
Document Management using Large
Language Model

Spring Term 2024

Department of Computer Science

OST - University of Applied Sciences

Campus Rapperswil-Jona

Author(s) Momoko Wymann & Andrew Willi

Advisor Frank Koch
Project Partner Michael Güntensperger
Examiner Mitra Purandare

June 14, 2024

Document Management using Large Language Model

Abstract

Initial Situation

The management and retrieval of documents can be challenging due to the unstructured nature
of their content. Traditional searchmethods, which rely on document names, are often inefficient
and ineffective. With the rise of Transformers-based Large Language Models (LLMs), which sig-
nificantly enhance our everyday tasks, there is an opportunity to improve the search and man-
agement of these documents. The integration of LLMs can transform unstructured data into
structured metadata, making documents more accessible and organized.

Objective

Within the scope of this project, we aim to build a Single Page Application of this type. We created
this prototype application, which is able to store, read, and process PDF documents with unstruc-
tured data and generate metadata using an LLM. This metadata improves document search and
management, as well as streamlines repetitive tasks such as sending an email reminder to a
customer. The prototype is designed to be easily expandable to facilitate the continuous devel-
opment and implementation of new features.

Conclusion

In this project, we developed a prototype application utilizing React and TypeScript for the fron-
tend while using NestJS with TypeScript for the backend. We integrated external services such
as Hugging Face and Zapier. The application enables users to upload PDF documents, extract
a suitable title, summary, and tags using a Large Language Model (LLM), and search for docu-
ments based on this metadata. Additionally, it includes a feature for sending email reminders
to customers for specific files. Designed with scalability in mind, the application allows for the
easy addition of new features in the future, such as integrating various file types like pictures,
which could utilize the LLM. This proof of concept demonstrates the potential of using LLMs to
enhance document management and retrieval.

Momoko Wymann & Andrew Willi Page 2 of 96

Document Management using Large Language Model

Glossary

Agile Agile is a project management and product development approach that prioritizes flexi-
bility, collaboration, and customer satisfaction. The methodology is adaptive rather than
predictive, with changes and iterations being a normal part of the development process.
66

Backend The part of a computer system or application that is not directly accessed by the user,
typically responsible for storing and manipulating data. 12, 16, 17, 58

Blob A Binary Large OBject (Blob) often used to store large amounts of data like images or files.
In this context, it’s used to represent the α data of a PDF file. 45

Inference API An API that allows for the use of pre-trained models to perform inference on data.
39, 69

Integration Aprocess bywhich Zapier connects different applications, enabling them to commu-
nicate and automateworkflows by triggering actions in one app based on events in another.
43

Jira Cloud Jira Cloud, developed by Atlassian, is a cloud-based project management and issue
tracking solution. It offers a comprehensive suite of features designed to assist teams in
planning, tracking, and managing their projects, tasks, and workflows effectively. Accessi-
ble through any web browser, Jira Cloud eliminates the need for self-hosted infrastructure.
Key features include customizable issue tracking, agile project management, real-time col-
laboration, robust reporting and analytics, and seamless integration with popular tools. Jira
Cloud is a scalable and flexible solution suitable for teams of all sizes and industries. It fa-
cilitates efficient project management and streamlined workflows, thereby enhancing pro-
ductivity.. 9

Single Page Application In the context of React, a "Single Page Application" (SPA) is a web appli-
cation that dynamically updates its content without requiring a full page reload. In a React
Native SPA, the user interface is built using a single HTML page, and navigation between
different views or screens is managed through JavaScript, typically using a library like Re-
act Navigation. SPAs provide a seamless and responsive user experience by loading data
and updating the UI asynchronously, resulting in faster and more interactive applications.
16

Task In the context of this paper, a task relates to a specificmachine learning task that amodel is
trained to perform. There are 6 different types of tasks: Computer Vision, Natural Language
Processing, Audio, Tabular, Multimodal, Reinforcement Learning. In this project, we focus
on the Natural Language Processing task. 39

Transformers.js Transformers.js is a JavaScript library that provides a simple and efficient way
to use pre-trained transformer models for natural language processing tasks. The library
is built on top of the Hugging Face Transformers library, allowing developers to easily in-
tegrate state-of-the-art models into their JavaScript applications. Link to Hugging Face.
69

Momoko Wymann & Andrew Willi Page 3 of 96

https://huggingface.co/docs/transformers.js/en/index

Document Management using Large Language Model

Zero-Shot Classification Zero-shot classification is a task in Hugging Face and a technique used
in machine learning to assign a label to a given text without having access to the training
data. 39

Momoko Wymann & Andrew Willi Page 4 of 96

Document Management using Large Language Model

Management Summary

In many companies, scanned documents are stored as PDFs, which makes searching and man-
aging them difficult. Traditionally, documents can only be searched by file name, which is ineffi-
cient and unreliable. This project aims to develop a more intelligent document management and
search solution through the use of Large Language Models (LLMs).
The goal was to develop a web application that analyzes business related PDF documents, gen-
erates relevant metadata and provides an efficient search function. The development process
included the implementation of a frontend for user interaction and a back end for processing and
storing the data.
The application was developed using modern web technologies. The frontend was realized with
React to provide a user-friendly and responsive web interface. The backend was developed with
NestJS and TypeScript to ensure a robust and extensible server architecture. MySQL was used
to store metadata and user information, while DigitalOcean serves as an object store for the PDF
documents. Hugging Face models were integrated for analysis and metadata generation. In
addition, Zapier is used to automate business processes, such as notifications to the accounting
department for certain document types. Docker was used for containerization and deployment in
both development and production environments, which increases the consistency and scalability
of the application.
The developed application offers several key features: automated uploading and processing of
documents, advanced search functions and user authentication. PDFs can be uploaded and
automatically analyzed, with metadata such as summaries and categories generated and stored
in the database. Users can search for documents by text and categories as shown in figure 0.1,
significantly improving search efficiency and accuracy. Access to the application is only possible
after successful login, see figure 0.2 of the login page, which increases security. Integration with
Zapier allows automatic notifications and other processes to be triggered, increasing operational
efficiency.
For example, a user can upload a PDF document, which is then analyzed and tagged with meta-
data. The user can then search for documents and filter them based on the generated metadata.
Future enhancements to the application could include a semantic search function that recog-
nizes similar documents, a comprehensive user management system for managing organiza-
tions and their members, and improving performance and usability by paginating search results
and optimizing load times.
This application offers an innovative solution for managing and searching PDF documents in
companies. The combination of modern web technologies and LLMs significantly increases effi-
ciency and simplifies operation. The securitymeasures and automated processes ensure reliable
and effective use in the corporate context.

Momoko Wymann & Andrew Willi Page 5 of 96

Document Management using Large Language Model

Figure 0.1: The Search Page Where the User can Search for Suitable Documents.

Figure 0.2: The Login Page Where the User can Log In.

Momoko Wymann & Andrew Willi Page 6 of 96

Contents

1 Starting Position 9

2 Conceptual Formulation 10

3 Requirements 11
3.1 Functional Requirements . 11

3.1.1 Use Case Description . 12
3.1.2 Evolution of Functional Requirements . 13

3.2 Non-Functional Requirements . 14
3.3 Optional Requirements . 15

4 Architecture and Design 16
4.1 Visualizing the Architecture . 16
4.2 Architecture in Detail . 19

4.2.1 Frontend Architecture . 19
4.2.2 Backend Architecture . 23
4.2.3 Data Model . 25

5 Implementation 27
5.1 Technology . 27

5.1.1 Programming Language . 27
5.1.2 Frontend Framework and Libraries . 27
5.1.3 Backend Framework and Libraries . 28
5.1.4 Database . 29
5.1.5 Docker . 29
5.1.6 External Services . 30

5.2 Test Concept . 31
5.2.1 Frontend . 31
5.2.2 Backend . 35

5.3 Deployment . 36
5.4 Function Implementation . 38

5.4.1 Uploading Documents . 38
5.4.2 LLM . 41
5.4.3 Searching . 42
5.4.4 Automatic Process . 45
5.4.5 View . 47
5.4.6 Delete . 48
5.4.7 Favorites . 49

5.5 Code Documentation . 50
5.6 Security . 50

5.6.1 Authentication: . 50

Document Management using Large Language Model

5.6.2 Password Hashing . 53
5.6.3 Input Validation: . 53
5.6.4 Security Measures LLM: . 53

6 Result 54

7 Conclusion 57
7.1 Needs to Be Addressed . 57
7.2 Future Vision . 58

8 Project and Time Management 59
8.1 Project Schedule . 59
8.2 Project Organization . 62

8.2.1 Roles . 62
8.2.2 Code Repository . 62
8.2.3 Jira Board . 63
8.2.4 Issue Management . 63
8.2.5 Branching Strategy . 66
8.2.6 Defintion of Done . 67

8.3 Risk Management . 68
8.4 Time Management . 72

9 Appendix 77
9.1 API Documentation . 77

9.1.1 Auth Controller . 77
9.1.2 Document Controller . 79
9.1.3 Tags Controller . 81
9.1.4 Favorites Controller . 81
9.1.5 Log Controller . 82

9.2 Screenshots . 83
9.3 Task Definition . 87
9.4 Usability Test Protocol . 90
9.5 Testing Backend . 93

Momoko Wymann & Andrew Willi Page 8 of 96

Document Management using Large Language Model

1 Starting Position

As IT enthusiasts, we are dedicated to exploring innovative solutions that automate mundane
and repetitive tasks. With the advent of transformers and their ability to simplify complex pro-
cesses, we are keen to investigate the potential of using LLM technologies. Despite our prior
experience with similar technologies, the creation of an interface specifically for transformers
presents a novel challenge, which enhances the appeal and educational value of this project.
The objective of this project is to shift the focus from manual document management tasks to
automated processes, thereby improving efficiency and accuracy. By leveraging LLM capabili-
ties, we intend to develop an application that not only streamlines document management but
also introduces advanced functionalities such as metadata generation, categorization, and au-
tomated workflows. This project represents a significant step towards harnessing the power of
modern AI technologies to optimize and transform traditional business practices.

Momoko Wymann & Andrew Willi Page 9 of 96

Document Management using Large Language Model

2 Conceptual Formulation

The objective of this proposal is to assist small businesses in managing their documents effi-
ciently. To this end, we suggest the development of an application that facilitates the upload of
PDF files and generatesmetadata, such as a suitable title, summary, and categories for improved
document searchability. Furthermore, the application triggers automated processes based on
the generated metadata, streamlining repetitive tasks such as sending a reminder email to a
customer.

Momoko Wymann & Andrew Willi Page 10 of 96

Document Management using Large Language Model

3 Requirements

We use Agile Methodologies to keep track of our functional requirements. These are tracked as
User-Stories or issues in Jira Cloud. We prioritize the User-Stories and issues in our Jira Cloud
Backlog.

3.1 Functional Requirements

All functional requirements are listed as use cases in table 3.1 and figure 3.1 shows the connec-
tion between actor and use cases in a use case diagram. These requirements are based on the
task assignments.

Actor

The systemhas different actorswith different permissions. There is a normal user, with the aimof
uploading documents and easily accessing the stored documents. There is also an administrator
with the authorization to delete documents.

Figure 3.1: Use Case Diagram

Momoko Wymann & Andrew Willi Page 11 of 96

Document Management using Large Language Model

3.1.1 Use Case Description

The following table lists the use cases of the system:

Actor Goal Description
UC1 User User Registration The user opens the application and the

system provides the registration form.
Then the user enters a new username,
email and password. The password
has to fulfil some acceptance criteria
and the email address must not yet be
assigned in the system. If the registra-
tion is successful, the user is granted
access to the application and will be
redirected to the home page.

UC2 User User Login If the user is already registered, he can
go to the login page.There the system
provides the login form. Then the user
enters their login credentials and the
system validates them. If authentica-
tion is successful, the user is granted
access to the application and will be
redirected to the home page.

UC3 User Document Upload The user selects the option to upload
documents and the system prompts
the user to select the documents to be
uploaded. The user can also upload
documents via drag and drop. The
system automatically uploads the se-
lected documents and saves them in
the Object Store.

UC4 System Read Out Metadata The system extracts relevant informa-
tions from the documents that have
been uploaded to the object store. The
system saves the extracted metadata
in the database.

UC5 User Search Documents The User is on the search page of the
application. The user can enter free
text search and is also provided with a
selection of tags to refine the search.
The system provides the documents
that match the search criteria.

UC6 System Analyse the Documents
using LLM

The system uses the LLM to gener-
ate summaries, categories and addi-
tionalmetadata for the uploaded docu-
ments. The generated summaries, cat-
egories andmetadata are stored in the
database.

Continued on next page

Momoko Wymann & Andrew Willi Page 12 of 96

Document Management using Large Language Model

Actor Goal Description
UC7 System Trigger Automatic Pro-

cesses
The system triggers an API call to
an n8n or Zapier endpoint after doc-
uments have been successfully anal-
ysed with the LLM. The endpoint re-
ceives the API call and initiates auto-
mated processes based on the gener-
ated categories of the uploaded docu-
ments.

UC8 User Add or Remove Favorites The user can add documents to his fa-
vorites by clicking on the add favorite
button next to the corresponding docu-
ment. He can also remove documents
from his favorites by clicking on the re-
move favorites button next to the cor-
responding document.

UC9 User Show Recent Documents The User is on the recent page of
the application. The system provides
the user the documents he has up-
loaded. The user can also enter free
text search and is also provided with a
selection of tags to specify the display.

UC10 User Show Favorites The User is on the favorites page of the
application. The system provides the
user the documents he has marked as
favorites.

UC11 Administrator Delete Documents The administrator can delete the doc-
ument completely by clicking on the
delete button next to the correspond-
ing document.

Table 3.1: Use Cases

3.1.2 Evolution of Functional Requirements

In the course of the project, the functional requirements have been adapted to the current state
of the project. The following changes have been made:

• Added User Registration functionality alongside User Login.

• Included management of documents, such as favoriting and viewing.

• Added an administrator role with the ability to delete documents.

Momoko Wymann & Andrew Willi Page 13 of 96

Document Management using Large Language Model

3.2 Non-Functional Requirements

Our Non-functional requirements are defined using FURPS+’s definition. Unless otherwise spec-
ified, all of the NFR mentioned below are requirements.

NFR # Type Description Acceptance Criteria
NFR 1 Feature The development team implements

features according to the agreed-upon
priorities with the customer.

Features implemented ac-
cording to agreed priority
order.

NFR 2 Performance The Backend should handle 1,000 re-
quests per minute.

Backend maintains perfor-
mance with 1,000 requests
per minute.

NFR 3 Performance Pages should load within 200ms. All pages load within
200ms for a responsive
user experience.

NFR 4 Usability The page should look good on the
desktop (responsive design is desir-
able).

The page is aesthetically
pleasing on desktop; re-
sponsive design is desir-
able.

NFR 5 Compatibility The web application should run on
Firefox, Chrome, and Safari browsers.

Web application compati-
ble with Firefox, Chrome,
and Safari browsers.

NFR 6 Usability The application should be accessible
via the internet using a domain pro-
vided by the customer.

Users can access the ap-
plication via the internet
using a domain provided
by the customer.

NFR 7 Usability Three out of four test users should rate
the UI of the application (categories:
layout, responsiveness, color, content)
with a score of at least 8 out of 10 on a
PC.

UI rated by test users with
at least 8 out of 10 on PC.

NFR 8 Performance After scanning a document, it should
be displayed on the pagewithin 30 sec-
onds.

Document displayed on
page within 30 seconds of
scanning.

NFR 9 Scalability The database should be able to man-
age up to 10,000 documents and 100
users.

The database manages up
to 10,000 documents and
100 users without perfor-
mance degradation.

NFR 10 Reliability Errors should not cause system fail-
ures but display error messages and
revert the system to the previous state.

Errors display messages,
restore the system, and
prevent failures.

NFR 11 Logging Every error should be logged for moni-
toring and troubleshooting.

All errors are logged
for monitoring and trou-
bleshooting.

NFR 12 Security Communication between frontend and
Backend should be encryptedwith SSL
certificates.

SSL certificates secure
frontend-backend commu-
nication.

Continued on next page

Momoko Wymann & Andrew Willi Page 14 of 96

Document Management using Large Language Model

NFR # Type Description Acceptance Criteria
NFR 13 Security Input data should be validated before

processing, with no SQL injection vul-
nerabilities.

Input data validated, no
SQL injection vulnerabili-
ties.

NFR 14 Security The web application should be compli-
ant with data protection regulations.

The web application com-
plies with data protection
regulations (e.g., GDPR).

NFR 15 Security User passwords should be securely
hashed in the database.

User passwords hashed
securely, not stored in
plain text.

NFR 16 Security Users should only be able to view data
they have access to upon login.

Users view only authorized
data upon login.

NFR 17 Flexibility Backend logic should be modular for
easy expansion.

Backend logic designed
modularly for easy expan-
sion.

NFR 18 Testing Backend API should be thoroughly
tested with appropriate tools.

Backend API thoroughly
tested with suitable tools,
ensuring functionality and
reliability.

NFR 19 Deployment Implemented functionalities
(database, backend, frontend, etc.)
should be deployed.

Implemented functionali-
ties (database, backend,
frontend, etc.) deployed.

Table 3.2: Non-Functional Requirements

3.3 Optional Requirements

These optional features address various aspects of documentmanagement, user interaction and
overall system customisation. The table below outlines these optional requirements:

Nr Description Type
1 Categorize and tag documents, e.g., as invoices. Functional
2 Dashboard for users displaying key metrics, such as most viewed

PDFs.
Non-Functional

3 Allow manual editing of metadata. Functional
4 User management for the administration of organizational employees. Functional

Table 3.3: Optional Requirements

Momoko Wymann & Andrew Willi Page 15 of 96

Document Management using Large Language Model

4 Architecture and Design

4.1 Visualizing the Architecture

Based on the Conceptual Formulation and the Requirements, we have created the architectures
and designs of the application described in the following chapters. To illustrate these architec-
tures, we have chosen to adopt the C4-Model standard. It is worth noting that only the first three
levels of the model have been implemented, as the fourth level is too detailed and would not
provide any added value to the reader.

System Context (C4 Model Level 1)

The diagram illustrates how the user and admin interact with the Document Management Sys-
tem, which interacts with two additional software systems. One is the Workflow Service, which
polls from our Document Management System and is needed to set up the flow of data between
different tools and services. The other is the LLM service, which utilizes API calls to generate
metadata for the document.

Momoko Wymann & Andrew Willi Page 16 of 96

https://c4model.com/

Document Management using Large Language Model

Figure 4.1: C4 Model Level 1

Momoko Wymann & Andrew Willi Page 17 of 96

Document Management using Large Language Model

Container Diagram (C4 Model Level 2)

The internal structure of the application is examined in greater detail. As depicted, it consists of
four components: the Single Page Application (SPA), the Object Storage, the Database, and the
Backend Application. The latter serves as the central hub for the system, managing the commu-
nication between the other components.

Figure 4.2: C4 Model Level 2

Momoko Wymann & Andrew Willi Page 18 of 96

Document Management using Large Language Model

4.2 Architecture in Detail

In the next chapters, we will go into more detail about the architecture of the frontend and back-
end. We will also provide wireframes of the frontend application to give a visual representation
of the application’s layout and functionality.

4.2.1 Frontend Architecture

Component Diagram (C4 Model Level 3)

Since the frontend application is designed to be straightforward, we opted for a simple archi-
tecture. Users, including general users and administrators, interact with the system through the
Index.tsx entry point, which renders the main application component (App.tsx). This component
manages top-level routes and global state, delegating specific routing tasks to the Routes com-
ponent, which handles both authenticated and unauthenticated paths. UI elements are displayed
through React components, encapsulated under the Component layer. The service layer, imple-
mented using TypeScript, Axios, and React, manages communication with the Backend, making
HTTP JSON calls to a Node.js-based backend API.

Momoko Wymann & Andrew Willi Page 19 of 96

https://www.npmjs.com/package/axios

Document Management using Large Language Model

Figure 4.3: C4 Model Level 3

Momoko Wymann & Andrew Willi Page 20 of 96

Document Management using Large Language Model

UI Design

This section will present the initial draft at the outset of the project. The design of a user interface
is an evolutionary process, and as a result, the final product may differ from the mockups pre-
sented here. In order to provide an understanding of the evolution of the design over the course
of the project, we will include the initial state of the draft at the beginning of the project. The de-
sign of the user interface may undergo modifications in response to feedback from customers
and as the implementation process commences. It is important to note that this is a prototype,
and as such, it serves as an initial guide for our Document Management System.
The wireframes were created in collaboration with the industry partner, who provided the initial
drafts. The wireframes are intended to provide a visual representation of the application’s layout
and functionality.

Figure 4.4: Search Page Figure 4.5: Recent Documents Page

Thewireframeswere then adapted to the application’s design. The followingwireframes illustrate
the design of the application’s search and document pages.
The initial two images demonstrate the user interface elements that are presented to the user
upon first accessing the system. These include the signup and login pages.

Figure 4.6: Sign Up Page Figure 4.7: Log In Page

The following two images illustrate the design of the search pages. The first example depicts the
search page in its absence of text, while the second example depicts the search page with text.
We have taken some inspiration from the Google Search Bar on how the filtering should look.
The following two images illustrate Favorites and History pages.
The subsequent image depicts the interface that is displayed when the user clicks the "Upload"
button.

Momoko Wymann & Andrew Willi Page 21 of 96

Document Management using Large Language Model

Figure 4.8: Search Without Text Figure 4.9: Search With Text

Figure 4.10: Favorites Page Figure 4.11: History Page

Figure 4.12: Upload Page

Momoko Wymann & Andrew Willi Page 22 of 96

Document Management using Large Language Model

4.2.2 Backend Architecture

The backend architecture was designed to create a robust and scalable foundation for applica-
tion delivery. It is based on a service-oriented architecture that enables a clear separation of
responsibilities. The component diagram in Figure 4.13 provides an overview of the structure of
the backend.

Figure 4.13: C4 Model Level 3

Concepts

RESTful API
The RESTful APIs are provided by the controllers and serve as an interface for external clients,
such as the frontend, to interact with the backend. The controllers are responsible for processing
HTTP requests and form the endpoints of the RESTful APIs. They receive requests from the
frontend and forward them to the corresponding services. The controllers interpret the requests,
perform the required actions, and send the corresponding responses back to the frontend.

Data Transfer Object
Data Transfer Objects (DTOs) are defined for the data structures that are exchanged between
the controllers and the external clients. They ensure that the data is validated and transferred
correctly.

Service-oriented architecture (SOA)
The architecture of the backend follows the principle of service-oriented architecture (SOA), in
which individual components function as independent services that perform specific tasks. This
enables high cohesion and low coupling between the components, as well as the reusability and
scalability of functions. The services contain the business logic of the application and carry out
the actual actions requested by the controllers. They are responsible for processing requests,
manipulating data, and accessing the database or other external services.

Database access

Momoko Wymann & Andrew Willi Page 23 of 96

Document Management using Large Language Model

ORM (Object-Relational Mapping) is used to connect the object-oriented backend with the rela-
tional database. Entities are used to represent the structure of the data stored in the database.
Each entity corresponds to a table in the database. Database access is centralized through repos-
itories that serve as an interface between the service components and the database. This pro-
motes a clear separation of data access logic and business logic and facilitates themaintenance
and expandability of the system.

Dependency Injection
Dependency injection is used tomanage the dependencies between components and to improve
the flexibility and testability of the code. This allows different implementations of interfaces to
be exchanged without requiring changes to the dependent components.

Logging and error handling
Logging and error handling are integral parts of the architecture and are used to identify, monitor,
and resolve problems. The use of a logging service and centralized error handling mechanisms
improves the maintainability and stability of the system.

Service Components

The backend consists of a number of service components, each of which fulfills specific tasks in
the system. These components are loosely coupled and can be developed and tested indepen-
dently of each other.

• Authentication Service: The Auth Service is responsible for managing authentication pro-
cesses such as user login and registration.

• User Service: The User Service manages user data and provides functions for creating and
reading user accounts. It interacts with the database to store and retrieve user information.

• Document Service: The Document Service offers functions for managing documents, in-
cluding uploading, downloading, and deleting.

• Tag Service: The Tag Service manages tags that are assigned to documents. It enables
the creation and search of tags.

• Favorite Service: The Favorite Service allows users to mark and manage documents as
favorites.

• Search Service: The Search Service offers functions for full-text searches in documents. It
uses search techniques to identify relevant documents based on users’ search queries.

• LLM Service: The LLM Service is responsible for creating metadata from documents using
Hugging Face API.

The quality of the backend services is ensured by integration and API tests.

Momoko Wymann & Andrew Willi Page 24 of 96

Document Management using Large Language Model

4.2.3 Data Model

This section describes the structure and organization of the database used for the DMS applica-
tion. A relational MySQL database is used and is carefully structured to meet the application’s
requirements for usermanagement, document storage, tagging, and favoritesmanagement. The
schema comprises five main tables:

• Users: Contains all information about the users of the application, including their creden-
tials, roles, and security tokens. Important fields: user ID, username, role, email, password,
refresh token.

• Documents: Stores the metadata of all uploaded documents, such as upload date, title, file
path, content, and thumbnails. Contains a reference to the user who uploaded the docu-
ment. Important fields: document ID, upload date, title, file path, content.

• Tags: Manages the tags that can be assigned to documents to facilitate categorization and
search. Important fields: tag ID, tag name.

• Document Tags: Implements a many-to-many relationship between documents and tags.
Allows multiple tags to be assigned to a document and vice versa. Important fields: docu-
ment ID, tag ID.

• Favorites: Allows users to mark documents as their favorites and find them quickly. Im-
plements a many-to-many relationship between users and documents. Important fields:
document ID, user ID.

These tables work together to support the main functions of the application.

Relationships between the tables

Figure 4.14 shows the schema of the database. A user can upload multiple documents. This
is ensured by a foreign key (UploadedBy) in the Documents table, which refers to the UserId in
the Users table. The intermediate table DocumentTags creates a many-to-many relationship be-
tween documents and tags. This enables flexible categorization of documents. The Favorites ta-
ble allows users to add documents to their favorites. Amany-to-many relationship is alsomapped
here.

Momoko Wymann & Andrew Willi Page 25 of 96

Document Management using Large Language Model

Figure 4.14: Structural design of the database

Design decisions and security aspects

• Unique identifiers: Primary keys and unique constraints ensure that each data record is
uniquely identifiable.

• Referential integrity: Foreign keys guarantee the referential integrity between the tables so
that orphaned data records are avoided.

• Indexing and search: Full-text indexes on certain fields (such as content in the Documents
table) enable efficient search operations.

• Cascading operations: Cascading delete operations (ON DELETE CASCADE) ensure that
linked data records are automatically removed when a parent data record is deleted.

• Security: Sensitive data such as passwords are stored in encrypted form, and security-
relevant information such as refresh tokens are contained in the Users table.

Momoko Wymann & Andrew Willi Page 26 of 96

Document Management using Large Language Model

5 Implementation

5.1 Technology

The decision-making process was guided by the project requirements, with certain technologies
prescribed to ensure a standardized approach and others selected to align with the skills and
preferences of the team. Each technology plays a pivotal role in various stages of the project,
resulting in a comprehensive and versatile solution. Further details on the rationale behind each
technology choice can be found in the sections that follow.

5.1.1 Programming Language

In consideration of the specifications provided by our industry partner, which indicated that the
backend must be a Node application and that the frontend could be either React or Angular, we
were constrained to consider only two programming languages: JavaScript and TypeScript.
Our decision to select TypeScript was motivated by its status as a superset of JavaScript and
its designation as a strongly typed language. Furthermore, we deemed it advantageous to utilize
the same language for team collaboration, given the clarity of interfaces and expectations that
this approach would afford. Another advantage of TypeScript is the fact that we both have prior
knowledge of it, which allows us to leverage its capabilities in our project.

5.1.2 Frontend Framework and Libraries

The main reason for choosing React over Angular was our team’s previous experience with the
former. This existing familiarity with React significantly reduces the learning curve, allowing us
to accelerate the development process. In addition, React’s popularity, flexibility and extensive
ecosystem reinforce its suitability for our project goals, providing a solid foundation for building
a scalable and maintainable frontend solution.
To complement React, we integrated React Bootstrap for its seamless alignment and pre-styled
components, ensuring consistency and efficiency in UI design. For the upload functionality, we
chose to integrate react-dropzone primarily because of our team’s prior experience with the li-
brary. For security measures, react-password-checklist was integrated, optimizing password val-
idation with minimal setup.

Momoko Wymann & Andrew Willi Page 27 of 96

https://reactjs.org/
https://react-bootstrap.github.io/
https://react-dropzone.js.org/
https://www.npmjs.com/package/react-password-checklist

Document Management using Large Language Model

5.1.3 Backend Framework and Libraries

The framework used and the most important libraries used to develop the backend are listed
here.

NestJS

The backend architecture of the application was built using NestJS, an advanced Node.js frame-
work for building efficient, reliable and scalable server-side applications.

• Modular Architecture: NestJS promotes a modular architecture, making the codebase
more manageable and maintainable. Modules allow the encapsulation of related compo-
nents, making the application more scalable and understandable.

• TypeScript Support: NestJS is built with TypeScript and provides type safety, which helps
detect errors during development and improves the overall developer experience.

• Dependency Injection: NestJS has a powerful dependency injection system that improves
the testability and reusability of components.

• Integrated Solutions: NestJS integrates well with other libraries and frameworks and has
built-in support for WebSockets, GraphQL and more.

• Community and Ecosystem: NestJS has a growing community and ecosystem and offers
various plugins and modules that can be easily integrated into the application.

Key Libraries

@nestjs/common
Provides common decorators, interfaces and utilities for creating NestJS applications. These
are essential for creating the core building blocks of a NestJS application.

@nestjs/swagger
Integrates Swagger for API documentation. This provides an easy way to generate and manage
API documentation, making it easier for developers and customers to understand and interact
with the API.

@nestjs/passport and passport-jwt
Implements JWT-based authentication with Passport.js. This provides robust authentication
strategies and integrates seamlessly with NestJS. JWT was chosen for its stateless nature and
ease of use in modern web applications.

class-validator and class-transformer
Used to validate and transform incoming request data. This ensures data integrity and security
by validating user input. These libraries work well with NestJS pipes to handle the validation of
request data.

typeorm
An ORM for managing database interactions. It provides a flexible and powerful ORM that sup-
ports various databases and makes it easy to perform CRUD operations and manage database
schemas.

Momoko Wymann & Andrew Willi Page 28 of 96

Document Management using Large Language Model

dotenv
Loads environment variables from an .env file. This simplifies configuration management and
ensures that confidential information such as API keys and database credentials are not hard-
coded into the application.

5.1.4 Database

The decision to use MySQL as our database was influenced by several key factors. Firstly, our in-
dustry partner specifically preferred a relational database, which made MySQL a suitable option.
In addition, all team members had previous experience with MySQL, which would streamline our
development process.
For the development phase, we chose to implement a dockerized MySQL database to ensure
consistency across all development machines. Dockerization makes it easy to spin up and spin
down the database environment so that each teammember canworkwith a standardizedMySQL
instance. In addition, using Docker containers isolates dependencies, which greatly simplifies the
management and replication of our development environment.

5.1.5 Docker

Docker is a platform that enables the creation, deployment and execution of applications in con-
tainers. The containers enable portability, so they can run on any platform that supports Docker
without the need for customization.
The DMS application is deployed on the DigitalOcean app platform, using Docker containers for
the backend and frontend. This offers the advantage that the application can be easily scaled by
deploying additional container instances.
For local development and testing, docker-compose is used to create an environment with back-
end, frontend and test database. This offers the following advantages:

• Consistent development environment: All developers work in an environment that is very
similar to the production environment, reducing the likelihood of environment issues.

• Easy management of dependencies: All dependencies, including the database, are man-
aged in containers, which simplifies the setup and maintenance of the development envi-
ronment.

• Fast setup: With a single command (docker-compose up), the entire environment can be
started.

Momoko Wymann & Andrew Willi Page 29 of 96

https://www.mysql.com/

Document Management using Large Language Model

5.1.6 External Services

LLM Hugging Face

In selecting a platform for large-scale language model implementation, we evaluated several op-
tions, including Google AI Platform, Microsoft Azure NLP, AWS Web Services, OpenAI and OST
hosted LLama2. Some platforms offer limited free services, while OST-hosted LLaMA2 is fully
functional and free to use. However, our industry partner had data security concerns, whichmade
our choice clearer.
Additionally, we found that the task-based approach of Hugging Face closely matched our re-
quirements for executing specific language-related tasks. This led us to discover that Hugging
Face’smodular nature allows for flexibility and customization, whichwas important for our project.
Furthermore, the strong community support surrounding Hugging Face played a significant role
in solidifying our decision, as it provides valuable support, resources and collaboration opportu-
nities.
Considering all these factors, we concluded that Hugging Face was the best choice for imple-
menting our language models.

Workflow Zapier

In our search for a workflow automation platform, we evaluated several options including Make,
Workato, Tray.io, n8n.io and Zapier. Our decision was based on Zapier’s extensive features that
aligned with our project needs. With over 3,000 app integrations, Zapier offers a vast network of
automation capabilities that seamlessly connect to our existing applications. Being completely
cloud-based, Zapier eliminates the need for server management and provides a maintenance-
free solution. Its easy-to-use interface simplifies setup and use, making automation accessible
to non-technical users.
While Zapier does offer a free tier, we found it insufficient for our needs, prompting us to opt for
the premium version. We’re grateful that our industry partner agreed to this decision, ensuring
our workflow automation meets our project’s demands effectively.

Object Storage DigitalOcean

Choosing an object storage solution for our project was easy because our industry partner al-
ready had a relationship with DigitalOcean. They already had an account and were using Digi-
talOcean for other projects, so it was a natural choice for us. This existing setup allowed us to
integrate with their systems quickly and at no additional cost. In addition, our familiarity with
DigitalOcean’s infrastructure and services further validated our decision, ensuring that we could
manage and navigate the platform efficiently.

Momoko Wymann & Andrew Willi Page 30 of 96

Document Management using Large Language Model

5.2 Test Concept

In this section, we will describe the test concept of our project.

5.2.1 Frontend

As part of the non-functional requirements for the bachelor thesis assignment, a usability test is
needed where 3 out of 4 testers should give at least 8 out of 10 points.
To evaluate the user experience and functionality of the desktop application through a series of
tasks that encompass registration, login, uploading, and searching for documents.
Test environment:

Device: Test-Device (MacBook Pro 2019)

Browser: Firefox, Safari, Brave

Gmail: Provided by us

Files: Provided by us

Participant Profile:

Age: 22-55

Tech-Savviness: Moderate to High

Background Questions:

Can you briefly describe your experience with similar applications or online services?

Have you used applications with similar features before?

Scenario:
Imagine running a small business and dealing with a lot of documents every day - contracts,
invoices, bills, and more. Right now, searching through files takes time and can be frustrating.
You also don’t want to repeat the same task to send the same document to multiple people.
You’re testing a new system that promises to make document management easier and faster.

Momoko Wymann & Andrew Willi Page 31 of 96

Document Management using Large Language Model

Tasks:

1. Sign up:
Create a user account by signing up. Follow the registration process.

2. Login:
Log in using the credentials you just created.

3. Upload:
Now that you are logged in, upload the file we provided you.

4. Search own uploaded file:
Search for the file you just uploaded. (You can use the search bar and use the filter option,
which can help you out.)

5. Search another file:
Search a Bank Statement that was sent to you (Jane Customer).

6. Look at the Gmail:
We have provided a Gmail account for you. Check the email and see what you can find.

7. Favorite a document:
Pick any suitable document youwant to favorite and look inside your Favorite section. Then
you can remove it.

8. Settings:
Now locate where you can log out.

9. Log in as an admin:
Log in with these credentials:
E-Mail: test@example.com
Password: strongAdminPW

10. Delete a document you uploaded:
Now you know how to look for a specific document, so please delete the last document
you uploaded with the other user.

11. Finish:
Congratulations, you did it! Thank you for participating.

Momoko Wymann & Andrew Willi Page 32 of 96

Document Management using Large Language Model

Closing questions (in order of importance):

1. On a scale of 1 to 10, how satisfied are you with the app (layout, responsiveness, color,
content)?

• Layout
1[] 2[] 3[] 4[] 5[] 6[] 7[] 8[] 9[] 10[]

• Responsiveness
1[] 2[] 3[] 4[] 5[] 6[] 7[] 8[] 9[] 10[]

• Color
1[] 2[] 3[] 4[] 5[] 6[] 7[] 8[] 9[] 10[]

• Content
1[] 2[] 3[] 4[] 5[] 6[] 7[] 8[] 9[] 10[]

2. Have you encountered any problems, bugs, or unnatural behavior throughout this test? Any
negative feedback?

3. What are some positive feedback you can give us?

4. Please provide any other comments or suggestions you may have.

Consolidated Result Frontend Test

General Impressions
The application is generally seen as simple, very understandable, and has a pleasant design.
Participants appreciated its clean layout and overall usability. However, some noted areas for
improvement, particularly in handling document uploads and search functionality.

Positive Feedback
Participants praised the application’s simple and clean design, noting that it is easy to understand
and use. The integration with external APIs and the drag-and-drop feature for document uploads
were highlighted as particularly effective. The responsive design that works well across different
devices was also appreciated.

Negative Feedback
Several participants pointed out issues with the document tagging system, describing it as overly
complicated and confusing without proper guidance. There were also mentions of the loading
circle disappearing during uploads, leading to confusion about the upload status. Some partici-
pants noted that the search function could be improved by allowing searches without explicitly
choosing a tag, and the upload times were longer than expected.

Confusion Points
Participants experienced some confusion regarding specific elements of the application. The
purpose of the History feature was unclear to some, and the document tagging systemwas seen
as complex. There was also feedback suggesting that more intuitive guidance and tooltips could
help mitigate these issues.

Momoko Wymann & Andrew Willi Page 33 of 96

Document Management using Large Language Model

Use of the Application
Overall, participants were happy with the application and found it satisfactory for their needs.
They appreciated the drag-and-drop feature and the clean design, although they suggested some
improvements to enhance usability further.

Ratings (Scale 1-10)

• Layout: Ratings ranged from8 to 9, indicating a strong positive response to the application’s
design.

• Responsiveness: Ratings varied from 7 to 8, with some noting longer upload times.

• Color Scheme: Generally rated around 8, with participants finding the color scheme pleas-
ant.

• Clarity of Instructions and Content: Ratings ranged from 6 to 8.5, with suggestions for
clearer instructions and better guidance for some features.

General Feedback
Participantswere generally very satisfiedwith the application’s simplicity and effectiveness. How-
ever, they recommended improvements in certain areas, such as providing more intuitive guid-
ance and reducing the complexity of the document tagging system.

Suggestions for Additional Features
Participants suggested several enhancements, including replacing the heart icon with a more
intuitive button, adding checkboxes for easier file searching, integratingmore keyboard shortcuts,
and implementing a dynamic help system. They also expressed interest in seeing future features
like AI-based document sorting to further enhance the user experience.
For further details, please refer to the Usability Test Protocol section in the appendix 9.4.

Momoko Wymann & Andrew Willi Page 34 of 96

Document Management using Large Language Model

5.2.2 Backend

Integration Test

Tests are implemented in the backend to test the core functions of the services. The focus is
on realistic tests using a test database. They check the functionalities of the various services
in cooperation with the database. Integration tests are better suited to testing the backend than
pure unit tests, as many critical functions of the services are dependent on the database. Pure
unit tests would not be sufficient to ensure the correct functionality of the services. For example,
creating, finding or updating entities. Therefore, most tests use real data sources and repositories
to test real interactions with the database. Where appropriate, services and external resources
are alsomocked to reduce complexity, make the testsmore efficient and ensure that the tests are
stable and reproducible. The tests are carried out with jest with the support of the mock library
jest-mock. They cover various use cases and test successful actions as well as error messages
in the event of failures. The description of all tests can be found in the appendix in section 9.5.
A test database running in a Docker container is used for the tests. The test database can be
set up with the corresponding Dockerfile, whereby an initialization file fills the test database with
the test data. The test uses environment variables for the test environment, which are stored in
the .env.test file. This allows tests to be carried out under realistic conditions, making the tests
stable and reproducible.

API-Tests

The testing of the backend APIs was carried out using Postman. Postman is a powerful tool for
the development, testing and documentation of APIs. These tests check the functionality of the
various API endpoints to ensure that they work correctly and as expected. Postman enables the
creation and execution of API tests, the automation of tests and the monitoring of APIs. The
API tests were also executed on the test database. There is no test instance of the object store,
which is why the APIs of the document controller interact directly with the real object store. To
ensure that the tests do not collide with the production data, a special, very high user ID is used
for these tests, which is clearly identifiable as a test ID.
A request was created in Postman for each API, which defines the required parameters, headers
and body data. A test script is added to each API request, which checks the response of the
API. The test scripts are written in JavaScript and use the Postman testing library to validate var-
ious aspects of the API response. A distinction is made between pre-request and post-response
scripts. The pre-request scripts are executed before the actual API call and are used to ensure
that all the necessary requirements for the test are met.
Most API endpoints are protected byAuthGuards, which ensure that only authenticated users can
access certain resources. These endpoints require a valid bearer token, which is generated and
set in the pre-request scripts. Post-request scripts are executed after the API call and are used to
validate the test results. They check whether the API response meets the expected criteria, such
as status code, content or structure. The API tests cover all methods of the controllers described
in the API documentation in the appendix in chapter 9.1.

Momoko Wymann & Andrew Willi Page 35 of 96

Document Management using Large Language Model

5.3 Deployment

This chapter describes the process and considerationsmadewhen deploying the documentman-
agement system application on the DigitalOcean app platform. Among other things, the archi-
tecture, the selection of technologies, and the configuration decisions are discussed.

DigitalOcean

The entire deployment is on DigitalOcean, as our industry partner already had an account there
and provided us with an environment in which we could set up all the services we needed. Both
the object store and the database are hosted there. The application itself is deployed on the
DigitalOcean app platform.

DigitalOcean App Platform

The DigitalOcean App Platform was chosen for the DMS application because it offers a simple,
scalable, and secure solution that minimizes administrative effort while ensuring high availability
and performance. The platform is particularly suitable for applications that are regularly updated
and where the focus is on application development and enhancement rather than infrastructure
details.

The DMS application consists of two main components: the frontend and the backend. Both
components are packaged in separate Docker containers and deployed as part of a single Digi-
talOcean app. Docker was used because the containerization of applications allows them to run
consistently regardless of the environment. This makes deployment and scaling much easier.

GitHub Integration

The app platform can be easily integrated with GitHub. As a result, all changes in the code reposi-
tory are automatically deployed to the DigitalOcean App Platform. This enables fast and efficient
development and deployment of new features and bug fixes. The app platformmonitors the spec-
ified GitHub repository and automatically starts a new build and deployment process as soon as
changes are made to the defined branch “deployment”.

Momoko Wymann & Andrew Willi Page 36 of 96

Document Management using Large Language Model

Security

Environment variables were used to configure the application. Environment variables enable flex-
ible and secure configuration of the application. In particular, security-critical information such
as database passwords and API keys are not stored in the code itself but are injected at runtime.
This also facilitates the management of different environments such as development, test, and
production.

The backend only accepts requests from the frontend for browser-based interactions. This
is achieved by the origin setting in the CORS configuration of the backend. This measure pre-
vents unauthorized sources from accessing the backend through browser requests and pro-
tects against cross-site request forgery (CSRF) attacks. However, server-to-server requests or
requests from other non-browser clients are not affected by CORS settings and are still accepted
by the backend.

app.enableCors({
origin: ['https://the-frontend-domain.com'],
credentials: true,

});

Listing 5.1: CORS Configuration in the Backend

The setting shown in listing 5.1 restricts access to the backend only to the specific URL of the
frontend, which increases security.

DigitalOcean App Platform provides automatic SSL certificates for each application. This en-
sures that the communication between the frontend and the backend is secure and encrypted as
long as the calls are made over HTTPS.

The database is configured to only accept connections from trusted sources. This setting en-
sures that only authorized applications and services can access the database. This configuration
is set up via the “Trusted Sources” setting in the DigitalOcean database. The IP addresses or do-
mains that are allowed to access the database are specified here. Only the DMS application itself
is specified as a trusted source so that only it can access the database.

Momoko Wymann & Andrew Willi Page 37 of 96

Document Management using Large Language Model

5.4 Function Implementation

This chapter will describe the most important implementation details and aspects of our project.

5.4.1 Uploading Documents

This section will examine the implementation of one of our core functionalities.

The implementation of the file upload mechanism in the frontend involves a component that
leverages the react-dropzone library to facilitate file uploads. The interface for the dropzone only
accepts PDF files and supports multiple file uploads, as requested by our industry partner.

Figure 5.1: Uploading Documents

The document upload process in the backend is designed to ensure maximum data integrity and
consistency. The use of database transactions and the careful sequencing of processing steps
ensures that all data is stored correctly and consistently. This is shown in listing 5.2

Database Transactions
The upload process begins with the creation of a database transaction. All changes to the
database and uploading to the Object Store are performed within this transaction. This is done
by using a QueryRunner that initializes a transaction. The transaction ensures that all subse-
quent operations are either fully completed or, in the event of an error, fully rolled back to avoid
inconsistent data states. Several important steps are carried out within this transaction:

• Check for duplicates: A check is made to see whether a document with the same name
already exists in the user’s object store. If this is the case, the transaction is aborted.

• Extraction of PDF content: The text of the PDF document is extracted and analyzed. This
includes creating a summary, generating a title and classifying tags using LLMs.

• Creation of thumbnail: A thumbnail for the preview is created.

• Creation of the document entity: A new document entity is created and filled with the ex-
tracted metadata and the thumbnail.

If a step fails, all previous changes are undone.

Momoko Wymann & Andrew Willi Page 38 of 96

Document Management using Large Language Model

Thumbnail creation
The creation of thumbnails is also an essential part of the document upload process. Thumb-
nails provide a visual preview of the document, making it easier for users to quickly identify the
document they are looking for without having to open it fully. This improves the user experience
and reduces loading times and server load as less data needs to be transferred. With the pdf2pic
library, the first page of the PDF file is converted into an image. Using the first page as a thumb-
nail provides a representative preview of the document. The generated thumbnail is converted
into a Base64 format, which is stored in the database and can easily be used as an image source
in the frontend. The creation of thumbnails requires several dependencies and tools to convert
PDF files into images and edit them. These dependencies are installed and configured during the
build process.

• GraphicsMagick: A powerful image editing tool used to create thumbnails.

• Ghostscript: An interpreter for PostScript and PDF files that is required to process PDF
files.

• pdf2pic: A Node.js library used to convert PDF pages into images.

Uploading to the Object Store
Once the document entity has been successfully saved in the database, the PDF document is
uploaded to the DigitalOcean Object Store. Each user has their own folder, identified by the user
ID, so that a clear distinction can be made between the documents of the different users. This
process takes place as the last step within the same transaction. The upload is performed by the
AWS SDK for JavaScript.

Momoko Wymann & Andrew Willi Page 39 of 96

Document Management using Large Language Model

async uploadFile(buffer: Buffer, filename: string, userId: number):
Promise<{ success: boolean, message: string, filename: string }> {

//start the transaction
const queryRunner = this.dataSource.createQueryRunner();
await queryRunner.connect();
await queryRunner.startTransaction();

try{
const exists = await this.checkDocumentInObjectStore(filename,

userId);
if(exists) {

throw new HttpException(`Document with name ${filename} already
exists.`, HttpStatus.BAD_REQUEST);

}

//creation of the metadata, the thumbnail and the document entity
await queryRunner.manager.save(document);

const params = {
Bucket: this.bucketName,
Key: `${userId}/${filename}`,
Body: buffer,

};
await this.s3.upload(params).promise().then(() =>

queryRunner.commitTransaction());
//successfully end the document upload

} catch (error) {
await queryRunner.rollbackTransaction();
//unsuccessfully end the document upload

} finally {
await queryRunner.release();

}
}

Listing 5.2: Document Upload Implementation

Momoko Wymann & Andrew Willi Page 40 of 96

Document Management using Large Language Model

5.4.2 LLM

We are utilizing Inference API Task to summarize, tag, and generate titles for the documents. We
use the Axios library to send a POST request to the specific API. All the APIs have an Apache
Apache License 2.0, which can be used for commercial and private use as well as distribution,
stated here Apache License 2.0.

Summarization

For our summarizeText function, we are using Falconsai, a fine-tuned T5 model, which takes a
text input that can handle lengthy documents. We also have found other working models such
as BART and Google Pegasus.

Tagging

For the tagging process, we adopted a methodology similar to the summarizeText function. We
utilize the Deberta V3 model for our tagging tasks. These models employ a Zero-Shot Classi-
fication approach for document tagging, which allows multiple tags to be assigned to a single
document. Additionally, we provide the labels parameter to the classifyText function, cur-
rently encompassing ten possible tags. The response includes scores for each label. Labels
with scores above a predefined threshold are selected as applicable tags for the document. This
method enhances the flexibility and accuracy of the tagging process.

Title Generation

Similarly, for the generation of titles, we employ a dedicated function, generateTitle, which
automates the creation of document titles based on the content. We utilize the Czearing T5
model, a fine-tuned version of T5. Additionally, we have explored Alpaca, a fine-tuned GPT-Neo
model. This function interacts with an external API to generate appropriate titles.

Momoko Wymann & Andrew Willi Page 41 of 96

https://www.apache.org/licenses/LICENSE-2.0
https://huggingface.co/Falconsai/text_summarization
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/google/pegasus-xsum
https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0
https://huggingface.co/czearing/article-title-generator
https://huggingface.co/theblackcat102/alpaca-title-generator-mt0-large

Document Management using Large Language Model

5.4.3 Searching

This section will examine another core functionality of our project.

In the frontend, the SearchPage component is the core of the search functionality, as well as our
home page, after logging in. It integrates several key React components and services to provide
a seamless user experience. The component structure includes:

• Header: A navigation bar that includes links to various sections and a file upload feature.

• Search Bar: An input field where users can enter search terms.

• Tag Filter: A multi-select dropdown allowing users to filter search results by tags.

• Time Range Filter: A dropdown to filter documents based on their upload date.

• Document List: A dynamically generated list of search results displayed using React Boot-
strap cards.

The component uses state management to handle search terms, selected tags, time ranges, and
document data. It also includes authentication checks, ensuring that only authenticated users
can access the search functionality. More visual details are provided in the appendix here.

Search Service for API Calls

The SearchService class manages the communication between the frontend and the backend
API. It extends the AxiosBaseService to handle HTTP requests, providingmethods for searching
documents, fetching recent documents, and performing search operations on recent documents.

class SearchService extends AxiosBaseService {
public async search(accessToken: string, tags: string[], searchText:
string, timeRange: string): Promise<DocumentResponseDto> {

try {
const response: AxiosResponse = await this.instance.get('/search', {

params: { tags, text: searchText, timeRange },
headers: { 'Authorization': `Bearer ${accessToken}` }

});
return response.data;

} catch (error) {
...

}
}

}

Listing 5.3: Code for Search Service in Frontend

This method constructs a GET request with the specified parameters and authorization header,
retrieving the search results from the backend.
The backend class SearchService is used to search for documents based on the criteria re-
ceived. The search service contains the main logic for searching for documents and accesses
the data source directly, performing complex queries to find relevant documents. A dynamic
query builder is used to create an SQL query that is tailored to the specified criteria. Since the
query contains complex joins and conditional logics, no repositories are used as in the other
services, which allows finer control over the executed SQL queries. The use of parameterized

Momoko Wymann & Andrew Willi Page 42 of 96

fig:searchPage

Document Management using Large Language Model

queries prevents SQL injection attacks, as the parameter values are not directly embedded in the
SQL query.

Momoko Wymann & Andrew Willi Page 43 of 96

Document Management using Large Language Model

@Injectable()
export class SearchService {

constructor(private dataSource: DataSource, private favoritesService:
FavoritesService, private tagsService: TagService) {}

async searchDocuments(tags: string[], searchText: string, userId: number,
timeRange: TimeRange | null, recent: boolean): Promise<DocumentDto[]> {

const timeCondition = this.getTimeRange(timeRange);
...
const queryBuilder = this.dataSource.createQueryBuilder()

.select('d')

.addSelect('GROUP_CONCAT(t.TagName) AS tags')

.addSelect(` //relevant sorting
CASE
WHEN COUNT(t.TagName) = :totalTags AND MATCH(d.Content) AGAINST

(:searchText IN NATURAL LANGUAGE MODE) > 0 THEN 1
WHEN MATCH(d.Content) AGAINST (:searchText IN NATURAL LANGUAGE

MODE) > 0 THEN 2
WHEN COUNT(t.TagName) = :totalTags THEN 3
ELSE 4
END`, 'relevance')

.from(Document, 'd')

.leftJoin('DocumentTags', 'dt', 'd.DocumentId = dt.DocumentId')

.leftJoin('Tags', 't', 'dt.TagId = t.TagId')

.leftJoinAndSelect('d.uploadedBy', 'u')

.where(tagQueries)

.groupBy('d.DocumentId')

...

...
//enables recent search in the same function to reduce code duplication
if(recent) {

queryBuilder.andWhere('d.UploadedBy = :userId');
}
//parameter transfer for parameterized queries
queryBuilder.setParameters({ totalTags, tags, searchText, userId });

const results = await queryBuilder.getMany();
return await this.createDocumentDto(results, userId);

}
}

Listing 5.4: Search Service Implementation

The searchDocuments method as shown in listing 5.4, creates a query based on tags, search
text, and time range, ensuring precise and relevant search results. The method thus processes
user-specific document retrievals and integrates tag-based filtering.

Momoko Wymann & Andrew Willi Page 44 of 96

Document Management using Large Language Model

5.4.4 Automatic Process

In order to optimize the use of the Zapier Workflow service, we have integrated three distinct
Zaps following the initial presentation of the Zap. A Zap consists of a trigger (an event in one
app that starts the Zap) and actions (events completed by Zapier in other apps). This decision
was influenced by our industry partner’s preference to avoid using the MySQL application, which
would require another program to access the DigitalOcean database. As a result, three Zapswere
implemented: our custom integration provided by our industry partner, one using webhooks, and
one using the MySQL application.
While the latter two Zaps are turned off, they can be published and shared publicly, while the initial
Zap is private and accessible only to individuals authorized to utilize the custom integration. The
subsequent figure illustrates the Zaps.

Figure 5.2: My Zaps

Implementation of the Integration

Before we can implement the integration, we need to head over to the Zapier platform web-
site, which access was given to us by our industry partner. Authentication requires users to
provide their email and password, which Zapier uses to authenticate against the DMS through
a token exchange endpoint. The trigger is configured to poll the endpoint at intervals, check-
ing for new or updated documents. It proceeds only if the document summary contains "ad-
min@slicedinvoices" and the tags include "Invoice." Upon triggering, an email is sent via Gmail
containing the document details, tagged "Invoice is due."

Figure 5.3: Zap with Custom Integration

Validation and testing involve initiating a GET request with appropriate headers and parameters
to ensure relevance and security. The returned data is parsed to filter and map documents meet-

Momoko Wymann & Andrew Willi Page 45 of 96

Document Management using Large Language Model

ing specified criteria, while expected data formats are tested to ensure consistency and accuracy
in the trigger’s output.

Momoko Wymann & Andrew Willi Page 46 of 96

Document Management using Large Language Model

5.4.5 View

Prior to enabling the functionality for viewing individual documents in a new tab, it was necessary
to create a foundational framework for displaying all documents. For this purpose, we selected
the Card Component from React Bootstrap.

Figure 5.4: CardView of Documents

The Card Component, as visualized in the figure above, provides a comprehensive display of
document metadata, including the title, summary, tags, and a preview of the document. The
preview functionality is particularly noteworthy, as it sets the conversion path and options, and
then converts the PDF buffer to a JPEG image. This process is designed to handle any potential
errors and returns a base64-encoded string that can be used to render a thumbnail preview for
each document.
The user may initiate a click action on the card, thereby triggering the display of the document
in a new tab. Upon clicking the button, the system fetches the document in the form of a Blob,
subsequently creating a new Blob object containing the retrieved PDF data. This is then utilized
to generate a URL object, which is subsequently opened in a new tab using the window.open
method with the _blank target, as shown below:

const openDocument = async (documentId: number) => {
const pdf = await
fileService.getDocument(localStorage.getItem('accessToken') || '',
documentId);
const file = new Blob([pdf], { type: 'application/pdf' });
const fileURL = URL.createObjectURL(file);
window.open(fileURL, '_blank');

};

Listing 5.5: Code for Opening a Document

Momoko Wymann & Andrew Willi Page 47 of 96

Document Management using Large Language Model

5.4.6 Delete

The delete button, prominently displayed in the Card Component (as shown in Figure 5.4), allows
users to remove documents from the system. When a user clicks the delete button, a confirma-
tion dialog is presented to prevent accidental deletions. Upon confirmation, the system triggers
the document deletion process, which is handled by the backend service. The backend service
ensures that the document is deleted from both the database and the object store, thereby pre-
venting any residual data from being left behind. This dual deletionmechanism provides a robust
and reliable way to manage document deletion.

Subsequently, the document list is refreshed by invoking the search function.
The backend service for deleting a document involves the following steps:

1. An authentication check is conducted to verify that the requesting user possesses the nec-
essary permissions to execute the deletion.

2. A document existence check is performed to confirm that the document is present in the
database.

3. The document is deleted from both the database and object store by removing its corre-
sponding record and file respectively.

Momoko Wymann & Andrew Willi Page 48 of 96

Document Management using Large Language Model

async deleteDocument(documentId: number, userId: number): Promise<void> {
const user = await this.userRepository.findOneBy({userId});
if (!user || user.role !== 'admin') {

throw new HttpException('Access denied. Admin role required.',
HttpStatus.FORBIDDEN);
}
const document = await this.documentRepository.findOne({

where: {documentId},
relations: ['uploadedBy'],

});
if (!document) {

throw new HttpException('Document not found.', HttpStatus.NOT_FOUND);
}

const queryRunner = this.dataSource.createQueryRunner();
await queryRunner.connect();
await queryRunner.startTransaction();

try {
await queryRunner.manager.delete(Document, documentId);
await this.deleteDocumentInObjectStore(document.uploadedBy.userId,

document.filePath).then(() => queryRunner.commitTransaction());
...

} catch (error) {
await queryRunner.rollbackTransaction();
...

} finally {
await queryRunner.release();

}
}

Listing 5.6: DeleteDocument Function in the Backend

5.4.7 Favorites

As depicted in Figure 5.4, users can add a document to their favorites by clicking the favorite
button on the document card. Favorited documents are visually distinguished within the inter-
face, and users can easily access these documents from a dedicated favorites section within
the application. On the top right, there is a heart icon, which indicates whether the document is
favorited (Full Heart) or not (Outlined Heart). As long as the document is favorited, the favorite
button is not visible.

Momoko Wymann & Andrew Willi Page 49 of 96

Document Management using Large Language Model

5.5 Code Documentation

For readability and consistency, we decided to use TSDoc. TSDoc is a TypeScript documentation
standardization proposal that looks like this:

1 export class Statistics {
2 /**
3 * Returns the average of two numbers.
4 *
5 * @remarks
6 * This method is part of the {@link core-library#Statistics | Statistics

subsystem}.
7 *
8 * @param x - The first input number
9 * @param y - The second input number

10 * @returns The arithmetic mean of `x` and `y`
11 *
12 * @beta
13 */
14 public static getAverage(x: number, y: number): number {
15 return (x + y) / 2.0;
16 }
17 }

Listing 5.7: TSDoc Example

5.6 Security

5.6.1 Authentication:

The authentication strategy is based on a combination of stateless and stateful JSON Web To-
kens (JWT). A JWT is a compact, URL-secure token format that contains information about an
entity, in this case, the user. This application uses two types of tokens: access tokens and refresh
tokens.

Access Tokens Access tokens are stateless and offer high session security with low latency,
as no database access is required for validation. They contain all the necessary information to
verify the identity and authorizations of the user. As access tokens do not require any server-side
session information, they are scalable and reduce the load on the server. A major disadvantage
is that they cannot be easily revoked once they have been created. If a token is compromised, it
remains valid until it expires. To minimize the risk, access tokens have a very short lifespan of
around 15 minutes. However, due to the short lifespan, the user would have to log in repeatedly,
which does not provide a good user experience.

Refresh Tokens In contrast to access tokens, refresh tokens are stateful and are stored in the
database on the server side. They have a longer lifespan and are used to generate new access
tokens without the user having to log in again. As refresh tokens are stored on the server side,
they can be easily revoked, for example, when the user logs out. This increases security, as
compromised refresh tokens can be deactivated. The automatic renewal of access tokens using

Momoko Wymann & Andrew Willi Page 50 of 96

https://tsdoc.org/

Document Management using Large Language Model

refresh tokens provides a seamless user experience as the user does not need to be constantly
re-authenticated.

This hybrid session management solution combines the benefits of stateless JWT-based ses-
sions with the revocation capabilities of stateful sessions:

• Low latency and high security: The short lifetime of access tokens minimizes the risk that
compromised tokens can be misused.

• Ease of use: Refresh tokens ensure that the user experience is not compromised by auto-
matically generating new access tokens.

Implementation of the Auth Guards

Auth Guards in the backend ensure that only authenticated users can access protected resources
by checking and validating the JWTs. The NestJS authentication library, which is based on the
@nestjs/passport library and passport-jwt, was used to implement the guards. There are two
different guards, the AccessTokenGuard and the RefreshTokenGuard. This ensures that the re-
fresh token is only used to renew the access token. These guards check whether the corre-
sponding JWT in the Authorization header of the request is present and valid. The AccessToken-
Guard also uses asynchronous local storage to store user-specific data such as the user ID in
the context of the request. Listing 5.8 shows how the guards are used to protect the routes. The
@ApiBearerAuth() decoration indicates that the endpoint requires JWT authentication and the
@UseGuards(AccessTokenGuard) decoration applies the guard to a specific route but can also
be applied to the entire controller.

@ApiTags('Authentication')
@Controller('auth')
export class AuthController {

constructor(private authService: AuthService) {}

@ApiBearerAuth() //endpoint requires JWT authentication
@UseGuards(AccessTokenGuard) //guard is applied on this route
@Get('testAuth')
async getProfile(@Request() req: any) {

return req.user; //retrieve user-specified data from the request
}

//more endpoints

}

Listing 5.8: AccessTokenGuard Controlls the Access to the Routes

Momoko Wymann & Andrew Willi Page 51 of 96

Document Management using Large Language Model

Authentication Process

The following sequence diagram 5.5 shows the authentication process, which encompasses
user registration, login, resource access, token refresh, and logout. The user initiates the registra-
tion process by entering their details, which the client application transmits to the authentication
service. This service then verifies the email address and creates a new user account, generating
access and refresh tokens. These tokens are returned to the client and contain information such
as the user ID, the issuance date, and the expiry date. When logging in, the user’s login informa-
tion is validated and tokens are issued if correct. The tokens are stored on the client side, and to
access resources, they are included as bearer <token> in the Authorization header for requests.
For each request, the token provided is checked by the service to ensure that it is valid and has
not expired. When tokens are approaching expiration, the client initiates a request for new to-
kens to maintain the session. Finally, upon logout, the client instructs the authentication service
to invalidate the refresh token, thereby terminating the user session.

Figure 5.5: Authentication in the Frontend

Momoko Wymann & Andrew Willi Page 52 of 96

Document Management using Large Language Model

5.6.2 Password Hashing

To ensure the secure storage of passwords, all passwords are hashed. For the implementation,
bcrypt was chosen, which is a proven choice for password hashing in web applications. bcrypt
uses an adaptive hash function that automatically adjusts the number of rounds to achieve a cer-
tain delay, making it more resource intensive and thus making brute force attacks more difficult.
This delays the loading of pages, but increases security.

5.6.3 Input Validation:

Backend
Validation of the data sent to the backend is crucial to ensure the integrity and consistency of
the data and to ensure that only correctly formatted and valid data is processed. A combination
of DTO validation and pipes is used to enable robust and secure processing of incoming data in
the backend. This is implemented through the use of ’class-validator’ and ’class-transformer’ in
DTOs as well as user-defined pipes.

Frontend
In addition to the backend validation, validation for email, password and username has been
implemented in the frontend. This helps avoid unnecessary requests and optimizes the response
time in the user interface.

5.6.4 Security Measures LLM:

Security is a critical aspect of our project, particularly in conjunction with the implementation of
the Hugging Face LLM. However, due to the agreement with our industry partner and the con-
straints imposed by limited time and resources, we were unable to implement a comprehensive
security solution. At the outset of our project, the decision was made to utilize self-generated
business-related PDFs. Nevertheless, it is of the utmost importance to delineate a potential
framework for future security measures to ensure that the model is accessible only locally and
securely.

• Access Control: Implemented through basic authentication to ensure only authorized users
can access the model.

• Local Access: Restricted API access to localhost to prevent external access.

• Environment Isolation: Containerized the application using Docker for better isolation and
resource management.

• Encryption: Ensure data in transit is encrypted using TLS/SSL when needed.

• Monitoring and Logging: Plan to implement logging and monitoring to track access and
detect unauthorized attempts.

By following these steps, we can enhance the security of the Hugging Face transformer model,
ensuring that it operates securely within a local environment and is accessible only to authorized
users.

Momoko Wymann & Andrew Willi Page 53 of 96

Document Management using Large Language Model

6 Result

In this project, we developed an application that runs on modern web browsers, enabling users,
especially small businesses, to manage their PDF documents efficiently with the help of LLM.
Usersmust register and log in to the application to upload the desired documents and can search
for them.
The backend of this application is hosted on DigitalOcean and managed by the publisher of the
application. Therefore, we were able to fulfill all previously defined functional requirements. Due
to time constraints, it was not possible to implement most of the optional requirements except
one: "Categorize/tag documents, e.g., as invoices."

Fulfilled Functional Requirements:

The following table contains the completed functional requirements as stated in the task formu-
lation 9.3 with deviations as mentioned in this section 3.1.2

Functional Requirement Result
User Registration Users can register an account in the system.
User Login Users can log into the system.
Document Upload Users can upload multiple documents to the system.
Read Out Metadata System displays metadata extracted from documents.
Search Documents Users can search for documents with tag and time range filter.
Analyse the Documents
using Large Language
Model

System generates summaries, categories, title and additional
metadata for documents.

Trigger Automatic
Processes

System triggers process to send an Email reminder to a cus-
tomer.

Add or Remove Favorites Users can mark or unmark documents as favorites.
Show Recent Documents System displays the most recently uploaded documents.
Show Favorites System displays all documents marked as favorites.
Delete Documents Admin users can delete documents from the system.

Table 6.1: Implemented Requirements and Expected Results

Momoko Wymann & Andrew Willi Page 54 of 96

Document Management using Large Language Model

Fulfilled Non-Functional Requirements:

Non-Functional Requirement Result
The development team implements features ac-
cording to the agreed-upon priorities with the
customer.

Features implemented according to agreed pri-
ority order.

The page should look good on the desktop (re-
sponsive design is desirable).

In the Usabilty test most of the user were happy
how the page looks on desktop.

The web application should run on Firefox,
Chrome, and Safari browsers.

Web application was tested on Usablity Test
with Firefox, Chrome, and Safari browsers.

The application should be accessible via the in-
ternet using a domain provided by the customer.

Users can access the application via the internet
using a domain provided by the customer.

Three out of four test users should rate the UI of
the application (categories: layout, responsive-
ness, color, content) with a score of at least 8
out of 10 on a PC.

UI rated by 3 test users with at least 8 out of 10
on PC.

After scanning a document, it should be dis-
played on the page within 30 seconds.

One document is displayed on page within 30
seconds of scanning.

The database should be able to manage up to
10,000 documents and 100 users.

Locally tested on a docker container database.

Errors should not cause system failures but dis-
play errormessages and revert the system to the
previous state.

Errors display messages, restore the system,
and prevent failures.

Every error should be logged for monitoring and
troubleshooting.

All errors are logged for monitoring and trou-
bleshooting.

Communication between frontend and backend
should be encrypted with SSL certificates.

SSL certificates secure frontend-backend com-
munication.

Input data should be validated before process-
ing, with no SQL injection vulnerabilities.

Input data validated, no SQL injection vulnerabil-
ities.

The web application should be compliant with
data protection regulations.

The web application complies with data protec-
tion regulations.

User passwords should be securely hashed in
the database.

User passwords hashed securely, not stored in
plain text.

Users should only be able to view data they have
access to upon login.

Users view only authorized data upon login.

Backend logic should be modular for easy ex-
pansion.

Backend logic designed modularly for easy ex-
pansion.

Backend API should be thoroughly tested with
appropriate tools.

Backend API tested with Postman.

Implemented functionalities (database, back-
end, frontend, etc.) should be deployed.

Implemented functionalities (database, back-
end, frontend, etc.) deployed on DigitalOcean.

Table 6.2: Non-Functional Requirements

Momoko Wymann & Andrew Willi Page 55 of 96

Document Management using Large Language Model

Non-Functional Requirements that were not fulfilled:

In the course of this work, we could not test NFR 2: The backend should handle 1,000 requests
per minute This was not prioritized highly by us, as the application is intended to be an initial
prototype that demonstrates functionality. Furthermore, DigitalOcean Spaces provides the nec-
essary resources and capacities to meet the specified requirement. Nevertheless, capacity is
always a matter of cost, as additional storage space is associated with higher expenses.

NFR 3: Pages should load within 200ms is not possible for pages that handle passwords, e.g.,
the login and sign-up pages. As NFR 15: Secure Password Storage is more important, this re-
quirement was not fulfilled with today’s hardware. Therefore, this requirement is only partially
fulfilled.

Momoko Wymann & Andrew Willi Page 56 of 96

Document Management using Large Language Model

7 Conclusion

As mentioned in the Result 6 section, we developed a foundation for an extendable service that
enables users to efficiently manage their PDF documents. We successfully met all requirements,
with the exception of three specified by our industry partner. Consequently, the application we
developed serves as a robust foundation for a future application that can significantly simplify
the management of PDF documents.
All in all, we are satisfied with the results of this project and were happy to use modern tech-
nologies. We would like to see more features in the future and more fleshed-out capabilities.
This project provided us with valuable experience, taking a project from scratch to a complete
prototype.
However, there are some areas that need to be addressed in the future.

7.1 Needs to Be Addressed

If we are to continue developing this service and implement new features. These are our recom-
mendations, based on our knowledge of the application, as listed here:

• Security: As mentioned in this document, security concerns should be addressed and the
application should be tested for vulnerabilities. Using external services is always a risk and
should be monitored.

• Testing: Comprehensive testing is essential before deploying the application to production.
Before further development, we need to extend our testing efforts, including additional unit
tests, fixing existing tests, API testing, frontend testing, and more usability tests.

• Pagination in the Frontend: It would be beneficial to implement pagination in the frontend
to improve the user experience when browsing through documents. This would make it
easier to navigate through the documents and find the desired information.

• Workflow Service: For further development, we would like to add the fact, that Zapier is a
paid service, so that it can be integrated with the application.

Momoko Wymann & Andrew Willi Page 57 of 96

Document Management using Large Language Model

7.2 Future Vision

In our opinion, the application has great potential to extend its capabilities and implement more
features:

• Various file types: Adding the ability to upload various file types, such as images, would be
a great addition to the application. This would mean integrating another LLM aside from
the Natural Language Processing but with Computer Vision.

• Version control: Implementing a version control system to keep track of changes to doc-
uments. This feature would allow users to revert to previous versions, compare different
versions, and manage document revisions more efficiently.

• Advanced Search Filters: Enhancing the search functionality by adding advanced filters
such as date range, document type, and author tomake it easier to find specific documents.

• Settings: Enhancing the user settings to change the password or username and other set-
tings.

• Optional Requirement: Manual editing of metadata and user management for the admin-
istration of organizational employees.

Momoko Wymann & Andrew Willi Page 58 of 96

Document Management using Large Language Model

8 Project and Time Management

8.1 Project Schedule

Figure 8.1 shows the rough schedule at the beginning of the project. In the end, it deviated due
to some factors that were unknown at the beginning of the project and some risks that were
realised

Figure 8.1: Project schedule

Momoko Wymann & Andrew Willi Page 59 of 96

Document Management using Large Language Model

Phases

As Scrum+ is used for this project, the four-phase framework included in RUP will be adopted.

• Inception: The first phase of a project involves setting up the necessary environments,
tools, and resources for the team to begin working. This includes the setup of Jira, the
creation of the GitLab repository for the documentation and source code, and assigning
roles to the team members. Additionally, the project’s requirements are identified and doc-
umented. This phase is completed once the ’Initial Project Setup’ milestone has been
reached.

• Elaboration: In this phase, the architecture of the application is defined. A first prototype
is created to ensure the compatibility of the technologies and validate the operational pro-
cesses. The prototype consists of all the components from the application to test the flow
between them. This includes the basics of the frontend and the Backend with user authen-
tication, setup of the database, and the Object Store, including document upload. It also
includes the connection to the LLM and automatic processes API. The LLM feasibility is
also checked in this phase as well as the setup of the deployment. The elaboration phase
is completed with the milestone ’POC’.

• Construction: The next phase is the primary stage of development. During this phase, the
team writes the business logic and implements the UI. This also encompasses the integra-
tion of the LLM and the configuration of the automatic processes. Comprehensive testing
is also performed to ensure that everything functions as intended. The objective of this
phase is to produce a fully functional and automatically deployable software system using
CI/CD. This phase is completed with the milestone ’Full Application’.

• Transition: The final phase will be used to finish the documentation and has an additional
built-in buffer to compensate for any delays. The project and phase will be concluded with
the milestone "Final Submission".

Milestones

• Initial Project Setup: This milestonemarks the completion of the initial setup phase, where
all necessary environments, tools, and resources are in place, and project requirements are
documented.

• POC (Proof of Concept): Thismilestone is reached upon completing the elaboration phase,
where a working prototype demonstrates the feasibility and compatibility of the system
components.

• Full Application: This milestone signifies the end of the construction phase, with the devel-
opment of a fully functional application, including business logic, UI, LLM integration, and
automated processes.

• Final Submission: This milestone marks the end of the transition phase, where all docu-
mentation is finalized, and the project is submitted for evaluation.

Long-Term Tasks

• Setup: Establishing the development environment, including setting up Jira for projectman-
agement, GitLab for version control, and assigning roles to team members.

Momoko Wymann & Andrew Willi Page 60 of 96

Document Management using Large Language Model

• Define Requirements: Identifying and documenting the requirements of the project to en-
sure a clear understanding of the objectives and deliverables.

• Time Planning: Creating a detailed schedule for the project, including all phases, mile-
stones, and tasks to ensure timely completion.

• LLM Feasibility: Assessing the feasibility of integrating LLMs into the application, ensuring
they meet the project’s requirements.

• Architecture: Designing the overall architecture of the application, including the backend,
frontend, database, and object storage.

• Create Prototype: Developing a prototype to validate the integration of different compo-
nents and ensure the system works as intended.

• User Authentication: Implementing secure user registration, login, and access control fea-
tures.

• Basic Frontend: Creating a simple frontend to display the results of the summarization and
other basic functionalities.

• DB Setup: Setting up the database to store user data, document metadata, and other rele-
vant information.

• Interface Connectivity Automatic Workflow: Ensuring seamless connectivity between the
frontend, backend, and other components, and establishing automated workflows.

• Object Store Setup & Document Upload: Configuring the object storage for document up-
loads and managing metadata storage in the database.

• PDF Convert: Implementing functionality to convert documents to PDF format as needed.

• Deployment Setup: Setting up the deployment onDigitalOcean and ensuring the application
is ready for production.

• Automated Processes Development: Developing automated processes for various tasks,
enhancing efficiency and reducing manual intervention.

• LLM Integration: Integrating LLMs into the application for tasks such as text summariza-
tion, title generation, and tagging.

• Frontend Development: Enhancing the frontend with React Bootstrap tomake it more user-
friendly, appealing, and responsive.

• Implement Search: Implementing advanced search capabilities to quickly locate and filter
documents.

• Unit Tests: Writing unit tests to ensure individual components work as expected and iden-
tifying any issues early in the development process.

• User Tests: Conducting user testing to gather feedback andmake necessary improvements
to the application.

• Deployment: Deploying the fully functional application using DigitalOcean

• Revision Documentation: Finalizing and refining the project documentation, ensuring it is
comprehensive and up-to-date.

• Reserve: Allocating additional time to address any unforeseen issues or delays, ensuring
the project stays on track.

Momoko Wymann & Andrew Willi Page 61 of 96

Document Management using Large Language Model

8.2 Project Organization

8.2.1 Roles

To better divide the project workload, tasks are split into multiple roles among the project mem-
bers. The roles are defined as shown in table 8.1, but are only intended as rough guidelines.

Task Lead
Scrum Master Andrew Willi
Backend Setup Momoko Wymann
Frontend Setup Andrew Willi
Frontend Design Andrew Willi
External Service Andrew Willi
Database Momoko Wymann
Prototype Both
Deployment Momoko Wymann
Meeting minutes Momoko Wymann
Meeting agenda Andrew Willi
Documentation Both

Table 8.1: All roles with the assigned members

8.2.2 Code Repository

To share the source code and the documentation, a monorepo GitLab repositoriy is used:
DMS/

code
backend/
frontend/
database/

documentation/

This structure allows us to work on the backend and frontend separately, while having the docu-
mentation in a separate folder.

Momoko Wymann & Andrew Willi Page 62 of 96

Document Management using Large Language Model

8.2.3 Jira Board

The board is divided into five categories: To Do, In Progress, Awaiting Review, Done, andMeeting.
A new issue is initially placed in the To Do category. Once a developer beginsworking on an issue,
it is moved to the In Progress category. It then proceeds to the Awaiting Review stage. When the
issue is successfully merged into the main branch, it is marked as Done. The meeting has its
own category, making it easier to locate, because there is going to be a weekly occurrence.

Figure 8.2: Jira Board

8.2.4 Issue Management

Our challenge revolves around reconciling the structure of Jira, which features Epics and cus-
tomizable issues, with the desired Scrum hierarchy comprising Epics, Stories, and Tasks. To
address this, we have introduced a Story issue as the cornerstone. Under this Story, we can have
tasks. Additionally, we have elevated Meetings to a superior level, signifying their overarching
importance within our workflow. This adaptation enables us to adhere to Scrum principles while
utilizing Jira’s customizable framework.

Momoko Wymann & Andrew Willi Page 63 of 96

Document Management using Large Language Model

Epic

In the Planning phase, each process step is identified and defined as an Epic. An Epic consists
of multiple user stories (green icon) and can extend beyond the sprint boundaries.

Figure 8.3: Epic

User Story

A user story describes a single functionality that needs to be implemented. It consists of individ-
ual tasks that must be completed for successful completion. The scope of a User Story should
not exceed that of a sprint. In our case it is the issue with the green icon.

Figure 8.4: User Story

Momoko Wymann & Andrew Willi Page 64 of 96

Document Management using Large Language Model

Task

A Task is an indivisible unit of work that should be completed within a few hours and is part of a
User Story. It should be self-contained and can be tested using unit testing. External dependen-
cies should be avoided.

Figure 8.5: Tasks

Meeting

Meetings is about organizing and documenting our meeting time.

Figure 8.6: Meeting

Momoko Wymann & Andrew Willi Page 65 of 96

Document Management using Large Language Model

8.2.5 Branching Strategy

We decided on a very simple branching strategy. We have the following four branches:

• Main Branch: Represents the stable, production-ready code. It contains the latest released
version of the software.

• Development Branch: The main integration branch, where ongoing development work is
merged. It’s the collective work of all the feature branches.

• Feature Branches: Each feature or user story has its own branch, which branches off from
the development branch. These branches encapsulate changes related to specific features,
and are merged back into the development branch when complete.

In the case of a hotfix, we temporarly create a hotfix branch and after successfully fixing the bug
we merge it into the main branch.

Figure 8.7: Git Branch

Momoko Wymann & Andrew Willi Page 66 of 96

Document Management using Large Language Model

8.2.6 Defintion of Done

This list will serve as a checklist whenwewant to verify that something is done. It will also ensure
that quality standards are met with a clearly defined process.

Sprint

• DoD of each task is met

• Sprint Scope completed

• All tests pass

• Application deployed

User Stories

• Project builds without errors

• Tests written according to test concept

• Code written according to defined guidelines

• NFR stay unviolated

• Assumptions of User Story met (justified if not)

• Configuration, Architecture or Build changes documented

Tasks

• Changes to Documentation reviewed

• Code reviewed by the other member

• Time Spent on Tasks documented

• Decisions accepted by Team

• Assumptions of Task met (justified if not)

Momoko Wymann & Andrew Willi Page 67 of 96

Document Management using Large Language Model

8.3 Risk Management

Table 8.2 shows the risks that were identified during the inception phase. The risk matrix was
utilized to evaluate the identified risks.

No. Risk Mitigation Probability Severity Exposure
1 Technical complex-

ity when implement-
ing external services
and integrating it
with other systems.

Conduct a thorough
analysis and evalu-
ation of the LLMs
in advance to select
the most suitable
model. Also conduct
a POC to verify the
feasibility of the
integration before
the development.

Possible Critical High

2 Team member is un-
available, due to ill-
ness or other rea-
sons.

Communicate
through channels
to distribute tasks
between other team
members.

Possible Moderate Medium

3 Delays in develop-
ment due to unfore-
seen complexities or
changes in project
requirements.

Include buffer times
in the project sched-
ule and use Agile
project manage-
ment to accommo-
date changes and
feedback.

Likely High High

4 Inadequate handling
of PDF data leading
to data corruption or
loss.

Implement rigorous
testing phases, in-
cluding unit tests,
integration tests,
and end-to-end
tests to ensure data
integrity and han-
dling are maintained
throughout.

Possible High High

5 Security vulnerabili-
ties in the applica-
tion, particularly in
user data handling
and document stor-
age.

Adopt a security-first
design philosophy,
conduct regular
security audits, and
ensure encryption of
sensitive data both
in transit and at rest.

Likely Critical High

Momoko Wymann & Andrew Willi Page 68 of 96

Document Management using Large Language Model

No. Risk Mitigation Probability Severity Exposure
6 Difficulty in achiev-

ing the non-
functional require-
ments related to
system perfor-
mance.

Use performance en-
gineering practices
from the start of the
project, including
performance testing
and optimization
activities.

Possible High Medium

7 Insufficient scal-
ability to handle
increased number of
documents or users
as the organization
grows.

Design the system
architecture for
scalability from the
outset, consider
cloud solutions that
scale automatically,
and perform load
testing.

Unlikely High Medium

Table 8.2: Initially identified risks

Momoko Wymann & Andrew Willi Page 69 of 96

Document Management using Large Language Model

Cost Analysis

The following table presents the cost analysis of the identified risks. The cost of the measures
is calculated in hours. The calculated damage is rounded up to half an hour.

No. Cost of
Measure
(Hours)

Max Damage
(Hours)

Probability (%) Weighted Damage (Hours) Priority

1 20 30 10 3 High
2 10 15 10 1.5 Medium
3 15 25 20 5 High
4 18 20 10 2 High
5 25 30 20 6 High
6 12 20 10 2 Medium
7 8 20 5 1 Medium

Table 8.3: Cost Analysis Based on Risk Assessment

0 5 10 15 20 25 30 350

10

20

30

R1R2

R3

R4

R5

R6

R7

Effort in Hours

Pr
ob

ab
ili
ty

of
O
cc

ur
re
nc

e
(%

)

Medium

High

Pr
io
rit

y

Figure 8.8: Updated Risk Matrix based on the Priority of Identified Risks from Cost Analysis.

Momoko Wymann & Andrew Willi Page 70 of 96

Document Management using Large Language Model

Technical complexity when implementing external Services and integrating it with other
systems

During the development phase, the complexity of integrating external services became evident,
particularly while constructing the prototype. Although we conducted a thorough analysis for the
LLM in advance, integrating Transformers.js proved to be more challenging than anticipated.
Integrating LLMs into our software required various strategic approaches. We chose to fine-tune
a model using the transformers library, compatible with frameworks such as PyTorch, Tensor-
Flow, and JAX. The specific challenge was to integrate this capability within a React and Node.js
environment, leading us to the Transformers.js library. Although designed for browser use, Trans-
formers.js also supports server-side inference on Node.js. The intention was to implement this
during the build phase, but significant hurdles were encountered, including a limited choice of
models and slow response times.
To address these issues, we implemented a web worker following a tutorial from the same li-
brary. This solution allowed the model to load in the background, preventing the user interface
from being blocked. However, it introduced a critical problem: it delayed key user interactions,
particularly during the login and sign-up processes. Themodel loaded immediately upon applica-
tion startup, resulting in a responsive application only after the initial loading period, which was
excessively long.
Given these complexities, we consulted with our industry partner to reassess our approach:
whether to continue fine-tuning the model in-house or switch to an external API offering a wider
choice of models. In-house fine-tuning required significant computing resources and time, which
were beyond our current capacity and project scope. These discussions underscored the need to
balance optimizing system performancewith incorporating advanced functionality, complicating
the development process. Ultimately, our partner agreed to use an external API.
The risk wasmitigated by changing the LLM technology to the Inference API instead of the Trans-
formers.js, which was accepted by our industry partner.
Actual Severity: Moderate
Countermeasure success: It was partial successful. We ensured at the beginning that we were
trying to do something possible. However, the problem was really visible at the implementation,
but thankfully it was at the time for the prototype, which gave us enough time to change the LLM
technology.

Team member is unavailable, due to illness or other reasons.

The risk was realized during the construction phase. Momoko Wymann was sick for five days.
The risk was mitigated by Andrew Willi taking over the task of Momoko Wymann.
Actual Severity: Moderate
Countermeasure success: It was successful

Momoko Wymann & Andrew Willi Page 71 of 96

Document Management using Large Language Model

8.4 Time Management

Framework Condition

This project is part of the bachelor thesis which is required for the eligibility of the bachelor. The
planned time budget for this project is 360 hours per person and equals to 12 ECTS.

Resources

The project is expected to last for 16 weeks, with a planned effort of 360 hours per person. Of
this, 45 hours are completed in a block week at the end of the project. This means that each
person has an average of approx. 22.5 hours per week available to contribute to the project.

Time evaluation

The project is divided into 8 sprints, each lasting 2 weeks, except for Sprint 4, which is 3 weeks
long due to a holiday from 08.04.2024 to 12.04.2024. The sprints are as follows:

• Sprint 1: 19.02.2024-03.03.2024

• Sprint 2: 04.03.2024-17.03.2024

• Sprint 3: 18.03.2024-31.03.2024

• Sprint 4: 01.04.2024-21.04.2024

• Sprint 5: 22.04.2024-05.05.2024

• Sprint 6: 06.05.2024-19.05.2024

• Sprint 7: 20.05.2024-02.06.2024

• Sprint 8: 03.06.2024-14.06.2024

Momoko Wymann & Andrew Willi Page 72 of 96

Document Management using Large Language Model

Figure 8.9: Time Spent per Person

The total workload per team member is as follows:

• Andrew Willi: 367.08 hours

• Momoko Wymann: 370.08 hours

The pie chart below displays the distribution of the workload between the most important areas:

Figure 8.10: Pie Chart Distribution of Working Hours per Area

Momoko Wymann & Andrew Willi Page 73 of 96

Document Management using Large Language Model

In this bar chart, the workload per sprint is displayed to showcase in which sprint the the most
important area was implemented.

Figure 8.11: Issues per Sprint

Momoko Wymann & Andrew Willi Page 74 of 96

List of Figures

0.1 Search Page . 6
0.2 Login Page . 6

3.1 Use Case Diagram . 11

4.1 C4 Model Level 1 . 17
4.2 C4 Model Level 2 . 18
4.3 C4 Model Level 3 Frontend . 20
4.4 Search Page . 21
4.5 Recent Documents Page . 21
4.6 Sign Up Page . 21
4.7 Log In Page . 21
4.8 Search Without Text . 22
4.9 Search With Text . 22
4.10 Favorites Page . 22
4.11 History Page . 22
4.12 Upload Page . 22
4.13 C4 Model Level 3 Backend . 23
4.14 Database Structure . 26

5.1 Uploading Documents . 38
5.2 My Zaps . 45
5.3 Zap with Custom Integration . 45
5.4 CardView of Documents . 47
5.5 Authentication in the Frontend . 52

8.1 Project Schedule . 59
8.2 Jira Board . 63
8.3 Epic . 64
8.4 User Story . 64
8.5 Tasks . 65
8.6 Meeting . 65
8.7 Git Branch . 66
8.8 Updated Risk Matrix . 70
8.9 Time Spent per Person . 73
8.10 Pie Chart Distribution of Working Hours per Area 73
8.11 Issues per Sprint . 74

9.1 Register Page . 83
9.2 Login Page . 84
9.3 Search Page . 84
9.4 History Page . 85
9.5 Favorite Page . 85

Document Management using Large Language Model

9.6 Profile View . 86
9.7 Upload Zone . 86

List of Tables

3.1 Use Cases . 13
3.2 Non-Functional Requirements . 15
3.3 Optional Requirements . 15

6.1 Implemented Requirements and Expected Results 54
6.2 Non-Functional Requirements . 55

8.1 Role Assignments . 62
8.2 Initial Risks . 69
8.3 Cost Analysis Based on Risk Assessment . 70

Listings

5.1 CORS Configuration in the Backend . 37
5.2 Document Upload Implementation . 40
5.3 Code for Search Service in Frontend . 42
5.4 Search Service Implementation . 44
5.5 Code for Opening a Document . 47
5.6 DeleteDocument Function in the Backend . 49
5.7 TSDoc Example . 50
5.8 AccessTokenGuard . 51

Momoko Wymann & Andrew Willi Page 76 of 96

Document Management using Large Language Model

9 Appendix

9.1 API Documentation

The backend APIs can be inspected with swagger at the backend-url on path /api.

9.1.1 Auth Controller

Login

Endpoint: /auth/login
This endpoint is used to authenticate a user by providing their email and password.

Request Body

• email (string, required): The email of the user.

• password (string, required): The password of the user.

Response The response contains an access and a refresh token which can be used for fur-
ther authenticated requests.

• access_token (string): The access token for authenticated requests.

• refresh_token (string): The refresh token to obtain a new access token.

• username (string): The username of the autheticated user.

• role (string): The role of the autheticated user. Can be ’user’ or ’admin’.

Logout

Endpoint: /auth/logout

This endpoint is used to log out the authenticated user. For authorization, the access token is
required in the request header in form of a bearer token.

Request Body There is no request body for this request.

Response The response for this request is expected to be null.

Register

Endpoint: /auth/register

This endpoint allows the client to register a new user.

Momoko Wymann & Andrew Willi Page 77 of 96

Document Management using Large Language Model

Request Body

• username (string, required): The username of the user.

• email (string, required): The email of the user.

• password (string, required): The password of the user.

Response The response contains an access and a refresh token which can be used for fur-
ther authenticated requests.

• access_token (string): The access token for authenticated requests.

• refresh_token (string): The refresh token to obtain a new access token.

Refresh

Endpoint: /auth/refresh

This endpoint sends an HTTP GET request to refresh the authentication token. For authoriza-
tion, the refresh token is required in the request header in form of a bearer token.

Request Body There is no request body for this endpoint.

Response The response contains an access and a refresh token which can be used for fur-
ther authenticated requests.

• access_token (string): The access token for authenticated requests.

• refresh_token (string): The refresh token to obtain a new access token.

Test Auth

Endpoint: /auth/test

This endpoint is used to test the authentication. For authorization, the access token is required
in the request header in form of a bearer token.

Request Body There is no request body for this endpoint.

Response The response contains information about the authorized user and the access to-
ken.

• sub (number): The user id of the user.

• username (string): The username of the user.

• iat (unix timestamp): The issued at field indicates the time at which the token was created.

• exp (unix timestamp): The expired time field indicates the time at which the token expires
and therefore becomes invalid.

Momoko Wymann & Andrew Willi Page 78 of 96

Document Management using Large Language Model

9.1.2 Document Controller

For authorization, the access token is required in the request header in form of a bearer token for
all the endpoints.

Upload

Endpoint: /files/upload

The request should include a form-data body type with the files to be uploaded. It supports the
upload of multiple files at once.

Request Body

• file (PDF-file, required): The file(s) to be uploaded.

Response The response indicates if the upload of each document was successul or not. The
response is an array with the following properties for each document:

• success (boolean): Indicates whether the file upload was successful.

• message (string): Provides any additional information or error message.

• filename (string): The name of the uploaded file.

Download

Endpoint: /files/download/:documentId

This endpoint retrieves a file for download based on the provided id.

Request Parameters No request body parameters are required for this request, but the doc-
ument id has to be provided as path parameter.

• documentId (number, required): The id of the file to be downloaded.

Response The response for a successful request is a PDF file with a status code of 200.

• status code (number): Status code of the response.

• message (string): Provides any additional information or error message.

Delete

Endpoint: /files/delete/:documentId

This endpoint is used to delete a file based on the provided document id.

Request Parameters No request body parameters are required for this request, but the doc-
ument id has to be provided as path parameter.

• documentId (number): The id of the file to be deleted.

Momoko Wymann & Andrew Willi Page 79 of 96

Document Management using Large Language Model

Response The response indicates if the deletion of the document was successful.

• status code (number): Status code of the response if the request fails.

• message (string): Provides any additional information or error message.

Search Controller

For authorization, the access token is required in the request header in form of a bearer token for
all the endpoints.

Search

Endpoint: /search/search

This endpoint is used to search for documents based on tags, text, and time range.

Request Parameters

• tags (string, optional): The tags to search for.

• text (string, optional): The text to search for.

• timeRange (string, optional): The time range for the search. Valid values are ’Past hour’,
’Past 24 hours’, ’Past week’, ’Past month’, ’Past year’.

Response The response contains an array of documents that match the search criteria.

• documents (array of DocumentDto): An array with the metadata of documents that match
the search criteria.

Search Recent

Endpoint: /search/searchRecent

This endpoint is used to search for documents, recently uploaded by the authenticated user,
based on tags, text, and time range.

Request Parameters

• tags (string, optional): The tags to search for.

• text (string, optional): The text to search for.

• timeRange (string, optional): The time range for the search. Valid values are ’Past hour’,
’Past 24 hours’, ’Past week’, ’Past month’, ’Past year’.

Response The response contains an array of recent documents that match the search crite-
ria.

• documents (array of DocumentDto): An array with the metadata of recent documents that
match the search criteria.

Momoko Wymann & Andrew Willi Page 80 of 96

Document Management using Large Language Model

Get Favorite Documents

Endpoint: /search/favorites

This endpoint is used to retrieve the favorite documents of the authenticated user.

Request Parameters There are no request parameters for this endpoint.

Response The response contains an array of the user’s favorite documents.

• documents (array of DocumentDto): An array with the metadata of the user’s favorite doc-
uments.

Get Recent Documents

Endpoint: /search/recent

This endpoint is used to retrieve the recent documents of the authenticated user.

Request Parameters There are no request parameters for this endpoint.

Response The response contains an array of the user’s recently uploaded documents.

• documents (array of DocumentDto): An array with the metadata of the user’s recent docu-
ments.

9.1.3 Tags Controller

For authorization, the access token is required in the request header in form of a bearer token for
all the endpoints.

Get All Tags

Endpoint: /tags/all

This endpoint is used to retrieve all tags available in the system.

Request Parameters There are no request parameters for this endpoint.

Response The response contains an array of all tags.

• tags (array): An array of all tags.

9.1.4 Favorites Controller

For authorization, the access token is required in the request header in form of a bearer token for
all the endpoints.

Momoko Wymann & Andrew Willi Page 81 of 96

Document Management using Large Language Model

Add Favorite

Endpoint: /favorites/:documentId

This endpoint is used to add a document to the user’s favorites.

Request Parameters

• documentId (number, required): The id of the document to be added to favorites.

Response

• message (string): A message indicating the document has been added to favorites.

Remove Favorite

Endpoint: /favorites/:documentId

This endpoint is used to remove a document from the user’s favorites.

Request Parameters

• documentId (number, required): The id of the document to be removed from favorites.

Response

• message (string): A message indicating the document has been removed from favorites.

Get All Favorites by User

Endpoint: /favorites/allByUser

This endpoint is used to retrieve all favorite documents for the authenticated user.

Request Parameters There are no request parameters for this endpoint.

Response

• documents (array of DocumentDto): An array containing all metadatas of the favorite doc-
uments of the user.

9.1.5 Log Controller

For authorization, the access token is required in the request header in form of a bearer token for
all the endpoints.

Log Error

Endpoint: /log

This endpoint is used to log an error message from the frontend.

Momoko Wymann & Andrew Willi Page 82 of 96

Document Management using Large Language Model

Request Body

• errorMessage (string, required): The error message to be logged.

Response

• status (string): The status of the log operation, indicating that the log has been saved.

Bad Responses

If an inquiry to the backend is not successful, an HTTP Exception is returned in general with the
following content.

• statusCode (number): The HTTP status code that indicates the type of error.

• error (string): A brief description of the error. This typically corresponds to the HTTP status
text, such as ’Bad Request,’ ’Unauthorized,’ ’Forbidden,’ ’Not Found,’ or ’Internal Server Error.’

• message (string): A more detailed message explaining the error. This can provide addi-
tional context or specific details about why the error occurred.

9.2 Screenshots

Figure 9.1: Register Page

Momoko Wymann & Andrew Willi Page 83 of 96

Document Management using Large Language Model

Figure 9.2: Login Page

Figure 9.3: Search Page

Momoko Wymann & Andrew Willi Page 84 of 96

Document Management using Large Language Model

Figure 9.4: History Page

Figure 9.5: Favorite Page

Momoko Wymann & Andrew Willi Page 85 of 96

Document Management using Large Language Model

Figure 9.6: Profile View

Figure 9.7: Upload Zone

Momoko Wymann & Andrew Willi Page 86 of 96

Document Management using Large Language Model

9.3 Task Definition

Document Management using Large Language Model

1. Beteiligte Personen

• Studierende: Momoko Wymann, Andrew Willi

• Industriepartner: AdaptIT GmbH, Michael Güntensperger

• Experte: Hansjörg Huser

• Gegenleserin: Mitra Purandare

• Betreuer: Frank Koch

2. Problembeschrieb

Gescannte Dokumente werden meist als PDFs gespeichert. Eine Suche ist lediglich auf Basis
des Doku- mentennamens möglich. Mit Hilfe eines LLM soll ein neuer Ansatz für die Suche und
Verwaltung von Doku- menten gefunden werden.

3. Aufgabenstellung

Die zu entwickelndeApplikation soll bei einembetriebswirtschaftlichenHintergrund als PDFgespe-
icherte Dokumente mit unstrukturierten Daten (z.B. Kundenbriefe, Rechnungen, . . .) einlesen und
mittels eines LLM (z.B. auf Hugging Face) aus den InhaltenMetadaten generiert (z.B. Zusammen-
fassungen, Tags, Katego-rien). Beispiele für Kategorien wären Rechnung, Vertrag, Die Meta-
daten werden in einer Datenbank abgelegt, die Dokumente selbst in einen Object Store hochge-
laden.

Auf einem Frontend soll eine auf den Metadaten basierende Suche bzw Navigation angeboten
werden um auf die Dokumente zuzugreifen.

Technische Umgebung

• Frontend: React / Angular

• Backend: Node.js

• Datenbank: MySQL

• Object Store für PDF’s

• Hoster: Z.B. DigitalOcean

Funktionale Anforderungen

• User-Login

• Automatisiertes Hochladen von Dokumenten

• Dokumente auslesen und in DB speichern

• Suche nach Dokumenten auf Basis von Metadaten erlauben

• Inhalt der Dokumente mithilfe eines LLMs zusammenfassen

Momoko Wymann & Andrew Willi Page 87 of 96

Document Management using Large Language Model

• Aufgrund der generierten Kategorien sollen nach demHochladen via API-Call auf einen n8n-
oder Zapier-Endpoint automatisierte Prozesse angestossen werden können, wie z.B. eine
Notification an die Buchhaltung beim Erhalt einer Zahlungserinnerung.

Optionale Anforderungen

• Dokumente Kategorisieren / Tagen z.B. als Rechnung

• Dashboard für User mit wichtigsten Kennzahlen (z.B. meist angesehene PDF’s)

• Aufgrund der generierten Kategorien sollen nach dem Hochladen via API-Call auf einen
n8n- oder Zapier-Endpoint automatisierte Prozesse angestoßen werden können, wie z.B.
eine Notification an die Buchhaltung beim Erhalt einer Zahlungserinnerung.

• Manuelles Bearbeiten von Metadaten ermöglichen

• Usermanagement für die Verwaltung der Mitarbeitenden einer Organisation

Nicht-Funktionale Anforderungen

• Das Entwicklerteam implementiert die Features gemäß den mit dem Kunden vereinbarten
Prioritäten.

• Das Backend sollte 1’000 Requests pro Minute verarbeiten können.

• Jede Seite sollte nicht länger als 200ms für das Laden benötigen.

• Die Seite sollmindestens auf demDesktop gut aussehen (Responsivewärewünschenswert).

• Die Web-Applikation sollte auf Firefox, Chrome und Safari laufen.

• Via Internet sollte auf eine vomKunden zur Verfügung gestellte Domain zugegriffenwerden
können.

• Drei von vier Test-Usern sollten das UI (Kategorien: Layout, Responsiveness, Colour, Con-
tent) der Applikation mit einem PC mit einer Note von mindestens 8 von 10 bewerten, mit
10 als bester Note.

• Nach dem Einscannen des Dokuments soll es nicht länger als 30 Sekunden dauern, bis
dieses auf der Seite angezeigt wird.

• Die Datenbank soll bis zu 10’000 Dokumente und 100 Benutzende managen können.

• Errors sollen keine Systemfehler erzeugen, stattdessen eine Fehlermeldung anzeigen und
das System auf den vorherigen Zustand zurücksetzen.

• Jeder Error soll im System geloggt werden.

• Jede Kommunikation zwischen Front- und Backend soll mit einem SSL-Zertifikat verschlüs-
selt werden.

• Daten, die in Eingabefelder abgefüllt werden, sollen zuerst validiert werden, bevor diese
durch das System verarbeitet werden. SQL Injection Tests der Eingabefelder dürfen keine
Verletzlichkeiten zeigen.

• Die Webapplikation soll Datenschutz-konform umgesetzt werden.

• User-Passwörter werden nicht in Plain-Text in der Datenbank gespeichert.

Momoko Wymann & Andrew Willi Page 88 of 96

Document Management using Large Language Model

• Wenn sich ein User in die Web-Applikation einloggt, werden ihm nur Daten angezeigt, auf
die er Zugriff haben soll.

• Businesslogik im Backend soll modular aufgebaut werden, so dass sie erweitert werden
kann.

• Das Backend-API soll durch ein API-Testing Tool überprüft werden.

• Implementierte Funktionalitäten (Datenbank, Backend, Frontend,. . .) sollen deployed wer-
den.

4. Zur Durchführung

Mit dem Betreuer finden Besprechungen gemäss Absprache statt. Die Besprechungen sind von
den Studie-renden mit einer Traktandenliste vorzubereiten und die Ergebnisse in einem Protokoll
zu dokumentieren. Die Kommunikation mit dem Betreuer findet primär über E-Mail statt.

Für die Durchführung der Arbeit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuier-
lichen und sichtbarenArbeitsfortschritt zu achten. Abweichungen vomProjektplan sind rechtzeitig
mit dem Betreuer zu besprechen.

5. Dokumentation und Abgabe

Siehe «Leitfaden für Bachelor- und Studienarbeiten Version 1.2» Abschnitt 5.5 "Umfang und Form
der Abgabe".

6. Termine

Siehe veröffentlichte «Termine BA FS24».

7. Bewertung

Siehe «Leitfaden für Bachelor- und Studienarbeiten Version 1.2» Abschnitt 6 "Bewertung". Rap-
perswil, den 12.02.24

Frank Koch

Momoko Wymann & Andrew Willi Page 89 of 96

Document Management using Large Language Model

9.4 Usability Test Protocol

Participant 1:

• Name: Lara

• Test date: 13.05.2024

• Background: A 26 year old teacher with moderate Tech-Savviness and has to manage a lot
of documents for her job. She usesmainly Apple devices and uses the Finder application to
manage her documents. If it needs to be on the cloud she uses Google Drive or the iCloud.

Ratings:

• General satisfaction rating (scale 1-10): 8.25

• Layout and design: 9

• Responsiveness rating: 7.5

• Colour scheme thoughts: 8.5

• Clarity of instructions and content: 8

Negative Feedback:
After uploading and clicking somewhere, the loading circle was gone. So it was bit confusing, if
the upload was successful or not.

Positive Feedback:
Very simple and understandable application. The color scheme is very pleasant and the instruc-
tions are very clear.

Additional Comments or Recommendations:
She mentioned that instead of the heart, maybe a button similar to the "Open in new Tab" Tab
would be better.

Conclusion:
Lara was happy with the application. She was able to upload her documents and she liked the
drag anddrop feature.

Participant 2:

1. Name: Jaqueline

2. Test date: 15.05.2024

3. Background: Jaqueline is a 55 year old Photoghrapher/Graphic Designer with moderate
tech-savviness, Jaqueline relies heavily on technology uses mainly Apple devices for vari-
ous design software.

Ratings:

1. General satisfaction rating (scale 1-10): 8

2. Layout and design: 8.5

3. Responsiveness rating: 8

Momoko Wymann & Andrew Willi Page 90 of 96

Document Management using Large Language Model

4. Colour scheme thoughts: 8

5. Clarity of instructions and content: 7.5

Negative Feedback:
No negative Feedback.

Positive Feedback:
Overall design is nice and neat. The color scheme is ok.

Additional Comments or Recommendations:
The purpose of History was firstly not clear for her.

Conclusion: Shewashappy to use the application
Participant 3:

1. Name: Alex

2. Test date: 15.05.2024

3. Background: Alex is a 26 year old computer science Student with high tech-savviness. He
uses Windows and Apple devices.

Ratings:

1. General satisfaction rating (scale 1-10): 7

2. Layout and design: 8

3. Responsiveness rating: 7

4. Colour scheme thoughts: 8

5. Clarity of instructions and content: 6

Negative Feedback:
Searching should be possible without explicitly choosing the tag. Alex tried to upload another
PDF document, to see what would happen and the loading time was a bit longer than anticipi-
tated.

Positive Feedback:
Overall design looks solid.

Additional Comments or Recommendations:
The History could have been a checkbox to search through only his uploaded files instead of a
history component. It would be nice to have some kind of function to display the latest uploaded
files.

Conclusion: There are some improvements to be donebutmainly the application is fine.
Participant 4:

1. Name: Florian

2. Test date: 15.05.2024

Momoko Wymann & Andrew Willi Page 91 of 96

Document Management using Large Language Model

3. Background: Florian is a 32-year-old IT architect who is heavily involved in backend devel-
opment and is currently studying for his PhD. He mainly uses Linux-based systems and is
familiar with various software development environments.

Ratings:

1. General satisfaction rating (scale 1-10): 8

2. Layout and design: 9

3. Responsiveness rating: 7

4. Colour scheme thoughts: 8

5. Clarity of instructions and content: 8.5

Negative Feedback:
Florian mentioned that while the interface is mostly intuitive, some elements like the document
tagging system felt overly complicated. He noted that the options could be overwhelming for
less tech-savvy users without proper tooltips or guidance.

Positive Feedback:
Florian praised the application for its robust performance, particularly appreciating the seamless
integration with external APIs which facilitated easy document handling and retrieval. He also
highlighted the application’s responsive design, which scaled well across different screen sizes
and resolutions.

Additional Comments or Recommendations:
Florian recommended integrating more keyboard shortcuts to enhance productivity for power
users. He also suggested that the application could benefit from a more dynamic help system
that adapts to the user’s actions and offers context-specific assistance.

Conclusion:
He looks forward to seeing how additional features like AI-based document sorting could further
enhance the user experienc

Momoko Wymann & Andrew Willi Page 92 of 96

Document Management using Large Language Model

9.5 Testing Backend

Integration Tests

All integration test of the backend are listed below.

AuthService

login

• Successful login: Checks whether tokens and user information are returned on successful
login

• Invalid login: Checks whether an UnauthorizedException is thrown if the login data is in-
valid.

createUser

• create new user: Checks whether a new user is created and tokens are returned.

• Email already registered: Checkswhether an HttpException is thrown if the email is already
registered.

verifyToken

• valid token: Checks whether true is returned if the token is valid.

• Invalid token: Checks whether false is returned if the token is invalid.

AuthController

signIn

• Protection against SQL injection attacks in the password: Checks whether the application
is protected against SQL injection attacks in the password field.

• Protection against SQL injection attacks in the email: Checks whether the application is
protected against SQL injection attacks in the email field.

DocumentService

The text and thumbnail extractions as well as the S3 interactions are mocked. Some services
and the datasource are also mocked.

uploadFile

• Successful upload of a file: Checks whether a file is successfully uploaded and the docu-
ment is saved.

• Error message for existing document: Checks whether an error message is returned if the
document already exists.

• Rollback on failed S3 upload: Checks whether the transaction is rolled back if the upload
to the S3 object store fails.

deleteDocument

Momoko Wymann & Andrew Willi Page 93 of 96

Document Management using Large Language Model

• Successful deletion of a document: Checks whether a document is successfully deleted.

• Error message if administrator rights are missing: Checks whether an error message is
returned if the user does not have administrator rights.

• Error message if document does not exist: Checks whether an error message is returned
if the document to be deleted does not exist.

• Rollback on failed deletion: Checks whether the transaction is rolled back if the delete
operation in the database fails.

SearchService

searchDocuments

• Empty result list if no match: Checks whether an empty result list is returned if no docu-
ments match.

• Result list with matching tags: Checks whether the search returns documents with match-
ing tags

• Result list without tags: Checks whether the search returns all documents if no tags are
specified.

• Better match with more precise tag match: Checks whether documents with better tag
matches are returned first.

• Better match with more accurate text match: Checks whether documents with better text
matches are returned first.

• Documents with all matching tags: Checks whether only documents containing all speci-
fied tags are returned

getFavorites

• Empty result list with no favorites: Checks whether an empty result list is returned if there
are no favorites.

• Result list with favorites: Checks whether a list of favorites is returned.

getRecent

• Empty result list if no recently viewed documents: Checks whether an empty result list is
returned if there are no recently viewed documents.

• Result list with recently viewed documents: Checks whether a list of recently viewed doc-
uments is returned.

SearchController

search

• Protection against SQL injection attacks in tags: Checks whether the application is pro-
tected against SQL injection attacks in the tags field.

Momoko Wymann & Andrew Willi Page 94 of 96

Document Management using Large Language Model

• Protection against SQL injection attacks in text: Checks whether the application is pro-
tected against SQL injection attacks in the text field.

• Protection against SQL injection attacks in the time range: Checkswhether the application
is protected against SQL injection attacks in the time range field.

searchRecent

• protection against SQL injection attacks in tags: Checks whether the application is pro-
tected against SQL injection attacks in the tags field.

• Protection against SQL injection attacks in text: Checks whether the application is pro-
tected against SQL injection attacks in the text field.

• Protection against SQL injection attacks in the time range: Checkswhether the application
is protected against SQL injection attacks in the time range field.

FavoritesService

isFavorite

• Check whether document is a favorite: Checks whether a document is marked as a fa-
vorite.

addFavorite and removeFavorite

• addFavorite: Checks whether a document is successfully added as a favorite.

• remove favorite: Checks whether a document is successfully removed as a favorite.

TagService

findAll

• Return of all tags: Checks whether all tags are returned.

creatTagIfNotExist

• create new tag: Checks whether a new tag is created if it does not yet exist.

• Return existing tag: Checks whether an existing tag is returned if it already exists.

findTagsByDocumentId

• return tags for a document: Checks whether the tags for a given document are returned.

• Empty array for missing tags: Checks whether an empty array is returned if no tags are
found.

UserService

findByEmail

• find user by email: Checks whether a user can be found by their email address.

Momoko Wymann & Andrew Willi Page 95 of 96

Document Management using Large Language Model

• Return null if user does not exist: Checks whether null is returned if no user with the given
email is found

findById

• find user by ID: Checks whether a user can be found by their ID.

• Return null if user does not exist: Checks whether null is returned if no user with the given
ID is found.

createUser

• create new user: Checks whether a new user is created.

updateToken

• Updating the user refresh token: Checks whether the refresh token of a user is updated.

clearRefreshToken

• Deletion of the user refresh token: Checks whether the refresh token of a user is deleted.

API Tests

The Collection of the API tests in Postman are located in the documentation folder in the file:
Backend api.postman_collection.

Momoko Wymann & Andrew Willi Page 96 of 96

	Starting Position
	Conceptual Formulation
	Requirements
	Functional Requirements
	Use Case Description
	Evolution of Functional Requirements

	Non-Functional Requirements
	Optional Requirements

	Architecture and Design
	Visualizing the Architecture
	Architecture in Detail
	Frontend Architecture
	Backend Architecture
	Data Model

	Implementation
	Technology
	Programming Language
	Frontend Framework and Libraries
	Backend Framework and Libraries
	Database
	Docker
	External Services

	Test Concept
	Frontend
	Backend

	Deployment
	Function Implementation
	Uploading Documents
	llm
	Searching
	Automatic Process
	View
	Delete
	Favorites

	Code Documentation
	Security
	Authentication:
	Password Hashing
	Input Validation:
	Security Measures LLM:

	Result
	Conclusion
	Needs to Be Addressed
	Future Vision

	Project and Time Management
	Project Schedule
	Project Organization
	Roles
	Code Repository
	Jira Board
	Issue Management
	Branching Strategy
	Defintion of Done

	Risk Management
	Time Management

	Appendix
	API Documentation
	Auth Controller
	Document Controller
	Tags Controller
	Favorites Controller
	Log Controller

	Screenshots
	Task Definition
	Usability Test Protocol
	Testing Backend

