
LE Audio Test Infrastructure
Bachelor Thesis - Spring Term 2024

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Authors
Jeremy Stucki & Vina Zahnd

Supervisor
Thomas Corbat, OST

Expert / Co-Examiner
Guido Zgraggen, Google, Inc. / Philipp Kramer, OST

Project Partner
Sonova Holding AG, Stäfa

13.06.2024

Abstract
The introduction of Bluetooth® Core Specification 5.2 has paved the way for new audio transmission
features, like LE Audio and Auracast™, revolutionizing the audio technology landscape. This
bachelor thesis, conducted in collaboration with Sonova Holding AG, aims to develop a test
infrastructure to facilitate the testing of Auracast™ features in Bluetooth® LE Audio devices.

Given the limited adoption and support for Auracast™, there were not many existing solutions for
testing available at the start of this thesis. The main goal of this thesis is to extend the existing test
infrastructure of Sonova with a controlled environment for testing broadcast receivers, ensuring
they can effectively receive and process Auracast™ broadcasts.

The test setup comprises two Nordic nRF5340 Audio Development Kits, configured as broadcast
transmitter and assistant. A .NET-based library manages communication between the boards and the
existing test infrastructure, allowing to set up an Auracast™ environment. Existing sample
applications for the Nordic boards were translated from C to C++ and customized to meet the
project’s requirements. Additionally, a small console application was developed to test the setup
locally.

The successful implementation of this project will contribute to the advancement of audio
technologies, enhancing the use of end-user devices and enabling the development of innovative
audio products. This thesis serves as a first step in adding Auracast™ capabilities to the test
environment, which Sonova will continue to adjust to meet their evolving needs.

The future of Auracast™ appears promising, with many companies quickly adopting the trend. Some
earbuds and smartphones already support the new features, and we are hopeful to see more
widespread adoption in the near future.

i

Management Summary
The primary objective of this bachelor thesis is to extend Sonova’s existing test infrastructure to
facilitate the testing of Auracast™ features in broadcast receivers. Auracast™ is a wireless audio
technology, introduced by Bluetooth® 5.2, that allows users to broadcast audio to multiple devices
simultaneously, enhancing shared listening experiences in public or private settings. The setup
includes a transmitter that sends the broadcast, receivers that listen to the broadcast, and an
assistant that provides information about the available broadcasts. An example on how an
Auracast™ setup could look like in a public area is shown in Figure 1.

Figure 1: Image visualizing audio accessibility for all [1]

To stay competitive and integrate the latest technologies, Sonova wants to extend its current testing
environment to support the new Auracast™ functionalities. The lack of existing infrastructure and
applications for Auracast™ presents a challenge for companies looking to adopt this technology.

The project aims to develop a library that provides components to setup an Auracast™ environment
and test receiver devices like ear buds or hearing aids. Key functionalities include:

• Providing at least one Auracast™ broadcast stream.
• Scanning for advertisement data to detect audio sink devices.
• Pairing and bonding with audio sink devices.
• Configuring the audio sink as a receiver of a broadcast stream through the broadcast assistant

GATT service (BASS).

The project utilizes Nordic nRF5340 Audio Development Kits provided by Sonova for the broadcast
transmitter and assistant roles.

ii

Procedure and Technologies
The design phase involved evaluating several communication strategies, ultimately deciding on a
simple, yet scalable solution using serial communication via UART. This approach balances
immediate implementation needs with future expandability. Key design considerations included
protocol selection (Protocol Buffers, text-based protocols, and JSON), with Protocol Buffers chosen
for their efficiency and adaptability.

Before the actual implementation, experiments were carried out to determine what the possible
options were. These were then presented to the Sonova team in a meeting, where it was discussed
which one should be taken. The decision fell on an option that does not depend on already existing
solutions at Sonova to have an independent solution. This included customizing the software loaded
on the Nordic boards as well as controlling them.

After the main decision was made, the development process included setting up the repository,
configuring the development environment, and implementing quality measures such as code reviews
and continuous integration.

The project encountered various challenges, especially ones related to the embedded environment,
as that was a new experience for the authors. Solutions involved pair programming, refactoring
code, and collaborating with Sonova’s embedded software team to resolve issues.

iii

Results and Outlook
In this thesis, a basic test setup was successfully created with which broadcast sinks can be tested, an
overview of the solution is visualized in Figure 2.

The colored lines of the diagram should be interpreted as follows:
• Black Lines: Library Commands
• Gray Lines: Sonova Test System Communication
• Dotted Lines: Wireless Communication

The setup includes all key functionalities mentioned above but is missing some of the more
advanced features and configurability. After the completion of this bachelor thesis, there will be a
handover process. The integration into the test system will be carried out by another department
and is therefore not part of this thesis. The project will be continued by Sonova and adapted
according to requirements.

Figure 2: Diagram visualizing the implemented solution

iv

Table of Contents
Abstract .. i
Management Summary ... ii
Procedure and Technologies ... iii
Results and Outlook .. iv
1. Introduction ... 1

1.1. Initial Situation .. 1
1.2. Problem Description ... 2
1.3. Project Goal .. 2
1.4. Structure of This Report .. 3

2. Analysis .. 4
2.1. Bluetooth® LE (BLE) ... 4
2.2. LE Audio .. 6
2.3. Nordic nRF5340 Audio DK .. 11
2.4. Bluetooth® Generic Attribute Profile (GATT) .. 12

3. Requirements ... 14
3.1. Functional Requirements .. 14
3.2. Non-Functional Requirements ... 18

4. Initial Experimentation ... 24
5. Design ... 25

5.1. Overview ... 25
5.2. Communication Strategy .. 26
5.3. Serial Protocol .. 33
5.4. Component Interaction .. 36
5.5. Components ... 40

6. Development Process .. 41
6.1. Repository Setup ... 41
6.2. Development Environment ... 41
6.3. Libraries ... 42
6.4. Quality Measures .. 43

7. Implementation ... 45
7.1. Embedded Applications ... 45
7.2. .NET .. 49
7.3. Serial Communication ... 56
7.4. Serial Protocol .. 57

8. Verification ... 67
8.1. Functional Requirements Review .. 68
8.2. Non-Functional Requirements Review .. 69
8.3. Automated Testing .. 71
8.4. Manual Testing .. 71

9. Challenges .. 72
9.1. Embedded .. 72
9.2. Dotnet .. 73

10. Project Management .. 74
10.1. Approach .. 74
10.2. Project Plan .. 75
10.3. Time Tracking ... 77

11. Conclusion ... 79

v

11.1. Learnings .. 79
11.2. Outlook .. 79

12. Disclaimers ... 80
13. Glossary .. 81
14. Bibliography .. 83
15. Table of Figures ... 87
16. Table of Tables .. 88
17. List of Listings ... 90
18. Appendix .. 91

18.1. Personal Report — Jeremy Stucki .. 92
18.2. Personal Report — Vina Zahnd .. 93
18.3. Assignment ... 94
18.4. Licenses ... 97

vi

1. Introduction
For this bachelor thesis, we collaborated with the external partner Sonova AG.

Sonova is a global leader in innovative hearing care solutions: from personal audio devices and
wireless communication systems to audiological care services, hearing aids and cochlear
implants. The Group was founded in 1947 and is headquartered in Stäfa, Switzerland.

— Sonova [2]

The Bluetooth® Core Specification 5.2 introduced new features like LE Audio and Auracast™ to
support different audio transmission scenarios. They are advertised as

“The next generation of Bluetooth® audio - Building on 20 years of innovation, LE Audio
enhances the performance of Bluetooth® audio, adds support for hearing aids, and introduces
Auracast™ broadcast audio, an innovative new Bluetooth® use case with the potential to once
again change the way we experience audio and connect with the world around us.”

— Bluetooth® [3]

A typical Auracast™ setup includes essential components like the audio sink for receiving and
rendering audio signals, the broadcast transmitter emitting audio signals for consumption, and
optionally, the broadcast assistant aiding in broadcast discovery and selection.

In the development and testing of audio devices interfacing with Auracast™ broadcasts, the
availability of controllable counterparts within the test environment is crucial. This thesis aims to
establish the infrastructure needed to configure test scenarios for audio devices receiving Bluetooth®

Auracast™ broadcasts, aiming to contribute to the evolution of audio technology and enhance user
experiences in the digital realm.

1.1. Initial Situation
The introduction of Auracast™, a new Bluetooth® specification, has seen limited adoption by
companies so far. As of the start of this project, only a few smartphones on the market already
supported Auracast™, including the Samsung S23 and S24 Series [4]. As a result, there is a
significant lack of applications and libraries that support it, presenting both opportunities and
challenges for our project.

Currently, many companies are starting to look into using this new part of Bluetooth®, which opens
up the opportunity for exploration and innovation, paving the way for the development of new
products. The anticipated benefits of the new features promise significant improvements, allowing
users to broadcast audio to multiple devices simultaneously and enhancing shared listening
experiences in public or private settings.

As Auracast™ becomes more popular, it is exciting to think about how it will grow. During our
bachelor thesis, we are interested in seeing how companies will start to support Auracast™ and LE
Audio, and what this will mean for the future of this technology.

1 / 97

1.2. Problem Description
Sonova aims to keep pace with the latest technologies on the market. To incorporate Auracast™ into
their new products, they require a method for testing its functionality. An existing test environment
from Sonova, containing automated test cases, should be extended to support testing new Auracast™
features of their hearing aids. For testing the added features, an Auracast™ environment needs to be
set up, which automated tests can manage through the newly developed library.

1.3. Project Goal
This section describes the goals of this project according to the task assignment Section 18.3,
Assignment.

This bachelor thesis aims to extend Sonova’s existing test infrastructure to facilitate the testing of
Auracast™ features in broadcast receivers. Specifically, the project will focus on supporting test
scenarios involving one or, ideally, multiple Auracast™ broadcasts, a broadcast assistant, and
broadcast receivers.

Within the test environment, control over the broadcast transmitter(s) and the broadcast assistant is
needed. Controlling the receivers (system under test) is outside the scope of this project, as they can
already be controlled by the existing test infrastructure. The specific feature set was elaborated
during the project and was adapted according to the project’s progress. This was done in
collaboration with Sonova and especially their embedded software team.

The developed components must include the following essential features: providing at least one
Auracast™ broadcast stream, scanning for advertisement data to detect audio sink devices, pairing/
bonding with audio sink devices, and configuring the audio sink as a receiver of a broadcast stream
through the Broadcast Audio Scan Service (BASS).

The device under test could be any Bluetooth® LE Audio/Auracast™ sink, like off-the-shelf
headphones supporting it. For the broadcast transmitter and assistant Sonova suggests nRF5340
Audio Development Kits (DKs) [5] and provides the corresponding hardware.

While the current environment for testing devices requires the implementation of a .NET-based
library for controlling the external devices, integration into other environments should be possible
as well. This should be considered when designing the system.

2 / 97

1.4. Structure of This Report
This report encompasses the analysis, design, and implementation of the project’s work. It is
structured into the following sections:

Section 2, Analysis: Analysis which we performed of Bluetooth® technologies, especially Audio-
related ones. We also took a look at the DK and its capabilities.

Section 3, Requirements: Functional and non-functional requirements that we derived from the
assignment given.

Section 4, Initial Experimentation: Details the experiments we conducted with the DKs during the
early stages of this project.

Section 5, Design: Contains various decisions we had to make, such as communication strategy and
serial protocol. Here we also define the interaction of the components.

Section 6, Development Process: Details our repository setup and development environment. Also
contains a listing of the libraries we used and discusses the quality measures we took.

Section 7, Implementation: Details the implementation of the library and the two embedded
applications. Also contains the detailed protocol definitions.

Section 8, Verification: Reviews the previously defined requirements and describes our approach to
automated and manual testing.

Section 9, Challenges: Describes challenges we encountered during the development phase.

Section 10, Project Management: Explains the approach we took for this project, our project plan,
and various time tracking reports.

Section 11, Conclusion: Describes the conclusion of our project. This section also contains the
learnings we made, as well as an outlook on the future.

3 / 97

2. Analysis
Within this section we describe the Bluetooth® technologies used for Auracast™. In Section 2.1,
Bluetooth® LE (BLE) we document what it is and of what it contains. Section 2.2, LE Audio describes
the LE Audio specification and explains the new Auracast™ feature. The DK we used is introduced in
Section 2.3, Nordic nRF5340 Audio DK. Finally Section 2.2.1.1, Supported Assistant and Receiver Devices
explains which devices can currently be used to test Auracast™.

2.1. Bluetooth® LE (BLE)
Bluetooth® Low Energy (BLE) was introduced in 2010 as part of the Bluetooth® 4.0 Specification.
Before BLE was introduced, there was only Bluetooth® Classic, both protocols are covered by the
Bluetooth® Specification and operate on the 2.4 GHz ISM band. The two protocols are two distinct
and incompatible protocols. Most modern smartphones are dual-mode Bluetooth® devices,
supporting both BLE and Bluetooth® Classic at the same time. [6]

The difference between the two is that Bluetooth® Classic is great in handling a lot of data, but also
uses a lot of energy doing that. A Traditional use cases is transmitting files like music or images.

BLE on the other hand is designed for applications that require good battery life and do not need to
transfer a lot of data. This would be a good fit for things like sensors. [7].

Figure 3 displays the described wireless technologies and visualizes their differences.

Figure 3: Comparison of Bluetooth® Classic and BLE [8]

4 / 97

2.1.1. Generic Access Profile (GAP)
Generic Access Profile (GAP) provides a framework that defines how the BLE devices interact with
each other, controlling connections and advertisements. This includes the roles of BLE devices,
advertisements and connection establishment. GAP defines four main roles that a BLE device
operates in. [9] Table 1 shows the different roles and what they do.

Central Device that scans and initiates connections with peripherals.
Examples: Smartphone, Smart Home Hub [10]

Peripheral Device that advertises its existence and accepts connections from centrals.
Examples: IoT Device, Heart Rate Monitor, Temperature Sensor, Fitness
Tracker [10]

Broadcaster Special peripheral device that sends advertisements without the capability to
accept connection requests from a central.
Examples: Beacon devices

Observer Special central device that discovers peripherals and broadcasters without
the capability to accept connection requests from a central.

Table 1: Roles defined by the Bluetooth® GAP

The key distinction between two BLE devices in “connected” mode versus “advertising-discovery”
mode is that the “connected” mode allows bi-directional data transfer between the devices. In
contrast, a device in advertising mode (peripheral or broadcaster) cannot receive any data from an
observer or central device. [9]

2.1.2. Advertisements
In the advertising state the device sends out packages to make itself visible to other devices. These
packages contain useful data for the receivers to process.

There are 40 Radio Frequency (RF) channels in total, separated by 2MHz. Figure 4 displays the
advertising channels in BLE. Channels 37, 38 and 39 are the Primary Advertising Channels, the other
remaining channels are called the Secondary Advertisement Channels. [9]

Secondary Advertisement Channel Before a device can advertise itself on a secondary
advertising channel, it first needs to advertise on a primary advertising channel. [9]

Primary Advertising Channel If a device wants to utilize the secondary advertising channel, it
needs to send advertising packets on the primary channel that then point to secondary advertising
packets. [9]

Figure 4: Advertising channels in BLE [9]

5 / 97

2.2. LE Audio
Before the introduction of LE Audio, there was only Classic Audio, which operates on the Bluetooth®

Classic radio. Figure 5 illustrates the two types of Bluetooth® audio: Classic Audio and LE Audio.

Figure 5: Types of Bluetooth® audio [11]

LE Audio brings new features, while still supporting the audio products and use cases of Classic
Audio, such as wireless headphones, speakers, and in-car entertainment systems. These new features
promise to enhance performance and enable the development of new products and applications. [12]

Classic Bluetooth® technology primarily supports Synchronous Connection-Oriented (SCO) Streams,
which are isochronous and used for telephony and voice assistant functions through the Hands-Free
Profile (HFP). For unidirectional audio transmission, asynchronous Audio Streams are used.

The introduction of broadcasts is a feature that was first implemented in BLE. Additionally, the idea
of a headphone pair consisting of two independent devices is a development that came about with
the advent of LE Audio. Figure 6 shows ear buds connected to a smartphone using Connected
Isochronous Streams (CIS) and Connected Isochronous Groups (CIG).

Figure 6: Connected Isochronous Streams (CIS) and Connected Isochronous Groups (CIG) [13]

6 / 97

The future of BLE devices looks very promising when looking at the market research from ABI [11].

“While Bluetooth® Classic has dominated the market historically, in recent years, many audio
device manufacturers have begun to adopt dual-mode Bluetooth® Classic and LE radio
solutions.

While Bluetooth® Classic is typically used to stream audio, Bluetooth® LE can be used for faster
pairing, media control, and to enable location functionality in order to track earbuds. Most
leading Bluetooth® wireless chipset vendors addressing the audio market today offer dual-mode
radio solutions (i.e., Bluetooth® Classic + Bluetooth® LE) as part of their product portfolios.
Over time, these dual-mode radio solutions will increasingly support LE Audio functionality
and become dual-mode audio solutions (i.e., Classic Audio + LE Audio). This will help to enable
new Auracast™ broadcast audio use cases while allowing vendors to continue to innovate on
their product offering via additional features and performance differentiators.”

— Andrew Zignani [11]

The research also mentions that dual-mode audio devices will dominate the market, as shown in the
shipment forecasts through 2027 in Figure 7.

Figure 7: Projected Bluetooth® audio device shipments by supported audio modes [11]

7 / 97

2.2.1. Auracast™ (Broadcast Audio)
Auracast™ was introduced as part of the Bluetooth® 5.2 Specification in 2020. Auracast™ is not a
Bluetooth® standard, but a set of requirements utilizing the Public Broadcast Profile (PBP)
specification within Bluetooth® LE Audio. PBP is part of the Bluetooth® LE Audio specification,
allowing for a universal format and the availability of public broadcasts.

The idea behind Auracast™ is that a device can start one or multiple broadcast streams, to which
every device that supports Auracast™ as a receiver could listen to, without undertaking a pairing
process.

One use case for this could be public speech where the speaker is using a microphone. The input of
the microphone can then be streamed and people using hearing aids, or headphones can choose to
listen to this stream so they can hear the speaker loud and clearly.

The standard consists of three main parts:
• Transmitter
• Assistant
• Receiver

The transmitter starts an Auracast™ broadcast and sends advertisements, which provide information
for the assistant. The broadcast can have multiple channels, such as stereo left/right, different quality
levels, or different languages. The Auracast™ assistant then is able to see the advertisements and can
present information about the available streams to the user. Next, the user can select which steam
they want to listen to and finally, the assistant sends the instruction to the receiver to listen to the
given stream. [14]

The names transmitter, assistant and receiver are not Bluetooth® roles on their own, instead they
were introduced to describe their part in the Auracast™ ecosystem. They are made up of many
underlying roles, encompassing roles from the Basic Audio Profile and other higher-level
specifications. In Table 2 these underlying roles are shown.

Figure 8 visualizes the components of Auracast™ and gives an idea on how it works.

8 / 97

Name Includes the role of Specification
Auracast™ transmitter • Broadcast Source

• Public Broadcast Source
• Initiator
• Broadcast Media Sender

• BAP
• PBP
• CAP
• TMAP

Auracast™ receiver • Broadcast Sink
• Public Broadcast Sink
• Acceptor
• Hearing Aid
• Broadcast Media Receiver

• BAP
• PBP
• CAP
• HAP
• TMAP

Auracast™ assistant • Broadcast Assistant
• Public Broadcast Assistant
• Commander

• BAP
• PBP
• CAP

Table 2: Underlying specification roles covered by the Auracast™ terminology [15]

Figure 8: How Auracast™ works [14]

9 / 97

2.2.1.1. Supported Assistant and Receiver Devices
For a device to act as an assistant or receiver, it needs to implement a set of specifications defined in
the Bluetooth® LE Audio specification, as shown in Table 2.

An assistant could be an application on a phone, a remote control, a smartwatch, or some other
product.

A receiver needs an assistant to know what broadcasts are available and to receive the information
needed to listen to one of them. It is possible for a receiver to also include an assistant, but as
earbuds or hearing aids are usually equipped with a limited amount of user interaction features,
such as buttons, they can use an external device instead.

When a pair of receivers is used, such as earbuds, hearing aids, or speakers, each piece listens to a
stream. The assistant chooses which stream they will receive, this could be the same or for example,
one stream for the left and one for the right side. Receivers are not sending acknowledgments for
packages received from the transmitter, as this would lead to unnecessary traffic. [16]

Many currently available headphones already support Bluetooth® 5.2 or higher but lack the LE
Audio support. As of March 15, 2024, we could not find any official applications for Android or iOS
smartphones that support Auracast™. However, according to a press release from Samsung [4] from
February 20, 2024, they added support for listening to broadcasts in version 5.1.1 of One UI, and
support for starting audio broadcasts in version 6.1 of One UI. Version 6.1 of One UI, which supports
both features, is available on Galaxy S24 series, S23 series, Z Fold5, Z Flip5, and Tab S9.

Table 3 lists all the headphones we discovered, that already support Auracast™. Even though the
product listing for the Galaxy Buds 2 Pro does not explicitly list Auracast™ in the specifications [17],
they are able to listen to broadcast streams. We were able to test the Galaxy Buds2 Pro as a receiver
and can therefore conclude that this device supports Auracast™.

Product Name Brand Bluetooth® Features
Galaxy Buds 2 Pro [17] Samsung Bluetooth® 5.3 & LE Audio
Momentum True Wireless 4 [18] Sennheiser Bluetooth® 5.4, LE Audio and Auracast™

Table 3: Headphones supporting Bluetooth® 5.2 or higher and LE Audio

10 / 97

2.3. Nordic nRF5340 Audio DK
For testing we received Nordic nRF5340 Audio DKs, which support BLE and Auracast™ features. The
board has configurable buttons and LEDs. It can be connected to the computer through USB. [5] In
this project the idea is to make these boards accessible to the library, which is used in the test
environment.

Applications for the boards can be built with the nRF Connect Software Development Kit (SDK) [19],
which is based on Zephyr [20]. Detailed information about the device can be found on the website of
Noridc Semiconductor [5].

The key features of the board that are needed, that we can use them for this project include:
• Bluetooth® 5.2
• Support of all Auracast™ features
• Configurable
• Powered via USB

We need to have at least two devices, one acting as a broadcast and one as an assistant. A third one
acting as a receiver is not needed, as this part would be the device under test from Sonova. The
board itself is very handy and easy to transport, an image of the Nordic nRF5340 Audio DK is shown
in Figure 9.

Figure 9: Nordic nRF5340 Audio DK [5]

11 / 97

2.4. Bluetooth® Generic Attribute Profile (GATT)
Generic Attribute Profile (GATT) is an acronym for Generic ATTribute Profile [21], defining a
service framework using the Attribute Protocol (ATT). [21] This framework defines procedures and
formats of services and their characteristics, including procedures for discovering, reading, writing,
notifying, indicating, and broadcasting them. [22]

GATT is used after establishing a dedicated connection between two devices, following the
advertising process managed by GAP (Section 2.1.1, Generic Access Profile (GAP)). Connections are
exclusive, meaning that a BLE peripheral device can only be connected to one central device at a
time. The peripheral device will stop advertising itself as soon as it is connected to a central. [21]
Other devices will not be able to see or connect to the peripheral device.

2.4.1. Attribute Protocol (ATT) - Roles
The protocol defines two roles, server and client.

Server The server is the device storing data that can be read or written by the client. This could be a
fitness tracker that stores the latest heart rate value on the server.

Client The client is the device requesting data from the server. This could be a smartphone
connected to a fitness tracker.

These two ATT roles are independent of the roles defined by GAP, meaning a device that supports a
GAP central role will not automatically assume the client ATT role. [23]

12 / 97

2.4.2. Attribute Protocol (ATT) - Attributes
The server device functions as a database to store data that it needs to share with the client device.
The exposed data is structured as attributes, which contain an attribute handle, attribute type
(Universally Unique Identifier (UUID)), attribute value and attribute permissions field. [23] Figure 10
shows the structure of an attribute.

Attribute Handle This is a unique unsigned 16-bit identifier used by the client to reference an
attribute on the server, making it “addressable”. The does not change during a single connection.

Attribute Type (UUID) This globally unique 2-byte or 16-byte UUID identifies the type and
meaning of data in the attribute’s value field, with two types: Service UUID and Characteristic UUID.

Attribute Value This is the actual data being stored.

Attribute Permission Field This specifies the various methods that can be used to access the
attribute value, as well as the security level required to access it.

Figure 10: Attribute structure [24]

Besides the classic method to access the data, using write and read operations initiated by the client
(Figure 11), it is also possible for the server to notify the client when data has changed (Figure 12). In
this case the server would need to send a notification operation, sending an updated value of an
attribute to the client every time it changes. The server also sends an indication operation similar to
the notification operation, but the client needs to respond with an acknowledgment status,
indicating if the value has been successfully received. [23]

Figure 11: Write and read ATT-defined access methods [23]

Figure 12: Notification and indication ATT-defined access methods [23]

13 / 97

3. Requirements
Functional requirements are described in Section 3.1, Functional Requirements. Non-functional
requirements can be found in Section 3.2, Non-Functional Requirements.

Requirements essential for the Minimum Viable Product (MVP) are indicated with the MVP label.

3.1. Functional Requirements
The functional requirements are split into the three subgroups “Broadcast Source”, “Broadcast
Assistant” and “Library”. To make it easy to differentiate them by their ID, we use a convention:

FR1xx Broadcast Source Requirements
FR2xx Broadcast Assistant Requirements
FR3xx Library Requirements

14 / 97

3.1.1. Broadcast Source

ID FR101 MVP

Title Starting and Stopping the Stream
Description A broadcast stream can be started and stopped.

Table 4: FR101 – Starting and Stopping the Stream

ID FR102

Title Multiple Streams
Description Multiple streams can be configured/started/stopped.

Table 5: FR102 – Multiple Streams

ID FR103

Title Naming the Streams
Description A name can be chosen for each stream.

Table 6: FR103 – Naming the Streams

ID FR104 MVP

Title Playing Test Tone
Description A test tone can be played, so that no audio source needs to be provided.

Table 7: FR104 – Playing Test Tone

ID FR105

Title Audio Input Selection
Description Audio input can be selected from multiple sources and is sent over the

stream.

Table 8: FR105 – Audio Input Selection

ID FR106

Title Encrypted Streams
Description Broadcast transmissions can be encrypted with a key.

Table 9: FR106 – Encrypted Streams

15 / 97

3.1.2. Broadcast Assistant

ID FR201 MVP

Title Scanning for Sink Devices
Description The assistant can scan for available sink devices and can query them for

GATT services to determine which ones support Auracast™.

Table 10: FR201 – Scanning for Sink Devices

ID FR202 MVP

Title Pairing of Specific Device
Description A sink can be paired by providing the necessary connection information.

Table 11: FR202 – Pairing of Specific Device

ID FR203 MVP

Title Connecting to Specific Device
Description A sink can be connected after the pairing process has finished.

Table 12: FR203 – Connecting to Specific Device

ID FR204 MVP

Title Selecting Stream and Sending to Sink
Description A specific stream can be selected and its configuration is sent to the sink.

Table 13: FR204 – Selecting Stream and Sending to Sink

ID FR205

Title Scanning for Broadcast Sources
Description The assistant can scan for broadcast sources and list them.

Table 14: FR205 – Scanning for Broadcast Sources

ID FR206

Title Scanning for Broadcast Sinks
Description The assistant can scan for broadcast sinks and list them.

Table 15: FR206 – Scanning for Broadcast Sinks

16 / 97

3.1.3. Library

ID FR301

Title Receiving GATT Information
Description The library needs to provide information from GATT.

Table 16: FR301 – Receiving GATT Information

17 / 97

3.2. Non-Functional Requirements
The non-functional requirements are split into subgroups according to Functionality, Usability,
Reliability, Performance and Supportability (FURPS). To make it easy to differentiate them by their
ID, we use a convention:

NFR1xx NFRs related to Functionality
NFR2xx NFRs related to Usability
NFR3xx NFRs related to Reliability
NFR4xx NFRs related to Performance
NFR5xx NFRs related to Supportability

18 / 97

3.2.1. Functionality

ID NFR101 MVP

Title Comply with Industry Standards
Description Coding conventions and guidelines should be used if they are provided.
Acceptance Criteria Sonova coding guidelines are used.
Method of Verification Code review

Table 17: NFR101 – Comply with Industry Standards

ID NFR102 MVP

Title Dependency Management
Description Current versions of dependencies should be used.
Acceptance Criteria When a dependency is added, it must be the latest version available.
Method of Verification Code review

Table 18: NFR102 – Dependency Management

19 / 97

3.2.2. Usability

ID NFR201 MVP

Title Graceful Error Handling
Description The library reacts in a predictable way to errors and reports them

correctly upstream.
Acceptance Criteria In case of an error, the application using the library is never presented

with a generic error message. The error messages forwarded inform the
application about the source of the error.

Method of Verification Unit tests & Code review

Table 19: NFR201 – Graceful Error Handling

ID NFR202 MVP

Title Abstraction Level
Description A good abstraction level should be used, so that the underlying

communication layer can easily be replaced.
Acceptance Criteria An interface exists, allowing the replacement of the communication layer

without having to adjust the call-site.
Method of Verification Code review

Table 20: NFR202 – Abstraction Level

ID NFR203 MVP

Title Ease of Use
Description A software engineer can use the library by just looking at its

documentation.
Acceptance Criteria • Annotations are used on public methods, describing their functionality

and behavior.
• Methods and variables are named appropriately.
• A good readme is in place.

Method of Verification Code review

Table 21: NFR203 – Ease of Use

ID NFR204 MVP

Title Usage Examples
Description There exists usage examples.
Acceptance Criteria At least one usage example is present.
Method of Verification Code review

Table 22: NFR204 – Usage Examples

20 / 97

3.2.3. Reliability

ID NFR301

Title Reliable Operation
Description The library operates reliably under various conditions, so that no-one

needs to touch the test setup after a power-cycle.
Acceptance Criteria • Recovers from power interrupts

• Can deal with hot-plugging of devices
Method of Verification Manual test

Table 23: NFR301 – Reliable Operation

21 / 97

3.2.4. Performance

ID NFR401 MVP

Title Startup Time
Description A stream should be started relatively quickly.
Acceptance Criteria Streams can be started within less than 300ms if the correct firmware is

already present on the device.
Method of Verification Manual test

Table 24: NFR401 – Startup Time

ID NFR402

Title Performance of Multiple Streams
Description Starting multiple streams has a minimal effect on performance
Acceptance Criteria No stream breaks down or has dropped frames.
Method of Verification Manual test

Table 25: NFR402 – Performance of Multiple Streams

22 / 97

3.2.5. Supportability

ID NFR501 MVP

Title Integration of Library
Description The integration of the library should be easily possible.
Acceptance Criteria • The library can easily be integrated into the existing test environment.

• A brief and understandable readme instruction text is providing a step
by step guidance to integrate the library.

Method of Verification User test

Table 26: NFR501 – Integration of Library

ID NFR502 MVP

Title Maintainability
Description The codebase should be easy to maintain and extend.
Acceptance Criteria A new software engineer can take over maintenance of the library

without any verbal instructions, by just looking at the readme and source
code.

Method of Verification User test

Table 27: NFR502 – Maintainability

ID NFR503

Title Clear Versioning System
Description A clear versioning system is used.
Acceptance Criteria Version numbers follow the “MAJOR.MINOR.PATCH” format.
Method of Verification Code review

Table 28: NFR503 – Clear Versioning System

ID NFR504

Title Platform Agnostic Implementation
Description Ensure compatibility with various operating systems and platforms

where tests may run.
Acceptance Criteria An appropriate abstraction level is used, so that the adoption to a new

testing infrastructure is made possible.
Method of Verification Code review

Table 29: NFR504 – Platform Agnostic Implementation

23 / 97

4. Initial Experimentation
To familiarize ourselves with the Nordic DKs, we implemented a basic setup. In this configuration,
we used one board as a transmitter, which received audio through the USB interface and transmitted
it to the second board. The second board then received the audio data and played it through the
headphone output. For this experimentation we used the provided C examples with only minor
modifications. The setup used is depicted in Figure 13.

By following guides from Nordic Semiconductor, we successfully set up the Nordic DKs. Although
the guides were detailed, their organization made them somewhat difficult to follow. For example,
while consulting the instructions for the buildprog.py utility [25], we initially believed we had all
the necessary command-line arguments. However, we encountered issues with programming the
boards. We later discovered two additional arguments mentioned in a different section. Notably, the
-p argument is essential for programming the boards.

We were able to view the serial output of the two DKs using the configuration found in the testing
and optimization documentation [26].

During this experiment, we learned how to work with the boards and which tools are required to
develop applications for them.

Figure 13: Setup used for initial experimentation

24 / 97

5. Design
This section outlines the various design strategies we considered and the decisions we made
throughout the process. Section 5.1, Overview starts out by giving a high-level overview over the
parts involved and their relationship. In Section 5.2, Communication Strategy, we explore the high-
level architecture of the individual components and the technology used. In Section 5.3, Serial
Protocol, we define the serial protocol for our chosen communication strategy, ensuring efficient and
reliable communication between components. The messages sent over the defined serial protocol are
defined in Section 5.4, Component Interaction. Finally, in Section 5.5, Components, we provide a more
detailed look at the individual components.

5.1. Overview
As a result of our analysis described in Section 2, Analysis, we created a diagram shown in Figure 14
to show the individual parts of the project and how they interact with each other. This forms the
basis for our design considerations, which we will explore in the following sections.

Figure 14: Working environment [27]

25 / 97

5.2. Communication Strategy
There are several methods for facilitating communication between our library and the development
board, each with its own set of advantages and disadvantages. In this section we will examine three
distinct approaches and then decide on one of those for further development.

Option A: In Section 5.2.1, Option A - Serial Communication via UART, we explore communication
over a simple serial interface.

Option B: In Section 5.2.2, Option B - HCI Bridge, we consider exposing the entire Host Controller
Interface (HCI) interface to the library

Option C: In Section 5.2.3, Option C - Existing Sonova Implementations, we analyze existing
implementations that could be adapted.

26 / 97

5.2.1. Option A - Serial Communication via UART
In this variant, we utilize serial communication to establish a connection with the board. The
advantage here lies in our ability to use existing sample applications that already handle all
necessary hardware interactions. We would need to adopt the existing C samples to C++ and make
them configurable. Additionally, we would need to write clients that handle the communication
layer.

However, this strategy also includes notable drawbacks. We must define the communication channel
ourselves, adding a layer of complexity to the project. Moreover, developing a custom Zephyr
application in C or C++ becomes a necessity.

An architectural overview for this strategy is depicted in Figure 15. A basic proof of concept
implementation can be found in Section 5.2.1.1, Proof of Concept.

Figure 15: Communication strategy - Architectural overview of serial communication via Universal
Asynchronous Receiver-Transmitter (UART)

27 / 97

5.2.1.1. Proof of Concept
In the proof of concept, we revisited the fundamentals by examining examples from the Zephyr
project and intentionally overlooked the nRF Connect SDK, as it seemed to be quite a few versions
behind Zephyr and was lacking the new Auracast™ examples. The documentation for the Zephyr
project was exceptionally well-written and facilitated easy setup.

We modified an existing sample application, specifcally the “broadcast source” sample application to
include UART interrupt support, which enables communication with the application on the board.
This example application starts a broadcast stream that Auracast™ receivers can listen to. In this
proof of concept, we only introduced a single command, which, when pressing the letter “s”, pauses
or resumes the broadcast.

Additionally, we wrote a basic .NET script in C# that sends the command to the board through the
Component Object Model (COM) interface. This is shown in Listing 1.

using System.IO.Ports;

var serialPort = new SerialPort();
serialPort.PortName = "COM4";
serialPort.BaudRate = 115200;

serialPort.Open();
serialPort.Write("s");

Listing 1: Communication strategy - Sample code of UART communicaton variant

28 / 97

5.2.2. Option B - HCI Bridge
In this variant we utilize the HCI protocol, which gives full access to the Bluetooth® controller to our
library. This would bring the major advantage that the boards would both have identical software
and the logic of broadcast and assistant would live in our library. It also means that the hardware
can easily be exchanged for other hardware without much adjustment, as an industry-standard
protocol is used.

Since writing the entire Bluetooth® logic ourselves is out of the scope of this project, this strategy
relies on having a reliable library that abstracts the HCI communication for us. Figure 16 shows how
this would look like.

Unfortunately, we were not able to find a suitable library, so this strategy would involve writing a lot
of low-level code. The libraries we analyzed can be found in Section 5.2.2.1, Analysis of HCI Libraries.

Figure 16: Communication strategy - Architectural overview of HCI Bridge

5.2.2.1. Analysis of HCI Libraries
We looked at various libraries, but unfortunately, none of them were suitable for our use case. Some
smaller ones exist as well, but we would want a well-maintained one in order to have a good
foundation. Table 30 shows the bigger libraries we considered.

Library Reasoning

bumble by Google [28] The library seemed like a good fit at first, however it is still in
alpha and therefore too unstable for our use case.

Windows Bluetooth® Driver [29]
The driver enables a very low-level communication, however
this would require us to write a big chunk of the abstraction we
need ourselves and is therefore not the right tool for us.

Table 30: Bluetooth® HCI libraries we looked at

29 / 97

5.2.3. Option C - Existing Sonova Implementations
For this option, we looked at existing internal implementations, which we could adapt or reuse. This
took considerable time to research, but we can only give a high-level overview due to a non-
disclosure agreement.

We communicated with multiple teams within the company to get to know which possibilities we
had. We also looked at the source code of these existing solutions to figure out what they could and
could not do.

The existing solutions we analyzed were all tightly integrated into bigger projects and it would have
been non-trivial to extract the part that we would use. The level of abstraction was also not really
the one we were looking for.

30 / 97

5.2.4. Decision Process
This chapter delves into the decision-making process concerning communication strategy options
within Sonova’s dedicated team. The focus is on achieving a balance between simplicity and
functionality, ensuring both immediate effectiveness and future adaptability.

In the meeting with the Sonova team, the discussion centered on the optimal approach to designing
the communication strategy between the library and the Nordic boards. It was unanimously agreed
that prioritizing simplicity and functionality over unnecessary complexity is crucial for ensuring the
long-term utility of the library. The emphasis was on developing a solution that not only meets
immediate needs but also remains adaptable for future expansions.

One big concern was getting things up and running quickly without sacrificing the ability to grow
later on. They thought about incorporating some elements of option B described in Section 5.2.2,
Option B - HCI Bridge, like using direct HCI commands instead of calling functions on the board.
This would make it easier to expand the library in the future.

Additionally, the team stressed the importance of avoiding the need to reflash the operating system
on the boards for simple configuration changes such as bitrate adjustments. To address this,
configurations should be managed within a separate configuration file, utilizing formats like
JavaScript Object Notation (JSON) or Protocol Buffers for simplicity and ease of maintenance.

Furthermore, there was consensus on the desirability of incorporating a User Interface (UI) element.
This UI would facilitate manual testing and comprehension of receivers, offering functionalities, such
as start/stop streams and real-time board status updates (e.g., “connected” or “connection lost”). This
addition is seen as instrumental in enhancing usability and aiding in the troubleshooting processes.

In navigating the decision process, the Sonova team prioritizes a pragmatic approach that balances
immediate needs with future-proofing considerations. By emphasizing simplicity, adaptability, and
user-centric design, the chosen communication strategy aims to optimize efficiency and effectiveness
in the development and maintenance of the library.

31 / 97

5.2.5. Decision
All participants of the meeting agreed, that the best solution is to go for option A which is described
in Section 5.2.1, Option A - Serial Communication via UART. In this case a simple solution can be
created within a short time. The solution should be built to be easily adjusted and can be developed
further after the bachelor thesis is completed.

Some employees also hinted that using multiple stacks is beneficial, so re-using an existing one
might not even have been that great. This is to test their end-devices on multiple stacks, which is a
good thing for when these devices ultimately get used in the real world, where each manufacturer
might implement certain things his own way.

To tighten this decision we created a weighed decision matrix with the key criteria mentioned in the
meeting. Table 31 illustrates a weighted decision matrix according to the discussion.

Option A
Serial Communication

via UART

Option B
HCI Bridge

Option C
Existing Sonova
Implementations

Criteria Weight Rating Total Rating Total Rating Total
Functionality 10% 2 6.67% 3 10% 1 3.33%
Complexity 20% 3 20% 1 6.67% 2 13.33%
Configurability 5% 1 1.67% 3 5% 2 3.33%
Extendability 30% 2 20% 3 30% 1 10%
Development Time 20% 3 20% 1 6.67% 2 13.33%
Stability 10% 2 6.67% 3 10% 1 3.33%
Reuse of Existing Tools 5% 2 3.33% 1 1.67% 3 5%

Total 100% 78.33% 70% 51.67%

Table 31: Weighed decision matrix for communication strategies

32 / 97

5.3. Serial Protocol
To communicate with the board we have a simple UART connection over a serial interface. In order
for us to send instructions to the applications running on the board, we need to define a protocol to
use on top of it. We looked at three different options and compared them on a few key metrics. The
conclusion is described in Section 5.3.5, Decision.

5.3.1. Option A - Protocol Buffers
The first option is to use Protocol Buffers, which allow specifying messages in a platform-agnostic
way and are then using source generation to generate encoders and decoders. [30] It allows to
transfer the data in a small but not human readable format. A big plus point of Protocol Buffers is
that they are language agnostic, which enables the same data structure to be used in a different
project if needed. Also, the Sonova team told us that they were already using Protocol Buffers within
one of their projects and therefore some knowledge is already established.

5.3.2. Option B - Text-Based Protocol
The second option is writing a custom text-based protocol. This involves writing a specification and
then implementing it in C# and C++, which gives us full control over the communication channel.
Despite the flexibility it would take quite a good amount of time to implement a good text-based
protocol. As this would be a custom protocol, it would also need to be adapted to other applications
manually.

5.3.3. Option C - JSON
The third option is using JSON, for which a lot of encoders and decoders already exist, however the
resulting structure still needs to be mapped to appropriate types on either end. [31] What makes
JSON a good option is that it is used almost everywhere and is a common protocol to use and
therefore the knowledge of how to use it is widely spread. The protocol is easy to understand and
implement but it does not define the contained data structure, so a parser is still required to be
written for each language, which increases the implementation time.

33 / 97

5.3.4. Decision Process
To decide on which serial protocol we should use, we evaluated key metrics and weighted them
accordingly.

5.3.4.1. Communication Overhead
Using a text-based protocol can be more efficient than JSON, but still comes way short when
compared to the binary Protocol Buffers. This mostly boils down to the fact that even JSON stripped
of all unnecessary whitespace still has the overhead of field labels. Protocol Buffers mostly transmit
the actual content of the fields with just minimal overhead for field identification.

Winner: Protocol Buffers
Runner up: Text-based protocol

5.3.4.2. Readability
Having a human readable protocol can aid in the development process, allowing us to use a serial
monitor to view messages being transmitted. Both the text-based protocol, as well as JSON can be
read at a glance without having a decoder.

Winners: Text-based protocol & JSON

5.3.4.3. Development Time
With Protocol Buffers we can skip a whole lot of decoding and parsing work compared to the other
options. JSON still has an edge over the text-based protocol, since at least there the parsing does not
have to be done from scratch.

Winner: Protocol Buffers
Runner up: JSON

5.3.4.4. Future Adaptability
With Protocol Buffers source code can be generated in various programming languages, removing
the need to re-implement a decoder and parser. With JSON the parsing can be done by a supporting
library, but mapping the resulting structure to proper types would still need to be done.

Winner: Protocol Buffers
Runner up: JSON

34 / 97

5.3.5. Decision
Based on the categories we looked at we took a decision on how to continue. We weighted all
categories equally and came to the conclusion that Protocol Buffers are the way forward. The only
downside of Protocol Buffers is that they are not human-readable, which we will compensate for by
implementing a good logging infrastructure. Table 32 illustrates the process.

Option A
Protocol Buffers

Option B
Text-Based Protocol

Option C
JSON

Criteria Weight Rating Total Rating Total Rating Total
Communication Overhead 20% 3 20% 2 13.33% 1 6.67%
Readability 20% 1 6.67% 3 13.33% 2 20%
Development Time 20% 3 20% 1 6.67% 2 6.67%
Future Adaptability 40% 3 30% 1 10% 2 20%

Total 100% 76.67% 43.33% 53.34%

Table 32: Decision matrix for the serial communication protocol

35 / 97

5.4. Component Interaction
In this section we defined the interaction between the boards and the library at a high level. This
served as a basis for the implementation described in Section 7, Implementation, where we also
decided on the message content. We defined what commands are needed for the solution to work
and which response is expected for each of them. We defined commands which are needed to
establish an Auracast™ setup, except for the broadcast sink as this part will be the test subject of
Sonova.

5.4.1. Setting the Color
A simple use case is setting the color of the LED on the nordic board. Having different colors for
broadcast source and assistant can help to differentiate between the two, especially during
development. When a reset is needed, the reset button of the correct device can be pressed. This
command is not necessarily needed, but is helpful to have and easy to implement. Both
implementations of the boards need to implement this feature so it can be set on both.

Figure 18 visualizes the steps needed to set the color on the broadcast source and assistant.

Figure 17: Library design - Setting the LED colors

36 / 97

5.4.2. Starting the Broadcast
For the broadcast source to be visible to the assistant it needs to advertise itself. It also needs to
stream sound for the broadcast sink to listen to. Both can be handled within one command to keep
the interaction with the broadcast source as simple as possible.

Figure 18 visualizes the steps needed to start broadcasting.

Figure 18: Library design - Starting the broadcast

5.4.3. Stopping the Broadcast
When a broadcast source is not needed to be discovered and/or listened to it can simply be stopped
by sending the stop broadcasting command. The broadcast source will stop to advertise itself and
stop the broadcasts.

Figure 19 visualizes the steps needed to stop broadcasting.

Figure 19: Library design - Stopping the broadcast

37 / 97

5.4.4. Connecting to the Broadcast Sink
To be able to connect to a broadcast sink the assistant needs to scan for available devices first. The
assistant will respond with the found devices, which the library then receives. Found found devices
will be sent constantly while scanning for broadcast sinks until the stop command is sent. After
choosing the device to which the application wants to connect with the library sends the chosen
device back to the assistant which is then connecting to it. When a selection is made the library
sends a stop scanning command so the assistant is not scanning forever. In the end, a connect
command will be sent to the assistant which is then establishing the connection to the sink.

Figure 20 visualizes the steps needed to establish the broadcast sink connection.

Figure 20: Library design - Connecting to a broadcast sink

38 / 97

5.4.5. Selecting the Broadcast
When the connection to the broadcast sink is established a broadcast needs to be selected which the
sink device then can listen to. For scanning the available broadcasts the sequence is similar to the
one searching for broadcast sinks Section 5.4.4, Connecting to the Broadcast Sink. The assistant will
need to discover available broadcasts from the broadcast source and then send them back to the
library. When selecting a broadcast the assistant then needs to tell the connected broadcast sink to
which broadcast it should listen to.

Figure 21 visualizes the steps needed to select a broadcast.

Figure 21: Library design - Selecting a broadcast

39 / 97

5.5. Components
To visualize the components used in our solution, which we chose to implement, we created a
component diagram shown in Figure 22. Double-ended arrows represent actions that have an
associated response, whereas normal arrows indicate fire-and-forget actions.

On the right side, the two development kits are represented. The top one is the broadcast source, and
the bottom one is the broadcast assistant. Both contain the various services that we defined and
implemented. The services present in both embedded apps are not duplicated; instead, they come
from a shared module.

On the left side, the PC running the test can be seen with our library encapsulated within. Below the
PC is the actual test target, which is an Aurcast receiver.

Figure 22: Component diagram

40 / 97

6. Development Process
Within this section, we explain how the working environment was set up and what tools and
extensions we used. Section 6.1, Repository Setup documents how the repository was set up. In Section
6.2, Development Environment we describe how we set up our development environment. What
libraries we used is documented in Section 6.3, Libraries. Finally, in Section 6.4, Quality Measures we
outlined how we ensured the quality of our code.

6.1. Repository Setup
For this project, we decided to work with a monolithic repository (Monorepo) to keep the overhead
low and allow for faster iterations. This also allows us to share the protocol buffer definitions
without having to have them in a separate repository and using something like git submodules [32].

This source repository, along with the one for our documentation, is located on a Sonova-owned
GitHub Enterprise instance.

The detailed directory structure that we used can be found in Section 7, Implementation.

6.2. Development Environment
We were each provided with a user account and a laptop, which we used for all development tasks.
We also had the possibility of working at the Sonova office, where we had access to test devices,
such as broadcast source dongles, mobile phones, and headphones.

For development we used Visual Studio Code (VS Code) [33] and VS Codium [34] with various
language server extensions to support the development process. The extensions we used can be
found in Table 33.

A full integrated development environment could unfortunately not be used as the licensing of our
educational versions forbid us from using them for commercial uses. Getting a license from Sonova
would have been possible, but not trivial.

Language Extension Language Server
C++ clangd 0.1.28 [35] clangd 18.1.2 [36]
C# C# 2.24.17 [37] bundled
Typst Typst LSP 0.13.0 [38] bundled

Table 33: Used VS Code extensions

41 / 97

6.3. Libraries
During development we used various libraries to achieve our goals. The ones for .NET are described
in Section 6.3.1, .NET and the ones used for the embedded applications in Section 6.3.2, Embedded.

6.3.1. .NET
Within the .NET projects we used NuGet [39] packages to include external tools. Table 34 lists all
libraries we used within our .NET projects, including their license.

Name Version License
CommandLineParser [40] 2.9.1 MIT License
Google.Protobuf [30] 3.26.1 Copyright 2008 Google Inc. All

rights reserved. (Listing 19)
Grpc.Tools [41] 2.62.0 Apache License 2.0
NLog [42] 5.2.8 BSD-3-Clause License
StyleCop.Analyzers [43] 1.1.118 MIT License
System.IO.Ports [44] 8.0.0 MIT License

Table 34: Used external libraries in .NET projects

6.3.2. Embedded
We only used the Zephyr operating system and the library functions it exposes. Table 35 shows
detailed information about it, including its license.

Name Version License
Zephyr [20] 3.6.0 Apache License 2.0

Table 35: Used external libraries in embedded projects

42 / 97

6.4. Quality Measures
Code quality is a crucial aspect of software development. Defining guidelines helps to keep the code
consistent, making the code easier to comprehend. Code reviews and Pull Requests (PRs) help to
ensure that the code is correct and helps to share knowledge between developers.

6.4.1. Pull Requests
Documentation and code should never be pushed directly to the main branch. A mandatory code
review by the other team member is part of every PR. When reviewing a PR, the reviewer should
check for quality and consistency in a number of different areas.

• Easy to read and understand
This includes using clear and descriptive names for variables, functions, and classes, avoiding
overly complex expressions or statements, and using consistent formatting and indentation.

• Following standards
Code should follow established coding standards and style guides recommended by the
programming language community or organization. This includes adhering to guidelines for
naming conventions and commonly used programming patterns.

• Maintainability
Code should be written with maintainability in mind, allowing easy modifications and extension
without introducing unexpected errors. Overly complex structures should be avoided and suitable
design patterns are to be used.

• Functionality
The changes should work as intended and discussed in meetings.

• Documentation
Documentation within the code should only exist if it helps to make the code easier to understand.

6.4.2. Code Quality
To ensure that our code is in good shape and follows state of the art guidelines we were using tools
to help us check this.

For the C# projects (Library and Command Line Interface (CLI)) we used an EditorConfig [45] to
maintain consistent code. As coding guidelines for C# we used the settings from roslyn [46].

VS Code does not support EditorConfig naively, so a plugin is required. Following the
recommendations from Microsoft we used the EditorConfig for VS Code plugin [47].

To be able to also check more detailed code formatting, we decided to use StyleCopAnalyzers [43].
Unfortunately some rules can be defined within EditorConfig and StyleCopAnalyzers resulting in
conflicts. To solve this issue we deactivated the rules from StyleCopAnalyzers causing the conflicts.

For the C++ code for the embedded part we followed the coding guidelines defined by Sonova. This
includes a clang format configuration, which enforces a certain formatting style, as well as a wiki
detailing things like naming conventions and design guidelines. We also had compiler warnings
enabled with the default configuration provided by Zephyr.

43 / 97

6.4.3. Continuous Integration
To aid in reviewing PRs, it would have been nice to have something like GitHub Actions [48] or
Jenkins [49] to give some basic level of assurance. This would have brought us quite a bit more
assurance that the code formatting was correct and that the main branch always builds. It would
also have allowed us to build our documentation continuously, and an up-to-date PDF version would
always have been available.

Unfortunately, this infrastructure was not available to us, as our industry partner does not use
GitHub Actions, and creating a Jenkins setup would have been too complex, given the relatively
short duration of our project.

44 / 97

7. Implementation
The simplest way to understand our setup is to take a look at the top-level directory structure of the
repository. This can be found in Listing 2.

Each of the top-level directories is described in detail in the following sections. The contents of the
dotnet directory, containing the library, command-line interface, and sample applications, are
described in Section 7.2, .NET. The contents of the embedded directory, containing the two embedded
apps, are described in Section 7.1, Embedded Applications. Finally, the contents of the protos
directory, containing the protocol buffer definitions, are described in Section 7.4, Serial Protocol.

├── dotnet
│ ├── cli
│ ├── library
│ └── samples
├── embedded
│ └── apps
└── protos

Listing 2: Directory structure of repository

7.1. Embedded Applications
The embedded applications were implemented in C++ and are located within the embedded directory,
whose structure is visualized in Listing 3. Each application has its own source directory with shared
code being located in the shared directory.

The implementation details of the broadcast source are described in Section 7.1.1, Broadcast Source
and the ones of the broadcast assistant is described in Section 7.1.2, Broadcast Assistant. Finally, the
shared code is looked at in Section 7.1.3, Shared Code.

embedded
└── apps
 ├── broadcast-assistant
 ├── broadcast-source
 └── shared

Listing 3: Directory structure of embedded applications

45 / 97

7.1.1. Broadcast Source
The broadcast source application has been adapted from a Zephyr example application, which was
written in C. We tried to extract its functionality into sensible classes. The resulting structure can be
seen in Listing 4.

Most of the classes fall into the categories of “advertisement related” or “broadcast source related”
and thus are located in appropriate directories. Table 36 contains a short description of each class’s
functionality.

broadcast-source
├── CMakeLists.txt
└── src
 ├── Advertisement
 │ ├── AdvertisementConfiguration.hpp
 │ ├── AdvertisementController.hpp
 │ └── AdvertisementWrapper.hpp
 ├── BroadcastSource
 │ ├── BroadcastSourceConfiguration.hpp
 │ ├── BroadcastSourceController.hpp
 │ ├── BroadcastSourceWrapper.cpp
 │ └── BroadcastSourceWrapper.hpp
 ├── Logger.hpp
 ├── main.cpp
 └── ProtobufTraits.hpp

Listing 4: Directory structure of the broadcast source application

Class Description
AdvertisementConfiguration Holds configuration values for the AdvertisementWrapper.
AdvertisementController Responsible for managing an instance of an

AdvertisementWrapper.
AdvertisementWrapper Takes an AdvertisementConfiguration as a constructor

argument and then starts advertising. Stops advertising upon
destruction.

BroadcastSourceConfiguration Holds configuration values for the BroadcastSourceWrapper.
BroadcastSourceController Responsible for managing an instance of a

BroadcastSourceWrapper.
BroadcastSourceWrapper Takes a BroadcastSourceConfiguration as a constructor

argument, starts broadcasting once given an advertisement to
use. Stops broadcasting upon destruction.

Logger Contains an alias for the GenericLogger (from the shared
directory) with the broadcast source specific log message.

ProtobufTraits Contains trait definitions used by the ProtobufEncoder and
ProtobufDecoder (from the shared directory).

Table 36: Description of the broadcast source application classes

46 / 97

7.1.2. Broadcast Assistant
The broadcast assistant application has been adapted from a Zephyr example application, which was
written in C. We tried to extract its functionality into sensible classes. The resulting structure can be
seen in Listing 5.

Table 37 contains a short description of each class’s functionality.

broadcast-assistant
├── CMakeLists.txt
└── src
 ├── BroadcastSink
 │ ├── BroadcastSinkConnectionHandler.hpp
 │ └── BroadcastSinkScanner.hpp
 ├── BroadcastSource
 │ └── BroadcastScanner.hpp
 ├── Logger.hpp
 ├── main.cpp
 └── ProtobufTraits.hpp

Listing 5: Directory structure of the broadcast assistant application

Class Description
BroadcastSinkConnectionHandler Handles all interaction with the broadcast sink, including

connection establishment and sending it the chosen
broadcast id.

BroadcastSinkScanner Scans for available broadcast sinks, checks each sink’s
Auracast™ capabilities, and sends the ones that do support
Auracast™ to the library.

BroadcastScanner Scans for available broadcasts and sends them to the library.
Logger Contains an alias for the GenericLogger (from the shared

directory) with the broadcast assistant specific log message.
ProtobufTraits Contains trait definitions used by the ProtobufEncoder and

ProtobufDecoder (from the shared directory).

Table 37: Description of the broadcast assistant application classes

47 / 97

7.1.3. Shared Code
Several pieces of code were written for reuse across both applications. They have been placed in the
shared directory, whose contents are depicted in Listing 6. Each of those classes is described in
Table 38.

shared
├── GenericLogger.hpp
├── LedController.hpp
├── ProtobufDecoder.hpp
├── ProtobufEncoder.hpp
├── UartClient.hpp
├── VarintDecoder.hpp
└── VarintEncoder.hpp

Listing 6: Contents of the Shared Embedded Directory

File Description
GenericLogger The logger used to send log messages from the embedded applications to the

library. It is generic, because in order for it to encode messages it needs to
know the type of the enclosing Protobuf message, which is provided through a
template argument by each application.

LedController Handles SetColor messages and sets the appropriate General-Purpose Input/
Output (GPIO) pins.

ProtobufEncoder Encodes Protobuf messages into a byte array.
ProtobufDecoder Decodes byte arrays into Protobuf messages.
UartClient Handles all serial interaction with the library by registering itself for the

appropriate interrupts. It dispatches incoming messages on a separate thread
to the provided given callback. Uses the VarintEncoder and VarintDecoder to
read and write message sizes.

VarintEncoder Encodes ints into byte arrays. GPIO
VarintEncoder Decodes byte arrays into ints.

Table 38: Description of the shared embedded classes

48 / 97

7.2. .NET
This section explores the implementation of the library in Section 7.2.1, Library and the
implementation of the command-line application in Section 7.2.2, CLI Application.

7.2.1. Library
The library handles all communication between the two boards and the test running. It also relays
log messages from the embedded devices to the chosen .NET logging framework. We chose an
abstraction level that we thought was appropriate and ended up with two exposed classes,
BroadcastSourceManager and BroadcastAssistantManager. For filtering found devices we also
exposed two record types used in predicates, BroadcastSink and Broadcast. They can be seen in the
class diagram in Figure 23.

The differentiation into the two manager classes makes it transparent to the consumer with which
board they are interacting with. Since there is quite a bit of shared logic they both inherit from the
abstract BaseManager. They also both take a serial number during construction, which they use to
target the correct board. All method calls are blocking operations and, with the exception of the
SetColor command, wait for the board response before returning.

The library is also responsible for forwarding log messages from the board to the logging system
that we use, along with their importance level. This means that the global log-level set also affects
whether log events from the embedded boards are logged. However, the log level on the embedded
boards does not get changed, the library will just silently drop messages below the importance
threshold.

The BroadcastSourceManager exposes four public methods, which are described in Table 39. The
BroadcastAssistantManager exposes four public methods, which are described in Table 40.

49 / 97

Method Description
SetColor 1. Sends the SetColor command.
FollowLogMessages 1. Waits for LogMessage messages from the board and logs them.
StartBroadcasting 1. Sends the StartBroadcasting command.

2. Waits for the StartBroadcasting response message.
StopBroadcasting 1. Sends the StopBroadcasting command.

2. Waits for the StopBroadcasting response message.

Table 39: Public methods of the broadcast source manager

Method Description
SetColor 1. Sends the SetColor command to the board.
FollowLogMessages 1. Waits for LogMessage messages from the board and logs them.
ConnectToBroadcastSink 1. Sends the ScanForBroadcastSink command.

2. Waits for ScanForBroadcastSink response message.
3. Waits for ScanResult messages until a match is found.
4. Sends StopScanningForBroadcastSink command.
5. Waits for StopScanningForBroadcastSink response message.
6. Sends ConnectToBroadcastSink command.
7. Waits for ConnectToBroadcastSink response message.

SelectBroadcastSource 1. Sends ScanForBroadcastSource command.
2. Waits for ScanForBroadcastSource response message.
3. Waits for ScanResult messages until a match is found.
4. Sends StopScanningForBroadcastSource command.
5. Waits for StopScanningForBroadcastSource response message.
6. Sends SelectBroadcastSink command.

1. Waits for SelectBroadcastSink response message.

Table 40: Public methods of the broadcast assistant manager

50 / 97

Figure 23: Library class diagram showing public classes, methods and fields

51 / 97

7.2.2. CLI Application
To test the library we implemented a simple CLI application allowing us to use all public functions
of the library described in Table 39 and Table 40.

We created four Option classes which define the parameters used to execute the library functions.
Parameters to set the board color and to connect to the serial port are used in multiple options, to
reuse them we created interfaces and collected them in the Interfaces directory. The
OptionParser.cs uses the Command Line Parser library [40] to parse the options and then calls the
appropriate library functions.

The resulting file structure can be seen in Listing 7.

cli
├── Program.cs
├── OptionParser.cs
└── Options
 ├── Interfaces
 │ ├── IColorOptions.cs
 │ ├── IPortOptions.cs
 ├── BroadcastSourceOptions.cs
 ├── ColorOptions.cs
 ├── ConnectToBroadcastSinkOptions.cs
 ├── PrintOptions.cs
 └── SelectBroadcastOptions.cs

Listing 7: Directory structure of the CLI application

52 / 97

7.2.2.1. Usage
Before connecting to a specific serial port we need to know which ports are available. To find
available Nordic boards, the command in Listing 8 be used. It prints the serial number and port
number of each device found.

dotnet run print --connected-devices

Listing 8: CLI command to print connected devices

It is important that the serial number of the correct board with the needed application is used. For
set-color --sink, connect-sink and select-broadcast the broadcast sink application described
in Section 7.1.2, Broadcast Assistant needs to be flashed onto the board. For set-color --source,
start-broadcast and stop-broadcast the broadcast assistant application described in Section 7.1.1,
Broadcast Source is needed.

Setting the LED color
To test if the setup works, the color of the LED can be set. This can be done with the set-color
command, whose flags are documented in Table 41. A sample invocation can be found in Listing 9.

Long Short Description
--source -s Sets the color on the broadcast source device
--assistant -a Sets the color on the broadcast assistant device
--serial-number - Serial number or the Nordic board
--red -r Sets the color red (0 or 255, optional)
--green -g Sets the color green (0 or 255, optional)
--blue -b Sets the color blue (0 or 255, optional)

Table 41: Flags for the set-color command

dotnet run set-color --serial-number 1050156338 -g 255

Listing 9: Example of the set-color command

53 / 97

Starting a Broadcast
A broadcast has to be started first, before a sink can listen to it. To do this the start-broadcasting
command can be used, by specifying the serial number and defining the name of the broadcast. The
available flags for the command are listed in Table 42 and an example invocation in Listing 10.

Long Short Description
--serial-number - Serial number or the Nordic board
--follow -f Continues printing log messages after the command is executed until

interrupted
--name -n Name of the broadcast which is being started

Table 42: Flags for the start-broadcasting command

dotnet run start-broadcasting --serial-number 1050156338 --name Test-Broadcast

Listing 10: Example of the start-broadcasting command

Connecting to a Broadcast Sink
To connect a broadcast sink, like ear buds, the connect-sink command needs to be executed. The
broadcast sinks can be filtered by Bluetooth® name and Bluetooth® address. The first broadcast sink
matching the filters is selected and at least one filter needs to be set. The available flags for the
command are listed in Table 43 and an example invocation in Listing 11.

Long Description
--serial-number Serial number or the Nordic board
--bluetooth-name Filters the available broadcast sinks by their Bluetooth® name
--bluetooth-address Filters the available broadcast sinks by their Bluetooth® address

Table 43: Flags for the connect-sink command

dotnet run connect-sink --serial-number 1050164593 --bluetooth-name 'Galaxy Buds2 White'

Listing 11: Example of the connect-sink command

54 / 97

Selecting a Broadcast
After establishing a connection to the the broadcast sink, a broadcast can be selected. This is also
done on the broadcast assistant, using the select-broadcast command. The broadcasts can be
filtered by broadcast id, broadcast name, and Bluetooth® name. The first broadcast matching the
filters is selected and at least one filter needs to be set. The available flags for the command are listed
in Table 44 and an example invocation in Listing 12.

Long Description
--serial-number Serial number or the Nordic board
--broadcast-id Filters the available broadcasts by the broadcast id
--broadcast-name Filters the available broadcasts by the broadcast name
--bluetooth-name Filters the available broadcasts by the Bluetooth® name

Table 44: Flags for the select-broadcast command

dotnet run select-broadcast --serial-number 1050164593 --broadcast-name Test-Broadcast

Listing 12: Example of the select-broadcast command

Common Flags
Additionally you can follow the log messages until they are interrupted with Ctrl. + C. This works
with start-broadcast, connect-sink and select-broadcast. The flag is shown in Table 45.

Long Short Description
--follow -f Continues printing log messages after the command is executed until

interrupted

Table 45: Common flags for the CLI application

55 / 97

7.3. Serial Communication
In Section 5.3, Serial Protocol we chose to use Protocol Buffers as the message format. This brings
with it an additional challenge, because, unlike strings, Protocol Buffers do not specify a termination
character. This means we need to find a different way to find the start and end of messages.

We chose to implement a header in the form of a variable sized integer, which specifies the size of
the following message. A fixed-size header would also have been sufficient, but to be as future-proof
as possible we decided to go with the variable sized approach. Figure 24 shows how the approach
looks like with “Length” being the variable sized integer and the “Message” being the encoded
Protocol Buffer message.

Figure 24: Illustration of the serial communication

The implementation we chose for the variable-sized integers uses the first bit of a byte to indicate
whether more length-indicating bytes are following or not. The other seven bits following the
indication bit are used to actually encode the length. An example of this process is shown in
Figure 25, where two bytes are used to encode a message length of 2766 bytes. The first byte has the
continuation bit (shown in green) set to one, indicating that there is more to follow. The second byte
has the continuation bit set to zero, indicating that it is the final byte to consider to determine the
length.

Figure 25: Example decoding of a variable sized integer

56 / 97

7.4. Serial Protocol
When using Protocol Buffers the protocol format needs to be defined in .proto files. In addition a
.option file can be used to set specific requirements for fields for example setting a fixed length for
a string. These files can then be used by all applications involved. In our case we added the files to
the protos directory, which is also shown in Listing 2. This directory is then used by the library and
embedded applications.

Listing 13 shows the .proto file for shared commands and Listing 14 show the one for shared
messages.

In general we divided the Protobuf messages into commands and messages to distinguish them. A
command is only sent from the library to the boards and a message is only sent from the boards to
the library. A message can contain a command response, a log message, or a scan result. As the
message is not necessarily a response we decided to not name it Response.

Each time a command is sent a response message is expected, except for the SetColor command,
which is mainly used for debugging purposes. The response message contains a boolean field
success indicating whether the command was successful or not. Until the response message arrives
multiple LogMessages can be expected.

message SetColor {
 // values between 0 and 255
 uint32 red = 1;
 uint32 green = 2;
 uint32 blue = 3;
}

Listing 13: Protocol definition - Shared commands

message LogMessage {
 enum Level {
 Debug = 0;
 Info = 1;
 Warning = 2;
 Error = 3;
 }

 Level level = 1;
 string message = 2;
}

Listing 14: Protocol definition - Shared messages

57 / 97

7.4.1. Broadcast Source
The broadcast source can receive three different commands SetColor, StartBroadcasting and
StopBroadcasting which are defined in the BroadcastSourceCommand.proto which is shown in
Listing 15.

All response and log messages are defined in the BroadcastSourceMessage.proto file shown in
Listing 16. The used response messages for the broadcast source are StartBroadcastingResponse
and StopBroadcastingResponse. The response messages are set as CommandResponse in the
BroadcastSourceMessage.

import "CommonCommands.proto";

message BroadcastSourceCommand {
 oneof command {
 SetColor setColor = 1;
 StartBroadcasting startBroadcasting = 2;
 StopBroadcasting stopBroadcasting = 3;
 }

 message StartBroadcasting {
 string name = 1;
 CodecConfiguration codecConfiguration = 2;

 message CodecConfiguration {
 Lc3Config lc3Config = 1;
 QosParameters qosParameters = 3;

 enum SamplingFrequency {
 INVALID = 0;
 KHZ_8 = 1;
 KHZ_11 = 2;
 ...
 KHZ_192 = 12;
 KHZ_384 = 13;
 }

 enum FrameDuration {
 MSEC_7_5 = 0;
 MSEC_10 = 1;
 }

 message Lc3Config {
 SamplingFrequency samplingFrequency =
1;
 FrameDuration frameDuration = 2;
 uint32 octetsPerFrame = 3;
 }

 message QosParameters {
 uint32 maxSduSize = 1;
 uint32 maxLatency = 2;
 uint32 frameInterval = 3;
 uint32 presentationDelay = 4;
 }
 };
 }

 message StopBroadcasting { }
}

Listing 15: Protocol definition - Broadcast source
commands

import "CommonMessages.proto";

message BroadcastSourceMessage {
 oneof message {
 LogMessage logMessage = 1;
 CommandResponse commandResponse = 2;
 }

 message CommandResponse {
 oneof response {
 StartBroadcastingResponse
startBroadcastingResponse = 1;
 StopBroadcastingResponse
stopBroadcastingResponse = 2;
 }

 message StartBroadcastingResponse {
 bool success = 1;
 }

 message StopBroadcastingResponse {
 bool success = 1;
 }
 }
}

Listing 16: Protocol definition - Broadcast source
messages

58 / 97

7.4.1.1. Set Color
To set the color of the LED on the board the SetColor command is used, which is defined within the
shared .proto file shown in Listing 13. The process is visualized in Figure 26.

Figure 26: Implementation - Setting the LED color on the broadcast source

7.4.1.2. Start Broadcasting
The StartBroadcasting command contains a parameter to set the name of the broadcast and
configurations for the codec. Details of the parameters can be found in the .proto file in Listing 15.

As a response the StartBroadcasting message is sent back to the library. Details of the response
message can be found in the .proto file in Listing 16.

Figure 27: Implementation - Starting the broadcast

59 / 97

7.4.1.3. Stop Broadcasting
The StopBroadcasting command contains no parameters. Details of the command can be found in
the .proto file in Listing 15.

As a response the StopBroadcasting message is sent back to the library. Details of the response
message can be found in the .proto file in Listing 16.

Figure 28: Implementation - Stopping the broadcast

60 / 97

7.4.2. Broadcast Assistant
The broadcast assistant can receive seven commands: SetColor, StartScanningForBroadcastSink,
StartScanningForBroadcastSource, StopScanningForBroadcastSink,
StopScanningForBroadcastSource, ConnectToBroadcastSink and ConnectToBroadcastSource.
They are defined in BroadcastAssistantCommand.proto, which is shown in Listing 17.

All response and log messages are defined in the BroadcastAssistantMessage.proto file shown in
Listing 18. The used response messages for the broadcast assistant are
StartScanningForBroadcastSinkResponse, StartScanningForBroadcastSourceResponse,
StopScanningForBroadcastSinkResponse, StopScanningForBroadcastSourceResponse,
ConnectToBroadcastSinkResponse and ConnectToBroadcastSourceResponse. The response
messages are nested under CommandResponse in the BroadcastAssistantMessage.

import "CommonCommands.proto";

message BroadcastAssistantCommand {
 oneof command {
 SetColor setColor = 1;
 StartScanningForBroadcastSink startScanningForBroadcastSink = 2;
 StopScanningForBroadcastSink stopScanningForBroadcastSink = 3;
 ConnectToBroadcastSink connectToBroadcastSink = 4;
 StartScanningForBroadcast startScanningForBroadcast = 5;
 StopScanningForBroadcast stopScanningForBroadcast = 6;
 SelectBroadcast selectBroadcast = 7;
 }

 message StartScanningForBroadcastSink {}
 message StopScanningForBroadcastSink {}
 message StartScanningForBroadcast {}
 message StopScanningForBroadcast {}
 message ConnectToBroadcastSink {
 bytes bluetoothAddress = 1;
 uint32 type = 2;
 }
 message SelectBroadcast {
 uint32 broadcastId = 1;
 }
}

Listing 17: Protocol definition - Broadcast assistant commands

61 / 97

import "CommonMessages.proto";

message BroadcastAssistantMessage {
 oneof message {
 LogMessage logMessage = 1;
 CommandResponse commandResponse = 2;
 ScanResult scanResult = 3;
 }

 message CommandResponse {
 oneof response {
 StartScanningForBroadcastSinkResponse
 startScanningForBroadcastSinkResponse = 1;
 StopScanningForBroadcastSinkResponse
 stopScanningForBroadcastSinkResponse = 2;
 ConnectToBroadcastSinkResponse connectToBroadcastSinkResponse = 3;
 StartScanningForBroadcastResponse startScanningForBroadcastResponse = 4;
 StopScanningForBroadcastResponse stopScanningForBroadcastResponse = 5;
 SelectBroadcastResponse selectBroadcastResponse = 6;
 }

 message StartScanningForBroadcastSinkResponse { bool success = 1; }
 message StopScanningForBroadcastSinkResponse { bool success = 1; }
 message ConnectToBroadcastSinkResponse { bool success = 1; }
 message StartScanningForBroadcastResponse { bool success = 1; }
 message StopScanningForBroadcastResponse { bool success = 1; }
 message SelectBroadcastResponse { bool success = 1; }
 }

 message ScanResult {
 oneof result {
 BroadcastSinkScanResult broadcastSinkScanResult = 1;
 BroadcastScanResult broadcastScanResult = 2;
 }

 message BroadcastSinkScanResult {
 string bluetoothName = 1;
 uint32 type = 2;
 bytes bluetoothAddress = 3;
 }

 message BroadcastScanResult {
 string bluetoothName = 1;
 string broadcastName = 2;
 uint32 broadcastId = 3;
 }
 }
}

Listing 18: Protocol definition - Broadcast assistant messages

62 / 97

7.4.2.1. Set Color
To set the color of the LED on the assistant board the SetColor command is used, which is defined
within the shared .proto file shown in Listing 13. The process is visualized in Figure 26.

Figure 29: Implementation - Setting the LED color on the broadcast assistant

7.4.2.2. Connect to Broadcast Sink
To establish a connection to the broadcast sink a series of commands should be sent.

The StartScanningForBroadcastSink command starts scanning for broadcast sinks and sends a
BroadcastSinkScanResult message when a potential device has been found.

When a suitable broadcast sink is found, the scanning needs to be stopped by sending the
StopScanningForBroadcastSink command.

Then the ConnectToBroadcastSink command is used to establish the connection. The command
contains multiple parameters to set the address and the type of the broadcast sink to which the
board should connect to.

63 / 97

Figure 30: Implementation - Connecting the broadcast sink

64 / 97

7.4.2.3. Select Broadcast
To select a broadcast a series of commands should be sent.

The StartScanningForBroadcast command starts scanning for available broadcasts and responds
with BroadcastScanResult when an available broadcast has been found.

When a suitable broadcast is found, the scanning needs to be stopped by sending the
StopScanningForBroadcast command.

Then the SelectBroadcast is used to select a broadcast, meaning the connected broadcast sink will
be instructed to listen to it. The command contains only one parameter to set the broadcast id of the
chosen broadcast.

Details of the commands and messages can be found in the .proto files in Listing 17 and Listing 18.

65 / 97

Figure 31: Implementation - Select a broadcast

66 / 97

8. Verification
To ensure the quality of our solution, this section details the verification process.

A review of our requirements (defined in Section 3, Requirements) is performed in Section 8.1,
Functional Requirements Review and in Section 8.2, Non-Functional Requirements Review.

Our approach to automated testing is described in Section 8.3, Automated Testing and the one for
manual testing in Section 8.4, Manual Testing.

67 / 97

8.1. Functional Requirements Review
In this section we take a look at the requirements defined in Section 3.1, Functional Requirements. For
each defined requirement we determined whether it is fulfilled or not.

8.1.1. Broadcast Source
All MVPs were achieved. However, the more advanced features were not implemented due to time
constraints. See Table 46 for details.

Requirement Status Comment
FR101 - Starting and Stopping the Stream MVP ✔ -
FR102 - Multiple Streams

❌

This has not been implemented
due to time constraints.
However, this functionality can
be achieved by using multiple
boards simultaneously.

FR103 - Naming the Streams ✔ -
FR104 - Playing Test Tone MVP ✔ -
FR105 - Audio Input Selection

❌
This has not been implemented
due to time constraints.

FR106 - Encrypted Streams
❌

This has not been implemented
due to time constraints.

Table 46: Broadcast source - Requirement review

8.1.2. Broadcast Assistant
All requirements were achieved. See Table 47 for details.

Requirement Status Comment
FR201 - Scanning for Sink Devices MVP ✔ -
FR202 - Pairing of Specific Device MVP ✔ -
FR203 - Connecting to Specific Device MVP ✔ -
FR204 - Selecting Stream and Sending to Sink MVP ✔ -
FR205 - Scanning for Broadcast Sources ✔ -
FR206 - Scanning for Broadcast Sinks ✔ -

Table 47: Broadcast assistant - Requirement review

8.1.3. Library
Unfortunately the functional requirements for the library were not implemented, due to time
constraints. However, they were not part of the MVP. See Table 48 for details.

Requirement Status Comment
FR301 - Receiving GATT Information

❌
This has not been implemented
due to time constraints.

Table 48: Library - Requirement review

68 / 97

8.2. Non-Functional Requirements Review
In this section we take a look at the requirements defined in Section 3.2, Non-Functional
Requirements. For each defined requirement we determined whether it is fulfilled or not.

All defined requirements, even non-MVP ones, were achieved.

8.2.1. Functionality
All functionality-related requirements were achieved. Table 49 lists all requirements and their
verification status.

Requirement Status Comment
NFR101 - Comply with Industry Standards MVP ✔ -
NFR102 - Dependency Management MVP ✔ -

Table 49: Functionality - Requirement review

8.2.2. Usability
All usability-related requirements were achieved. Table 50 lists all requirements and their
verification status.

Requirement Status Comment
NFR201 - Graceful Error Handling MVP ✔ -
NFR202 - Abstraction Level MVP ✔ -
NFR203 - Ease of Use MVP ✔ -
NFR204 - Usage Examples MVP ✔ -

Table 50: Usability - Requirement review

8.2.3. Reliability
All reliability-related requirements were achieved. Table 51 lists all requirements and their
verification status.

Requirement Status Comment
NFR301 - Reliable Operation ✔ -

Table 51: Reliability - Requirement review

69 / 97

8.2.4. Performance
All performance-related requirements were achieved. Table 52 lists all requirements and their
verification status.

Requirement Status Comment
NFR401 - Startup Time MVP ✔ -
NFR402 - Performance of Multiple Streams ✔ -

Table 52: Performance - Requirement review

8.2.5. Supportability
All supportability-related requirements were achieved. Table 53 lists all requirements and their
verification status.

Requirement Status Comment
NFR501 - Integration of Library MVP ✔ -
NFR502 - Maintainability MVP ✔ -
NFR503 - Clear Versioning System ✔ -
NFR504 - Platform Agnostic Implementation ✔ -

Table 53: Supportability - Requirement review

70 / 97

8.3. Automated Testing
Automated unit tests were written for the C# library. They are located in the Tests subdirectory of
the library directory and test all public functionality of the BroadcastSourceManager and
BroadcastAssistantManager classes to verify that the correct messages are sent to the board.

8.4. Manual Testing
During development each public method was tested manually to verify it is working correctly. This
included using test devices, like the Samsung Galaxy Buds 2 Pro, and running the applications on
the DKs. For these tests we also used the CLI heavily. Additional hardware was used as needed, such
as a phone supporting Auracast™, like the Galaxy S23 and S24. To aid in debugging also used the
Nordic Wireless nRF Connect for Mobile app to scan for available bluetooth devices. [50]

Manual Testing was performed before opening a PR and many times also by the person reviewing
the PR.

71 / 97

9. Challenges
In this chapter we documented some of the challenges we encountered during development. This
section is split into an embedded (Section 9.1, Embedded) and a dotnet part (Section 9.2, Dotnet).

9.1. Embedded
During embedded development, we encountered the most difficulties, as at the beginning of this
project, we were both quite inexperienced in this area. Many of them stem from the issue that the
Zephyr SDK is a C library, which often takes pointers to some data. This makes it quite difficult to
keep track of the data we need to keep intact.

9.1.1. Work Queues and Bluetooth® Library
While implementing UART communication (Section 5.3, Serial Protocol), some Bluetooth®

functionality seemingly randomly stopped working. We first suspected our interrupt-based
messaging handling, since we processed everything inside the interrupt handler. We thought that
maybe it would help if we switched to a polling-based approach. This did indeed work. However,
constantly polling for new bytes is not the best solution either.

We then read about Zephyr’s threading system, and discovered workqueue threads [51]. There
already is a system workqueue in place and according to Zephyr’s documentation

Additional workqueues should only be defined when it is not possible to submit new work
items to the system workqueue.

— Zephyr [51]

So we submitted work items to the system workqueue and expected the issue to be solved; however,
the device still halted.

As a last-ditch effort, we created our own workqueue, which ultimately solved the issue. We learned
that the Bluetooth® library uses the system workqueue and does not create its own. Other
developers have also reported this issue, and the misleading documentation [52], [53].

9.1.2. Configurable Stack Size
During the development of the broadcast source, the board seemed to halt unexpectedly during a
call to a Zephyr library function. To investigate this, we added print statements to both ours and
Zephyr’s code. We identified the specific print statements between which the board halted and
attempted to diagnose the issue. Everything seemed to work as expected; no errors were detected
before the halt.

We discussed this issue with our advisor, and one of the first questions he asked was if the stack size
is configurable. This was the case, and after increasing the configured stack size, the issue with the
unexpected halt was solved.

The root cause here was the switch from the system workqueue to our own (Section 9.1.1, Work
Queues and Bluetooth® Library). Within our own workqueue, we used the default stack size, which
was a lot smaller than the system workqueue that we used before.

72 / 97

9.1.3. Pointers to Nowhere
When implementing the advertising features of the broadcast source, we were using a mobile phone
to scan for the Auracast™ stream. The stream never appeared, and we were out of ideas, so we asked
a member of Sonova’s embedded software team for advice. Together, we took a traffic capture using
an Ellisys analysis system [54].

The advertising data looked very suspicious, similar to uninitialized memory. This gave us the clue
we needed, and we checked the code for places where we pass pointers to temporary data. We found
a few of them and refactored the entire broadcast source controller to prevent the issue from
happening again.

9.2. Dotnet
During the development of the .NET project, we encountered fewer problems than with the
embedded ones. However, we still had some challenges that kept us working.

9.2.1. Serial Ports
When connecting to a serial port to communicate with the Nordic board, the COM port is needed.
We wanted to print available ports in the CLI, but it turned out to be more complex than we
thought. After hours of research, we still did not manage to find the right way to read out the serial
number of the Nordic boards so the user could simply enter the serial number instead of the COM
port. In the end, we simply used nrfjprog, one of the command line tools from Nordic [55]. This is
not the best solution, since it just calls an external executable, but it seems to work fine and does
what we need it to.

9.2.2. Development Environments
Unfortunately, we could not use development environments like Rider or Visual Studio as described
in Section 6.2, Development Environment. The result of only using VS Code was that many
programming errors were not spotted and code completion did not work at times. It took us some
time to get used to it, but in the end, it worked out fine. Dealing with these issues made the
implementation time of features a bit longer than it would have with fully integrated development
environments.

73 / 97

10. Project Management
The approach of the project is explained in Section 10.1, Approach. The planning of the project is
looked into in Section 10.2, Project Plan, including a comparative analysis between the initial plan and
its effective implementation. Finally, Section 10.3, Time Tracking provides a summarized overview of
the allocated working hours coupled with a reflective assessment of the time invested.

10.1. Approach
To discuss the ongoing process of the project we had a weekly meeting with our advisor, where we
discussed what work has been done and what is planned for the next week. Receiving feedback on
the ongoing development is quite important, as the direction we are going towards can be assessed
and adjusted in just a week.

The development is managed using the GitHub instance of Sonova as described in Section 6,
Development Process. For a better overview of what is already done, PRs are used to review each
other’s changes. This same method is also used for writing the documentation, which allows
tracking all changes easily.

For the documentation, Typst [56] was used, which is a new markup-based typesetting system. In VS
Code, there is an extension supporting Typst [38], which includes a version of the Typst compiler.

To keep track of tasks we needed to do, we used GitHub issues [57], which we updated weekly.

The project is split into three main parts.

Analysis and Experimentation The analysis consisted of research on what Auracast™ is and how
it works. This step also entailed gathering knowledge needed for the implementation, such as
looking into the Bluetooth® standard. We experimented with the Nordic boards we received, and
tried out the ready-to-use sample applications. In addition, we also looked into already existing code
from another team at Sonova to check if we can use or extend it for our solution. The
experimentation phase also included looking for possible solutions, including proof of concepts,
which can be presented to the Sonova team.

Project Setup After the decision was made on which direction the project should go, we set up the
project. In this step, we installed all the needed tools and created the repositories on the Sonova
GitHub instance.

Implementation and Finalization In the implementation phase, the embedded applications, CLI,
and serial protocol were implemented according to Section 5, Design. We made sure the code follows
the Sonova guidelines and is well structured.

74 / 97

10.2. Project Plan
Our project plan is shown in Figure 32. The darker hues represent the plan we made initially and the
lighter hues show the actual time spent.

Initially we stayed pretty close to the plan, especially in the analysis phase. However, during this
phase we also learned that the test system integration would not be our responsibility, but would be
done by someone else afterwards. This led to the “Test System Integration” part not being done at
all, which gave us some much needed time for the implementation and documentation and in
hindsight would have been a bit too much given the limited time we had.

10.2.1. Important Deadlines
To help us stay on top of important appointments and deadlines, we have compiled them in this
section. This will ensure we have a clear overview and can manage our time effectively.

25. March, 13:00 Intermediate presentation
10. June Hand in AVT abstract
12. June, 18:00 Poster hand-in
13. June, 12:00 Print documentation
14. June, 16:00 Start of exhibition
14. June, 17:00 Final hand-in
24. June, 13:00 Final presentation

75 / 97

W1
19. Feb

W2
26. Feb

W3
04. Mar

W4
11. Mar

W5
18. Mar

W6
25. Mar

W7
01. Apr

W8
08. Apr

W9
15. Apr

W10
22. Apr

W11
29. Apr

W12
06. May

W13
13. May

W14
20. May

W15
27. May

W16
03. Jun

W17
10. Jun

Documentation

Setup Ongoing documentation Abstract & MS¹ Refinement Final & Poster

Setup Ongoing documentation Refinement & Finalization Poster

Analysis

Read up on Bluetooth®,
Auracast™ & Nordic Boards

Explore Environment &
Define Requirements

Read up on Bluetooth®,
Auracast™ & Nordic Boards

Explore Environment &
Define Requirements

Implementation

Planning Development Bugfixes & Refinement Cleanup

Planning Experimentation Broadcast Source Development

Broadcast Assistant Development Refinement

Test System Integration

Test System Integration Continuous Testing

Figure 32: Project plan

¹Management Summary

76 / 97

10.3. Time Tracking
To monitor the working hours effectively, a Google Sheet was established, where information about
the time spent was meticulously recorded. Each record contains a date, the amount of time spent,
name of executor, task category and a brief comment detailing the specific work performed during
that time. Table 54 and Figure 33 show the total amount of time spent on each category per project
week. Figure 34 shows the share of time invested per category. Most of the time spent was invested
into the documentation and implementation, with the former being the main focus at the end of the
project. Figure 35 shows the time spent by each project author. Both authors contributed a similar
amount to both documentation and implementation.

Table 54: Time invested per category and project week

Figure 33: Time invested per category and project week

77 / 97

Figure 34: Time invested per category

Figure 35: Time invested per person

78 / 97

11. Conclusion
In this thesis, we analyzed BLE and Bluetooth® Auracast™, where we learned a lot about the inner
workings of Bluetooth®. This included reading about ATT, GATT, CIS, CIG, and many more. We
focused our detailed analysis mainly on Auracast™.

As a next step, we came up with ideas on how a test system could be structured. We compared
different approaches to the overall architecture and later also compared different options for the
serial communication between the library and the boards.

After a decision for the approach was reached, we started the implementation process. We
successfully implemented a .NET library, a CLI (also written in .NET), and two embedded
applications, one for the broadcast source and one for the broadcast assistant.

Our implemented solution fulfills all MVPs, however some other requirements were not
implemented due to time constraints.

We will go over our learnings during the project in Section 11.1, Learnings and take a look at its
future in Section 11.2, Outlook.

11.1. Learnings
One of the biggest learning experiences was coming up with the architecture of our solution. For
both of us, it was the first time we had the chance to do so, and we learned a lot. We came up with
different ideas, prepared the options for a pitch meeting, and discussed them with experts.

We also learned a lot about embedded development and C++. Especially the pitfalls of interacting
with a C library provided lots of learning opportunities for us. The many challenges we encountered
during embedded development are documented in Section 9.1, Embedded.

Working with an industry partner was also very insightful, as we got an insider look at the
company. Experiencing how embedded software is being developed up close and the challenges the
team encountered was very interesting.

Working on a closed-source project also posed challenges like licensing restrictions, which we were
not particularly used to. We had to look at the licensing of each tool and library we wanted to use
much closer than we usually do.

11.2. Outlook
After the end of our thesis, there will be a handover process, where we formally pass the project on
to Sonova. They will most likely make some adjustments to the project to make it fit for integration
into their test system, such as creating a NuGet package and updating their internal documentation.

What we built will aid their embedded development team in building products with Auracast™
support. It would also be easily adaptable to any future test system, even if it is not .NET, since the
library is not that big and can be rewritten in any language, without having to adjust the protocol
definitions or embedded applications.

We look forward to seeing devices with Auracast™ support from Sonova in the future and hope that
our contribution will make a difference.

79 / 97

12. Disclaimers
Parts of this paper were rephrased using GPT-3.5 [58], GPT-4 [59], and GPT-4o [60]. This paper was
reviewed by our advisor and corrections were applied according to the comments made. For spell
checking and translations DeepL [61], LanguageTool [62], grammarly [63], and QuillBot [64] were
used.

80 / 97

13. Glossary
ATT – Attribute Protocol: See Section 2.4.1, Attribute Protocol (ATT) - Roles. 12, 13, 79, 87

BASS – Broadcast Audio Scan Service: A protocol that allows Bluetooth® devices to scan for and
receive audio broadcasts from a source device without requiring a prior pairing, enabling seamless
audio streaming to multiple devices simultaneously. 2

BLE – Bluetooth® Low Energy: See Section 2.1, Bluetooth® LE (BLE). 4, 5, 7, 11, 12, 79, 87

CIG – Connected Isochronous Groups: Can support multi-connected data streaming with one
master and multiple slaves. Each group can contain multiple CIS instances. 6, 79

CIS – Connected Isochronous Streams: Is a logical transport that enables connected devices to
transfer isochronous data unidirectionally and bidirectionally. 6, 79, 81

CLI – Command Line Interface: A text-based user interface used for entering commands to a
computer program. Users interact with software or operating systems by typing commands into a
terminal or console window. 43, 52, 53, 55, 73, 74, 88, 90, 93

COM – Component Object Model: Interface exposed by Windows to interact with other processes
in an abstract way. In the context of this thesis we used it to communicate with the development
kit via a serial connection over USB. 28, 73

DK – Development Kit: Special hardware with extra debugging functionality 2, 3, 4, 11, 24, 71

FURPS – Functionality, Usability, Reliability, Performance and Supportability: Serves as a
framework for evaluating and defining the non-functional requirements of a software system. 18

GAP – Generic Access Profile: See Section 2.1.1, Generic Access Profile (GAP). 5, 12, 88

GATT – Generic Attribute Profile: See Section 2.4, Bluetooth® Generic Attribute Profile (GATT). 12,
16, 17, 79

GPIO – General-Purpose Input/Output: A versatile pin on an integrated circuit used for digital
signaling, capable of being configured as either an input or an output. In embedded systems,
GPIOs are essential for interfacing with various peripherals and sensors. 48

HCI – Host Controller Interface: Provides standardized communication between a host and a
Bluetooth® controller. Usually both are on the same device or chip, but it can also be used across
other connections like USB. 26, 29, 32, 88

HFP – Hands-Free Profile: The Hands-Free Profile specification defines the interactions for hands
free devices, for example cellular phones with a Bluetooth® in-car kit. This profile provides means
for both remote control of the device and voice connections. 6

JSON – JavaScript Object Notation: A language-independent data interchange format. 31, 33, 34,
35

81 / 97

Monorepo – monolithic repository: A single version control repository that houses multiple
projects or components, simplifying dependency management, promoting code reuse, and
enhancing collaboration. 41

MVP – Minimum Viable Product: A version of a product that includes only the essential features
necessary to provide it to users and gather initial feedback before making further developments
and improvements. 14, 68, 69, 79

PBP – Public Broadcast Profile: Defines how a broadcast source can use extended advertising data
(AD) to signal that it is transmitting broadcast audio streams that can be discovered and rendered
by broadcast sinks that support commonly used audio configurations. 8

PR – Pull Request: A method used in version control systems to submit contributions to a project
by requesting that changes from one branch be merged into another. In other environments, such
as GitLab [65], it is also known as a merge request. 43, 71, 74

RF – Radio Frequency: Portion of the electromagnetic spectrum from 3 kHz to 300 GHz, used for
transmitting data wirelessly through the air. 5

SCO – Synchronous Connection-Oriented: Is one of the two possible Bluetooth® data link types
defined. It is a symmetric, point-to-point link between the master device and a specific slave
device. 6

SDK – Software Development Kit: A collection of software tools, libraries, and documentation
provided to developers to create applications for a specific platform or framework. It simplifies
development by offering pre-built functions and interfaces. 11, 28, 72

UART – Universal Asynchronous Receiver-Transmitter: A hardware communication protocol
that handles asynchronous serial communication between devices. In the context of this thesis we
used it to communicate over the serial connection between the development kit and the
computer." 27, 28, 32, 72, 87, 90

UI – User Interface: The visual and interactive aspect of a software application or device,
encompassing all elements that users interact with, such as buttons, menus, and icons, to facilitate
user interaction and enhance user experience. 31

UUID – Universally Unique Identifier: A universally unique identifier is a specific form of
identifier which can be safely deemed unique for most practical purposes. Two correctly
generated UUIDs have a virtually negligible chance of being identical, even if they’re created in
two different environments by separate parties. This is why UUIDs are said to be universally
unique. 13

VS Code – Visual Studio Code: Visual Studio Code is a streamlined code editor with support for
development operations like debugging, task running, and version control. It aims to provide just
the tools a developer needs for a quick code-build-debug cycle and leaves more complex
workflows to fuller featured IDEs. 41, 43, 73, 74, 88

82 / 97

14. Bibliography
[1] “For Assistive Listening.” Accessed: Jun. 10, 2024. [Online]. Available: https://www.bluetooth.

com/auracast/assistive-listening

[2] “This is Sonova.” Accessed: Mar. 28, 2024. [Online]. Available: https://www.sonova.com/en/
sonova-0

[3] “The next generation of Bluetooth® audio.” Accessed: Mar. 28, 2024. [Online]. Available: https://
www.bluetooth.com/learn-about-bluetooth/feature-enhancements/le-audio/

[4] SAMSUNG, “Experience Immersive, Intelligent Sound With Galaxy Buds Series’ Latest
Updates.” Accessed: Mar. 18, 2024. [Online]. Available: https://news.samsung.com/global/
experience-immersive-intelligent-sound-with-galaxy-buds-series-latest-updates

[5] “nRF5340 Audio DK.” Accessed: Mar. 01, 2024. [Online]. Available: https://www.nordicsemi.
com/Products/Development-hardware/nRF5340-Audio-DK

[6] “The Difference Between Classic Bluetooth® and Bluetooth® Low Energy.” Accessed: Jun. 09,
2024. [Online]. Available: https://blog.nordicsemi.com/getconnected/the-difference-between-
classic-bluetooth-and-bluetooth-low-energyr

[7] “Bluetooth® Low Energy (BLE): A Complete Guide.” Accessed: Jun. 08, 2024. [Online].
Available: https://novelbits.io/bluetooth-low-energy-ble-complete-guide

[8] “Bluetooth® Wireless Technology.” [Online]. Available: https://www.bluetooth.com/learn-
about-bluetooth/tech-overview

[9] M. Afaneh, “How Bluetooth® Low Energy Works: Advertisements.” Accessed: Feb. 29, 2024.
[Online]. Available: https://novelbits.io/bluetooth-low-energy-advertisements-part-1

[10] M. Afaneh, “Mastering BLE: A Guide to Peripherals and Centrals.” Accessed: Jun. 08, 2024.
[Online]. Available: https://novelbits.io/ble-peripherals-centrals-guide

[11] “LE Audio: The Future of Bluetooth® Audio.” Accessed: Jun. 09, 2024. [Online]. Available:
https://www.bluetooth.com/wp-content/uploads/2022/10/MRN-LE_Audio.pdf

[12] “The next generation of Bluetooth® audio.” Accessed: Feb. 22, 2024. [Online]. Available: https://
www.bluetooth.com/learn-about-bluetooth/feature-enhancements/le-audio

[13] M. Afaneh, “The Ultimate Guide to What’s New in Bluetooth® version 5.2.” Accessed: Jun. 09,
2024. [Online]. Available: https://novelbits.io/bluetooth-version-5-2-le-audio

[14] “How It Works.” Accessed: Feb. 22, 2024. [Online]. Available: https://www.bluetooth.com/
auracast/how-it-works/

[15] “Developing Auracast™ Receivers with an Assistant Application for Legacy Smartphones.”
Accessed: Mar. 15, 2024. [Online]. Available: https://www.bluetooth.com/wp-content/uploads/
2024/02/2401_Accelerating_Auracast™_Adoption_FINAL.pdf

[16] “Bluetooth® Core Specification Version 5.2 Feature Overview.” Accessed: Mar. 18, 2024.
[Online]. Available: https://www.bluetooth.com/bluetooth-resources/bluetooth-core-
specification-version-5-2-feature-overview

[17] “Galaxy Buds2 Pro.” Accessed: Mar. 15, 2024. [Online]. Available: https://www.samsung.com/
global/galaxy/galaxy-buds2-pro/

[18] “MOMENTUM True Wireless 4.” Accessed: Mar. 15, 2024. [Online]. Available: https://www.
sennheiser-hearing.com/en-US/p/momentum-true-wireless-4

83 / 97

https://www.bluetooth.com/auracast/assistive-listening
https://www.bluetooth.com/auracast/assistive-listening
https://www.sonova.com/en/sonova-0
https://www.sonova.com/en/sonova-0
https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/le-audio/
https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/le-audio/
https://news.samsung.com/global/experience-immersive-intelligent-sound-with-galaxy-buds-series-latest-updates
https://news.samsung.com/global/experience-immersive-intelligent-sound-with-galaxy-buds-series-latest-updates
https://www.nordicsemi.com/Products/Development-hardware/nRF5340-Audio-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF5340-Audio-DK
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energyr
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energyr
https://novelbits.io/bluetooth-low-energy-ble-complete-guide
https://www.bluetooth.com/learn-about-bluetooth/tech-overview
https://www.bluetooth.com/learn-about-bluetooth/tech-overview
https://novelbits.io/bluetooth-low-energy-advertisements-part-1
https://novelbits.io/ble-peripherals-centrals-guide
https://www.bluetooth.com/wp-content/uploads/2022/10/MRN-LE_Audio.pdf
https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/le-audio
https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/le-audio
https://novelbits.io/bluetooth-version-5-2-le-audio
https://www.bluetooth.com/auracast/how-it-works/
https://www.bluetooth.com/auracast/how-it-works/
https://www.bluetooth.com/wp-content/uploads/2024/02/2401_Accelerating_Auracast_Adoption_FINAL.pdf
https://www.bluetooth.com/wp-content/uploads/2024/02/2401_Accelerating_Auracast_Adoption_FINAL.pdf
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-version-5-2-feature-overview
https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-version-5-2-feature-overview
https://www.samsung.com/global/galaxy/galaxy-buds2-pro/
https://www.samsung.com/global/galaxy/galaxy-buds2-pro/
https://www.sennheiser-hearing.com/en-US/p/momentum-true-wireless-4
https://www.sennheiser-hearing.com/en-US/p/momentum-true-wireless-4

[19] “nRF Connect SDK.” Accessed: Feb. 26, 2024. [Online]. Available: https://www.nordicsemi.com/
Products/Development-software/nRF-Connect-SDK

[20] “The Zephyr Project.” Accessed: Mar. 08, 2024. [Online]. Available: https://www.zephyrproject.
org/

[21] K. Townsend, “GATT.” Accessed: Mar. 28, 2024. [Online]. Available: https://learn.adafruit.com/
introduction-to-bluetooth-low-energy/gatt

[22] “Part G. Generic Attribute Profile (GATT).” Accessed: Jun. 10, 2024. [Online]. Available: https://
www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/
generic-attribute-profile%E2%80%93gatt-.html

[23] M. Afaneh, “Bluetooth® ATT and GATT Explained (Connection-Oriented Communication).”
Accessed: Jun. 10, 2024. [Online]. Available: https://novelbits.io/bluetooth-le-att-gatt-explained-
connection-oriented-communication

[24] M. Afaneh, “Bluetooth® GATT: How to Design Custom Services & Characteristics [MIDI device
use case].” Accessed: Mar. 20, 2024. [Online]. Available: https://novelbits.io/bluetooth-gatt-
services-characteristics

[25] “Building and running nRF5340 Audio applications.” Accessed: Feb. 25, 2024. [Online].
Available: https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/applications/nrf
5340_audio/doc/building.html

[26] “Testing and optimization.” Accessed: Feb. 25, 2024. [Online]. Available: https://developer.
nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/test_and_optimize.html

[27] “Hearing Aid free icon.” Accessed: Feb. 26, 2024. [Online]. Available: https://www.flaticon.com/
free-icon/hearing-aid_6431923?term=hearing+aid&page=1&position=6&origin=search&
related_id=6431923

[28] “bumble.” Accessed: Mar. 15, 2024. [Online]. Available: https://github.com/google/bumble

[29] “Bluetooth® Profile Drivers.” Accessed: Mar. 15, 2024. [Online]. Available: https://learn.
microsoft.com/en-us/windows-hardware/drivers/bluetooth

[30] “Protocol Buffers.” Accessed: Apr. 15, 2024. [Online]. Available: https://protobuf.dev/

[31] “Introducing JSON.” Accessed: Apr. 15, 2024. [Online]. Available: https://www.json.org/

[32] “Git Submodules.” Accessed: May 27, 2024. [Online]. Available: https://git-scm.com/book/en/v
2/Git-Tools-Submodules

[33] “Visual Studio Code.” Accessed: May 27, 2024. [Online]. Available: https://code.visualstudio.
com/

[34] “VSCodium.” Accessed: May 27, 2024. [Online]. Available: https://vscodium.com/

[35] “clangd Visual Studio Code Extension.” Accessed: May 27, 2024. [Online]. Available: https://
marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd

[36] “What is clangd?.” Accessed: Jun. 07, 2024. [Online]. Available: https://clangd.llvm.org/

[37] “C# Visual Studio Code Extension.” Accessed: May 27, 2024. [Online]. Available: https://
marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp

[38] “Typst LSP Visual Studio Code Extension.” Accessed: May 27, 2024. [Online]. Available: https://
marketplace.visualstudio.com/items?itemName=nvarner.typst-lsp

84 / 97

https://www.nordicsemi.com/Products/Development-software/nRF-Connect-SDK
https://www.nordicsemi.com/Products/Development-software/nRF-Connect-SDK
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/generic-attribute-profile%E2%80%93gatt-.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/generic-attribute-profile%E2%80%93gatt-.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/generic-attribute-profile%E2%80%93gatt-.html
https://novelbits.io/bluetooth-le-att-gatt-explained-connection-oriented-communication
https://novelbits.io/bluetooth-le-att-gatt-explained-connection-oriented-communication
https://novelbits.io/bluetooth-gatt-services-characteristics
https://novelbits.io/bluetooth-gatt-services-characteristics
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/applications/nrf5340_audio/doc/building.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/applications/nrf5340_audio/doc/building.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/test_and_optimize.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/test_and_optimize.html
https://www.flaticon.com/free-icon/hearing-aid_6431923?term=hearing+aid&page=1&position=6&origin=search&related_id=6431923
https://www.flaticon.com/free-icon/hearing-aid_6431923?term=hearing+aid&page=1&position=6&origin=search&related_id=6431923
https://www.flaticon.com/free-icon/hearing-aid_6431923?term=hearing+aid&page=1&position=6&origin=search&related_id=6431923
https://github.com/google/bumble
https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth
https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth
https://protobuf.dev/
https://www.json.org/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://code.visualstudio.com/
https://code.visualstudio.com/
https://vscodium.com/
https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd
https://marketplace.visualstudio.com/items?itemName=llvm-vs-code-extensions.vscode-clangd
https://clangd.llvm.org/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=nvarner.typst-lsp
https://marketplace.visualstudio.com/items?itemName=nvarner.typst-lsp

[39] “An introduction to NuGet.” Accessed: May 02, 2024. [Online]. Available: https://learn.
microsoft.com/en-us/nuget/what-is-nuget

[40] “commandline.” Accessed: Feb. 02, 2024. [Online]. Available: https://github.com/commandlinep
arser/commandline

[41] “grpc.” Accessed: Apr. 25, 2024. [Online]. Available: https://github.com/grpc/grpc

[42] “NLog.” Accessed: Feb. 02, 2024. [Online]. Available: https://github.com/NLog/NLog

[43] “StyleCopAnalyzers.” Accessed: Apr. 15, 2024. [Online]. Available: https://github.com/DotNetA
nalyzers/StyleCopAnalyzers

[44] “System.IO.Ports.” Accessed: Apr. 25, 2024. [Online]. Available: https://github.com/
nanoframework/System.IO.Ports

[45] “Define consistent coding styles with EditorConfig.” Accessed: Apr. 19, 2024. [Online].
Available: https://learn.microsoft.com/en-us/visualstudio/ide/create-portable-custom-editor-
options?view=vs-2022

[46] “roslyn/.editorconfig.” Accessed: Apr. 15, 2024. [Online]. Available: https://github.com/dotnet/
roslyn/blob/main/.editorconfig

[47] “EditorConfig for VS Code.” Accessed: Apr. 15, 2024. [Online]. Available: https://marketplace.
visualstudio.com/items?itemName=EditorConfig.EditorConfig

[48] “GitHub Actions.” Accessed: May 27, 2024. [Online]. Available: https://docs.github.com/actions

[49] “Jenkins.” Accessed: May 27, 2024. [Online]. Available: https://www.jenkins.io/

[50] “nRF Connect for Mobile.” Accessed: Jun. 09, 2024. [Online]. Available: https://www.
nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile

[51] “Workqueue Threads.” Accessed: May 06, 2024. [Online]. Available: https://docs.zephyrproject.
org/latest/kernel/services/threads/workqueue.html

[52] “System workqueue misuse and misleading documentation .” Accessed: May 06, 2024. [Online].
Available: https://github.com/zephyrproject-rtos/zephyr/issues/61819

[53] “Bluetooth®: UART BT using System Workqueue no longer compatible with Blocking BT TX
calls.” Accessed: May 06, 2024. [Online]. Available: https://github.com/zephyrproject-rtos/
zephyr/issues/72019

[54] “Ellisys Bluetooth® Vanguard Advanced All-in-One Bluetooth® Analysis System.” Accessed:
May 06, 2024. [Online]. Available: https://www.ellisys.com/products/bv1/index.php

[55] “nRF Command Line Tools .” Accessed: Jun. 13, 2024. [Online]. Available: https://www.
nordicsemi.com/Products/Development-tools/nrf-command-line-tools

[56] “Typst.” Accessed: Jun. 08, 2024. [Online]. Available: https://typst.app/

[57] “Project planning for developers.” Accessed: Jun. 08, 2024. [Online]. Available: https://github.
com/features/issues

[58] “ChatGPT 3.5.” Accessed: May 17, 2024. [Online]. Available: https://platform.openai.com/docs/
models/gpt-3-5-turbo

[59] “ChatGPT 4.” Accessed: May 17, 2024. [Online]. Available: https://platform.openai.com/docs/
models/gpt-4-turbo-and-gpt-4

85 / 97

https://learn.microsoft.com/en-us/nuget/what-is-nuget
https://learn.microsoft.com/en-us/nuget/what-is-nuget
https://github.com/commandlineparser/commandline
https://github.com/commandlineparser/commandline
https://github.com/grpc/grpc
https://github.com/NLog/NLog
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
https://github.com/nanoframework/System.IO.Ports
https://github.com/nanoframework/System.IO.Ports
https://learn.microsoft.com/en-us/visualstudio/ide/create-portable-custom-editor-options?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/create-portable-custom-editor-options?view=vs-2022
https://github.com/dotnet/roslyn/blob/main/.editorconfig
https://github.com/dotnet/roslyn/blob/main/.editorconfig
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://docs.github.com/actions
https://www.jenkins.io/
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile
https://docs.zephyrproject.org/latest/kernel/services/threads/workqueue.html
https://docs.zephyrproject.org/latest/kernel/services/threads/workqueue.html
https://github.com/zephyrproject-rtos/zephyr/issues/61819
https://github.com/zephyrproject-rtos/zephyr/issues/72019
https://github.com/zephyrproject-rtos/zephyr/issues/72019
https://www.ellisys.com/products/bv1/index.php
https://www.nordicsemi.com/Products/Development-tools/nrf-command-line-tools
https://www.nordicsemi.com/Products/Development-tools/nrf-command-line-tools
https://typst.app/
https://github.com/features/issues
https://github.com/features/issues
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

[60] “ChatGPT 4o.” Accessed: May 17, 2024. [Online]. Available: https://platform.openai.com/docs/
models/gpt-4o

[61] “DeepL.” Accessed: Feb. 25, 2024. [Online]. Available: https://www.deepl.com/translator

[62] “LanguageTool.” Accessed: Feb. 25, 2024. [Online]. Available: https://languagetool.org/

[63] “Grammarly.” Accessed: Feb. 25, 2024. [Online]. Available: https://app.grammarly.com/

[64] “QuillBot.” Accessed: Feb. 25, 2024. [Online]. Available: https://quillbot.com/grammar-check

[65] “GitLab.” Accessed: May 27, 2024. [Online]. Available: https://about.gitlab.com/

86 / 97

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://www.deepl.com/translator
https://languagetool.org/
https://app.grammarly.com/
https://quillbot.com/grammar-check
https://about.gitlab.com/

15. Table of Figures
Figure 1: Image visualizing audio accessibility for all [1] ... ii
Figure 2: Diagram visualizing the implemented solution .. iv
Figure 3: Comparison of Bluetooth® Classic and BLE [8] ... 4
Figure 4: Advertising channels in BLE [9] .. 5
Figure 5: Types of Bluetooth® audio [11] .. 6
Figure 6: Connected Isochronous Streams (CIS) and Connected Isochronous Groups (CIG) [13] 6
Figure 7: Projected Bluetooth® audio device shipments by supported audio modes [11] 7
Figure 8: How Auracast™ works [14] .. 9
Figure 9: Nordic nRF5340 Audio DK [5] .. 11
Figure 10: Attribute structure [24] .. 13
Figure 11: Write and read ATT-defined access methods [23] .. 13
Figure 12: Notification and indication ATT-defined access methods [23] .. 13
Figure 13: Setup used for initial experimentation ... 24
Figure 14: Working environment [27] ... 25
Figure 15: Communication strategy - Architectural overview of serial communication via UART ... 27
Figure 16: Communication strategy - Architectural overview of HCI Bridge ... 29
Figure 17: Library design - Setting the LED colors ... 36
Figure 18: Library design - Starting the broadcast .. 37
Figure 19: Library design - Stopping the broadcast .. 37
Figure 20: Library design - Connecting to a broadcast sink ... 38
Figure 21: Library design - Selecting a broadcast ... 39
Figure 22: Component diagram ... 40
Figure 23: Library class diagram showing public classes, methods and fields ... 51
Figure 24: Illustration of the serial communication ... 56
Figure 25: Example decoding of a variable sized integer .. 56
Figure 26: Implementation - Setting the LED color on the broadcast source ... 59
Figure 27: Implementation - Starting the broadcast ... 59
Figure 28: Implementation - Stopping the broadcast ... 60
Figure 29: Implementation - Setting the LED color on the broadcast assistant 63
Figure 30: Implementation - Connecting the broadcast sink ... 64
Figure 31: Implementation - Select a broadcast ... 66
Figure 32: Project plan ... 76
Figure 33: Time invested per category and project week ... 77
Figure 34: Time invested per category .. 78
Figure 35: Time invested per person .. 78

87 / 97

16. Table of Tables
Table 1: Roles defined by the Bluetooth® GAP .. 5
Table 2: Underlying specification roles covered by the Auracast™ terminology [15] 9
Table 3: Headphones supporting Bluetooth® 5.2 or higher and LE Audio .. 10
Table 4: FR101 – Starting and Stopping the Stream ... 15
Table 5: FR102 – Multiple Streams .. 15
Table 6: FR103 – Naming the Streams ... 15
Table 7: FR104 – Playing Test Tone .. 15
Table 8: FR105 – Audio Input Selection ... 15
Table 9: FR106 – Encrypted Streams .. 15
Table 10: FR201 – Scanning for Sink Devices .. 16
Table 11: FR202 – Pairing of Specific Device ... 16
Table 12: FR203 – Connecting to Specific Device ... 16
Table 13: FR204 – Selecting Stream and Sending to Sink .. 16
Table 14: FR205 – Scanning for Broadcast Sources ... 16
Table 15: FR206 – Scanning for Broadcast Sinks ... 16
Table 16: FR301 – Receiving GATT Information ... 17
Table 17: NFR101 – Comply with Industry Standards ... 19
Table 18: NFR102 – Dependency Management ... 19
Table 19: NFR201 – Graceful Error Handling .. 20
Table 20: NFR202 – Abstraction Level ... 20
Table 21: NFR203 – Ease of Use ... 20
Table 22: NFR204 – Usage Examples .. 20
Table 23: NFR301 – Reliable Operation ... 21
Table 24: NFR401 – Startup Time .. 22
Table 25: NFR402 – Performance of Multiple Streams ... 22
Table 26: NFR501 – Integration of Library ... 23
Table 27: NFR502 – Maintainability ... 23
Table 28: NFR503 – Clear Versioning System .. 23
Table 29: NFR504 – Platform Agnostic Implementation ... 23
Table 30: Bluetooth® HCI libraries we looked at ... 29
Table 31: Weighed decision matrix for communication strategies ... 32
Table 32: Decision matrix for the serial communication protocol .. 35
Table 33: Used VS Code extensions .. 41
Table 34: Used external libraries in .NET projects .. 42
Table 35: Used external libraries in embedded projects .. 42
Table 36: Description of the broadcast source application classes .. 46
Table 37: Description of the broadcast assistant application classes .. 47
Table 38: Description of the shared embedded classes .. 48
Table 39: Public methods of the broadcast source manager ... 50
Table 40: Public methods of the broadcast assistant manager ... 50
Table 41: Flags for the set-color command .. 53
Table 42: Flags for the start-broadcasting command .. 54
Table 43: Flags for the connect-sink command ... 54
Table 44: Flags for the select-broadcast command .. 55
Table 45: Common flags for the CLI application ... 55
Table 46: Broadcast source - Requirement review .. 68
Table 47: Broadcast assistant - Requirement review .. 68

88 / 97

Table 48: Library - Requirement review .. 68
Table 49: Functionality - Requirement review ... 69
Table 50: Usability - Requirement review ... 69
Table 51: Reliability - Requirement review ... 69
Table 52: Performance - Requirement review .. 70
Table 53: Supportability - Requirement review ... 70
Table 54: Time invested per category and project week ... 77

89 / 97

17. List of Listings
Listing 1: Communication strategy - Sample code of UART communicaton variant 28
Listing 2: Directory structure of repository ... 45
Listing 3: Directory structure of embedded applications .. 45
Listing 4: Directory structure of the broadcast source application ... 46
Listing 5: Directory structure of the broadcast assistant application ... 47
Listing 6: Contents of the Shared Embedded Directory .. 48
Listing 7: Directory structure of the CLI application ... 52
Listing 8: CLI command to print connected devices .. 53
Listing 9: Example of the set-color command .. 53
Listing 10: Example of the start-broadcasting command .. 54
Listing 11: Example of the connect-sink command ... 54
Listing 12: Example of the select-broadcast command ... 55
Listing 13: Protocol definition - Shared commands .. 57
Listing 14: Protocol definition - Shared messages .. 57
Listing 15: Protocol definition - Broadcast source commands ... 58
Listing 16: Protocol definition - Broadcast source messages .. 58
Listing 17: Protocol definition - Broadcast assistant commands ... 61
Listing 18: Protocol definition - Broadcast assistant messages .. 62
Listing 19: Protobuf license .. 97

90 / 97

18. Appendix
In this last section the personal reports from both authors can be found in which they reflect on the
project (Section 18.1, Personal Report — Jeremy Stucki and Section 18.2, Personal Report — Vina Zahnd).

The assignment given can be found in Section 18.3, Assignment.

Section 18.4, Licenses contains licenses that were referenced.

91 / 97

18.1. Personal Report — Jeremy Stucki
It was very interesting for me to get a look into embedded development. Before this thesis, I only
played around with some smaller “Hello World”-type projects, so this was very insightful for me.
The most interesting task for me was implementing the serial interaction, including variable-sized
int encoding and decoding.

What I found challenging was choosing the right level of abstraction to approach the project, since I
knew basically nothing about the Bluetooth® standard and also did not know at which level we
would implement our solution.

Writing documentation, as always, was my biggest struggle. I find it very hard to find the correct
words and often just want to work on the implementation. Thankfully I was not alone and through
our review process we were often able to suggest improvements to each other’s sections.

The working environment was quite different from what I was used to. Using VS Code instead of
Rider and CLion was interesting, as I learned a lot about the state of the language servers ecosystem.
However, a big challenge for me was using Windows. It has been a number of years since I last used
it, and I certainly find it more usable than in the past. For example, package managers like
Chocolatey have come a long way. I will still stick with Linux for my personal devices though.

All in all, I am quite happy with the state of the project and am very hopeful that it will be used to
test future Auracast™ products. Working on a project with real impact made this thesis very
meaningful to me.

I want to thank the entire embedded software team at Sonova for their hospitality, and especially our
advisor Thomas Corbat for enabling us to work on this project. Everyone was supporting us when
we had questions and we also had some great conversations during lunch or coffee breaks.

92 / 97

18.2. Personal Report — Vina Zahnd
When we first discussed the topic of this project with our advisor, I was glad to hear that the end
product is going to be a .NET library, as I also work in this area. But after we started the project, it
became more and more clear that we would need to work on the embedded side as well. I was bit
overwhelmed by the fact that we had to translate C code into C++ and struggled with it a lot.
Unfortunately, when I finally got used to it, we ran out of time to integrate more features.

Then there were also a lot of new Bluetooth® terms to learn, and of course, I would forget the
meaning again after a week. I think the problem was that we were working on three different
projects at the same time (embedded, library and CLI) and therefore did not go very deep into the
Bluetooth® area.

In the end, we did not get as far as we would have liked, as we underestimated the embedded part of
the project. It would have been a good project to split into a semester thesis to find multiple
solutions for the problem, followed by a bachelor thesis to then implement it.

Having the same project partner for the semester and bachelor thesis was nice, as we already knew
how the other person works and what their strengths and weaknesses are. Both of us being busy
people, organizing events, going on events, and working at the same time meant we were getting on
each other’s nerves sometimes. But it never ended in a fight, and we could always discuss problems
in a peacefully manner. I am very happy that I could work with Jeremy on this thesis. I learned a lot
from him and we also had a good time working together.

At this point, I also want to thank Thomas Corbat for giving us the opportunity to work on this
project and supporting us during the whole process. Working at Sonova was inspiring and meeting
the team we are doing this project with was very motivating. I hope that our work can be continued
by Sonova, and that it was useful to them.

93 / 97

18.3. Assignment

94 / 97

95 / 97

96 / 97

18.4. Licenses

18.4.1. Google.Protobuf
Copyright 2008 Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the

distribution.
 * Neither the name of Google Inc. nor the names of its

contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner
of the input file used when generating it. This code is not

standalone and requires a support library to be linked with it. This
support library is itself covered by the above license.

Listing 19: Protobuf license

97 / 97

	Abstract
	Management Summary
	Procedure and Technologies
	Results and Outlook

	Introduction
	Initial Situation
	Problem Description
	Project Goal
	Structure of This Report

	Analysis
	Bluetooth LE (BLE)
	Generic Access Profile (GAP)
	Advertisements

	LE Audio
	Auracast (Broadcast Audio)
	Supported Assistant and Receiver Devices

	Nordic nRF5340 Audio DK
	Bluetooth Generic Attribute Profile (GATT)
	Attribute Protocol (ATT) - Roles
	Attribute Protocol (ATT) - Attributes

	Requirements
	Functional Requirements
	Broadcast Source
	Broadcast Assistant
	Library

	Non-Functional Requirements
	Functionality
	Usability
	Reliability
	Performance
	Supportability

	Initial Experimentation
	Design
	Overview
	Communication Strategy
	Option A - Serial Communication via UART
	Proof of Concept

	Option B - HCI Bridge
	Analysis of HCI Libraries

	Option C - Existing Sonova Implementations
	Decision Process
	Decision

	Serial Protocol
	Option A - Protocol Buffers
	Option B - Text-Based Protocol
	Option C - JSON
	Decision Process
	Communication Overhead
	Readability
	Development Time
	Future Adaptability

	Decision

	Component Interaction
	Setting the Color
	Starting the Broadcast
	Stopping the Broadcast
	Connecting to the Broadcast Sink
	Selecting the Broadcast

	Components

	Development Process
	Repository Setup
	Development Environment
	Libraries
	.NET
	Embedded

	Quality Measures
	Pull Requests
	Code Quality
	Continuous Integration

	Implementation
	Embedded Applications
	Broadcast Source
	Broadcast Assistant
	Shared Code

	.NET
	Library
	CLI Application
	Usage
	Setting the LED color
	Starting a Broadcast
	Connecting to a Broadcast Sink
	Selecting a Broadcast
	Common Flags

	Serial Communication
	Serial Protocol
	Broadcast Source
	Set Color
	Start Broadcasting
	Stop Broadcasting

	Broadcast Assistant
	Set Color
	Connect to Broadcast Sink
	Select Broadcast

	Verification
	Functional Requirements Review
	Broadcast Source
	Broadcast Assistant
	Library

	Non-Functional Requirements Review
	Functionality
	Usability
	Reliability
	Performance
	Supportability

	Automated Testing
	Manual Testing

	Challenges
	Embedded
	Work Queues and Bluetooth Library
	Configurable Stack Size
	Pointers to Nowhere

	Dotnet
	Serial Ports
	Development Environments

	Project Management
	Approach
	Project Plan
	Important Deadlines

	Time Tracking

	Conclusion
	Learnings
	Outlook

	Disclaimers
	Glossary
	Bibliography
	Table of Figures
	Table of Tables
	List of Listings
	Appendix
	Personal Report — Jeremy Stucki
	Personal Report — Vina Zahnd
	Assignment
	Licenses
	Google.Protobuf

