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Abstract

The Swiss Archive for Landscaping Architecture, located at OST in
Rapperswil, administers more than 100’000 historic plans. These plans
need to be digitzed to make them accessible. This paper proposes a three-
model architecture consisting of a layout model to find text on the plans,
an optical character recognition model to extract the found words, and
finally, a named entity recognition model to label the relevant words like
the client, location, or date. K-means clustering is used to group the text
blocks from the layout model into related blocks for OCR.

Different deep-learning models are compared and evaluated. The most
suitable models are then retrained on the NVIDIA DGX-2 system in a
custom-built apptainer image with different training strategies to improve
their accuracy. Different pre- and post-processing techniques are employed
to improve the accuracy of the pipeline.

The final image pipeline achieves an F1 score of 48% with 35% preci-
sion and 77% recall. The chosen NER model ”German BERT” scored an
F1-score of 86% after re-training and the OCR pipeline extracted 54% of
words correctly and 18% close to correct.

The insights from this SA can be applied to future projects to build an
application usable by the archive, enabling it to catalog its documents
and make them accessible to the world.



Management summary

The Swiss Archive for Landscaping Architecture, located at OST in Rapper-
swil, administers more than 100’000 historic plans. These plans are currently
digitized manually in a very time consuming process. In this paper I propose
an AI-pipeline that can help automate this process. Three different Artificial
Intelligence models are combined to find all the words on the plan, extract the
words and then categorize the words into different entities like client, location
or scale.

Different deep-learning models are compared and trained with existing data
from the archive to find the best suited for the task. Different techniques are
employed to improve the accuracy of the models like removing the archive stamp,
remove artifacts from the text and a grouping algorithm to find related words
on the plan.

The final pipeline achieves an accuracy score (F1) of 48%. The pipeline acts as
a proof of concept for the given task. The insights from this SA can be applied
to future projects to build an application usable by the archive, enabling it to
catalog its documents and make them accessible to the world.
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1 Introduction

The Swiss Archive for Landscaping Architecture, located at OST in Rapperswil,
administers more than 100’000 historic plans. The collection contains estates of
renowned Swiss and European architects who worked in the 20th century.

Besides using the plans for teachings at OST, the archive is an important point
of reference for today’s architects. Having the original plans available is crucial
to a lot of projects. The archive started to digitize its plans years ago but has
still only managed to digitize a fraction of its documents. This is in part owed to
the very manual process that is used to digitize the plans. After photographing
the plan all metadata like plan header, scale, creation, etc. has to be recorded
by hand.

The goal of this thesis is to explore different machine learning models and ap-
proaches that could automate this workflow, enabling the archive to catalog its
documents and make them accessible to the world faster.

Figure 1: A 1949 architectural plan retrieved from the estate of Mertens and
Nussbaumer, source: “ASLA, Archiv Schweizer für Schweizer Landschaftsar-
chitektur”, n.d.
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2 Conditions

This paper was written as a mandatory part of the bachelor program in com-
puter science at the Eastern Swiss University of Applied Science - OST. The
paper was written during one semester and was supervised by Prof. Dr. Mitra
Purandare.

3 Abbreviations

NER - Named Entity Recognition
OCR - Optical Character Recognition
NLP - Natural Language Processing
AI - Artificial Intelligence
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4 Problem analysis

4.1 Current workflow

Between one and two archive employees are working on digitizing the plans.
The current workflow consists of the following steps:

1. Photograph the plan and label it

2. Record the metadata:

(a) Plan head with client and location

(b) Scale, for example: 1:100, 1:50

(c) Creation date

(d) Creation location

3. Edit the image (rotate and crop)

4. Redact personally identifiable information and floor plans of non-public
buildings

In this SA I want to focus on automating the recording of the metadata.
Firstly, this is a very time-consuming step, as well as a crucial one that is prone
to mistakes like typos in names or wrong scales. Secondly, this step suits the
capabilities of modern image and language models. More steps can be explored
in future works.

4.2 Pretrained OCR models

Text on plans has no clear structure. Landmarks like the title or plan header can
be located everywhere on the plan and can have vastly different structures and
components, parts of the text like measurements or labels can be rotated and
may have different sizes. Additionally, there are a lot of graphical elements on a
plan that an OCRmodel might confuse with characters. Given these constraints,
the OCR pipeline needs to segment or localize words before extracting them.

4.3 Pretrained language models

After the words are extracted, they need to be classified into different entities
or discarded if they are not important to the archive. In this paper, several
different pre-trained language models and architectures are compared. These
models work quite well on current mainstream texts, like an article on Wikipedia
or in the news. Two problems inhibit the direct application of these models in
the domain of historic, architectural plans:

1. Some textual patterns are very old. For example: names are sometimes
written in the following format ”surname, title first name” which the mod-
els often do not recognize as a complete name.
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2. Some entities like scale are specific to the problem domain and there are
no pre-trained models.

4.4 Training data

Because the archive has been working on digitization for several years, thou-
sands of documents are already photographed and labeled. Because the people
working in the archive often change, the quality of the labeled data varies be-
tween projects, and the data needs to be curated and cleaned before it can be
used for machine learning. Additionally, the existing data is only suitable for
certain training cases.

4.4.1 OCR

There is no directly usable OCR training data because the current records only
contain the text strings and no coordinates for the bounding box which would
be necessary. Additionally, only a fraction of all the text, the entities mentioned
before, are recorded. If the performance of the OCR model cannot be increased
to a satisfactory level with model selection or preprocessing, manual training
data will need to be created.

4.4.2 NER

The basis for NER training is good with thousands of manually recorded head-
ers, scales, and dates. The data is scattered over different Excel files. The
entities ’bauherr’ (client) and location are not recorded separately but are usu-
ally part of the header and will need to be extracted by hand if the model should
be trained with them.

4



5 Goals and Requirements

This thesis focuses on research, comparing different models and finding an ap-
proach that can be built into an application that the archive can use in a later
stage. Nonetheless, several requirements were specified.

5.0.1 Functional requirements

• The system should find related groups or blocks of text in scanned images

• The system should be able to extract characters and words from the iden-
tified groups of text

• The system should extract a set of predefined entities (client, location,
scale, date, creation location) from the text

• The system should support JPEG and TIFF formats

• The system should ignore irrelevant archival data (e.g. stamps)

5.0.2 Non-functional requirements

• Correctly identifying more relevant entities, such as the client and location,
is more important than scale or the creation location

• Although speed is not a major concern in this paper, the whole pipeline
should respect the constraints of a future application

• Compiling a comprehensive comparison and analysis of different models
and architectures

• Based on the comparison, finding a suitable model architecture for OCR
and NER

5



6 Architecture

Figure 2: The whole pipeline with its major components, the deep learning
models are marked with filled blocks.

The task is divided into two distinct components: Optical Character Recog-
nition (OCR) and Named Entity Recognition (NER). The OCR pipeline begins
by taking the input image and undergoing preprocessing to eliminate archival
artifacts, such as the archive’s stamp. Subsequently, a deep learning neural
network is employed to localize all words within the document. Following this,
a clustering algorithm, utilizing k-means, and a word ordering algorithm are
applied to group related words into text blocks. The resulting bounding boxes
serve as input for the OCR model, which extracts the text. This extracted text
is then passed to the NER pipeline.

The initial step in the NER pipeline involves the removal of OCR artifacts,
such as trailing periods. Following this, a natural language processing model
is deployed to extract predefined entities, such as client or location. Lastly, a
spellchecker is utilized to refine the text and correct misidentified characters
from the OCR step. The outcome is a set of labeled entities accompanied by
their corresponding bounding boxes.
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7 ORC - Optical character recognition

7.1 Introduction

Optical Character Recognition describes the process of extracting text from
an image, stored as pixel data to a string of characters, thereby making the
text searchable and editable. While historically OCR relied on computer vi-
sion and image processing techniques, today has witnessed substantial advance-
ments driven by breakthroughs in deep learning and neural network architec-
tures (Shetty & Sharma, 2023).

(a) A top-down view of a property drawn by the
brother Mertens in 1944

(b) The courtyard of a monastery in
1949 by Nussbaumer and Mertens

Figure 3: Examples from the archive showing the different types of plans the
OCR pipeline needs to handle, source: “ASLA, Archiv Schweizer für Schweizer
Landschaftsarchitektur”, n.d.

7.2 Goal

The goal of the OCR part of the pipeline is to find one or a combination of
models that can find and extract text from the plans as well as provide the
bounding boxes of each word. The bounding boxes are on one hand important
for the application in the future to make it easier for the archiving person to
check the predictions. On the other hand, they can be used to gather data to
train the model in the future. The extracted text is handed to the NER model.
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7.3 Pre-processing

Lombardi and Marinai, 2020 state that after digitization, the first step in a
traditional DIAR pipeline is the input images pre-processing. This task is aimed
at improving the document quality either for a better human inspection of the
work or for improving the automatic recognition of subsequent processing steps.
Because of the nature of historical documents this step is particularly relevant
in this area as demonstrated by the diverse papers related to pre-processing of
historical documents.

Several image processing techniques are discussed in different papers to im-
prove documents for OCR. Because of time constraints, these techniques were
not explored in this paper but should be planned for further works on this topic.

7.3.1 Stamp removal

Some plans within the dataset contain a stamp, which was introduced during
the archival digitization process.

Figure 4: Example of a stamp on the left and edited template on the right with
the bottom row containing the estate cut off.

The text present on these stamps is detected and extracted by the layout and
OCR model. However, this extraction process can lead to confusion for the NER
model and result in longer inference times. To address these issues, a template
matching algorithm is employed before the image is processed by any model.
If the algorithm identifies coordinates above a specified confidence threshold,
it samples and averages the colors of six surrounding pixels to determine the
background color of the plan in that region. Subsequently, the entire stamp
is replaced with this color, effectively eliminating it from the plan without any
sharp lines or artifacts that could influence the text detection. Tests have shown
that a modified version of the stamp where the bottom row and line are cut off
works the most reliably for the template matching algorithm.

7.4 Preliminary testing

To get a grasp of how well modern off-the-shelf models work I tested different
popular models on a small set of images. The result shows that line predictors
do not work with the complex layouts that are found on the plans. Before any
characters or strings can be recognized, the text needs to be extracted. The
LayoutLM model (Xu et al., 2020) jointly models interactions between text and
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layout information across documents. An approach like this where words are
first found on the page, then grouped into text blocks and after that, a more
classic OCR technique is used to digitize the text seems necessary for the given
problem.

7.5 Models

The field of OCR does encompass a wide variety of different approaches. The
following models where compared:

7.5.1 Tesseract

Tesseract (Smith, 2007) is an open-source Optical Character Recognition (OCR)
library developed by HP Research and maintained by Google, incorporating
Long Short-Term Memory (LSTM) networks. Its applicability to the given use
case is notable as it locates words on a page as well as extracts them. It provides
bounding boxes and confidence scores for each prediction. Notably, Tesseract is
very fast and there exists a German model. When testing the pretrained German
model it reliably finds all relevant words, but the predictions are less accurate
compared to other models. This could stem from the fact that Tesseract is not
optimized for handwritten text.

7.5.2 TrOCR

Like in many other areas of machine learning transformers have become a pop-
ular choice for OCR recently. The TrOCR model (Li et al., 2023) consists of
a vision transformer (encoder) and a language transformer (decoder). The en-
coder divides and flattens the input image into a single row of patches and then
generates image embeddings. The decoder takes these embeddings and produces
the string output. Both the encoder and decoder consist of multi-head atten-
tion and feed-forward blocks. The decoder additionally has a masked multi head
attention layer. This architecture lends itself to extensive pretraining, and is
therefore ideal for our use case where training data is not available. TrOCR has
several pretrained models. The large-handwritten is the most accurate model
but also the slowest. One problem is that TrOCR needs a single line input
image, meaning it can’t find words on a page or do predictions on multiline text
blocks. Therefore, this model can only be used in collaboration with another
model.

7.5.3 LayoutLM

LayoutLM (Layout Language Model) (Xu et al., 2020) is a model designed for
document image understanding. It was developed by Microsoft Research Asia
and introduced in 2019. LayoutLM is built upon the BERT (Bidirectional En-
coder Representations from Transformers) architecture. However, LayoutLM
extends BERT to handle both textual content and layout information in docu-
ment images.
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7.5.4 LayoutLMv2

LayoutLMv2 (Xu et al., 2022) is the improved version of LayoutLM proposed
in 2020. It’s built on Facebooks Detectron2 detection and segmentation library
and can extract layout and style information from a document. In my tests, the
model performs identical to the LayoutLM model.

7.5.5 LayoutXLM

LayoutXLM (Xu et al., 2021) is a multilingual extension of the LayoutLMv2
model trained on 53 languages with identical performance in my tests. The
language agnostic training does not seem to impact the models performance
when it comes to word localization.

7.5.6 EasyOCR

EasyOCR (Jaded-AI, 2020) is a ready-to-use OCR library with support for more
than 80 languages, including german. It utilizes CRAFT for text detection and
a ResNet, LSTM and CTC architecture. It does not yet support handwritten
text which could explain its performance, which does not match that of the
TrOCR handwritten model. For text detection on the other hand EasyOCR
scores a perfect score with all 90 relevant words detected. EasyOCR could be a
faster alternate layout model to LayoutLMv2 if no style or layout information
is needed.

7.6 Text detection comparison

The models capable of text detection where tested on different sample images
with a total of 90 relevant words. All models perform equally well in terms of

Model Found words Accuracy
Tesseract 88/90 97.8%
LayoutLM 87/90 96.7%
LayoutLMv2 87/90 96.7%
LayoutXLM 87/90 96.7%
EasyOCR 90/90 100%

Table 1: OCR layout model comparison

finding words on the page. The LayoutLM models seem to perform the same
on the given data. They predict words very precisely where the other models
tend to group close by words into a single bounding box. On the other hand
the LayoutLM models tend to predict more false positions for words than the
other models.
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7.7 Clustering

On architectural plans, words are organized into groups, such as the plan header,
creation date and location block and the architect’s address and signature,
among others. These groupings play a pivotal role in named entity recogni-
tion as they provide essential contextual information. Consequently, there is a
need to spatially cluster the words to preserve their relationships. To achieve
this, a k-means algorithm is employed, given its capability to group related
words based on their proximity. As the actual number of groups is unknown,
the algorithm is executed with varying k values ranging from 3 to 12. The k-
value with the highest silhouette score is then selected as the optimal clustering
parameter. Finally, the boxes in each cluster are ordered from top to bottom,
left to right based on their coordinates. This approach ensures a robust grouping
mechanism for enhancing the accuracy of named entity prediction.

7.8 Post-processing

7.8.1 Removing OCR artifacts

As outlined earlier, the bounding boxes generated by the LayoutLMv2 model
undergo padding on all sides to ensure all characters are fully detected. How-
ever, this precautionary measure introduces a strange artifact: a period (”.”)
is consistently appended to the end of the majority of predicted words. When
the padding is reduced or set to zero, the extraneous dots vanish, but this
adjustment adversely impacts prediction quality. To address this issue, a post-
processing step is implemented to remove trailing periods from all predictions.
This could lead to valid periods being inadvertently excluded, but their absence
does not degrade the NER performance.

7.8.2 Spell checker

The output of an OCR model is commonly subjected to spellchecking (Mohapa-
tra et al., 2013) to correct inaccurately predicted characters. (Rosebrock, 2021)
In this paper, I experimented with this approach, employing the pyspellchecker
(Barrus, 2022) package as the spellchecking tool. The vocabulary was aug-
mented with a compilation of the 10,000 most frequently used words in the
German language (“Wortschatz Uni Leipzig - Top 10’000 Wörter”, 2001). De-
spite the spellchecker effectively correcting certain words, it exhibited a tendency
to erroneously correct names and locations that should have been exempt from
correction. Given the amount of unique names and locations in our dataset that
are absent from standard dictionaries, I opted to discontinue this technique. In-
stead, the spell checker is now applied after the named entity recognition step.
This allows names and locations to be filtered before applying the spellchecker.
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7.9 Choosen architecture

Following qualitative testing, the TrOCR emerges as the optimal text extraction
model. Because it requires single line images, it needs to be paired with a layout
model capable of identifying bounding boxes. Despite marginally inferior per-
formance in absolute metrics, the LayoutLM models are deemed most suitable
for this project. Their selection is motivated by their potential for future expan-
sion beyond text detection, encompassing elements such as sub-plans, drawings,
legends, and more. The minor reduction in accuracy, less than 1%, is considered
inconsequential for the current task. The proposed OCR pipeline is as follows:

1. An image is loaded from a path

2. If there is a stamp it is removed with template matching

3. The LayoutLMv2 model predicts the bounding boxes for all words

4. Small boxes (smaller than 20px in one axis) are removed

5. Overlapping boxes are combined using Intersection over Minimum (IOM)

6. K-means clustering is employed with the center coordinates of the boxes
to find the word groups

7. The image is cropped to each bounding box and handed to the TrOCR
model to extract the text

8. All trailing periods are removed

9. According to the defined order, the predicted words are appended to one
string per group

Due to the lack of training data, the selected models were not re-trained. A
problem with the LayoutLM model family is that they do not provide a con-
fidence value for the bounding boxes, meaning all boxes need to be processed
by the TrOCR model and can then be filtered based on low confidence score,
currently -0.1. The prediction time could be shortened if the boxes could be
filtered before the OCR step.

7.10 Conclusion

The combination of the two models suits the task the best. The layout model
provides reliable bounding boxes for all the relevant words in the document.
The TrOCR model works satisfactorily on legible written text but deteriorates
quickly on harder-to-read text. One of the main problems identified is that there
is no TrOCR model pre-trained on German data. Therefore, the decoder tries
to predict English words if they are hard to read which worsens the prediction.

The models were tested on several images and judged on how many words
were extracted correctly. They are classified into matches that are extracted
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Model Perfect Close Bad
TrOCR 54% 18% 28%
EasyOCR 49% 30% 21%
Tesseract 42% 26% 32%

Table 2: OCR text extraction comparison

perfectly, close matches, where one or two characters are wrong and bad matches
where the text is unrecognizable:

Both models could be improved with retraining on custom data which would
certainly improve their performance. Gathering such data in sufficient quantities
was determined to be outside the scope of this project. Another idea that came
up during the project is to use currently available handwriting generators to
generate training data in the style of our plans and then use them to fine-tune
the models. While this could prove viable, I did not find a generator that
generates handwriting close to the style used in the plans and therefore decided
not to pursue this approach.

I do believe that accuracy could be significantly improved with different
image processing techniques such as denoising, thresholding, distance transforms
and opening morphological operations and want to focus on that in further
works.

In conclusion the OCR pipeline poses a solid foundation for the following
NER pipeline. With its use of two different models, pre- and post-processing
techniques as well as a custom written clustering algorithm it presents a solution
that is well suited for the given problem. The prediction accuracy is not as good
as I initially hoped, but the result is a viable proof of concept.
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8 NER - Named entity recognition

8.1 Introduction

Named Entity Recognition is a natural language processing (NLP) technique,
focused on identifying and classifying entities within textual data. Classically
these entities range from persons and organizations to locations, dates, numbers,
and more.

Text is typically tokenized, meaning broken down into smaller units called
tokens, which can be words or subwords. These tokens are then classified into
predefined categories. This classification is based on the context and charac-
teristics of the token. NER models are often based on transformers or RNN
encoders.

8.2 Entities

The archive requested that the model should be able to detect the following
entities:

Entity Label Description Examples Data

Client CLT
The person or organisation
owning the property

Hr. Dr. Müller X

Location LOC
The location of the project,
could be street, municipality,
region or a combination

Bahnhofstrasse
12, Rapperswil

X

Scale MST The scale of the plans 1:5, 1:50, 1:250 ✓

Date DATE
The creation date of the plan
in different formats and styles

1.3.1941, 54 ✓

Creation
Location

CLOC
The place where the plans
where drawn, usually just a city

Zürich,
Romanshorn

✓

Table 3: Detailed list of all entites

8.3 Approach

Preliminary tests show again that existing models do not perform very well on
the data, with an accuracy of all models in the single-digit percentages. An off-
the-shelf model would also not work for the given use case because it requires
several custom entities. The client ”Bauherr” for example is a compound of
a name, with title, and organizations, and the entity’s location and creation
location do have a very different meaning, although both describing a place.
This necessitates training on custom data.
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8.3.1 Training data

Several thousand plans are already transcribed by hand. This data is available
for training, but there are several problems, prohibiting straightforward usage:

1. The two most important entities, client and location are not labeled inde-
pendently, they are part of the title

2. Scale data is available but not uniformly formatted

3. Date data is available

4. Creation locations are not well formatted and often seem to be mistaken
with object location, rendering them useless

8.4 Process

Initially, emphasis was placed on the extraction of client and location entities,
as focusing on the two most important entities instead of all five, would facili-
tate faster iterations. The initial phase involved the creation of manual training
data, with two archive employees extracting client and location entities from
a randomly selected set of 500 titles. This process yielded approximately 500
training sentences, supplemented by an additional 100 testing sentences. Sub-
sequently, a set of models was trained and evaluated to initiate the assessment
process.

Model Accuracy PER LOC
Spacy 46.36% 54.49% 82.47%
roBERTa 57.56% 39.31% 87.14%
BERT 46.73% 43.75% 88.87%

Table 4: NER base model comparison (client and location only)

8.4.1 Data generation with large language models

The initial results proved promising, however, I sought to improve them further.
Recognizing the time-intensive nature of manual data generation, I opted to
explore automated methods. My first approach involved leveraging ChatGPT
and Huggingchat, two large language models (LLM). Utilizing prompts such as
”I am a data scientist working on an entity recognition model. Can you generate
10 sentences in the style of the example below and use a name and location from
this list: [...], example sentences: [...],” both language models understood the
task and generated sentences. Unfortunately, the outcomes were repetitive,
with substantial portions of the sentences mirroring the provided examples,
rendering them useless for training. Despite introducing prompts emphasizing
the importance of uniqueness or prohibiting repetition, these directives were
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either disregarded or resulted in sentences too divergent from the original data
in structure and content.

Realizing the impracticality of this approach, I opted for a prompt modifi-
cation. The models were now directed to generate training sentences containing
tokens that could later be replaceable by a Python script. For instance, the
prompt ”Garden of $$$ in @@@” where $$$ would be replaced with a name
and @@@ with a location. Historic municipality names from Switzerland in
the year 1960 (Historisiertes Gemeindeverzeichnis der Schweiz, TXT Format,
n.d.) were utilized for location data, while names were generated by ChatGPT.
A sentence was generated for each location, yielding 6,000 training sentences.
Subsequently, the models were retrained and evaluated:

Training Model Accuracy PER LOC

Trained on generated
data (6000)

Spacy 27.14% 33.64% 38.51%
roBERTa 26.72% 31.41% 55.25%
BERT 18.90% 15.83% 39.56%

Trained on manual
then on generated
(250 + 6000)

Spacy 40.20% 36.89% 50.04%
roBERTa 42.41% 34.12% 79.33%
BERT 25.70% 19.73% 51.02%

Trained on generated,
then on manual
(6000 + 250)

Spacy 44.12% 42.41% 59.87%
roBERTa 48.83% 39.21% 82.94%
BERT 31.62% 23.66% 58.06%

Table 5: NER base model comparison with different training strategies (client
and location only)

The performance of all models exhibited a decline upon training with the
generated sentences. This deterioration is likely attributed to the lack of di-
versity in the generated data, leading the models to learn specific words rather
than capturing general patterns. The introduction of the 250 manually crafted
sentences to the training set resulted in an improvement in accuracy, yet it
remained below the levels achieved in the initial iteration. Intriguingly, the
sequence of training steps was found to have a measurable impact on model
performance, accounting for approximately a 6% increase. In conclusion, it can
be said that a substantial part of the given entities are out of vocabulary (OOV),
and trying to get the model to memorize lists like the municipalities or names
does not lead to higher accuracy.

8.4.2 Training strategy

Equipped with insights gained from working with two entities, my objective was
to extend the model training to encompass all five entities. The approach in-
volved incorporating entities available in the existing data into manually crafted
sentences, thereby providing the required contextual information. I formulated
150 example sentences, similar to before, featuring placeholders for the enti-
ties. Each entity is associated with a generator function capable of producing
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an infinite number of examples. For client and location entities, the existing
manual data from archive employees was utilized. The scales were derived from
the archival data and enriched with various prefixes such as ”M: 1:10”, ”Mst.
1:10”, ”Masstab 1:10”, and the like. Dates were randomly generated and for-
matted in diverse styles, including ”1.1.55”, ”01-01-55”, ”1/55”, ”Jan. 55” and
”55” among others. The creation location dates were drawn from a manually
curated list of Swiss city and street names. With this training data generator,
arbitrary amounts of training sentences can be generated. Of course, generat-
ing way more sentences than the 150 templates will lead to the same effect that
we observed before with ChatGPT-generated examples. To test the optimal
amount of training data the same models were trained on different training set
sizes:

Figure 5: NER model comparison with different training set sizes

Depending on the model the best amount of training data is somewhere
between 100 and 500 sentences. Because certain labels are more important to
the archive than others the per-label comparison between different models may
be more meaningful:

Here we can see that the german-bert model outperforms the XLM roBERTa
model on the client and location entities substantially despite having a lower
total score.

8.5 Models

8.5.1 BERT

BERT, or Bidirectional Encoder Representations from Transformers (Devlin et
al., 2018), is a transformative model in natural language processing (NLP) in-
troduced by Google in 2018. It addresses the limitations of traditional language
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Figure 6: NER model comparison by entities

models by employing a bidirectional context understanding approach within
a transformer architecture. Unlike traditional models, BERT processes words
in both directions simultaneously, enhancing its ability to capture contextual
nuances.

The architecture comprises multiple layers of encoders with self-attention
mechanisms, facilitating parallelized training. BERT’s pre-training involves
predicting masked words in a given context, leveraging a large dictionary. In
contrast to traditional recurrent neural networks (RNN), BERT and the other
transformer models are trained with Masked language modeling (MLM). Tak-
ing a sentence, the model randomly masks 15% of the words in the input then
runs the entire masked sentence through the model and predicts the masked
words. This allows the model to learn a bidirectional representation of the sen-
tence. Pre-training is followed by fine-tuning on specific tasks, enables BERT
to achieve state-of-the-art performance in various NLP benchmarks. Its con-
textual understanding, transfer learning capabilities, multilingual support, and
consistent top-tier performance make BERT a cornerstone in natural language
understanding and uniquely suited for the given use case. (Liu et al., 2019b)

For this paper, the BERT base model is used as a baseline benchmark. In my
tests, the model consistently ranks at the lower end with a score of 65%. Like
the other tested transformer models, BERT requires retraining to be usable.

8.5.2 roBERTa

roBERTa, or robustly optimized BERT approach (Liu et al., 2019a), represents
a refinement of the original BERT architecture, introduced by Facebook AI in
2019. Built upon the success of BERT, roBERTa incorporates key modifications
to enhance its performance on various natural language processing (NLP) tasks.
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Notable adjustments include removing the next sentence prediction objective,
training with larger mini-batches and learning rates, and dynamically masking
out spans of text during pre-training. These alterations contribute to roBERTa’s
robustness and improved generalization across diverse tasks and domains.

The roBERTa base model scores well in my tests after retraining, scoring a
f1 score of close to 80%.

8.5.3 roBERTa large

RoBERTa Large (Liu et al., 2019b) is an extension of the RoBERTa model,
representing a high-capacity transformer-based architecture designed to excel
in natural language processing tasks. Introduced by Facebook AI, RoBERTa
Large is characterized by a substantial increase in model parameters, enabling
it to capture intricate contextual relationships within vast amounts of data.
The larger variant of the roBERTa model does bring an increase in prediction
accuracy of about 7% over the base model.

8.5.4 XLM roBERTa

XLM roBERTa is an extension of the RoBERTa model and represents a cross-
lingual variant designed to address multilingual challenges in natural language
processing. Developed by Facebook AI, XLM roBERTa inherits the robust pre-
training strategies of RoBERTa while incorporating cross-lingual training objec-
tives. This enables the model to effectively capture language-agnostic features,
making it well-suited for tasks across multiple languages. XLM roBERTa should
perform better in the test, given its focus on language-independent features, but
the improvements in accuracy are negligible compared to the roBERTa large
model.

8.5.5 German Bert

German BERT (Chan et al., 2019) is a BERT variant built by deepset. It is
trained on more than 10GB of German text data from Wikipedia, OpenLe-
galData, and news articles. German BERT significantly outperforms Google’s
multilingual BERT models. My test confirm the accuracy of German Bert with
a score of 86% and more importantly a score of 82% on the client entity and
a score of 81% on the location entity, outperforming all other tested models on
these crucial entities.

8.6 Conclusion

Overall the performance of all NER models is good on the precondition that
the input data is perfect, the performance on the OCR predicted text will be
discussed in the next chapter. The German BERT model trained on 500 sen-
tences is chosen as the best model for the given task. It performs quite well
with client, location and scale entities as these example sentences show:
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• Überbauung Dübendorf (LOC) Projekt zur Gestaltung der Gärten

• Herrn A. Wick-Isler Ing. (CLT) Schnitte (CLT) Bassin (LOC) M
1:50 (MST)

• Herrn Dr. Zuellig (CLT) Schloss Meienberg (LOC) Masstab 1:200
(MST)

• Giesswannerbrunnen Friedhof Gränichen (LOC) M. 1:10 (MST), Plan
nr. 3138 (DATE)

Legend: Correctly labeled, unlabeled, Incorrectly labeled
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9 Software

This chapter highlights some interesting problems encountered during the project
as well as the software architecture used.

9.1 Architecture

All code in this project is implemented in Python, chosen for its widespread
adoption in AI research. To enhance code readability and streamline develop-
ment, type hints are extensively incorporated. Leveraging the benefits of type
hints, such as autocomplete in combination with an IDE, facilitates smoother
handling of diverse data types and formats. Given the unique format require-
ments for input data across various models, I made the decision to design spe-
cific classes. These include classes for input data (Fragment), entities, prediction
results, and an enum encapsulating all entity labels. This modular approach en-
sures a more organized and adaptable codebase, tailored to the specific demands
of different machine learning models.

1 @dataclass

2 class Entity:

3 text: str

4 label: EntityLabel

5 start_index: int

6 end_index: int

7

8 def __init__(self , text: str , label: EntityLabel , title: str):

9 self.text = text

10 self.label = label

11 self.start_index = self.__find_start_index(text , title)

12 self.end_index = self.start_index + len(text)

13

14 @staticmethod

15 def __find_start_index(text , title):

16 if len(text) == 0:

17 raise ValueError(f’entitiy is empty , title: "{title }"’)

18

19 start_index = title.find(text)

20 if start_index == -1:

21 raise IndexError(f’Start index of text "{text}" could

not be found in title "{title }"’)

22 return start_index

23

24 def __repr__(self):

25 return f’Entity ("{ self.text}", {self.label.name}, ({self.

start_index },{self.end_index }))’

26

27 @dataclass

28 class Fragment:

29 text: str

30 entities: list[Entity]

31

32 def entities_overlap(self) -> bool:

33 local_entities = [entity for entity in self.entities]

34 entity_to_check = None
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35 while len(local_entities) > 0:

36 entity_to_check = local_entities.pop(0)

37 for entity in local_entities:

38 if (entity.start_index < entity_to_check.

start_index < entity.end_index

39 or entity_to_check.start_index < entity.

start_index < entity_to_check.end_index

40 or entity.start_index < entity_to_check.

end_index < entity.end_index

41 or entity_to_check.start_index < entity.

end_index < entity_to_check.end_index):

42 return True

43 return False

44

45 @dataclass

46 class PredictionResult:

47 accuracy: float | None

48 precision: float | None

49 recall: float | None

50

51 entity_accuracy: dict[str , float]

52

53 text: str

54 entities: list[Entity]

55 predictions: list[Entity]

56

57 class EntityLabel(Enum):

58 CLT = ’Client ’,

59 LOC = ’Location ’,

60 MST = ’Scale’,

61 CLOC = ’Creation -place’

62 DATE = ’Date’

Listing 1: Classes used to make the models interopable

In addition, an abstract model class has been developed to provide model-
independent functionalities, such as prediction evaluation based on an input
fragment and a prediction result. Furthermore, a dedicated data loader has been
implemented to convert the CSV file containing training and testing data into
fragments. The streamlined design ensures that the coding effort required for
a specific model is minimized. Only the abstract methods for loading a model,
training, predicting, and testing need to be implemented. Complementing this,
a small amount of ’glue code’ is necessary to translate the fragment into the
expected data format of the respective model. This modular approach promotes
code reusability and safes time testing different models.

9.2 Data

All data is stored in a csv with tab characters as the delimiter, because sentences
often contain commas. The training data has the following columns:

1. sentence

2. CLT (client)
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3. LOC (location)

4. MST (scale)

5. CLOC (creation location)

6. DATE (creation date)

The model evaluation file has the following columns:

1. title (string)

2. accuracy (float)

3. entity accuracy (dictionary with entities as the key and the accuracy as
value)

4. predictions (list of entities)

5. targets (list of entities)

9.3 Stamp removal

The stamp removal is implemented with template matching from the openCV
python package (OpenCV-Team, 2023). The images are loaded and converted
to grayscale. A margin of 60 pixels is added to the bottom of the mask to blank
out the cut off part of the stamp, additionally a margin of 10 pixels is added
around the stamp to avoid black lines from the stamp showing up. The template
matching algorithm prived by openCV returns a score for every coordinate of
the image, therefore the biggest is chosen as the possible location of the stamp.
If this value is bigger than the certainty threshold (default is 0.32) then the
stamp is removed, if the value is lower it is assumed that no stamp exists on
the image and the input image is returned unmodified. To remove the stamp
six pixels around the stamp are sampeld and the average of these pixels is used
to paint over the stamps location. This averaging is used because not all plans
do have a very light background and this avoids sharp differences in contrast
which the OCR model could mistake for a character. Finally the edited image
is returned.

9.4 K-Means clustering

The clustering algorithm is dependent on the number of bounding boxes iden-
tified. If the number of boxes is below three, they are all treated as one group
and returned. If the number of boxes is between 3 and 5, k-means is calculated
with 2 and 3 as the value k, if there are more boxes, k-means is calculated with
all numbers between 5 and 12 as the value k. After that, the shiluette score for
all values of k is calculated and the groupes with the biggest score are returned.
The k-means algorithm is provided by the scikit-learn pyton package (“A set of
python modules for machine learning and data mining”, 2023)
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9.5 Box ordering

After the clustering finds related boxes they need to be ordered correctly. This
is achieved by first finding all boxes in the same row: All boxes are compared
and they are determined to be in the same row if the y-axis center of the first
box is between the highest and lowest point of the other box. After the rows of
boxes are created, they are ordered left to right by their left most x coordinate.

9.6 Data generation

The method generate ner training data can generate an infinite amount of train-
ing sentences. The manually written strings are stored in a dictionary with the
corresponding entities and stored in a list.

1 [{’template ’: ’Garten $CLT in $LOC’, ’tokens ’: [’$CLT’, ’$LOC’]}]

Listing 2: Template dictionary

The method calls the corresponding generator method for each entitiy in the
template. Depending on the entity this method just returns a string from a list
or formats it in a certain way like the scale generator does:

1 def mst_generator ():

2 buffer = []

3 templates = [

4 ’Masstab $MST’,
5 ’Masstab: $MST’,
6 ’Mst: $MST’,
7 ’M. $MST’,
8 ’M: $MST’,
9 ’M. = $MST’,

10 ’M = $MST’,
11 ]

12 while True:

13 if len(buffer) > 0:

14 mst = buffer.pop()

15 if mst:

16 yield random.choice(templates).replace(’$MST’, mst)

, mst

17 continue

18 buffer = get_list_from_csv(’../../ data/ner/training_data.

csv’, ’MST’, delimiter=’\t’)

Listing 3: scale generator method

9.7 Testing

A set of unit tests were written for the evaluation method and the transformer
base model. These two components are crucial for the whole project and changed
several times. These tests made refactoring easier by avoiding regressions.
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9.8 Repository

All code is publicly available on GitHub:
https://github.com/kevinloeffler/ASLA-AI
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10 Hardware

10.1 DGX-2

Fortunately, the OST granted me access to their high-performance computing
hardware. The DGX-2 is a cutting-edge, high-performance computing system
designed by NVIDIA, specifically engineered to accelerate AI and deep learning
workloads. It is equipped with 16 Tesla V100 Tensor Core GPUs interconnected
with NVLink technology, providing a combined 2 petaflops of processing power.
The DGX-2 proved invaluable for rapid iteration and testing of various models,
training sets, and parameters. At OST, the DGX-2 operates with Apptainer,
a container environment akin to Docker but built for HPC. Notably, Apptainer
images do not demand root access, distinguishing them from Docker images
that typically run with elevated privileges. To accommodate my specific needs,
I crafted a custom Apptainer image for Python 3.10. This was necessary as all
prebuilt images utilized Python 3.8, which lacked support for the type hinting
syntax I did want to use.

10.2 Training

All models where trained using a single GPU but often I trained multiple mod-
els in parallel. Depending on the training data and model size, training took
between 5 and 45 minutes per model. I trained between 100 and 700 steps de-
pending on the training size and recorded all runs with help of the Weights &
Biases framework.
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11 Conclusion

11.1 Requirement evaluation

The main goal of this paper was to find suitable OCR and NER models and
build a proof of concept that could extract five different entities from an image
of a historic plan. This was achieved. The defined requirements in chapter 3
are evaluated as following:

• The system should find related groups or blocks of text in scanned
images
The system can find all relevant words reliably and the clustering works
well.

• The system should be able to extract characters and words from
the identified groups of text
The system can extract the text groups into strings, the prediction accu-
racy depends heavily on the legibility of the text. The performance can
and should be improved with fine training on custom data and prepro-
cessing of the images.

• The system should extract a set of predefined entities (client,
location, scale, date, creation location) from the text
The NER model works great on simulated (clean) data and is passable on
OCR output. The model struggles with sentences that are random text
on plans where it tries to predict nonexistent entities. This tendency to
overpredict (false positives) should be corrected in the future, on the one
hand with a better OCR pipeline and on the other with a more robust
NER model that is also trained on sentences without any entities.

• The system should support JPEG and TIFF formats
The system accepts all commonly used image formats including JPEG and
TIFF.

• The system should ignore irrelevant archival data (e.g. stamps)
The stamps are reliably filtered out with template matching, resulting in
better performance for the whole pipeline.

• Correctly identifying more relevant entities, such as the client
and location, is more important than scale or the creation loca-
tion
The system achieves the best accuracies on the client entity, followed by
location and scale, prioritizing the important entities.

• Although speed is not a major concern in this paper, the whole
pipeline should respect the constraints of a future application
The system does not achieve this requirements, on images with more than
10 text boxes (most), the whole pipeline does take more than 20 seconds.
The most time intensive part is the text extraction with the trOCR model.
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This could be improved by filtering the bounding boxes based on confi-
dence befor handing them to the OCR model, or using a faster OCR model
like EasyOCR which would sacrifice accuracy.

• Compiling a comprehensive comparison and analysis of different
models and architectures
The paper thouroughly tests several different models. The code is written
very modular so that more and new released models could be trained and
tested with little extra code.

• Based on the comparison, finding a suitable model architecture
for OCR and NER
The paper proposes an architecture that is a proof of concept for the given
task.

11.2 Pipeline performance

During the comprehensive testing of the entire pipeline on various test images,
an F1-score of 0.4791 was attained when evaluating the predicted entities.
The precision of the pipeline is calculated as 0.3484, with a recall of 0.7666.
These scores fall notably below the NER model’s performance on clean data.
The primary challenge for the pipeline lies in the NER model excelling in sen-
tences containing entities (high recall) but struggling with those without any
entities (low precision). Depending on the specific plan, these non-entity sen-
tences can vary significantly in frequency. Enhancing precision in this context
could be achieved through additional NER training sentences that lack entities,
thereby training the model to identify them. However, this poses a more in-
tricate problem, as non-entity sentences lack a discernible pattern compared to
their entity-containing counterparts. An alternative strategy involves acquiring
training data for the layout model to enable the identification of landmarks such
as the plan header or architect/date block. This would enable the OCR model
to selectively predict sentences with these landmarks and disregard others, po-
tentially offering a more effective solution.

A less significant yet more straightforward improvement involves filtering the
architect’s name and office. The NER model, particularly German BERT, has
a tendency to misclassify the architect’s name as the client. Given that all plans
within a specific estate originate from the same architect, an approach would
be to manually input these names at the start of a project and subsequently
exclude them from the NER prediction result. If these predictions were ignored
the F1-score would increase by 6% from 0.47 to 0.53.

11.3 Spellchecker

The implemented spellchecker exhibits limited utility. Because many crucial en-
tities are not found in standard dictionaries, it cannot be effectively applied after
the OCR model, as this would risk erroneously replacing names and locations.
In response to this challenge, I chose to deploy the spellchecker after the NER
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Figure 7: Visualization of the pipeline output

model predicts the labels. By doing so, I am able to selectively ignore words
labeled as ”client” and ”location.” The exploration of a spellchecker optimized
for the use with OCR outputs could be an interesting research project.

11.4 Future work

In the future I want to improve the AI pipeline explored in this paper and
implement it into a app that the archive can use to digizite the plans. By
working with the app the archive can gather the currently missing training data
over the next years, allowing further retraining in the future.
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