
10.01.2025 - Bachelor Thesis - Department of Computer Science

Citation Recognition in Legal Documents
Named Entity Recognition with Transformer-Based Deep Learning Methods

Authors: Mirio Eggmann
Jasmin Fitz
Dario Glasl

Advisor: Prof. Dr. Mitra Purandare

Co-Advisor: Benjamin Plattner

Practice Partner: Swisslex - Schweizerische Juristische Datenbank AG

Co-Examiner: Marcel Amsler (Sanitas Management AG)

Proofreader: Urs Baumann



Citation Recognition in Legal Documents 10.01.2025

Abstract
This bachelor thesis develops a transformer-based system for citation recognition in legal documents.
It is intended to replace an existing solution based on regular expression matching, which is hard to
maintain and does not generalize to new citation formats.

The task is divided into two steps: One model classifies citations in legal texts into CASELAW, LAW and
LITERATURE. A second model identifies the parts of these citations, such as COURT, DATE, ARTICLE, etc.

The existing regex-based solution serves as data source and benchmark for the first step of recognizing
citations. 10 million text chunks containing legal citations are used to fine-tune a Google BERT base
multilingual (uncased) model. It achieves a test recall of 96.9%. On a manually annotated dataset, it
scores a recall of 74.33%, while the regex-based solution achieves 72.15%.

Sparse training data poses a challenge for recognizing parts of a citation. Few-shot prompting with
an LLM yields good results, but experiments show that it is prohibitively slow in practice. Therefore,
knowledge distillation is used to fine-tune a DistilBERT base (uncased) model via the supervision of
Llama 3.3 70B. The 1′044 times smaller DistilBERT achieves a similar performance to Llama. The model
scores a test recall of 99.11%. On a manually annotated dataset, it achieves a recall of 93.37%.

The final .NET-based solution allows bulk processing of documents and provides a web interface for
user interaction. FastAPI is used to serve the fine-tuned models. The results are stored in an MS SQL
database.

The proposed solution offers many advantages besides the at par performance with the regex-based
system. The solution is more robust and can handle deviations such as typing errors and new citation
formats more easily. Moreover, the cherry on top is the improved performance in recognizing parts of
a citation with more granular labels.
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Management Summary

Initial Situation
This bachelor thesis develops a system for recognizing citations in legal documents.

It is carried out in collaboration with Swisslex. They provide an online research platform for legal
documents. Most of these legal documents reference legal literature or judgments. To facilitate
research, these referenced documents are linked and can be accessed with one click. An example of
such a reference can be seen in the following figure. In order to link documents, the citations and their
specific parts need to be identified in the text.

Example of a linked citation in a legal document

Current Solution
The current citation recognition in Swisslex is automated using regular expression (regex) matching.
This is a method for finding patterns in text through predefined rules. This approach has its limitations.
Since it uses strict patterns, minor deviations such as typographical errors or new citation formats are
not recognized. The system is time-consuming and error-prone to maintain, with over 300 regexes
stored in the database and dynamically generated in code. To make matters worse, the original devel-
opers of this system are no longer available and no documentation exists.

Goal
The goal of this project is to develop a new AI-based system for citation recognition. The system
should be able to recognize citations in legal documents as precisely as possible. This includes the
identification of their sub-parts, such as court, year, page number, etc. Documents in the languages
German, French, English and Italian should be supported. By using an AI model, the system should be
more flexible and easier to maintain than the current regex-based solution.

Procedure
First, the available data from the Swisslex database is analyzed and a literature review on related work
is conducted. The data is then prepared as training and test data for the AI models. Different models are
trained, evaluated and compared with the current regex-based solution. The best performing models
are chosen and integrated into the new citation recognition system.

AI Models
The new citation recognition system consists of two AI models: one trained on legal documents to
identify citations, and another one trained on citations to recognize their parts. Together, they promote
precise and fast recognition of citations within legal documents.
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They achieve both very good results in the evaluation. The model for recognizing citations matches
the performance of the regex-based solution. The model that recognizes the specific parts of a citation
cannot be directly compared to the regex-based solution. A new set of fine-grained part types is intro-
duced, since the types that the existing solution uses are too vague. This makes a direct comparison
impossible. However, the AI model correctly recognizes the new part types of a citation 92% of the time.

When compared against the same model that OpenAI’s ChatGPT is based on (GPT-4o), the new citation
recognition system performs better. It recognizes citations in a text 15% more accurately.

Testing via Web Application
To test the citation recognition system, a web application called Citation Checker Web is developed.
The web application allows the user to upload a document or to search for a document available in the
Swisslex database. The recognized citations and their parts are displayed in the user interface. In the
next figure, a screenshot of the web application is shown.

Screenshot of the web application Citation Checker Web

Bulk Processing of Documents
Swisslex processes around 3000 documents each night. To support this, a console application called
Citation Processor is developed. It allows to recognize citations and their parts in a large number of
documents automatically. The results are stored in a database. The new system is able to process those
3000 documents in approximately 30 minutes.

Improvements over the Current System
The new AI-based system significantly improves the process of citation recognition. Within the
document, it recognizes the citations equally well as the current regex-based solution. Additionally,
it is more flexible and can handle typographical errors or changes in citation formats. Since the rules
are not manually defined, it does not require manual maintenance. Also, more fine-grained parts are
recognized. A web application facilitates evaluating the system continuously. The new system is built
so that it can be easily extended and maintained in the future. When, for example, a better AI model
gets available, it can be re-trained on the existing data. This takes only a few hours.
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1 Introduction
The bachelor thesis develops a system that can recognize citations of legal documents, such as laws,
judgments, or legal literature. It is carried out in collaboration with Swisslex as practice partner. This
introduction gives an overview of the project and its goals.

1.1 Practice Partner
Swisslex is one of the most comprehensive legal research platforms in Switzerland. Every day, over
1500 legal professionals use the search and analysis tools to find the information they need for their
work. The platform offers a wide range of legal information, including case law, legislation and legal
literature. There are nearly one million interlinked documents available. Customers of Swisslex are
mainly law firms, courts, authorities, and companies. The platform is used for legal research, drafting
legal opinions, and preparing court cases. [1]

1.2 Initial Situation
The content available on Swisslex is provided by different publishers in the form of documents. A
document may be a judgment, a book, a journal, or another legal medium. In these texts, there are
often references to other documents, for example when citing a law or judgment. For these references,
Swisslex directly links the cited documents. This allows users to navigate to the referenced document
with one click. An example of such a reference can be seen in Figure 1.

Figure 1: Screenshot of a citation reference

Currently, the citations in the documents are recognized manually as well as using regular expression
matching. The process is explained in detail in chapter 3.1.4.2. This method has been used to identify
about 60 million references in the entire Swisslex database. However, the process is very difficult to
maintain. New or alternative citation formats have to be added manually. This is a time-consuming
process and can lead to errors. Furthermore, the current solution is not able to handle complex citations
or deviations from the standard citation format.

A previous attempt in Swisslex used the Flair framework [2] to recognize citations. A Swisslex em-
ployee worked on the prototype between November 2021 and April 2022. Different experiments were
conducted, including the T5Model, SequenceTagger, TaskClassifier and TextClassifier models
from Flair. The models were trained on a dataset based on the existing known citations.

The prototype was able to recognize citations in legal documents with an F1 score of 91%. Despite the
good results, the prototype was not integrated into the production workflow. It could recognize simple
citations which occur often, but had problems with complex citations and edge cases.
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1.3 Task Description
The goal of this bachelor thesis is to recognize citations and their parts (work, page, paragraph, etc.)
in legal documents using a modern transformer style NLP approach. The identified citations and parts
should be stored in the database.

1.3.1 Research
The first step is to survey the state of the art in the field of NLP and to identify suitable approaches for
the task. Different approaches should be evaluated and compared.

1.3.2 Software
The most promising approach should be implemented. The result should be a software which:

• recognizes references in a German, French, English or Italian text with the help of a specially
trained or fine-tuned model

• recognizes references of laws, judgments and journals (this work does not focus on books and other
legal media, but they may be considered when evaluating the model)

• identifies its parts (e.g. court, page, consideration, etc.) (at least if the regex that has been used to
recognize the corresponding citation is available, as it is the case for judgments and journals)

• saves these in a suitable form together with their sources (e.g. database, Elastic Index, json, …).
This should allow to later link the original document and the cited document, if both are available
in the Swisslex database. The mapping to the referenced document is, despite of the original task
description in appendix section F.7, not part of the bachelor thesis. This can be seen in the meeting
minutes from the 07. and 10. October 2024, in appendix section F.6.2.

1.3.3 Evaluation
The resulting solution is to be evaluated on a test set of documents from the Swisslex database. The
evaluation should also include a comparison with the existing solution. A successful model is similar or
better in performance to the existing solution, but more robust against slight deviations, new patterns,
typographical errors or context-based nuances.

The following points should be considered:

• Accuracy: The solution should be able to recognize references and identify its parts correctly.
• Robustness: The solution should be able to handle typographical errors, deviations from the

standard format, and context-based nuances.
• Throughput: The solution should be able to process a large number of documents in a short time.

The main focus of the system is accuracy and robustness. Although real-time processing is not
required, the system should still be able to handle about 3000 documents overnight. It should have a
high recall. False positives are less of a concern, as they will be filtered out in a later step. However,
that is outside the scope of this thesis.

1.3.4 Deployment
The software should be deployable and easy to integrate into the existing Swisslex infrastructure. Since
the current Production Tool will be replaced in the near future, it is not necessary to integrate the
solution into this tool. Instead, an alternative way to start the process should be provided, e.g. by a
recurring job. This should process a list of documents and store the results.

Additionally, a simple user interface should be provided that allows the user to upload a document,
start the processing and view the output. The UI should be accessible via a standard web browser.
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1.4 General Conditions
This bachelor thesis is written at the OST - Eastern Switzerland University of Applied Sciences in
Rapperswil as part of the bachelor program in computer science. The thesis is advised by Prof. Dr.
Mitra Purandare and co-advised by Benjamin Plattner.

According to the module description [3], the thesis should demonstrate the ability to solve problems
using engineering methods and has a conceptual, theoretical and practical component. In addition,
there is an oral examination of approximately 30 minutes after submission of the thesis. The successful
completion of the thesis results in 12 ECTS points, which corresponds to a workload of approximately
360 hours per person.

The start date is 16 September 2024 and the submission deadline is 10 January 2024 at 17:00. The exact
module description can be found in the appendix section F.8.
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2 Requirements
This chapter describes the requirements of the system for citation recognition. They are divided into
functional and non-functional requirements.

2.1 Functional Requirements
The functional requirements are presented through use cases, as depicted in Figure 2.

Figure 2: Use case diagram
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2.1.1 Actors
Three main actors are involved:

Swisslex customer Users of the Swisslex platform conducting legal research. Their activities include
searching for and reading legal documents.

Swisslex AG The organization responsible for providing the Swisslex platform.

Swisslex developer Employees at Swisslex responsible for the platform’s development, including
the citation recognition system.

2.1.2 Use Cases
This section describes the use cases relevant to the citation recognition system.

Navigate to Cited Document A Swisslex customer needs to easily navigate to a cited document, for
example, by clicking on a citation. This feature enhances user experience and simplifies accessing
the original sources of information. Note: This use case is an existing feature of the Swisslex
platform and is only listed here for completeness. It is not part of this thesis.

Recognize Citations Swisslex AG seeks an automated solution to recognize citations in legal
documents. This reduces the need to manually enter citations into the database. The recognized
citations form the basis for navigating to the referenced documents via citation links.

Train Model A Swisslex developer must be able to train models to recognize citations in legal
documents. Training models with modern machine learning techniques aligns with the industry’s
shift towards automated Named Entity Recognition (NER) tasks.

Evaluate Model A Swisslex developer needs to evaluate the performance of different models. Evalu-
ation ensures the selection of the most effective model for production.

Create Datasets To train and evaluate models, a Swisslex developer needs datasets with texts based
on legal documents and annotated citations.

Test Citation Recognition A Swisslex developer requires a visual interface to manually test the
citation recognition system. This feature is critical for verifying that the system works as intended.

Serve Models A Swisslex developer wants to deploy trained models to a server for inference. Serving
models enables the citation recognition system to process legal documents.

Store Recognized Citations The citation recognition system must store identified citations in a
database. This allows linking documents to their cited sources and supports features like navi-
gation.

Run Daily Recognition A Swisslex developer must schedule the citation recognition system to run
daily. Regular processing ensures that the database remains updated as new documents are added.
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2.2 Non Functional Requirements (NFR)
In this section, the non-functional requirements (NFR) are described.

ID NFR-01 Performance
Requirement A single legal document (e.g. judgment) should be processed within a reasonable

time frame.
Scenario The system processes a single legal document (e.g. judgment) and successfully

identifies citations with its parts (COURT, DATE. CONSIDERATION, etc.). The user
expects the document to be processed within 7 seconds.

Stimulus A new document is sent to the inference endpoint for citation recognition.
Reaction The software accurately identifies the citations and processes the document within

the given time frame (7 seconds).
Measures • Choose a scalable and efficient NLP model that can process documents quickly

• Optimize the processing pipeline for speed
Level Must have

Table 1: NFR-01 Performance

ID NFR-02 Scalability
Requirement The performance of citation recognition should be scalable and still accurate with

increasing document throughput.
Scenario The system processes a batch of legal documents (e.g. judgments or journals) and

successfully identifies citations with its parts (COURT, DATE. CONSIDERATION, etc.).
The user expects that 3,000 documents are processed within 6 hours.

Stimulus A new batch of documents is uploaded, and the citation recognition process begins.
Reaction The software accurately identifies the citations and processes the batch within the

given time frame (6 hours).
Measures • Use a fine-tuned or specially trained NLP model for multilingual citation recog-

nition
• Optimize processing with parallelization and scalable infrastructure

Level Must have
Table 2: NFR-02 Scalability

ID NFR-03 Compatibility
Requirement The solution must be deployable within the Swisslex infrastructure.
Scenario The system is deployable and integrates with the existing infrastructure, with an

alternative process to start batch document processing.
Stimulus The system is deployable and starts processing new documents.
Reaction The citation recognition job can be started which processes the documents and

stores the results in a compatible format.
Measures • Design for integration into Swisslex infrastructure

• Offer alternative deployment methods, e.g. recurring jobs or batch processing
• The output format should be compatible with the existing solution

Level Must have
Table 3: NFR-03 Compatibility
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ID NFR-04 Reliability
Requirement The solution should be robust against variations, new patterns, and typos.
Scenario The system is evaluated against a test set of documents, and its robustness is

compared to the existing regex-based solution.
Stimulus Citations in German, French, English, and Italian texts include variations, typos,

and new patterns.
Reaction The software identifies citations with similar or better performance compared to

the regex-based solution, showing resilience against deviations.
Measures • Fine-tune the model with diverse datasets

• Continuously improve recognition accuracy through iteration
Level Must have

Table 4: NFR-04 Reliability

ID NFR-05 Security
Requirement The solution should ensure data privacy and security.
Scenario The system processes proprietary legal documents and must ensure data privacy

and security.
Stimulus Legal documents are uploaded to the system for citation recognition.
Reaction The software processes the documents and stores the results securely, ensuring

data privacy and confidentiality.
Measures • Comply with data protection regulations

• Implement a solution that runs on premise or in a secure cloud environment
Level Must have

Table 5: NFR-05 Security

ID NFR-06 Usability
Requirement Easy to use testing software for citation recognition.
Scenario The user runs citation recognition on a document.
Stimulus The user interacts with the software by providing a document and viewing the

results.
Reaction The software processes the document and displays the identified citations and its

parts in a user-friendly format.
Measures • Design a user-friendly interface for document upload and result display

• Provide feedback on the processing status and results
Level Should have

Table 6: NFR-06 Usability
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3 Domain Knowledge
This chapter explores the environment in which the project is conducted. This includes the Swisslex
system with its current system for citation recognition as well as the general domain of legal citations.

3.1 Swisslex Environment
The following sections describe the Swisslex environment. This includes an explanation of the docu-
ments and their processing workflow. The current system for citation recognition and its challenges
are discussed.

3.1.1 Swisslex Web Platform
The Swisslex web platform https://www.swisslex.ch is a legal information platform that provides
access to a wide range of legal documents and is the main product of the Swisslex company. The
website offers different features, the most important of them being the search function and the display
of legal documents. The platform is used by legal professionals to find and analyze legal documents.

Figure 3 shows an example of the usage of the Swisslex platform. The user searches for the phrase
“missbräuchliche Kündigung” in combination with “Ferien” and “Krank”. As result, the platform displays
a list of documents containing the search terms.

In this example, the search results in 286 hits. If necessary, the user can now filter the results according
to various criteria, such as document type, publication date or publication. A number of tools make
it possible to further analyze the documents found, for example by viewing a citation network, trans-
lating the document or highlighting search terms.

Figure 3: Screenshot of the Swisslex platform [4]
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3.1.2 Document Processing
As mentioned in chapter  1.2, several publishers provide their content to Swisslex in the form of
documents. There are different ways in which these documents arrive at Swisslex: some are uploaded
by the publishers themselves, others are crawled from the Internet. An example of a Swisslex document
can be seen in appendix section F.2.1. The following types of documents exist:

• Case law / Judgment
• Case law Review
• Journals
• Commentary
• Essay
• Book

Once they arrive at Swisslex, they are converted into a uniform XML format by an internal service.
Afterwards, they are enriched with additional metadata using the internal Production Tool. During this
process, citation references are recognized and marked up. In the end, the processed documents are
stored in a Microsoft SQL Server Database, as well as in an Elastic database. The process is visualized
in Figure 4.

Figure 4: Flowchart of the production workflow

Every night, about 3′000 documents are (re-)indexed in approximately 6 hours. This updates the search
index with the latest changes in the documents. During this process, the citation references are also
re-scanned by the regex solution and stored in the database.

3.1.3 Domain Model
The Swisslex domain relevant to this bachelor thesis includes various types of legal documents, such
as laws, judgments, and other forms of legal literature. These documents are accessible on the Swisslex
platform and may include citations referencing other documents also available within Swisslex. The
entities and their relationships are illustrated in the domain model shown in Figure 5.

Figure 5: Domain model of the Swisslex environment
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3.1.4 Production Tool
The Production Tool is an internal software application in Swisslex. It is used to process the documents
that are uploaded to Swisslex. It is a Windows Forms app created in 2011 with C# and still runs today
with the .NET Framework version 3.5. Swisslex employees operate the Production Tool and use it to
enrich documents with additional metadata and save them to the database. The current implementation
of the citation recognition (regex-solution) is part of the Production Tool. Swisslex intends to replace
the Production Tool in the near future, because it is outdated and hard to maintain. This bachelor thesis
is a first step into this direction.

3.1.4.1 Citation Linking
To enable documents to be linked, the citations in the texts are detected and mapped to the
corresponding documents in the Swisslex database. To mark the citations in the documents, they are
enclosed in <citation> tags. Each tag contains the type of the citation and the citation ID. This is a
unique identifier that links to the database record of the citation.

In Code-Snippet 1 there is a shortened section of a document before processing. In Code-Snippet 2,
the same section is shown after processing. The citations are now enclosed in <citation> tags with
the corresponding citation ID.

<text>
  <p align="justify">la Cour de justice du canton de Genève (C/3981/2022,
ACJC/389/2024).</p>
</text>

Code-Snippet 1: Text excerpt before processing - judgment 4A_240/2024

<text>
  <p align="justify">la Cour de justice du canton de Genève (<citation type="asset"
citationid="b9a1bb9e-2790-4c4e-a994-8e5756f12d90">C/3981/2022</citation>, <citation
type="asset" citationid="73e3eacb-c99c-4028-a4bc-b68257d2c3e4">ACJC/389/2024</
citation>).</p>
</text>

Code-Snippet 2: Text excerpt after processing - judgment 4A_240/2024

3.1.4.2 Current Solution for Citation Recognition
The current solution for citation recognition is based on regular expressions (regex). When processing
a document, the Production Tool uses these regexes to recognize the citations in the text. Most of
the regexes are stored in the database. However, some are also dynamically generated in the code
of the Production Tool. This combination makes it impossible to use the existing regexes for citation
recognition without using the Production Tool.

An example of the stored regexes in the database can be seen in Figure 6. A complete example of a
regex is shown in chapter 3.3.3.
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Figure 6: Regex stored in the database

3.1.4.3 Database Schema
An excerpt of the database schema relevant for the citation recognition process is shown in Figure 7.
All documents have an entry in the AssetBase table. All citations are stored in the CitationBase table.
The recognized citation is stored in a field called CitationPassage in the CitationBase table.

Since there are different ways to cite the same document, the JurReference table is used to normalize
the citations. If a normalized form of a citation can be generated, the corresponding CitationBase
entry is linked to the JurReference entry. If the citation links to a document available in Swisslex, the
JurReference links back to the AssetBase entry of the document.

When the citation was recognized by the regex solution, the JurReference links additionally to the
JurReferenceRegEx table. This table contains the regex that was used to recognize the citation.

These two tables AssetBase and CitationBase are linked through multiple other tables. They are
omitted in this figure for simplicity.

Figure 7: Database schema relevant for current solution of citation recognition
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3.1.5 Challenges of the Regex-Based Approach
Using regular expressions for recognizing citations presents several challenges. General limitations of
rule based methods for NER tasks are described in more detail in chapter 4.1.1. In the case of Swisslex,
the following issues are particularly significant:

Regex Maintenance The regexes are difficult to maintain. Adding new regexes or updating existing
ones requires a lot of manual work. The Swisslex employees managing the documents cannot
manage the regexes themselves. Therefore, change requests mean a lot of work for Swisslex’s IT
Team. Different factors complicate maintenance:
• Equivalence and Redundancy: It is difficult to identify equivalent or redundant regexes.
• Location: The regexes are stored in different places (database and code).
• Dynamic variables: The expressions may be nested or contain dynamic variables.
• Finding regexes: There is no filter or search system available to manage the regexes.
• Testing: There is no automated testing system to verify the regexes.

Special Cases Several special cases make recognition difficult. Referencing multiple articles in a
single citation poses a challenge for regular expression matching. Another issue is the ambiguity
of abbreviations. For example, CO refers both to the Swiss Code of Obligations and can be used to
anonymise people. It can be impossible to distinguish these cases with regexes alone. The special
cases are described in more detail in chapter 3.3.4.

Variants of Citation Styles Different types of documents — such as judgments, laws, and journal
articles — follow distinct citation rules, as described in chapter 3.2. Consequently, a specific rule
must be defined for each citation style. Additionally, even though there are defined citation rules,
not all citations follow them strictly. For example, some might leave out an obligatory part of the
citation, such as the publication date.

Generalization Regexes cannot automatically generalize to unseen data and require manual main-
tenance. When a new law is introduced, regexes must be manually updated, otherwise the system
will not recognize citations for the new law.
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3.2 Citation Rules
The focus of this thesis lies on the recognition of citations of judgments, laws, and journals. Different
citation styles are briefly described in the following chapters.

The rules described here are based on the document “Zitierregeln” from the Federal Supreme Court [5].

3.2.1 Judgments
Judgments of the Federal Supreme Court are cited differently depending on how they were published.
There are three types, which will be addressed in the following subchapters.

3.2.1.1 Officially Published Judgments of the Federal Supreme Court
The officially published judgments have been published in printed booklet form since 1875 [6].
Depending on how precisely one wants to specify certain parts of the judgment, the consideration or
the page number can be added to the reference. In Table 7 some examples are shown.

A citation reference from the Federal Supreme Court consists of the abbreviation BGE, followed by the
volume number, the subvolume number, the part number, the consideration and the page number [6].

• BGE 133 II 292 E. 3.2 S. 29

Citation Explanation
BGE 133 II 292 Basic citation
BGE 133 II 292 E. 3.2 Citation with consideration
BGE 133 II 292 E. 3.2 S. 29 Citation with consideration and page number
BGE 132 III 18 E. 4.1; 132 V 321 E. 6.1 Multiple cited judgments from different parts of the same

volume, separated by a semicolon
BGE 128 IV 225 E. 2.3 S. 229, 232 E. 2 Multiple cited judgments from the same volume and part,

separated by a comma
Table 7: Citation examples of officially published judgments (BGE)

There are special citation guidelines for old publications (up to volume 128) and hints (“Hinweise”),
which are not discussed in detail.

3.2.1.2 Unpublished Judgments of the Federal Supreme Court
Judgments that are neither published in the official collection nor reproduced in a legal journal are
cited by the name of the court that issued the judgment (optional), the dossier number, the date of the
judgment and if necessary the consideration. Some examples are given in Table 8.

These judgments are not printed, but available online.

Citation Explanation
Urteil (des Bundesgerichts) 5C.260/2006 vom 30. März 2007 Basic citation
Urteil (des Bundesgerichts) 6B_214/2007 vom 13. November 2007 E.
5.10.3

Citation with consideration

Table 8: Citation examples of unpublished judgments (BGE)
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3.2.1.3 Judgments Published in Journals
For judgments published in a journal, the journal reference is given after a comma. This is introduced
by “in:”. Some citations start with the journal reference first, followed by the dossier number, separated
by a comma. If the consideration is to be included, it must be inserted before the journal or after the
dossier number. The expressions in brackets are optional. Table 9 shows some examples.

Citation Explanation
• Urteil (des Bundesgerichts) 1P.440/2000 vom 1. Februar 2001, in: SJ

2001 I S. 221
• SJ 2001 I S. 221, 1P.440/2000

Basic citation

• Urteil (des Bundesgerichts) 1P.440/2000 vom 1. Februar 2001 E. 2, in:
SJ 2001 I S. 221

• SJ 2001 I S. 221, 1P.440/2000 E. 2

Citation with consideration

Table 9: Citation examples of judgments published in journals (BGE)

3.2.2 Other Federal Court Judgments
Judgments of the Federal Administrative Court are cited as described in Table 10.

Citation Explanation
BVGE 2007/2 Basic citation
BVGE 2007/2 E. 3.2 S. 18 Citation with consideration and page number
BVGE 2007/2 E. 3.2 S. 18 ; 2007/3 E. 3.3 S. 23 Multiple cited judgments separated by a semicolon

Table 10: Citation examples of the Federal Administrative Court

The Federal Criminal Court is cited as described in Table 11.

Citation Explanation
TPF 2005 142 Basic citation
TPF 2005 127 E. 10.3.3 S. 134 Citation with consideration and page number
TPF 2005 84 E. 3.2.1, 109 E. 5.2; 2004 34 E. 4.2 Multiple cited judgments separated by a semicolon

Table 11: Citation examples of the Federal Criminal Court

3.2.3 Other Courts (Cantonal, District, etc.)
In addition to the federal courts, there are also cantonal and district courts. The citation method differs
depending on the court. Usually, they are cited by dossier number.

For example, a citation reference of the Social Insurance Court of the Canton of Zurich (Sozialver-
sicherungsgericht des Kantons Zürich) would look like this: AK.2001.00065

Due to their large number, they are not discussed in detail.
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3.2.4 Laws and Article of Laws
The following sections describe how laws and articles of laws should be cited in legal documents.

3.2.4.1 Laws
In principle, the following elements should be listed when citing a law for the first time:

• Form of decree
• Date
• Full title or short title
• Abbreviation and reference (SR number) in brackets, separated by a semicolon

The following examples illustrate the citation of laws:
• Bundesgesetz vom 14. Dezember 1990 über die direkte Bundessteuer (DBG; SR 642.11)
• Waffenverordnung vom 21. September 1998 (WV; SR 514.541)

If laws are well-known across all areas, they can be cited in short form without further detail. For
example: BV, ZGB, OR, StGB or AHVG.

For laws that do not have an official short title/abbreviation but are nevertheless frequently cited, one
can create their own short forms. These must be specially labeled. The abbreviated form created must
be indicated in brackets after the SR number with the introduction “nachfolgend:” or “im Folgenden:”.
For example:

• Verordnung vom 2. Oktober 2000 über Massnahmen gegenüber Personen und Organisationen mit
Verbindungen zu Usama bin Laden, der Gruppierung “Al-Qaïda” oder den Taliban (SR 946.203;
nachfolgend: Talibanverordnung)

• Verordnung vom 24. Januar 1996 über die Unfallversicherung von arbeitslosen Personen (SR 837.171;
im Folgenden: UVAL)

3.2.4.2 Article of Laws
A handout from the university of Zurich [7] describes how articles of law should be cited. Those are
to be cited with the following parts:

• Article (‘Art.’)
• Paragraph (‘Abs.’)
• Sentence (‘Satz’)
• Half-sentence (‘Halbs.’)
• Number (‘Ziff.’)
• Letter (‘lit.’)
• Abbreviation of the law (e.g. ‘OR’).

A citation must always be as precise as possible, i.e. the smallest applicable unit must be cited. If a
letter belongs to the article number, it follows the number without a space (e.g. Art. 321a CO). If, on
the other hand, the law uses letters to structure an article, there must be a space between the ‘lit.’ and
the letter quoted. In the case of provisions that are no longer in force, the abbreviation of the law is
preceded by a small ‘a’ (stands for old) without a space (e.g. aOR). [7]

For example:

• Art. 335d Ziff. 1 OR
• Art. 343 Abs. 2 Halbs. 1 aOR
• Art. 10 Abs. 3 Satz 1 GlG
• Art. 336 Abs. 1 lit. d OR
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3.2.5 Journals
Journals should be cited using the author’s name, work title and journal reference, but often only the
journal reference is stated. The journal reference contains:

• abbreviation of the journal
• volume number
• year
• subvolume number
• page number.

For correct citation, there is a list of journals and their citation methods in the document “Zitierregeln”
from the Federal Supreme Court in chapter “Anhang 2” [5].

• MARKUS REICH, Das Leistungsfähigkeitsprinzip im Einkommenssteuerrecht, ASA 53 S. 16 f.
• JEAN-CLAUDE DE HALLER, L’hypothèque légale de l’entrepreneur, ZSR 101/1982 II S. 224

For lesser-known journals, the full name must be written the first time the journal is cited and the
abbreviation must be placed in brackets:

• FABIEN GASSER, La participation à une organisation criminelle active dans le trafic de stupéfiants,
Freiburger Zeitschrift für Rechtsprechung (FZR) 2006 S. 120 ff.

If the same article is cited more than once, the short form can be used:

• REICH, a.a.O., S. 16 f.
• DE HALLER, a.a.O., S. 225
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3.3 Data Exploration
In this section, the relevant Swisslex data is explored and explained. It focuses on the distribution of
the citations and documents in the database. The evaluation has been done between September and
December 2024 and is based on the Swisslex INT database. This database contains a copy of the live
Swisslex database, but might not be completely up-to-date. However, the general distributions should
be comparable to the live database.

3.3.1 Documents
Swisslex contains a vast amount of documents. Each document has a status, which indicates whether
it is e.g. published or not. There are approximately 950′000 documents with the status “published”.
The average length of the published documents is 72′664 characters. The following sections provide
an overview of the distribution of languages, document types, and the amount of documents added
over the last years.

3.3.1.1 Languages
The majority of documents in the Swisslex INT database are in German (66%), followed by a significant
amount of documents in French (29%). Other languages include Italian, English, and Romansh, but
they are less frequent. For the analysis of the languages, only documents with the status “published”
are considered. The distribution is shown in Figure 8.

Figure 8: Language distribution
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3.3.1.2 Document Types
Most of the documents are case laws (77%). This term is in Swisslex used interchangeably with
judgments. Hence, this thesis will also use the term “case law” for these documents. Further, there are
also books, essays, commentaries, case law reviews and federal documents. The distribution of these
types can be seen in Figure 9. The values are taken from the Swisslex website [4] on the 25.11.2024.

Figure 9: Swisslex document type distribution

3.3.1.3 Cited Documents
The documents in Swisslex cite other documents. Most of the cited documents are either laws or case
laws. Together, they make up 98% of the cited documents. The distribution of the cited documents is
shown in Figure 10.

Figure 10: Swisslex cited documents distribution
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3.3.1.4 Amount of Documents per Year
The biggest part of the documents is from recent years. There are a few outliers, the oldest one being
from 1835. To get an overview of the distribution of documents over the years, Figure 11 shows the
amount of documents per year on a logarithmic scale.

Figure 11: Swisslex documents per year (logarithmic scale)

3.3.2 Citations
In the following sections, the citations stored in the Swisslex database are analyzed more closely.

3.3.2.1 Linking to Documents
Although over 60 million citations are registered in the database, only two-thirds link to documents
available in Swisslex. A Swisslex employee suggests that citations not linked to documents are more
likely misrecognized than missing from the database. However, due to the large number of citations,
it is not feasible to verify this assumption.
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3.3.2.2 Length Distribution
Most citations are 1-20 characters long. There are a few outliers with up to 710 characters. The
distribution of the citation lengths on a logarithmic scale can be seen in Figure 12.

Figure 12: Citation length distribution (logarithmic scale)

3.3.2.3 Duplicate Citations
There are many duplicate citation passages in the database. These are mainly citations of general laws.
The most duplicates are for the citation passages “ZPO” and “OR”, each with more than 300,000 dupli-
cates. These are followed by “ZGB”, “BGG”, “LTF”, “StGB”, “StPO”, “BV” and “VwVG”, each of which
was recognized as a citation between 100′000 and 200′000 times. The most cited specific judgment is
“BGE 141 V 281”. This passage is saved in the database more than 90′000 times. The most cited article
is “Art. 42 BGG”. This passage is cited about 50′000 times.

3.3.2.4 Example of Citation Variants
A document can be cited correctly in different ways. For example, the judgment with the title “33.
Urteil vom 27. Juli 1973 i.S. G. gegen Ausgleichskasse des Kantons Luzern und Versicherungsgericht des
Kantons Luzern” from the Swiss Federeal Court has the citation reference BGE 99 V 98.

This document gets cited around 1′200 times by other documents in Swisslex. Among these citations,
this judgment was cited in 72 different ways. Some variations occur because of different languages,
others because of different ways to separate multiple citations.

Some examples include:

• ATF 121 V 362 consid. 1b ; 99 V 98 consid. 4
• BGE 121 V 362 E. 1b; 99 V 98
• 117 V 287 cons. 4, 99 V 98 cons. 4
• 121 V 362 Erw. 1b und 99 V 98 Erw. 4
• ATF 99 V 98
• BGE 99 V 98
• DTF 99 V 98
• 99 V 98
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The abbreviations ATF, DTF and BGE are the abbreviations in the respective national language for the
decisions of the Federal Supreme Court [6]:

• ATF: Arrêts du Tribunal Fédéral Suisse
• DTF: Decisioni del Tribunale Federale Svizzero
• BGE: Entscheidungen des Schweizerischen Bundesgerichts

3.3.3 Parts of a Citation
Currently, there are no parts of the citation stored in the database. The only possibility to get the parts
of a citation is to reverse-engineer the regular expression that was used to recognize the citation. This
regex is stored in the database, as described in chapter 3.1.4.3, and sometimes contains named groups
that represent the parts of the citation. However, these are often very generic and not complete.

As an example, the regular expression that recognizes a citation of the form

BGE 142 I 135 E. 1.6 S. 144

looks like this:

(?<PUB>[$Pub][[\\s,;()\\[\\]]{1,3}])(?<VOL:chaining([[ ]?[;,] ])>[[1-9][0-9]{1,2}])
([[/\\-––?]][[1][9][0-9]{2}|[2][0][0-9]{2}])?[[\\s-–,;]{1,3}](?<PART>[I])[[\\s-–,;]
{1,3}][[1-9][0-9]{0,3}Extended_WithCatch]([[\\s,;()\\[\\]]{1,3}][(((del|du|vom)[[\\s]
{1,3}])|(dell'))[(((0)?[1-9]{1})|1[0-9]{1}|2[0-9]{1}|3[0-1]{1})][[\\s.]{1,2}][dec\\.]
[[\\s]{1,3}][[1][9][0-9]{2}|[2][0][0-9]{2}]]([[\\s,;()\\[\\]]{1,3}])?)?

The first named group PUB should capture BGE as publication, the second named group VOL should
match 142 as volume, and the named group PART should capture I as part. However, the remaining
parts of the ctiation, such as 135 as subvolume, 1.6 as consideration and 144 as page, are not captured
in named groups.

The capturing groups are also named very generically, for example as part A. This makes it hard to
understand which part of the citation should be captured by this group.

Apart from the capturing groups issues, it is difficult to apply the regular expression to a citation again
to get the parts. This is due to the following reasons:

• Some regexes are not stored in the database but dynamically generated in the Production Tool code.
Without the Production Tool, it is impossible to apply the regex to a citation.

• The regexes sometimes contain variables that are not resolved. This makes it impossible to apply
them to a citation again, since they are invalid.

• Although most of the citations have been recognized by a regular expression, the regex is not always
stored together with the citation. For most of the law citations, the matching regex is not stored in
the database.

For some citations, individual parts are stored in the database. However, these represent only a small
subset of the overall dataset and are both incomplete and error-prone. For instance, the ArticleOfLaw
table contains parts of law citations but holds only 185,000 entries, while there are a total of 35.5 million
law citations. Moreover, the table does not include the start and end indices for these components
within the text.

For example, in the citation Art. 3 Abs. 3 ZGB, the table might include an entry for an article
with the value 3. However, it is unclear whether this 3 corresponds to the substring from index 5 to
6 or from index 12 to 13, as both positions contain the number 3. Accurate start and end indices are
essential for fine-tuning a model, as they help define the exact spans of entities.
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Moreover, the table is error-prone, with some parts being mislabeled. For instance, in the citation
Art. 138 Ziff. 1 Abs. 1, the number 138 is identified as a number instead of an article. Such
inconsistencies further reduce the reliability of the table as a source for accurate annotation.

Given the task outlined in chapter 1.3, it is essential to identify the parts of a citation as accurately
as possible. This level of precision is crucial for linking the referenced document in a second step.
Therefore, the existing data is insufficient for generating high-quality training data to fine-tune a model
for part recognition.

3.3.4 Special Cases
This chapter describes some special cases of citations that are difficult to recognize with the current
regex-based solution. The following examples are taken from the Swisslex database.

3.3.4.1 Multiple Citations
The following Figure 13 shows an example of multiple citations. It is a screenshot from the judgment
BGE 148 V 397 on swisslex.ch. It first refers to four different articles and paragraphs of the same ATSG.
Immediately after this, a more complex multiple citation that was not correctly recognized by the
existing system can be seen, which should refer to a large number of paragraphs of the IVG [8].

Figure 13: Example of a failed recognition of multiple citations

3.3.4.2 Amibguity of Abbreviations
Another special case is the ambiguity of abbreviations. For example, various Italian-speaking courts
anonymise persons with CO, marked as CO 1 in Figure 14. At the same time, CO is also the French
and Italian abbreviation for the Swiss Code of Obligations. In particular, if only the OR/CO as a
whole is referred to and there is only one anonymised person (the numbering is therefore omitted
for anonymisation purposes), it is often not clear without the context whether a person or a law is
meant. [8]

Figure 14: Example of a ambigious abbreviations

3.3.4.3 Cantonal Law Misinterpreted as Federal Law
Some laws exists in more than one canton. To distinguish between the different cantons, the cantons
abbreviation is usually added to the law. For example, the law “Gesetz über die Verwaltungsrecht-
spflege” (VRPG) exists in several cantons which look like this:

• VRPG/AG: Aargau
• VRPG/BE: Bern

The abbreviation VRPG alone is not unique and can refer to different cantonal laws. The current system
does not take this into account, misses the cantonal abbreviation and thus interprets the wrong law.
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3.3.4.4 Misinterpreting Systematic Collections of Law as Laws
Systematic collections of law from a canton (e.g. BSG = Bernische Systematische Gesetzessammlung)
include all laws of a canton. The current system interprets these systematic collections sometimes as
laws, which is incorrect.

For example, SG 291.100 is the “Advokaturgesetz” from canton Basel-Stadt [9]. The current system
recognizes only “SG 291” in form of article 291 from the law SG.

3.3.4.5 Deviations from the Standard Citation Format
The standard citation format is not always followed. Spelling mistakes and incorrectly formatted
citations may occur. For example, the order of the citation elements may be different. Instead of Art.
3 ZGB, the citation might be written as ZGB Art. 3.

3.3.5 Data Duplication
There are two cases of data duplication in the documents.

Firstly, courts may publish updated versions of their judgments. In such cases, the judgment is resent
and stored as a new document in Swisslex. A status value is assigned to each document, with 700
indicating that the judgment is “published”. Consequently, a single judgment may correspond to
several Swisslex documents, but only the one with a status of 700 represents the definitive and most
recent version.

Secondly, judgments may also appear redundant when published by third parties, such as legal
journals. In these cases, the same judgment is recorded twice in the dataset: once as printed in the
journal and once directly from the court. In this case, both documents have a status of 700, as they are
both published.
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4 Theoretical Foundations
This chapter outlines the theoretical foundations for solving the problem of citation recognition. It
also highlights related work conducted in the field of NER.

4.1 Approaches to Named Entity Recognintion
Citation recognition is a subtask of NER [10]. Recognizing named entities is a well-known problem
in the field of natural language processing, especially when it comes to identifying common types of
named entities, such as people, locations, and organizations.

In the legal domain, the complexity of legal texts and the limited availability of training data, especially
within the Swiss legal framework, present significant challenges. There are some studies that have
tackled these problems before. However, most of them focus on the US or European legal system or
use outdated technologies.

The following sections discuss and compare different approaches to NER and their application to
citation recognition.

4.1.1 Rule-Based Methods
Rule-based methods rely on manually crafted rules to identify and classify named entities. This
approach can be effective in domains with well-defined entity categories, like legal or medical texts,
where specific terms or phrases are predictable. However, rule-based methods have several limitations
in scalability and adaptability [11]. The next sections describe different rule-based methods used for
NER.

4.1.1.1 Regular Expressions (Regex)
Regular expressions (regex) are patterns used to define the format of text and match entities. For
instance, a regex like d{2}/d{2}/d{4} could match dates in the DD/MM/YYYY format. The current
Swisslex solution uses a complex set of regular expressions to identify citations in legal documents.
These regexes are based on patterns commonly found in legal citations, such as the use of specific
abbreviations, punctuation, and formatting conventions. While this approach can be effective in
identifying citations in a controlled environment, it lacks the flexibility and generalization capabilities
of context- and sequence-based models. [12]

In a paper published in 2005, a rule-based system for extracting references from legal text was
proposed, similar to the current regex-based approach in Swisslex. [13]

4.1.1.2 Linguistic Patterns
Linguistic patterns are syntactic rules that rely on sentence structure, such as using part-of-speech
tagging to identify names following titles like “Judge” or “Mr.” On the other hand, contextual rules
consider the surrounding text of potential entities. For instance, legal cases can be identified by
detecting terms like “v.” or “versus” between names. [14]

In 2019, a paper from French researchers describes a system for extracting legal citations using a rule-
based approach with the Java Annotation Patterns Engine. [15]
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4.1.1.3 Vocabulary Lists (Gazetteers)
Vocabulary lists are predefined lists of known entities or terms, which are matched against the text
to identify occurrences. For example, a gazetteer containing known legal case names can be used to
automatically detect and extract references to those cases in documents. [16]

4.1.1.4 Advantages and Limitations
Following are some advantages and limitations of rule-based methods for NER.

Advantages
• High precision in controlled environments
• Effective for well-defined, static domains with limited variability
• Do not require large amounts of labeled data for training

Limitations
• Low scalability to large and diverse datasets
• High maintenance cost as rules need to be updated frequently
• Limited intelligence since rules are handcrafted through pre-defined patterns and heuristics

and may not generalize to small variations in text

4.1.2 Statistical Methods
Shifting away from manual rules, statistical methods such as Hidden Markov Models (HMM) and
Conditional Random Fields (CRF) use probabilistic models. They identify named entities based on
patterns learned from annotated datasets. These approaches are well-suited for applications with
abundant labeled data. They excel at handling diverse textual content but are highly dependent on the
quality and comprehensiveness of the training data. [10]

One of the earliest known works explicitly defining NER in the legal domain is described by Dozier et
al. [17]. The authors applied NER to U.S. case law, depositions, pleadings, and other legal documents
using a combination of simple list-based lookups, contextual rules, and statistical models. They
developed specialized taggers for identifying jurisdictions, courts, titles, document types (e.g., briefs,
memoranda), and judges. The jurisdiction tagger outperformed the others, achieving an F1 score of 92,
while the remaining taggers attained F1 scores ranging from 82 to 85.

4.1.2.1 Hidden Markov Models (HMM)
Hidden Markov Models (HMMs) are generative statistical models often used in NER tasks. They are
designed to handle sequences of data, where observable events (like words in a sentence) depend on
underlying hidden states (like entity labels). As generative models, HMMs calculate the joint proba-
bility of both the observed data and the hidden states. This allows them to generate new data based on
learned patterns. They rely on the Markov assumption, which means the current hidden state depends
only on the previous one. Also, they model the likelihood of observable events being emitted from
these states.

The core strength of HMMs lies in their ability to capture temporal dependencies between entities.
This makes them effective for sequential data like language. However, their performance is highly
dependent on the availability of well-annotated training data and predefined probability distributions.
HMMs are computationally efficient and have been successfully applied to tasks such as part-of-speech
tagging and speech recognition, yet they may struggle with complex feature dependencies. [12], [18]

4.1.2.2 Conditional Random Fields (CRF)
Conditional Random Fields (CRFs) are a discriminative probabilistic model used for sequence labeling
tasks like NER. CRFs model the conditional probability of a sequence of labels given the input data,
allowing them to capture dependencies between adjacent labels. This makes them particularly effective
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for tasks where the label of a word is influenced by its surrounding context. CRFs have been widely
used in NER tasks due to their ability to model complex interactions between features and labels. [12]

They are especially effective when combined with deep learning models like Bidirectional LSTMs,
enabling the model to capture both past and future context in sequences. However, CRFs require
manual feature engineering and are computationally intensive. This makes them less flexible than deep
learning models in handling large-scale datasets. This is discussed in more detail in chapter 4.1.4.1.

4.1.2.3 Advantages and Limitations
Here are some advantages and limitations of statistical methods for NER tasks.

Advantages
• Effective in capturing temporal dependencies and contextual information
• Suitable for tasks requiring sequence labeling and structured output
• Can model complex interactions between features and labels

Limitations
• Require manual feature engineering
• Highly dependent on the quality and quantity of annotated training data
• Computationally intensive, CRFs struggle with large datasets

4.1.3 Machine Learning Methods
In contrast to the rule-based approach, machine learning classifiers can be used for NER tasks in a
more flexible way.

Such classifiers are trained in a supervised manner. Being provided with a set of labeled data, they
learn the patterns in the data and can then predict the labels of new data points. This allows them to
recognize unseen patterns and generalize from the training data. Common classifiers include Support
Vector Machines (SVM), Random Forest, Decision Trees, K-Nearest Neighbors (KNN), and others. [19]

Using machine learning classifiers for NER has been a common practice for many years. In 2001,
Yamada et al. showed that Support Vector Machines were effective for NER in Japanese, achieving an
F-value of 83. [20]

For citation recognition in legal documents, classifiers must precisely identify parts of a citation, such
as paragraphs or sections. This requires a multi-class classifier and sufficient labeled data for training.

Machine learning classifiers have limitations. They cannot recognize new entity types that are not
present in the training data. They also require a large labeled corpus for effective training, which can
be computationally expensive. Additionally, they are less flexible when encountering small errors in
the training data, such as typographical errors. [21]

4.1.3.1 Advantages and Limitations
In the context of NER, machine learning methods have the following advantages and limitations.

Advantages
• Can recognize unseen patterns and generalize from the training data, more flexible than rule-

based approaches
• Adaptable to different domains and languages
• Maintenance is less expensive

Limitations
• Cannot recognize new types or classes that were not present in the training data
• Requires a large amount of labeled data for training, computationally expensive
• Less flexible in handling small errors in the training data
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4.1.4 Deep Learning Methods
Deep learning methods have revolutionized the field of NER by enabling models to learn complex
patterns and representations directly from data. These methods leverage neural networks to automat-
ically extract features and capture dependencies in sequences. This makes them highly effective for
NER tasks. Deep learning models have achieved state-of-the-art performance on various NLP tasks,
including NER.

4.1.4.1 RNNs and LSTMs
Recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) are designed for
handling sequence prediction tasks. RNNs are capable of processing sequential data by maintaining
a form of memory across inputs. LSTMs, a specific variant of RNNs, excel at capturing long-term
dependencies in sequences. This allows them to effectively retain information over extended periods,
which is crucial for understanding context and detecting entities in texts. [22]

However, RNNs and LSTMs have limitations in capturing bidirectional context. They process
sequences in a forward or backward direction. This can lead to suboptimal performance in tasks where
the context of a word is influenced by both preceding and following words.

The combination of Bidirectional LSTMs with CRFs (BiLSTM-CRF) became a widely used architecture
for NER. It enables the model to capture both past and future context in sequences. The BiLSTM
component processes the input sequence in both directions, capturing information from past and
future tokens. The CRF layer then models the dependencies between labels in the sequence. This
allows the model to predict the most likely sequence of labels for named entities. This architecture has
shown significant improvements in NER tasks. It reduces the need for manual feature engineering and
achieves state-of-the-art performance on benchmark datasets. [12], [23]

Leitner et al. focused on fine-grained NER in legal documents for the German legal framework. In a
study on NER in German legal texts, the authors compiled a dataset of 67,000 sentences from court
decisions, annotated with 54,000 entities spanning 19 fine-grained semantic classes (later grouped into
7 coarse-grained classes), including legal citations. They trained CRFs and BiLSTM networks, achieving
the highest F1 scores with the BiLSTM models: 95.46 for the fine-grained classes and 95.95 for the
coarse-grained classes. This research was conducted within the LYNX project, which aims to develop
a semantic platform for advanced document processing and analysis in the legal domain. [24]

4.1.4.2 Transformer-Based Models
In 2017, a team of researchers from Google presented the transformer architecture, which would
revolutionize NLP research. It is an implementation of the encoder-decoder model. In the encoder, the
input sequence is processed and transformed into a sequence of hidden states, which are then used by
the decoder to generate the output.

However, the key innovation of the transformer architecture is the self-attention mechanism. This
allows the model to focus on different parts of the input sequence simultaneously at each timestep.
Different weights (“attention”) are assigned to input tokens based on their relevance to the current
token, allowing the model to learn more complex patterns in the data. This stands in contrast to
previous deep neural networks for NLP tasks, which were based on RNNs. Their sequential nature
made it difficult to fully understand context in long sequences of text.

Following Google’s publication, various transformer-based models have been developed. The two best
known are GPT and BERT, which have achieved excellent performance in NLP tasks. In the following
sections, these models will be discussed in more detail. [25], [26]
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Generative Pre-Trained Transformer (GPT)

A generative pre-trained transformer (GPT) is a model that takes only the decoder part of the trans-
former architecture and uses it for language modelling. It belongs to the category of large language
models (LLMs). The first GPT model was presented by OpenAI in 2018. Since then, several improved
versions have been published by OpenAI and other research groups. [27]

These GPT models are trained using self-supervised learning, which is a subset of unsupervised
learning. The general idea is that the model predicts the next token in a sequence and then calculates
the loss based on the difference from the actual token. In this way, the model generates its own
supervision signal from the data. This approach allows GPT models to be trained on large amounts of
unlabeled data, which is available in abundance. The learning is unidirectional because it only looks
at the previous context to predict the next word. By checking the loss at each step, the model learns
to generate sequences similar to the input data. [26], [28]

GPT models are foundational models. They are trained on a broad range of diverse datasets to gain
a general understanding of language. This step is computationally expensive. To use the model for
a specific task, such as citation recognition, transfer learning is used. After pre-training, the model
can be fine-tuned on a smaller set of labeled data to gain more specific knowledge about the task.
This is often done using supervised learning or reinforcement learning. However, the model does not
necessarily need to be fine-tuned. It can be used out of the box. [27], [28]

While GPT models have primarily been used for text generation tasks, it is also possible to use them
for NER. However, models specifically designed for NER perform better. For this reason, additional
fine-tuning on a dataset of named entities is required to achieve better results.

There are certain fine-tuned versions of GPT models available that can be used for NER tasks, such as
GPT-NER. Proposed by researchers in 2023, this model addresses the challenge by reframing sequence
labeling as a generation task, making it more adaptable for LLMs. [29]

Bidirectional Encoder Representations from Transformers (BERT)

Another important model in the area of NLP is BERT, initially published by Google in 2018. This model
is also based on the transformer architecture but uses only the encoder part. The main innovation
of BERT is the introduction of masked language modeling. During training, 15% of the input tokens
are randomly masked. The model is trained to predict the value of these masked tokens based on
context. This allows BERT to learn bidirectional representations of the input text, since the model
has to consider context both on the left and the right to make a prediction. The technique also uses
unsupervised pre-training on large amounts of text data.

The second task that BERT is trained on is next sentence prediction. The model is presented with pairs
of sentences and has to predict whether the second sentence follows the first one in the original text.
This task helps the model learn relationships between sentences and improves its understanding of
context.

Through this training process, BERT learns to understand language in general. However, the model
does not come with an output layer. Instead, to use it for a specific task like NER, a new output layer is
added. The model has to be fine-tuned on a task-specific dataset using supervised learning. [30], [31]

In recent years, the use of deep learning models, especially transformer-based models like BERT, has
become increasingly popular in the field of NLP. For example, a German research group developed
a German BERT model [32] for legal NER based on the dataset created by Leitner et al [24]. The
recognized entities are divided into the following categories: Person, Judge, Lawyer, Country, City,
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Street, Landscape, Organization, Company, Institution, Court, Brand, Law, Ordinance, European
legal norm, Regulation, Contract, Court decision, and Legal literature.

For the English language, researchers at the University of Athens have fine-tuned BERT-based models
on legal text and published their resulting Legal-BERT models. They are not fine-tuned for NER. [33]

A Swiss researcher, Joel Niklaus, is working in the field of legal NLP. He collaborated on a legal
benchmark called LegalBench [34], which aims to measure legal reasoning in LLMs. He has also led
research projects for the Swiss Federal Supreme Court [35]. As part of his work, he pre-trained multiple
BERT-based models on his own legal dataset. The dataset is called Multi Legal Pile [36], and covers 24
languages and multiple legal sources. The models can be found on the Hugging Face model hub and
would have to be further fine-tuned on downstream tasks.

Another project focussing on Swiss texts is the SwissBERT [37], developed by researchers from the
University of Zurich. This model is fine-tuned on Switzerland-related news articles in the languages
German, French, Italian, and Romansh. To be used for NER, it would have to be further fine-tuned.

GLiNER

In 2023, a new model called GLiNER was proposed. The model builds on BERT, but is specifically
designed for NER. While BERT assigns a label to each token, GLiNER aims to match entity types to
spans (sequences of tokens). The model takes the entity types as input together with the text. It then
processes both using a bidirectional transformer and computes matching scores between entity type
embeddings and text spans.

This approach allows for a parallel extraction of multiple entity types, making GLiNER faster than
BERT in handling NER tasks, especially if multiple entities are involved. The model has been shown to
outperform larger models such as ChatGPT in NER, despite having a much smaller parameter size. [38]

4.1.4.3 Advantages and Limitations
The specific advantages and limitations of deep learning models depend on the model architecture.
However, in general, they share the following characteristics.

Advantages
• Effective in capturing long-term, bidirectional dependencies
• Achieve state-of-the-art performance in NER tasks
• Reduce the need for manual feature engineering

Limitations
• Computationally expensive
• Require large amounts of labeled data for training
• Require fine-tuning for specific tasks
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4.2 Training Strategies for Transformer Models
There are many training strategies to make use of deep learning methods. The following sections will
give an overview over relevant techniques and methods for the project.

4.2.1 Pre-Training
Pre-training refers to the initial phase of training a model on a large, general-purpose dataset to learn
foundational patterns, representations, or features. For language models, this often involves unsuper-
vised learning on vast text corpora such as Wikipedia [39] or other large-scale text datasets. The
goal is to capture general linguistic patterns, syntax, semantics, and contextual relationships between
words. Models like BERT exemplify this approach. Tasks such as masked language modeling enable the
development of transferable representations. This process requires significant computing resources
and large data sets, but provides a robust foundation for transfer learning. [30]

Some models undergo continued pre-training on domain-specific or task-specific datasets to further
refine their representations [40]. In the legal domain, models like joelniklaus/legal-xlm-roberta-large
[41] start from the standard XLM-RoBERTa model and are additionally pre-trained on the Multi Legal
Pile dataset [42], a multilingual corpus of legal texts covering 24 languages. This additional pre-
training is intended to enhance the model’s ability to handle legal terminology and context, potentially
improving its performance on downstream tasks in the legal field.

4.2.2 Zero-Shot and Few-Shot Prompting
In recent years, the performance of out-of-the-box, general-purpose LLMs has improved significantly
on a variety of NLP tasks, like NER. It allows users to perform zero-shot and few-shot prompting.
These approaches are particularly useful when the entity types are not known in advance, or when
there is insufficient training data to fine-tune a model. [43]

In the following section, different approaches and examples using GPT-4o [44] are shown. While this
model is not suitable for citation recognition in this project due to the NFRs, it offers valuable insight
into the current state of the art performance of LLMs.

4.2.2.1 Zero-Shot Prompting
Pre-trained transformer models like BERT, as well as LLMs such as GPT-4o or Llama 3, demonstrate
remarkable zero-shot prompting capabilities. These models can perform NER on unseen entity types
by leveraging knowledge gained during pre-training. This is particularly useful in scenarios where the
entity types are not known in advance, or where the number of entity types is frequently changing. [43]

**Input text:** Am 1. Januar 2022 trat das revidierte Bundesgesetz vom 19. Juni
1959 über die Invalidenversicherung (IVG; SR 831.20) in Kraft (Weiterentwicklung
der IV [WEIV]; Änderung vom 19. Juni 2020; AS 2021 705; BBl 2017 2535). Die dem
angefochtenen Entscheid zugrunde liegende Verfügung der IV-Stelle erging vor dem 1.
Januar 2022. Nach den allgemeinen Grundsätzen des intertemporalen Rechts und des
zeitlich massgebenden Sachverhalts (BGE 144 V 210 E. 4.3.1; BGE 129 V 354 E. 1) sind
daher die Bestimmungen des IVG und diejenigen der Verordnung vom 17. Januar 1961 über
die Invalidenversicherung (IVV; SR 831.201) sowie des Bundesgesetzes vom 6. Oktober
2000 über den Allgemeinen Teil des Sozialversicherungsrechts (ATSG; SR 830.1) in der
bis 31. Dezember 2021 gültig gewesenen Fassung anwendbar (BGE 148 V 174 E. 4.1).
**Task:** Extract all legal citations from the input text. Each citation should
include references to laws, amendments, and specific articles or sections.
**Output:**

Code-Snippet 3: Zero-shot prompting example input
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The output is then added to the Output: section of the prompt. The model can generate the desired
output based on the input text and the provided task.

1. IVG; SR 831.20
2. Änderung vom 19. Juni 2020; AS 2021 705; BBl 2017 2535
3. BGE 144 V 210 E. 4.3.1
4. BGE 129 V 354 E. 1
5. IVV; SR 831.201
6. ATSG; SR 830.1
7. BGE 148 V 174 E. 4.1

Code-Snippet 4: Zero-shot prompting example output

4.2.2.2 Few-Shot Prompting
In few-shot prompting, the model is provided with a small number of examples of the task it is supposed
to perform. This allows the model to learn the task with minimal supervision. Few-shot prompting is
useful when training data is scarce or when the model needs to be quickly adapted to a new task. [45]

## Example 1
**Input:** Gemäss Art. 64a Abs. 1 des Bundesgesetzes über die Alters- und
Hinterlassenenversicherung (AHVG; SR 831.10) sowie Art. 10 Abs. 2 des Bundesgesetzes
über die Unfallversicherung (UVG; SR 832.20) werden die Leistungen angepasst.

**Output:**
- Art. 64a Abs. 1 des Bundesgesetzes über die Alters- und Hinterlassenenversicherung
(AHVG; SR 831.10)
- Art. 10 Abs. 2 des Bundesgesetzes über die Unfallversicherung (UVG; SR 832.20)

## Example 2
**Input:** Das Bundesgesetz über die Ergänzungsleistungen zur Alters-,
Hinterlassenen- und Invalidenversicherung (ELG; SR 831.30) wurde zuletzt im Jahr 2020
(AS 2020 333) geändert.

**Output:**
- Bundesgesetz über die Ergänzungsleistungen zur Alters-, Hinterlassenen- und
Invalidenversicherung (ELG; SR 831.30)
- AS 2020 333

## Prediction
**Input:** Am 1. Januar 2022 trat das revidierte Bundesgesetz vom 19. Juni 1959
über die Invalidenversicherung (IVG; SR 831.20) in Kraft (Weiterentwicklung der
IV [WEIV]; Änderung vom 19. Juni 2020; AS 2021 705; BBl 2017 2535). Die dem
angefochtenen Entscheid zugrunde liegende Verfügung der IV-Stelle erging vor dem 1.
Januar 2022. Nach den allgemeinen Grundsätzen des intertemporalen Rechts und des
zeitlich massgebenden Sachverhalts (BGE 144 V 210 E. 4.3.1; BGE 129 V 354 E. 1) sind
daher die Bestimmungen des IVG und diejenigen der Verordnung vom 17. Januar 1961 über
die Invalidenversicherung (IVV; SR 831.201) sowie des Bundesgesetzes vom 6. Oktober
2000 über den Allgemeinen Teil des Sozialversicherungsrechts (ATSG; SR 830.1) in der
bis 31. Dezember 2021 gültig gewesenen Fassung anwendbar (BGE 148 V 174 E. 4.1).

**Output:**

Code-Snippet 5: Few-shot prompting example input

The model is then provided with the input text and the task it is supposed to perform. The output is
generated based on the input text and the examples provided.
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**Output:**
- Bundesgesetz vom 19. Juni 1959 über die Invalidenversicherung (IVG; SR 831.20)
- Weiterentwicklung der IV [WEIV]; Änderung vom 19. Juni 2020
- AS 2021 705
- BBl 2017 2535
- BGE 144 V 210 E. 4.3.1
- BGE 129 V 354 E. 1
- Verordnung vom 17. Januar 1961 über die Invalidenversicherung (IVV; SR 831.201)
- Bundesgesetz vom 6. Oktober 2000 über den Allgemeinen Teil des
Sozialversicherungsrechts (ATSG; SR 830.1)
- BGE 148 V 174 E. 4.1

Code-Snippet 6: Few-shot prompting example output

4.2.3 Fine-Tuning
After pre-training, fine-tuning is a crucial step in adapting models to specific tasks or domains. During
fine-tuning, the final layers of the model, called the head, are adapted to task-specific datasets while
retaining the general knowledge from earlier layers. For example, a BERT model with a token classi-
fication head can be fine-tuned on a legal dataset to effectively perform NER tasks. [26], [46]

In recent years, other models like Llama have also demonstrated their effectiveness in being fine-tuned
on task-specific datasets, achieving performance gains that surpass zero-shot or few-shot prompting
capabilities. [47]

The fine-tuning process typically involves the following steps:

1. Data Preparation: Collecting and preprocessing training data. This includes extracting text data
from existing sources, labeling entities, splitting and shuffling the data, and converting it into a
format compatible with the model.

2. Model Selection: Choosing a pre-trained transformer model, such as BERT, DistilBERT or Llama3,
as the base model for fine-tuning.

3. Fine-tuning: Training the model on the labeled training data by updating its weights to minimize
the task-specific loss function. This step often involves freezing some layers to retain general pre-
trained features while adapting the task-specific layers.

4. Evaluation: Evaluating the model’s performance on a separate validation set. This helps to tune
hyperparameters and prevents overfitting.

5. Inference: Using the fine-tuned model to make predictions on new, unseen data using an API or UI.

The fine-tuning process can be repeated multiple times with different hyperparameters, architectures,
and training data to optimize the model’s performance.

4.2.4 Knowledge Distillation
Knowledge distillation is the process of transferring knowledge from a complex teacher model to
a simpler student model. Ideally, the smaller student model matches the performance of the larger
teacher model while operating significantly faster. This approach enhances deployment inference
speed and significantly lowers computational costs.

This principel was originally presented in 2006 under the term “Model Compression” [48]. The term
“distillation” was introduced by Hinton et al. in 2015 [49].

Knowledge distillation is particularly relevant for LLMs due to their high computational demands. In
response-based distillation, a few-shot Llama model, for example, can act as the teacher. It generates
task-specific synthetic annotations for unlabeled samples. These outputs are then used to fine-tune a
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smaller BERT model as the student. The focus lies on the teacher’s predictions rather than probability
distributions. This method creates efficient, task-specific models that match the performance of larger
LLMs while offering flexibility across different architectures. [50], [51], [52]

A Hugging Face blog article [53] highlights that fine-tuning smaller models on synthetic data also
drastically reduces inference costs. For instance, a RoBERTa-base model processes 1 million sentences
for 2.70 USD compared to 3061 USD with GPT-4. It achieves an F1 score of 94 — matching GPT-4—while
providing faster inference at 0.13 seconds per sentence, unlike the several seconds required by GPT-4.

4.2.5 Model Chaining
Model Chaining is a technique where multiple models are linked in a sequential process, each model
specialized in a specific task. The output of one model is used as input for the next model. By breaking
down tasks, model chaining can improve performance. This is possible as each model in the chain can
focus on a distinct step, such as classifying entities before extracting finer details. [54]

In the context of citation recognition, model chaining could be applied by first using a model to identify
the broad type of reference (e.g. “law” or “case law”) and then using a subsequent model to extract
specific components like article numbers or page references. For example, since a law citation contains
different parts than a case law citation, it may be beneficial to use different models for each type of
citation. Through this approach, the models can be optimized for their specific task. The training data
for each model could be tailored to the respective citation type, leading to a more consistent dataset for
training. Additionally, it would be possible to use different follow-up models depending on the type of
citation identified in the first step.

Recent research has shown that model chaining can improve the performance of LLMs. A group of
researchers have published a paper in November 2024, where they evaluated an LLM on legal infor-
mation extraction tasks using a prompt chaining technique. They worked with a few-shot setting,
where the model had to classify the information contained in the text. It then used this classification
to select the relevant prompt for information extraction. With this method, the F1 score for entity
extraction improved by approximately 4% compared to a baseline model. [55]
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4.3 Hyperparameters
This chapter describes the importance of hyperparameters and specific values that can be optimized.

4.3.1 Overview
Hyperparameters control the learning process of a machine learning or deep learning model. Unlike
model parameters, which are learned during training, hyperparameters are set before the training
begins. They determine how the model behaves during the learning phase. Choosing the right hyper-
parameters can be challenging, as they are not automatically learned and must be selected manually.
However, their proper selection can significantly impact the model’s performance and speed. [22]

According to Goodfellow et al. [22], hyperparameters can be optimized in two ways:

• Manual hyperparameter tuning
• Automatic hyperparameter optimization algorithms

Manual hyperparameter tuning is time-consuming and inefficient. Thus, automatic hyperparameter
optimization algorithms can be used to find the best hyperparameters for a given model. These
algorithms are based on optimization techniques such as grid search, random search, or Bayesian
optimization. The only downside is that they require a lot of computational resources and can be
computationally expensive. [22], [56]

In the following chapter, the hyperparameters which are optimized and the optimization process are
described.

4.3.2 Important Values
The following sections discuss important values for hyperparameter tuning.

4.3.2.1 Learning Rate
Aditya Rakhecha describes the learning rate (LR) in “Towards Data Science” as follows: “Learning rate
(λ) is one such hyper-parameter that defines the adjustment in the weights of our network with respect to
the loss gradient descent. It determines how fast or slow we will move towards the optimal weights.” [57]

The LR defines how fast the optimization algorithm moves towards optimal weights. A high LR can
cause the model to converge too quickly and miss the optimal solution. On the other hand, a low LR
can cause the opposite and leave a model stuck in a local minimum. [57]

In the original BERT paper, the authors selected the best LR among 5e-5, 4e-5, 3e-5, and 2e-5 for their
fine-tuning of GLUE. [30]

4.3.2.2 Weight Decay
Weight decay is a regularization term (L2) that penalizes large weights. It is also known as Ridge
Regression [22]. In the Hugging Face library, the parameter weight_decay applies to all layers except
bias and LayerNorm weights in the AdamW optimizer and defaults to 0 [58]. Often, a starting value of
0.01 is recommended [59]. The hyperparameter tuning search in this project is built around this value.

4.3.2.3 Optimizer
As AdamW is the default optimizer in the transformers library [58], it is used in the fine-tuning process
in this project. This optimizer is a combination of Adam and weight decay. It decouples weight decay
from the optimization steps taken. This algorithm improves generalization and was proposed by
Loshchilov and Hutter in 2017 [60].
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4.3.2.4 Batch Size
The batch size refers to the number of samples processed by the model at once during training.
Goodfellow et al. suggest that this parameter should be more accurately called the minibatch size [22],
as it represents a smaller subset of the entire training data, initially referred to as a batch. Despite this,
the term batch size is commonly used interchangeably with minibatch size in both research literature
and machine learning libraries. This thesis will also use the term batch size further on.

Table 12 shows the impact of batch size on training for large and small batch sizes.

Batch size Large Small
Memory Utilization Requires more memory Requires less memory
Training speed Faster Slower
Stability More stable, smoother updates Less stable, adds noise
Generalization Worse Better

Table 12: Impact of batch size on training [22], [61], [62]

Entry Point AI [63] is claiming that OpenAI dynamically configures the batch size to be ~0.2% of the
number of examples in the training set, but caps it at 256. Also, OpenAI has found that larger batch
sizes tend to work better on large datasets [64], [65]. Other sources recommend a batch size of 32 as a
starting point. [66], [67]

Due to the large training dataset (chapter 6.1.2), the batch sizes of 16, 32, 64, 128 are included
into the hyperparameter tuning search. The batch size of 256 is excluded because it exceeds available
resources.

4.3.2.5 Epochs
An epoch refers to a full pass through all available data, meaning the model has processed the entire
dataset once. The number of epochs is a hyperparameter that dictates how many times the model will
cycle through the dataset. To address overfitting, reducing the number of epochs may be beneficial,
while increasing the epochs can help if the model is underfitting. [63]

Because of the big training dataset in this project (chapter 6.1.2), the need to revisit the same data
frequently over many epochs is not necessary. This approach is also confirmed by Goodfellow et al.:
“With some datasets growing rapidly in size, faster than computing power, it is becoming more common
for machine learning applications to use each training example only once or even to make an incomplete
pass through the training set.” [22]
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4.4 Statistical Evaluation
NER systems are typically evaluated using exact-match or relaxed-match metrics [68]. This thesis
focuses on relaxed-match evaluation, counting partial matches as half correct.

4.4.1 Exact-Match Evaluation
Exact-match evaluation compares the system’s output to the ground truth annotations, considering
an entity as correct only if it is an exact match. [11] The following terms are used:

False Positive (FP) Returned by NER but not in ground truth
False Negative (FN) In ground truth but not returned by NER
True Positive (TP) Returned by NER and in ground truth

These terms are used to calculate precision, recall, and F1 score.

Precision How many of the recognized entities are correct
Recall How many of the actual entities were found by the system
F1 score Harmonic mean of precision and recall

The formulas for these metrics are as follows:Precision = TPTP + FP Recall = TPTP + FN F1 = 2 ∗ Precision ∗ RecallPrecision + Recall
4.4.2 Partial-Match Evaluation
A common tool for evaluating NER systems is the nervaluate Python package [69]. It provides an
easy way to evaluate models in different ways. The package calculates precision, recall, and F1 score
for each entity type and overall. Additionally, it allows to specify whether partial matches should be
counted as correct or not.

When it comes to citation recognition, partial matches are better than no match at all. Thus, the
partial evaluation method is used. This method counts partial matches as half correct. In this way,
the model is not punished twice for a false positive and a false negative. The calculations for precision
and recall are adjusted as follows:Precision = (COR + 0.5 x PAR)ACT = TPTP + FPRecall = (COR + 0.5 x PAR)POS = CORACT = TPTP + FN
4.4.3 Bucket-Wise Evaluation
To further understand the model’s performance, bucket-wise evaluation can be applied. This helps to
identify with which buckets the model struggles. It allows optimizing the model for specific subsets of
the data. [70]

Possible buckets for the evaluation are:

• Language: The test data could be split into buckets based on the attribute language. This may help
to identify potential biases in the model and to improve its performance on specific languages.

• Citation Type: Another split could be into buckets based on the citation type, such as case law,
literature, or law. This could help to identify for which citation types the model performs well and
for which it does not.
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4.5 Processing Pipeline
Since the task of recognizing citations and their parts can be divided into two subtasks, different
processing pipelines are possible. These range from a single model handling everything to multiple
models working in sequence or parallel. As the choice of architecture depends, among other factors,
on the availability of training data, the current data situation is outlined first. In the following sections,
potential architectures for the processing pipeline are discussed.

4.5.1 Data Availability
As analyzed in chapter 3.3, there is more than enough labeled data available for recognizing citations.
This makes it possible to fine-tune a model specifically for this task. However, the availability of
detailed annotations for individual parts of a citation, such as articles or page numbers, is highly
limited, as described in chapter 3.3.3. In order to fine-tune a model, training data would first need to be
generated for the parts. Hence, few-shot prompting with a pre-trained language model (chapter 4.2.2.2)
becomes a possible alternative.

4.5.2 Single Model
One approach is to treat the task of recognizing citations and their parts as a single problem. The
document is passed to one model, which recognizes both citations and their parts in the same step.
This approach is illustrated in Figure 15.

Figure 15: Single model pipeline

Recognizing both citations and their detailed parts in one step requires the model to handle a complex
task. This might be too demanding for smaller models, leading to worse performance. Larger models
like Llama may be needed to handle this complexity. However, larger models require more resources
such as memory, storage space, and computing power. Inference time also gets slower. In addition, it
is not possible to post-process the model output for each subtask separately. This means that errors or
inaccuracies when recognizing citations might propagate to the task of recognizing parts. The output
is not easy to debug and less explainable.

An advantage of this approach is that maintaining only one model simplifies deployment.

4.5.3 Model Chaining
The model chaining approach splits the task of citation recognition into two sequential steps. The first
model identifies the citation entities in the text. It then passes the text fragments to a second model
that extracts the individual components of each citation. This process is known as model chaining, as
further explained in chapter 4.2.5. The architecture is visualized in Figure 16.

Figure 16: Model chaining pipeline
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This approach offers several advantages over using a single model. By dividing the task, each model
can be optimized for its specific subtask, potentially leading to better overall performance. Being fine-
tuned, the first model can be more accurate in recognizing citations. The second model benefits from
receiving only the relevant portions of text as input, simplifying its task.

Additionally, post-processing becomes feasible after the first task, allowing for corrections or refine-
ments in citation recognition before extracting detailed components. This staged process also means
that the context size required for the second model is reduced, which could improve its efficiency. The
output of each model can be analyzed separately, making debugging and error analysis easier. It has a
high explainability.

However, this approach also comes with some disadvantages. Managing two models requires addi-
tional resources, such as memory and storage space, and increases power consumption. Deployment
becomes more complex, as updates or changes need to be coordinated across multiple models. Infer-
ence time could also be longer. However, this depends on the models used and the communication
overhead between the stages.

4.5.4 Model Chaining with Multiple Classes
Another approach is to divide the task again into two steps, with the first model performing a more
detailed classification. Instead of just recognizing CITATION entities, it identifies different types like
LAW, CASELAW, and LITERATURE. This architecture is shown in Figure 17.

Figure 17: Model chaining with distinct classes pipeline

Additionally to the advantages of the chaining approach in chapter  4.5.3, this variant offers more
flexibility and adaptability. The structure of citations can vary depending on the type of entity. Defining
multiple classes can help the model better understand the features of each entity. It also provides more
information about the citation, which can be helpful when linking it to the correct source later.

Using multiple citation classes can also enhance the second model’s performance. With few-shot
prompting, the prompt to extract the parts can be adjusted based on the type of citation. Different
examples can be provided for each class. Since only the relevant domain-specific examples are
provided, the prompt gets shorter, leading to faster inference times.

However, classifying entities into finer-grained types requires a more capable first model and poten-
tially larger amounts of annotated training data. This might not be available for all classes. The added
specialization also means that the software becomes more complex, as it needs to dynamically adjust
the prompt based on the classification result.
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4.5.5 Model Chaining with Multiple Classes and Specialized Models
Another variant of the model chaining approach is to use specialized models for parts extraction for
each class of entities. The first model classifies entities into different types. Each type is then processed
by a dedicated specialized model. The proposed architecture is visualized in Figure 18.

Figure 18: Model chaining with multiple classes and specialized models pipeline

However, this approach is not practical for this project. The types of parts are not exclusive to specific
entity classes. For instance, the part type VOLUME can appear in both LITERATURE and CASELAW citations.
In such cases, a single model for all classes is more effective. Moreover, if few-shot prompting with a
pre-trained model is used, having specialized models becomes redundant.

4.5.6 Ensemble of Models
An ensemble of models is another possibility for citation recognition. It can be used in combination
with any of the previously described approaches. Multiple models are trained independently. They
either each focus on a specific aspect of the task, or use different architectures or hyperparameters.

The outputs of the models are combined. Which prediction to use can be determined by a voting
mechanism, by averaging the predictions, or with other aggregation methods. The approach is illus-
trated in Figure 19.

Figure 19: Ensemble of models pipeline
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5 Design
This chapter presents the solution. It covers the processing pipeline, architecture, data schema, fine-
tuning process, and technologies used.

5.1 Choice of Processing Pipeline
As shown in chapter 4.1, various approaches to NER exist. The most effective methods for citation
recognition leverage deep learning models like BERT or LLMs. They have demonstrated high perfor-
mance across numerous NLP tasks, including NER.

Due to the NFRs specified in chapter 2.2, it is not possible to use GPT-4o from OpenAI. The model is
hosted externally, which poses a security risk and may lead to data privacy issues. The API is not cost-
effective, as every request to the API costs money. Lastly, due to the external hosting, there is a risk of
vendor lock-in.

Training a model from scratch would require a large amount of data, computational power, and time,
which is not available in this project, nor is it necessary. The pre-trained models can be fine-tuned on
a specific dataset to achieve good results.

One possibility is to solve the task of recognizing citations and parts in one step with a single model.
For this, few-shot prompting on a Llama model is evaluated. However, it quickly becomes apparent
that this approach is not feasible. The model is not able to process the required 3000 documents per
night. It would take approximately 32 hours for that amount. The performance is also not satisfactory.
The experiment is described in more detail in appendix section F.2.6.

This leads to the decision to split the task into two subtasks: recognizing citations and in a second step,
recognizing the specific parts. For each subtask, a different model is used. The output from the first
model is passed to the second model (chapter 4.5.4).

To recognize citations, a fine-tuned model (chapter  4.2.3) is used. Multiple models are evaluated.
Another evaluation is done about the possibility of using multiple models in parallel and aggregating
their results (chapter 4.5.6).

Due to the disparity in data availability described in chapter 4.5.1, it is not possible to directly fine-
tune a model on the task of recognizing parts of a citation. Either few-shot prompting (chapter 4.2.2.2)
or knowledge distillation (chapter 4.2.4) have to be used. Both of these approaches are evaluated.
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5.2 Solution Architecture
The architecture of the solution is based on the requirements described in chapter 2. The following
chapters describe the architecture based on the C4 model. The C4 model is a hierarchical model for
visualizing the architecture of software systems. It consists of four levels: context, container, compo-
nent and code. The code level is ommitted in this thesis, as such a detailed view is not necessary. [71]

5.2.1 C4 - Context Layer
The context diagram can be seen in Figure 20. The Citation Recognition solution is part of the Swisslex
ecosystem and interacts with the Job Scheduler and the Database of Swisslex.

Swisslex Developer Uses the solution, develops and runs the citation recognition.

Job Scheduler External tool which runs different jobs periodically. One of these jobs will be the
CitationRecognitionJob, which is a part of the Citation Recognition software system.

Database The Database is used by the solution to read documents and store the recognized citations
and its parts. The existing database schema is described in chapter 3.1.4.3. The extended tables
used for citation recognition are described in chapter 5.4.

Figure 20: C4 context diagram
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5.2.2 C4 - Container Layer
The container diagram can be seen in Figure 21. The software system Citation Recognition contains the
following containers:

Citation Checker Web The web application can be used to test the citation recognition (chapter 6.3).

Citation Processor This project contains the CitationRecognitionJob which can be called by the
Job Scheduler from Swisslex. It can also be used as a console application to processes multiple
documents (chapter 6.4).

Parts Training Data Generator This console application is used to generate training data for the
recognition of the parts of a citation with an LLM (chapter 6.2.3.1).

Citation Inference API This Python application uses FastAPI to provide an API for the fine-tuned
models (chapter 6.5).

Data Extractor This project is used to extract data from the Database and generate the datasets
needed to fine-tune models (chapter 6.1.2.3).

Python Project This project contains the code to fine-tune the models and evaluate them.

vLLM Server With vLLM, an inference server for LLM base models can be started. This is used for
few-shot prompting and knowledge distillation (chapter 6.2.2 and chapter 6.2.3.1).
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Figure 21: C4 container diagram
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5.2.3 C4 - Component Layer
The component diagrams for the different containers can be seen in the following sections.

5.2.3.1 Citation Checker Web
The component diagram for the website Citation Checker Web can be seen in Figure 22. It contains the
following components:

CitationCheckerWeb This project is a .NET Blazor Web App and functions as the frontend. It is
used to test the citation recognition.

CitationCore This project is a .NET Standard library that encapsulates the core logic shared across
all .NET projects. It is used to recognize citations and their parts by calling the vLLM Server or
the Citation Inference API. Additionally, it includes the functionality to retrieve documents from
the database.

Figure 22: C4 component diagram - Citation Checker Web
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5.2.3.2 Citation Processor
The component diagram for the application Citation Processor can be seen in Figure 23. It contains the
following components:

CitationProcessor This project is a .NET Console Application which can be used to run the
CitationRecognitionJob.

CitationCore This project is a .NET Standard library that encapsulates the core logic shared across
all .NET projects. It is used to recognize citations and their parts by calling the vLLM Server or
the Citation Inference API. Additionally, it includes the functionality to retrieve documents from
the database. It is used to by the CitationProcessor. After recognizing citations and parts, they are
stored in the Database.

Figure 23: C4 component diagram - Citation Processor
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5.2.3.3 Parts Training Data Generator
The component diagram for the application Parts Training Data Generator can be seen in Figure 24. It
contains the following components:

PartsTrainingDataGenerator This project is a .NET Console Application which can be used to
generate synthetic training data for citation parts recognition.

CitationCore This project is a .NET Standard library that encapsulates the core logic shared across
all .NET projects. It is used to by the PartsTrainingDataGenerator to recognize parts from citations.
The citations are read from the Database. The generation is done by using few-shot prompting
on an LLM served by the vLLM Server.

Figure 24: C4 component diagram - Parts Training Data Generator
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5.2.3.4 Citation Inference API
The component diagram for the application Citation Inference API can be seen in Figure 25. It contains
the following components:

app.py is the script to start the server.

controllers contains the logic to receive the requests and to call the services.

utils contains helper functions like sliding window logic and post processing.

services contains the necessary logic to load and use the models

models contains classes used by the services and controller component.

configs contains the list of models which can be served.

Figure 25: C4 component diagram - Citation Inference API
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5.2.3.5 vLLM Server
The component diagram for the application vLLM Server can be seen in Figure 26. It contains the
following components:

vLLM Server The server can be started with a bash command. The running instance is used by the
Parts Training Data Generator to generate synthetic training data for citation parts recognition.
The Citation Checker Web also uses the server when a user chooses few-shot prompting as
recognition mode. The Citation Processor can also use it if the developer decides to use few-shot
prompting to recognize parts.

Figure 26: C4 component diagram - vLLM Server
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5.2.3.6 Data Extractor
The component diagram for the application Data Extractor can be seen in Figure 27. It contains the
following components:

cli.py The Python script to run the data extraction pipeline.

extractor.py This script contains the logic of the data extraction pipeline. This includes SQL queries
and the merging of the extracted data.

helper This package provides helper functions for data extraction, such as the database connection.

resources Contains the IDs used for the golden test dataset and the special cases dataset.

Figure 27: C4 component diagram - Data Extractor
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5.2.3.7 Python Project
The component diagram for the application Python Project can be seen in Figure 28. It uses different packages to test functionality, annotate the golden and
special case datasets, create plots, and train and evaluate models.

Figure 28: C4 component diagram - Python Project
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5.3 Architectural Decisions
This chapter documents the architectural decisions that led to the current solution architecture in
chapter 5.2. To document them in a lean and structured way, the Y-Statement template by O. Zimmer-
mann is used [72].

ADR-001: Categorization of citations in LAW, CASELAW and LITERATURE
In the context of categorizing legal citations into distinct types

facing the challenge of handling different structures of citations
we decided to divide citations into the categories LAW, CASELAW, and LITERATURE

and neglected a more granular or unified categorization approach
to achieve a clearer structure and improved performance in downstream tasks
accepting the risk of sometimes not 100% clear categorization in one of the three categories

ADR-002: Create fine-grained parts of a citation
In the context of improving the recognition of parts of a citation

facing the challenge of diverse structures of citations
we decided to create fine-grained parts of a citation like ARTICLE, PARAGRAPH, and PAGE

and neglected a simpler, less granular approach to parts labeling
to achieve better adaptability to nuanced citation structures and increased accuracy in

downstream tasks
accepting the additional effort required to annotate a more detailed dataset for training

ADR-003: Starting possibilities of citation recognition in UI
In the context of starting the citation recognition process through the UI

facing the problem of not knowing which of both starting points to implement
we decided to give the user a document-upload and dossier number field to start the citation

recognition process
and neglected presenting only one or the other

to achieve good and flexible usability and having the possiblity to upload any text (no
dependencies to the SLX database)

accepting a more complex UI and more complex backend logic

ADR-004: Use of BERT-based approach to recognize parts of a citation
In the context of recognizing parts of a citation

facing the need to process 3,000 documents within 6 hours
we decided to use a BERT-based approach during inference

and neglected few-shot prompting based on Llama
to achieve a high throughput while maintaining a comparable accuracy
accepting having to create a new parts dataset from scratch for training
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5.4 Database Schema
To store the found citations, a database schema is created. It extends the database from Swisslex that
is described in chapter 3.1.4.3.

The new schema is shown in Figure 29. It consists of the following tables:

Citation Stores all citations found by the model, including start and end positions in the document,
the found text (passage), the type (CASELAW, LAW or LITERATURE) and the confidence of the model.
It is linked to the AssetBase table and points to the document in which the citation was found.

PartType Stores the different types of citation parts that can be found, such as COURT, LAW, ARTICLE or
CONSIDERATION. The values are predefined. They are listed and described in detail in chapter 6.2.1.

CitationPart Stores the values of the different parts of a citation and links them to their respective
Citation and PartType entries. Additionally, the start and end positions of the part in the citation
are stored, as well as the confidence of the model for this part.

The AssetBase table already exists in the Swisslex database and is used as an entry point for all
documents in the system. It contains metadata about the document, such as the title, the document
type, the publication date, and the document ID.

Figure 29: Database schema to store the citations
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5.5 Used Technologies
Figure 30 shows the technology stack used in this project.

Figure 30: Technology stack
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5.5.1 Infrastructure
The components of the infrastructure are described in the next sections.

NVIDIA DGX H100 The NVIDIA DGX H100 [73] is a powerful system with 8 H100 GPUs, designed
to accelerate enterprise AI workloads. During this project, access is provided to one full H100
GPU and one H100 GPU shared across three JupyterLab instances, running on a Linux-based
operating system.

vLLM To serve the Llama model for inference, vLLM [74] is used. vLLM is an optimized inference
library for large language models.

5.5.2 Programming Languages / Frameworks
Different programming languages and frameworks are used in this project, as described in the
following sections.

Python [75] is a versatile programming language that is widely used in the field of data science and
machine learning. It is used for the implementation of the models, the data processing, and the
training of the models.

PyTorch [76] is an open-source machine learning library based on the Torch library. It is used for
applications such as natural language processing. In this project, PyTorch is used to implement
the models and to train them.

Hugging Face Libraries Hugging Face [77] provides various useful libraries such as Transformers,
Tokenizers, and Datasets. The Transformers library is used to load and fine-tune the pre-trained
models, the Tokenizers library to tokenize the input data, and the Datasets library to load the data.

FastAPI [78] is a modern, fast web framework for building APIs with Python. FastAPI is used to serve
the BERT based models for inference.

Microsoft .NET [79] is a free, open-source, cross-platform framework for building modern, cloud-
based, internet-connected applications. .NET is used to implement the core logic of the citation
processor job that is executed on a daily basis.

Blazor [80] is a web framework to create user interfaces for web apps using C#. Blazor is used to
provide a user interface for developers to check the performance of the models.

Log4Net [81] is a flexible and widely used logging framework for .NET applications.

5.5.3 Database
The database systems used in this project are described in the following sections.

Elasticsearch [82] is a distributed, RESTful search and analytics engine capable of solving a growing
number of use cases. Since the Swisslex documents are also available in Elasticsearch, it is used
to gain a quick insight into the data.

Microsoft SQL Server Swisslex uses Microsoft SQL Server [83] as their database system. Microsoft
SQL Server is a robust relational database management system for storing, querying, and man-
aging data at scale. The database is used to retrieve data for our training and testing of the models
and to store the final results of the parts of a citation.

5.5.4 IDEs
Various IDEs are used, including PyCharm [84] for Python development, Visual Studio [85] and
JetBrains Rider [86] for .NET development, DataGrip [87] to interact with the database and Visual
Studio Code [88] to write the documentation.
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5.5.5 Versioning
Azure DevOps [89] is used to manage the versioning of the code and the documentation. Azure DevOps
is a set of services for teams to share code, track work, and ship software.

5.5.6 Tools
The various other tools used in this project are described in the following sections.

JupyterLab [90] is a web-based interactive development environment for Jupyter notebooks, code,
and data. JupyterLab is used to be able to run the code on the provided GPUs.

MLflow To track the experiments and the model performance, MLflow [91] is set up. MLflow is an
open-source platform for managing the end-to-end machine learning lifecycle.

Prodigy To label the golden and special case dataset, Prodigy [92] is used. Prodigy is an annotation
tool for creating training data for machine learning models.

Typst [93] is a modern markup-based typesetting system for creating high-quality documents with
ease and flexibility. In this project, Typst is used to write the documentation.

ChatGPT ChatGPT [94] is utilized for coding assistance, text rephrasing, and formatting adjustments.

GitHub Copilot GitHub Copilot [95] is used for coding assistance.

jq [96] is used for processing and inspecting JSON data.

5.5.7 Collaborative Tools
Microsoft Teams [97] and Threema [98] are used for communication and collaboration, Miro [99] for
brainstorming and planning, and Jira [100] for task management and time tracking.

5.5.8 Models
To recognize the citations and the parts of a citation, the following models are evaluated.

BERT The performance of the citation recognition is evaluated on a variety of BERT flavours,
including original Google BERT [30], DistilBERT [101], DeBERTaV3 [102] and XLM-RoBERTa
[103].

GliNER The performance of the citation recognition is also evaluated on a fine-tuned GliNER [38].

Llama The Unsloth Llama 3.2 1B Instruct [104], Llama 3.2 3B Instruct [105] and Llama 3.1 8B Instruct
[106] are fine-tuned for citation recognition, in order to compare them to the performance of
the fine-tuned BERT models. Additionally, the Unsloth Llama 3.1 8B Instruct and Llama 3.3 70B
Instruct [107] model are used for the few-shot prompting approach to recognize parts and the
generation of the parts training data.
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6 Implementation
In this chapter, the implementation of the solution is described. Figure  31 shows the a simplified
structure of the recognition process. First, a sample from the chunked document is processed by a fine-
tuned Google BERT model, which identifies citations categorized as CASELAW, LAW, or LITERATURE. The
recognized citations are then sent to a fine-tuned DistilBERT model, which recognizes the parts of the
found citations.

Figure 31: Overview diagram
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6.1 Recognizing Citations
This chapter describes the fine-tuning and evaluation of different models for recognizing citations.
After a hyperparameter optimization, various base models are fine-tuned on a small dataset of 100′000
samples. The most promising models are further evaluated after training on more samples. In the end,
the performance per label is evaluated as well as the performance on special cases. Lastly, the speed
of the models is measured.

6.1.1 Label Selection
Given the variety of citation styles in legal texts, it is better to adopt specific labels than to use a single,
generic CITATION label. The advantages of multiple classes are listed in chapter 4.5.4. The labels should
represent the distinct types of citations encountered in the data. In the context of legal documents,
the most common types of citations are references to laws, judicial decisions, and literature citations.
Therefore, the labels LAW, CASELAW, and LITERATURE are chosen for the classification task. An example
per label is shown in Figure 32.

Figure 32: Examples for the different citation types

The distribution of the cited documents is shown previously in chapter 3.3.1.3. While the chosen labels
LAW and CASELAW directly correspond to the cited documents, the label LITERATURE includes all other
types of citations, for example citations of essays, commentaries, book reviews, or other literature. The
resulting distribution of the labels is shown in Figure 33.

Figure 33: Distribution of citation labels in the dataset

The LITERATURE label is heavily underrepresented in the dataset, as it only makes up around 2% of the
samples. However, it is difficult to balance the dataset in a way that would only increase the number
of citations. For every chunk with literature citations, there tend to be more case law and law citations
within the same chunk. Therefore, it is not possible to boost the number of literature citations without
also increasing the number of other citations. Since the context of the surrounding text is crucial for the
model to make accurate predictions, it is also not possible to only aggregate sentences with literature
citations.

Due to this imbalance, the model might struggle to learn the features of literature citations. It is
necessary to evaluate the performance of the model on the different citation types separately, and
consider training separate models for each label.
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6.1.2 Datasets
To train and evaluate the models, several datasets are utilized. This section outlines the dataset creation
process, the challenges encountered, and provides an overview of the datasets themselves.

6.1.2.1 Available Data
From the current regex-based solution, a large amount of data of recognized citations is available.
The data is extracted from the Swisslex database and consists of documents and their citations. The
data is cleaned and preprocessed to generate the datasets needed for training and evaluation. The data
extraction pipeline is illustrated in chapter 6.1.2.3. Only citations linking to a document available in
Swisslex are included in the training data, as it is more likely that the other citations were misrecog-
nized by the regex solution, as described in chapter 3.3.2.1.

6.1.2.2 Dataset Types
All assets and the citations they contain are divided into distinct datasets to train and evaluate the
models. Each sample belongs to only one dataset, either training, test, golden or special cases. For
each of these datasets, an additional version is prepared in a specific format used for training GLiNER
models. The following datasets are used:

Training Dataset This set is created by randomly shuffling the available data. For fine-tuning, a
subset can be extracted, for example the first one million chunks. The randomized nature of this
dataset ensures a representative distribution of the data.

Test Dataset This dataset is designed to test model performance on unseen data. It is used for
evaluating and comparing different models. By keeping this dataset separate from the training
set, it ensures an unbiased assessment of the model’s generalization capabilities.

Golden Dataset The golden set consists of a few hand-picked documents that cover a variety of
document and citation types. The dataset is additionally manually annotated. This ensures that
the models can be compared against the current regex-based solution.

Special Cases Dataset This dataset contains hand-selected documents that represent known special
cases, as described in chapter 3.3.4. It serves as a benchmark to evaluate the models’ ability to
handle uncommon or challenging scenarios and is additionally manually annotated.

Label-Specific Datasets In addition to the general datasets, specific datasets per label (LAW, CASELAW,
LITERATURE) are generated. This is done by merging the training and test sets, separating them
by label and then splitting them again into training and test sets. For each label, only the citations
that belong to the respective label are included in the dataset. This allows to train and evaluate
models on specific citation types.

All datasets for recognizing citations in a text and their respective sizes are listed in Table 13.
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Name Sample Count Size
slx-dataset-citations-train.jsonl 16′635′633 21.0 GB
slx-dataset-citations-test.jsonl] 4′158′909 5.2 GB
slx-dataset-citations-golden.jsonl 3′894 5.3 MB
slx-dataset-citations-specialcase.jsonl 128 179 KB
slx-dataset-citations-caselaw-train.jsonl 3′224′254 4.4 GB
slx-dataset-citations-caselaw-test.jsonl 806′064 1.1 GB
slx-dataset-citations-law-train.jsonl 6′596′100 9.0 GB
slx-dataset-citations-law-test.jsonl 1′649′026 2.3 GB
slx-dataset-citations-literature-train.jsonl 326′665 423.0 MB
slx-dataset-citations-literature-test.jsonl 81′667 106.0 MB
slx-dataset-citations-train-gliner.jsonl 16′635′633 26.0 GB
slx-dataset-citations-test-gliner.jsonl 4′158′909 6.5 GB
slx-dataset-citations-golden-gliner.jsonl 3′894 6.6.0 MB
slx-dataset-citations-specialcase-gliner.jsonl 128 211.0 KB

Table 13: Datasets for recognizing citations in a text

6.1.2.3 Data Extraction Pipeline
To generate the citation datasets, several steps are performed. The data extraction pipeline is illustrated
in Figure 34. It consists of the following steps:

1. Export citations and assets from the database
2. Merge citations and assets into a single dataset
3. Clean the dataset by removing citation tags and adding metadata fields
4. Chunk the text into parts of max. 1000 tokens (more details in chapter 6.1.2.4), separate the chunks

per language into separate files
5. Deduplicate the chunks using the MinHash algorithm (more details in chapter 6.1.2.5) and merge

the resulting chunks back into a single dataset
6. Split the golden set and the special cases set from the normal dataset
7. Split the dataset into training and test sets by a ratio of 70:30
8. Create a GLiNER version of each dataset

When executing the pipeline, the generated datasets are stored in a folder with the current timestamp.
Additionally, a symlink is created in a folder called current that points to the most recent dataset. This
way, the datasets are versioned and can be easily accessed. Furthermore, a backup script is set up. It
can be executed manually to copy the datasets to a NAS as backup.
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Figure 34: Data extraction pipeline
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6.1.2.4 Chunking
Due to the context size limitations of the models, documents are divided into smaller chunks for fine-
tuning. Most BERT-based models have a context size of 512 tokens [30]. While models like Llama
support significantly larger context sizes, their performance becomes slower as the context size
increases [108]. For this reason, chunking is applied even for models with larger context capabilities.

A standard chunk consists of 1,000 characters. However, if a chunk boundary would fall within a
known citation, the chunk is split before the citation. This ensures that citations are not cut off between
chunks. Depending on the tokenizer, the number of tokens in a chunk can vary, but tests have shown
that this approach is a good compromise between the number of tokens and the size of the context.

Rather than isolating individual sentences to identify citations, the entire chunk is deliberately
included to provide the model with sufficient context. This allows the model to use the surrounding
information to better understand whether a citation is present [109]. This is particularly important in
relation to the “CO” example discussed in chapter 3.3.4.2.

During inference, the text is chunked using the same chunk size as in training to maintain consistency
in the model’s input structure. However, since the locations of citations are unknown during inference,
a sliding window approach is employed to ensure that no citation is split across chunks. This is
described in more detail in chapter 6.5.3.

6.1.2.5 Deduplication
As explained in chapter 3.3.5, the dataset contains many duplicate chunks. This makes deduplication an
important step to ensure the model is trained on unique data. For this purpose, the MinHash algorithm
is used to sort out similar chunks during the data preproessing step. The MinHash algorithm is a
probabilistic method for estimating the similarity between two sets by hashing the elements of the
sets [110].

The deduplication process is implemented using the DataTrove library from Hugging Face [111] and
is performed separately for each language, as the tokenizer requires specifying the language. Overall,
about 12% of the chunks are removed during deduplication. Detailed statistics on the removed chunks
are available in Table 14.

Language Total Chunks Dropped Percentage
German 15′529′361 1′613′696 10.39%
French 7′019′348 1′030′991 14.69%
Italian 1′034′084 234′746 22.70%
English 97′378 2′759 2.83%
Romash 599 14 2.34%
Total 23′680′770 2′882′206 12.17%

Table 14: Deduplication statistics
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6.1.2.6 Sample Structure
Code-Snippet 7 shows a sample from the golden test dataset. The sample contains metadata and text.
The text equals one chunk of a document, which is approximately 1000 characters. In this example, it is
shortened for brevity. The identified citations are marked with spans. Each span contains the citation
text, start and end position in the text, and the citation type.

{
    "meta": {
        "AssetBaseId": "82E37A82-1BF7-4200-B79C-5395D5CE3A63",
        "AssetType": "Case-Law Asset",
        "Language": "Deutsch"
    },
    "text": " dass es sich beim angefochtenen Beschluss des Handelsgerichts um einen
Zwischenentscheid im Sinne von Art. 92 f. BGG handelt, der das Verfahren in der
Hauptsache nicht abschliesst (BGE 141 III 395 E. 2.2 V 141 E. 1.1 mit Hinweis);</
p>\n<p align=\"justify\">",
    "spans": [
        {
            "id": [
                "b9002814-261e-4724-94e5-94f1a62538e4"
            ],
            "passage": "Art. 92 f. BGG",
            "start": 196,
            "end": 210,
            "label": "LAW"
        },
        {
            "id": [
                "manual"
            ],
            "passage": "BGE 141 III 395 E. 2.2 V 141 E. 1.1",
            "start": 275,
            "end": 310,
            "label": "CASELAW"
        },
    ]
}

Code-Snippet 7: Example sample from the golden test dataset

6.1.2.7 Manually Annotated Test Sets
Since the existing test set is generated based on the data recognized by the regex, it also contains the
errors made by the regex. This means that models that overcome the limitations of the regex solution
are punished for it in the evaluation. Therefore, it is important to evaluate the models also on manually
annotated data.

For this, two smaller test sets are manually annotated. The first test set is a random sample of the
data (golden test set), while the second test set contains special cases that are not well recognized by
the regex.

It is important to note that the manual labeling is a best effort annotation and not a perfect solution.
The question of what constitutes a citation is not always clear. For example, if a citation is only partially
visible, it is not clear whether it should be annotated or not. An example of the manual labeling tool
Prodigy [92] is shown in Figure 35. When the context is considered, it is clear that the Art. 111 belongs
to the AsylG and that together, these two parts form a citation. However, the Art. 111 on its own is
not a usable citation, since it cannot be linked to the corresponding law.
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Figure 35: Example of a partial citation

Additionally, legal knowledge would be required to make better annotations. Not all abbreviations are
known to the annotators. As an example in Figure 36, the abbreviation BzP looks like an abbreviation
for a law. But in fact, it is an abbreviation for “Befragung zur Person”, hence not a citation.

Figure 36: Example of an unknown abbreviation

Lastly, the labeling tool shows chunks of around 1000 characters at a time. Citations that are split
between two chunks cannot be annotated as a single citation.

6.1.3 Model Selection
To find the most promising base model for recognizing citations, 21 different base models are trained
and evaluated on the same dataset. Both a generative and a discriminative approach are tried. For
the generative test, Llama models of different sizes are used. For the discriminative test, BERT and
GLiNER models are selected. The selection of the models aims to cover a wide range of different models
and sizes.

Based on the literature review in chapter 4.1.4, two Switzerland-specific models are also included in
the evaluation: ZurichNLP/swissbert and ZurichNLP/swissbert-ner. They are chosen because they
are fine-tuned on the languages German, French, Italian, and Romansh, which are four of the five
languages present in the training set. Additionally, they were pre-trained on text related to Switzerland,
which might help in understanding the legal texts.

All models are downloaded from the Hugging Face model hub. [112]

In Table  15, the models that are trained and evaluated are listed with its respective specifications.
The choice of models is based on different factors such as the model’s size, the language, and its case
sensitivity.
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Type Model Params Language Cased
GLiNER urchade/gliner_large-v2.1 459.0M English Yes
GLiNER urchade/gliner_medium-v2.1 209.0M English Yes
GLiNER urchade/gliner_small-v2.1 166.0M English Yes
GLiNER urchade/gliner_multi-v2.1 209.0M Multilingual Yes
BERT google-bert/bert-base-cased 109.0M English Yes
BERT google-bert/bert-base-uncased 110.0M English No
BERT google-bert/bert-base-multilingual-uncased 168.0M Multilingual No
BERT google-bert/bert-large-uncased 336.0M English No
BERT dslim/bert-base-NER-uncased 109.0M English No
BERT dslim/bert-large-NER 334.0M English Yes
BERT distilbert/distilbert-base-uncased 67.0M English No
BERT distilbert/distilbert-base-cased 65.8M English Yes
BERT FacebookAI/xlm-roberta-large 561.0M Multilingual Yes
BERT microsoft/deberta-v3-base 86.0M English Yes
BERT microsoft/deberta-v3-large 304.0M English Yes
BERT microsoft/mdeberta-v3-base 86.0M Multilingual Yes
BERT ZurichNLP/swissbert 160.0M Multilingual Yes
BERT ZurichNLP/swissbert-ner 152.0M Multilingual Yes
Llama meta-llama/Llama-3.2-1B-Instruct 1.2B Multilingual Yes
Llama meta-llama/Llama-3.2-3B-Instruct 3.2B Multilingual Yes
Llama unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit 8.0B Multilingual Yes

Table 15: Specifications of the evaluated models

6.1.4 Training Iteration
The training iteration is the process of training and evaluating a model using the datasets defined in
chapter 6.1.2 as well as the master_finetune.py file from the Python project (chapter 5.2). The training
iteration is repeated until the model reaches the desired performance or the experiment is stopped.
The training iteration consists of the following steps visualized in Figure 37.

1. Read Model Names from Config: The model names to train and evaluate are read from a
configuration file. For each model, steps 2 and 3 are executed.

2. Fine-Tune Model: The selected model is fine-tuned on a certain number of samples. The selected
number of samples from the train dataset is split in a 80/20 ratio for training and validation.

3. Evaluate Model: The model is evaluated on the test data set. The number of test samples is 30%
of the number of training samples (calculated before the 80/20 validation split). Precision, recall and
F1 score are calculated and logged in MLflow [91].

4. Analyze Metrics in MLflow: The arguments and metrics can be analyzed in MLflow to determine
the performance of the models.

5. Adjust Training: If the models do not achieve the desired performance, the training iteration is
repeated with adjusted hyperparameters.
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Figure 37: Training iteration

The master_finetune.py script simplifies the training iteration process by providing a simple inter-
face for fine-tuning and evaluating models. There are separate scripts for training and evaluation that
can be used.

6.1.5 Implementation Details
For fine-tuning and inference, different techniques and strategies are used. The following sections
outline a few of them.

6.1.5.1 LoRA
This bachelor thesis uses LoRA with its Hugging Face implementation [113] of the PEFT library
[114] to fine-tune the Llama and BERT models. The implementation is based on the paper “Low-Rank
Adaptation of Large Language Models: Structured Sparse Attention and Efficient Fine-tuning” [115].

LoRA is a technique for fine-tuning large pre-trained models by introducing small, trainable low-rank
matrices. It significantly reduces the number of parameters that need updating. This method offers a
key advantage in efficiency, as it requires substantially less computational power and storage compared
to traditional fine-tuning approaches. This makes it particularly suitable for resource-constrained
tasks. However, its effectiveness can vary depending on the complexity of the task, as the limited
parameter updates may restrict its ability to capture highly intricate patterns.

It is particularly advantageous when applied to LLMs like Llama, which have billions of parameters.
Updating only the small low-rank matrices enables efficient adaptation to specific tasks without
requiring full model retraining. This approach not only preserves the valuable pre-trained knowledge
of the model, but also facilitates task-specific customization with minimal resource usage. [115]

For GLiNER, the LoRA implementation cannot used because it requires its own trainer, which is not
compatible with the SFTTrainer [116].

6.1.5.2 Quantization
Quantization is a technique that reduces the precision of a model’s numerical computations, such as
using 8-bit integers instead of 32-bit floats, in order to decrease memory and computational require-
ments. It is widely used to improve the efficiency of machine learning models, making them faster
and more cost-effective for large-scale or resource-constrained applications. For example the Llama
model meta-llama/Llama-3.1-8B-Instruct uses 16.07 GB of storage for its .safetensor files [117].
In contrast, the quantized version unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit uses only 5.7 GB
of storage [106].

6.1.5.3 Prompt for Llama
A prompt is used to fine-tune and inference the Llama model. It is divided into three parts: system, user
and assistant. Both the system and the user part stay the same while fine-tuning and inferencing. The
assistant part is only used during the fine-tuning process. It stays empty during the inference process,
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as this is the part where the model generates the output. An example of the whole prompt can be seen
in appendix section F.2.3.1.

6.1.5.4 Maximal Token Length for Llama
The maximal token length for Llama determines the size of the input text chunks. To choose the right
size, an experiment is conducted to analyze the token size distribution of the training data. It shows
that from 100'000 training samples, the majority of the samples have a token size between 1131 and
1206. Since there are outliers with up to 1960 tokens, a chosen token size of 2048 ensures that no
input is truncated. A boxplot which displays the distribution of the token sizes can be seen in appendix
section F.2.3.2.

6.1.5.5 Token Classification
Token classification is a type of sequence labeling task that assigns a label to each token in a sequence.
It is commonly used for NER. The datasets need to be tokenized before they can be used for training.
[46], [118], [119]

When implementing NER, the labels which are used to tag tokens during classification have to be
defined. For training, the tokenized dataset has to be aligned with these labels. This thesis uses the
IOB2 tagging scheme which is often employed to label sequences [119]. It uses three prefixes:

• B- (Beginning): Marks the first token of an entity (e.g., B-LAW for the first token of a law citation).
• I- (Inside): Marks subsequent tokens inside the same entity (e.g., I-LAW for a part of a law citation

following the first token).
• O (Outside): Marks tokens that are not part of any entity. In IOB2, every entity starts with a B- tag

for consistency, even if it is the only token in the entity.

Prefixed with the IOB2 tags, the labels for recognizing citations (chapter 6.1.1) are:

• B-LAW
• I-LAW
• B-CASELAW
• I-CASELAW
• B-LITERATURE
• I-LITERATURE

The prefixed labels are mapped to IDs, which are used during training and inference.

Since almost every model has its own tokenizer, it is not feasible to pre-tokenize the dataset. This
would result in a separate tokenized dataset for each model, which would require more storage space
and increase the generation time. Therefore, the tokenization is done on-the-fly during training and
evaluation.

The tokenization process during training is shown in Code-Snippet  8. The Hugging Face
library [77] is used to load the tokenizer. The dataset is then loaded and tokenized. The
transform_and_tokenize_batched function contains the logic to tokenize the data and align the IDs
(representing the chosen labels) with the tokenized text.

1 tokenizer = AutoTokenizer.from_pretrained(model_name)
2 datasets = load_data(dataset_name, lines, splitted=True)
3 tokenized_datasets = datasets.map(
4     lambda x: transform_and_tokenize_batched(x, tokenizer, label2id), 
5     batched=True
6 )

Code-Snippet 8: Simplified tokenization during training
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After tokenization, the model is loaded from Hugging Face and the labels to id mapping and vice-versa
are provided to the model, as shown in Code-Snippet 9.

1 model = AutoModelForTokenClassification.from_pretrained(
2     model_name,
3     num_labels=len(label_list),
4     id2label=id2label,
5     label2id=label2id,
6 )

Code-Snippet 9: Load model from Hugging Face and provide labels

A visualization of the tokenization and tagging of the dataset is shown in Figure 38.

Figure 38: Tokenization and tagging of the training data

6.1.5.6 GLiNER Format
GLiNER operates in a span-based manner. This is in contrast to the BERT-based models described
in chapter 6.1.5.5. The training data format differs from both BERT-based models and the standard
dataset format described in Code-Snippet 7, requiring conversion into a seperate suitable format. This
conversion is performed in the data extraction pipeline, as described in chapter 6.1.2.3.

In the pipeline, all text chunks are transformed into the tokenized_text format, as shown in Code-
Snippet 10. Additionally, entities must be provided as spans, containing start and end indices and
a label [38]. Due to an open GitHub issue [120], the label list must be explicitly included for each
chunk when fine-tuning GLiNER on datasets containing chunks with an empty ner list.
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{
  "tokenized_text": [
    "...",
    "Art",
    ".",
    " ",
    "423",
    "OR",
    "..."
  ],
  "ner": [
    [
      12,
      16,
      "LAW"
    ],
    ...
  ],
  "label": [
    "CASELAW",
    "LAW",
    "LITERATURE"
  ]
}

Code-Snippet 10: GLiNER format example sample

6.1.6 Hyperparameter Tuning
To find the best hyperparameters for citation recognition, a hyperparameter tuning process is con-
ducted. Because of time constraints, the tuning is done for the DistilBERT model only, and the results
are applied to the other models.

6.1.6.1 Approach
Since computational resources are available, an automatic approach for hyperparameter tuning is
used. To speed up the process, only a fraction of the data is used (1 million chunks) to find the best
hyperparameters. The search is done using the Ray Tune library [121]. In the first step, the tested values
lie within a wider range. After identifying the best hyperparameters, a second search is conducted
within a narrower range around these optimal values.

6.1.6.2 First Search
In Table 16, the hyperparameters used for tuning search are shown. They are based on the values
discussed in chapter 4.3.2.

Hyper-Parameter Selection
Learning-Rate 2e-3, 2e-4, 2e-5, 2e-6

Batch-Size 16, 32, 64, 128

Weight-Decay 0, 0.1, 0.01, 0.001

Optimizer adamW

Epochs 1

Table 16: Hyperparameters used for tuning search
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Out of the hyperparameters in Table 16, the best combination was found to be the following:

Learning Rate 0.0002 / 2e-4
Batch-Size 128
Weight-Decay 0.1
Optimizer adamW
Epochs 1

The experiment resulted in the following scores:

eval_loss: 0.005320500582456589
eval_precision: 0.9331688451700897
eval_recall: 0.9670271992801844
eval_f1: 0.9497963722594946
eval_accuracy: 0.998266342408413

In appendix section F.2.2, screenshots of the console output of the hyperparameter tuning process and
result statistics are shown.

6.1.6.3 Second Search
Based on the results of the first search, a second search is conducted with a narrower range around
the best values. As scheduling method, PopulationBasedTraining is used. As with the first search, the
search is done with Ray Tune on DistilBERT. Code-Snippet 11 shows the configuration of the scheduler.

scheduler = PopulationBasedTraining(
    time_attr="training_iteration",
    metric="eval_f1",
    mode="max",
    perturbation_interval=1,
    hyperparam_mutations={
        "weight_decay": tune.uniform(0.05, 0.2),
        "learning_rate": tune.loguniform(2e-3, 5e-5),
        "per_device_train_batch_size": tune.choice(batch_size_space),
    },
)

Code-Snippet 11: PopulationBasedTraining hyperparameter definition

The first search found the optimal batch size to be 128. However, depending on the model size, this
leads to memory problems. Therefore, the smaller values 8 and 16 are also included in the search space
for the second run.

The second search results in the following scores:

Learning Rate 0.00010137455180990025
Batch-Size 8
Weight-Decay 0.19484480496118395
Max-Sequence-Length 1024
Epochs 1
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6.1.6.4 Application to Models
Where applicable, the Llama and GLiNER models are trained with the same hyperparameters as the
BERT models. However, some parameters need to be adjusted to fit the models. The final hyperpara-
meters used can be seen in Table 17.

Type Value BERT Value GLiNER Value Llama
Epoch 1 1 1
Batch size 8 16 8
Learning rate 0.00010137455180990025 2e-6 2e-4
Weight decay 0.19484480496118395 0.01 0.1
Max sequence length 1024 1024
Lora rank 32 - 32
Lora alpha 64 - 64
Lora dropout 0.1 - 0
Train / test split 0.8 / 0.2 0.8 / 0.2 0.8 / 0.2

Table 17: Hyperparameters used for training the models

6.1.7 Model Evaluation
The base models shown in Table 15 are trained on 100′000 samples with a split of 80% training and 20%
validation. The evaluation is done on a separate test set with 30′000 samples. The evaluation metrics
are visualized in Figure 39. A detailed overview of the evaluation metrics can be found in appendix
section F.3.1.1.

Figure 39: F1 scores of the evaluated base-models

Based on these results, multiple conclusions can be drawn.
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6.1.7.1 Case Sensitivity
When directly comparing two models with a cased and an uncased variant, the uncased model
performs better. The cased Google BERT base model achieves an F1 score of 75.1%, while the uncased
variant of the same base model achieves a significantly higher score of 82.1%. The same can be seen
when comparing the two variants of the DistilBERT base model: The cased model achieves an F1 score
of 81.1%, while the uncased model comes in at 86.7%.

This can be explained by the fact that cased models have to learn to distinguish between uppercase
and lowercase letters, which may not be crucial for recognizing legal citations. Legal citations typically
follow structured patterns, where capitalization does not alter their meaning. If a cased model overem-
phasizes capitalization, it might introduce unnecessary complexity and fail to generalize well. [30]

However, whether a model is cased or uncased is less significant when comparing different base
models. For example, Facebook’s XLM-RoBERTa large model achieves an F1 score of 84.2%. Even
though it is cased, it still performes better than the comparable uncased model Google BERT large,
which only reaches 82.7%.

6.1.7.2 Language
The language of the model seems to have only a slight impact on the performance. When comparing
the multilingual GLiNER model with its English version (GLiNER medium) with the same number of
parameters, there is hardly any difference. The multilingual version reaches an F1 score of 79.5%, the
English version reaches 78.2%. A similar difference is found for the Google BERT models. The Google
BERT base multilingual uncased model achieves an F1 score of 84.4%, the English version gets only
82.1%. Although both are Google BERT base models, they differ in parameter size: The multilingual
version has 168M, while the English version has only 110M, making a direct comparison difficult.

On the other hand, the DeBERTa models shows a slight difference in the opposite direction. The
multilingual version mDeBERTa base scores 58.5%, the English version performs better with 62.0%.

Legal citations across the most common languages in the training set (German, French, English, Italian)
often follow similar numeric and symbolic conventions (e.g. Art. 2 or § 15). The evaluation demonstrates
that these patterns are effectively captured by the multilingual models. However, since these patterns
rely less on language-specific contextual nuances, the English models perform comparably well.

6.1.7.3 Size
There is no clear correlation between model size and F1 score. The best performing model (DistilBERT
base uncased) has only 67M parameters, which is the second smallest of the models evaluated in terms
of size. The largest model with over 8B parameters (Llama 3.1 8B) is only 5th in the ranking.

However, when comparing models from the same family, the model with more parameters usually
performs better. For example, the GLiNER large model achieves an F1 score of 84.5%, while the medium
model gets 78.2% and the small version scores only 76.8%. The same can be seen for the Llama models:
The 8B model reaches an F1 score of 84.0%, the 3B results in 76.4%, and the smallest model with 1B
parameters scores only 72.8%.

In Figure 40, the F1 score is plotted against the number of parameters of the model. Since the Llama
models have a significantly higher number of parameters than the other models, they are excluded
from a second plot in appendix section F.3.1.1.
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Figure 40: Correlation between model size and F1 score

For the BERT-based models, this result can be explained by how they process information. Each
layer in the model learns a different type of information. The lower layers focus on simple details,
like recognizing individual words and their basic roles in a sentence. The middle layers learn how
words relate to each other, like understanding grammar and context. The higher layers focus on the
overall meaning of the sentence, including deeper connections and context. This allows BERT models
to handle both straightforward patterns and more complex relationships in the text. [122]

The Google BERT large model has 24 layers, while the base version has only 12, and DistilBERT
reduces this further to 6 [30], [101]. More layers enable models to capture complex patterns, semantic
relationships, and long-range dependencies in the data. However, for the task of citation recognition,
long-range dependencies are less important because citations are usually short, and their parts are close
together. Additionally, citations often follow structured patterns that can be effectively recognized by
the lower layers of the model. This may explain why smaller models outperform larger ones for this
specific task.

6.1.7.4 Generative vs. Discriminative
The generative models do not perform as well as the discriminative models, especially in comparison
to their model size, training time, and inference time.

This discrepancy can be explained by the fundamental differences in their architectures and objectives.
Generative models, such as Llama, are typically designed to generate sequences of tokens by predicting
the next token in a sequence [123]. They are more suitable for tasks like text generation, summariza-
tion, or translation. While they can handle classification tasks, these tasks are not their primary design
focus. Discriminative models, on the other hand, are specifically designed for classification tasks. They
predict the probability of a label given the input, which is the primary objective of NER.
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6.1.7.5 Precision vs. Recall
While the F1 score is a good general measure of model performance, recall is more important than
precision for this project. This is because false positives (recognized citations that do not actually
exist) are not a major issue; they simply do not get linked later in the process and have no significant
impact. However, false negatives (missed citations that do exist) are critical, as they result in valid
citations being overlooked. This would undermine the system’s primary purpose of accurate citation
recognition and linkage. Ensuring high recall minimizes the risk of missing these crucial citations,
making it a key priority for this project.

While the recall correlates well with the F1 score, there are some outliers. All Llama models have a
lower recall than their precision, which is not the case for the other models. It seems as if generative
models are generally better at precision than recall, in contrast to discriminative models, such as the
evaluated BERT-based models. The plot in Figure 41 shows the correlation between recall, precision
and F1 score.

Figure 41: Correlation of precision, recall and F1 score

When ranking the models by recall, a slightly different order is obtained. The XLM-RoBERTa large
model is now the best performing model, DistilBERT base uncased moved down to the second place,
and the Google BERT base multilingual uncased model is in third place. The Llama models are ranked
worse than in the F1 score ranking, the best one is the 8B model in 14th place. The ranking by recall
is shown in Figure 42.
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Figure 42: Recall of the evaluated base-models

6.1.8 Sample Size Increase
Based on the results of the evaluation in chapter 6.1.7, the models with the highest F1 scores are selected
for further evaluation on a larger dataset. To analyze the influence of language when training on more
data, the urchade/gliner_multi-v2.1 model is also included in this evaluation, despite its slightly
lower score.

The selected models are:

• google-bert/bert-large-uncased
• google-bert/bert-base-multilingual-uncased
• FacebookAI/xlm-roberta-large
• distilbert/distilbert-base-uncased
• urchade/gliner_large-v2.1
• urchade/gliner_multi-v2.1
• unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit

All models are trained on 1 million samples, the best performing ones in a second step on 5 and 10
million samples. The validation and test split remains the same as in the previous evaluation.
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6.1.8.1 Training on 1 Million Samples
The metrics of the first evaluation after training on 1′000′000 samples are shown in Table 18, together
with the training time of the models. All models achieve a high F1 score, with the DistilBERT model
performing best with an F1 score of 94.37%. The metrics of the evaluation are visualized in Figure 43.

Model Precision Recall F1 Training Time
google-bert/bert-large-uncased 0.9278 0.9516 0.9396 3.3h
google-bert/bert-base-multilingual-uncased 0.9231 0.9540 0.9383 1.7h
FacebookAI/xlm-roberta-large 0.9126 0.9448 0.9284 3.1h
distilbert/distilbert-base-uncased 0.9349 0.9527 0.9437 1.4h
urchade/gliner_large-v2.1 0.9460 0.8587 0.9002 2.3d
urchade/gliner_multi-v2.1 0.8656 0.8701 0.8678 1.0d
unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit 0.9529 0.9551 0.9540 1.4d

Table 18: Evaluation after training on 1 million samples

Figure 43: Evaluation after training on 1 million samples
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6.1.8.2 Training on 5 Million Samples
The GLiNER large model takes significantly longer to train than the other models, as seen in Table 18.
The fine-tuning of the model on 1 million samples takes over 2 days. The training time of the other
models is in the range of hours. The GLiNER model also has the lowest F1 score, and it is the only
model where the recall is much lower than the precision. Thus, it is not taken into account for the
further evaluation on 5 million samples. The metrics of the other models after training on 5 million
samples are shown in Table 19.

Model Precision Recall F1 Training Time
google-bert/bert-large-uncased 0.9639 0.9694 0.9667 10.2h
google-bert/bert-base-multilingual-uncased 0.9599 0.9750 0.9674 5.3h
FacebookAI/xlm-roberta-large 0.9364 0.9543 0.9453 9.8h
distilbert/distilbert-base-uncased 0.9651 0.9700 0.9676 4.2h

Table 19: Evaluation after training on 5 million samples

The models show an increase in F1 score and result in almost identical scores. The best performing
model is still DistilBERT with an F1 score of 96.76%. It is notable that the precision and recall of the
models come very close to each other, which is a sign of a well-balanced model. The metrics of the
evaluation are visualized in Figure 44.

Figure 44: Evaluation after training on 5 million samples

6.1.8.3 Training on 10 Million Samples
The DistilBERT and Google BERT multilingual model are additionally trained on 10 million samples.
They achieve an F1 score of 96.24% respectively 95.74%. Both scores are slightly below the scores when
trained on 5 million samples. However, they are still in a similar range. The metrics of the evaluation
are shown in Table 20.

Model Precision Recall F1 Training Time
distilbert/distilbert-base-uncased 0.9578 0.9670 0.9624 14.0h
google-bert/bert-base-multilingual-uncased 0.9461 0.9690 0.9574 17.1h

Table 20: Evaluation after training on 10 million samples
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6.1.8.4 Sample Size Correlation
The results show that the F1 score increases with the number of training samples up to a certain point.
However, the increase is not linear: When going from 100′000 to 1′000′000 samples, the F1 score of
Google BERT large increases by 11.24%. When going from 1′000′000 to 5′000′000 samples, the increase
is only 2.71%, despite the much larger increase in sample size.

Additionally, the results make clear that the impact of the choice of model decreases with the number
of training samples. When trained on 100′000 samples, the F1 score of DistilBERT is 4.0% higher than
that of Google BERT large uncased. When trained on 5 million samples, the difference is only 0.09%.

The correlation between the number of samples and the F1 score between 100′000 and 5 million
samples is shown in Figure 45.

Figure 45: Correlation between training sample count and F1 score

6.1.9 Inference Time
The models have to process about 3000 documents per night. A document contains about 72′600
characters (chapter 3.3). It is divided into chunks of 1000 characters with a sliding window of 128 tokens
(chapter 6.5.3). Since the number of characters per token varies, the number of chunks per document
cannot be calculated exactly. However, it can be estimated that the average number of chunks per
document is about 100 (72′600 / (1000 - 270)). This results in a total of 300′000 chunks that have to be
processed per night.

To verify the speed of the models, the inference time is evaluated. For this, the time it takes the models
to process a given number of chunks on the citation recognition task is measured. All models fine-
tuned on 5 million samples are tested. Different sample sizes of chunks are used, namely chunk sizes
of 1, 100, 1000, 5000, 10′000 and 15′000 chunks.

The results show that the inference time scales approximately linearly with the number of chunks. All
models are fast enough to process the required amount of data in a reasonable amount of time. The
slowest model is Google BERT large. The model takes 133.43 seconds to process 10,000 chunks. This
means it would take 66.72 minutes to process 300′000 chunks. However, this is still within the time
frame of one night.
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Figure 46 shows the performance comparison of the models.

Figure 46: Performance comparison of the models

6.1.9.1 Evaluation on Manually Annotated Data
As described in chapter 6.1.2.7, the models are also evaluated on manually annotated test sets to not
punish models that recognize citations better than the regex solution. Both the DistilBERT and the
Google BERT base multilingual uncased models are evaluated. For each model, the fine-tuned versions
on 100′000, 1, 5 and 10 million samples are assessed.

When evaluated on the golden test set, the models fine-tuned on 1, 5 and 10 million samples achieve
similar F1 scores of about 81%. On 100′000 samples, both models achieve an F1 score of about 77%.
This is below the score achieved on the test set previously used. This shows that the models do not
overfit when trained on more data, but rather generalize better.

The best performing model is the Google BERT base multilingual uncased, fine-tuned on 10 million
samples. It achieves an F1 score of 81.84% and a recall value of 74.33%. The evaluation metrics for the
models are shown in Table 21.

Model # of Samples Precision Recall F1
google-bert/bert-base-multilingual-uncased 100′000 0.8532 0.7180 0.7798
distilbert/distilbert-base-uncased 100′000 0.8492 0.7083 0.7724
google-bert/bert-base-multilingual-uncased 1 million 0.9037 0.7396 0.8135
distilbert/distilbert-base-uncased 1 million 0.9080 0.7323 0.8107
google-bert/bert-base-multilingual-uncased 5 million 0.9100 0.7406 0.8166
distilbert/distilbert-base-uncased 5 million 0.9065 0.7369 0.8129
google-bert/bert-base-multilingual-uncased 10 million 0.9103 0.7433 0.8184
distilbert/distilbert-base-uncased 10 million 0.9025 0.7378 0.8119

Table 21: Evaluation metrics on the golden test set
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The best performing models are also evaluated on a special cases test set. They all achieve a relatively
low F1 score around 50%. This is due to the fact that the special cases are passages that are not well
recognized by the regex solution, and therefore also mostly not correct in the training data, making
it harder for the model to learn these cases. The best performing model is also the Google BERT
base multilingual uncased, fine-tuned on 10 million samples. It achieves an F1 score of 50.89%. The
evaluation metrics for the models are shown in Table 22

Model # of Samples Precision Recall F1
google-bert/bert-base-multilingual-uncased 5 million 0.8993 0.3520 0.5060
distilbert/distilbert-base-uncased 5 million 0.9198 0.3409 0.4975
google-bert/bert-base-multilingual-uncased 10 million 0.9046 0.3541 0.5089
distilbert/distilbert-base-uncased 10 million 0.9213 0.3402 0.4969

Table 22: Evaluation metrics on the special cases test set

6.1.10 Performance per Label
In all previous evaluations, the F1 score is calculated as weighted average over all labels. However, as
analyzed in chapter 6.1.1, the label LITERATURE is strongly underrepresented in the dataset. Therefore,
the performance per label needs to be evaluated.

When breaking down the F1 score per label, it becomes apparent that the F1 score for LITERATURE
is indeed consistently lower than for the other labels. This underperformance is not as visible in the
weighted average, as the number of samples for literature citations in the test set is much smaller.

The F1 scores per label for the DistilBERT model trained on 10 million samples are shown in Figure 47.
However, the same trend can be observed for all models.

Figure 47: F1 scores per label for DistilBERT trained on 10 million samples

Due to this discrepancy and the problem that the dataset is difficult to be balanced (chapter 6.1.1), an
ensemble of experts per label, as described in chapter 4.5.6, is evaluated in the next sub-chapters.
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6.1.10.1 Experts per Label
Since three labels are defined for citations, three experts are fine-tuned on these labels.

With this approach, each model is trained on a dataset that only contains the label it is supposed to
recognize. How the datasets are created is described in chapter 6.1.2.2. Since only the chunks that
contain the label are included, the model sees more examples of the label it is supposed to recognize.
For the final solution, an ensemble of models would be used.

Since the LITERATURE training dataset contains only around 320′000 chunks, the model is trained on
the entire dataset. For the CASELAW and LAW datasets, 1 million chunks and 5 million chunks are used
for two training runs, respectively. The choice of models is based on the previous evaluations. Since
the models are expected to perform similar on this task and due to time constraints, not all models are
evaluated. The models are trained with the same hyperparameters as the models that are trained on
all labels.

In Table 23, the evaluation of the literature expert models is shown. It is evident that the F1 score
is higher when the model is trained only on literature citations. As seen in Figure 47, the F1 score
for literature citations is at 84% when the DistilBERT model is trained on all labels. When training
DistilBERT only on literature citations, the F1 score increases to 92%.

Model # Samples Precision Recall F1 Training Time
FacebookAI/xlm-roberta-large 326′665 0.8880 0.9176 0.9026 59m
distilbert/distilbert-base-uncased 326′665 0.9136 0.9353 0.9243 25m

Table 23: Evaluation of the literature expert models

For the CASELAW and LAW labels, the same approach is taken. However, since the DistilBERT model
trained on all three labels is already performing really well on these labels, the difference is nearly
negligible. Trained on all three labels, the F1 score for CASELAW is at 96%. When trained only on this
label, the highest F1 score is at 97%. For the LAW label, the F1 score is at 98% for both the model trained
on all labels as well as for the LAW expert.

The evaluation of the CASELAW expert models is shown in Table 24 and the evaluation of the LAW expert
models is shown in Table 25.

Model # Samples Precision Recall F1 Training Time
FacebookAI/xlm-roberta-large 1 million 0.9099 0.9237 0.9167 3.0h
google-bert/bert-large-uncased 1 million 0.9526 0.9660 0.9592 3.1h
google-bert/bert-base-multilingual-
uncased

1 million 0.9479 0.9710 0.9593 1.6h

distilbert/distilbert-base-uncased 1 million 0.9545 0.9678 0.9611 1.2h
distilbert/distilbert-base-uncased 5 million 0.9646 0.9704 0.9675 6.1h

Table 24: Evaluation of the CASELAW expert models

Model # Samples Precision Recall F1 Training Time
distilbert/distilbert-base-uncased 1 million 0.9540 0.9679 0.9609 1.3h
distilbert/distilbert-base-uncased 5 million 0.9831 0.9773 0.9802 8.4h

Table 25: Evaluation of the law expert models
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6.1.10.2 Evaluation of the Ensemble
To evaluate the experts together on the normal test set, the experts’ predictions are combined. This
evaluation is not completely unbiased: The training sets for the experts may contain some of the
samples from the normal test set, since these are not explicitly excluded from the experts training sets.
This could artificially boost the performance of the experts, as they may have seen some of the samples
during training. However, the evaluation is still useful to get an insight into the potential performance
of the ensemble.

The overall F1 score is at 89%. Interestingly, the score for the LITERATURE label is very low at 31%, as
the plot in Figure 48 shows. When looking at the evaluation matrix in Figure 49, it becomes apparent
that there is an exceptionally high number of true positives, especially for the LITERATURE label. This
can be explained by the fact that the training set only contains chunks where the label is present. This
could lead to a model that always predicts the label because it has never seen a chunk without the
label. The same problem is observed for the labels CASELAW and LAW, but to a lesser extent.

The high F1 score achieved during the initial evaluation of the label experts in chapter 6.1.10.1 can be
explained by the fact that the label-specific test set also only contains chunks with the respective label.
This is not the case for the normal test set used in the ensemble evaluation.

Figure 48: F1 scores per label for the ensemble of experts

Figure 49: Evaluation matrix for the ensemble of experts
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6.1.10.3 Conclusion
Training models only on a specific label shows promising results. While the performance for the labels
CASELAW and LAW is not significantly improved, the F1 score for the label LITERATURE benefits from this
approach.

However, the expert ensemble does not perform as well as expected. The high number of false positives
indicates that the model is biased towards predicting this label. This is probably due to the fact that
the training set only contains chunks with this label.

The models could be improved by adding negative samples to the training set. This would allow the
model to learn when a label is not present in a chunk. However, due to time constraints, this approach is
not pursued further in this project, but mentioned as a recommendation for future work in chapter 8.3.

6.1.11 Post Processing
To post process the output of the models, several steps are taken to improve the quality of the results
and to handle the sliding window approach. The following steps are performed:

1. Format Responses: The responses are formatted into a unified format, making it easier to work
with the model output.

2. Start and End Positions: Since the Llama model does not provide start and end positions in the
text, the returned passage is searched in the text and the found start and end positions are stored.
This also filters out hallucinated citations that are not present in the text.

3. Extend Citations: All citations are extended to the next whitespace or special character in both
directions. This is possible since a valid citation never stops in the middle of a word.

4. Remove Duplicates: Duplicate citations with the same start and end positions are removed.
5. Handle Overlaps: If one citation encloses another, the inner citation is removed. If two citations

overlap, the citation with the higher confidence is kept, the length is extended to the maximum
length, and the confidence is averaged.

These steps are applied during inference, not for the evaluation of the models.

6.1.12 Final Choice
Based on the results of the various evaluations, the model google-bert/bert-base-multilingual-
uncased is chosen as the best model for the task of recognizing citations.

On the normal test set, it achieves one of the highest F1 scores. When compared against the manually
annotated test sets, it performs the best. This shows that the model is able to generalize well to unseen
data. It is well balanced in terms of precision and recall. The model is also relatively fast to train and
uses fewer resources than the other models. It is able to process the required 3000 documents per night
in under an hour.

The best performing version is trained on 10 million samples, which results in an F1 test score of 95.74%
over all labels. This model is used for recognizing citations in the next steps of the project.
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6.2 Recognizing Parts of a Citation
Recognizing the different parts of a citation is the second main tasks of this bachelor thesis. The data
exploration for citation parts (chapter 3.3.3) has shown that there is not enough training data available
for parts of legal citations, and that the existing training data is of poor quality. For judgments and
journals, training data could be extracted by reverse engineering the regex solution. Apart from the
fact that this is almost impossible, as described in more detail in chapter 3.3.3, the labels for the parts
are poorly chosen. They are not concise enough to fulfill the given task, which is to recognize the parts
of a citation as precisely as possible (chapter 1.3.2). Therefore, new part types are chosen, which are
described in chapter 6.2.1.

Few-shot prompting with an LLM to recognize parts is evaluated. This approach does not rely on
training data, but on a few examples for each citation label. It performs very well in the evaluation, but
lacks the speed to process 3000 documents overnight (chapter 1.3.3). Therefore, the few-shot prompting
is used as a knowledge distillation method to train a BERT-based model. This is visualized in Figure 50.
Discriminative models are a lot faster. Thus, they can be used to actually process the documents in
production.

The following sections describe which part types are selected, the few-shot prompting, the BERT-
based approach, and the evaluation of both.

Figure 50: Processing pipeline of the citation recognition system with model chaining
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6.2.1 Label Selection
The various citation styles require a granular classification scheme to capture the different parts of a
citation. The chosen part types allow to distinguish the different parts of a citation with high precision.

Based on the citation rules (chapter 3.2) from the Swiss Federal Court [5], the types of citation parts
are defined in Table 26.

Part Type Description Example
VOLUME The volume number of a citation BGE 133 II 292 or SJZ 99

(2003)
COURT The court name or abbreviation BGE, ATF, DTF
SENTENCE The sentence part (Satz) of a law citation Satz 3
PUBLISHER The name or abbreviation of a journal AJP or Aktuelle Juristis-

che Praxis
AUTHOR Authors of a journal article MARKUS REICH
PART The part number of a citation BGE 133 II 292
HALFSENTENCE The halfsentence part (Halbsatz) of a citation Halbs. 1
NUMBER The number (Ziffer) of a law citation Ziff. 1
SUBVOLUME The subvolume number of a citation BGE 133 II 292
DATE The date of a citation Urteil des …-gerichts vom

13. November 2007
CONSIDERATION The consideration (Erwägung) part of a law citation E. 4.2 or consid. 3
YEAR The year of a journal citation SJZ 99 (2003)
DECREEFORM The decreeform of a law citation Bundesgesetz
PAGE The page number of a citation S. 123 or p. 123
ARTICLE The article of a law citation Art. 42
LAW The name or abbreviation of the law ZGB, OR
REFERENCE The SR number of a law SR 642.11
PARAGRAPH The paragraph (Absatz) of a law citation Abs. 2
TITLE The title of a journal article -
LETTER The letter of a law citation lit. d
DOSSIERNUMBER The dossier number of a judgment ATA/1243/2023

Table 26: Citation part types

The part types can occur in one or multiple citation labels. For example, the PAGE type can be found
in all citation labels, whereas the COURT part type is only relevant for CASELAW citations. It is possible
that the same part label occurs multiple times within the same citation. For example, a citation to a
law may contain multiple ARTICLE part types.
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6.2.2 Few-Shot Prompting
This chapter describes the approach to use few-shot prompting to recognize the parts of a citation. It
is evaluated with two different Llama models from Meta that are served with vLLM [124].

The following models are evaluated:

• unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit [106]
• unsloth/Llama-3.3-70B-Instruct-bnb-4bit [107]

The following sections describe the used prompts, the procedure, the results and time measurements.

6.2.2.1 Serving with vLLM
The vLLM package [124] is used to serve the models. The command in Code-Snippet 12 shows how
to start an instance. The vLLM API is compatible to the OpenAI API, so the model can be accessed via
the OpenAI client [125].

vllm serve unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
    --max-num-batched-tokens 16192 
    --max-model-len 16192 
    --load-format bitsandbytes 
    --quantization bitsandbytes 
    --port PORT 
    --served-model-name slx 
    --enable-prefix-caching 
    --enable-chunked-prefill 
    --disable-log-requests
    --api-key API_KEY

Code-Snippet 12: vLLM serve command

The following arguments are set, because they should improve the speed of the model:

--quantization / --load-format Loading the 4 bit quantized model from unsloth reduces the model
size (chapter 6.1.5.2).

--enable-prefix-caching Automatic Prefix Caching (APC) is a feature in vLLM that reuses parts of
previously computed information to speed up processing [126]. Since the beginning of the prompt
is always the same, it is enabled.

--enable-chunked-prefill Chunked prefill in vLLM is an experimental feature that breaks large
prefill requests into smaller chunks and efficiently batches them with decode requests. It should
improve GPU utilization and inter-token latency (ITL). [127].

--disable-log-requests This flag disables logging of requests [128].

6.2.2.2 Prompts
A few-shot prompt is provided to the LLM to help it recognize the parts of a citation. All prompt
templates are listed in appendix section F.2.5.1. The prompt consists of two parts:

System Prompt The system prompt is the same for all citation labels and contains the general task
description and the JSON schema that the output must follow.

User Prompt The user prompt is specific to one citation label. It contains a general task description,
the rules of the given citation label, and the citations to recognize the parts from. Each rule
prompt is tailored to a specific citation label (CASELAW, LAW, LITERATURE) and contains examples
and explanations for recognizing the parts.

The prompts are designed to be as short as possible, but as long as necessary to minimize inference
time. The prompts are stored in a resource file in the Citation Core .NET library.
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6.2.2.3 Procedure
The call to the model is implemented in the Citation Core .NET library, since it is used in both the
Citation Checker Web and the Citation Processor. The CitationRecognitionService class contains
the logic for the recognition. The BatchAndRecognizePartsAsync() method is responsible for batch
processing the citations and recognizing the parts. A simplified version of this method is shown in
Code-Snippet 13. It is called with a list of citations and the batch size as parameters. The citations are
filtered by the citation labels and grouped into batches.

CitationRecognitionService.cs

1 public async Task BatchAndRecognizePartsAsync(
2   List<Citation> citations, 
3   int citationBatchSize,
4   CancellationToken cancellationToken = default)
5   {
6     var labels = Enum
7       .GetValues(typeof(CitationLabel))
8       .Cast<CitationLabel>()
9       .ToList();

10         
11     foreach (var label in labels)
12     {
13       var citationsPerLabel = citations
14         .Where(c => c.Label == label)
15         .ToList();
16
17       foreach (var batch in citationsPerLabel.Batch(citationBatchSize))
18       {
19         await RecognizePartsAsync(batch.ToList(), label, cancellationToken);
20       }
21     }
22   }

Code-Snippet 13: Simplified BatchAndRecognizePartsAsync() method

The RecognizePartsAsync() method on line 19 sends the citations to the vLLM instance for text
generation. It also parses the output and checks the indices of the recognized parts and corrects
them if necessary. The text generation is done with the RobustGenerate() method (appendix
section F.2.5.4). The call of this method is shown in Code-Snippet 14. The method receives a Func called
shouldContinue, which defines how often a request should be repeated if the result is not as expected.
This is necessary because requests to the LLM may fail or the model may return more citations than
provided. The implemented logic is that the request is repeated a maximum of three times or until the
result is as expected.

RecognizePartsAsync() in CitationRecognitionService.cs
1 var result = await this.LlamaService.RobustGenerate(
2   messages, 
3   grammar, 
4   (counter, result) => 
5       counter < 3 && (result is null || result.Citations.Count != citations.Count),
6   cancellationToken);

Code-Snippet 14: RobustGenerate() call
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6.2.2.4 Golden Test Set
For evaluation, a hand-crafted golden test set specifically designed for recognizing parts is created,
since no data from Swisslex is available (chapter 3.3.3). This test set consists of 100 citations and their
corresponding parts. The samples are excluded from the training data. This makes sure that the models
have never seen the golden test data before. It is ensured that each part type is represented at least
once in the dataset.

6.2.2.5 Performance
Llama 3.3 70B and Llama 3.1 8B are evaluated on the golden parts test set. The results can be seen in
Table 27. As expected, the 70B performs better than the 8B model.

Model Precision Recall F1
unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit 0.9190 0.9301 0.9246
unsloth/Llama-3.3-70B-Instruct-bnb-4bit 0.9963 0.9819 0.9891

Table 27: Few-shot prompting results for recognizing citation parts on the golden test set

Manual validation has also shown that few-shot prompting works very well. However, the perfor-
mance depends on the size of the model. While the 70B model is very accurate, the 8B model still
makes some errors. Some example results are shown in appendix section F.2.5.3.

The 8B model sometimes makes errors by including filler words or abbreviations as part of the
extracted value for a citation part. For example, in the citation “BGE 148 II 556 E. 3.4.2 ff. und E. 4,” the
model should extract only the value 3.4.2 for the consideration part. However, it incorrectly includes
the filler word E. and the abbreviation ff. in the recognized value. The Table 28 shows a side-by-side
comparison of one example citation and its recognized parts by the 8B and 70B models.

Citation Passage Part 8B Part Type 8B Part 70B Part Type 70B
BGE 148 II 556 E. 3.4.2 ff. und E. 4 BGE Court BGE Court
BGE 148 II 556 E. 3.4.2 ff. und E. 4 148 Volume 148 Volume
BGE 148 II 556 E. 3.4.2 ff. und E. 4 II Subvolume II Subvolume
BGE 148 II 556 E. 3.4.2 ff. und E. 4 556 Part 556 Part
BGE 148 II 556 E. 3.4.2 ff. und E. 4 E. 3.4.2 ff. Consideration 3.4.2 Consideration
BGE 148 II 556 E. 3.4.2 ff. und E. 4 und Consideration - -
BGE 148 II 556 E. 3.4.2 ff. und E. 4 E. 4 Consideration 4 Consideration

Table 28: Comparison of part recognition by 8B and 70B model

6.2.2.6 Time Measurement
The time is measured with the console application Citation Processor with 10 documents of the golden
test dataset. It loads these 10 documents, starts the citation recognition and then does the parts recog-
nition with the few-shot prompting to the unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit vLLM
instance. The batch size is set to 5, which means that 5 citations are sent to the LLM per request. The
time is measured using the Stopwatch class from the .NET library. The results are shown in Table 29.

Documents Processing Time Documents per Minute
Required 3000 6h 8.333
Measured 10 16.33m 0.612

Table 29: Time measurement for few-shot prompting approach
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The results of the experiment are shown in appendix section F.2.5.2. The best run was able to process
the 10 documents in 16.33 minutes. This is not fast enough to process 3000 documents overnight. Since
the few-shot prompting with the 8B model is not fast enough, a time measurement of the 70B model
is not necessary, since the throughput of the 8B is twice as high as the one from the Llama 70B [129].
This indicates that the 70B model would also not be able to process the required number of documents
overnight either.

6.2.3 BERT-Based Approach with Knowledge Distillation
Few-shot prompting is not fast enough to process the required amount of documents overnight, as
discussed in chapter 6.2.2.6. Therefore, knowledge distillation is used. A BERT-based model is fine-
tuned on synthetic data generated with few-shot prompting. Knowledge distillation is explained in
chapter 4.2.4.

6.2.3.1 Dataset Generation
The data generation is implemented as a .NET console application called Parts Training Data Generator.

The application takes citations from the traing dataset for recognizing citations (chapter 6.1.2.2). It
then uses few-shot prompting (chapter 6.2.2) to identify the parts of the citations. For this task, the
model Llama 3.3 70B is used. The model is chosen because it provides better quality results than the
8B model. With the recognized parts, a new training dataset is created and saved as JSONL file. This
process is shown as a code-snippet in appendix section F.2.5.4.

In the new dataset, chunks with no recongized parts are removed. This might lead to a model that is
biased towards always predicting a part due to the lack of negative samples. However, this is not a
problem. All citations passed to the model should contain at least one part. If a text passage is fed to
the model that does not contain a valid citation and therefore contains no parts, it has no consequence
if the model predicts wrong parts.

After removing the chunks without parts, the dataset is deduplicated. In contrast to the deduplication
in the citation recognition model, only exact matches are removed.

After deduplication, the dataset is split into training and test sets with an 85/15 split. The resulting files
are saved as slx-dataset-parts-train.jsonl and slx-dataset-parts-test.jsonl. Together with
the manually annotated golden dataset described in chapter 6.2.2.4, the following datasets result:

Name Sample Count Size
slx-dataset-parts-train.jsonl 331′613 111.4 MB
slx-dataset-parts-test.jsonl 50′000 16.8 MB
slx-dataset-parts-golden.jsonl 100 45.0 KB

Table 30: Datasets for training and evaluation of the parts recognition model
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6.2.3.2 Distribution of Part Types
After data generation, the training dataset is analyzed. The distribution of the part types is visualized
in Figure  51. The types REFERENCE, DECREEFORM, AUTHOR, TITLE, HALFSENTENCE and SENTENCE are
underrepresented compared to the others. This imbalance could affect the performance of the model,
as it is not exposed to enough samples of these types to generalize effectively.

Analysis of the original data in the citations training set shows that this is currently not a problem.
The reason is that the current regex solution does not always recognize citations exactly as it is
defined in the citation rules in chapter 3.2. Especially the parts REFERENCE, DECREEFORM, AUTHOR, TITLE
and HALFSENTENCE do not occur often in the citations that are recognized. Due to this, the model for
recognizing citations (chapter 6.1) does not recognize these parts either, since it is trained on the data
generated by the regex solution.

This means that during inference, the model trained to recognize specific parts is seldom exposed to
these types. As a result, the model’s diminished performance on these types rarely poses a significant
issue.

In the future, if the model which recognizes citations is improved to include these parts more often,
the model which recognizes parts should be retrained with a more balanced dataset.

Figure 51: Distribution of the part types in the generated training data

Only the part type SENTENCE does not share this problem. Additional data could be generated to balance
this part type. This could be done by searching the citations training dataset for text chunks containing
the respective part type. Due to time constraints, this is not done in this thesis.
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6.2.3.3 Evaluation on Test Dataset
The base models that performed best when fine-tuned on recognizing citations are evaluated for
recognizing parts. They are trained on the generated dataset for parts of citations. The training is done
with the same workflow as for the fine-tuning on citations, which is described in chapter 6.1.4. Also,
the same hyperparameters are used.

All models are fine-tuned on 331′613 sample citations and evaluated on 50′000 samples. This results
in a train/test split of approximately 85/15. The test set is smaller than the one used for the model
that recognizes citations. This is due to the limited amount of available training data. The evaluation
results are shown in Table 31.

Model Precision Recall F1 Training Time
distilbert/distilbert-base-uncased 0.9876 0.9911 0.9894 12.1m
FacebookAI/xlm-roberta-large 0.9800 0.9872 0.9836 30.8m
google-bert/bert-base-multilingual-uncased 0.9867 0.9914 0.9891 17.4m
google-bert/bert-large-uncased 0.9861 0.9922 0.9892 29.5m

Table 31: Evaluation of the models for reocgnizing parts on the test set

The evaluation matrix for the DistilBERT model is shown in Figure 52.

Figure 52: Evaluation matrix for recognizing citation parts test set - DistilBERT
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6.2.3.4 Evaluation on Manually Annotated Data
The training data for the parts recognition model is generated with few-shot prompting. The annotated
spans are not manually verified. This means that the model is trained on potentially incorrect data.
To verify the model’s performance, the previously created golden test (chapter 6.2.2.4) set is used for
evaluation. The results are shown in Table 32.

Model Precision Recall F1
distilbert/distilbert-base-uncased 0.9383 0.9337 0.9360
FacebookAI/xlm-roberta-large 0.9217 0.9195 0.9206
google-bert/bert-base-multilingual-uncased 0.9620 0.9435 0.9527
google-bert/bert-large-uncased 0.9476 0.9361 0.9418

Table 32: Evaluation of the models on the golden test set

The evaluation matrix for the DistilBERT model is shown in Figure 53.

Figure 53: Evaluation matrix for recognizing citation parts golden set - DistilBERT

6.2.3.5 Final Choice
In the evaluation of models for parts recognition, all tested models demonstrated exceptionally high
F1 scores on the test set, ranging from 98.36% to 98.94%. When tested on manually annotated data,
the performance remained strong but showed a slight decrease, with F1 scores ranging from 92.06% to
95.27%. This indicates that the data generated using few-shot prompting is not entirely accurate, but
still highly effective.

Given the minimal differences in performance, the choice of model is less critical. As the final model,
distilbert/distilbert-base-uncased is selected for its compact size, resource efficiency, and fast
inference speed. Additionally, it retrains quickly. This could be beneficial in the future if rare part
types, such as DECREEFORM or REFERENCE, are detected more frequently and require model updates
(chapter 6.2.3.2). DistilBERT achieves an F1 score of 98.94% on the test set and 93.60% on manually
annotated data.

Since the google-bert/bert-base-multilingual-uncased model slightly outperforms DistilBERT, it
remains a viable alternative for the future, especially when working with a more finalized dataset.
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6.3 Citation Checker Web
To be able to manually check the citations and parts found by the model, a web application is developed.
The following sections provide an overview of the application and its components.

6.3.1 Architecture
The web application is built using the Blazor framework [80]. The resulting software is a single-
page application that uses interactive server-side rendering, previously known as Blazor Server. The
application is hosted on a Windows Server and can be accessed via a standard web browser from within
the Swisslex network.

6.3.2 Functionality
The web application offers two starting points for the process of citation recognition:

• Uploading a text document (Figure 54)
• Searching for a Swisslex document in the database by entering its dossier number (Figure 55)

When a document is uploaded or found in the database, the text of the document is displayed. The user
can then choose which models to use for the citation recognition process. Which models are available
are dynamically fetched from the Citation Inference API.

After choosing the model that recognizes citations, the user can start the recognition process. The
application sends the text to the selected model, which returns the identified citations. These are
displayed in a table, together with the confidence of the model and the assigned type (CASELAW, LAW,
LITERATURE). Also, the found citations are highlighted in the text. A short summary including the
number of found citations as well as the processing time is displayed. If the text was fetched by
providing a dossier number, the citations linked in the Swisslex web platform are additionally loaded
and highlighted in the text.

Afterwards, a button provides the possibility to further recognize the specific parts within the citations.
Again, the available models are listed in a dropdown. When starting the parts recognition, all previ-
ously found citations are sent to the inference server. The recognized parts are then marked and labeled
directly in the citation in the table.

Another feature is provided to evaluate few-shot prompting on the text. This can be done either on
the whole text (recognizing citations and their parts in one step, appendix section F.2.6), or only to
identify the parts of the already recognized citations (chapter 6.2.2).

Errors are shown using a toast notification.
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Figure 54: Sequence diagram - Citation recognition by uploading a document

Figure 55: Sequence diagram - Citation recognition by dossier number
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6.3.3 Design
The design is kept simple. The colors are inspired by Swisslex’s corporate design. However, additional colors are used, especially for the labeling of the parts.
Since the web application is only used internally for testing purposes, the design is not a priority. A screenshot of the web application can be seen in Figure 56.

Figure 56: Screenshot of the web application Citation Checker Web
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6.4 Citation Processor
To allow bulk processing of documents, a console application called Citation Processor is developed. It
is used to recognize citations and their parts in a large number of documents, as it will be done during
the nightly re-indexing at Swisslex (chapter 1.3.3).

6.4.1 Architecture
Swisslex uses an internal tool, the Job Scheduler, to execute tasks like re-indexing documents. The goal
of the Citation Processor is to later be integrated into the Job Scheduler and to allow the recognition of
citations and their parts in an automated way. The integration into the Job Scheduler is not part of this
project (chapter 1.3.4).

The Citation Processor contains the ReferenceRecognitionJob class, which can be used by the Job
Scheduler from Swisslex.

To store the found citations and its parts, the database from Swisslex is extended. The new tables are
shown in Figure 29 from chapter 5.4. An SQL script to create these new tables is provided for Swisslex,
so they can easily update the database when deploying the new version of the software.

Logging is implemented using the log4net library [81]. The log messages are written to the console and
to a log file. The log level and other configurations can be set in the log4net.config file. A new log
file is created with every new program execution. Error handling is implemented so that the program
does not crash when an error occurs. Instead, the error is logged and the program continues to process
the next document.

6.4.2 Process
Figure 57 displays the process of recognizing citations and its parts. The Job Scheduler is grayed out in
the sequence diagram, as it is not adjusted in this project. The following steps will be executed:

1. The Job Scheduler will handle which documents needs to be processed. The IDs of these documents
are loaded and batched.

2. For each batch of IDs, the documents are loaded from the database.
3. Each document of the batch is sent to the Citation Inference API to recognize the citations.
4. All found citations of the document batch are gathered. This list is then sent in batches to Citation

Inference API to recognize the parts of the citations.
5. After the parts are recognized, the citations of the current document batch and their parts are stored

in the database.
6. These steps are repeated until there are no more documents to process.
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Figure 57: Sequence diagram - Citation Processor

6.4.3 Configuration
The Citation Processor can be configured with two parameters. They are shown in Code-Snippet 15.

DocumentBatchSize Defines the number of documents to be processed in a single batch. This config-
uration helps optimize memory usage. All citations and their parts are stored in the database in
a single unit of work.

CitationBatchSize Configures the number of citations which are sent to the Citation Inference API
for recognizing their parts in one batch. This reduces the request size.

appsettings.json

"CitationProcessorConfiguration": {
  "DocumentBatchSize": 5,
  "CitationBatchSize": 5
}

Code-Snippet 15: Configuration of Citation Processor
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6.5 Citation Inference API
The Citation Inference API is developed as part of this project. It provides functionality for performing
inference with fine-tuned models to recognize citations or their components in one or multiple
documents.

6.5.1 Endpoints
The API is built using the FastAPI framework and is documented using OpenAPI [130]. It provides the
following endpoints:

POST /v1/predict Returns recognized citations or parts for a given document or citation,
depending on the specified type (citations, parts) and the model name (e.g., googlebert-
multilingual-10M). An example of the request body is provided in Code-Snippet 16.

{
  "text": "... Gutachters nach Art. 92 BGG in der Regel ...",
  "name": "googlebert-multilingual-10M",
  "type": "citations"
}

Code-Snippet 16: Citation Inference API - prediction endpoint body example

POST /v1/predict_batch Similar to the /v1/predict endpoint, but designed for a list of documents
or citations. An example of the request body is shown in Code-Snippet 17.

{
  "texts": [
    "Art. 92 BGG",
    "..."
  ],
  "name": "distilbert-0.3M",
  "type": "parts"
}

Code-Snippet 17: Citation Inference API - batch prediction endpoint body example

GET /v1/models Returns a list of available models for recognizing citations or parts.

The endpoints are additionally shown in Figure 58.

Figure 58: OpenAPI Swagger UI - Citation Inference API
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6.5.2 Interaction with the API
The sequence diagram in Figure  59 shows the interaction between Citation Core and the Predict
Controller. Citation Core initiates the process by sending a request to the /v1/predict_batch endpoint
of the Predict Controller to recognize parts for a batch of citations. The Predict Controller responds by
loading the fine-tuned model and then invoking it to recognize parts. Finally, the predicted parts are
returned to Citation Core.

Figure 59: Sequence diagram - Citation Inference API example interaction

6.5.3 Inference
The inference process for recognizing citations is performed using the Hugging Face pipeline for NER.

The pipeline is initialized with the fine-tuned model and tokenizer. Due to the limited context size of
the models, the training data is split into chunks of 1′000 characters, as described in chapter 6.1.2.4. To
ensure that the input during inference is comparable to the training data, a sliding window approach
is used. This means that the text is split into overlapping windows, and the model is applied to each
window. The results are then aggregated to get the final predictions. This also helps to avoid truncating
citations that occur at the beginning or end of a chunk.

The sliding window functionality is not implemented manually, but the corresponding functionality
from the Hugging Face Transformers library [131] is used. The stride parameter in the pipeline()
is set to 128, meaning each window overlaps the previous one by 128 tokens. As aggregation strategy,
average is used for word based models. Microsoft’s DeBERTa model and Facebook’s XLM-RoBERTa
model do not support this, hence simple is used for these models. A model_max_length of 512 is also
specified to define the maximum token length for each window. The Code-Snippet 18 shows how the
inference is done for BERT-based models.

tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512)

classifier = pipeline(
    "ner",
    model=model_path,
    tokenizer=tokenizer,
    device=get_device(),
    aggregation_strategy="average",
    stride=128,
)

Code-Snippet 18: Inference with the Hugging Face NER pipeline
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The Figure 60 shows the data flow during citation recognition inference. The text is tokenized and
the model predicts the labels for each token. The aggregated output from the classification pipeline is
then post-processed and mapped to a new format to represent the recognized citations. The result is
returned to the requester in this new format.

Figure 60: Data flow during citation recognition inference
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7 Validation
In this chapter, the final solution is validated. First, it is compared to the existing regex-based solution.
Afterwards, comparisons against off-the-shelf solutions are made, the testing concept is highlighted,
and the requirements are validated.

7.1 Comparison with Regex Solution
The currently used regex solution is the benchmark for the new approach to recognize citations. The
goal is to achieve similar or better results with the Google BERT multilingual uncased model. The
following sections compare the performance of the two solutions on different test sets.

7.1.1 Evaluation on Golden Test Set
When evaluated on the golden test set, the regex-based solution achieves an F1 score of 80.55%. The
Google BERT base multilingual uncased model, fine-tuned on 10 million samples, scores a slightly
higher score of 81.84%. When comparing the recall, the Google BERT model performs approximately
2.2% better. The exact evaluation on the golden test set can be seen in Table 33.

Model # of Samples Precision Recall F1
google-bert/bert-base-multilingual-uncased 10 million 0.9103 0.7433 0.8184
current regex solution - 0.9117 0.7215 0.8055

Table 33: Evaluation on the golden test set

When further evaluating the current regex solution, it is evident that it also performs better on CASELAW
and LAW citations and worse on LITERATURE entities. The Google BERT model shows similar results.
Figure 61 shows the F1 score comparison between the regex solution and the fine-tuned Google BERT
model. The recall comparison can be seen in Figure 62.

Figure 61: F1 score comparison of the regex solution and the fine-tuned Google BERT model
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Figure 62: Recall comparison of the regex solution and the fine-tuned Google BERT model

Figure 63 shows the evaluation matrix for the regex solution. It allows for a more detailed insight
into the performance. While the precision is high for all entities, the recall is lower, especially for
LITERATURE entities. For CASELAW and LAW entities, many partials are recognized.

Figure 63: Evaluation matrix for the regex solution
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7.1.2 Evaluation on Special Cases
Since the previous tests are performed on a random sample of the data, the models and the regex
solution are additionally evaluated on a small dataset containing special cases. The special cases are
explained in chapter 3.3.4. The results of the evaluation can be seen in Table 34.

It is remarkable that the precision is significantly higher than the recall, for both the Google BERT
model and the regex solution.

The Google BERT base multilingual uncased model achieves a slightly higher F1 score than the regex
solution. However, the scores show such a small difference that it might be due to random fluctuations.

Model # of Samples Precision Recall F1
google-bert/bert-base-multilingual-uncased 10 million 0.9046 0.3541 0.5089
current regex solution - 0.9368 0.3485 0.5081

Table 34: Evaluation on special cases

The evaluated special cases are analyzed in the following sections.

7.1.2.1 Multiple Citations
Manual testing with an example document has shown that the Google BERT model still struggles
sometimes with recognizing multiple citations. In the following example, law citations are recognized
correctly, but multiple citations of judgments are recognized only partially or as two separate citations.
The recognized citations from the model are highlighted in yellow.

• BGE 132 III 18 E. 4.1 S. 20; 132 V 321 E. 6.1 S. 326
• BGE 133 V 9 E. 3.1 S. 11; 131 III 189 E. 2.6 S. 196
• BGE 121 III 60 E. 3d S. 63; 132 III 503 E. 3.3 S. 508/509
• Art. 63 Abs. 2 und Art. 64 OG
• Art. 156 Abs. 1 und Art. 159 Abs. 1 und 2 OG
• Art. 157 und Art. 159 Abs. 6 OG

7.1.2.2 Ambiguity of Abbreviations
Regarding the ambiguity of abbreviations, manual testing has shown that the Google BERT model can
clearly distinguish between the two meanings of “CO” vs. “CO 1”.

7.1.2.3 Cantonal Law Misinterpreted as Federal Law
An example document is used to test whether cantonal laws are misinterpreted as federal laws. The
results show that the Google BERT model does not misinterpret cantonal laws as federal laws but
simply fails to recognize cantonal law citations. An example is shown in Figure 64.

Figure 64: Example of not recognized cantonal article of laws
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7.1.2.4 Misinterpreting Systematic Collections of Law as Laws
An example document is used to test whether systematic collections of law are misinterpreted as
individual laws. The results indicate that the Google BERT model does indeed recognize systematic
collections as laws. An example is shown in Figure 65.

Figure 65: Example of not recognized cantonal article of laws

7.1.2.5 Deviations from the Standard Citation Format
The fine-tuned Google BERT model can handle citations with a different order of words. For example,
the citation reference “ZGB 837 Abs. 1 Ziff. 3” is recognized correctly as a citation, despite the correct
citation being “Art. 837 Abs. 1 Ziff. 3 ZGB”.

7.1.3 Robustness
One limitation of the regex solution is its inability to handle typographical errors. The new citation
recognition system is more robust and can handle a certain degree of such errors.

This is manually tested by slightly modifying a citation in a text. The text is uploaded to the web
interface. Then, the model output for citation recognition is compared with the expected result.

Figure 66 shows an example of recognized citations with typographical errors. The Google BERT model
correctly identifies all citations, even with minor deviations such as missing or additional characters.

Figure 66: Example of recognized citations with typographical errors

7.1.4 Conclusion
On the task of recognizing citations, the proposed google-bert/bert-base-multilingual-uncased
model matches the performance of the regex-based solution. On manually annotated data, it achieves
a recall of 74.33%, while the regex-based solution scores 72.15%.

The new solution is more robust and can handle deviations such as typing errors and new citation
formats more easily. Wrong order of citation parts are handled better. Ambiguous abbreviations can
be distinguished based on the context more effectively.

Special cases are still mostly a challenge for the fine-tuned model.

A great improvement over the existing solution is the more granular labels for citation parts.
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7.2 Comparison with Off-The-Shelf Models
To benchmark the performance of state-of-the-art off-the-shelf models on the citation recognition task,
GPT-4o, GPT-4o-mini, and the Llama 3.3 70B model are evaluated on the golden test set. They are used
without any prior fine-tuning.

7.2.1 Approach
Since Swisslex posesses a substantial amount of licensed data, it is essential to ensure that only publicly
available case law assets are used for this evaluation. To prepare the golden test set, all non-case law
assets were filtered out, reducing the dataset from 502 chunks to 245. These filtered chunks are then
provided to the models for evaluation, using the same prompt outlined in appendix section F.2.3.1 for
consistency across all models.

7.2.2 Evaluation on Golden Test Set
The evaluation on the golden test set, as presented in Table 35, shows that the fine-tuned Google
BERT model outperforms the off-the-shelf models GPT-4o, GPT-4o-mini, and Llama 3.3 70b in both
precision and recall. Notably, the GPT-4o model exhibits impressive few-shot prompting capabilities,
particularly in terms of recall. However, the fine-tuned Google BERT model surpasses it, achieving
approximately 8% higher recall and significantly higher precision of around 25%.

Model Precision Recall F1
google-bert/bert-base-multilingual-uncased (fine-tuned on 10mio) 0.9060 0.7058 0.7935
gpt-4o (few-shot) 0.6523 0.6271 0.6394
gpt-4o-mini (few-shot) 0.5404 0.5806 0.5598
llama 3.3 70b (few-shot) 0.5465 0.6083 0.5757

Table 35: Evaluation state-of-the-art off-the-shelf models on the golden test set

The evaluation matrix for the best performing off-the-shelf model, GPT-4o, is shown in Figure 67.

Figure 67: Evaluation matrix for GPT-4o off-the-shelf solution

7.2.3 Conclusion
The evaluation results show that the fine-tuned Google BERT model outperforms the tested off-the-
shelf models. This demonstrates that fine-tuning is effective and worthwhile.
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7.3 Evaluation per Language
The citations test set is split by language to evaluate the performance of the models on German,
French, Italian, and English. In Table 36, the evaluation metrics per language are presented. The model
successfully identifies citations in all languages, with recall values above 90% for each language. This
confirms that the goal of robust citation recognition across multiple languages has been successfully
achieved.

Language Precision Recall F1
German 0.9595 0.9697 0.9594
French 0.9452 0.9681 0.9565
Italian 0.9078 0.9699 0.9378
English 0.7189 0.9280 0.8102

Table 36: Evaluation per language

7.4 Processing Performance
Five experiments are conducted to measure the performance of the citation recognition system. This
includes loading the documents from the database, recognizing citations and its parts and storing
the results into the database. For each experiment, a different batch of 3′000 documents is processed.
The measurement has been made with the Citation Processor application (chapter 6.4). The results are
shown in Table 37.

NFR-01 (chapter 2.2) specifies a maximum processing time of 7 seconds per document. This target is
highlighted in grey in Table 37. The system achieves an average processing time of 0.639 seconds per
document, which is well within the required performance parameters.

Nr Total Duration Seconds per Document
1 32m 57s 0.659
2 30m 53s 0.618
3 33m 28s 0.669
4 32m 35s 0.652
5 29m 57s 0.599
Average 31 m 58 s 0.639
Target 6h 7.000

Table 37: Performance measurements
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7.5 Tests
The following chapters describe the testing concept and the conducted tests together with their results.

7.5.1 Testing Concept
This chapter outlines the testing concept for the individual components of the system.

Models To test the fine-tuned models, they are evaluated using the nervaluate package, which is
mentioned in chapter 4.4. On a test set, the model’s predictions are compared to the ground truth
labels, and the precision, recall, and F1 score are calculated. The evaluation results are then used
to determine the model’s performance and identify areas for improvement.

Post-Processing Steps in Inference The post-processing steps performed during inference are
tested using unit tests, since they contain business logic that can be tested in isolation. The steps
are highlighted in chapter 6.1.11. The unit tests and their results are documented in chapter 7.5.2.

GUI and C# Core Library Since the web interface and the core library barely contain business logic
and are mainly used as communication interfaces, they are not tested with unit tests. Instead,
manual end-to-end tests are performed to ensure that the GUI functions correctly and that the
core library processes the data as expected. They are described in chapter 7.5.3.

Integration Tests Integration tests are not required for this project, as the components do not need
to be integrated into a larger system.
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7.5.2 Unit Tests
For the post processing steps (chapter 6.1.11), several unit tests are implemented to ensure the correct
functionality. As testing framework, unittest [132] is used. The Table 38 shows the implemented tests
and their expected behaviour and results. All tests passed successfully.

Title Expected Behaviour Result
test_deduplicate_entities Entities with the same start and end tag and label get

deduplicated. The one with the higher confidence is
kept.

Passed

test_merge_overlapping_entities Overlapping entities (one from index 2 to 9 and one
from index 4 to 10) with the same label are merged.
The confidence is averaged, the maximum length is
taken.

Passed

test_merge_overlapping_entities
_same_start

Overlapping entities with the same start index but a
different end index and a different label are merged.
The longer one (second one) is kept.

Passed

test_merge_overlapping_entities
_same_end

Overlapping entities with the same end index but a
different start index and a different label are merged.
The longer one (first one) is kept.

Passed

test_merge_overlapping_entities
_fully_enclosed

An entity that is fully enclosed within another one is
not kept.

Passed

test_merge_overlapping_entities
_no_overlap

When entities do not have an overlap, they are not
discarded during post-processing.

Passed

test_get_positions_of_passages Given a text and passages, the correct start and end
indices of these passages are found within the text.

Passed

test_get_positions_of_passages
_remove_hallucinations

Given a text and passages, the correct start and end
indices of these passages are found within the text. If
hallucinations are present, they are kept and the start
and end indices 0 are assigned.

Passed

test_get_positions_of_passages
_keep_hallucinations

Given a text and passages, the correct start and end
indices of these passages are found within the text. If
hallucinations are present, they are removed.

Passed

test_fake_confidence If there is no confidence present in the entity, it is
added with a value of 0.

Passed

test_extend_passages_start Found passages that start in the middle of a word in
the text are extended up to the next special character
or whitespace in the left direction.

Passed

test_extend_passages_end Found passages that end in the middle of a word in
the text are extended up to the next special character
or whitespace in the right direction.

Passed

Table 38: Unit tests
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7.5.3 End to End Tests
The conducted end to end tests are listed in Table 39.

They are tested using the following setup:
• Browser: Firefox, Version 133.0.3 (64-Bit)
• Hardware: Laptop Dell Precision 3551
• Operating System: Microsoft Windows 10 Pro
• Display Resolution: 3840 x 2160 pixels
• Connected with the Swisslex VPN
• Open the web interface under https://citation-checker.swisslex.ch/

Nr. Title Steps Expected Behaviour Result
1 Upload Docu-

ment
The button “Upload document”
is pressed. A text document with
the name test-file.txt, the
mime type text/plain and the
content Gemäss BGE 123 V 3 ist
das falsch. is selected.

The name of the file is displayed
inside the upload area. The text
of the document is displayed.

Passed

2 Search for
Dossier Num-
ber

Enter the dossier number
4A_216/2024 inside the dossier
number input field. Press the
magnifying glass.

The magnifying glass switches
to a green checkmark to indicate
that the document was found.
The text of the document is dis-
played.

Passed

3 Recognize Ci-
tations

After executing test case 2, the
button “Recognize Citations” is
pressed. A model is selected
from the dropdown.

The citation BGE 123 V 3 gets
highlighted in the text. On the
right side, a list with this citation
and the label CASELAW is visible.

Passed

4 Recognize
Parts

After executing test case 3,
the button “Recognize Parts” is
pressed.

The citation in the list on the
right side has its parts labeled.

Passed

Table 39: End to end tests

108 / 131

https://citation-checker.swisslex.ch/


Citation Recognition in Legal Documents 10.01.2025

7.6 Validation of Requirements
In the following chapters, the functional and non-functional requirements are validated.

7.6.1 Validation of Functional Requirements
In Table 40, the validation of the functional requirements is presented.

Use Case Status Rationale
Recognize Citations Fulfilled The comparison of the proposed vs. the regex-based solu-

tion in chapter  7.1 showed that the citation recognition
works and the new system matches the performance of the
regex-based solution.

Train Model Fulfilled In chapter 6.1.4, the training iteration is described, which
shows that the training of models is possible.

Evaluate Model Fulfilled In chapter 6.1.4, the training iteration is described, which
shows that the evaluation of models is possible.

Create Datasets Fulfilled To create datasets, a program called Data Extractor was
developed, which extracts the data and creates the needed
datasets. This process is described in chapter 6.1.2.

Test Citation Recognition Fulfilled A web application was developed to test the citation recog-
nition system. The application is described in chapter 6.3.

Serve Models Fulfilled The Citation Inference API was developed to serve the
models. The API is described in chapter 6.5.

Store Recognized Citations Fulfilled New tables were added to the Swisslex database to store the
recognized citations. The database changes are described
in chapter 5.4.

Run Daily Recognition Fulfilled A new job was created which executes the citation recog-
nition. The job is encapsulated in the console application
Citation Processor, which is described in chapter 6.4 and can
be used by Swisslex’s Job Scheduler.

Table 40: Functional requirements validation

7.6.2 Validation of NFRs
The non-functional requirements are described in chapter 2.2. The following tables describe the final
status of the NFRs.

ID NFR-01 Performance
Requirement A single legal document (e.g. judgment) should be processed within a reasonable

time frame.
Level Must have
Status Fulfilled
Rationale The average processing time is 0.639 seconds per document (chapter 7.4), which

is within the specified time frame of 7 seconds per document.
Table 41: Validation NFR-01 Performance
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ID NFR-02 Scalability
Requirement The performance of citation recognition should be scalable and still accurate with

increasing document throughput.
Level Must have
Status Fulfilled
Rationale The citation recognition system processed 3′000 documents in an average of 31

minutes and 58 seconds in 5 experiments (chapter 7.4). It achieves an F1 test score
of 95.7% when recognizing citations and an F1 score of 81.8% on the golden test set.

Table 42: Validation NFR-02 Scalability

ID NFR-03 Compatibility
Requirement The solution must be deployable within the Swisslex infrastructure.
Level Must have
Status Fulfilled
Rationale The citation recognition job inherits the base job class from Swisslex. This ensures

compatibility with the existing job scheduler software. The Citation Inference API
provides access to the fine-tuned model for citation recognition.

Table 43: Validation NFR-03 Compatibility

ID NFR-04 Reliability
Requirement The solution should be robust against variations, new patterns, and typos.
Level Must have
Status Fulfilled
Rationale By using Transformer-based models and replacing the regex-based solution, the

citation recogntion system is more robust.
Table 44: Validation NFR-04 Reliability

ID NFR-05 Security
Requirement The solution should ensure data privacy and security.
Level Must have
Status Fulfilled
Rationale The provided solution uses inhouse trained models which are deployed inside the

Swisslex environment. No data leaves this environment during citation recogni-
tion. For evaluating off-the-shelf models like CHatGPT, only judgments were used
since they are publicly available. No licensed data was shared with third parties.

Table 45: Validation NFR-05 Security

ID NFR-06 Usability
Requirement Easy to use testing software for citation recognition.
Level Should have
Status Fulfilled
Rationale A web interface enables uploading a document or loading a document based on

its dossiernumber from the database. The user is lead through the process by a 3-
step wizard-like interface. Found citations get highlighted in the document and are
displayed in a separate table.

Table 46: Validation NFR-06 Usability
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8 Discussion of Results and Outlook
This chapter discusses the results of the project and compares them with the objectives set in the
introduction. Also, further improvements and recommendations for future work are outlined.

8.1 Results
In this bachelor thesis, a system for the recognition of citations and their parts in legal documents was
developed. The goal was to replace the existing regex-based solution with a modern transformer style
NLP-based solution. The currently recognized citations extracted by the regex solution were used as
training and test data.

To recognize citations, different models were fine-tuned and evaluated on the three classes CASELAW,
LAW and LITERATURE. The models evaluated ranged from generative models such as Llama to BERT-
based models of different sizes and architectures. They were trained in a supervised manner and
evaluated on metrics such as precision, recall, F1 score and inference time. In addition, an ensemble of
label-specialist models was evaluated but not pursued further due to a high number of false positives.

In the end, the best performing model was google-bert/bert-base-multilingual-uncased. The
model was trained on 10 million samples and achieved an F1 test score of 95.74% across all labels.
Broken down into the three labels, the F1 test score is 95% for CASELAW, 96% for LAW and 85% for
LITERATURE.

The new system matches the performance of the regex-based solution. When compared on the man-
ually annotated golden test set, the new model slightly outperforms the existing regex-based solution
(F1 score of 81.84% vs. 80.55%, recall of 74.33% vs. 72.15%). This demonstrates the potential of the new
system for improved citation recognition in legal documents.

For the specific parts of the citations, there was not enough training data to fine-tune a model.
Therefore, few-shot prompting with Llama 3.1 8B model was set up. Although it gave good results, the
model could not be used in the final solution due to the slow inference time.

Instead, the few-shot prompts were used to generate training data for parts recognition. For the
knowledge distillation process, the 8B variant was replaced with Llama 3.3 70B, as this approach
yielded superior results. In the end, about 380′000 chunks of training and test data were generated.
This data was used to train a separate DistilBERT model to recognize parts with the labels COURT,
PUBLISHER, VOLUME, SUBVOLUME, PART, CONSIDERATION, PAGE, DATE, DOSSIERNUMBER, YEAR, AUTHOR, TITLE,
DECREEFORM, REFERENCE, ARTICLE, PARAGRAPH, SENTENCE, HALFSENTENCE, NUMBER, LETTER and LAW.

The model achieved an F1 test score of 98.9% for recognizing citation parts. On the manually annotated
test set, an F1 score of 93.60% and recall of 93.37% was achieved.

The citation recognition solution can process 3′000 documents in approximately 32 minutes. This
process includes identifying citations and their individual parts. The system achieves an average
processing time of 0.659 seconds per document. With a specified time frame of 7 seconds per document,
the solution operates efficiently and well within the required time constraints.

The citation recognition pipeline can be accessed via a web application or a console application. The
web application allows the user to upload or search for a document in the Swisslex database, which
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is then processed by the pipeline. The result is visualized in the application, showing the recognized
citations and parts. This allows to easily verify and evaluate the system.

The console application can be used to process several documents from the database, for example
during the nightly re-indexing of the Swisslex database. The recognized citations and parts are stored
in the database in a structured way and can be used for further processing.

This solution meets the requirements of the task and provides a good trade-off between performance
and resource consumption.

On the task of recognizing citations, the proposed google-bert/bert-base-multilingual-uncased
model matches the performance of the regex-based solution while offering several key advantages.
Unlike regex, which relies on rigid patterns, the model is more robust and adaptable. It can effectively
handle deviations such as typographical errors or non-standard citation formats. It can also differen-
tiate ambiguous abbreviations based on context. Furthermore, citation parts recognition has been
significantly enhanced with the introduction of more granular labels. 21 different citation parts can be
recognized, allowing a more detailed understanding of citations. The flexibility and scalability of the
machine learning approach ensure that the system can be retrained efficiently to incorporate additional
citation types or adapt to evolving legal citation standards. Together, these advancements make the
proposed solution not only more precise but also more future-proof compared to traditional rule-based
methods.

Challenges remain for certain special cases. To optimize the results further, there are some improve-
ments that can be made. These possibilities will be discussed in the next chapters.
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8.2 Limitations
The proposed solution has several limitations that need to be considered when interpreting the results.

8.2.1 Infrastructure Setup
The models are hosted on the DGX server from Swisslex. The DGX is part of a newly set up Kubernetes
cluster and is not yet fully operational. This has the following implications for the inference of models:

• Silent request failures: When querying the Citation Inference API, requests frequently fail silently.
They never reach the API, and no exception is thrown. The failure is probably due to misconfigura-
tions in the Kubernetes cluster, which are not in the control of the client. To handle this, there is a
client side timeout configured, after which an exception is displayed in the UI.

• Gateway timeout: Certain requests to the Citation Inference API take a long time to process,
especially when querying the Llama models. After 60 seconds, a gateway timeout is thrown. This is
a server side timeout and cannot be controlled by the client.

• JupyterLab Deployment: The API is only deployed on JupyterLab, which is not the final deploy-
ment target.

The infrastructure setup is out of the scope of this thesis. There is no possibility to debug or improve
the setup, as the infrastructure is provided by Swisslex and is still in development. These limitations
have to be kept in mind when using the web application to test the models.

8.2.2 Context Size
The models are fine-tuned on chunks of approximately 1000 characters. They include the entire context
of each chunk to make predictions. This means that when queried with a single citation, without any
context, the model might not recognize the citation.

This limitation becomes relevant in edge cases when processing documents. For example, if a document
is divided into multiple chunks and the last chunk is shorter than 1000 characters, the model may
struggle to recognize citations in that final chunk due to the reduced amount of contextual information.

This limitation should also be kept in mind when manually uploading texts in the web application, as
shorter or incomplete chunks may impact the model’s accuracy.

8.2.3 Test Scores
The test data is based on the regex solution. If the model generalizes better and recognizes more
citations not covered by the regex solution, it could get punished for this in the evaluation. A high F1
score based on the test set does not mean that the model recognizes all citations perfectly. First and
foremost, it shows that the model recognizes citations just as good as the regex solution.

8.2.4 HTML Tags in Citations
The web application shows the user the formatted version of the document text, which is not equivalent
to the text that the model sees. If a document is in HTML format, the model sees the HTML tags,
which the user does not see. This could make it hard to understand why the model does not recognize
a citation correctly. Since some of the Swisslex documents contain HTML tags within the citations,
such as <i> tags, the model might struggle to recognize the citations correctly.

E.g. the citation “BGE 123 IV 1” could be written as “BGE <i>123</i> IV 1” in the document. The
model could struggle recognizing this as a citation because of the <i> tags. It would be an option to
not display the formatted version of the document text to the user, but the raw text. However, due to
usability reasons, this was not implemented.
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8.3 Possible Further Improvements
Since the time of this bachelor thesis is limited, there are still many possibilities for further evaluation
and improvements. The following recommendations are based on the results of the experiments and
the insights gained during the work on this project.

8.3.1 Improve Training Data Quality
The most significant improvements to the solution could be achieved by enhancing the quality of the
training data. The data is based on the current regex solution and is not manually annotated. Since the
regex solution does not catch all citations, the training data is not perfect. This could lead to the model
learning wrong patterns and making incorrect predictions.

An LLM could be used to clean up the training data and increase the diversity of the samples. Through
few-shot prompting, the LLM could be queried to find incorrect or missing citations in the training
data. This could improve performance when recognizing citations if a new model is trained with the
cleaned data.

When the citation recognition is improved and more specific components like halfsentences, references
etc. are recognized, new training data can be generated for parts. The model specialized in recognizing
parts can be re-trained on this new dataset.

8.3.2 Balance Training Data
The data exploration in chapter 3.3 shows that the data for recognizing citations is not perfectly bal-
anced. For example, documents with the labels CASELAW and LAW get cited more often than LITERATURE
documents. This could lead to the model being biased towards the labels which get cited more often.
The model could learn to predict the labels with more samples better than the labels with fewer
samples. This specific problem is covered in chapter 6.1.10, where the performance of the labels is
described. This might be a general issue, e.g. for short and long citations, language specific citations,
and so on. Balancing the dataset should also be considered for recognizing parts of a citation.

Based on the structure of the dataset it is difficult to balance it (chapter 6.1.1). The dataset uses a text
chunk as starting point. The sample contains the citations which occur in the text chunk. When trying
to get more examples for the label LITERATURE, a lot of the samples containing LITERATURE citations
would also contain CASELAW and LAW citations. Since the results are already satisfying and the balancing
takes a lot of time, this is not a priority for this bachelor thesis. However, with more time at hand,
this could be a valuable improvement. To improve balance, chunks with LITERATURE citations but few
or no CASELAW and LAW citations could be filtered out. Another alternative would be to use an LLM to
create synthetic samples.

8.3.3 Include Linking Words for Parts of a Citation
For the recognition of parts in citations, labels are defined which represent the different values of the
parts (chapter 6.2.1). For example, the label article represents the value “Art. 1” and the label page
represents the value “Seite 12”.

This recognition of the parts could be improved. For example, if the text contains “Art. 1 bis 5” it
recognizes “Art. 1” and “Art. 5” but not the linking word in between. The contextual information of
the word “bis” is not represented by the recognized parts. The same applies to “Seite 12 ff” in which
“Seite 12” is recognized but not the meaning of “ff” (=fortfolgend).

Based on the recognized citations and its parts, Swisslex will implement the linking of the citation
with its cited document after this thesis. If it turns out that it is not good enough with the provided
labels, it may be worth trying to include more labels which represent the linking words or find another
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solution in which these could be represented. If such a solution is found, it will be easy to update the
already recognized citations, since the whole citation passage is stored in the databse, including the
linking words.

8.3.4 Improve Golden Datasets
The golden datasets are used to evaluate the “real” performance of a fine-tuned model and compare
it to the performance of the regex solution (chapter  7.1) or to the few-shot prompting approach
(chapter 6.2.2.5). The golden datasets are created by manually annotating the citations and their parts
in the text, as described in chapter 6.1.2.7. The annotation is done by the authors of this work and is
best effort. This means that the annotations may not be perfect and may contain errors, as the authors
are not legal experts. It is therefore recommended that the golden datasets are reviewed and expanded
by legal experts. This would ensure that the annotations are correct and a larger dataset could be
created.

8.3.5 Experts per Label
As described in chapter 6.1.10, the performance of the ensemble of label-specialist models was not as
good as expected. This was mainly due to the high number of false positives, which could be explained
by the fact that the training sets only contained positive samples. If the datasets could be created in
a more balanced way, still including many positive samples but also some negative ones where the
label is not present, the performance of the ensemble of label-specialist models could be improved.
However, it still has to be evaluated if it would perform better than a single model.

8.3.6 More Specific Labels for Citations
The labels for citations in legal documents could be further divided into more specific labels. This idea
came up because of the different citation formats for judgments. For example the Federal Supreme
Court of Switzerland uses the format “BGE 123 IV 1” for their published judgments and the adminis-
trative court of the canton of Zurich uses the format “VB.2024.00535”.

This thesis uses the labels CASELAW, LAW and LITERATURE. But because of those different formats
in citations it may be beneficial to further divide the labels. For example, the label CASELAW which
represents judgments could be divided into european, national and regional judgments.

8.3.7 Larger Context Size
The chunk size of 1000 characters is chosen because of the context size limitations of BERT-based
models. However, Llama models can handle larger context sizes. It could be evaluated whether a larger
context size would improve the performance of the model. A quick test showed that increasing the
context size during inference did not improve performance. This is explained by the fact that the model
was fine-tuned for chunks of 1000 characters. The model would have to be fine-tuned again with a
larger context size to benefit from this.

8.3.8 Adjust Tokenizer
The tokenizer could be improved by including abbreviations of commonly referenced laws, such as
OR or ZGB, as separate tokens. These abbreviations are unlikely to be part of the standard vocabulary
of the tokenizer, but are an integral part of Swiss legal texts. By explicitly adding these terms, the
tokenizer would reliably identify the boundaries of legal references. For example, in a citation such as
Art. 123 ZGB, the tokenizer would correctly isolate ZGB as a specific legal code, instead of breaking it
down into unrelated subwords or treating it as part of the surrounding context.
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This phenomenon is not explicitly observed during the project. However, due to the large number of
abbreviations, it is not feasible to manually check the tokenization of each abbreviation. Nevertheless,
false negatives could be evaluated and checked to see if they are caused by the tokenizer.

8.3.9 ModernBERT
In the end phase of this bachelor thesis on December 19 2024, a new BERT based model was released
called ModernBERT from B. Warner et al. [133]. Prof. Dr. Mitra Purandare, the advisor of this thesis,
mentioned that this model could be interesting for this thesis. A short evaluation has shown that on
100k training samples (with a 80/20 validation split) and 30k test samples only an F1 score of 45.5%
could be reached (detailed information in appendix section F.2.4). This is not enough for the use in
this thesis and because the time is limited, further evaluation is not possible. Still, it could be worth to
evaluate this model again in the future, especially since the context size of ModernBERT is extended
to 8K tokens.

8.3.10 Directly Recognize Parts
The proposed solution splits the task into two steps, recognizing citations and then afterwards their
parts. Inference time could be reduced when merging these steps and directly recognizing the parts
of a citation. The challenge with this approach lies in determining which parts belong to the same
citation, especially when the parts are not directly adjacent to each other or are part of a multiple
citation. An option for this could be nested NER from GLiNER [38].

8.3.11 Few-Shot Prompting for Parts
In the future, as LLMs become faster and cheaper to run, or smaller models become better, few-shot
prompting with an LLM could replace the fine-tuned BERT model for recognizing parts in citations.
This could improve generalization of unseen data.
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A Glossary
BiLSTM-CRF Combination of Bidirectional LSTMs with CRFs
BERT Bidirectional Encoder Representations from Transformers
Case law Law which originates from court decisions. This term is used in Swisslex and in this thesis

interchangeably with judgment.
Chunk A part of a document which is processed by the model
Citation Checker Web Web application to test the citation recognition
Citation Inference API API to perform inference with the models for citation recognition
Citation label Label to classify the citations, either LAW, CASELAW or LITERATURE (chapter 6.1.1)
Citation Processor Console application which allows bulk processing of documents
CRF Conditional Random Field
Data Extractor Helper tool to extract data from the Swisslex database
DGX “The Nvidia DGX represents a series of servers and workstations designed by Nvidia, primarily

geared towards enhancing deep learning applications through the use of general-purpose computing
on graphics processing units (GPGPU).” [134]

F1 Score to evaluate model performance, calculated as the harmonic mean of precision and recall
FN False Negative
FP False Positive
Golden test set Test set which is manually annotated and is used to evaluate the model
HMM Hidden Markov Model
IOB2 Inside-Outside-Beginning (IOB) tagging scheme
KNN K-Nearest Neighbors
L2 Regularization term which penalizes large weights
LLM Large Language Model. In this thesis, the term refers to decoder-only models with over 1 billion

parameters, excluding BERT-based models and similar encoder architectures.
LR Learning Rate
LSTM Long Short-Term Memory
NER Named Entity Recognition
NLP Natural Language Processing
Part Type Type of a part inside a citation, described in detail in chapter 6.2.1
POS Part-of-Speech
Production Tool Internal tool used by Swisslex to process legal documents
Regex solution Currently used solution for citation recognition in Swisslex, which is based on

regular expression matching
RNN Recurrent Neural Network
RUP Rational Unified Process
Special case test set Test set which is created and manually annotated to evaluate the performance

of the model on edge cases
SLX Internal abbreviation for Swisslex
Swisslex Online platform for searching legal documents, also the name of the company which

provides the platform
SVM Support Vector Machine
TN True Negative
TP True Positive
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