
Development of a
Gamifiable Application for
Programming Education
By Svenja Sutter, Lukas Messmer, Mathias Fischler

Bachelor’s Thesis
Department of Computer Science

Eastern Switzerland University of Applied Sciences
Advisor: Prof. Dr. Frieder Loch

Co-Examiner I: Dr. Juliane Fischer
Co-Examiner II: Prof. Frank Koch

Date: 14.06.2024

Abstract

This Bachelor's thesis documents the implementation and design of Codable. Codable
is a user-centered application for creating, managing and solving exercises in an aca-
demic environment. Its main goal is to improve the organizational and qualitative
problems of exercises in the Department of Computer Science, which were identified
in the preceding semester thesis written by Lukas Messmer and Mathias Fischler.
The paper focuses on the architectural design of Codable and documents aspects such
as the implemented plugin system, the automation process for exercise submissions
and evaluations, as well as the architectural decomposition of the system.

About this Document

This document is structured into three parts:

1. Product Documentation: The first part documents the product that was devel-
oped as part of the Bachelor’s thesis. It is written in a non-time-bound manner
using the arc42 Template (Starke & Hruschka, 2024) and includes a description of
the architecture, the implemented features as well as other product-related top-
ics. This part is intended to be used for further development after the completion
of this Bachelor’s thesis.

2. Project Documentation: The second part documents the Bachelor’s thesis itself.
It contains a rough overview of the milestones, a description of the conducted
work as well as other formalities. This part is only meant to serve as a reference
for the examination committee.

3. Appendix: The last part lists relevant work items for both the product and pro-
ject documentation. It is indented to provide additional details on certain topics
if their documentation was not considered useful in any of the other parts.

Table of Contents
1. Management Summary .. 3

1.1. Introduction ... 3
1.2. Details & Result ... 3
1.3. Outlook ... 4

Product Documentation .. 5

2. Introduction & Goals ... 6
2.1. Context ... 6
2.2. Requirements Overview .. 6
2.3. Quality Goals .. 7
2.4. Stakeholders ... 7

3. Context & Scope .. 8
3.1. System Context .. 8

4. Solution Strategy .. 10
4.1. Organizational Decisions .. 10
4.2. Architectural Decisions .. 10
4.3. Technology Decisions .. 12

5. Building Block View .. 14
5.1. Whitebox of the System ... 14
5.2. Building Blocks - Level 2 .. 16

6. Runtime View .. 19
6.1. Working on Exercises ... 19
6.2. Authentication & Authorization .. 22

7. Deployment View ... 24
7.1. Development (Local) ... 24
7.2. Production (Remote) ... 25

8. Crosscutting Concepts .. 26
8.1. Domain Model ... 26
8.2. Plugin System .. 27
8.3. Gamification .. 32
8.4. Authentication & Authorization .. 33
8.5. Testing .. 34

9. Quality Requirements .. 35
9.1. Quality Attributes .. 35
9.2. Quality Attribute Scenarios .. 35

10. Risks and Technical Debt .. 37
10.1. Technical Risks ... 37
10.2. Business & Domain Risks .. 38

11. Glossary .. 39
11.1. Terms ... 39
11.2. Abbreviations .. 41

1

Project Documentation ... 42

12. Assignment .. 43
12.1. Context .. 43
12.2. Concrete Assignment .. 43
12.3. Formalities ... 43

13. Project Management .. 45
13.1. Goals ... 45
13.2. Approach .. 47
13.3. Planning .. 47

14. Retrospective .. 50
14.1. Context .. 50
14.2. Requirements Assessment .. 50
14.3. Organisational Management ... 50
14.4. Conclusion .. 51

15. Outlook ... 52
15.1. Context .. 52
15.2. Short Term Goals ... 52
15.3. Long Term Opportunities .. 52
15.4. Further Development ... 52
15.5. Gamification .. 53

16. Bibliography .. 54
17. Listings .. 56

17.1. Figures ... 56
17.2. Tables ... 56
17.3. Architectural Decision Records (ADRs) .. 57
17.4. Code Snippets .. 57

Appendix ... 58

I Original Assignment ... 59
II Requests & Requirements ... 61

II.A Functional Requirements .. 61
II.B Feature Requests .. 63

III Plugin Examples ... 67
III.A A Block Returning Plain HTML .. 67
III.B A Block to Validate User Content ... 67
III.C A Block Enabling Editing in the Browser ... 68
III.D A Block Setting Completion of an Exercise .. 69

IV Screenshots of the UI ... 70
V Usability Testing ... 73

V.A Wissensziele ... 73
V.B Szenarien ... 74
V.C Protokolle & Testauswertung .. 76

2

1. Management Summary
1.1. Introduction
In this Bachelor’s thesis, we were tasked with the creation and implementation of
Codable. Codable is a new user-centered application for creating, managing and solv-
ing exercises in an academic environment. Its main goal is to improve the organiza-
tional and qualitative problems of exercises in the Department of Computer Science,
which were identified in the preceding semester thesis written by Lukas Messmer
and Mathias Fischler (Messmer & Fischler, 2023).

1.2. Details & Result
In its current state, Codable allows the creation and management of exercises by lec-
turers and assistants. Exercises are structured into courses and can be granularly
configured both in terms of their content (i.e. what the exercise should contain) as
well as their logic (i.e. how the exercise should be evaluated). At the same time, the
application provides a uniform interface for students to solve and submit exercises
either locally with Git or via the browser.

Figure 1: Codable allows extensive customization of exercise contents and logic

The main strength of Codable comes from its modular plugin system, which allows
lecturers to extend the functionalities of the application with regard to the exercise
contents by implementing a dedicated C# interface. In addition, the application en-
ables modeling exercise logics using a flow-engine-like system, which means that so-
phisticated workflows can be created that automatically run when students submit
their exercises. Both of these features facilitate the streamlining of exercises across
different courses, making it easier for students to solve and submit exercises even
when complex tools or evaluation processes are required in the background.

3

Figure 2: All exercises can be solved in the browser or locally using Git

1.3. Outlook
Codable is intended to be used productively in the coming semesters at the Eastern
Switzerland University of Applied Sciences. If the application is well received, fur-
ther development might take place to improve upon its current features. We are
confident that Codable can considerably increase both interest and engagement in
exercises if resources are provided to ensure the sustainable growth of the system.
Additionally, the foundational work done in both this and the preceding thesis can
be used to implement and expand the gamification mechanism initially envisioned.

4

Product
Documentation

5

2. Introduction & Goals
2.1. Context
This paper documents the architecture of Codable¹. Codable is a user-centered ap-
plication for creating, managing and solving exercises in a academic environment.

¹Due to legacy reasons, some resources may still use the former name “CodingQuiz”.

Its main goal is to improve the organizational and qualitative problems of exercises
in the Department of Computer Science, which were identified in a semester thesis
written in 2023 (Messmer & Fischler, 2023). The application is being developed in
collaboration with the Department of Computer Science at the OST – Eastern Switzer-
land University of Applied Sciences.

2.2. Requirements Overview
Codable allows the creation and management of exercises by lecturers, assistants or
similar (so-called exercise makers). Exercises are structured into courses and can be
granularly configured both in terms of their content (using a modular plugin system)
as well as their logic (using a flow-engine-like system). At the same time, the applica-
tion provides a uniform interface for students (called exercise solvers) to solve and
submit exercises either locally using Git or via the browser.

The functional requirements of the system are defined using 59 use cases organized
into 6 epics, which are shown in Table 1. All use cases can be found in the appendix
under Section II.A or in the internal GitLab repository.

IID Requirement

163 The application allows creating and modifying courses.

164 The application allows adding custom exercise contents (plugins).

165 The application allows configuring exercise logic via a flow system.

166 The application allows working on exercises online via browser.

167 The application allows working on exercises locally via Git.

168 The application allows user management using OST systems.

Table 1: The main functional requirements (i.e. epics) of the system

The functional requirements are primarily derived from 101 feature requests (writ-
ten as user stories), which describe the general needs and wants of the targeted user
base.² These feature requests can be found in the appendix under Section II.B or in
the internal GitLab repository.

²Most of these user stories were formulated as part of the aforementioned semester thesis.

6

https://gitlab.ost.ch/ifs/user-centered-design/codingquiz/codingquiz_application/-/issues/?sort=created_date&state=opened&label_name%5B%5D=MVP
https://gitlab.ost.ch/ifs/user-centered-design/codingquiz/codingquiz_application/-/issues/?sort=created_date&state=opened&label_name%5B%5D=User%20Story

2.3. Quality Goals
Figure 3 shows the three most important quality goals of the system.

QA1

Extendable Exercises

The specific content or
logic of exercises must
be highly modifiable by
exercise makers.

QA2

Minimal Workload

The modification of
courses and exercises
must be completable
with a minimal amount
of manual effort.

QA3

Uniform Interface

The user interface for
exercise solvers must
be consistent across
different courses.

Figure 3: The main quality goals of the system

These quality goals were identified as part of the aforementioned semester thesis
(Messmer & Fischler, 2023) and are important due to their high architectural signif-
icance. All quality goals and quality attribute scenarios can be found in Section 9.
Details on how these quality goals influence the system can be found in Section 4.2.

2.4. Stakeholders
Table 2 shows the stakeholders of the system.

Name Role & Expectations

Department of
Computer Science

The Department of Computer Science is responsible for
financing the further development of the system. They
need to be convinced that the system is beneficial to
achieve their organizational objectives in order to provide
the necessary resources for further development.

I3 Institute for
Interactive
Informatics

The I3 Institute for Interactive Informatics is responsible
for the further development of the system. They require a
sufficient documentation in order to understand and
continue work on the system.

Lecturers &
Assistants

Lecturers and assistants are the main providers of content
for the system. They need to be convinced that the system
is suitable for them to invest their time and effort into it.

Students Students are the primary users of the system. Although
they have no direct influence on the system, they must be
satisfied in order for the system to provide actual value to
the Department of Computer Science.

Table 2: The stakeholders of the system

7

3. Context & Scope
3.1. System Context
Figure 4 shows the context of the system in relation to its external communication
partners (i.e. other systems and users) using a C4 context diagram (Brown, 2018).

Figure 4: An overview of the scope and context of the application

3.1.1. Rationale

Y³

In the context of the external dependencies to GitLab, Adunis, Microsoft
Entra ID and Microsoft Graph, facing the need to reduce management
overhead for exercise makers (QA2), we decided to include these systems
as communication partners, to achieve the ability to automatically trans-
fer information (such as course name, members, files) without manual
work by exercise makers, accepting the downsides of additional depen-
dencies and complexity in our system.

ADR 1: Why do we accept so many external dependencies?

³Y-Statements (read “Why-Statements”) are designed to summarize architectural decisions in a
single, structured sentence (Zimmermann, 2022). This structure is used throughout this document.

8

Microsoft Entra ID: Microsoft Entra ID was chosen as the single sign-on (SSO)
provider for the system because there is a guarantee that all of our targeted users
(i.e. students, lecturers and other OST staff) will have an OST Microsoft account. This
is not the case with other single sign-on providers such as GitLab, which requires
users to first log in to the OST GitLab instance. At the same time, we do not want
to be concerned with the security risks and administrative overhead of implement-
ing our own authentication mechanisms, which is why we opted for a single sign-on
provider in the first place. For more information about authentication and autho-
rization, please refer to Section 8.4.

Microsoft Graph: Because we have chosen Microsoft Entra ID as our single sign-on
(SSO) provider for the reasons stated above, Microsoft Graph is the most convenient
choice for accessing data and information about the logged-in user.⁴ Microsoft Graph

⁴This is because Microsoft Graph is a protected API that requires authentication using an access
token provided by Microsoft Entra ID, which we already use anyway. (Microsoft, 2023)

stores various information (such as the user’s name, photo and group membership)
that we require for both the user experience and authorization mechanisms. For
more information about authorization, please refer to Section 8.4.2.

9

4. Solution Strategy
4.1. Organizational Decisions
The architecture of this system is primarily derived from feature requests (see ap-
pendix Section II.B) expressed as part of the user-centered design process employed
by the development team (International Organization for Standardization, 2019). The
conceptual foundation of the architecture is described in a semester thesis from 2023
(Messmer & Fischler, 2023). This user-centered approach should be maintained to
ensure a long-lasting and healthy development of the system.

4.2. Architectural Decisions
This section provides rationals for the core architectural decisions of the system,
particularly with regards to the quality goals defined in Section 2.3.

4.2.1. Plugin System

Y

In the context of extendable exercise content and logic, facing the need to
provide highly modifiable exercises (QA1), we decided to develop a plugin
system using .NET DLLs, and neglected other options such as providing
predefined building blocks or allowing extension through technologies
such as iframe⁵, to achieve independent and extensive modifiability and
extendability of exercises by exercise makers, accepting the downside of
giving exercise makers access to all .NET Runtime features (R2) as well as
significant additional complexity in our system.

ADR 2: Why are we implementing a plugin system?

⁵This could mean that we allow the exercises to be written in HTML, but if further logic is re-
quired, an iframe must be included.

Y

In the context of the plugin system, facing the need to provide a uniform
and consistent experience for exercise solvers (QA3), we decided to create
a system where courses and their hierarchical structure remain consis-
tent with only the exercise content and logic being able to change, and ne-
glected other options such as giving exercise makers the ability to change
the course hierarchy using the plugin system, to achieve consistent work-
flows and interfaces across different exercises and courses.

ADR 3: Why is the plugin system limited to exercises?

Remarks: Balancing the need for highly modifiable exercises (QA1) with the need
for a consistent interface (QA3) creates conflicts, since the plugin system supports
extensive customisation that may introduce inconsistencies in the user interface. In
addition to limiting the plugin system to exercises, frequently used plugins may be
included as standard building blocks in the future to ensure uniformity.

10

4.2.2. Automation & Dependencies

Y

In the context of the workload of exercise makers, facing the need to min-
imize it as much as possible (QA2), we decided to integrate as many exter-
nal dependencies as possible (such as importing course information from
Adunis), to achieve a minimal amount of manual effort for our functional
requirements (Section II.A), accepting the downside of having additional
dependencies that are outside of our control.

ADR 4: Why do we integrate with multiple external dependencies?

Remarks: The need for minimal workload (QA2) also influences other aspects such
as the information architecture (Laubheimer, 2022) of the system, for which we gen-
erally prefer a flat content hierarchy with a high information density per page. The
intention is to enable quick creation and solving of exercises without having to nav-
igate between different pages, resulting in a more streamlined experience.

Wherever possible, external dependencies should also be integrated on an optional
basis in order to avoid rendering the application unusable if an external dependency
is not available. This is not always possible, however, for example when authenticat-
ing users using the single sign-on (SSO) provider.

4.2.3. File Storage

Y

In the context of course and exercise file storage, facing the need to allow
local work and reduce the disk space required for courses, we decided
to use a Git server powered by Gitolite, and neglected implementing Git’s
“smart” or “dumb” HTTP protocol (Git Contributors, n.d.-a) manually or
attempting any custom implementations of Git-like features, to achieve
the ability to manage courses and their files using branching, versioning,
and fine-grained access control, accepting the downside of having to run
a quite unknown program (Gitolite) that falls under the GPL v2 license⁶.

ADR 5: Why do we use a Git server (Gitolite)?

⁶GPL v2 means that if we make any modifications to the Gitolite software, we are required to
publish it again as open source under the GPL v2 license.

Remarks: By using Git, we can reduce the disk space of a course by storing all files
of exercise solvers in the same repository but on separate branches. This allows Git
to reuse the same object (Git Contributors, n.d.-b) as the hashes of the original course
files and the files of exercise solvers are identical, meaning we only need to save the
difference when an exercise is submitted.

11

4.3. Technology Decisions
This section outlines the important technologies used in the system with additional
explanations as to why they were chosen. Some of the technologies listed (i.e. .NET,
React and SQLite) have already been examined and established in the semester the-
sis of 2023 (Messmer & Fischler, 2023). For information on where these technologies
are used within the system architecture, please refer to Section 5.1.

4.3.1. Core Application (Backend)
Table 3 outlines the key technologies and libraries used in the Core Application.

Technology Description

.NET
(Backend)

.NET was chosen for its ecosystem and due to the existing
experience and familiarity of the development team and the
Department of Computer Science, which needs to be able to
write plugins. It is also cross-platform, enabling development
on multiple operating systems.

Autofac
(IoC Container)

Autofac was chosen because it is an advanced Inversion of
Control (IoC) container for .NET that simplifies dependency
injection in our application. It allows for flexible and efficient
management of dependencies and object lifetimes, ensuring
that services are properly configured and resolved at runtime.

Funcky
(Library)

This library enables the proper application of functional
programming paradigms in C#.

EF Core
(ORM Library)

Entity Framework (EF) Core is a well-established, open-source
object-relational mapping (ORM) framework for .NET.

Microsoft
Identity Web
(Authentication)

The Microsoft Identity Web library was chosen because it is the
official Microsoft library for integrating Microsoft Entra ID into
ASP.NET applications.

Table 3: The important technologies of the Core Application

4.3.2. Client (Frontend)
Table 4 outlines the key technologies and dependencies used in the Client.

Technology Description

React
(Frontend)

Chosen because it is open source, has an active maintainer
base, and is scalable, making it well suited for potential growth.

Zustand
(State Management)

Selected for its simplicity, ease of implementation, and minimal
overhead in comparison to Redux.

12

https://dotnet.microsoft.com/
https://autofac.org/
https://www.nuget.org/packages/Funcky
https://learn.microsoft.com/en-us/aspnet/entity-framework
https://github.com/AzureAD/microsoft-identity-web
https://github.com/AzureAD/microsoft-identity-web
https://react.dev/
https://docs.pmnd.rs/zustand/getting-started/introduction
https://redux.js.org/

Technology Description

OpenAPI
(API Client Generation)

Utilized to generate TypeScript clients from OpenAPI
specifications, streamlining API integration without the use of
Java codegen in builds.

Radix
(Component Library)

Provides a selection of unstyled UI primitives that are fully
functional, accessible and highly customisable.

Monaco
(Web Editor)

Monaco, the editor powering Visual Studio Code, offers syntax
highlighting, IntelliSense, and multi-language support,
enriching the online development experience.

MSAL React
(Authentication)

The Microsoft Authentication Library (MSAL) for React was
chosen because it is the official Microsoft library for integrating
Microsoft Entra ID into React applications.

Table 4: The important technologies of the Client

4.3.3. Persistence
Table 5 outlines the technologies used for persistence.

Technology Description

Gitolite
(Git Server)

Gitolite was chosen because it allows per-branch permissions,
can execute custom commands whenever a commit is pushed
to a branch, and allows remote and fine-grained programmatic
control of user authentication. All of these features are
necessary to integrate the Git server with our system.

SQLite
(Database)

SQLite was chosen for its simplicity and interchangeability.
Using SQLite with Entity Framework (EF) Core allows for future
drop-in replacement with other relational SQL databases (e.g.
PostgreSQL, MariaDB/MySQL, etc.), which offer broader feature
sets and have existing EF Core providers (Microsoft, 2024).
Additionally, unlike other databases, SQLite requires no setup
or installation as it is simply file-based.

Table 5: The important technologies for persistence

4.3.3.1. About Gitolite
As Gitolite is a quite unknown technology that serves an important role in our system,
here are some additional remarks: Gitolite’s repository and branch permissions are
managed through an “admin” repository, which also contains the user’s SSH keys. Gi-
tolite can also be configured to allow executables (specifically VREFs (Chamarty, n.d.))
to be defined for events over this repository. This enables automatic deployment of
such executables using the same mechanisms as updating SSH keys or adding/remov-
ing repository permissions.

13

https://github.com/ferdikoomen/openapi-typescript-codegen
https://www.radix-ui.com/
https://microsoft.github.io/monaco-editor/
https://www.npmjs.com/package/@azure/msal-react
https://gitolite.com/
https://sqlite.org/

5. Building Block View
5.1. Whitebox of the System
Figure 5 shows the system architecture using a C4 container diagram (Brown, 2018).

Figure 5: An overview of the system architecture

5.1.1. Rationale

Y

In the context of the decomposition of the Codable application, we decided
on a Three-Tiered Architecture using the Remote User Interface and Remote
Database patterns, and neglected other distribution patterns, to achieve a
faster time-to-market in the early stages of application development, ac-
cepting the downside that switching to another pattern (such as Distrib-
uted Application Kernel) in order to address the concerns described under
R1 will require additional effort in the future. (Renzel & Keller, 1997)

ADR 6: Why do we implement a three-tiered architecture?

14

5.1.2. Additional Remarks
Git Server: As mentioned in Section 4.3.3.1, Gitolite allows the definition of executa-
bles that can be run whenever a commit is pushed to a branch, allowing us to notify
the Core Application whenever changes are made to course files. Since these executa-
bles can also receive information about which file was changed in which branch, we
can clearly identify which user changed which file in which course/exercise, mean-
ing we can run exercise evaluations whenever an exercise solver pushes something
from their local machine (see Section 6.1).

These executables can also write output to the user, allowing us to provide exercise
solvers a direct link to our application in their shell whenever they push any changes,
simplifying the workflow and improving convenience and integration.

Since we also allow users to edit their exercises in the browser (i.e. via the Client),
we can fetch, update and then push changes to Gitolite from within the Core Appli-
cation whenever the Client makes an API request to update a file (see Section 6.1).
This means that our Git Server always contains the most up-to-date changes of the
exercise solver’s files, which is why we consider it our source of truth.

Adunis: At the time of writing, Adunis is only accessed in the client to ensure that
the course information (such as name, duration, etc.) does not have to be manually
entered by a user. The core application has no direct relation to Adunis and functions
regardless of whether an Adunis course exists or not.

15

5.2. Building Blocks - Level 2

5.2.1. Client (Sitemap)
Figure 6 shows the sitemap of the Client single-page application.

Figure 6: The sitemap of the Client single-page application

Site Details

Route

/manager
Users

Exercise Makers
Manager

Description

The manager is the homepage for exercise makers. It contains a list
of all courses (see R3) as well as a Wizard for creating new courses.
It is intended to serve as a Dashboard, with further content being
added as the system is expanded (Tidwell et al., 2020).

Route

/editor/{courseId}
Users

Exercise Makers
Editor

Description

The editor allows exercise makers to create, modify and delete the
contents of a course. It is designed to resemble integrated develop-
ment environments (IDEs) and game engines commonly used by
software engineers. It is loosely based on the Canvas Plus Palette
pattern (Tidwell, Brewer, & Valencia, 2020).

Route

/dashboard
Users

Exercise Solvers
Dashboard

Description

The dashboard is the homepage for the exercise solvers. It contains
a list of all courses stored within the system (see R3). It is intended
to serve as a Dashboard, with further content being added as the
system is expanded (Tidwell, Brewer, & Valencia, 2020).

16

Site Details

Route

/course/{courseId}
Users

Exercise Solvers
Course

Description

The course contains an overview of all exercises within a course,
organized into their corresponding weeks. It is designed to resem-
ble the level screens of various video games (Strachan, n.d.) as well
as being based on a didactical concept known as learning paths (de.
Lernpfade) (Universität Zürich, n.d.).

Route

/course/{courseId}/exercise/{exerciseId}
Users

Exercise Solvers
Exercise

Description

The exercise contains the actual contents of an exercise. As the con-
tents of an exercise are defined through the customizable block sys-
tem (see Section 8.2), this page primarily displays the render outputs
of the configured blocks.

Route

/wiki
Users

All
Wiki

Description

The wiki is intended to contain various information about the sys-
tem, such as instructions for creating custom blocks and for upload-
ing plugins. This page has not yet been implemented.

Route

/account
Users

All
Account

Description

The account is intended to contain various personal information
about the signed-in user. It may also be the place where users can
personalize their profile and view their earned badges. This page
has not yet been implemented.

Route

/account/settings
Users

All
Settings

Description

The settings is the place where users can change their settings (e.g.
access tokens). It makes use of the Settings Editor pattern (Tidwell,
Brewer, & Valencia, 2020) and may require enhanced categorization
if more settings are added as the system expands.

17

5.2.2. Core Application (Components)
Figure 7 shows the components of the Core Application container using a C4 compo-
nent diagram (Brown, 2018).

Figure 7: An overview of the Core Application container

18

6. Runtime View
6.1. Working on Exercises
Figure 8 to Figure 11 show different processes related to working on exercises using
UML sequence diagrams (Fakhroutdinov, 2015a). To emphasize the separation of the
repository storage in the Core Application’s file system and Gitolite’s internal storage,
the Core Application File System has been added to the diagrams, which is not visible
in other diagrams such as the system architecture in Section 5.1.

Prerequisites: For the diagrams to be valid, existing courses, exercises and flows as
well as a correctly configured SSH key for local work are required.

6.1.1. Opening an Exercise
Figure 8 is only valid if no evaluation is running. Please refer to Section 6.1.4 for the
sequence diagram showing an ongoing evaluation.

Figure 8: The process when opening an exercise

19

6.1.2. Editing an Exercise in the Browser

Figure 9: The process when editing an exercise in the browser

6.1.3. Editing an Exercise Locally

Figure 10: The process when editing an exercise locally

20

6.1.4. Waiting for Evaluation

Figure 11: The process when waiting for evaluation

21

6.2. Authentication & Authorization

6.2.1. Sign-In Process
Figure 12 shows the sign-in process of the system, including the acquisition of access
tokens and the retrieval of detailed user information (such as name, photo, etc.) from
Microsoft Graph, using a UML sequence diagram (Fakhroutdinov, 2015a).

Prerequisites: For the diagram to be valid, the user must not be signed in already and
none of the requested information (e.g. access token) must be cached in the browser.⁷

⁷Please note that caching (which is activated) causes some of the shown requests to be skipped.
For example, Microsoft Entra ID is not called if a valid access token is present in the cache.

Figure 12: The sign-in process of the system

22

6.2.2. Authorization Process
Figure 13 shows the authorization process when calling API endpoints of the Core
Application from the Client using a UML sequence diagram (Fakhroutdinov, 2015a).
It also shows the difference between the different protection levels, i.e. endpoints
for all users (course reading) versus endpoints only for exercise makers (course cre-
ation), which is explained in more detail in Section 8.4.2.

Prerequisites: For the diagram to be valid, the user must be signed in, must be an
exercise maker (i.e. belong to the “OST Staff” group) and none of the requested in-
formation (e.g. access token) must be cached in the browser or on the server.⁸

⁸Please note that caching (which is activated) causes some of the shown requests to be skipped.
For example, Microsoft Entra ID is not called if a valid access token is present in the cache.

Figure 13: The authorization process when calling API endpoints

23

7. Deployment View
7.1. Development (Local)
Figure 14 shows the deployment of the system when working locally (i.e. in the local
development environment) using a UML deployment diagram (Fakhroutdinov, 2015b).
For instructions on how to set up your local development environment, please refer
to the readme found in the internal GitLab repository.

Figure 14: The deployment of the system when working locally

7.1.1. Rationale
Proxy: The main reason we are using a Vite Proxy is to enable the system to access
Adunis from the Client. Adunis does not have CORS enabled on its resources, which
means that these resources cannot be accessed directly from the Client running in
the browser. For this reason, all requests to Adunis must be routed over a proxy.⁹

⁹We highly suspect that this is a misconfiguration on Adunis’ side, as public APIs should usually
have CORS enabled.

24

https://gitlab.ost.ch/ifs/user-centered-design/codingquiz/codingquiz_application/-/blob/main/README.md

7.2. Production (Remote)
Figure 15 shows the deployment of the system on the OST Portainer instance (i.e.
in the remote development environment and the production environment) using a
UML deployment diagram (Fakhroutdinov, 2015b). There are currently two Portainer
stacks running (i.e. codable and codable-dev) that mirror each other in their de-
ployment, but have slight alterations in their configuration. For more information
on the deployment process, please refer to Section 7.2.2.

Figure 15: The deployment of the system on the OST Portainer instance

7.2.1. Rationale
Proxy: We are using a specific Caddy Proxy (geometalab/env-configurable-caddy)
because it is the recommended image of the IFS Institute for Software to be used on
the OST Portainer instance (Jordan, 2021).

7.2.2. Deployment Process
At the time of writing, the deployment process of the system is partially automatic
and partially manual. Each time a new commit is pushed to either the main or
release branch, a new Docker image named codingquiz_application with the tag
latest or stable respectively is automatically created through the GitLab pipeline

configured in the internal GitLab repository. Afterwards, the new Docker image must
be manually pulled and restarted on the OST Portainer instance.

In general, the production environment uses the stable image, while the remote de-
velopment environment uses the latest image. However, please refer to the Docker
Compose (docker-compose.yml) files located on the OST Portainer instance for the
concrete and up-to-date configuration of these two environments.

25

https://gitlab.ost.ch/ifs/user-centered-design/codingquiz/codingquiz_application/-/blob/main/.gitlab-ci.yml

8. Crosscutting Concepts
8.1. Domain Model
Figure 16 shows the conceptual domain model of the system. Please note that this
diagram does not show any classes or database entities, but instead depicts the sys-
tem from a non-technical, domain-oriented perspective. If you are interested in the
corresponding implementation, please generate a diagram from the code itself.

Figure 16: The conceptual domain model of the system

26

8.2. Plugin System
This section provides an overview over the technical design of the plugin system that
allows exercise makers to provide their own evaluation and rendering logic, without
directly modifying or redeploying the system.

The section uses many loaded words with regards to the plugin system. Please refer
to the glossary (Section 11) for clarifications.

8.2.1. Plugin Detection
Exercise makers can upload .NET DLLs (plugin files) containing blocks in the course
editor. These plugins are then scanned for implementations of these blocks using re-
flection. The detected blocks and their metadata (e.g. name, properties, flow inputs
and outputs) are then stored in the database. After uploading a plugin file, the blocks
are available to be assigned to exercises.

8.2.2. Plugin Loading & Evaluation
There are two scenarios when a block instance¹⁰ is evaluated:

¹⁰Block Instance means that the block is assigned to an exercise. Each assignment of a Block (De-
finition) is a separate Block Instance. Please refer to the glossary (Section 11) for details.

1. The block contains no flow inputs or outputs, but contains properties
2. The block contains at least one flow input

Semantically, a block without any inputs and properties, as well as a block that only
has inputs but no outputs makes no sense.

8.2.2.1. Statically Rendered Blocks
In the first scenario, the block instance is evaluated each time a property is changed
by an exercise maker. All properties must have a value for the evaluation to be pos-
sible¹¹. Such blocks can be used, for example, to create an exercise description.

¹¹This is only partially precise, as default values are provided for most Primitives.

8.2.2.2. Dynamically Rendered Blocks
In the second scenario, the block instance is evaluated each time an exercise solver
changes their files, as currently the only event causing flow evaluation is the submis-
sion of file changes by exercise solvers.

At the time of writing, a block instance can only be evaluated if all of its inputs are
provided in the flow configuration. Moreover, all of its properties, if any are defined,
must also be set. Outputs do not need to be connected. No validation of the connec-
tion data types is currently being done. The consequence is a runtime error during
evaluation if the output connected to the block instance’s input cannot be assigned,
e.g. a string to an int .

8.2.2.3. Constraints
The defined flow must resemble an acyclic, directed graph in order to avoid cyclical-
ity. The inputs of an exercise (at the time of writing only completion) as well as the
outputs (at the time of writing only the files of the exercise solver) are not considered
the same node of the graph for this purpose.

27

8.2.2.3.1. Branching & Merging Flows
At the time of writing, no re-merging of branched paths is possible inside the flow
system. Such a feature could be implemented by deferring the evaluation of block
instances that do not have all inputs available from other nodes.

8.2.3. Plugin API
The API to be implemented by plugin authors consists of two interfaces.

1 namespace PluginLoading;
2
3 // Internal-use only marker interface
4 public interface IBlock
5 {
6 internal Task<object?> EvaluateInternal();
7 }
8
9 // TReturnValue could be a primitive, or a complex type with annotations
10 public interface IBlock<TReturnValue> : IBlock
11 {
12 async Task<object?> IBlock.EvaluateInternal()
13 => await Evaluate();
14
15 Task<TReturnValue> Evaluate();
16 }

Code Snippet 1: API definition for the IBlock and IBlock<T> interfaces

The first interface is non-generic and simplifies usage inside the application, as it re-
moves generics from the reflection code. It is not meant to be implemented by hand.

The second interface provides a default implementation for the non-generic inter-
face, as well as the generic method that plugin authors have to implement: Evaluate .
Please refer to Section III for some reference implementations.

8.2.3.1. Annotations
The API provides the annotations shown in Code Snippet 2 and Code Snippet 3 in
order to register classes, parameters and properties in the plugin system.

1 // This namespace could be a little more descriptive and could
2 // also contain a version (e.g. Codable.Plugin.V1) to simplify
3 // the rollout of a second generation of the plugin API.
4 namespace PluginLoading;
5
6 [AttributeUsage(AttributeTargets.Parameter)]
7 public class FlowInputAttribute(string? keyOverride = null)
8 : Attribute
9 {
10 public string? KeyOverride { get; } = keyOverride;
11 }

Code Snippet 2: API definitions for annotations related to block construction (1/2)

28

1 [AttributeUsage(
2 AttributeTargets.Property | AttributeTargets.ReturnValue)]
3 public class FlowOutputAttribute(string? keyOverride = null)
4 : Attribute
5 {
6 public string? KeyOverride { get; } = keyOverride;
7 }
8
9 [AttributeUsage(AttributeTargets.Parameter)]
10 public class BlockPropertyAttribute(string? keyOverride = null)
11 : Attribute
12 {
13 public string? KeyOverride { get; } = keyOverride;
14 }
15
16 [AttributeUsage(AttributeTargets.Class)]
17 public class BlockDisplayName(string value)
18 : Attribute
19 {
20 public string Value { get; } = value;
21 }

Code Snippet 3: API definitions for annotations related to block construction (2/2)

8.2.3.2. Render Output
Blocks can return both values to be used in flows as well as output to be rendered.
Currently, Markdown, plain text, iframes and HTML are supported. The application
will persist the render outputs for each evaluated block on every run, so that the
block does not have to be run every time a user opens an exercise. This is important
as blocks are expected to contain longer running operations such as compilation or
execution of test suites. A block can return multiple render outputs by using a custom
type shown in Code Snippet 4 with the appropriate annotations (Section 8.2.3.1).

1 using Funcky;
2 namespace PluginLoading;
3
4 // NonExhaustive to make adding new variants for the
5 // server a non-breaking change for plugins.
6 [DiscriminatedUnion(NonExhaustive = true)]
7 public abstract partial record RenderOutput
8 {
9 public partial record Markdown(string Value) : RenderOutput;
10 public partial record RawString(string Value) : RenderOutput;
11 public partial record InlineFrame(string Url) : RenderOutput;
12 public partial record Html(string Content) : RenderOutput;
13 }

Code Snippet 4: API definitions of RenderOutput

29

8.2.3.2.1. Encapsulation of Render Outputs
In order to ensure encapsulation and separation from page-level JavaScript and CSS
in the Client, exercise render outputs are enclosed within a shadow DOM (MDN Con-
tributors, 2024a). This encapsulation shields the internal structure of the Client’s
DOM tree and secures it from any external manipulation by the render outputs¹².

¹²Although only trusted plugin authors can create blocks that generate render outputs, we still
want to protect our system as much as possible (see R2).

The resulting DOM structure is illustrated in Figure 17.

Figure 17: Encapsulation of render output using shadow DOM

The render outputs may also contain web components (MDN Contributors, 2024b)
that are provided by the Client for plugin authors to use. These web components
are predefined, reusable custom elements that extend the set of elements available
in the browser, making it easier for exercise makers to create engaging exercise
content. At the time of writing, the system only provides one web component, the
<monaco-editor> component.

30

8.2.3.3. File Abstractions
The following section describes three different interfaces related to course files to
be used by plugins. Their usage is best understood by taking a look at the reference
implementations found in the appendix under Section III.

The first two interfaces are used to define properties. A reference to any file present
in the course file storage can be assigned to properties of these types. In this case,
IStaticallyReferencedFile marks a course file that cannot be edited by exercise

solvers, while IUserEditableFile marks a course file that can be edited.

1 public interface IStaticallyReferencedFile
2 {
3 string RootRelativePath { get; }
4
5 string ReadAllText();
6
7 byte[] ReadAllBytes();
8 }

Code Snippet 5: API definition of IStaticallyReferencedFile

1 public interface IUserEditableFile
2 {
3 string RootRelativePath { get; }
4 }

Code Snippet 6: API definition of IUserEditableFile

The third interface, IFile , is used for flow inputs meant to be connected to the exer-
cise’s file output. The correct constructor argument would be IEnumerable<IFile> ,
annotated with [FlowInput] . When connected to an exercise, the flow system will
pass all files configured through properties defined as IUserEditableFile for the
exercise under evaluation. This provides access to the exercise solver’s latest file con-
tents for any given file. Please refer to Section III for a usage example.

1 public interface IFile
2 {
3 string RepositoryRelativePath { get; }
4
5 Task<string> ReadAllTextAsync();
6 }

Code Snippet 7: API definiton of IFile

31

8.3. Gamification
Figure 18 shows the motivators of the system using the Octalysis Framework (Chou,
2015). A motivator is any implicit (i.e. given by the circumstances) or explicit (i.e.
specifically designed) incentive that motivates users to engage with the system. For
an overview of some implicit and explicit motivators that may be utilized, please re-
fer to the game techniques described in the Octalysis Framework.

White Hat

Black Hat

IntrinsicEx
tr

in
si

c

Epic Meaning

Acco
mplis

hment

O
w

ne
rs

hi
p

Sca
rci

ty

Avoidance

Unpredictability

Social Influence

Empowerment

G2 G1

G3
Figure 18: The motivators of the system using the Octalysis Framework

8.3.1. Epic Meaning

Motivator Description

G1 Studying out
of personal
interest
(Implicit)

An important motivator for exercise solvers is whether
they are genuinely interested in the provided exercises
and want to complete them for their own personal
interest. As this is highly dependent on the course and
the individual, we cannot directly control this motivator.

32

8.3.2. Accomplishment

Motivator Description

G2 Progressing in
the course
(Explicit)

The user interface for courses has been specifically
designed to resemble the level screens of various video
games (Strachan, n.d.). The intention is to give exercise
solvers a sense of accomplishment as they progress
through the course, in addition to providing a good
overview of which exercises have been completed or not.

8.3.3. Avoidance

Motivator Description

G3 Avoid failing
the exam
(Implicit)

In contrast to motivator G1, exercise solvers may engage
in exercises simply to avoid failing the final exam. This
should be considered when designing features that could
conflict with this motivator (e.g. time-bound exercises
that may no longer be solvable during the exam phase).

8.4. Authentication & Authorization

8.4.1. Authentication
In order for the system to allow authentication using the Microsoft Entra ID single
sign-on (SSO) provider, two “app registrations” had to be configured on the OST Mi-
crosoft Entra ID tenant¹³:

¹³Access to the OST Microsoft Entra ID tenant must be requested from the OST ICT department.

• OST IFS CodingQuiz: The app registration used by the Client
• OST IFS CodingQuiz API: The app registration used by the Core Application

These app registrations are required for users to sign in with their OST Microsoft
accounts and in order to obtain and validate access tokens in the Client and Core Ap-
plication. Figure 19 shows the current configuration in regards to the access tokens
and their scopes. However, for the concrete and up-to-date configuration, please re-
fer to the actual configuration in the OST Microsoft Entra ID tenant.

Figure 19: An overview of the Microsoft Entra ID access token scopes

33

While there are many examples and explanations in various qualities on how to set
up and configure single sign-on using Microsoft Entra ID (especially in regards to the
libraries used in this system, as described in Section 4.3), we recommend the exam-
ples “Calling a protected web API” (Erişen, 2023a), “Call Microsoft Graph (JavaScrip-
t)” (Erişen, 2023b) and “Call Microsoft Graph (.NET)” (Microsoft, 2023), on which this
configuration is largely based on.

8.4.2. Authorization
At the time of writing, the Core Application uses user information accessible via Mi-
crosoft Graph to restrict certain API calls based on the user’s group membership.
This means that API functions intended only for exercise makers (such as creating
or updating courses) can only be performed by users belonging to the “OST Staff”
group.¹⁴ All other functions (such as reading or solving courses) are accessible to all
signed-in users.

¹⁴The “OST Staff” group was chosen because it includes all users who might be interested in try-
ing out the system. Since all OST employees are contractually obligated to not intentionally harm
the organization, we consider such an access range reasonable.

There is currently no per-course access management set up, which means that all
exercise makers can edit all courses and that all exercise solvers can read and solve
all courses. This is not the intended final behavior and should be changed if the sys-
tem is to be used productively by multiple exercise makers in the future (R3).

For an example of the authorization process, please refer to Section 6.2.2.

8.5. Testing

8.5.1. Automatic Testing
The system undergoes automatic testing using technology-appropriate frameworks
to ensure the continuous functioning of its features. Since no testing requirements
are imposed by any of the stakeholders, no specifications for aspects such as test cov-
erage or similar are defined to avoid arbitrary or unreasonable quality standards.
The development team is encouraged to test their functionalities in accordance with
common industry standards.

8.5.2. Usability Testing
As intended by the user-centered design process (International Organization for
Standardization, 2019), regular usability tests are conducted to ensure the system
meets the expectations and requirements of the targeted user base. Suitable scenar-
ios for both exercise makers and exercise solvers, as well as protocols of conducted
usability tests, can be found in the appendix under Section V.

34

9. Quality Requirements
9.1. Quality Attributes
Table 6 shows the quality attributes of the system. Quality attributes should be spe-
cific in their scope (see S.M.A.R.T. (Doran, 1981)). The categorization follows the ISO/
IEC 25010 standard (ISO/IEC, 2023).¹⁵

¹⁵The categorization is currently omitted, as it would introduce unnecessary clutter into this
(currently quite short) table. The categories are therefore written as comments in the source code.

Specification Scenarios

QA1 The specific content or logic of exercises must be highly
modifiable by exercise makers.

QAS1

QA2 The modification of courses and exercises must be
completable with a minimal amount of manual effort.

QAS2

QA3 The user interface for exercise solvers must be consistent
across different courses.

QAS3

QA4 The user interface must be accessible in accordance with the
OST recommendations (Loch & Stolze, 2022).

QAS4

QA5 The disk space required for course data must be minimized
to ensure scalability for large numbers of users.

QAS5,
QAS6

Table 6: The quality attributes of the system

9.2. Quality Attribute Scenarios
Table 7 shows the quality attribute scenarios of the system. Quality attribute scenar-
ios must be specific and measurable in order to determine whether a quality attribute
is met or not (see S.M.A.R.T. (Doran, 1981)). Since this is not a legal document, terms
such as “all” or “most” are sufficient for the development team to assess the fulfill-
ment of a quality attribute scenario.¹⁶

¹⁶The scenarios were last validated on the 05.06.2024 in a peer review by the development team.

Scenario Fulfilled?

QAS1 Changes to the content or logic of exercises can be made
without having to change or redeploy the system.

Yes

QAS2 All existing or derivable information is added
automatically when courses or exercises are created.

Mostly¹⁷

QAS3 All courses require equivalent actions to complete the
user scenarios as defined in Section V.B.b (excluding the
actual exercise assignment itself).

Yes

35

Scenario Fulfilled?

QAS4 All user interfaces for exercise makers and exercise
solvers have a Lighthouse Accessibility score of above 90.

No¹⁸

QAS5 Redundant exercise data (e.g. unchanged files) is not
stored to minimize disk space usage.

Yes

QAS6 Exercises data is only instantiated when progress is
submitted by exercise solvers. Since not all exercise
solvers will complete their exercises, disk space should
not be wasted unnecessarily.

Yes

Table 7: The quality attribute scenarios of the system

¹⁷We automatically integrate all possible external dependencies such as Adunis and Gitlab. The
heuristic import of courses has been deprioritised as explained in the project management section.

¹⁸During development, we focused on some accessibility issues, such as tab indexes and contrast
ratios. Extensive lighthouse testing has not been done due to time constraints. As Codable moves
forward, it would be beneficial to perform these tests thoroughly.

36

https://chromewebstore.google.com/detail/lighthouse/blipmdconlkpinefehnmjammfjpmpbjk?hl=de

10. Risks and Technical Debt
10.1. Technical Risks
Table 8 shows the accepted technical risks of the system.

Risk Description

R1 Dependence on
core application

The system relies on a single core application for all
core logic and evaluation. If this application fails, the
entire software becomes unusable. This approach
simplifies implementation but creates a single point of
failure. Future versions may explore distributed
evaluation to improve reliability.

R2 Trust in plugin
authors

The system includes a plugin system that allows
exercise makers to create .NET DLLs for integration.
This design enhances extensibility, but also introduces
risk, as we must trust these authors to use all .NET
Runtime features responsibly and securely.

R3 No per-course
access
management

Currently, exercise makers and exercise solvers have
access to all existing courses. Exercise solvers should
be restricted to the courses they belong to and exercise
makers should be restricted to specified courses.

R4 Inconsistent
client-server
synchronisation

Client and server updates are inconsistent due to the
lack of bi-directional synchronisation. For example,
when code is submitted via an editor block or when
changes are committed locally, evaluations are
triggered, but the UI is not notified. Instead, only the
evaluation status is updated via a polling mechanism,
which is suboptimal. Given that an exercise solver can
restore accidentally overwritten submissions using git,
this is a minor issue as there is no permanent loss of
data. Future releases will require consistent bi-
directional synchronisation to address this issue.

Table 8: The technical risks of the system

37

10.2. Business & Domain Risks
Table 9 shows the business and domain risks of the system.

Risk Description

R5 Productive use
of the
application

Despite a comprehensive user need assessment
conducted during the semester thesis, the further
development and productive use of the application
depends on convincing both the exercise makers and
the stakeholders at the Department of Computer
Science about the capabilities of the system.

R6 Exercise Quality Even with the implementation of the quality goals in
Section 9, the exercise makers are still responsible for
maintaining the quality of the exercise content.

Table 9: The business and domain risks of the application

38

11. Glossary
11.1. Terms

Term Stands for

Block (Definition) A unit of logic, which can be assigned to exercises. This
assignment to an exercise creates a Block Instance based
on the Block Definition.

Block Instance May be parameterized by exercise makers through
Properties, and can be evaluated statically (once after any
Property is changed), if no inputs exist (Statically Rendered
Block), or dynamically (meaning once per user submission)
through the flow system, if dependent on other blocks.

Connection A directed connection from a (Flow) Output to a (Flow)
Input.

Evaluation The process of running a Block Instance with the
configured inputs, generating output (which can be Render
Output or Primitives to be used in connected blocks).

Evaluation
Triggers

Evaluation can be triggered for a Block Instance without
any (Flow) Input when the value for a Property is changed
by an exercise maker, or for a whole exercise, when any
new value for the exercise’s inherent outputs (currently
only user files) triggering the evaluation of the whole flow,
following configured Connections, evaluating all Block
Instances on the way.

(Exercise) Flow Many connected Flow Nodes. To allow evaluation, a flow
definition must be a acyclic & directed graph to avoid
infinite recursion. Remark: The Exercise Node itself does
not break the acyclic graph requirement, as it is
interpreted as a set of outputs (value providers) which start
the graph, and a set of inputs which, if connected to, define
the end of the graph, leading to no additional events that
may cause further evaluation of other blocks. This also
means that an exercises completion can not be used as
output of the exercise, as it must be settable through an
input.

Exercise Maker A user who creates, manages and conducts exercises (e.g. a
lecturer or assistant).

Exercise Solver A user who consumes and solves exercises (e.g. a student).

39

Term Stands for

(Flow) Input A Block (Definition) may contain inputs, for which a value
will be provided during the evaluation. To provide the
source of the input value, an exercise maker must connect
the output of a Block Instance or the output of an exercise.

Flow Node A Flow Node provides Flow Inputs and Flow Outputs. Each
(Exercise) Flow contains exactly one exercise providing its
inherent in- and outputs, as well as any number of blocks
instances connected to those. Remark: Block instances that
do not contain any inputs may not contain any flow outputs
and are also not viable to be used in flows.

(Flow) Output A Block (Definition) may contain outputs, which the Block
Instance will have to return after being called with all
required inputs and properties during evaluation. Outputs
can be connected to other inputs as part of the flow, or
provide concrete values for inherent properties of
exercises, e.g. the exercise solvers completion of an
exercise in percent.

Plugin A collection of features that can be developed by exercise
makers using the defined APIs. A plugin may contain many
Block Definitions.

Primitives Explicitly supported types for the flow system. At the time
of writing, the following .NET types are supported: bool ,
string , int and decimal .¹⁹

Property A Block (Definition) may contain Properties, for which a
value will be provided during the evaluation. A Block
Instance can have its Properties set by exercise makers.
Properties may only be Primitives.

Render Output A Block (Definition) may contain Render Outputs, which
will be stored after evaluation and used to render the
exercise for the user. For example, a Block could return an
HTML file that lists the passed and failed test cases to the
exercise solver after his submission. The user will only be
shown the latest Render Output for each Block Instance,
and the render outputs of Statically Rendered Blocks are
shared across all exercise solvers.

Statically
Rendered Block

As mentioned in the definition of Evaluation Triggers, if the
Block contains no Flow Inputs (Properties are allowed), it
will be evaluated only if properties change. Therefore,
Render Outputs for such “static” Blocks are the same for all

40

Term Stands for

users, allowing the application to store the result without
any association to a user.

Submission An exercise solver updates exercise files and submits them
for evaluation.

User File A file, exlicitly part of an exercise, which can be edited by
an exercise solver.

Table 10: The domain-specific terms used in the system

¹⁹These are C# aliases for System.Boolean, System.String, System.Int32 and System.Dec-
imal. Additional types (e.g. Collections, Doubles, etc.) are planned.

11.2. Abbreviations
Abbr. Stands for

ADR Architectural Decision Record

API Application Programming Interface

Abbr. Abbreviation

CORS Cross-Origin Resource Sharing

DLL Dynamic Link Library (.NET)

DOM Document Object Model

EF Entity Framework

IDE Integrated Development Environment

IoC Inversion of Control

MSAL Microsoft Authentication Library

ORM Object-Relational Mapping or Object Relational Mapper

SSH Secure Shell

SSO Single Sign-On

UI User Interface

UML Unified Modeling Language

de. Deutsch (German)

e.g. Exempli Gratia (for example)

i.e. Id Est (that is)

Table 11: The abbreviations used in this document or in the system

41

https://learn.microsoft.com/en-us/dotnet/standard/assembly/

Project
Documentation

42

12. Assignment
12.1. Context
The subsequent sections are based on the original assignment of this Bachelor’s thesis,
which can be found in the appendix under Section I (written in German).

Gamification describes the use of game-like elements in a non-gaming environment.
This allows certain applications to be made more motivational. This Bachelor’s thesis
builds upon a previous project, in which the current practice in the organization of
lectures and, in particular, their exercises was analyzed. The project has shown that
a more holistic approach needs to be pursued in order to motivate students to do
their exercises more consistently, which also includes organizational aspects rather
than just gamification (Messmer & Fischler, 2023). The existing results are to be im-
plemented, expanded and evaluated as part of this Bachelor’s thesis.

12.2. Concrete Assignment
The Bachelor’s thesis should address the following aspects. Deviations from the de-
scribed assignments are possible on agreement during the course of the thesis.

1. The requirements and needs of future users are to be analyzed on the basis of
existing applications.

2. Existing applications with comparable functionalities are to be considered in or-
der to differentiate them from the objective of this thesis. Relevant sources from
scientific literature are to be analyzed and included in the solution identification.

3. Requirements are to be formulated on which a comprehensive technology selec-
tion can be made. Free and open source technologies should be preferred.

4. A human-centered approach is to be pursued in the design of all user interface
components. This includes, for example, the development and evaluation of con-
ceptualizations in cooperation with real users.

5. The chosen approach is to be prototypically implemented. The software architec-
ture and its outcomes must be documented in detail. An implementation is to be
tested with potential users in a realistic environment.

6. The chosen approach is to be critically reflected upon. Concrete suggestions for
improving the process and the results are to be discussed.

Additionally, a suitable project management method including work packages and
an appropriate number of milestones must be documented and regularly updated
during the project. Working hours must be tracked at a work package level.

12.3. Formalities
This Bachelor’s thesis will be rewarded with 12 ECTS upon successful completion. The
expected workload is 360 hours distributed over 17 weeks (~21h/week). The Bache-
lor’s thesis starts on Monday, February 19, 2024 and ends on Friday, June 14, 2024
at 17:00. Meetings with the supervisor are held bi-weekly unless otherwise agreed.

43

All results of this Bachelor’s thesis (e.g. source code, documentation, etc.) must be
made available to the project participants for further use. The documentation is ex-
pected to meet common quality standards for scientific papers. All references to ex-
ternal sources must be cited in the bibliography using the APA 7 style. All written
texts must follow the Guideline for Gender-Sensitive Wording of the Swiss Confeder-
ation (Bundeskanzlei BK, 2023) where applicable.

44

13. Project Management
13.1. Goals
As described in the assignment in Section 12, the purpose of this Bachelor’s thesis
is to implement, expand and evaluate the results that were researched in the 2023
semester thesis written by two members of this project. As such, our main goal is
to implement the functional requirements defined in the section “Minimal Viable
Product” of the semester thesis (Messmer & Fischler, 2023, pp. 40-42).

13.1.1. Must-Have Requirements
Figure 20 and Figure 21 show the must-have requirements of this Bachelor’s thesis
as defined in the preceding semester thesis. For each requirement, it is indicated
whether it has been implemented (✔), partially implemented (~) or not implemented
(✘), with additional information provided below.

Figure 20: The must-have requirements of this Bachelor’s thesis (1/2)

45

Figure 21: The must-have requirements of this Bachelor’s thesis (2/2)

Details & Rationale

1. All courses are currently shown in the course selection, since per-course access
management has not been set up yet (R3).

2. This is possible with the plugin system.

3. All exercises are currently cloned individually. However, with the chosen tech-
nology (Gitolite), such an implementation would be possible.

4. Each exercise currently exists on its own branch within the same repository.
However, with Gitolite, additional branches would be possible.

5. This feature has been disregarded due to time constraints and prioritization.

6. It is currently only possible to import courses (i.e. course files) from GitLab. Since
course files are managed in a dedicated repository within our application (Gito-
lite), it would be possible to allow folders or archives if the need arises.

7. All features in relation to the heuristic import of courses have been deprioritized
to make room for the plugin system, which we considered to be more beneficial
and architecturally significant for the system.

8. Although the owner of a course is stored within the application, it is currently
possible for all exercise makers to edit all courses (R3).

13.1.2. Should-Have Requirements
We have decided to not implement any of the should-have requirements defined in
the preceding semester thesis (Messmer & Fischler, 2023, p. 42). This was done in or-
der to devote more time to the qualitative aspects of both the implementation and
documentation of the must-have requirements.

46

13.2. Approach
As our team consists only of three members, we decided to keep our project manage-
ment approach simple in order to reduce administrative overhead. Our chosen ap-
proach is broadly inspired by iterative and agile process frameworks such as Scrum
(Schwaber & Sutherland, 2020) and the Agile Manifesto (Beck et al., 2001). We also
follow the principles of the user-centered design process (International Organization
for Standardization, 2019).

We use Miro to manage and plan our project. To ensure that we are on track with our
upcoming milestones, internal team meetings are held at least once a week (weekly),
usually on Wednesdays. For each milestone, we hold a short review and retrospec-
tive. In addition, bi-weekly meetings are held with the thesis advisor and thesis ex-
pert to ensure that the project is on track. To avoid formalities, we do not impose any
meeting guidelines in terms of both form or time.

13.3. Planning

13.3.1. Project Plan
Our project plan has been carried over and adapted from our experiences in the se-
mester thesis. As seen in Figure 22, the project is divided into four blocks of three
weeks for the user-centered iterations and six blocks of two weeks for the technical
iterations. At the end of each user-centered iteration, a milestone is located. The the-
sis is flanked by the kickoff (week 1-2) and the submission (week 15-17). During those
weeks, we are focused on planning, documenting and consolidating the project.

Figure 22: An overview of the iterations and milestones within this thesis

13.3.2. Deadlines
There are 3 main deadlines that are relevant for this Bachelor’s thesis:

D1 The mid-term presentation of the thesis (Fri. April 12)
D2 The submission of the abstract (Mon. June 10) and poster (Wed. June 12)
D3 The final submission of the thesis (Fri. June 14)

Since the final presentation (on Thursday, July 4) of the thesis does not fall within the
official time frame of this project, it has been omitted from our project plan.

47

13.3.3. Milestones
All our milestones are roughly planned at the beginning of the Bachelor’s thesis and
then concretized at the end of each preceding iteration. At the end of a milestone,
a review and retrospective takes place in order to validate the completeness of our
defined goals. The progress of each milestone is communicated to the thesis advisor
and the thesis expert at the bi-weekly meetings.

Table 12 shows the milestones we have defined for our Bachelor’s thesis, including
important notes and changes that we discussed in our reviews during the course of
the project. For each defined goal, we have indicated whether it has been completed
(✔), partially completed (~) or not completed (✘) in the respective iteration.

Details

Goals (Initial)

• U126 (Course CRUD)
• U133 (Import)

Goals (End of Kickoff)

• U151 (Course CRUD) ✔
• U155 (Week CRUD) ✔
• U160 (Exercise CRUD) ✔
• U164 (Plugins) ~

M1

Review & Retrospective

• U126 has been split into U151, U155 and U160
• U133 has been dropped in favor of U164
• U164 is still missing its exercise solver parts
• Good progress has been made

Goals (Initial)

• U112 (Dashboard View)
• U113 (Course View)
• U116 (Exercise View)

Goals (End of M1)

• U164 (Plugins) ✔
• U165 (Flows) ✔
• U166 (Exercise Solver View) ✔
• Refactor for U168 ✔

M2

Review & Retrospective

• U112, U113 and U116 have been grouped into U166.
• U164 and U165 are now working.
• Some refactoring in relation to user-specific requests has been made in

preparation for U168.

Goals (Initial)

• U123 (Git)
• U144 (OAuth)

Goals (End of M2)

• U167 (Git) ~
• U168 (OAuth) ~
• Conduct user tests ✔

Review & Retrospective

• U123 is now included in U167.
• U144 is now included in U168.

M3

48

Details

• U167 is more complicated than anticipated, which is why we require
more time for its implementation.

• U168 could not be finished due to ongoing problems with the GitLab
pipeline and long response times from the support team.

• Decent feedback received from the user tests.

Goals (Initial)

• Finish the must-have
requirements

Goals (End of M3)

• U167 (Git) ✔
• U168 (OAuth) ✔
• Implement some user feedback ✔
• Finish the must-have

requirements ✔

M4

Review & Retrospective

• We were able to finish both U167 and U168 in this iteration.
• We were able to include some of the feedback received in the user tests.
• We went through all must-have requirements that were defined at the

end of the SA/beginning of the BA and checked if we fulfilled them.
• We believe that we have adequately addressed all important must-have

requirements and are satisfied with the results of our work.
• We have initiated a code freeze and are now focusing on the

documentation.

Goals (Initial)

• Finish the documentation
• Finish the abstract
• Finish the poster

Goals (End of M4)

• Finish the documentation ✔
• Finish the abstract ✔
• Finish the poster ✔

M5

Review & Retrospective

• We were able to submit all required documents.
• We have successfully finished our Bachelor’s thesis. ᕕ(ᐛ)ᕗᕕ(ᐕ)ᕗ

Table 12: Details about the milestones of this Bachelor’s thesis

49

14. Retrospective
14.1. Context
Motivated by our firsthand experiences with the challenges in the current imple-
mentation of exercises at the OST Department of Computer Science, we committed
ourselves to developing Codable. In this retrospective, we want to look back on our
work and reflect on our approach and results. We assess our initial requirements,
highlight our effective practices, and identify opportunities for improvement.

14.2. Requirements Assessment
In our opinion, we believe that we have successfully implemented the Minimal Vi-
able Product (MVP) as defined in the preceding semester thesis (see Section 13.1). We
also think that we have adequately addressed the aspects under Section 12.2.

In its current state, Codable allows the creation and management of exercises by lec-
turers and assistants. Exercises are structured into courses and can be granularly
configured both in terms of their content (i.e. what the exercise should contain) as
well as their logic (i.e. how the exercise should be evaluated). At the same time, the
application provides a uniform interface for students to solve and submit exercises
either locally with Git or via the browser.

This means that Codable could, for example, be used for the Object-Oriented Pro-
gramming 2 course in the coming semesters. If it is well received, further develop-
ment may take place to enhance its current features, which we would appreciate.

During the Bachelor’s thesis, we realised that certain tasks had to be reprioritised
and new requirements had to be added. For example, that the plugin system was
more architecturally significant to the system than the import heuristics for courses.
These changes and decisions are documented in Section 13.

14.3. Organisational Management

14.3.1. Teamwork & Meetings
Reflecting on our teamwork, our decision to meet in person once a week in Rapper-
swil proved to be effective in facilitating communication and collaboration. These
meetings allowed us to share our progress, support each other and agree on the next
steps. The dedicated Bachelor’s thesis room at OST was practical, providing an en-
vironment conducive to concentration and equipped with essential infrastructure
such as monitors, flipcharts, and coffee nearby :).

Our bi-weekly meetings with Prof. Dr. Frieder Loch and Dr. Juliane Fischer proved
to be an effective means of addressing questions and receiving feedback. We appre-
ciated their dedication throughout the project.

14.3.2. Project Planning
In our opinion, our project planning process was successful. We used milestones to
effectively track progress without spending too much time on detailed planning or

50

diagrams. While a more flexible project planning approach may not be suitable for
every project, it proved beneficial for our Bachelor’s thesis.

The code freeze three weeks before the submission deadline was an advantage, as
it allowed us to focus on the documentation, abstract, and the poster - tasks that re-
quired more effort than anticipated.

Using GitLab for issue tracking proved to be a pragmatic solution, as it centralised
the code, documentation and the issues in one place. However, there were some chal-
lenges. For example, we struggled to define when an issue was considered closed,
especially when dealing with issues and sub-issues.

For future projects, it would be beneficial to define that if all sub-issues are com-
pleted, the issue is considered resolved, with the disadvantage of having to specify all
sub-issues. Alternatively, all sub-issues can be closed, but the issue may still remain
open. As a result, the sub-issues do not provide an accurate indication of the progress
of the issue.

14.3.3. External Dependencies
Due to our limited access, we relied on OST’s support for some of the deployment
and authentication processes. It was crucial to address these external dependencies
early on, as they were time-consuming to manage.

In addition, the OST GitLab runners were a challenge as they were frequently un-
available, resulting in failed pipeline executions.

14.4. Conclusion
Our comprehensive user needs assessment and conceptual planning, initiated dur-
ing the semester thesis, effectively structured the development process, minimizing
unexpected challenges and unplanned issues. This thorough groundwork enabled
us to create a user-centred application that, in our opinion, even in its current state
already improves some of the organisational and qualitative problems of exercises
in the Department of Computer Science.

We believe that this user-centred approach has proven to be much more beneficial
than implementing an application based solely on stakeholder requirements or “our
own opinions”. As such, we are confident that Codable will be able to improve both
student engagement and interest in exercises, even without the gamification mech-
anism originally envisioned, assuming that adequate resources are provided to en-
sure the sustainable growth of the system.

51

15. Outlook
15.1. Context
In the final part of our Bachelor’s thesis, we will explore possible future directions
for Codable, based on the insights and experiences we have gained throughout our
project. We will look at short term goals, long term opportunities, and further devel-
opment ideas that could influence the growth of Codable.

15.2. Short Term Goals
It is intended that Codable will be used productively at OST, most likely for the Object-
Oriented Programming 2 course. This implementation would provide insight into
the performance of the application in an academic environment. We hope to collect
feedback to identify strengths, uncover existing problems and identify missing fea-
tures that could improve the user experience of Codable.

15.3. Long Term Opportunities
If Codable is well received in its first implementation in a course, it may encourage
more exercise makers to start using it. In addition, we could improve the system by
increasing the variety of blocks available, such as multiple choice, and refining the
heuristic import. These improvements would simplify the initial steps for exercise
makers looking to migrate their exercises, making the transition more user friendly
and less time consuming.

Furthermore, the flexibility of the plugin system allows exercise makers to create
custom blocks if the existing ones do not meet their specific needs. This capability
ensures that the platform can adapt and evolve to meet different requirements.

15.4. Further Development
In Table 13 we have identified a number of potential enhancements that could im-
prove the functionality of Codable.

Analytics
Dashboard

A comprehensive dashboard allows exercise makers to actively
monitor completion rates and gather student feedback on
exercises within Codable. This can help to identify areas where
students frequently struggle and where exercise instructions
are unclear. Exercise makers can use this information to
improve their exercises and make more informed decisions
about their courses.

Feedback
Mechanisms

Exercise solvers can ask questions directly within each
exercise. Others with the same question can read the answers
provided, reducing the workload of exercise makers. Exercise
makers can also give direct feedback on solved exercises, which
can be used for mandatory assignments (de. Testate).

52

Template A feature that provides templates that consist of multiple
blocks and their corresponding flow would allow exercise
makers to configure exercises more efficiently, as exercises
often have the same structure for evaluation. Exercise makers
can use a template and easily modify individual properties
such as files and expected values.

Import
Heuristics

The ability to import existing courses into our application
would reduce the workload required for migration. Although
this feature has been deprioritised as described in Section 13, it
remains essential to streamline the migration process.

Exam Mode²⁰ The ability to switch to a separate “exam mode”, in which
exercise solvers complete a set of exercises that follow the
structure of the final exam, could significantly improve the
learning process for exams. This could be achieved by allowing
exercise makers to label certain questions as “exam questions”
and then defining how their exam is usually structured (e.g. by
configuring which topics with which difficulties come in which
order). Our application could then generate a practice exam
that can be solved in preparation for the real exam.

Repetition
Features²⁰

Different features for the repetition of exercises may help
exercise solvers to learn topics in a more sustainable way. This
could take the form of “repetition exercises” that are
automatically generated after a few weeks, based on exercises
that a exercise solver has previously struggled with. We could
also allow exercise solvers to mark difficult exercises
themselves in order to find them easier at a later time.

AI
Integration²⁰

To support exercise solvers in their exercises, an AI model
trained for explaining certain concepts or detecting certain
mistakes could be implemented in our application. This could
allow exercise solvers to find solutions to their problems faster
while at the same time reducing the workload of exercise
makers with regard to answering questions.

Table 13: Ideas for the further development of Codable

²⁰These ideas were already defined in the semester thesis. (Messmer & Fischler, 2023, pp. 47-48)

15.5. Gamification
Now that Codable has solved the fundamental problems of exercise creation, man-
agement and evaluation, future development can focus on gamification features. By
aligning these elements, such as leaderboards, rewards and quests, with the positive
motivators identified in Section 8.3, we believe that we can increase student partici-
pation and enthusiasm even further.

53

16. Bibliography
Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Principles behind the
Agile Manifesto. https://agilemanifesto.org/principles.html

Brown, S. (2018). The C4 model for visualising software architecture. https://c4model.
com/

Bundeskanzlei BK. (2023). Leitfaden zum geschlechtergerechten
Formulieren. https://www.bk.admin.ch/bk/de/home/dokumentation/sprachen/
hilfsmittel-textredaktion/leitfaden-zum-geschlechtergerechten-formulieren.
html#download_als_pdf__content_bk_de_home_dokumentation_sprachen_
hilfsmittel-textredaktion_leitfaden-zum-geschlechtergerechten-formulieren_jcr_
content_par_tabs

Chamarty, S. virtual refs. Retrieved June 10, 2024, from https://gitolite.com/gitolite/
vref.html

Chou, Y.-k. (2015). Actionable Gamification: Beyond Points, Badges and Leader-
boards. CreateSpace Independent Publishing Platform. https://yukaichou.com/
gamification-examples/octalysis-complete-gamification-framework/

Doran, G. T. (1981). There's a S.M.A.R.T. way to write management's goals and ob-
jectives. Management Review. https://community.mis.temple.edu/mis0855002fall
2015/files/2015/10/S.M.A.R.T-Way-Management-Review.pdf

Erişen, D. (2023a). Vanilla JavaScript single-page application (SPA) using MSAL.js
to authorize users for calling a protected web API on Azure AD [Computer
software]. https://github.com/Azure-Samples/ms-identity-javascript-tutorial/tree/
main/3-Authorization-II/1-call-api

Erişen, D. (2023b). Vanilla JavaScript single-page application using MSAL.js to au-
thenticate users to call Microsoft Graph [Computer software]. https://github.
com/Azure-Samples/ms-identity-javascript-tutorial/tree/main/2-Authorization-I/
1-call-graph

Fakhroutdinov, K. (2015b, June). Deployment Diagrams Overview. https://www.uml-
diagrams.org/deployment-diagrams-overview.html

Fakhroutdinov, K. (2015a, June). UML Sequence Diagrams. https://www.uml-
diagrams.org/sequence-diagrams.html

Git Contributors. (n.d.-b). 10.2 Git Internals - Git Objects. Retrieved June 10, 2024, from
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

Git Contributors. (n.d.-a). 4.1 Git on the Server - The Protocols. Retrieved June 10, 2024,
from https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

54

https://agilemanifesto.org/principles.html
https://c4model.com/
https://c4model.com/
https://www.bk.admin.ch/bk/de/home/dokumentation/sprachen/hilfsmittel-textredaktion/leitfaden-zum-geschlechtergerechten-formulieren.html#download_als_pdf__content_bk_de_home_dokumentation_sprachen_hilfsmittel-textredaktion_leitfaden-zum-geschlechtergerechten-formulieren_jcr_content_par_tabs
https://www.bk.admin.ch/bk/de/home/dokumentation/sprachen/hilfsmittel-textredaktion/leitfaden-zum-geschlechtergerechten-formulieren.html#download_als_pdf__content_bk_de_home_dokumentation_sprachen_hilfsmittel-textredaktion_leitfaden-zum-geschlechtergerechten-formulieren_jcr_content_par_tabs
https://www.bk.admin.ch/bk/de/home/dokumentation/sprachen/hilfsmittel-textredaktion/leitfaden-zum-geschlechtergerechten-formulieren.html#download_als_pdf__content_bk_de_home_dokumentation_sprachen_hilfsmittel-textredaktion_leitfaden-zum-geschlechtergerechten-formulieren_jcr_content_par_tabs
https://www.bk.admin.ch/bk/de/home/dokumentation/sprachen/hilfsmittel-textredaktion/leitfaden-zum-geschlechtergerechten-formulieren.html#download_als_pdf__content_bk_de_home_dokumentation_sprachen_hilfsmittel-textredaktion_leitfaden-zum-geschlechtergerechten-formulieren_jcr_content_par_tabs
https://www.bk.admin.ch/bk/de/home/dokumentation/sprachen/hilfsmittel-textredaktion/leitfaden-zum-geschlechtergerechten-formulieren.html#download_als_pdf__content_bk_de_home_dokumentation_sprachen_hilfsmittel-textredaktion_leitfaden-zum-geschlechtergerechten-formulieren_jcr_content_par_tabs
https://gitolite.com/gitolite/vref.html
https://gitolite.com/gitolite/vref.html
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://community.mis.temple.edu/mis0855002fall2015/files/2015/10/S.M.A.R.T-Way-Management-Review.pdf
https://community.mis.temple.edu/mis0855002fall2015/files/2015/10/S.M.A.R.T-Way-Management-Review.pdf
https://github.com/Azure-Samples/ms-identity-javascript-tutorial/tree/main/3-Authorization-II/1-call-api
https://github.com/Azure-Samples/ms-identity-javascript-tutorial/tree/main/3-Authorization-II/1-call-api
https://github.com/Azure-Samples/ms-identity-javascript-tutorial/tree/main/2-Authorization-I/1-call-graph
https://github.com/Azure-Samples/ms-identity-javascript-tutorial/tree/main/2-Authorization-I/1-call-graph
https://github.com/Azure-Samples/ms-identity-javascript-tutorial/tree/main/2-Authorization-I/1-call-graph
https://www.uml-diagrams.org/deployment-diagrams-overview.html
https://www.uml-diagrams.org/deployment-diagrams-overview.html
https://www.uml-diagrams.org/sequence-diagrams.html
https://www.uml-diagrams.org/sequence-diagrams.html
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

International Organization for Standardization. (2019). Human-centred design for in-
teractive systems (ISO Standard No. 9241-210:2019). https://www.iso.org/standard/
77520.html

ISO/IEC. (2023). Product quality model (ISO/IEC Standard No. 25010:2023). https://
www.iso.org/standard/78176.html

Jordan, N. (2021). Geometa Lab at IFS [Computer software]. https://github.com/
geometalab/osmaxx/blob/develop/docker-compose-deploy.yml

Laubheimer, P. (2022). Information Architecture: Study Guide. https://www.nngroup.
com/articles/ia-study-guide/

Loch, F., & Stolze, M. (2022, May). Das Thema Accessibility in der Informatik-Ausbil-
dung. https://www.netzwoche.ch/news/2022-05-19/das-thema-accessibility-in-der-
informatik-ausbildung

MDN Contributors. (2024b, February 9). Web Components. https://developer.mozilla.
org/en-US/docs/Web/API/Web_components

MDN Contributors. (2024a, May). Using shadow DOM. https://developer.mozilla.org/
en-US/docs/Web/API/Web_components/Using_shadow_DOM

Messmer, L., & Fischler, M. (2023). Development of a Gamified Application for Program-
ming Education.

Microsoft. (2023). A web API that calls web APIs: Code configuration.
https://learn.microsoft.com/en-us/entra/identity-platform/scenario-web-api-call-
api-app-configuration?tabs=aspnetcore

Microsoft. (2023). Authentication and authorization basics. https://learn.microsoft.
com/en-us/graph/auth/auth-concepts

Microsoft. (2024). Database Providers. https://learn.microsoft.com/en-us/ef/core/
providers/?tabs=dotnet-core-cli

Renzel, K., & Keller, W. (1997). Client/Server Architectures for Business Information
Systems A Pattern Language.

Schwaber, K., & Sutherland, J. (2020). The Scrum Guide. https://scrumguides.org/docs/
scrumguide/v2020/2020-Scrum-Guide-US.pdf

Starke, G., & Hruschka, P. (2024, May 2). arc42. https://arc42.org/

Strachan, D. Daves Compendium of Level Select Screens. Retrieved May 24, 2024, from
http://www.davetech.co.uk/gamedevlevelselect

Tidwell, J., Brewer, C., & Valencia, A. (2020). Designing interfaces : patterns for effective
interaction design (9781492051916; Third edition.). O'Reilly Media, Inc.

Universität Zürich. Lernen mit Lernpfaden. Retrieved November 22, 2023, from
https://teachingtools.uzh.ch/de/tools/lernen-mit-lernpfaden

Zimmermann, O. (2022, September 9). Artifact/Template: Architectural Decision
Record (Y-Statement). https://socadk.github.io/design-practice-repository/artifact-
templates/DPR-ArchitecturalDecisionRecordYForm.html

55

https://www.iso.org/standard/77520.html
https://www.iso.org/standard/77520.html
https://www.iso.org/standard/78176.html
https://www.iso.org/standard/78176.html
https://github.com/geometalab/osmaxx/blob/develop/docker-compose-deploy.yml
https://github.com/geometalab/osmaxx/blob/develop/docker-compose-deploy.yml
https://www.nngroup.com/articles/ia-study-guide/
https://www.nngroup.com/articles/ia-study-guide/
https://www.netzwoche.ch/news/2022-05-19/das-thema-accessibility-in-der-informatik-ausbildung
https://www.netzwoche.ch/news/2022-05-19/das-thema-accessibility-in-der-informatik-ausbildung
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_shadow_DOM
https://learn.microsoft.com/en-us/entra/identity-platform/scenario-web-api-call-api-app-configuration?tabs=aspnetcore
https://learn.microsoft.com/en-us/entra/identity-platform/scenario-web-api-call-api-app-configuration?tabs=aspnetcore
https://learn.microsoft.com/en-us/graph/auth/auth-concepts
https://learn.microsoft.com/en-us/graph/auth/auth-concepts
https://learn.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli
https://learn.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://arc42.org/
http://www.davetech.co.uk/gamedevlevelselect
https://teachingtools.uzh.ch/de/tools/lernen-mit-lernpfaden
https://socadk.github.io/design-practice-repository/artifact-templates/DPR-ArchitecturalDecisionRecordYForm.html
https://socadk.github.io/design-practice-repository/artifact-templates/DPR-ArchitecturalDecisionRecordYForm.html

17. Listings
17.1. Figures
Figure 1: Codable allows extensive customization of exercise contents and logic 3
Figure 2: All exercises can be solved in the browser or locally using Git 4
Figure 3: The main quality goals of the system ... 7
Figure 4: An overview of the scope and context of the application 8
Figure 5: An overview of the system architecture .. 14
Figure 6: The sitemap of the Client single-page application ... 16
Figure 7: An overview of the Core Application container ... 18
Figure 8: The process when opening an exercise ... 19
Figure 9: The process when editing an exercise in the browser 20
Figure 10: The process when editing an exercise locally ... 20
Figure 11: The process when waiting for evaluation .. 21
Figure 12: The sign-in process of the system .. 22
Figure 13: The authorization process when calling API endpoints 23
Figure 14: The deployment of the system when working locally 24
Figure 15: The deployment of the system on the OST Portainer instance 25
Figure 16: The conceptual domain model of the system .. 26
Figure 17: Encapsulation of render output using shadow DOM 30
Figure 18: The motivators of the system using the Octalysis Framework 32
Figure 19: An overview of the Microsoft Entra ID access token scopes 33
Figure 20: The must-have requirements of this Bachelor’s thesis (1/2) 45
Figure 21: The must-have requirements of this Bachelor’s thesis (2/2) 46
Figure 22: An overview of the iterations and milestones within this thesis 47

17.2. Tables
Table 1: The main functional requirements (i.e. epics) of the system 6
Table 2: The stakeholders of the system ... 7
Table 3: The important technologies of the Core Application .. 12
Table 4: The important technologies of the Client .. 12
Table 5: The important technologies for persistence .. 13
Table 6: The quality attributes of the system ... 35
Table 7: The quality attribute scenarios of the system ... 35
Table 8: The technical risks of the system ... 37
Table 9: The business and domain risks of the application ... 38
Table 10: The domain-specific terms used in the system ... 39
Table 11: The abbreviations used in this document or in the system 41
Table 12: Details about the milestones of this Bachelor’s thesis 48
Table 13: Ideas for the further development of Codable .. 52

56

17.3. Architectural Decision Records (ADRs)
ADR 1: Why do we accept so many external dependencies? ... 8
ADR 2: Why are we implementing a plugin system? ... 10
ADR 3: Why is the plugin system limited to exercises? ... 10
ADR 4: Why do we integrate with multiple external dependencies? 11
ADR 5: Why do we use a Git server (Gitolite)? ... 11
ADR 6: Why do we implement a three-tiered architecture? .. 14

17.4. Code Snippets
Code Snippet 1: API definition for the IBlock and IBlock<T> interfaces 28
Code Snippet 2: API definitions for annotations related to block construction (1/2) 28
Code Snippet 3: API definitions for annotations related to block construction (2/2) 29
Code Snippet 4: API definitions of RenderOutput .. 29
Code Snippet 5: API definition of IStaticallyReferencedFile 31
Code Snippet 6: API definition of IUserEditableFile .. 31
Code Snippet 7: API definiton of IFile ... 31

57

Appendix

58

I Original Assignment

59

60

II Requests & Requirements
II.A Functional Requirements
The following table shows the requirements of the system generated from GitLab is-
sues on the 14.06.2024. All requirements are organized into one of 6 epics and may be
further divided into one or more sub-requirements (sub-requirements in the sense
that the requirement is only fulfilled if all sub-requirements are fulfilled). Addition-
ally, grayed-out requirements are considered to be in the backlog. For the most up-
to-date list of requirements, please refer to the internal GitLab repository.

IID Requirement State

163 The application allows creating and modifying courses.

133 The application allows heuristic import of courses and
exercises.

Postponed

136 The title of a course is determined heuristically. Postponed

137 The weekly structure of a course is determined
heuristically.

Postponed

138 The description of an exercise is determined heuristically. Postponed

139 The coding files of an exercise are determined heuristically. Postponed

140 The order of an exercise is determined heuristically. Postponed

141 The solution of an exercise is determined heuristically.

142 The test cases of an exercise are determined heuristically.

151 The application allows CRUD on courses.

127 A new/empty course can be created. Done

134 The files of a course can be imported from GitLab. Done

135 An existing course can be imported from an archive/folder. Postponed

152 An existing course can be edited. Done

153 An existing course can be deleted.

154 The administrative information of a course can be imported
from Adunis.

Done

162 An existing course can be copied to create a new course.

155 The application allows CRUD on weeks.

156 A new/empty week can be added to a course. Done

157 An existing week can be edited. Done

158 An existing week can be deleted. Done

159 An existing week can be restructured in its order.

160 The application allows CRUD on exercises.

61

https://gitlab.ost.ch/ifs/user-centered-design/codingquiz/codingquiz_application/-/issues/?sort=created_date&state=opened&label_name%5B%5D=MVP

128 A new/empty exercise can be added to a week. Done

129 An existing exercise can be edited. Done

131 An existing exercise can be restructured in its order.

161 An existing exercise can be deleted. Done

164 The application allows adding custom exercise contents (plugins).

118 The application provides a standard plugin with an online editor for
coding tasks.

119 The application provides a standard plugin for adding exercise
descriptions.

132 The application provides a standard plugin for running unit tests

169 The application allows exercise makers to programmatically extend
the exercise contents (i.e. plugin system).

Done

170 Plugins can receive files modified by exercise solvers. Done

175 Plugins can have inputs (i.e. properties) provided by exercise
makers.

Done

165 The application allows configuring exercise logic via a flow system.

171 Plugins can be used to calculate the completion of an exercise. Done

172 Plugins can be sequentially combined for more sophisticated
evaluations.

Done

173 The evaluation of an exercise is run each time the exercise solver
submits file changes.

Done

174 The evaluation of an exercise can be triggered manually
(multiple times).

Postponed

166 The application allows working on exercises online via browser.

111 The course selection shows all courses a user belongs to. Postponed

112 The application contains a course selection. Done

113 The application contains an exercise selection. Done

114 The exercise selection shows all exercises of a course. Done

115 Each exercise has a progress bar. Done

116 The application contains an exercise view. Done

117 The exercise view shows the contents of an exercise. Done

120 An exercise can be submitted to trigger the plugin evaluation. Done

167 The application allows working on exercises locally via Git.

123 An exercise can be cloned as a Git repository. Done

124 A course can be cloned as a Git repository. Postponed

125 An exercise can be solved on a separate branch. Postponed

62

168 The application allows user management using OST systems.

145 The application supports user sign-in using OAuth. Done

146 The role of a user is automatically determined using OAuth. Done

147 A course can only be edited by its owner. Postponed

148 The application can gain permissions to read GitLab repositories.

149 Additional allowed editors can be added to a course by its owner.

150 The access rights for a course are automatically imported from Adunis.

II.B Feature Requests
The following table shows the feature requests of the system generated from GitLab
issues on the 14.06.2024. For the most up-to-date list of feature requests, please refer
to the internal GitLab repository.

IID Requirement

5 I want to reduce the overhead for creating and managing exercises.

16 I want to easily migrate to a new solution.

3 I want to use GitLab (VCS) to manage my exercises.

14 I want to automatically synchronize access rights to my exercises (e.g.
Moodle, Adunis)

7 I want to write exercises in markup languages that I am comfortable
with.

8 I want to write exercises in Markdown.

10 I want to write exercises in HTML.

9 I want to write exercises in Jekyll.

11 I want to write exercises in AsciiDoc.

12 I want to write exercises in LaTeX.

72 I want to manage my exercises without using GitLab.

73 I want to manage my exercises directly inside the application.

6 I want to publish my exercises when I change them in GitLab.

15 I want to reuse exercises that have been created before (e.g. for a
different course).

17 I want to automatically provision the components needed for my
exercises (e.g. VMs, Hardware, etc.)

13 I want to link my exercises directly in the corresponding Moodle course.

64 I want to write exercises in WYSIWYGs (e.g. Microsoft Word).

27 I want to provide a wide variety of different exercises.

29 I want to provide practical exercises (e.g. programming tasks)

63

https://gitlab.ost.ch/ifs/user-centered-design/codingquiz/codingquiz_application/-/issues/?sort=created_date&state=opened&label_name%5B%5D=User%20Story

28 I want to provide theory exercises (e.g. text, images)

33 I want to provide exercises that integrate with other tools (e.g. virtual
labs).

34 I want to provide exercises that span over a longer period of time (e.g.
mini-projects)

76 I want to combine theoretical exercises with practical exercises.

30 I want to provide video exercises.

31 I want to provide exercises from external sources (e.g. Codewars)

32 I want to provide exercises that must be solved non-digitally (e.g. using
hardware).

42 I want exercise solvers to submit their solutions for an exercise.

70 I want to evaluate the submissions of exercise solvers using custom
scripts (e.g. SQL Parser).

71 I want to allow exercise solvers to run the evaluation scripts before
submission.

65 I want submissions to be done in different formats (e.g. file upload, plain
text, etc.)

46 I want to provide feedback directly on the submitted solution.

48 I want to provide feedback in form of text.

49 I want to provide feedback in form of an in-person discussion.

47 I want to provide feedback in form of an evaluation matrix.

50 I want to send my feedback to the exercise solvers using e-mail.

44 I want to allow exercise solvers to submit solutions as a team.

45 I want to allow exercise solvers to form teams by themselves.

43 I want to make submissions mandatory.

51 I want to view all submitted solutions of an exercise in one central
location.

53 I want to allow exercise solvers to view the submissions of other exercise
solvers.

52 I want to edit all submitted solutions locally in the editor I am
comfortable with.

54 I want to calculate a grade based on the submitted solutions of an
exercise solver.

55 I want to automatically detect plagiarism in the submitted solutions.

77 I want exercise solvers to review the submissions of other exercise
solvers (e.g. peer reviews).

58 I want to provide automatic testing for an exercise.

64

59 I want to prevent exercise solvers from optimizing their code specifically
for the test cases.

78 I want to be in control of how I solve exercises.

84 I want to solve exercises in an environment I am comfortable with (e.g.
IDE).

94 I want exercises to be easy to set up.

97 I want exercises to be provided in a Git repository.

96 I want to solve exercises without having to install tools locally.

82 I want to be in control of where I solve exercises (e.g. campus, home).

79 I want to be in control of when I solve exercises.

80 I want to save exercises in order to work on them at a later time.

83 I want to access exercises from different devices (e.g. mobile).

95 I want to solve exercises in an online editor.

98 I want to view the solutions of an exercise in a browser.

81 I want to be in control of which exercises I solve.

85 I want to see the solutions of an exercise without having to solve it.

86 I want to have an overview of my exercises.

89 I want to know which exercises belong to which lecture (i.e. week).

90 I want to know which exercises belong to the current lecture.

91 I want to know which exercises belong to which topic.

88 I want to know which exercises are mandatory.

87 I want to view all contents of a lecture in one central location.

92 I want to know which exercises have mandatory attendance.

93 I want to solve exercises that are similar to the exam.

100 I want to receive feedback for my exercise submissions.

107 I want my solutions to be validated automatically.

101 I want to view feedback together with my submission.

108 I want to know why my solution is right or wrong.

102 I want to receive feedback in the form of text.

103 I want to receive feedback directly on the relevant lines of code.

35 I want to structure my exercises chronologically and thematically.

23 I want to incentivize exercise solvers to solve the provided exercises (e.g.
with prices).

18 I want to provide exercises in collaboration with other exercise makers.

40 I want to provide my exercises to exercise solvers who have no knowledge
of Git.

65

104 I want to solve exercises in a reasonable amount of time.

62 I want to allow exercise solvers to access help autonomously when problems
arise.

22 I want to know how many exercise solvers are solving the provided
exercises.

68 I want to allow exercise solvers to use the programming environment they
are comfortable with (e.g. IDE)

60 I want to allow exercise solvers to test their code manually (e.g. using the
main method)

61 I want to explain code to the exercise solvers using artificial intelligence.

69 I want to force exercise solvers to setup a local programming environment.

105 I want to solve exercises multiple times (e.g. for repetition).

106 I want to remind myself which exercises I would like to repeat.

19 I want to provide exercises in different settings.

20 I want to provide exercises for university courses (e.g. FH).

21 I want to provide exercises for courses of further education (e.g. CAS).

63 I want to allow exercise solvers to ask questions about exercises
anonymously.

36 I want to include excerpts from different sources (e.g. code-snippets of
official documentations)

37 I want to receive content contributions from exercise solvers.

38 I want exercise solvers to be able to rate the content contributions of
other exercise solvers.

41 I want to show code examples in my browser.

56 I want to provide discovery tours to explain the code base of an exercise.

57 I want discovery tours to be expandable and maintainable (e.g. JSON
under VC)

66 I want to simplify the setup of my exercises for the exercise solvers.

67 I want to provide setup templates for my exercises (e.g. Docker).

99 I want to solve exercises that use game-like elements (e.g. Kahoot).

109 I want exercise makers to enforce certain tools and standards.

110 I want to solve exercises with a more dynamic scope (e.g. mini-projects).

66

III Plugin Examples
III.A A Block Returning Plain HTML
The BlockProperty attribute configures a injection of a property value, configured
by an exercise maker. In this case, the IStaticallyReferencedFile is a special in-
terface (see Section 8.2.3.3) that will allow exercise makers to link a file that is part
of a course to read the content during evaluation.

This block, if assigned to an exercise, will be evaluated every time the property is
changed, as it contains no flow inputs (and no outputs as well). It is not dependent
on any changes made by the user to any file. For example, a block such as this could
be used to provide an exercise description that was already stored in an HTML file
before migrating to Codable.

1 public class ForwardingHtmlBlock(
2 [BlockProperty] IStaticallyReferencedFile file)
3 : IBlock<RenderOutput.Html>
4 {
5 public Task<RenderOutput.Html> Evaluate()
6 => Task.FromResult(new RenderOutput.Html(file.ReadAllText()));
7 }

III.B A Block to Validate User Content
This block gets the latest state of all files that are editable by the exercise
solver (see Section 8.2.3.3 for clarification regarding IEnumerable<IFile> and
IUserEditableFile). In addition, it provides two properties to be edited by an ex-

ercise maker:
• WhichFile : The configured value defines the file to be checked by this block
• ExpectedContent : The content that the user’s content will be compared to.

Additionally, it returns a custom type: FileContentCheckResult . This type has been
annotated correctly to provide an output to the flow system. It could also contain
render ouptuts, e.g. in the case of running a test suite, the HTML report.

67

1 public class FileContentCheckBlock(
2 [FlowInput("Files")] IEnumerable<IFile> files,
3 [BlockProperty("WhichFile")] IUserEditableFile file,
4 [BlockProperty("ExpectedContent")] string expectedContent)
5 : IBlock<FileContentCheckResult>
6 {
7 public async Task<FileContentCheckResult> Evaluate()
8 => new FileContentCheckResult(
9 await (files
10 .SingleOrDefault(f
11 => f.RepositoryRelativePath == file.RootRelativePath)?
12 .ReadAllTextAsync() ?? Task.FromResult<string>(null!))
13 == expectedContent);
14 }

For the return type definition, a C# feature called primary constructor for records is
being used. Because of this, to annonate the implied property correctly, the attribute
needs to be given a explicit target.

1 public record FileContentCheckResult(
2 [property: FlowOutput("ContentMatches")] bool Value);

For clarity, this would be the semantic equivalent without a primary constructor:

1 public record FileContentCheckResult
2 {
3 public FileContentCheckResult(bool value)
4 {
5 Value = value;
6 }
7
8 [FlowOutput("ContentMatches")]
9 public bool Value { get; init; }
10 }

III.C A Block Enabling Editing in the Browser
To add an editor, our provided <monaco-editor> custom component can be used as
decribed in Section 8.2.3.2.1. It can simply be used as HTML tag inside of an HTML
render output.

68

1 public class EditorBlock([BlockProperty] IUserEditableFile file)
2 : IBlock<RenderOutput.Html>
3 {
4 public Task<RenderOutput.Html> Evaluate()
5 => Task.FromResult(
6 new RenderOutput.Html(
7 // lang=html
8 $"""
9 <div>
10 <monaco-editor
11 rootRelativePath="{
12 HttpUtility.HtmlEncode(file.RootRelativePath)}" />
13 </div>
14 """));
15 }

III.D A Block Setting Completion of an Exercise
The following block showcases flow inputs and outputs, as well as the use of a single
primitive as return value. If a block only provides one output, it can be used directly
as the return type of the Evaluate function, and annotated with an attribute using
the explicit return: attribute target to help the compiler.

A block such as this can be used in combination with a block returning a boolean
value (e.g. success/failure, such as the one in Section III.B) to set the exercise com-
pletion. Completion is a pre-defined flow input of an exercise, that the output of this
block can be connected to. The completion is stored in the database, and shown in
the user interface.

1 public class BoolToPercentageCompletionBlock([FlowInput] bool value)
2 : IBlock<decimal>
3 {
4 [return: FlowOutput("Completion")]
5 public Task<decimal> Evaluate()
6 => Task.FromResult(value ? 100m : 0m);
7 }

69

IV Screenshots of the UI

Codable course overview for exercise makers

Codable weeks overview for exercise solvers

70

Codable exercise for exercise solvers

Codable editor (showing preview) for exercise makers

71

Codable editor (showing flow) for exercise makers

72

V Usability Testing
V.A Wissensziele
Exercise Maker

1. EM kann sich intuitiv durch die Software navigieren.
2. EM kann einen neuen Kurs anlegen.
3. EM kann einen Kurs im Editor öffnen und versteht die Funktionen der ver-

schiedenen Fensterbereiche.
4. EM versteht den Zusammenhang von Nodes und Properties. Der Name eines

Properties ist aussagekräftig genug, sodass der EM die Auswirkung davon ver-
steht.

5. EM kann einen einfachen Flow definieren und versteht den Nutzen der Preview
und des Flows.

6. EM versteht das Plugin-System einschliesslich der Funktionsweise vorhandener
Blocks anhand des Namens.

7. EM kann Blöcke über das Plugin-System hinzufügen.

Exercise Solver

1. ES kann sich intuitiv durch die Software navigieren.
2. Es kann die Aufgaben der aktuellen Woche finden.
3. ES ist in der Lage eine Aufgabe online zu lösen und die Änderungen zu speichern.
4. Es erkennt den Status einer Aufgabe.

73

V.B Szenarien

V.B.a Exercise Maker

Name Szenario WZ Weiteres

1 Kurserstellung

Bald startet das neue Semester. Sie
unterrichten das Modul ”OOP2” und
sollen dies nun erfassen. Ihre Unterlagen
befinden sich aktuell im folgenden
Github Repository: https://gitlab.ost.ch/oo/
oop2/oop2_exercises.git.

EM1,
EM2

Ist der Prozess der Erstellung eines neuen
Kurses verständlich oder werden noch
spezifischere Erklärungen für die
verschiedenen Optionen benötigt?
Versucht der EM Tastenkombinationen zu
verwenden, welche noch nicht
implementiert sind?

2 Kursstruktur
und Editor

Fügen Sie nun dem Kurs eine neue
Aufgabe “Attack the Semicolon” hinzu.

EM3,
EM4

Findet der EM den Editor? Versteht er
den Zusammenhang zwischen den Nodes
und den Properties? Versucht der EM
Tastenkombinationen zu verwenden,
welche noch nicht implementiert sind?

3 Properties
anpassen

Für das neue Semester wurde eine
strukturelle Änderung vorgenommen. Die
Modulkürzel beginnen jetzt mit M-.

EM3,
EM4

4
Zusammenhang
Blocks und
Flow Editor

In der vorhin erstellten Aufgabe “Attack
the Semicolon” sollen die Studierenden
die Datei “FileCopy.java” aus Woche 1 >
Vorlagen > Aufgabe 1 > src/ch/ost/oop/ex1/
task1 bearbeiten können. Anschliessend

EM4,
EM5,
EM6

Kann der EM die zur Verfügung gestellten
Blocks anhand des Namens verwenden
und im Flow Manager entsprechend
konfigurieren? Versteht der EM, dass der

74

https://gitlab.ost.ch/oo/oop2/oop2_exercises.git
https://gitlab.ost.ch/oo/oop2/oop2_exercises.git

Name Szenario WZ Weiteres

legen Sie fest, dass die Aufgabe gelöst ist,
wenn die Studierenden den Inhalt dieser
Datei mit dem Text “done” ersetzen.

Flow Editor immer den Kontext einer
Aufgabe definiert?

5 Plugin
einrichten

Ihr Assistent hat einen neuen Block
“Multiple-Choice” entwickelt. Fügen Sie
Ihrem Kurs eine Beispielaufgabe hinzu,
in der Sie diesen Block verwenden.

EM7 Versteht der EM wie er das Dll hochladen
und verwenden kann?

V.B.b Exercise Solver

Name Szenario WZ Weiteres

1 Kursübersicht

Heute hat die dritte Semesterwoche
begonnen. Nach der Vorlesung “OOP2”
folgt nun die Übungsstunde. Kannst du
die Aufgaben für diese Woche finden?
Weisst du, welche Aufgaben aus den
vergangenen Wochen du bereits gelöst
hast?

ES1, ES2,
ES4

Benötigt es eine Markierung der
aktuellen Woche? Ist der Fortschritt einer
Aufgabe anhand des Progressbars
erkennbar?

2 Aufgabe lösen Du hast die Aufgabe der aktuellen Woche
gefunden. Viel Erfolg beim Lösen. ES3

Wird erkannt, wann die Aufgabe
gespeichert wird? Ist der Prozess der
Evaluation einer Aufgabe klar?

3 Aufgabenstatus Wo kannst du nun erkennen, ob du die
Aufgabe erfolgreich gelöst hast? ES4 Ist der Fortschritt einer Aufgabe zu

erkennen?

75

V.C Protokolle & Testauswertung

V.C.a Exercise Maker
Dozent & Studiengangsleiter Informatik

Auswertung Wissensziel
erreicht

Wissensziel
nicht erreicht

1

Zuerst wollte die Testperson den Namen im Strukturbereich auf der linken
Seite anpassen. Es wurde nicht direkt erkannt, dass sich die Eigenschaften auf
der rechten Seite ändern. Dies ist vor allem bei einem breiten Monitor schwer
zu erkennen.

EM1, EM2

2 Die Aufgabe konnte via Kontextmenü hinzugefügt werden. EM3, EM4

3

Zuerst wollte die Testperson den Namen im Strukturbereich auf der linken
Seite anpassen. Es wurde nicht direkt erkannt, dass sich die Eigenschaften auf
der rechten Seite ändern. Dies ist vor allem bei einem breiten Monitor schwer
zu erkennen.

EM3 EM4

4

Schnell wurde ein Editorblock hinzugefügt und die Datei per Drag & Drop
zugewiesen. Es dauerte jedoch eine Weile, bis der Flow-Tab gefunden wurde.
Es war auch nicht klar, dass die Elemente im Flow-Tab aus der linken Struktur
stammten. Erst nachdem ich die Blockbeschreibungen als Hilfe gezeigt habe,
konnte die Aufgabe gelöst werden. Die Testperson bestätigte jedoch, dass das
System Sinn macht, wenn man es einmal verstanden hat.

EM4 EM5, EM6

5 Der neue Block konnte einfach hinzugefügt werden. EM7

76

Wissenschaftlicher Mitarbeiter

Auswertung Wissensziel
erreicht

Wissensziel
nicht erreicht

1 Kurs konnte ohne Probleme erstellt werden. EM1, EM2

2

Das Kontextmenü zum Hinzufügen einer Aufgabe wurde erst nach
mehrmaligem Klicken gefunden. Der Zusammenhang zwischen Nodes und
Properties wurde nicht direkt erkannt, da auf der linken Seite z.B. der Kurs
ausgewählt wird und auf der rechten Seite die Attribute erscheinen.

EM3 EM4

3 Nachdem klar war, wo die Eigenschaften angepasst werden können, war dies
kein Problem mehr. EM3, EM4

4

Der Block Editor wurde korrekt ausgewählt, aber das Drag and Drop zum
Füllen der Property war nicht intuitiv. Die Blöcke im FLow überlagerten sich
beim ersten Mal, was nicht verständlich war. Ausserdem war nicht klar,
warum der BoolToPercentageCompletionBlock benötigt wird. Durch die
Beschreibung der Blöcke konnte der Flow korrekt zusammengestellt werden.

EM4, EM5 EM6

5 Nachdem der Tab Plugin gefunden wurde, war das Hinzufügen intuitiv. EM7

77

V.C.b Testevaluation
Im Usability-Test wurden die Wissensziele EM4, EM5 und EM6 nicht vollständig er-
reicht. Mit folgenden Massnahmen könnten die Ziele erreicht werden:

EM4:
• Kurzes Einführungstutorial für den Editor würde dem EM verdeutlichen, dass

durch das Anklicken von Elementen, wie z.B. des Kurs Nodes, die entsprechenden
Eigenschaften auf der rechten Seite angepasst werden.

• Die Zuweisung einer Datei zu einer Eigenschaft könnte neben der Drag & Drop-
Funktionalität auch über eine Dropdown-Liste erfolgen. Damit wäre für alle EMs
klar, wie die Datei zugewiesen werden kann. Eine andere Möglichkeit wäre, dies in
das Tutorial zur Einführung in den Editor zu integrieren.

EM5:
• Auch für den Flow einer Aufgabe, würde ein Einführungstutorial helfen, die Funk-

tionsweise besser zu verstehen.
• Derzeit wird der Flow einer Aufgabe in einem Kreis definiert, was für einige EMs

etwas unverständlich sein kann, da das Lösen einer Aufgabe als sequentieller
Prozess betrachtet wird. Daher wäre es sinnvoll, dies in einem zukünftigen Release
als sequentiellen Graphen zu implementieren.

EM6:
• Eine Hilfe- und Informationsseite (/wiki siehe Figure 6) mit der Beschreibung der

verfügbaren Blöcke würde den EMs helfen, die Blöcke zu verwenden, wenn der
Name nicht verständlich genug ist.

V.C.c Integration in Applikation
Um EM4 und EM5 vollständig zu erreichen, wäre ein einführendes Tutorial hilfre-
ich. Die Erstellung eines solchen Tutorials ist zu diesem Zeitpunkt noch nicht sin-
nvoll, da wahrscheinlich Anpassungen vorgenommen werden, bevor Codable für ein
Modul verwendet wird. EM6 wurde, wie oben referenziert, in die Dokumentation
aufgenommen.

Folgende Rückmeldungen aus den Usability Tests konnten wir in Codable integrieren:

• Der Dateipfad einer zugewiesenen Datei zu einem Property kann nicht überprüft
werden.

• Wenn keine Aufgabe gelöst ist und der Fortschritt bei allen Aufgaben bei 0% liegt,
wird nicht erkannt, dass es sich um eine Progressbar handelt. Eine Prozentanzeige
als Tooltip wäre hilfreich.

• Wenn der Flow angepasst wird, aber der Exercise Solver die Aufgabe bereits gelöst
hat, wird die Auswertung nicht gestartet und somit nicht erkannt, dass die Aufgabe
bereits gelöst wurde. Der Evaluationsstatus einer Aufgabe soll angezeigt werden.

• Die Möglichkeit, Strukturelemente umzubenennen, wird nicht benötigt und ist nur
verwirrend.

• Die Aufgaben sollten aufsteigend nummeriert werden.
• Aktionen (z.B. beim Plugin-Upload) sollten dem Benutzer durch Benachrichtigun-

gen bestätigt werden.

78

	Management Summary
	Introduction
	Details & Result
	Outlook

	Product Documentation
	Introduction & Goals
	Context
	Requirements Overview
	Quality Goals
	Stakeholders

	Context & Scope
	System Context
	Rationale

	Solution Strategy
	Organizational Decisions
	Architectural Decisions
	Plugin System
	Automation & Dependencies
	File Storage

	Technology Decisions
	Core Application (Backend)
	Client (Frontend)
	Persistence
	About Gitolite

	Building Block View
	Whitebox of the System
	Rationale
	Additional Remarks

	Building Blocks - Level 2
	Client (Sitemap)
	Core Application (Components)

	Runtime View
	Working on Exercises
	Opening an Exercise
	Editing an Exercise in the Browser
	Editing an Exercise Locally
	Waiting for Evaluation

	Authentication & Authorization
	Sign-In Process
	Authorization Process

	Deployment View
	Development (Local)
	Rationale

	Production (Remote)
	Rationale
	Deployment Process

	Crosscutting Concepts
	Domain Model
	Plugin System
	Plugin Detection
	Plugin Loading & Evaluation
	Statically Rendered Blocks
	Dynamically Rendered Blocks
	Constraints
	Branching & Merging Flows

	Plugin API
	Annotations
	Render Output
	Encapsulation of Render Outputs

	File Abstractions

	Gamification
	Epic Meaning
	Accomplishment
	Avoidance

	Authentication & Authorization
	Authentication
	Authorization

	Testing
	Automatic Testing
	Usability Testing

	Quality Requirements
	Quality Attributes
	Quality Attribute Scenarios

	Risks and Technical Debt
	Technical Risks
	Business & Domain Risks

	Glossary
	Terms
	Abbreviations

	Project Documentation
	Assignment
	Context
	Concrete Assignment
	Formalities

	Project Management
	Goals
	Must-Have Requirements
	Should-Have Requirements

	Approach
	Planning
	Project Plan
	Deadlines
	Milestones

	Retrospective
	Context
	Requirements Assessment
	Organisational Management
	Teamwork & Meetings
	Project Planning
	External Dependencies

	Conclusion

	Outlook
	Context
	Short Term Goals
	Long Term Opportunities
	Further Development
	Gamification

	Bibliography
	Listings
	Figures
	Tables
	Architectural Decision Records (ADRs)
	Code Snippets

	Appendix
	Original Assignment
	Requests & Requirements
	Functional Requirements
	Feature Requests

	Plugin Examples
	A Block Returning Plain HTML
	A Block to Validate User Content
	A Block Enabling Editing in the Browser
	A Block Setting Completion of an Exercise

	Screenshots of the UI
	Usability Testing
	Wissensziele
	Szenarien
	Exercise Maker
	Exercise Solver

	Protokolle & Testauswertung
	Exercise Maker
	Testevaluation
	Integration in Applikation

