
3D-Visualization of Utility Lines in the Browser
Using Augmented Reality on Tablets

Term Project

Department of Computer Science

OST - University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2023

Authors: Kaj Habegger & Lukas Domeisen

Advisor: Prof. Stefan F. Keller

Partner: Bitforge AG

Abstract

Locating underground utility lines such as water tubes or gas pipes is a complex task due to the
fact that they are mostly hidden. The aim of this project is to create a solution which represents
an innovative, cost-effective alternative to current solutions. Current solutions are dependent
on expensive hardware and native applications.

This thesis introduces a web-based augmented reality (AR) application for visualizing under-
ground utility lines on Android tablets. Thereby, addressing the challenge of locating such lines.
It utilizes WebXR andWebGL to integrate Building InformationModeling (BIM) data, specifically
Industry Foundation Classes (IFC), into a 3Dweb environment. This process involves converting
IFC data for compatibility with WebGL, using Blender with the BlenderBIM add-on. The appli-
cation’s frontend was developed using Vue.js with Typescript, and the backend with Python
Flask. Besides the already mentioned technologies, the application utilizes PostgreSQL, Post-
GIS, Three.js, Turf.js and Vuetify.

A key aspect of this project was the application’s ability to approximate the positioning of utility
lines. Using the device’s geolocation and the lines’ coordinates, the relative distance is calcu-
lated and applied in the virtual space. Additionally, the virtual space has to be aligned with the
real world, which is achieved by rotating the virtual coordinate system based on the device’s
compass. This thesis identifies a challenge in aligning the virtual and real-world coordinate sys-
tems, due to the compass inaccuracy on mobile devices. These compass inaccuracies lead to
a wrongly rotated virtual coordinate system and therefore imprecise placement of the utility
lines.

1

Management Summary

Initial situation & approach

Locating underground utility lines such as water tubes or gas pipes is a complex task due to
the fact that they are usually hidden below the ground. A solution that enables visualizing
these lines in their actual environment could significantly simplify the localization process. Aug-
mented reality (AR) offers a promising approach to display these hidden utility lines in the real-
world context. There are already a few existing solutions, but all of them are dependent on
costly hardware and license fees. A screenshot of an existing solution (vGIS) can be seen in fig-
ure 1. The aim was to create a similar application for the web which is simple in use and relies
on a relatively low-cost external GNSS device.

Figure 1: Task definition
Source: https://www.vgis.io/2019/01/09/kick-off-
2019-gis-season-with-esri-federal-gis/

This project uses the latest web-based AR
technologies to visualize underground utility
lines. The utility lines are defined by Industry
Foundation Classes (IFC) data, which is a stan-
dard for Building Information Modeling (BIM)
data. However, IFC data isn’t directly compati-
ble with 3D web-models. Hence, a conversion
into a format that is usable byWebGL libraries
like Three.js is needed.

The development process began with a com-
prehensive review of existing technologies
and potential approaches to create such an
application. Following this, a prototype was
developed in order to evaluate the feasibility
of these technologies. This lead to the con-
clusion that WebXR, a standardized API, is the
most convenient way to create AR and VRweb
experiences. To convert IFC files to an opti-
mized 3D format for the web (glTF), Blender with the BlenderBIM add-on was utilized. The
actual application was then implemented using the previously discussed technologies. Vue.js
with Typescript was used for the frontend and Python Flask for the backend. The application
and its development process heavily relies on real IFC data. Consequently, numerous people
were approached to gather IFC data from them.

2

https://www.vgis.io/2019/01/09/kick-off-2019-gis-season-with-esri-federal-gis/
https://www.vgis.io/2019/01/09/kick-off-2019-gis-season-with-esri-federal-gis/

Result

The resulting application is able to approximately position the utility line models. Positioning
of the models is calculated based on the device’s geolocation and the coordinates of the utility
lines. In figure 2 it can be observed, how the application was tested by manually defining the
coordinates of themodel. The coordinates were set to a point on theOST campus in Rapperswil.
The visible model was created only for educational use and does not reflect real utility lines.

Figure 2: Demo test screenshot

By using the educational model, many issues
could be recognized and fixed. Afterwards, a
field test took place in Stäfa, in order to test
the application’s behavior in a real-world sce-
nario. The utility line in figure 3 is almost per-
fectly aligned with the street, which indicates a
good accuracy in the application’s mapping ca-
pabilities in real world scenarios.

Also, it can be observed in figure 3, that the po-
sitioning still lacks precision. This can be ex-
plained due to the fact that the virtual coordi-
nate system must be perfectly aligned to the
real-world. Otherwise, even a small inaccuracy
in degree can lead to a notable misplacement, especially in large-scale models. Aligning the
virtual coordinate system is done using on the compass. However, this is not accurate enough
as the compass onmobile devices has a low accuracy and is easily deflected by nearbymagnetic
fields.

Figure 3: Stäfa field test screenshot

3

Outlook

There are many additional features that could be implemented into the application to enhance
user experience and functionality. On top of that, the alignment issue must be addressed to
achieve amore precise solution in terms of positioning. Therefore, this project will be continued
as a bachelor thesis.

The additional features include interaction with the loaded utility lines, such as displaying infor-
mation about specific pipes. Another yet missing feature is filtering and colorizing utility lines
based on their types for a better overview. Currently, the user has to select the utility lines from
a dropdown menu. Thus, it would improve the user experience when utility lines are dynam-
ically loaded based on the user’s position. Another feature which is currently missing is user
authentication for the application as not all data should be visible to the public.

4

Contents

Abstract 1

Management Summary 2

Task Definition 8

I Technical report 10

1 Introduction 11
1.1 Problem definition . 11
1.2 Vision . 11
1.3 Goals . 11
1.4 Basic conditions . 11
1.5 Approach . 12

2 Current State Of The Art 13
2.1 Existing solutions . 13
2.2 Disadvantages . 13
2.3 Benefits of tubAR . 14

3 Evaluation 15
3.1 Test framework . 15
3.2 AR library . 16
3.3 3D data format . 17
3.4 IFC to glTF transformation . 18
3.5 glTF data storage . 18
3.6 Prototype . 20

4 Implementation concept 24
4.1 Knowledge gathering . 24
4.2 Requirements specification . 24
4.3 Evaluation & prototype creation . 24
4.4 Architecture . 24
4.5 Implementation . 25
4.6 Conclusion . 25

5 Results 26
5.1 Goal achievement . 26
5.2 Comparison to vGIS . 27
5.3 Additional features . 28

II Project Documentation 29

6 Vision 30

5

7 Requirements specification 31
7.1 Use cases . 31
7.2 Functional Requirements . 32
7.3 Non-Functional Requirements . 36

8 Analysis 41
8.1 Domain Analysis . 41
8.2 Object catalog . 41
8.3 Database model . 43

9 Design 44
9.1 Architecture . 44
9.2 Sequence Diagram . 50

10 Implementation & Testing 52
10.1 Implementation . 52
10.2 Automated & manual testing . 52
10.3 Challenges . 52

11 Quality Measures 56
11.1 Quality Assessment Tools . 56
11.2 Environments . 57
11.3 CI/CD . 59
11.4 Test strategy . 60
11.5 Communication Tools . 62

12 Results & further development 63
12.1 Results . 63
12.2 Further development . 63

13 Project management 66
13.1 Resources . 66
13.2 Roles . 67
13.3 Processes and Meetings . 68
13.4 Risk Management . 70
13.5 Long-term Plan . 75

14 Project Monitoring 76
14.1 Time tracking . 76
14.2 Code statistics . 76

15 Software Documentation 78
15.1 Technology-stack . 78
15.2 Tool-stack . 78
15.3 Installation . 79

III Appendix 81

16 Appendix A: Deliverables 82
16.1 Documentation . 82
16.2 Brochure abstract . 82
16.3 Signed documents . 82
16.4 Source code repositories . 82
16.5 Application . 82

6

17 Appendix B: Glossary and list of abbreviations 83

18 Appendix C: Test protocols 85

19 Appendix D: Bibliography 87

20 Appendix E: List of figures 89

21 Appendix F: List of tables 91

Task Definition

This chapter outlines the task details for the project titled “3D-Visualization of Utility Lines in
the Browser using Augmented Reality on Tablets”. It is focused on the specific objectives and
requirements of the task, conducted as a term project during the autumn term of 2023 in the
Bachelor’s program in Computer Science.

Description

This project focuses on the application of Augmented Reality (AR) for visualizing utility lines such
as water, electricity etc. on an Android tablet. The integration of AR technology aims to improve
the management of underground utility lines, which are often hard to picture in a real-world
context. The main goal is to gain experience with the latest technologies in the web (WebXR),
data processing and hardware (GNSS). The primary users of this applicationwill be professionals
in architecture and the construction industry.

Tasks

• Develop a web application for Android tablets as a showcase.

• Processing of IFC data, primarily in version 4.3, to an optimized 3D format for web.

• Use GNSS technology for precise geolocation accuracy.

Technologies

Overview of the software and hardware technologies that were used for the project.

Software

• Frontend: TypeScript, Vue.js, WebXR, Three.js

• Backend: Python, Flask, Blender with BlenderBIM add-on (for converting IFC data to glTF)

• Database: PostgreSQL, PostGIS

Hardware

• Galaxy Tab S9+

• RTK Handheld Surveyor Kit (GNSS antenna)

Deliverables

1. Documentation including text-abstract, management summary and appendix

2. Brochure abstract

3. Declaration of originality

8

Participants

• Authors: Kaj Habegger & Lukas Domeisen

• Advisor: Prof. Stefan F. Keller

• External partner: Bitforge AG

9

Part I

Technical report

10

Introduction

This project was conducted as part of the term thesis in the autumn term 2023 by Kaj Habegger
& Lukas Domeisen. The name of the realized web application will be referred to as “tubAR” in
the following documentation, as this name was chosen by the team.

1.1 Problem definition

Locating underground utility lines such as water tubes or gas pipes presents a challenge be-
cause they are not visible above ground. AR allows for their visualization and would greatly
ease the process of locating these lines. With the recent advancements in AR technology, par-
ticularly in web-based applications, there is an opportunity to apply these technologies in new
areas. Current solutions available on the market rely on native applications, expensive hard-
ware and high licensing fees.

1.2 Vision

The vision for tubAR is to provide a practical tool that overlays a digital representation of utility
lines onto the real world. This should be made possible by using relatively low-priced hardware
such as ArduSimple’s RTK Handheld Surveyor Kit. Low-priced additional hardware would make
it more accessible to everyone. Such an application could improve the management and main-
tenance of these lines by providing a more intuitive and direct way of visualizing their location
and layout.

1.3 Goals

• Develop a web application that integrates AR for displaying 3D models of underground
utility lines.

• Create 3D models optimized for web-based visualization based on IFC data.

• Implement accurate geolocation features using GNSS receiver data to position themodels
in a virtual environment corresponding to their real-world locations.

1.4 Basic conditions

The project represents a term thesis, with each team member dedicating roughly 240 hours to
its completion. This time commitment corresponds to 8 ECTS credits.

11

1.5 Approach

The approach to this project is based on SCRUM+, which is a combination of SCRUM and RUP.
The project is broken down to four phases which focus on different aspects.

Phase 1: Inception

The inception phase lays the groundwork for the project. It involves setting up essential tools for
issue tracking, timemanagement, and version control. This phase also embraces risk evaluation
and the establishment of project management protocols, including role assignments, process
definitions and meeting schedules.

Phase 2: Elaboration

During the elaboration phase, the team focuses on defining and documenting both functional
and non-functional requirements. This stage includes developing a prototype to explore AR ca-
pabilities, geolocation data handling and IFC file processing. Additionally, it involves preparing
the CI/CD pipelines for the actual application.

Phase 3: Construction

The construction phase is primarily dedicated to the development of the actual application,
ensuring that all specified requirements are met. The initial focus is on developing a stable
backend for IFC file management, followed by the frontend implementation which contains the
user interface and AR functionalities.

Phase 4: Transition

The final phase concentrates on completing the documentation and possibly addressing small
remaining issues in the web application.

12

Current State Of The Art

This chapter examines the current landscape of AR technology for geospatial data visualization,
focusing on existing solutions and the benefits of this project.

2.1 Existing solutions

This section provides a concise overview of the existing solutions, more specifically vGIS and
V-Labs.

2.1.1 vGIS

vGIS is a platform specialized in visualization of geospatial data through augmented reality.
Even though vGIS requires a native application, they support various devices such as Android
devices, iPhones/iPads and Microsoft HoloLens 2. vGIS is versatile in its data format support,
notably including IFC among many others. Furthermore, they provide capabilities for real-time
interaction and modification of utilities, as well as tools for measuring distances. However, the
annual licensing fee is $1250, which doesn’t cover the costs of the devices themselves or optional
components like LiDAR or photogrammetry technology.

2.1.2 V-Labs

Based in Switzerland, V-Labs is another service in the field of AR for geospatial data visualization.
They also offer extended capabilities such as distance measurement and modification of GIS
data. V-Labs focuses on mixed reality glasses rather than tablet based solutions. Their custom
designed headset integrates essential hardware like a GNSS antenna withmixed reality glasses,
providing a comprehensive solution. Although, their pricing is not publicly disclosed, the cost
of the mixed reality glasses alone starts at CHF 3,800.

2.2 Disadvantages

Two primary drawbacks are evident in the current solutions: pricing and platform compatibility.

2.2.1 Pricing

High costs are a significant barrier in the adoption of AR technologies for geospatial data vi-
sualization. This is likely attributed to the costly hardware employed by solutions like vGIS and
V-Labs and high development costs for native applications.

13

https://www.vgis.io/
https://v-labs.ch/

2.2.2 Platform Compatibility

The reliance on native applications by both vGIS and V-Labs introduces challenges in supporting
a diverse range of platforms, limiting their accessibility and adaptability.

2.3 Benefits of tubAR

tubAR could be a promising alternative, leveraging the capabilities of WebXR to offer a cross-
platform, web-based solution. This approach significantly increases the potential user base by
eliminating the need for purchasing specialized hardware, except for the GNSS receiver device.
Furthermore, the avoidance of expensive hardware like mixed-reality glasses makes tubAR a
more cost-effective solution. This combination of accessibility, affordability and technological
innovation positions tubAR as a significant advancement in the field of AR-based geospatial data
visualization.

14

Evaluation

In this chapter several libraries and tools are evaluated. This is necessary to exclude ineligible
libraries and tools for this project in advance. In addition, a prototype was developed to provide
a more in-depth evaluation of certain technologies.

3.1 Test framework

This section evaluates and selects appropriate testing frameworks for the backend (Flask) and
frontend (Vue.js) of the project.

3.1.1 Acceptance criteria

• Experience by team members with the framework

• Setup effort

• Provides needed functionality

• Ability to produce reports (JUnit report for GitLab and coverage report)

• Suitability for used technology (Flask / Vue.js)

3.1.2 Backend (Flask)

For the backend testing, the two frameworkswhich the teammember have themost experience
with, Unittest and Pytest, were evaluated.

Unittest

Unittest is the Python integrated test library. Therefore, it comes with close to zero setup effort.
As the contemplated testing scenario for this project doesn’t require any special testing func-
tionality, Unittest fulfills this criterion. This framework has no built-in feature for generating
test reports such as JUnit reports. The reporting functionality is limited to console output only.
Unittest works totally fine with a Flask application. Sadly, this testing framework comes with a
lot of boilerplate code and is therefore often avoided by developers.[1]

Pytest

Pytest is a flexible and extensible testing framework with a big plugin ecosystem. All team
members are familiar with Pytest. Similar to Unittest, Pytest comes with almost no setup effort,
but it needs to be manually installed from the Python Package Index (PyPi). Pytest fulfills the
criterion of needed functionality such as Unittest does. Reports such as JUnit reports can be
generated by Pytest using the pytest-cov plugin. The official Flask documentation uses Pytest.
Therefore, Pytest is optimal for a Flask application

15

Conclusion

In conclusion, using Pytest is the best choice for this project, mainly because it’s used in the Flask
documentation which will make it much easier to integrate into this project. Additionally, only
Pytest comes with a built-in reporting function to JUnit which is required by GitLab for analyzing
the test results.

3.1.3 Frontend (Vue.js)

Since the build tool Vite is used to create the Vue.js application, the testing framework Vitest
will be used. Also, all team members worked with Vitest before and it’s recommended by the
developers of Vue.js.[2] Overall, Vitest fulfills all given acceptance criteria.

3.2 AR library

Evaluation of AR libraries, mainly AR.js and WebXR.

3.2.1 Acceptance criteria

• Setup effort

• Adaptability to the project’s needs

• Actively maintained

• State of documentation

3.2.2 AR.js

AR.js is a lightweight library for augmented reality on the web, which includes features like
image tracking, location based AR and marker tracking.[3] Because it’s a library it must be in-
stalled separately via node package manager (npm). Therefore, the setup effort for AR.js is
moderate. AR.js already has location-based augmented reality integrated, which fits perfectly
for this project as the final applicationwill be dependent on the exact location. Though, it’s quite
probable that it won’t be good enough since the external project partner already used it, and
it didn’t perform any good. AR.js is developed by a community and relies on time available by
the community members to maintain the library as well as its documentation. It seems that the
library and its documentation is not regularly updated as the last important change happened
about four months ago as of today.[4]

3.2.3 WebXR

WebXR, which is also known asWebXR device API, is part of the web standard. It’s a specification
defined by the World Wide Web Consortium (W3C), the immersive Web Community Group and
the Immersive Web Working Group. The Community Group works on the proposals in the in-
cubation period and the Working Group defines the final web specifications to be implemented
by the browsers.[5] This standard provides access to input and output capabilities commonly
associated with augmented reality devices. The WebXR device API enables augmented reality
applications on the web by allowing pages to detect if augmented reality capabilities are avail-
able, querying these capabilities andmuchmore.[6] There is only one downside, which is that it
would require manually transforming the GNSS geolocation data into local coordinates inside

16

the AR space, because location-based AR is not supported yet. WebXR is actively maintained by
the Immersive Web Working Group.[7] Furthermore, the standard is well documented.[8]

3.2.4 CesiumJS

It was wrongly assumed that CesiumJS is another AR candidate to build the fundament for this
project’s application. Though, CesiumJS is a library for mapping 3D data (such as globes and
maps) but doesn’t include any features for AR, so it doesn’t fit the project’s needs.[9]

3.2.5 Conclusion

Both AR.js andWebXR were tested in the prototype. WebXR will be used for the final application
as it seems to bemore stable than AR.js. A huge advantage is that WebXR device API is included
in the web standard which makes it a lot easier to use. Also, all teammembers consider WebXR
to be more future-proof.

3.3 3D data format

Given the project’s focus on 3D data on the web, choosing the appropriate data format was a
straightforward decision.

3.3.1 Acceptance criteria

• Optimized for web usage

• Compatibility with AR library

3.3.2 glTF

There is a vast number of 3D data formats. Most of them are not ideal for web application pur-
poses. But there is one unofficial industry standard for 3D on the web, which is glTF.[10][11][12]

Graphics Library Transmission Format in its abbreviation glTF was explicitly developed for 3D
on the web by the Khronos Group and is also maintained by them.

Official glTF description from the Khronos Group

glTF is a royality-free specification for the efficient transmission and loading of 3D scenes
and models by engines and applications. glTF minimizes the size of 3D assets, and the
runtime processing needed to unpack and use them. glTF defines an extensible, publish-
ing format that streamlines authoring workflows and interactive services by enabling the
interoperable use of 3D content across the industry.[13]

glTF offers two possible file extensions .gltf (JSON/ASCII) and .glb (binary). The binary variant
is used for this project as it bundles all required data including materials in one file. Whereas
the JSON format is separated into multiple files on export. Additionally, the transmission of the
data can be further enhanced by using the binary format. The only drawback of using GLB is
that using a 3D software is mandatory to inspect the file.

17

The glTF format is compatible with both AR.js and WebXR. Therefore, it fulfills all given criteria.

3.4 IFC to glTF transformation

The IFC.js library and the BlenderBIM add-on were tested and evaluated in the prototype. IFC.js
does not actually transform IFC data into glTF, but directly transforms the data into so-called
fragments, which are readable by Three.js.[14] As IFC.js was tested before the decision to use
glTF was made, it’s still discussed in this section.

3.4.1 Acceptance criteria

• Transformation quality

• Flexibility in configuration

• Actively maintained

3.4.2 IFC.js

IFC.js, or more specific, IFC.js Components is a library which includes various BIM tools based
on Three.js such as loading IFC files as 3Dmodels or reading and writing IFC files. While testing
this library in the prototype there were various issues with the IFC files available to the team.
Some files could not be loaded at all because they were too big, other files could be loaded,
but the visualization was erroneous, or no lines were visible at all. Only one file seemed to
be displayed correctly, but the browser console still showed an error. IFC.js Components is very
flexible in configuration but rather complex to understandwithoutmuch experience in the field.
The library seems to be well maintained, but still having a lot of bugs.[15]

3.4.3 Blender with BlenderBIM

BlenderBIM is an add-on for Blender which allows converting IFC files to glTF. This add-on per-
formed significantly better than IFC.js and loaded the IFCmodels correctly. While thiswas tested
manually by using Blender and loading and exporting the IFC files, this could be automated us-
ing the Blender Python API. As the IFC files are converted into glTF directly within Blender, it’s
also possible to manipulate the glTF model within Blender. Meaning that parts of the model
which aren’t needed could easily be deleted, for example. Hence, this approach allows much
flexibility in configuration. BlenderBIM is part of the IfcOpenShell project and is actively main-
tained.[16]

3.4.4 Conclusion

Since IFC.js performed poorly during testing and is still in pre-alpha status, BlenderBIM will be
used for the final web application. On top of that, Blender with BlenderBIM is logically the only
correct decision as out of Blender and IFC.js, only BlenderBIM supports glTF output.

3.5 glTF data storage

The backend should deliver the glTF data to the frontend, requiring a suitable data storage for it.
As a precondition, the database management system is already set to PostgreSQL. PostgreSQL

18

is the only well known database management system to all project team members. That’s why
it’s the only optionwithout loosingmuch time on learning a newdatabasemanagement system.

The glTF files usually contains utility line data from a whole or a large part of a municipality.
There are two possible approaches to realize this data storage where each basically handles the
glTF files differently.

3.5.1 Acceptance criteria

• Time needed for implementation

• Complexity

3.5.2 Approach 1: Split glTF files in smaller pieces

The first but more complex approach is to split a glTF model into smaller objects, where each
object contains only one pipe, for example. Each objectmust have an absolute coordinate prop-
erty, as each tube, drain, etc. would be delivered as a single entity to the frontend. This means
the distance from each smaller object to the reference point of the parent object must be cal-
culated. Hence, it would be extremely complex and time-consuming to write a tool which does
this.

Still, the advantages would be that this approach enables spatial queries on the database which
allows the frontend to only request data it really needs. Like tubes within 20 meters, for exam-
ple. Furthermore, the performance of the frontendwould probably be better than in the second
approach because the frontend has fewer data to compute.

Whereas the disadvantages are that it’s really challenging to create such a tool and would con-
sume a lot of time. Additionally, it would be sort of a blind flight for the team as everything
would have to be self-engineered.

3.5.3 Approach 2: Save whole glTF file as one record

As a second approach, the glTF files could be stored as GLB and stored within a PostgreSQL
binary field. To be able to search for a specific glTF file it would be mandatory to have a second
column where the name of the municipality or the area is saved as a string. The respective glTF
file could then be requested from the frontend using a dropdown with all the available areas
and municipalities.

This approach would be easier to implement and less time-consuming compared to the first
approach.

The disadvantages are that the frontend will probably have a worse performance than in the
first approach, as it usually has to compute more data than it needs.

3.5.4 Conclusion

The first approach goes beyond the scope of this project. Furthermore, the first approachwould
also add additional complexity to the frontend and to the API. In conclusion, the second ap-
proach better suits this project, because time is limited. Also, the focus of this project lies on
the web application rather than on the storage of the data.

19

3.6 Prototype

The prototype was built in order to further explore and test certain technologies that are less
familiar to the team. At some parts of the planned application there were multiple candidate
technologies. For example, it had to be evaluated if WebXR or AR.js should be used for the
realization of the AR environment. Furthermore, the prototype was utilized to set up Docker
images, Docker compositions and the GitLab pipeline.

3.6.1 Contents

This section describes the different technologies which were tested in the prototype.

IFC.js

As described in the IFC.js evaluation, it can be used to directly load IFC data as 3D models on
the web.

IFC to glTF conversion

Because IFC.js is in pre-alpha state it’s likely that it won’t perform well. As an alternative, the IFC
files would first be converted to an optimized 3D format in the backend and then served to the
frontend. More specifically, it would be converted to glTF, which is the recommended format
when using Three.js.[17]

AR Visualization

For visualizing the utility lines in augmented reality, AR.js and WebXR are tested in the proto-
type. AR.js comes with integrated location-based augmented reality, which aligns well with our
project, given the final application relies on the exact location. The WebXR device API could
also be used for the project. It’s designed to provide a robust set of AR/VR features and good
integration with device hardware. Being a standard API, it’s directly integrated into the browser,
ensuring better performance and future-proofing. However, using WebXR requires manually
transforming the GNSS geolocation data into local coordinates inside the AR space, because
location-based based AR is not supported.

Database

It’s planned to use PostgreSQL with the PostGIS extension to be able to store coordinates easily.
Furthermore, it must be checked what’s the best way of storing glTF data.

Docker Images

To get the application running multiple Docker images are needed. Two images were planned.
One image for the application and a second image for the PostgreSQL database.

20

GitLab Repository and CI/CD pipeline

The prototype uses a single repository. This repository includes tests for both the frontend and
backend.

The CI/CD pipeline of the prototype repository consists of three stages:

1. Build the frontend

2. Build the application docker image

3. Deploy the application image to the project server

Deployment

The prototype also includes setting up a CI/CD pipeline to automatically deploy the application
onto the project server. This process should be completed within the GitLab pipeline.

3.6.2 Findings

This section serves as a summary of the technical choices and justifications based on prototype
testing.

IFC.js

While testing this library in the prototype there were various issues observed with the available
IFC files. Some files could not be loaded at all because they were too big, other files could be
loaded, but the visualization was erroneous, or no lines were visible at all. Only one file seemed
to be displayed correctly, but the browser console still showed an error.

IFC to glTF conversion

Regarding the conversion of IFC to glTF, there are two solution that were taken into consider-
ation: IfcOpenShell and BlenderBIM. At the time of the prototype creation, it was required to
convert the IFC files to glTF (not GLB), because of this it was decided to use BlenderBIM for the
conversion, as IfcOpenShell only supports converting to GLB and not glTF.
BlenderBIM is an add-on for blender, as mentioned it allows the conversion of IFC to glTF/GLB,
additionally it serves as an IFC viewer in Blender. Using BlenderBIM performed significantly
better than using IFC.js and converted almost all IFC models correctly. While this was tested
manually by using Blender and loading and exporting the IFC files, this could be automated
using the Blender Python API. Given these findings, this approach will be used instead of IFC.js.

AR Visualization

While testing AR.js andWebXR in the prototype, AR.js had some issues such as jittery 3Dmodels
and incorrect position/rotation of the 3D models based on their geolocation. AR.js also has
an incomplete documentation and a limited API, which would make it more difficult for future
development when more complicated features should be implemented.
The performance ofWebXRwasmuchbetter and the AR experience ran smoother. Just like AR.js,
the positioning of the 3D models showed some inaccuracies. However, since the positioning
logic for WebXR is manually implemented by the team, it can be easily modified and improved

21

in the actual application. For WebXR to work, it’s required that the connection uses HTTPS.
Consequently, it must be ensured that the hosting server has valid SSL/TLS certificates installed.

Database

As planned, PostgreSQL with the PostGIS extension is used as the database management sys-
tem. PostGIS is necessary to be able to efficiently store coordinates of 3D utility line models
within one column. The 3D data is stored in a column of type binary as the glTF data is stored
in its binary format GLB. SQLAlchemy is used to enable communication between the Flask web
server and the database. Alembic was also integrated and tested for database migrations. Al-
though, migrations might be unnecessary in the initial phase of application development it will
probably pay off if the application is further developed after this term project.

What is SQLAlchemy and Alembic?

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives appli-
cation developers the full power and flexibility of SQL. It provides a full suite of well
known enterprise-level persistence patterns, designed for efficient and high-performing
database access, adapted into a simple and Pythonic domain language.[18]

Alembic is a database migrations tool written by the author of SQLAlchemy.[19] It
was built to be used with SQLAlchemy.

Docker Images

It turned out that three images are needed to be able to run the prototype:

1. Application: Consists of a Flask/Gunicornweb server serving the Vue application and han-
dling API calls.

2. nginx: Uses the latest stable docker image from docker hub. Acts as a reverse proxy in
front of the web server as recommended by the Flask creators.[20]

3. PostgreSQL: Uses the PostGIS 16-3.4 docker image from docker hub. This image offers
PostgreSQL with the PostGIS extension preinstalled.

What is Gunicorn?

Flask is a WSGI (Web Server Gateway Interface) application. A WSGI server is used to run
the application, converting incoming HTTP requests to the standard WSGI environ, and
converting outgoingWSGI responses toHTTP responses.[20] Gunicorn is a commonly used
WSGI server and was used for the prototype application.

GitLab Repositories and CI/CD pipeline

Initially it was planned to use two repositories for the actual application, where one repository is
used for the backend and the other one for the frontend. While building the prototype it became
clear that no team member has enough experience to set up GitLab pipelines and creating
Docker images with multiple repositories in a reasonable amount of time. Hence, a monolithic
repository is used for the actual application.

22

The actual configured prototype pipeline looks the following:

1. Build the frontend (Vue.js application) and store the built application in artifacts.

2. Build the application Docker image and push it to GitLab’s container registry.

3. Deploy the application by composing three Docker containers (application, Nginx and
PostgreSQL). The complete deployment process can be found below.

For the actual application the pipeline has one additional stage for testing the frontend.

Deployment

To automatically deploy the application to the project server within the pipeline an additional
Gitlab runner is necessary. This runner runs directly in the shell of the project server as a service
by a dedicated user. This user is only allowed to run the GitLab runner process and Docker
commands. Additionally, the user is restricted in file system access.

Upon approaching of the deployment job in the CI/CD pipeline the GitLab runner process clones
the repository and then runs Docker compose on the production docker compose YAML.

23

Implementation concept

This project is organized on a modular basis. Each part plays a key role in fulfilling the project
task. With this implementation concept, a rough overview over the project management is
given.

4.1 Knowledge gathering

Initially, information has to be gathered about what tools are available to build a AR web appli-
cation. Besides the AR tooling, it has to be evaluated how IFC data could be converted into a 3D
model. For this project the team got a tablet and an additional RTK receiver device, which also
has to be set up and tested.

4.2 Requirements specification

To further evaluate which tools and solutions should be used, requirements must be specified.
Requirements are divided into non-functional and functional requirements. Further description
about these requirements can be found in the requirements specification chapter.

These requirements serve as guidelines when building the architecture and even the applica-
tion itself. Additionally, during evaluation and prototyping it’s possible to granularly choose the
tools, which offer the flexibility to realize the specified requirements.

4.3 Evaluation & prototype creation

As described in previous chapters there aremultiple possibilities of tools or libraries in each part
of the application. Therefore, the best tools and libraries available have to be evaluated. The
best evaluation technique is building a prototype where everything can be tested in practice.

4.4 Architecture

Before implementing the application, architectural decisions have to be made. Along with cho-
sen libraries and tools, the initial architecture builds the fundament for the application. An
architecture must be designed which is neither too complex nor inextensible in case of further
developments.

Luckily, a rough sketch of the architecture is derivable from the prototype. Which means the
team must not only rely on theoretical information but also practical knowledge from the pro-
totype.

24

4.5 Implementation

On the basis of the evaluations and the designed architecture, the application can be imple-
mented. The implemented application builds the core part of this project.

4.6 Conclusion

Approaching the end of the project time, an overall conclusion will be taken. This part compares
expectations with effective experience and discusses further development ideas.

25

Results

This chapter outlines the project’s accomplishments and compares them with those of a com-
petitor. It also provides a brief overview of potential additional functionalities, which will be
approached during the bachelor thesis.

5.1 Goal achievement

The project’s success was measured by comparing the actual application against its functional
requirements. Below is an analysis of the implemented user stories, followed by the remaining
unimplemented features. Details on these user stories can be found in functional requirements.

5.1.1 US-1: Start screen

The starting screen has been fully implemented and contains essential information about the
application and its usage.

Figure 5.1: tubAR start screen

5.1.2 US-4: Accurate depth display

Utility lines are correctly placed below ground, accurately representing their depth. Future im-
provements include adding transparency to the utility lines for a better depth effect.

26

5.1.3 US-5: Accurate positioning of utility lines

The positioning of utility lines is somewhat accurate. Challenges with geo-alignment and com-
pass accuracy, as discussed in the challenges chapter, are the primary causes. This topic will be
further evaluated in the continuation of this project.

5.1.4 US-6: Rendering lines as 3D objects

Utilizing Three.js and WebXR, the utility lines are rendered as 3D objects in the AR environment
and behave accordingly to movement of the device.

5.1.5 US-11: Display status of GNSS accuracy

A GNSS accuracy status can be seen on the starting screen as well as in the AR session. Though,
while inside the AR session, the location accuracy badge may not be clearly visible at times due
to its transparency. This will also be improved in the project continuation.

5.1.6 US-12: Location selection

While in the AR session, a dropdown menu with all locations is placed in the top left corner.
After selecting the desired location, it gets loaded from the backend and displayed in the AR
environment.

5.1.7 Unimplemented features

While all essential (“Must have”) user stories were implemented, US-5 requires further develop-
ment. Due to time constraints and lack of experience with augmented reality by the team, the
following user stories were not completed in this term thesis:

• Should have

– US-2: Onboard guidance

– US-10: Calibration guidance

• Could have

– US-3: User login

– US-7: Interactive controls

– US-8: Filter utility line types

– US-9: Info interaction

5.2 Comparison to vGIS

This section compares the developed application, tubAR, with its primary competitor, vGIS. The
comparison highlights key aspects and differences of each solution.

27

tubAR vGIS

App type Web application Native application,
supported platforms: Android, iOS,
HoloLens 2. [21]

Technologies WebXR, Vue.js, Three.js, Flask, Post-
greSQL, PostGIS, BlenderBIM

Undisclosed

Functionality Augmented reality visualization of
IFC data.

AR visualization of IFC (and many
other formats), real-time interac-
tion with models, data modifica-
tion and creation, distance measure-
ment. [21]

Precision Can’t be precisely determined due to
alignment issues, can range from a
few centimeters to a few meters de-
pending on various factors. The an-
tenna used in this project is up to one
centimeter accurate.[22]

Horizontal: 1cm,
Vertical: 2cm,
Directional: +/-0.1°. [21]

Price Antenna: €399 Annual license fee: $1250

Table 5.1: tubAR and vGIS comparison

In summary, the comparison between tubAR and vGIS highlights tubAR’s affordability and web-
based functionality, but also it’s shortcomings when it gets to more advanced features and pre-
cision.

5.3 Additional features

Besides the unimplemented features, the team has come up with the following additional fea-
tures to be implemented in the bachelor thesis:

• Only display utility lines that are inside a certain radius of the device

• Dynamically load models based on the user’s geolocation

• Improved conversion of IFC to glTF

• Optionally: Allow users to upload and visualize IFC data directly on the web-app

Details about these potential features are elaborated in chapter 12.

28

Part II

Project Documentation

29

Vision

The vision can be found here.

30

Requirements specification

This chapter outlines the requirements towards the term thesis, use cases, as well as functional
and non-functional requirements of the software solution, serving as a guide for development.

7.1 Use cases

Use cases describe how a system interacts with its environment in order to achieve a specific
goal. For the system of this project, there’s a user which interacts with tubAR web application.

7.1.1 Use case diagram

The following diagram shows the main use cases of the system.

Figure 7.1: Use case diagram

View utility lines

Visualization of the utility lines in an AR world. The utility lines should be displayed under the
ground and correctly positioned based on their coordinates.

View details of utility line

Displaying more information about one specific utility line, such as their type.

31

Change utility line area/municipality

Changing the utility lines to different areas or municipalities based on the user’s selection.

7.2 Functional Requirements

The functional requirements define the specific features and functionality that the software so-
lution must provide.

7.2.1 Actors

The final product is meant to be used by construction workers, landscape gardeners, telecom-
munication professionals, etc. As the intended usage of the app by all these users is the same,
there will be only one actor referenced in the following user stories: the user. The goal of the
user is to be able to visualize utility lines directly in their environment through their tablet.

7.2.2 User Stories

Actions that a user wants to perform in the web application are defined by user stories. They
are marked with US-X (X corresponding to the number of the story).

All user stories will be given a priority of development, as well as rough estimation of devel-
opment effort needed. The Fibonacci scale is a common measure in the scrum process and
reflects the relative effort of a task in the project. Additionally, the MoSCoW method will be
used to prioritize the user stories.

Entry point

ID US-1

Subject Start screen

Priority Must have

Time estimation 3

Story points

• When theweb application is loaded the userwants to have an overview
about the web-application. Which included what it does and how it
works.

• The user wants to know if their device is compatible with the web ap-
plication.

• The user wants to know if their location is accurate enough.

Table 7.1: Start screen (US-1)

32

ID US-2

Subject Onboard guidance

Priority Should have

Time estimation 13

Story points

• To get started with the augmented reality experience, the user wants
to know what they can do with the web application.

• The user wants to know how each feature can be used.

Table 7.2: Onboard guidance (US-2)

ID US-3

Subject User login

Priority Could have

Time estimation 8

Story points

• The user has to authenticate themself to gain access to the web appli-
cation and its data.

Table 7.3: User login (US-3)

Viewer

ID US-4

Subject Accurate depth display

Priority Must have

Time estimation 5

Story points

• The user wants an appropriate depth display of the utility lines. Such
that the displayed utility lines look like they are below the ground.

• The user wants the utility lines to be correctly displayed respectively to
their height.

Table 7.4: Accurate depth display (US-4)

33

ID US-5

Subject Accurate positioning of utility lines

Priority Must have

Time estimation 5

Story points

• The user wants the utility lines to be accurately positioned within their
AR experience.

• The user wants to be able to comprehend the position of the utility
lines.

Table 7.5: Accurate positioning of utility lines (US-5)

ID US-6

Subject Rendering utility lines as 3D objects

Priority Must have

Time estimation 13

Story points

• Inside the viewer, the user wants to see the utility lines as 3D objects.

Table 7.6: Rendering utility lines as 3D objects (US-6)

Overlay

ID US-7

Subject Interactive controls

Priority Could have

Time estimation 5

Story points

• The user wants to be able to zoom.

Table 7.7: Interactive controls (US-7)

34

ID US-8

Subject Filter utility line types

Priority Could have

Time estimation 5

Story points

• Theuserwants to be able to filter by line types directly inside the viewer.

• The user only wants to see the utility lines they filtered for.

Table 7.8: Filter utility line types (US-8)

ID US-9

Subject Info interaction

Priority Could have

Time estimation 8

Story points

• The user wants to be able to access additional information of the utility
lines by tapping on them.

Table 7.9: Info interaction (US-9)

ID US-10

Subject Calibration guidance

Priority Should have

Time estimation 5

Story points

• If the web application needs recalibration or initial calibration to dis-
play utility lines correctly the user wants to be informed how they
should proceed.

• The user wants to know how their GNSS accuracy can be increased.

Table 7.10: Calibration guidance (US-10)

35

ID US-11

Subject Display status of GNSS accuracy

Priority Should have

Time estimation 3

Story points

• The user wants to stay informed about their GNSS accuracy.

Table 7.11: Display status of GNSS accuracy (US-11)

ID US-12

Subject Location selection

Priority Must have

Time estimation 3

Story points

• The user wants to be able to select the location for which the utility
lines should be displayed.

• The user wants to see a visual indication as soon as the utility lines are
successfully loaded and displayed.

Table 7.12: Location selection (US-12)

7.3 Non-Functional Requirements

The non-functional requirements outline the characteristics and constraints that the software
solution must satisfy, such as performance, security and scalability.

7.3.1 Categories

The eight categories defined in ISO/IEC 25010 are used to categorize each non-functional re-
quirement.

Figure 7.2: ISO/IEC 25010 quality characteristics
Source: https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

36

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

7.3.2 Fulfillment-Check Procedure

Each NFR has a “Fulfillment Check” row which describes who has the responsibility to check if
the NFR is fulfilled and how this is checked, if it is not already mentioned in “Measures”.

7.3.3 Performance and Efficiency

ID NFR-1

Subject 3D data loading

Requirement Time behavior

Priority Medium

Measures

• Loading and displaying the 3D data should not exceed 3 seconds.

Fulfillment check The architect is responsible to check if this NFR is fulfilled.

Table 7.13: 3D data loading (NFR-1)

ID NFR-2

Subject Frames per second

Requirement Resource utilization

Priority High

Measures

• During runtime of the viewer at least 30 fps should be achieved at av-
erage.

• Starting with the alpha version of the application this will be checked
for every major version (beta, final).

• This can be displayed with Three.js’ developer tools.

Fulfillment check The architect is responsible to check if this NFR is fulfilled.

Table 7.14: Frames per second (NFR-2)

37

ID NFR-3

Subject RAM usage

Requirement Resource Utilization

Priority Low

Measures

• During runtime of the application not more than 2 GB of RAM is used.

• Starting with the alpha version of the application this will be checked
for every major version (beta, final).

• This can be checked in the Android settings.

Fulfillment check The architect is responsible to check if this NFR is fulfilled.

Table 7.15: RAM usage (NFR-3)

7.3.4 Compatibility

ID NFR-4

Subject Supported Browser

Requirement Compatibility

Priority High

Measures

• Only Chrome will be supported as browser starting from its major ver-
sion 117.

Fulfillment check The architect is responsible to check if this NFR is fulfilled.

Table 7.16: Supported Browser (NFR-4)

7.3.5 Usability

ID NFR-5

Subject Vuetify usage

Requirement User Interface Aesthetics

Priority Low

Measures

• To guarantee an easy-to-use and consistent UI, Vuetify will be used.

Fulfillment check To reach Done state for Tasks/Issues each responsible developer has to
check if this NFR is fulfilled.

Table 7.17: Vuetify usage (NFR-5)

38

7.3.6 Security

ID NFR-6

Subject Don’t allow unauthorized access to data

Requirement Confidentiality / Authenticity

Priority High (If user authentication is realized, this NFR must be fulfilled.)

Measures

• An OAuth service will be used to achieve this.

Fulfillment check The architect is responsible to check if this NFR is fulfilled.

Table 7.18: Don’t allow unauthorized access to data (NFR-6)

7.3.7 Maintainability

ID NFR-7

Subject Usage of Vue.js

Requirement Reusability / Modifiability

Priority High

Measures

• To achieve reusability of components, Vue.js is used.

Fulfillment check To reach Done state for tasks / issues each responsible developer has to
check if this NFR is fulfilled.

Table 7.19: Usage of Vue.js (NFR-7)

ID NFR-8

Subject Unit tests

Requirement Testability

Priority High

Measures

• Test coverage must be 80% at a minimum for TypeScript and Python
files.

• This will be checked via CI/CD pipeline in GitLab.

• For each implemented feature unit tests must be provided by the re-
sponsible developer.

Fulfillment check To reach Done state for tasks / issues each responsible developer has to
check if this NFR is fulfilled.

Table 7.20: Unit Tests (NFR-8)

39

ID NFR-9

Subject Logging backend

Requirement Analyzability

Priority Low

Measures

• All errors and warnings of the backend are logged.

• Flask includes a logger.

Fulfillment check To reach Done state for tasks / issues each responsible developer has to
check if this NFR is fulfilled.

Table 7.21: Logging backend (NFR-9)

7.3.8 Portability

ID NFR-10

Subject Dockerization of web application

Requirement Installability

Priority High

Measures

• The applicationwill be deployed using aDocker image to ensure device
independence.

Fulfillment check To reach Done state for tasks / issues each responsible developer has to
check if this NFR is fulfilled.

Table 7.22: Dockerization of web application (NFR-10)

40

Analysis

The “Analysis” chapter provides an overview of the domain model, including detailed descrip-
tions of the elements. Furthermore, it contains a summary of the database model.

8.1 Domain Analysis

8.2 Object catalog

The object catalog provides a detailed description of the various elements in the domain model
and their relationships.

8.2.1 Device

The device, typically a tablet, runs the web application and renders the augmented reality vi-
sualization of the UtilityLines. It interfaces with the GNSSReceiver and other built-in sensors for
accurate real-time positioning.

8.2.2 Location

Location is defined byWGS 84 coordinates. It is used to accurately position the UtilityLineswithin
the application’s virtual space, ensuring that the AR visualization aligns correctly with the real-
world coordinate system.

41

8.2.3 DataFile

The DataFile is in IFC format and contains detailed information about the UtilityLines, including
their types, dimensions and materials. It serves as the blueprint for generating the 3D repre-
sentations of the UtilityLines.

8.2.4 UtilityLine

Each UtilityLine is a 3D representation of a physical utility line, defined by the DataFile. The loca-
tion attribute indicates the reference position for the UtilityLine.

8.2.5 GNSSReceiver

The GNSSReceiver, connected to the Device, provides high-precision location data. This real-
time positioning is crucial for aligning the 3D representations of UtilityLines with their physical
counterparts in the real world. The GNSSReceiver ensures that the AR visualization is accurate
and responsive to the movements of the Device.

8.2.6 User

The User interacts with the application through the Device. They can view and analyze the Util-
ityLines in AR.

8.2.7 Visualization

Visualization refers to the graphical representation of UtilityLines within the augmented reality
environment of the application. It involves the process of correctly displaying the UtilityLines in
an optimized 3D format.

42

8.3 Database model

As described in evaluation of the glTF data storage approach 2 the database consists only of
one table. This is adequate for the scope of this project and its resulting application.

Figure 8.1: Database model

43

Design

This chapter details the architecture of the application providing an overview of the various
parts such as frontend and backend. It also includes sequence diagrams to visually represent
the key processes of the project.

9.1 Architecture

This section outlines the architectural framework and structural elements of the project. It in-
cludes a detailed explanation of the system’s architecture using C4 diagrams and an analysis of
the source code structure for both the frontend and backend components.

9.1.1 C4 diagrams

C4modeling leads to a model which is easy to understand, but still provides all important infor-
mation about an architecture. Not all existing C4 diagrams are used to describe this application.
The system context diagram and the container diagram are sufficient to describe tubAR. More
about C4 modeling can be read on c4model.com.

Figure 9.1: System context diagram

44

https://c4model.com/

Figure 9.2: Container diagram

45

9.1.2 Source code structure

Figure 9.3: Source code structure

• backend:

– Flask app: Holds the executable Flask application.

– alembic: Contains the code for database migrations. If any table must be altered or
a new table must be added this can be done here.

– API: Consists of the API models and the routes. The Flask app loads this content on
startup.

– tests: Includes Pytest tests for the backend.

• frontend:

– Vue dist: Contains the built frontend application, which consists only of TypeScript,
HTML and CSS. This is statically served from the Flask app.

– Vue src: The Vue.js source code lies in this folder.

• ifc-converter:

– IFC converter script: Holds the executable script.

46

9.1.3 Frontend

The frontend employs theModel-View-ViewModel (MVVM) pattern. Vue.js primarily implements
the ViewModel, connecting JavaScript objects (Model) with the DOM (View) through two-way
bindings. The Model and View are mainly defined by the developer.

Components hierarchy

Figure 9.4 illustrates the hierarchy of the Vue.js components within the application.

Figure 9.4: Components hierarchy diagram

• App.vue: Root component which defines the entry point for Vue.js.

• HomeView.vue: Contains the description of the application, a tutorial for the RTK setup
(RTKTutorial.vue) and the ViewerView component.

• ViewerView.vue: Contains the overlay and a button for starting the WebXR session. Uti-
lizes the UtilityLineViewer class (described in module diagram) for visualizing utility lines.

• ViewerOverlay.vue: Acts as the WebXR session overlay. Includes a location dropdown
and the current geolocation accuracy status.

47

Module diagram

Besides the Vue components, additional TypeScript files have been implemented for handling
parts of the application logic. Most relevant files and their relationship are illustrated in figure
9.5.

Figure 9.5: Frontend module diagram

• utility-line-viewer.ts: Manages AR visualization and positioning of utility lines in WebXR.

• axes-helper.ts: Generates colored arrows for each axis, mainly used for debugging pur-
poses.

• coords-helper.ts: Calculates the relative distance between two WGS 84 coordinates.

• glb-loader.ts: Converts GLB strings to blobs, in order to load the model with Three.js.

• location-interface.ts: Defines the Location type with name, coordinate and gltf_data.

• position-interface.ts: Defines the Position type with latitude, longitude and altitude.

48

9.1.4 Backend

The backend is designed using the Model-View-Controller (MVC) pattern, though Flask itself
doesn’t specify a pattern. In the context of this REST API, the view is represented by JSON data.
Besides MVC, the factory pattern is utilized for creating the application instance. This allows to
have multiple instances with different configurations, which is very useful for testing.

Module diagram

The files of the Flask app and their relationship are illustrated in figure 9.6.

Figure 9.6: Backend module diagram

• __init__.py: Implements the factory method for creating an instance of the application.

• routes.py: Maps routes to functions which return JSON data. The fallback route returns
the frontend.

• models.py: Defines the mapping of the database tables.

• config.py: Retrieves and sets the database URI from an environment variable.

• db.py: Creates an instance of the ORM-Framework SQLAlchemy.

49

9.2 Sequence Diagram

Sequence diagrams illustrate the interactions between different parts of a system in a specific
order. The twomain processes for the project are: Usage of the web application and conversion
of IFC to GLB.

9.2.1 Web application

The complete process for loading and visualizing utility lines in the AR session is illustrated in
the following diagram.

Figure 9.7: Web application sequence diagram

50

9.2.2 IFC converter script

The process of how the IFC converter script works, can be seen in the diagram below.

Figure 9.8: IFC converter script sequence diagram

The ifc_convert.py script can’t access the Blender Python API directly because Blender has its
own python environment which contains additional packages and different versions of pack-
ages. Hence, the conversion of IFC to GLB (which requires the Blender Python API) is imple-
mented in a separate file that gets called by Blender with the corresponding environment.

51

Implementation & Testing

10.1 Implementation

This section usually contains some source code with according explanation. But it is not al-
lowed to have source code in the documentation for the e-prints portal. Therefore, this section
remains empty.

10.2 Automated & manual testing

Information about testing can be found in test strategy.

10.3 Challenges

This chapter summarizes noteworthy challenges the team encountered during this project.

10.3.1 Geo-alignment problem

The most difficult challenge is the so called geo-alignment problem. On initialization of a We-
bXR session, a virtual environment with its own coordinate systemgets created. This coordinate
system looks as follows; the negative Z-axis is pointing in the user’s view direction and the pos-
itive X-axis to the right of the user. The user moves within this virtual environment. As tubAR
aims to visualize objects of the real world at their exact position, it is necessary that both the
real and virtual coordinate system are aligned. Otherwise, the objects are displayed at a wrong
position within the virtual environment and don’t match their real world position.

52

Figure 10.1: Geo-alignment problem visualized

Figure 10.1 should give a clearer understanding of the problem. The real world coordinate
system is the outer box, while the green inner box represents the virtual environment. There
are two kinds of virtual environment axes shown, whereas the red ones show the axes set on
initialization by WebXR. Furthermore, it is shown where the tube is placed in the real world and
where it is placed according to the initial axes in the virtual environment. At this point it gets
clear what the issue is. The negative Z-axis and the positive X-axis must point to the north and
east accordingly, so that the utility line is in its correct position.

When looking at this graphic, solving this problem seems simple, because rotating the virtual
environment by the current compass heading (which is 315 degree) in a counter-clockwise di-
rection, would correspond to the corrected axes, which are green. In fact, it isn’t simple as it is
not possible to edit the so-called WebXR reference space because they are read-only. A conve-
nient way would be if it was possible to tell WebXR that it should try to align its reference space
to the real world coordinate system on initialization. This exact feature was requested multiple
times by other developers but sadly not implemented in the WebXR API standard yet.[23][24]

Because of the described situation, another solution is needed. Toget into further details, some-

53

thing else has to be explained first. The virtual environment actually consists of two parts. One
is the WebXR reference space and the second one is the Three.js scene which lives inside the
reference space. This Three.js scene is responsible for rendering all objects, whereas WebXR
is basically only handling the movement of the user. Therefore, the approach was taken to try
rotating the Three.js scene only, so that it is aligned with the real world coordinate system.

Throughout dummy testing, this lastly taken approach worked fine. During final testing in Stäfa
it turned out, that this approach doesn’t work properly when moving around and updating the
utility lines’ position becauseWebXR still handles the moving offsets incorrectly. This is the case
because the reference space does not align to the real world coordinate system and forwards
the movement incorrectly to Three.js. Unfortunately this was first noticed during final testing,
which meant the team wasn’t able to tackle this issue within scope of this term project. As a
temporary workaround, the user can point the device to north when starting theWebXR session
which would then initialize the reference space correctly aligned to the real world.

10.3.2 Compass problem

In the context of the geo-alignment problem outlined earlier, obtaining the device’s current
compass heading is required for aligning the virtual environment with the real world. However,
the team encountered significant challenges due to the inaccuracy of the compass in mobile
devices, such as the tablet used in this project. These compasses are highly sensitive to nearby
magnetic fields and occasionally point to a completely wrong directionwhen not first calibrated.

Although there are methods to calibrate the compass for enhanced accuracy, these measures
proved to be not accurate enough for the purpose of this application.[25] As a result, it’s planned
to evaluate alternative techniques in the continuation of this project. Currently, the team has
identified two potential solutions, which could be used independently or in combination:

• Implementing a slider for manual adjustments to achieve a precise compass heading.

• Using the GNSS antenna to track movement in a straight line over a certain distance, then
calculating the compass direction based on the starting and ending coordinates.

Even a small inaccuracy like 1 degree can lead to significant displacement of the model, espe-
cially if the model is large-scale. Therefore, splitting large-scale models into smaller models
would mitigate the problem as well.

54

10.3.3 Gap between camera and GNSS receiver

Because of the previously mentioned challenges such as the geo-alignment problem and the
compass issue, the application is currently not able to place the utility lines accurately to the
centimeter. Still, there is a problemwhich will probably be observable as soon as the utility lines
can be placed accurately. The complication is the fact that there’s a gap between the camera
and the GNSS receiver on the back of the tablet. This gap leads to a slight static offset between
the position received from the GNSS receiver and the camera. In the figure below the problem
can be observed. Because the camera is the actual point zero of the augmented reality session
and not the GNSS receiver, the offset will also be observable in the session. Hence, there will
always be a little position discrepancy between the virtual utility lines displayed and the actual
utility lines with the current solution. When the team reaches the centimeter accuracy within
the bachelor thesis, this problem has to be tackled as well.

Figure 10.2: Gap between camera and GNSS receiver visualized

55

fig:gap

Quality Measures

This chapter defines the quality measures implemented to ensure a high standard of the appli-
cation. It encompasses guidelines, tools, and workflows designed to maintain and enhance the
quality of the application.

11.1 Quality Assessment Tools

The section begins by introducing the tools used for quality assessment, such as a LATEX Format-
ter (latexindent.pl) for maintaining consistency in documentation and linters (ESLint and Pylint)
for ensuring code quality in TypeScript and Python. Furthermore, various guidelines regarding
the documentation, code and Git are described.

11.1.1 LATEX Formatter

Latexindent.pl is a Perl script designed to enhance the appearance and organization of LATEX
code by adding horizontal leading spaces for improved readability.
Source on GitHub
This formatting tool makes it easier to maintain and understand the LATEX code structure. To
keep the documentation consistent, all team members use latexindent.pl as a tool to format
the source code.

11.1.2 Linter

For automatically checking that our code conforms with the respective coding guidelines of the
language we will use linters for our TypeScript and Python code.

ESLint

ESLint will be used for our TypeScript code. For integration into VS Code, the extension “ESLint”
has to be installed.

Pylint

Pylint will be used for our Python code. For integration into VS Code, the extensions “Python”
and “Pylint” must be installed.

11.1.3 Guidelines

This section outlines the documentation and coding guidelines adopted by the team for main-
taining consistent quality in both writing and programming practices.

56

https://github.com/cmhughes/latexindent.pl

Documentation guidelines

The guidelines for the documentation are already given by this LATEX template. No additional
guidelines have been defined.

Code guidelines

Our team complies with the guidelines given by ESLint and Pylint. All warningsmust be resolved
before pushing code to production.

Definition of Done

Since we work with Jira and all tasks are defined via issues, we define the following Definition of
Done for issues.

• Acceptance criteria

– Complies with Functional- and Non-Functional Requirements

– All defined sub-tasks of the issue have been solved

– The feature is ready to demonstrate

– Peer code review by the other team member

• Quality

– Unit Test Coverage is over 80% over all JavaScript and Python files

– Complies with defined coding standards

– No Bugs or Code Smells

– Build Pipeline passed

• Documentation

– All necessary items have been documented

11.1.4 Git-Branching & Merges

To avoid mistakes, it is forbidden to push anything directly to the main branch. When working
on an issue, a new branch starting with the respective Jira issue ID must be created. After a
developer has implemented his feature and the definition of done is fulfilled (except the peer
code review criterion), the developer can create a merge request on GitLab and assign a re-
viewer. The reviewer has to review the changes and check if it complies with the definition of
done. If everything is OK, the merge request will be approved by the reviewer.

11.1.5 Sprint Retrospective

To regularly reevaluate the quality of the project, each sprint ends with a retrospective meeting.

11.2 Environments

Two Docker compose files were created, one for development and a second one for production.
These files define two almost identical compositions of Docker containers. This setup ensures

57

that the application can bedeveloped in a production-like environment. Furthermore, the usage
of Docker allows device independent development as always the same setup is given.

11.2.1 Development

Figure 11.1: Development environment described as C4 deployment diagram

11.2.2 Production

Figure 11.2: Production environment described as C4 deployment diagram

58

11.3 CI/CD

This section should give a better understanding of how CI/CD was integrated into this project.

11.3.1 Workflow

The team uses the workflow described below to achieve continuous integration and deploy-
ment. It is also important to note that the pipeline acts different on development branches
and the main branch. On the main branch, the pipeline additionally includes building Docker
images and deploying the application to the project server. This means, only commits (stable
versions) directly on the main branch will be deployed.

Figure 11.3: Workflow

11.3.2 Gitlab Pipeline

The pipeline only includes testing the frontend, because the backend is tested locally before
merging due to database dependency. How the production environment is constructed after
deployment can be found in production environment.

Figure 11.4: Gitlab pipeline

59

11.4 Test strategy

Testing is an important part of every software project, requiring a well-defined test strategy.
This section describes the types of testing and how they are executed in the project.

11.4.1 Types of Testing

Overview over the different types of testing:

• Unit Testing

• UI Testing

• Performance Testing

• Acceptance Testing

Each category has a type of execution, when the tests are executed and a definition of who is
responsible to create the kind of tests.

Unit Testing

Testing of individual units of code, such as methods, to ensure they are working as expected.

• Execution: Automated

• Time of Execution: With every build

• Responsibility: Each developer for his units of code

F.I.R.S.T principles: Each unit test has to conform with these principles:

• Fast: Unit tests should be fast, meaning they should execute quickly so that they can be
run frequently during development.

• Independent: Unit tests should be independent of one another, meaning that the out-
come of one test should not affect the outcome of another. This helps ensure that each
test is testing a specific and isolated unit of code.

• Repeatable: Unit tests should be repeatable, meaning that they should produce the same
result every time they are run. This helps to detect faulty changes in the code.

• Self-validating: Unit tests should be self-validating, meaning that they should be able to
automatically determine if they have passed or failed without human intervention. This
helps ensure that tests can be run as part of a continuous integration process.

• Timely: Unit tests should be written in a timely manner, meaning that they should be
written before or directly after the code they are testing is implemented. This helps ensure
that the code is written with testability in mind and can help catch bugs earlier in the
development process.

AAA pattern: Each unit test will follow a three-step process:

• Arrange: During the Arrange phase, the test prepares the necessary prerequisites for the
test. This involves creating any required objects, initializing variables, and configuring any
dependencies that the code under test relies on.

• Act: During the Act phase, the test executes the action being tested. This could involve
calling a specific method or interacting with an object.

60

• Assert: In this phase, the test verifies that the action performed in the Act phase has
produced the expected result. This involves comparing the actual result of the action with
the expected result and failing the test if the two do not match.

UI Testing

Makes sure that the user interface is working properly and all components function as expected.

• Execution: Manual

• Time of Execution: At the end of each sprint during the Construction phase

• Responsibility: Kaj Habegger & Lukas Domeisen

While it’s usually possible to automate UI testing, we have decided to domanual testing for this
project since it would be very hard to check if 3D objects are correctly displayed. This was also
mentioned multiple times at the event “Frontend Best Practices 23 – 3D-Web”, which the team
attended.

Performance Testing

Make sure the application behaves correctly under different circumstances.

• Execution: Manual

• Time of Execution: At the end of each sprint during the Construction phase

• Responsibility: Kaj Habegger & Lukas Domeisen

Google Chrome includes various development tools for testing the performance of websites.

Acceptance Testing

These tests ensure that the defined functional and non-functional requirements are met.

• Execution: Manual & Automated

• Time of Execution: Before the final release

• Responsibility: Kaj Habegger & Lukas Domeisen

To ensure that all defined requirements are met, we will use a combination of manual and au-
tomated testing. While non-automatable requirements will be verified manually, automatable
requirements will be integrated into unit tests and checked automatically.

11.4.2 Test Coverage

The GitLab CI/CD pipeline will run tests and create a coverage report for the TypeScript code-
base. In order for the pipeline to succeed, no test can fail. For the backend tests, this must be
done locally, as it requires a testing database and the effort of integrating this into the CI/CD
pipeline is not worth it at the moment.

11.4.3 Tooling

For testing the python code, Pytest will be used. Vitest will be used for the TypeScript code.

61

https://www.meetup.com/rapperswil-frontend-best-practices-meetup-group/events/292300468/
https://docs.pytest.org/en/7.4.x/
https://vitest.dev/

11.5 Communication Tools

Microsoft Teams serves as the primary communication platform for online meetings and mes-
saging. Additionally, files which are not required to be part of a Git repository are shared via
Teams.

62

Results & further development

In addition to chapter 5, this chapter focuses on a deeper overview of the results as well as the
further development of the application.

12.1 Results

This project lead to a working application, which, as of now, is not ready for production use. The
reason for this is that the models of utility lines are not accurately positioned. Nonetheless, the
application is reachable via https://srbsci-161.ost.ch/ and can be tested either in Stäfa with real
data or on the OST campus in Rapperswil with an educational model.

Throughout this project, a lot of IFC data was gathered. Not every IFC file is meant to be pub-
licly available. A user authentication would be necessary to protect data which should not be
available to everyone through the live application. Sadly, there was not enough time left within
the scope of this project to implement user authentication. Therefore, not all data at disposal to
the team is available through the live application. The application was still tested with all data
at disposal.

The frontend comes with a welcome screen which displays a guide of how to set up everything
needed for the application to run properly. Furthermore, it features the utility lines viewerwhich
builds the core of tubAR. The whole AR session happens within the utility line viewer as soon as
everything is set up and the start button is pressed.

The PostgreSQL databasemainly stores the 3Dmodels of the utility lines. By using a script which
is only accessible to the team members, additional models can be added to the database. This
script converts IFC files to glTF andwrites themodels’ reference coordinate, name and glTF data
to the database.

Besides serving the frontend, the backend offers two API endpoints for requesting all available
model names and requesting a specific model’s data.

Although, the application lacks precision in displaying the models of utility lines, it now builds a
solid fundament for further development.

12.2 Further development

In this section, the features already discussed in the results of the technical report are explained
in more detail.

User authentication

Asmentioned before in results, there is no user authentication available as of now. It is planned
to set up user authentication within the bachelor thesis.

Authenticated userswill only be allowed to access data they created and datawhich is accessible

63

https://srbsci-161.ost.ch/

by everyone such as educational models of utility lines. The team hasn’t decided yet which kind
of user authentication should be adopted. This decision will take place in the early phases of
the bachelor thesis. Still, the realization shouldn’t take up too much time and should remain
simple in its implementation. Reason for this is that the focus should stay on the features of the
utility lines viewer rather than other things.

Improve model positioning

The application in its current state isn’t able to position models of utility lines precisely. There-
fore, it is mandatory for the team to highly improve this aspect in the future.

The team has several ideas of how to improve the positioning situation. Firstly, the application
heavily relies on the compass to correctly align the virtual coordinate system, but the compass is
rather bad in accuracy. This could be improved in two possibleways as discussed in the compass
problem. For additional potential solutions, the team will conduct research throughout the
course of the bachelor thesis.

Interaction with utility lines

Interacting with utility lines within the viewer was already an idea in the beginning of the term
thesis. Furthermore, it was defined as a requirement in US-9. This feature would state an inter-
esting possibility to make the application richer in its functionality.

Besides the feature’s potential it probably consumes a lot of time in implementation. In order to
display information about utility lines, the information has to be extracted somewhere first. The
information could be extracted directly from the IFC file, or it could be entered manually when
the data is added to the database. Either way, the task of implementing this feature is time
intensive and needs careful planning. Hence, the implementation is postponed to the scope of
the bachelor thesis.

Filtering utility lines

Another rather interesting feature which was alreadymeant to be implemented within the term
thesis is filtering utility lines by their type. This feature was defined as a requirement in US-8.
This couldn’t be implemented as well due to time reasons.

Similarly to the interactionwith utility lines, this feature requires information extraction from the
IFC files or manual appending of the information about what type a utility line has. Therefore,
somemore analysis of the IFC files is needed. Implementing this could be done simultaneously
with the interaction feature.

Dynamic loading of utility lines based on user location

In the application’s current state, the location or in other words the model which should be
loaded must be manually selected. This can get really confusing when a lot of models are avail-
able in the selection dropdown. Instead, the models should be loaded dynamically based on
where the user is currently located.

The contemporary idea to implement this is that the backend gets changed so that it only de-
livers the closest or some of the closest models available to the user’s position. This can be
achieved by using the capabilities of PostGIS as the reference point of each model already gets
stored in the database.

64

Render models only up to a certain radius

Some models currently available to the team are huge in their size. This leads to a strange
or inappropriate visualization of the model in the far distance within the viewer. Furthermore,
that visualization issue happens due to the fact that WebXR and Three.js in combination are
obviously not intended to render objects which are far away.

A solution would be to cut the models into multiple smaller models. Whereas, all of them need
to be tagged with an absolute coordinate and then stored separately in the database. The API
could then, again with the power of PostGIS, only request so-called sub-models of the complete
models which are needed. This would probably also improve the performance of the AR session
as a little side effect.

Improve IFC to glTF conversion

The script which is momentarily used for converting IFC to glTF lacks sophistication in terms of
extracting information available in IFC files and generating the glTF data. Sometimes an IFC file
also consists of not only utility lines data but also ground data for example. In that case, the
script should be able to automatically detect and remove the ground as it is not needed for this
application.

It is planned to drastically improve the script in the scope of the bachelor thesis. These planned
improvements include that the script can extract information such as type, location and data to
be omitted from IFC files. Additionally, the script should be able to add colorization to the glTF
data based on the utility lines’ type.

Also, the team considers adding a graphical interface for uploading IFC data in the frontend.
This interface should communicate with the script through the backend and be able to persist
the corresponding data in the database.

65

Project management

This chapter provides an overview of the methodologies, tools and practices used to effectively
manage and coordinate the project. It outlines the team structure, roles and responsibilities,
as well as the risk management.

13.1 Resources

This section details the resources available for the project, including team, time, cost and the
software tools utilized for specific tasks.

13.1.1 Team

• Kaj Habegger

• Lukas Domeisen

The team consists of two students at the OST - Eastern Switzerland University of Applied Sci-
ences. Lukas has extended knowledge in web development, while Kaj has basic experience in
web development. Both of us have already gathered a great theoretical and practical under-
standing of project management.

13.1.2 Time

The project started with the kickoffmeeting on September 19th 2023 and will end on December
22nd 2023, 5:00PM with the final project submission. Each of us is required to spend approxi-
mately 17 hours per week working on this project, which makes 34 hours a week and 442 hours
for the whole project. Besides the time consumed by the implementation and documentation,
meetings also count as work time.

13.1.3 Cost

As this is a university project, we do not have a budget which can be expressed in terms of
money. However, our costs can be expressed as the earlier mentioned 442 hours, that we can
use for this project.

13.1.4 Tooling

• Code editor: Visual Studio Code

• Version control: Git (GitLab hosted by the OST)

• Issue tracking: Jira

• Documentation: LATEX

• File sharing: Teams

66

• Communication: Teams and Jira

13.2 Roles

Roles related to Scrum but also general roles were defined for the project.

• Project Manager: Kaj Habegger

• Scrum Master: Lukas Domeisen

• Developer Team: Both

• Product Owner: Both

• Backend-Engineers: Both

• Frontend-Engineers: Both

• DevOps-Engineer: Kaj Habegger

• Architects: Lukas Domeisen

13.2.1 Responsibilities

• Project Manager:

– Checks that the project plan is being followed and that the status of work is on track.

– Maintains an environment where the team can innovate.

– Maintains time tracking for the project.

– Generating project related reports for documentation and review.

– Is responsible that all documents are handed in before according deadlines.

• Scrum Master:

– Guides the development team through executing the Scrum framework correctly.

– Plans and leads all Scrum related events /meetings (Sprint Planning,WeeklyMeetings
and Sprint Retrospective).

– Maintains the product backlog and reevaluate time estimations.

– Keeps the risks up-to-date.

• Developer Team:

– Implements software / infrastructure according to project plan and product backlog.

• DevOps-Engineer:

– Introduces processes, tools, and methodologies to balance needs throughout the
software development life cycle, from coding and deployment, to maintenance and
updates.

– Defines and maintains the CI/CD processes.

– Maintains the infrastructure for Issue- / Time Tracking.

• Architects:

– Defines overall structure of the system.

– Establishes and enforces design principles and standards

– Documents the architecture.

– Decides over technologies.

67

13.3 Processes and Meetings

To achieve an agile project management, Scrum+ (Scrum + RUP) is used to define processes in
this project.

13.3.1 Product & Sprint backlogs

Both the product and sprint backlogs are maintained in Jira. Items from the product backlog
are refined into issues during sprint planning.

13.3.2 Sprint

Sprint information:

• Sprint duration: 2 weeks

• Sprint start: Tuesday

• Total amount of sprints: 6 (Sprint 0 excluded)

Planning

Each sprint is started by planning.

Planning procedure:

1. Discuss what should be achieved during this sprint.

2. Evaluate which product backlog items should be put into the spring backlog.

3. Discuss which developer takes care of which sprint backlog items.

Further information about planning:

• Frequency: Once every two weeks

• Location: Teams

• Day/Time: Tuesday 2:00 PM

• Duration: 1h

Weekly (Meetings)

The team does weekly meetings, so called weeklys, to catch up with each other’s progress.

Further information about weeklys:

• Frequency: Once per week

• Location: Teams

• Day/Time: Tuesday 2:00 PM

• Duration: 30m

68

Review

Each sprint-ending is initiated by a review.

Review procedure:

1. Each developer presents what they worked on during the sprint.

2. Progress evaluation of the project.

3. Evaluate and apply environment changes (risk analysis, product backlog adjustments, etc.)

Further information about review:

• Frequency: Once every two weeks

• Location: Teams

• Day/Time: Tuesday 1:00 PM

• Duration: 30m

Retrospective

Each sprint ends by a retrospective.

Retrospective procedure: The team defined a quality measure checklist, which needs to be in-
spected during the sprint retrospective. If any item is not to the team’s satisfaction, the team
will define measures for improving the quality in the next sprint.

The quality measures checklist includes following items:

• Documentation quality:

– Is the documentation correctly formatted?

– Are there any known grammatical errors?

– Is anything missing or in need of improvement?

• Time tracking evaluation:

– Has everyone tracked their time correctly?

– How good are the estimates for tasks?

– Did both team members spend about the same amount of time on the work?

• Risk reevaluation:

– Are there any risks that can be further mitigated?

– Did the team notice any new risks?

• Code quality:

– Is the code quality to the team’s satisfaction?

– Are there bugs, vulnerabilities of code smells that need to be taken care of?

• Git / Branches cleanup:

– Are there any leftover branches that need to be deleted?

– Did the team encounter any problems with Git?

Further information about retrospective:

• Frequency: Once every two weeks

69

• Location: Teams

• Day/Time: Tuesday 1:30 PM

• Duration: 30m

13.3.3 Advisor Meetings

• Frequency: Once per week

• Location: Room 8.261

• Day/Time: Wednesday 3:15 PM

• Duration: 1h

• Additional Attendants: Prof. Stefan F. Keller

13.4 Risk Management

Risk management is a critical process that involves identifying potential risks and developing
strategies to mitigate or eliminate them.

13.4.1 Risk categorization method

Risks in the projectwere categorized and assigned values using the riskmatrix below to facilitate
their rating. The respective values can be found right next to the title of the risk.

Figure 13.1: Risk Matrix

70

13.4.2 Lack of experience with AR | 9 (Likelihood: 3, Consequence: 3)

Description

All team members have almost no experience with development of AR solutions which makes
it quite a big risk.

Mitigation

All team members have completed an AR tutorial to gain some basic knowledge. Additionally,
a prototype will be created to try out some of the things which will be needed in the actual web
app.

13.4.3 Working as a Team | 2 (Likelihood: 1, Consequence: 2)

Description

Since the team members have already worked on multiple projects together, this risk is very
minimal.

Mitigation

Respect the opinions of each other. Try the best to meet deadlines of the tasks, and if not
possible let the other team member know as soon as possible.

13.4.4 Specificationof requirements/features is inaccurate | 4 (Likelihood: 2, Con-
sequence: 2)

Description

At the start of the project it’s hard to perfectly define all requirements as it’s unclear how the
application will look like in the end.

Mitigation

Usage of agile methodology SCRUM+ for the project. This assures that the requirements will be
regularly adjusted in the sprint planning and sprint review meetings.

13.4.5 Jira limitations | 2 (Likelihood: 1, Consequence: 2)

Description

Jira is used for the project tracking and the team has already noticed some limitations, such as
creating reports for spent time.

71

Mitigation

There are many Jira plugins to resolve such limitations.

13.4.6 Time-Management (not enough time) | 12 (Likelihood: 3, Consequence: 4)

Description

It’s very likely that the team won’t always be able to work the recommended amount of time on
the project due to other courses taking up a lot of time.

Mitigation

All team members should try to estimate their available time for each sprint. If the recom-
mended amount of time (17h) per week cannot be met, it should be discussed with the team.

13.4.7 Testing taking up too much time | 12 (Likelihood: 4, Consequence: 3)

Description

Testing can be a very time-consuming task and is often overlooked when estimating effort of
features. Especially for this project, in order to manually test the web app with real data we
have to physically go the respective coordinates and check their correctness.

Mitigation

Make sure to always include enough time for testing when estimating an issue. To make sure
that not too much time is needed for testing, at first only unit tests will be implemented for the
respective issue. At a later stage in the project, if the time allows it, more tests will be added
such as: integration tests, functional tests, system tests.

13.4.8 Absences / Illness | 10 (Likelihood: 5, Consequence: 2)

Description

Absences and illness could affect the project, due to someonemissing in ameeting or not being
able to meet the deadline for a task.

Mitigation

Absences and illness should be communicated with the team as early as possible.

72

13.4.9 IFC data processing | 6 (Likelihood: 2, Consequence: 3)

Description

The given data is in IFC format, which cannot be directly displayed as 3D objects using a 3D web
library and has to be converted into a supported 3D format.

Mitigation

Evaluate various possibilities and libraries for converting IFC data.

13.4.10 Inconsistent IFC data structure | 12 (Likelihood: 3, Consequence: 4)

Description

Inconsistencies in IFC files, such as varying fields for utility lines and missing reference coordi-
nates.

Mitigation

More IFC data will be gathered to get an idea of the various inconsistencies and adapt our
application accordingly.

13.4.11 Changes History

Risk Value
change

Reason for change Date

Jira limitations 6→ 2 Necessary extensions have
been installed in Jira.

10.10.2023

IFC data processing 12→ 9 Meeting with the external
project partner helped to
gainmore knowledge about
IFC. IFC libraries have been
evaluated.

10.10.2023

Time-Management 16→ 20 Limited time for the project
due to other courses.

24.10.2023

New: Inconsistent IFC
data structure

20 Description 24.10.2023

IFC data processing 9→ 6 Script for processing and
converting IFC data has
been implemented.

07.11.2023

Inconsistent IFC data
structure

20→ 12 Inconsistencies have been
discussed with Prof. Ste-
fan F. Kellerandmore IFC 4.3
data has been gathered.

07.11.2023

73

Lack of experience
with AR

12→ 9 Various AR related issues
have been implemented.

21.11.2023

Specification of re-
quirements/features
is inaccurate

6→ 4 Unclear features/require-
ments have been discussed.

21.11.2023

Testing taking up too
much time

9→ 12 Issues taking more time
than expected.

21.11.2023

Time-management
(not enough time)

20→ 12 Reduced scope in this
project, because it will
be continued as bachelor
thesis.

05.12.2023

Table 13.1: Risk changes history

74

SW
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate M1
Actual
Estimate
Actual
Estimate M2
Actual
Estimate
Actual
Estimate M3
Actual
Estimate M4
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate M5
Actual

SW

Sprint 4

9 107 8

10 11 128 13
Timeplan Sprint Sprint 0 Sprint 1 Sprint 2 Sprint 3

1 2 3 4 5 6 7 9

Sprint 5 Sprint 6Sprint 4

Co
ns
tr
uc
tio
n

In
ce
pt
io
n

Prepare basic documentation structure

Prepare build-pipelines

Define roles, processes, resources and
meetings

Risk-Management

Evaluate 3D-libraries, test-libraries and IFC-
transformation-libraries

Domain-model

Create prototype

Backend (Transform IFC data to glTF)

Backend (Implement endpoint for data
requests incl. database)

Frontend (Visualize data)

Create long term plan

El
ab
or
at
io
n

Requirement-Analysis

Setup build-pipelines

Sprint 5 Sprint 6

Tr
an
sit
io
n

Define and execute manual tests

Project reflection

Sprint Sprint 0 Sprint 1 Sprint 2

11 12 13 141 3 4 5 6

Sprint 3

Fix bugs and re-test

Finalize documentation

Setup tablet / GNSS receiver

Le
ge
nd

● Estimate
● Actual
● Milestones

Setup issue tracking / time tracking (Jira)

13.5 Long-term Plan

Project Monitoring

This chapter includes a diagram that illustrates the hours spent by the team as well as code
statistics.

14.1 Time tracking

14.2 Code statistics

This section offers an analysis of the project’s codebase, serving as an indicator of code quality.
The analysis utilizes the designated linters for each programming language, namely Pylint for
Python and ESLint for TypeScript.

76

14.2.1 Backend

Asmentioned in qualitymeasures, Pylint is used to ensure the quality of the code, which can also
be used to analyze the code and create a report. Pylint evaluates the code and calculates a score
out of 10, which reflects the quantity and severity of the issues found. The following report was
generated for our Python code. It is important to note that we have selectively ignored certain
linter warnings, which were identified as false positives:

Figure 14.1: Code statistics report by Pylint

14.2.2 Frontend

For the frontend we employ Eslint, configured specifically to adhere to the recommended rules
for TypeScript and Vue.js 3. Currently our frontend codebase does not contain any linting issues.

77

Software Documentation

This chapter summarizes what technologies and tools where used to build the application. Fur-
thermore, it describes some preconditions which have to be met to be able to run the applica-
tion.

15.1 Technology-stack

Technology Version

Python 3.11

Flask 3.0.0

SQLAlchemy 2.0.23

Alembic 1.12.1

Gunicorn 21.2.0

TypeScript 5.2.0

Vue.js 3.3.4

Vuetify 3.3.21

WebXR API N/A

Three.js 0.158.0

Turf.js 6.5.0

PostgreSQL 16.1

nginx 3.18

Certbot 2.8.0

15.2 Tool-stack

Tool Usage Version

Blender + BlenderBIM add-
on

IFC visualization and visualizing / editing glTF 4.0.2

Open IFC Viewer IFC visualization 24.9.0

BIMvision IFC visualization 2.75.5

gltf editor glTF visualization and editing online

glTF Viewer glTF visualization online

78

https://www.blender.org/
https://blenderbim.org/
https://blenderbim.org/
https://openifcviewer.com/
https://bimvision.eu/
https://www.gltfeditor.com/
https://gltf-viewer.donmccurdy.com/

15.3 Installation

15.3.1 RTK receiver

Utility lines need to be displayed precisely in the augmented reality environment. Therefore,
it is necessary that the device which is running the augmented reality application can access
precise localization. As common mobile devices can only deliver a location accuracy of two to
five meters, it is mandatory to use an external RTK capable receiver. RTK is the short form of
Real-Time Kinematic positioning.

RTK is a technique used to improve the accuracy of a standalone GNSS receiver. In its simplest
form, an RTK solutionmakes use of a single reference station in proximity to the user receiver. As
the reference station is in a surveyed position, it can estimate the errors for each received GNSS
signal. After error corrections have been communicated to the user receiver, Integer Ambiguity
Resolution (IAR) takes place. This principle works best if the distance between the user and the
reference station is reasonably short. When the distance between the user and the reference
station grows too large, the atmospheric conditions at the two positions can differ. This may
cause from unsuccessful IAR. A typical guideline for max distance can be 25 km [26].

With both the satellites and the base station combined it is possible to get a location with a pre-
ciseness of up to less than a centimeter. The RTK receiver used for this project is RTK Handheld
Surveyor Kit from ArduSimple.

RTK Handheld Surveyor Kit setup process / test process

There are other ways to set up the kit, but our recommendation is as follows, because we tested
it that way. First check if the receiver works fine by following the steps provided below:

1. Set Android language to English.

2. Download and install SW Maps from the Google Play Store.

3. Open SW Maps, click on the SW Maps icon and tap on USB Serial GPS.

4. Under Devices, you should see FT232R USB UART.

5. Set Baud Rate to 115’200 and Instrument Model to u-blox RTK.

6. Click CONNECT button and grant permission if asked.

7. Go back to the menu and tap NTRIP Connection.

8. Enter the following details:

• Address: rtk2go.com

• Port: 2101

• Mount Point: NEAR-Swiss (See below for alternative Mount Points)

• User Name: your email (you will be informed via this e-mail if you got banned by the
service for some reason)

• Password: none

9. Click CONNECT button and a live data stream will be displayed.

10. Assure that the kit is placed in a location with good view of the sky.

11. It usually takes around 10 seconds until the receiver reaches a low precision error.

To set the receiver up for other applications including the augmented reality application of this
project, please follow the instructions below:

79

https://www.ardusimple.com/product/rtk-handheld-surveyor-kit/
https://www.ardusimple.com/product/rtk-handheld-surveyor-kit/
https://play.google.com/store/apps/details?id=np.com.softwel.swmaps

1. Download and install the GNSS Master application.

2. Set the GNSS Master application as the mock location application in Android developer
settings.

3. Configure GNSS Receiver in GNSS Master application as follows:

• Mode: USB Serial

• Baud Rate: 115’200

• Choose receiver as USB device.

4. Configure NTRIP in GNSS Master application as follows:

• Address: rtk2go.com

• Port: 2101

• Mount Point: NEAR-Swiss (See below for alternative Mount Points)

• User Name: your email (you will be informed via this e-mail if you got banned by the
service for some reason)

• Password: none

Alternative Mount Points

For all Mount Points hosted by rtk2go, a list can be found here. Especially useful if a Mount
Point outside of Switzerland is needed.

80

https://play.google.com/store/apps/details?id=com.gnssmaster
http://www.rtk2go.com:2101/SNIP::STATUS

Part III

Appendix

81

Appendix A: Deliverables

16.1 Documentation

There exists only digital versions of this document. This document is handed-in as a PDF to Prof.
Stefan Keller and the AVT tool of the OST.

16.2 Brochure abstract

Thebrochure abstract is an additional abstractwhichmust be enteredonhttps://abstract.rj.ost.ch/.
This abstract is demanded by the OST and was handed-in on time by the team.

16.3 Signed documents

OST requires a declaration of independence, a declaration of consent for publication on e-prints
and an agreement on copyrights and rights of use for each thesis. These signed documents
were submitted to the relevant entities on time.

16.4 Source code repositories

• Prototype: https://gitlab.ost.ch/sa-ar-werkleitungen/sa-prototype

• Application: https://gitlab.ost.ch/sa-ar-werkleitungen/sa-application

• Documentation: https://gitlab.ost.ch/sa-ar-werkleitungen/sa-documentation

Only Kaj Habegger, Lukas Domeisen and Prof. Stefan Keller can currently access the reposito-
ries.

16.5 Application

The application is accessible via https://srbsci-161.ost.ch/ to everyone.

82

https://abstract.rj.ost.ch/
https://gitlab.ost.ch/sa-ar-werkleitungen/sa-prototype
https://gitlab.ost.ch/sa-ar-werkleitungen/sa-application
https://gitlab.ost.ch/sa-ar-werkleitungen/sa-documentation
https://srbsci-161.ost.ch/

Appendix B: Glossary and list of abbre-
viations

Term Description

tubAR This is the name of the application or the product which
was created within this thesis.

IAR Abbreviation for Integer Ambiguity Resolution. The
openrtk documentation gives further information about
this.

RTK Abbreviation for Real-Time Kinematic positioning. The
article from u-blox gives a clear understanding of this
technology.

GLB Abbreviation for Binary file format for glTF data.

GNSS Abbreviation for Global Navigation Satellite System. Ev-
ery global available system which uses satellites for po-
sitioning is a GNSS. Most prominent is probably GPS.

BIM Abbreviation for Building Information Modeling. Is the
process of modelling physical places in a digital manner.
BIM data is a file or multiple files which consists of such
data.

IFC Abbreviation for Industry Foundation Classes. Is a data
schema to exchange CAD data. It is descriptive only and
does not contain 3D data directly. The Wikipedia entry
giver further information about the schema.

GIS Abbreviation for Geographic Information System. This
Esri page gives further information about the definition.

FR Abbreviation for Functional Requirement. Specifies a
specific feature or functionality a software solutionmust
provide.

NFR Abbreviation for Non-Functional Requirement. Specifies
a characteristic or constraint that a software solution
must satisfy.

MoSCoW method Is a prioritizationmethod. M stands for Must-have, S for
Should-have, C for Could-have and W for will not have.
TheWikipedia entry gives further information about the
technique.

Vuetify A component framework for Vue.js, which simplifies
building user interfaces.

WGS 84 World Geodetic System, whereas version 84 is the cur-
rent version.

83

https://openrtk.readthedocs.io/en/latest/algorithms/ambiguityfix.html
https://www.u-blox.com/en/technologies/rtk-real-time-kinematic
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://www.esri.com/en-us/what-is-gis/overview
https://en.wikipedia.org/wiki/MoSCoW_method

glTF Graphics Library Transmission Format is a 3D scene and
model file format.

MVVM Model-View-View Model is a pattern used for software
architecture.

MVC Model-View-Controller is a pattern used for software ar-
chitecture.

Real world environment When referring to real world environment the explicit
real world is meant. It is often used in combination with
coordinate system, which in that case means the global
coordinate system WGS 84.

Virtual environment When referring to virtual environment a virtual environ-
ment on the table ismeant, such as the AR environment,
the reference space from WebXR or the Three.js scene.
It is often used in combination with coordinate system,
which means the coordinate system within this virtual
space.

Reference space WebXR has a reference space, which represents a virtual
space where the user is moving in while a XR session is
running.

Scrum Scrum is a framework for team collaboration. At its core
is agility, which represents the aim of it. For further in-
formation the official Scrum website can be consulted.

RUP Abbreviation for Rational Unified Process. It is a soft-
ware development framework using iterations as its
base concept. The Wikipedia entry gives further infor-
mation about the framework.

Table 17.1: Glossary

84

https://www.scrum.org/
https://en.wikipedia.org/wiki/Rational_unified_process

Appendix C: Test protocols

Acceptance tests

Functional requirements

Figure 18.1: Acceptance test protocol (functional requirements)

85

Non-functional requirements

Figure 18.2: Acceptance test protocol (non-functional requirements)

Performance tests

Figure 18.3: Performance test protocol

Backend test coverage

Figure 18.4: Backend test coverage report

86

Appendix D: Bibliography

[1] arnab roy chowdhury arnab roy. Best Python Testing Frameworks. en. Apr. 2022. url: https:
//medium.com/@arnabroyy/best-python-testing-frameworks-bb7ab1b3d366 (visited on
12/10/2023).

[2] Vue.js. Testing. Dec. 13, 2023. url: https://vuejs.org/guide/scaling-up/testing.

[3] nicolocarpignoli et al. AR.js - Augmented Reality on the Web. Dec. 10, 2023. url: https://ar-
js-org.github.io/AR.js-Docs/.

[4] kalwalt et al. AR.js. Dec. 10, 2023. url: https://github.com/AR-js-org/AR.js.

[5] Wikipedia contributors. WebXR — Wikipedia, The Free Encyclopedia. [Online; accessed 10-
December-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=WebXR&
oldid=1188510753.

[6] toji et al. WebXR Device API Explained. Dec. 10, 2023. url: https://github.com/immersive-
web/webxr/blob/master/explainer.md#what-is-webxr.

[7] Immersive Web Working Group. Immersive Web Working Group - Publications. Dec. 10,
2023. url: https://www.w3.org/groups/wg/immersive-web/publications/.

[8] Mozilla. WebXR Device API. Dec. 10, 2023. url: https://developer.mozilla.org/en-US/
docs/Web/API/WebXR_Device_API.

[9] Cesium GS. The Cesium Platform. Dec. 10, 2023. url: https://cesium.com/platform/.

[10] Adobe. 3D file types. Dec. 3, 2023. url: https://www.adobe.com/products/substance3d/
discover/3d-files-formats.html.

[11] Mariliis Retter. The Hitchhiker’s guide to understanding digital 3D model file formats. July 20,
2023. url: https://www.alpha3d.io/3d-file-formats/.

[12] Sonia Schlechter. Essential Guide to 3D File Formats.May 5, 2020. url: https://www.marxentlabs.
com/3d-file-formats/.

[13] Khronos Group. What is glTF? Nov. 25, 2023. url: https://www.khronos.org/gltf/.

[14] That Open Company. FragmentIfcLoader. Dec. 13, 2023. url: https://docs.thatopen.com/
Tutorials/FragmentIfcLoader.

[15] agviegas et al. Open BIM Components. Dec. 10, 2023. url: https://github.com/IFCjs/
components.

[16] IfcOpenShell volunteers. IfcOpenShell. Dec. 10, 2023. url: https://github.com/IfcOpenShell/
IfcOpenShell/tree/main.

[17] Three.js. FAQ. Nov. 1, 2023. url: https://threejs.org/docs/#manual/en/introduction/
FAQ.

[18] Michael Bayer. The Python SQL Toolkit and Object Relational Mapper. Dec. 20, 2023. url:
https://www.sqlalchemy.org/.

[19] Michael Bayer et al. alembic. Dec. 20, 2023. url: https://github.com/sqlalchemy/alembic.

[20] Pallets. Deploying to Production. Nov. 24, 2023. url: https://flask.palletsprojects.com/
en/3.0.x/deploying/.

[21] vGIS. vGIS Technical Details. url: https://www.vgis.io/technical-specification-vgis-
high-accuracy-survey-grade-augmented-reality-ar-for-bim-gis-arcgis-esri/.

87

https://medium.com/@arnabroyy/best-python-testing-frameworks-bb7ab1b3d366
https://medium.com/@arnabroyy/best-python-testing-frameworks-bb7ab1b3d366
https://vuejs.org/guide/scaling-up/testing
https://ar-js-org.github.io/AR.js-Docs/
https://ar-js-org.github.io/AR.js-Docs/
https://github.com/AR-js-org/AR.js
https://en.wikipedia.org/w/index.php?title=WebXR&oldid=1188510753
https://en.wikipedia.org/w/index.php?title=WebXR&oldid=1188510753
https://github.com/immersive-web/webxr/blob/master/explainer.md#what-is-webxr
https://github.com/immersive-web/webxr/blob/master/explainer.md#what-is-webxr
https://www.w3.org/groups/wg/immersive-web/publications/
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://cesium.com/platform/
https://www.adobe.com/products/substance3d/discover/3d-files-formats.html
https://www.adobe.com/products/substance3d/discover/3d-files-formats.html
https://www.alpha3d.io/3d-file-formats/
https://www.marxentlabs.com/3d-file-formats/
https://www.marxentlabs.com/3d-file-formats/
https://www.khronos.org/gltf/
https://docs.thatopen.com/Tutorials/FragmentIfcLoader
https://docs.thatopen.com/Tutorials/FragmentIfcLoader
https://github.com/IFCjs/components
https://github.com/IFCjs/components
https://github.com/IfcOpenShell/IfcOpenShell/tree/main
https://github.com/IfcOpenShell/IfcOpenShell/tree/main
https://threejs.org/docs/#manual/en/introduction/FAQ
https://threejs.org/docs/#manual/en/introduction/FAQ
https://www.sqlalchemy.org/
https://github.com/sqlalchemy/alembic
https://flask.palletsprojects.com/en/3.0.x/deploying/
https://flask.palletsprojects.com/en/3.0.x/deploying/
https://www.vgis.io/technical-specification-vgis-high-accuracy-survey-grade-augmented-reality-ar-for-bim-gis-arcgis-esri/
https://www.vgis.io/technical-specification-vgis-high-accuracy-survey-grade-augmented-reality-ar-for-bim-gis-arcgis-esri/

[22] Ardusimple. RTK Handheld Surveyor Kit. url: https://www.ardusimple.com/product/rtk-
handheld-surveyor-kit/.

[23] blairmacintyre. Geospatial Anchors for WebXR. Dec. 9, 2023. url: https://github.com/
MozillaReality/webxr-geospatial.

[24] rjksmith et al. Geo-alignment. Dec. 9, 2023. url: https://github.com/immersive-web/geo-
alignment.

[25] Google. Compass calibration. url: https://support.google.com/maps/answer/2839911?
co=GENIE.Platform%3DAndroid&hl=en#zippy=%2Ccalibrate-your-phone-or-tablet.

[26] u-blox AG. Real-Time Kinematic (RTK). Nov. 24, 2022. url: https://www.u-blox.com/en/
technologies/rtk-real-time-kinematic.

88

https://www.ardusimple.com/product/rtk-handheld-surveyor-kit/
https://www.ardusimple.com/product/rtk-handheld-surveyor-kit/
https://github.com/MozillaReality/webxr-geospatial
https://github.com/MozillaReality/webxr-geospatial
https://github.com/immersive-web/geo-alignment
https://github.com/immersive-web/geo-alignment
https://support.google.com/maps/answer/2839911?co=GENIE.Platform%3DAndroid&hl=en#zippy=%2Ccalibrate-your-phone-or-tablet
https://support.google.com/maps/answer/2839911?co=GENIE.Platform%3DAndroid&hl=en#zippy=%2Ccalibrate-your-phone-or-tablet
https://www.u-blox.com/en/technologies/rtk-real-time-kinematic
https://www.u-blox.com/en/technologies/rtk-real-time-kinematic

Appendix E: List of figures

Figure 1. Task definition 2

Figure 2. Demo test screenshot 3

Figure 3. Stäfa field test screenshot 3

Figure 5.1. tubAR start screen 26

Figure 7.1. Use case diagram 31

Figure 7.2. ISO/IEC 25010 quality characteristics 36

Figure 8.1. Database model 43

Figure 9.1. System context diagram 44

Figure 9.2. Container diagram 45

Figure 9.3. Source code structure 46

Figure 9.4. Components hierarchy diagram 47

Figure 9.5. Frontend module diagram 48

Figure 9.6. Backend module diagram 49

Figure 9.7. Web application sequence diagram 50

Figure 9.8. IFC converter script sequence diagram 51

Figure 10.1. Geo-alignment problem visualized 53

Figure 10.2. Gap between camera and GNSS receiver visualized 55

Figure 11.1. Development environment described as C4 deployment diagram 58

Figure 11.2. Production environment described as C4 deployment diagram 58

Figure 11.3. Workflow 59

Figure 11.4. Gitlab pipeline 59

Figure 13.1. Risk Matrix 70

Figure 14.1. Code statistics report by Pylint 77

89

Figure 18.1. Acceptance test protocol (functional requirements) 85

Figure 18.2. Acceptance test protocol (non-functional requirements) 86

Figure 18.3. Performance test protocol 86

Figure 18.4. Backend test coverage report 86

90

Appendix F: List of tables

Table 5.1. tubAR and vGIS comparison 28

Table 7.1. Start screen (US-1) 32

Table 7.2. Onboard guidance (US-2) 33

Table 7.3. User login (US-3) 33

Table 7.4. Accurate depth display (US-4) 33

Table 7.5. Accurate positioning of utility lines (US-5) 34

Table 7.6. Rendering utility lines as 3D objects (US-6) 34

Table 7.7. Interactive controls (US-7) 34

Table 7.8. Filter utility line types (US-8) 35

Table 7.9. Info interaction (US-9) 35

Table 7.10. Calibration guidance (US-10) 35

Table 7.11. Display status of GNSS accuracy (US-11) 36

Table 7.12. Location selection (US-12) 36

Table 7.13. 3D data loading (NFR-1) 37

Table 7.14. Frames per second (NFR-2) 37

Table 7.15. RAM usage (NFR-3) 38

Table 7.16. Supported Browser (NFR-4) 38

Table 7.17. Vuetify usage (NFR-5) 38

Table 7.18. Don’t allow unauthorized access to data (NFR-6) 39

Table 7.19. Usage of Vue.js (NFR-7) 39

Table 7.20. Unit Tests (NFR-8) 39

Table 7.21. Logging backend (NFR-9) 40

Table 7.22. Dockerization of web application (NFR-10) 40

Table 13.1. Risk changes history 74

Table 17.1. Glossary 84

91

	Abstract
	Management Summary
	Task Definition
	I Technical report
	Introduction
	Problem definition
	Vision
	Goals
	Basic conditions
	Approach

	Current State Of The Art
	Existing solutions
	Disadvantages
	Benefits of tubAR

	Evaluation
	Test framework
	AR library
	3D data format
	IFC to glTF transformation
	glTF data storage
	Prototype

	Implementation concept
	Knowledge gathering
	Requirements specification
	Evaluation & prototype creation
	Architecture
	Implementation
	Conclusion

	Results
	Goal achievement
	Comparison to vGIS
	Additional features

	II Project Documentation
	Vision
	Requirements specification
	Use cases
	Functional Requirements
	Non-Functional Requirements

	Analysis
	Domain Analysis
	Object catalog
	Database model

	Design
	Architecture
	Sequence Diagram

	Implementation & Testing
	Implementation
	Automated & manual testing
	Challenges

	Quality Measures
	Quality Assessment Tools
	Environments
	CI/CD
	Test strategy
	Communication Tools

	Results & further development
	Results
	Further development

	Project management
	Resources
	Roles
	Processes and Meetings
	Risk Management
	Long-term Plan

	Project Monitoring
	Time tracking
	Code statistics

	Software Documentation
	Technology-stack
	Tool-stack
	Installation

	III Appendix
	Appendix A: Deliverables
	Documentation
	Brochure abstract
	Signed documents
	Source code repositories
	Application

	Appendix B: Glossary and list of abbreviations
	Appendix C: Test protocols
	Appendix D: Bibliography
	Appendix E: List of figures
	Appendix F: List of tables

