automated accessibility assessments
	Existing solutions
	Conclusion
	Inspiration
	Methodology
	Barrierelos-Score

	User Interface
	Database
	Logical
	Physical

	Architecture
	C4 Model
	Context
	Container

	Pipeline

	Decisions
	Automated a11y analysis tool
	Lighthouse
	WAVE API
	Axe-core
	Conclusion

	Barrierelos-Score Calculation
	Webpage Scoring
	Website Scoring
	Implementation

	Website Categories
	Government Websites
	Private Websites

	Implementation
	Code Metrics
	Backend Code Metrics
	Overview
	Classes per Package (CPP)
	Lines of Code (LOC)
	Cyclomatic Complexity (CC)

	Frontend Code Metrics
	Overview
	Lines of Code (LOC)
	Cyclomatic Complexity (CC)

	Scanner Code Metrics
	Overview
	Lines of Code (LOC)
	Cyclomatic Complexity (CC)

	Dependencies
	3rd Party Runtime Libraries
	Scanner
	Frontend
	Backend

	Tools for Continued Operation

	Repositories

	Testing
	Requirements Testing
	Test Functional Requirements
	Basic Features
	Automated Testing
	Statistics and Changes Over Time
	Moderation
	Maintenance
	Implement Additional Features

	Test Non-functional Requirements
	Usability
	Reliability
	Performance
	Supportability

	Usability Testing
	Test Script
	Introduction
	Pre-Test Questionnaire
	Role description for the tasks
	Tasks
	Post-Test Questionnaire
	Conclusion of the test

	Task Description
	Test Report
	Participant Details
	Findings
	Feedback
	Resulting Changes

	Conclusion
	Glossary
	Index

