
Student Research Project
Documentation

Invoice Scanner App
Term: Autumn 2024/2025

Project Team: Roger Marty
Tseten Emjee

Project Advisor: Martin Seelhofer

Version: 01.00
Date: 2024-12-19

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

In this day and age, invoices are received in a wide variety of formats. Some as physical
paper documents and others digitally. This makes it challenging to keep track of all
invoices, their status and other relevant information. To combat this issue a solution
should be created that allows scanning of physical invoices or uploading digital ones for
processing. Important information should be extracted and returned in a structured
format providing a tabular overview.

A mobile app for Android was developed for the frontend. The app is based on Kotlin
utilizing Jetpack Compose and Hilt. As a REST-API for the frontend to interact with, a
Python-based backend has been created using the FastAPI framework. The backend has
been containerized and runs on a virtual server behind a Traefik reverse proxy. Various
AWS services have been integrated for storage, including S3 and DynamoDB, as well
as computation with Lambda and data extraction using Textract, a machine learning
service that goes beyond ordinary OCR. The Firebase Cloud Messaging service was used
for push notifications.

The produced Invoice Scanner app solves the described problem. Invoices can be scanned
for automatic data extraction or manually created. The app provides an organized
overview of all invoices and options to edit, mark as paid and view the associated orig-
inal invoice file. Acting as a centralized place for invoices the app can be used for
management and archiving purposes.

i

Contents

I Management Summary 1

II Product Documentation 6

1 Requirements 7
1.1 Functional Requirements . 7

1.1.1 Actors . 7
1.1.2 Use Cases . 8

1.2 Non-Functional Requirements . 10
1.2.1 Performance Efficiency . 10
1.2.2 Reliability . 11
1.2.3 Maintainability . 12
1.2.4 Security . 12
1.2.5 Interaction Capability . 13

2 Domain Analysis 14
2.1 Domain Model . 14

3 Architecture 16
3.1 Technology Decisions . 16

3.1.1 Frontend . 16
3.1.2 Backend . 16
3.1.3 Infrastructure . 17
3.1.4 External Interfaces . 17
3.1.5 Use of AI/LLMs . 17

3.2 C4 Model . 17
3.2.1 Context . 18
3.2.2 Container . 18
3.2.3 Component . 21

3.3 Component Interaction Diagram . 22
3.4 Frontend . 23
3.5 Backend . 24
3.6 CI/CD . 24

ii

3.6.1 Frontend Pipeline . 24
3.6.2 Backend Pipeline . 25

3.7 Server Infrastructure . 25
3.8 Extension . 26
3.9 Scaling . 26

3.9.1 Performance . 26
3.9.2 Platforms . 27

4 Design 28
4.1 Colors . 28
4.2 Logo . 28
4.3 Prototyping . 29

4.3.1 Low-Fidelity . 29
4.3.2 High-Fidelity . 29

5 Implementation 30
5.1 Frontend . 30

5.1.1 App Architecture . 30
5.1.2 Error and Response Handling . 32
5.1.3 Notification Listener . 33

5.2 Backend . 34
5.2.1 API Architecture . 34
5.2.2 Endpoints . 35
5.2.3 Data structures . 36

5.3 AWS . 37
5.3.1 Architecture . 37
5.3.2 S3 / Lambda . 38
5.3.3 DynamoDB . 38

6 Results 40
6.1 NFR Validation . 40

6.1.1 Beta Validation . 40
6.1.2 MVP Validation . 42

6.2 Final Product . 42

III Project Documentation 47

7 Project Plan 48
7.1 Planning . 48

7.1.1 Methodology . 48
7.1.2 Roles and Responsibility . 48
7.1.3 Meetings . 49
7.1.4 Long-Term Plan . 50

iii

7.1.5 Milestones . 51
7.1.6 Short-Term Plans . 52
7.1.7 Risk Management . 54

7.2 Tooling . 57
7.2.1 Documentation . 57
7.2.2 Code . 57
7.2.3 Tracking . 57
7.2.4 Workflow . 58

8 Quality Measures 59
8.1 Code . 59
8.2 Gitflow . 59
8.3 DoR / DoD . 60
8.4 Metrics . 61
8.5 Testing . 61

8.5.1 Frontend . 61
8.5.2 Backend . 62

8.6 Pipelines . 62

9 Project Monitoring 63
9.1 Time Tracking Reports . 63
9.2 Time Evaluation . 63

9.2.1 Work Distribution . 64
9.2.2 Work History . 64
9.2.3 Overview Epics . 65
9.2.4 Project Timeline . 66
9.2.5 Milestone Fulfilment . 66

9.3 Repository Analytics . 66
9.3.1 Test Coverage . 66
9.3.2 Commits . 67

IV Closing Thoughts 69

10 Conclusion 70
10.1 AI-Integration . 70
10.2 Evaluating Success . 70
10.3 Future . 71

11 Personal Reports 72
11.1 Tseten Emjee . 72
11.2 Roger Marty . 73

12 Note of Thanks 74

iv

V Lists 75

Glossary 76

Bibliography 78

List of Figures 80

List of Tables 82

List of Listings 84

VI Appendix 85

v

Part I

Management Summary

1

Management Summary

Initial Situation

Nowadays, invoices are often received in various formats and media. It is difficult to
keep track of all of those invoices and ensure they can be retrieved quickly if needed.
Knowing which invoices have been paid and which ones are still open is important as
well. The described problem will be addressed in this student research project.

The aim of this project is to create the Invoice Scanner mobile app. The app should
enable users to scan their invoices and view the extracted information in a structured
way. At the same time this project will be used to apply known technologies and methods
whilst new expertise can be gathered. This documentation also serves as training on how
to write academic papers. Appropriate project tools are utilised where needed.

Methodology

After the task definition was received, a project plan was made. The project adopted
the Scrum+ methodology, which combines elements of the Rational Unified Process
(RUP) and Scrum. Following this methodology, a rough long-term plan was created,
outlining the four phases of RUP: Inception, Elaboration, Construction and Transition.
In addition, the milestones of the project were identified and planned out.

The functional and non-functional requirements were defined in accordance with the
task at hand. Some functional requirements were optional, while others were manda-
tory for the minimim viable product (MVP). Up next was the planning of the actual
realisation of the application. This involved important steps like defining the software
architecture and then creating a working prototype using the selected technologies to
confirm compatibility. Low- and high-fidelity designs for the app’s interface were also
created. This ensured a smooth and mutually agreed-upon implementation.

Then the construction phase began, during which the requirements were imple-
mented. First a beta version was released containing the core features, followed by
the release of the MVP, that covers all the mandatory requirements and use cases. The
whole project was done through multiple bi-weekly sprints in accordance to the Scrum+
methodology and overseen in weekly meetings with the advisor.

2

Technologies

The end-product was constructed with following technologies and frameworks:

Version Control: Gitlab

The codebase is maintained in the OST instance of Gitlab under https://gitlab.ost.ch/.

Frontend: Android, Kotlin, Jetpack Compose, Android Studio

The frontend of the application is a native Android app built in Android Studio and
written in Kotlin. The UI code is written in a modern declaritive approach using Jetpack
Compose.

Backend: FastAPI, Python, Terraform

The Python backend serves endpoints with help of the FastAPI framework, bridging
the connection of the frontend and the external interfaces. Additionally Terraform is
employed for a more streamlined and git-versioned management of the cloud services.

External Interfaces: AWS, Firebase

The backbone of the application lives in the AWS cloud. The user and invoice data is
saved in DynamoDB, while S3 is used for the binary invoice files in formats like PDF
and PNG. Lamda is also in use. It is triggered by new uploads to S3 and processes the
invoices using Textract, a ML-based OCR tool. After completion, Lambda will notify
Firebase to send a push notification back to the frontend client.

3

https://gitlab.ost.ch/

Figure 1: Used technologies

Result

The final version of the project allows users to take a picture of their physical invoice or
upload a digital version. It will then be processed and once the process is finished a push
notification is sent to inform the user. A new entry is then created on the overview page
where they can quickly access all of their invoices. If information about an invoice is
needed or the original file needs to be viewed, the entry can be opened and all informa-
tion is visible. When an invoice is not available, a manual invoice entry can be created.
All entries can be edited and can also be set to paid. Entries that are no longer needed
can be deleted.

All of the defined requirements for the MVP were implemented and thus this project
is considered a success. Only optional requirements remain open. The login feature for
example, which was partially implemented but could not be completed in time.

And so the final product still has room for growth. Aside from the predefined optional
requirements, there are also ideas gathered from the feedback of the conducted usability
tests. Completing the login and authentication feature would be a logical next step and
it could be introduced to the currently account-less approach in parallel.

4

Figure 2: MVP App

5

Part II

Product Documentation

6

Chapter 1

Requirements

Following requirements are based on the task description provided by the advisor. The
description can be found in the appendix.

1.1 Functional Requirements

Below are all the functional requirements defined for this project. Use cases with a
white background are planned for the MVP while the ones with a grey background are
categorised as optional use cases.

1.1.1 Actors

This project encompasses one actor which is the user of the app. The external systems
AWS and Firebase are also displayed in the graphic.

7

User

Figure 1.1: Use Case Diagram

1.1.2 Use Cases

These are the use cases defined for this project. They are written in the casual format
and include alternate scenarios.

8

ID Description Alternate Scenario

UC1 The user can either take a photo of
an invoice, choose one from his photo
gallery or select a PDF file from the
file explorer.

-

UC2 After an invoice has been selected the
user can either confirm and the invoice
gets uploaded or the user can return
and start over.

Connection failure: User gets in-
formed about the failure.

UC3 An overview page with all scanned in-
voices is available to the user.

No scanned invoices: Hint to add in-
voice.
Connection failure: User gets in-
formed about the failure.

UC4 User can CRUD invoice entries. Invoice still progressing: User has to
wait until it’s finished.
Connection failure: User gets in-
formed about the failure.

UC5 The files used for scanning can be
viewed in the respective invoice entry.

No file provided: Nothing will be
shown.

UC6 After an invoice has been processed
the user is informed with a push noti-
fication.

-

UC7 In the overview page a search function
exists to filter the entries.

No search results: A hint is shown to
the user.

UC8 The user is able to sort his scanned
invoices by various fields.

-

UC9 Each entry can be tagged with a pre-
defined tag which can then be used in
the search function.

-

Table 1.1: Casual Format Use Cases

Precondition

The above use cases have the precondition of first being authenticated with the system.
There are two variants for this precondition, the grey one is optional and not considered
for the MVP.

9

ID Description

PC1 The user is authenticated via a device-unique UUID generated on first startup.

PC2 The user registers themselves on first startup and can authenticate themselves
with a login and JWT.

Table 1.2: Precondition Variants

1.2 Non-Functional Requirements

The following non-functional requirements are defined for the project, which are based
on the ISO/IEC 25010 [1] standard.

1.2.1 Performance Efficiency

ID NFR1

Description The scanning process is performant.

Acceptance Criteria The time from when the user confirms the upload of the
invoice until it’s completed must be less than specified with
a maximum file size of 10MB, given the user has at least a
working 4G internet connection.

Landing Zones

• Minimal: 15 seconds

• Target: 10 seconds

• Outstanding: 8 seconds

Table 1.3: NFR1

10

ID NFR2

Description The backend is able to process many requests.

Acceptance Criteria The backend completely processes the request to fetch all
invoices of a user.

Landing Zones

• Minimal: 60 requests per minute

• Target: 120 requests per minute

• Outstanding: 200 requests per minute

Table 1.4: NFR2

ID NFR3

Description The mobile app pages load quickly.

Acceptance Criteria The pages load in less than one second and don’t impact
the user’s experience, given the user has at least an android
phone with performance comparable to the Samsung A21
(2020) [2].

Table 1.5: NFR3

1.2.2 Reliability

ID NFR4

Description The backend server supports fault tolerance.

Acceptance Criteria If a backend node fails on the OST server the operabilty
isn’t impacted and the traffic gets loadbalanced to a working
node.

Table 1.6: NFR4

ID NFR5

Description There is always a backup of the database data available.

Acceptance Criteria Backups for all databases are made daily, which can be re-
stored at any point in time.

Table 1.7: NFR5

11

ID NFR6

Description User input does not cause the app to crash.

Acceptance Criteria No crashes in usability and regression testing occur due to
user input.

Table 1.8: NFR6

1.2.3 Maintainability

ID NFR7

Description The project is effectively and efficiently modifiable without
introducing defects.

Acceptance Criteria Industry standard code guidelines are enforced with linters,
formatters and pipelines to ensure quality.

Table 1.9: NFR7

1.2.4 Security

ID NFR8

Description Data is only transferred over secure connections and is en-
crypted during transit.

Acceptance Criteria Only HTTPS connections are used for data transfer between
frontend, backend and AWS.

Table 1.10: NFR8

ID NFR9

Description Data at rest is encrypted at all times.

Acceptance Criteria The data in DynamoDB and S3 is never saved as plain-text
and is encrypted instead.

Table 1.11: NFR9

12

ID NFR10

Description A user can only see his own data.

Acceptance Criteria A user must not be able to access another users data upon
opening the app. This is tested by developers on an adhoc
basis.

Table 1.12: NFR10

1.2.5 Interaction Capability

ID NFR11

Description A user is aware when errors happen.

Acceptance Criteria Messages are shown to inform the user about system errors.

Table 1.13: NFR11

ID NFR12

Description The app is easy to use.

Acceptance Criteria The feedback from the usability tests is positive. Focus on
the accessibilty and general feedback questions.

Table 1.14: NFR12

13

Chapter 2

Domain Analysis

This chapter describes the results of the domain analysis.

2.1 Domain Model

Figure 2.1: Domain Model Diagram

The above graphic shows the domain model diagram, separated into an MVP group
and two external entities defined for the optional goals. While most of the diagram is
self explanatory, following are descriptions for some special cases.

14

Invoice

The status field is used to reflect the process status of an invoice and is an enum. This
enum has three items namely:

• Processing

• Complete

• Failed

Failure is defined by any error during the extraction process, a missing field or an
insufficient confidence score for the completed extraction.

Tag

The tag entity reflects the ability to tag invoices. To note here is that tags are exclusive
to one another, meaning an invoice can only have none or one tag assigned to it.

15

Chapter 3

Architecture

This chapter presents the various architectural decisions made for the product and their
reasoning behind each choice.

3.1 Technology Decisions

This section shows the technologies of the project and explains their choices.

3.1.1 Frontend

Android / Kotlin The frontend of the system is a native android application written
in Kotlin. Using the modern Kotlin language instead of Java is officialy recommended
when developing a new android app.

Jetpack Compose For the UI code, the project uses Jetpack Compose [3]. This
declaritive way of writing UI code lessens the overall amount of code and encourages
modularity.

The team had a positive experience working with this frontend stack from the previous
SE-Project module. This was the main influence for the choices.

3.1.2 Backend

Python / FastAPI The main part of the backend is written in Python using the
FastAPI framework [4]. It is a modern web framework perfectly suited for the needed
REST API endpoints, with out-of-the-box async support and overall less LOC than the
alternative Flask, for example.

Terraform Everything AWS related is done via IaC using Terraform [5]. All services
and their exact settings can be configured as code, instead of the AWS console. This
allows for fast changes and version control.

16

3.1.3 Infrastructure

Traefik It is used as a reverse proxy and for its loadbalancing capabilities. [6]

Watchtower This is used for monitoring the container registry of the backend repos-
itory. [7]

3.1.4 External Interfaces

AWS Due to some AWS services perfectly fitting the use cases of the app, as well as a
general interest in the AWS infrastructure, following services are used and operated via
the Python backend:

• S3: For uploading and storing the invoice documents AWS S3 is used. [8]

• Lambda: This is a serverless compute service, triggered when new invoice docu-
ment is uploaded to S3. It forwards the document to the extraction service and
afterwards saves it in the database. [9]

• Textract: Integration of AI for the extraction and processing of relevant data is
an integral part of this project. For this purpose Textract is used. This service
goes beyond standard OCRs since it is powered ML. It has a specialized Expense
API which can be used for invoices and receipts. [10]

• DynamoDB: Finally DynamoDB is used for the data storage, holding the invoice
and user data. DynamoDB is a serverless NoSQL database. [11]

Firebase The whole flow of uploading, extracting and saving invoice data can take
time depending of the size of the invoice. In order to inform the frontend when the
process has completed, FCM is used to send push notifications to the app. [12]

3.1.5 Use of AI/LLMs

In general, the use of LLMs is acknowledged in this project. Considering their effi-
ciency compared to a ”classic” search engine for quick problem solving, as well as their
widespread use in the industry itself, their omission would be senselessly limiting.

Since these LLMs are of course not always correct, the responses given by them are
always screened thorougly by the team, before incorporating them into the codebase.

3.2 C4 Model

Following is the C4 model of the product, depicting an overview of the system architec-
ture. Only the Levels 1 through 3 have been modeled, on the basis that the Level 4 code
diagram would be too specific and subject to many changes. The diagrams from Level
1-3 are sufficient enough to gain a good understanding of the architecture.

17

3.2.1 Context

The context diagram gives an overview over all the systems involved in the product and
how they roughly interact with each other.

Figure 3.1: C4 Context Diagram

3.2.2 Container

The container diagram takes a closer look into the Invoice Scanner system itself, revealing
its parts ”Mobile App” and ”Backend”. The external AWS system containers are also

18

modeled, since the configuration and orchestration of their instances are a big part of
the project.

Figure 3.2: C4 Container Diagram - Invoice Scanner

19

Figure 3.3: C4 Container Diagram - AWS

20

3.2.3 Component

Lastly, zooming into the Invoice Scanner containers ”Mobile App” and ”Backend” presents
the layers they’re composed from.

Figure 3.4: C4 Component Diagram - Mobile App

21

Figure 3.5: C4 Component Diagram - Backend

3.3 Component Interaction Diagram

Following process describes how the main workflow of the app, the invoice scanning,
works and how the components interact with each other on a high-level basis. If a user
confirms to upload a certain invoice, it gets forwarded from the app to the backend.
The backend calls the necessary AWS services and returns a response to the app. The
invoice gets processed by Lambda and Textract and eventually the result is saved in
DynamoDB. A notification is triggered through Firebase and send to the app to give the
user feedback.

22

Figure 3.6: Main Workflow CID

3.4 Frontend

The frontend app architecture is based on the recommended best practices from Google.

Figure 3.7: Typical App Architecture from Google [13]

The app is split up into UI layer, optional domain layer and lastly the data layer,
which handles interfaces and connections to the backend. Furthermore, the data Layer
itself is split up into repository and data sources. The repository is the connection point
for the higher level layers, tasked with aggregation and handling of the data coming from
the data sources.

23

The dependencies are as pictured. Uni-directional and from the top to bottom.
This ensures that changes to the volatile UI layer do not effect the more stable data
layer functionalities. With proper use of interfaces and dependency injection using the
Dagger/Hilt library [14], the testability of the codebase is very high.

As seen in the C4 Component Diagram, there is also a Util component to extract
needless complexity from the UI layer/component.

3.5 Backend

The API follows a three-layer architecture approach, where each layer handles different
responsibilities for clear separation of concerns. The backend consists of a router layer,
services layer and a repository layer. The router layer handles all HTTP requests,
while the services are responsible for business logic. The repositories handle the data
operations and acts as the link between the backend and AWS.

For enhanced testability and loose coupling, dependency injection is used between
the layers.

Furthermore, to create a more maintainable and readable codebase, each layer exists
once for each domain. There is a user domain and invoice domain. While they follow
the same exact patterns, their focus is on their own respective functionality and models.

3.6 CI/CD

Of all the repositories, the frontend and backend ones rely most on the pipelines in
place. Below is an overview of how they are structured and the tasks they accomplish.
The pipelines run on every commit and depending on the branch, different tasks are
executed.

3.6.1 Frontend Pipeline

The pipeline consists of five stages that each contains their related tasks. It starts off
by linting the whole codebase to scan for any programmatic or stylistic errors. This is
also done by pre-commit hooks but an additional check is done on the remote repository.
Following that, all unit tests get executed and the test coverage is measured. A report
of all unit tests and the test coverage percentage are made available to the developers in
merge requests. An additional task is then needed in the report stage to convert it into
the correct format. Depending on the branch the commit is made on, either a debug or
release APK is built and saved as an artifact. Finally, security checks are carried out.

24

Figure 3.8: Frontend Pipeline

3.6.2 Backend Pipeline

In the backend repository, the process it is quite similar. It begins with the linting,
followed by the unit tests and the test coverage measurement. Afterwards, the Dockerfile
is used to build either a develop or a production docker image, which is then pushed to
the repository with the respective tag. In the end, various security checks are made.

Figure 3.9: Backend Pipeline

3.7 Server Infrastructure

To host the backend, a virtual server from OST is in use. The backend is containerized
and multiple replicas run on the server. Healthchecks are made by Traefik and all healthy
nodes receive traffic.

For continuous deployment a pull method is used. If a newer version is pushed to
the registry, the changes are detected and containers with the new version are created
while old ones are destroyed.

25

Figure 3.10: Server Environment

3.8 Extension

The modular architecture used across all codebases enhances the maintainability and
flexibility. New and optional features can be added without affecting existing function-
ality. The pre-commit hooks and pipelines ensure that the code quality remains high
and complies with the defined guidelines.

3.9 Scaling

This section discusses how the project can be scaled regarding performance and support
for additional platforms.

3.9.1 Performance

The backend is the primary component that could be scaled or optimized regarding per-
formance. Other services used in the project are serverless, and scaling is automatically
handled by the providers themselves. The server hosting the backend is limited in its
resources. There are multiple possibilities to improve this.

Kubernetes: Instead of relying on Docker Compose to run the application, Kubernetes
could be used. It allows for container orchestration and automatic scaling based
on the current load.

AWS: Since some AWS services are used in this project, hosting the backend on AWS
is a viable option. This could be achieved using ECS [15] or EKS [16].

26

Vertical Scaling: Increasing the allocated resources of the virtual server is another
improvement although only temporary.

3.9.2 Platforms

This project focuses on creating an app for the Android platform. For future extension,
additional platforms could be supported.

iOS: Developing an app for the iOS operating system would cover the entire smartphone
sector.

Web: To support non-smartphone devices, a web app would be necessary. This would
enable almost all devices to access the Invoice Scanner’s functionalities.

27

Chapter 4

Design

Here in this chapter, the visual and user interface decisions are documented. This
includes icon and app designs.

4.1 Colors

The color choices are based on the official OST Logo, specifically the purple shades.

Figure 4.1: Main Colors

4.2 Logo

Following logo is used for the app icon and other necessary placements. CHF is used as
a relation to currency which aligns with the purpose of the Invoice Scanner app. The
colors used derive from the above color scheme.

28

Figure 4.2: Invoice Scanner App Logo

4.3 Prototyping

To save time and avoid rash decisions during the implementation phase, a lot of effort
goes into the design prototypes. The prototypes are all made in Figma [17], with assets
of their official Material 3 Design Kit [18]. All designs can be found in the appendix.

4.3.1 Low-Fidelity

The low-fidelity design of the app showcases all the different interactions and rough
screens that occur in the app. Actual UI decisions like colors or fonts are not the focus
here.

4.3.2 High-Fidelity

The high-fidelity prototype shows how the app should actually look like after imple-
mentation. The color scheme is generated using the Material Theme Builder plugin
[19] in Figma and then adjusted. While some deviation in the actual implementation is
acceptable, it should resemble it closely.

29

Chapter 5

Implementation

This chapter describes the actual implementation of the application, as planned in the
architecture chapter.

5.1 Frontend

This section documents the implementation of the frontend architecture, as well as other
off-note implementation aspects in more detail.

5.1.1 App Architecture

As seen below in the project structure of the app, the architecture is implemented
according as planned.

Figure 5.1: App Project Structure

Following is a sequence diagram of the deletion of an entry in the OverviewScreen.
This showcases the interworkings of the separate packages/layers.

30

Figure 5.2: Delete Sequence Diagram

The diagram shows that the classes do not depend on the implementation themselves
but rather on their respective interfaces. The implementations get binded and/or gen-
erated during compilation by the Hilt library. These binding are defined in their own
modules in the DI package. Through such use of interfaces, testing becomes much easier
because it enables the use of Fakes.

Figure 5.3: FakeFactory Class

31

5.1.2 Error and Response Handling

The sequence diagram in figure 5.2 shows two places where a call is ”handled”. Namely,
once in the OverviewModel class and again in the ApiSource class. This encompasses
the error handling of external API calls. In general it looks like this:

Figure 5.4: API Error Handling

All viewmodels in the app inherit the BaseViewModel class, which provides the han-
dleCall(...) function. Utilizing the fact that in Kotlin functions are treated as first-
class citizens, handleCall(...) is written as a higher-order function. It takes a function
call to the Repository as a parameter and handles any thrown exceptions in a central
place.

The function handleApiCall(...) is a higher-order function as well. It takes a call
to the Api as parameter and handles the HTTP response. If the response code is 500
or otherwise not in the 200...300 range, it throws a custom InternalServerException

exception all the way back to the BaseViewModel.
This setup allows the UI layer to handle any exceptions and directly show corre-

sponding snackbar messages. This is in accordance to the defined dependency directions
in the planned architecture.

32

1 open class BaseViewModel : ViewModel () {

2 protected suspend fun <T> handleCall(

3 action: suspend () -> T,

4 onError: (Exception) -> Unit = { e -> baseOnError(e) },

5): T? {

6 return try {

7 action ()

8 } catch (e: Exception) {

9 onError(e)

10 null

11 }

12 }

13

14 private fun baseOnError(e: Exception) {

15 when (e) {

16 is ConnectException -> showMessage (...)

17 is InternalServerException -> showMessage (...)

18 else -> showMessage (...)

19 }

20 }

21 }

Listing 5.1: BaseViewModel Class

5.1.3 Notification Listener

Reacting to FCM notifications when an entry has finished processing, is an integral part
of the app.

The Firebase library offers its base class FirebaseMessagingService to handle FCM
events, including a notification listener. But that alone is not enough to cleanly and
correctly react to completed invoice processes.

To achieve this, Kotlin’s SharedFlow is used. Simply put, a Flow in Kotlin shares
emitted values to all its collectors/subscribers. By exposing a public SharedFlow through
the InvoiceRepository, all viewmodels are able to subscribe to it. Subsequently, all My-
FirebaseMessagingService has to do, is emit a value to the flow via the InvoiceRepos-
itory.

33

Figure 5.5: SharedFlow Notification

5.2 Backend

The implementation of the backend architecture is shown in this section, as well as other
relevant details.

5.2.1 API Architecture

As planned, the architecture is split up into multiple layers, mainly the routers, ser-
vices and repositories. There are also modules for data structures, foundational logic
(exceptions, dependencies etc.), helper functions and the authentication.

The AWS Python SDK boto3 [20] is used in the repositories to interact with the
AWS services and perform the required operations.

34

Figure 5.6: API project structure

5.2.2 Endpoints

The following tables shows the endpoints the backend provides for the app. These
endpoints enable user and invoice related operations.

All invoice related endpoints also contain the user id as a path parameter. This can
be read from the JWT token once the PC2 is implemented.

35

Method Endpoint Description

GET /invoices Retrieves a list of all invoices that
belong to a user.

GET /invoices/{invoice id}/file Fetches the file associated with a
specific invoice.

POST /upload invoice Creates a database entry and up-
loads the invoice file to object stor-
age for further processing.

POST /create manual invoice Creates a new manual invoice entry.

POST /upload invoice file/{invoice id} Uploads an invoice file which will
be associated to a specific invoice
entry.

PUT /invoices/{invoice id} Updates the details of a specific in-
voice.

DELETE /invoices/{invoice id} Deletes a specific invoice by its ID.

DELETE /invoices/{invoice id}/file Deletes the invoice file associated
with the defined invoice.

Table 5.1: Invoice API Endpoints

Method Endpoint Description

POST /register user Registers a new user in the
database.

PUT /update fcm token Updates the FCM token for an ex-
isting user.

Table 5.2: User API Endpoints

5.2.3 Data structures

To ensure consistency across the application, data structures are defined. They describe
the primary entities and their attributes according to the domain model. These models
can be reused throughout the application, and incoming requests can automatically be
validated to ensure the data conforms to the required format.

36

Figure 5.7: Backend models

5.3 AWS

The project leverages several AWS services, primarily for storage and compute. Follow-
ing is an overview of the services and their configurations. By utilizing managed and
serverless services, high availability and scalability is achieved.

5.3.1 Architecture

As shown in the figure below, Terraform is used to create and manage the required
services. Each type of service is placed in its own Terraform file. To securely store
the data and protect against corruption in this collaborative environment, the S3 +
DynamoDB approach is used. This approach allows saving the state remotely and locking
if in use.

The lambda function is placed in its own subdirectory, as well as the lambda layer.
This layer contains special dependencies required by the lamda function that are not
part of the default modules.

37

Figure 5.8: AWS Repository

5.3.2 S3 / Lambda

S3 is used for storing invoice files. The S3 bucket is attached as a trigger to a lambda
function. The function retrieves the uploaded object once an event notification is re-
ceived. This object is then forwarded to Textract for processing.

The Textract response is a JSON file containing thousands of lines. This first has to
be filtered so only the relevant fields remain. Then depending on the confidence score
and completeness of the required fields, the database entry is updated.

Information required by the function is supplied via the object metadata in the form
of key-value pairs.

Figure 5.9: Lambda function

5.3.3 DynamoDB

DynamoDB is a fully managed, key-value NoSQL database. Two separate tables for the
users and invoices are used. The table content always corresponds to the data structures
mention in section 5.2.3.

38

To support all required query types, a GSI is used on the invoices table. This allows
for efficient queries using non-key attributes.

39

Chapter 6

Results

This chapter shows the various results and achievements of the project.

6.1 NFR Validation

The NFRs are validated twice over the course of this project. Once with the release
of the beta and the second time with the release of the MVP. For each NFR, there is
a description about the measurment methods, including the results and its acceptance
status.

6.1.1 Beta Validation

With the beta release, the NFRs are validated for the first time and lead to the following
results.

40

ID Measured Accepted

NFR1 Various tests are conducted where the time between confirm-
ing the upload and receiving a notification is evaluated. The
results depend on the file size of the invoice. Using the max-
imum filesize of 10MB takes around 12 seconds. Processing
time of lower file sizes goes as low as five seconds.

✓

NFR2 Multiple stress tests show that the backend is able to handle
more than 200 requests per minute.

✓

NFR3 All the pages load quickly and well under one second. ✓

NFR4 The backend server runs multiple replicas which are loadbal-
anced. When a node stops working, the health checks detect
it. With the current configuration it takes a maximum of four
seconds to detect an unhealthy node.

✓

NFR5 Invoices stored in S3 by default have a high enough durability.
For the data in the DynamoDB tables PITR is used. Using
point-in-time-recovery, all tables have the ability to be restored
to any given second in the last 35 days.

✓

NFR6 The features where the user can input data are not yet com-
plete.

✗

NFR7 Pipelines are in place for all repositories where it is relevant.
Together with pre-commit hooks they lint and format the
projects to ensure quality.

✓

NFR8 A Let’s Encrypt certificate is installed on the server. With this
all connections are made over HTTPS. Calls to AWS only use
HTTPS as well.

✓

NFR9 All data in the DynamoDB tables and in the S3 bucket are
encrypted at rest.

✓

NFR10 Under normal circumstances a user only sees his own data
which fulfills this requirement. Protection against malicious
intent will be present once the second precondition is complete.

✓

NFR11 Snackbar notifications pop up if an errors occurs and inform
the user with the appropriate information.

✓

NFR12 The general feedback from the usability tests is positive. No
major issues were reported but small improvement suggestions
have been noted.

✓

Table 6.1: Beta NFR Validation

41

6.1.2 MVP Validation

Below is the protocol from the MVP validation of all NFRs.

ID Measured Accepted

NFR1 Revalidated. ✓

NFR2 Revalidated. ✓

NFR3 Revalidated. All pages of the MVP load in under one second. ✓

NFR4 Revalidated. ✓

NFR5 Revalidated. ✓

NFR6 User input which is mainly in the detailed invoice view can’t
cause the app to crash and is properly validated. Valid file
formats for uploading invoices are also defined.

✓

NFR7 Revalidated. ✓

NFR8 Revalidated. ✓

NFR9 Revalidated. ✓

NFR10 Revalidated. Protection against malicious intent will be
present once the second precondition is complete.

✓

NFR11 Revalidated. A failed invoice extraction is marked accordingly
and a pop-up with additional information appears.

✓

NFR12 General feedback from all usability tests is positive. ✓

Table 6.2: MVP NFR Validation

6.2 Final Product

The final product covers all use cases defined for the MVP, specifically UC1 to UC6. Of
course the authentication precondition PC1 is also included. The NFRs, as seen in the
above section, are all validated and accepted.

In addition to those requirements, some additional, not predefined features are im-
plemented. These features came up during meetings and/or usability tests and were
refined, estimated and prioritised in an iterative fashion.

42

ID Description

EC1 On app start, the user’s internet connection is checked. If he is not connected,
he will be informed and the app will try again every second.

EC2 The user is informed when the processing step fails. This either occurs when
the confidence score of Textract is below 50% or if any of the fields are missing
after the extraction process. He is informed in the form of an icon in the
OverviewScreen and a popup in the DetailScreen.

EC3 In addition to receiving a notification when processing of an entry is complete,
the OverviewScreen automatically refreshes when the user is in the app during
receival.

EC4 In addition to viewing the invoice file in the DetailScreen, the user can also
delete it from the entry or replace it.

EC5 Dark mode compatibility. Dark mode is set based on the system settings.

Table 6.3: Extra Use Cases

Figure 6.1: MVP App - Light

43

Figure 6.2: MVP App - Dark

44

Figure 6.3: MVP App - Processing Failed and Delete

45

Figure 6.4: MVP App - Tablet Version

46

Part III

Project Documentation

47

Chapter 7

Project Plan

This chapter addresses the planning aspect of the project and the tools that are used.

7.1 Planning

This section focuses on short- and long-term planning, as well as methodologies, respon-
sibilities and the identified risks.

7.1.1 Methodology

In this project, the OST-original Scrum+ methodology is used, which combines RUP
for long-term planning and Scrum for short-term planning. This provides the ability of
planning and defining long-term goals, while also keeping the agility of Scrum. Using a
sprint length of two weeks results in seven sprints, which are allocated to the four RUP
phases.

7.1.2 Roles and Responsibility

The following assigned roles and responsibilities do not imply, that the work of the
assignee is exclusive them. As a team of two, assistance is provided to one another in
various tasks.

Scrum Master + Project Manager: Tseten Emjee
Responsibility: Leading Scrum Meetings, Writing Meeting Minutes

Product Owner: Roger Marty
Responsibility: Leading Refinement Meetings and sanitation of the backlog

DevOps: Roger Marty
Responsibility: Overview and general responsibility over pipelines and infrastructure

48

Frontend: Tseten Emjee
Responsibility: Overview and general responsibility over the mobile app

Backend: Roger Marty
Responsibility: Overview and general responsibility over the backend including ex-

ternal systems

Testing: Roger Marty
Responsibility: Overview and general responsibility over testing

Architecture: Tseten Emjee
Responsibility: Overview and general responsibility over architecture

7.1.3 Meetings

Following are the timeslots for the regularly held meetings:

• Sprint Planning / Review: Every two weeks on Monday 10h00 - 11h00

• Refinement Meeting: Every second Monday in Sprint 10h00 - 11h00

• Weekly Sync with Advisor: Every Monday 11h00 - 12h00

49

7.1.4 Long-Term Plan

This is the defined long-term plan. These estimations are rough and subject to change
during the course of the project.

Figure 7.1: Long-Term Plan

50

7.1.5 Milestones

Following five milestones mark the key deliverables and completion of phases.

Milestone 01: Requirements 14.10.2024
The goal of the first milestone is to establish the foundation for the project and

defining the functional and non-functional requirements for the project.

Planned Deliverables:

• Define functional requirements

• Define non-functional requirements

• Create a domain model consistent with the defined requirements

Milestone 02: Prototype 28.10.2024
This milestone focuses on assuring the selected technologies work together by creating

a prototype.

Planned Deliverables:

• Prototype App

– Specifications: Android App that can submit an invoice to an AWS S3 bucket
via the backend. Once the invoice is uploaded, Firebase is triggered and a
notification is shown on the mobile phone.

Milestone 03: Beta 25.11.2024
The Beta milestone signifies the peak of the construction phase and that it soon

comes to an end.

Planned Deliverables:

• Beta App

– Specifications: Near feature-complete with bugs and few features remaining.

Milestone 04: MVP 09.12.2024
With this milestone the construction phase is over and the MVP is complete.

Planned Deliverables:

• MVP App

– Specifications: Feature-complete with almost no bugs remaining.

51

Milestone 05: Final Submission 20.12.2024
This is the final milestone. It signifies the completion and submission of the project.

Planned Deliverables:

• Abstract for brochure

• Final Product

– Specifications: MVP with no bugs and maybe optional features included.

• Final Documentation

– Specifications: Complete and submission-ready documentation, proof-read by
both team members.

7.1.6 Short-Term Plans

The short-term plans rely on Scrum. Based on the progress of the previous sprint,
the next sprint is planned in the bi-weekly planning meeting. Planning poker is used
to ensure bias-less and consenus-based time estimations for each story. Following is a
history of all sprints and their finished tasks/stories.

Sprint 1

Product Documentation

- Setup various tools - Complete project planning (Long-term plan, milestones, risks,...)

- Prepare quality measures

Table 7.1: Short-Term Plan Sprint 1

Sprint 2

Product Documentation

- Setup DEV environments - Complete requirements engineering (FR, NFR, OR)

- Configure virtual server - Create C4 model

- Configure CI/CD pipelines - Create domain model

Table 7.2: Short-Term Plan Sprint 2

52

Sprint 3

Product Documentation

- Set up prototype - Review and adjust risks

- Create frontend app foundations - Create container interaction diagrams

- Create backend/AWS foundations - Document finalized technology decisions

- Make low/high fidelity designs

Table 7.3: Short-Term Plan Sprint 3

Sprint 4

Product Documentation

- Setup UUID identification - General revisions and updates

- Implement upload functionality

- Prepare various backend endpoints

Table 7.4: Short-Term Plan Sprint 4

Sprint 5

Product Documentation

- Implement Textract extraction workflow - Prepare and perform usability tests

- Construct backend endpoints - Re-evaluate risks

- Polish upload functionality for different file types - Validate NFRs

- Implement error handling

- Create overview page

- Release beta version

Table 7.5: Short-Term Plan Sprint 5

53

Sprint 6

Product Documentation

- Add manual creation and edit endpoints - Perform second usability test round

- Create detail page - Re-evaluate risks

- Fix bugs and add various improvements - Re-validate all NFRs

- Setup authentication in backend

- Begin with login feature in frontend

Table 7.6: Short-Term Plan Sprint 6

Sprint 7

Product Documentation

- Minor changes and improvements - Write abstract and management summary

- Document usability tests

- Finalise architecture and implementation chapters

- Complete and revise documentation

- Prepare for final submission

Table 7.7: Short-Term Plan Sprint 7

7.1.7 Risk Management

This chapter identifies and visualizes the project risks and how they are handled. A
changelog for all risk changes throughout the project is created.

54

Identified Risks

ID Description

Technical Risks

R1 Loss of project data / code

R2 Unauthorized use of interfaces

R3 Performance issues

R4 Code quality inadequate

R5 Technologies are incompatible

Project Risks

R6 Misjudment of the time schedule

R7 Absence of team member

R8 Lack of team communication

R9 Insufficient knowledge of technologies

R10 Outage of project relevant tools

Table 7.8: Identified Risks

Risk Matrix

Probabilities
Severity

Negligible Marginal Critical Catastrophic

High

Likely

Possible

Unlikely R1 R2, R7

Rare R4 R3, R6, R8 R9 R5, R10

Table 7.9: Risk Matrix

55

Risk Handling

ID Prevention Mitigation

Technical Risks

R1 Commit often, local backups Restore from local backup

R2 Do not expose any secrets, keys and
ports

Refresh / deactivate keys and secrets

R3 Clean coding, well planned architec-
ture

Review code and architecture

R4 Coding guidelines, linters, piplines
and pre-commit hooks

Refactoring

R5 Initial research of technologies Rapid change of technologies

Project Risks

R6 Time buffer in planning, review
progress of sprints

Adjust scope, prioritize core-functions

R7 Eat healthy, stay fit Smooth transfer of knowledge and
tasks

R8 Sync often, work together Extraordinary meetings

R9 Sufficient time for research Check documentation, ask in forums
or discuss with advisor

R10 Check for alternatives Quickly switch to alternatives

Table 7.10: Risk Handling

56

Risk Changelog

Date Change Cause

17.10.2024 R5: Possible/Catastrophic to
Rare/Catastrophic

Working prototype as defined in
milestone

25.11.2024 R6: Possible/Critical to Unlikely/-
Critical

Beta released on time, according to
milestone

25.11.2024 R9: Unlikely/Catastrophic to
Rare/Critical

Multiple features already imple-
mented and no issues occured

07.12.2024 R6: Unlikely/Critical to Rare/-
Marginal

All planned MVP features have
been implemented

Table 7.11: Risk Changelog

7.2 Tooling

Various management tools used in the project are noted in this section.

7.2.1 Documentation

The documentation is written in LaTeX and stored in a GitLab repository where the
configured pipeline builds the output PDF on every commit. This provides version
control and the possibility to rollback to a previous version if needed. To ensure that
the documentation corresponds with the OST guidelines and requirements, the LaTeX
template from the module SE Project is used.

7.2.2 Code

The codebase is divided into frontend, backend, AWS-related code/configuration. For
each codebase, a separate repository in the GitLab subgroup is created. This provides
clear separation and each repository has its own pipeline with automatic builds and
tests. The infrastructure configurations are saved in a repository as well.

7.2.3 Tracking

Everything that needs to be tracked is reflected in Jira. The sprints, epics, issues, bugs
and also the working hours of each member are recorded there.
(Jira Board)

57

https://rechnungs-scanner.atlassian.net/jira/software/c/projects/RSA/boards/2

7.2.4 Workflow

The steps the tasks go through is illustrated in the workflow below. All tasks start in
the ”To Do” column. If a team member starts working on a task, it is forwarded to
”In Progress” and stays there until everything is implemented. On completion the tasks
goes to ”In Review” where another team member checks the work. If it is acceptable it
goes into the ”Testing” column. If all tests pass, the task can be marked as done.

In certain states the tasks have the possibility to be moved back to a previous state
if, for example if the tests fail.

Figure 7.2: Jira Workflow Scheme

58

Chapter 8

Quality Measures

This chapter shows the measures and tools used to ensure high product quality. This
starts with the code itself, the testing and goes all the way to the pipelines and workflows
used in the repositories.

8.1 Code

To ensure that a high standard of code quality gets maintained, linters and formatters
are in use. The frontend and backend each have their respective tools. With linters
the code is statically analyzed and the programmer is informed about any formatting
violations, programming errors or bugs. The use of formatters ensures that the code
adheres to defined guidelines and conventions.

Frontend (Kotlin) Backend (Python)

Linter ktlint [21] Flake8 [22]

Formatter ktlint [21] Black [23]

Table 8.1: Code Quality Tools

The linters and formatters are executed in the pipeline on every commit to the
repository, every merge and also locally as pre-commit hooks.

8.2 Gitflow

All code repositories use the same Git workflow described below. Each merge from one
branch into another branch requires a review and an approval by another team member
and all pipelines need to be successful. Then the team member that requested the merge
can confirm it.

59

Branch Description

Main Branch Always contains the latest stable release of the software which is
used in production environments.

Develop Branch Branched from the main branch in the beginning. If new release
approaches and develop branch is stable and pipelines are success-
ful, it gets merged into main branch.

Feature Branch Every issue that gets handled gets a separate feature branch,
branched of from the latest develop branch.
Naming convention: feature/[issueID]-[issueTitle]

Bugfix Branch Every bug that needs to be fixed requires a separate bugfix branch
either from the latest develop branch or directly from the main
branch depending on the severity.
Naming convention: bugfix/[issueID]-[issueTitle]

Table 8.2: Gitflow Branch Description

Figure 8.1: Gitflow Workflow

8.3 DoR / DoD

• DoR: Issue is ready for estimation in terms of effort and can be put in the backlog.

– Content of the issue is understood

– Acceptance criteria / requirements are defined

– Estimated effort is documented

– Can be completed in one sprint

60

• DoD: Issue status can be changed to ”Done”.

– Acceptance criteria are implemented

– Tests and pre-commit hooks pass

– Pipelines are successful

– Documentation is updated

8.4 Metrics

The test coverage metric is used to test the source code for quality and reliability. This
is the main and only code metric used in this project. The percentage is calculated on
each commit and shown to the developers on each merge request. This ensures that
tests are not forgotten and reminds the developers to cover enough code with the tests.
At the same time, not all the available time should go into testing just so this number
is high enough which is why the target is set at 70%. This is the same reason why no
other metrics are used that could be too distracting.

8.5 Testing

In addition to the testing methods mentioned below, regression testing is also imple-
mented. This ensures that changes do not introduce new errors into already existing
functionality. This is implemented by continuously checking all unit tests and by testing
the new functionality manually.

8.5.1 Frontend

Several types of testing are used for the frontend.

Usability Tests

To evaluate the user’s experience when using the app and its functionalities, usability
tests are performed. A few testers are selected and work through the test protocol
described below in a one-on-one session with a team member who observes and notes
the results. Through this, insight is gained about what could be implemented in a
different way and if the interface is intuitive or needs changes. These findings are then
discussed in a meeting and if needed, implemented in the next sprint. The usability tests
are done once enough functionality exists, specifically after the beta and after the MVP
release. Following things are needed for conduct a usability test:

• Team member

• Test participant

• Test smartphone containing the latest stable release of the app

61

• Private area

• Internet

The usability test protocols for the beta and MVP releases can be found in the
appendix.

Unit Testing

Next to usability tests the code itself also needs to be tested. For this unit tests are
used. This enables specific code sections to be validated regarding their functionality.
The tests are implemented using the JUnit4 [24] framework. Written tests are executed
with the pre-commit hooks and in the GitLab pipelines. A merge can not be approved
if there are tests that fail.

8.5.2 Backend

The backend entirely relies on unit tests. With them, code components can be checked
to see if they match expected behaviour. The unit tests are conducted using the pytest
[25] framework. Written tests will be executed with the pre-commit hooks and in the
GitLab pipelines. A merge can not be approved if there are tests that fail.

8.6 Pipelines

The details regarding the actual implementation and steps of the CI/CD process can be
seen in chapter 3.
To ensure that above described quality measures are enforced throughout the project,
pipelines are configured for each repository. These pipelines run on every commit and
every merge. Linters, formatters and tests are executed and metrics are calculated and
shown in the merge requests. The Gitflow workflow is enforced through the appropriate
GitLab settings.

62

Chapter 9

Project Monitoring

This chapter focuses on the tracking and evaluation of the project progress.

9.1 Time Tracking Reports

Jira is used to keep track of when and for how long a developer works on a task. For each
task an issue is created and assigned to a project member. This enables the possibility
to get detailed insights about the time spent on the project which can be seen through
the following reports:

• Total Time (Link)

• Sprint 1 (Link)

• Sprint 2 (Link)

• Sprint 3 (Link)

• Sprint 4 (Link)

• Sprint 5 (Link)

• Sprint 6 (Link)

• Sprint 7 (Link)

9.2 Time Evaluation

This section illustrates the logged working hours. The total time availabe for this project
is 480 hours (2x240). Ultimately, 491 hours were spent.

63

https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-09-16&ac.author=&ac.toDate=2024-12-20&ac.timeRange=null&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-09-16&ac.author=&ac.toDate=2024-09-30&ac.timeRange=null&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-09-30&ac.author=&ac.toDate=2024-10-14&ac.timeRange=undefined&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-10-14&ac.author=&ac.toDate=2024-10-28&ac.timeRange=undefined&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-10-28&ac.author=&ac.toDate=2024-11-11&ac.timeRange=null&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-11-11&ac.author=&ac.toDate=2024-11-25&ac.timeRange=null&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-11-25&ac.author=&ac.toDate=2024-12-09&ac.timeRange=null&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)
https://rechnungs-scanner.atlassian.net/plugins/servlet/ac/com.rvs.atlassian.plugins.worklogs/rvs-worklogs-report-page-jira?ac.period=Day&ac.category=project&ac.groupBy=worklogAuthor&ac.fromDate=2024-12-09&ac.author=&ac.toDate=2024-12-23&ac.timeRange=null&ac.viewType=Table&ac.displayTotals=[object Object]&ac.jql=project%20in%20(%22RSA%22)

9.2.1 Work Distribution

Following graphic shows the accumulated hours logged for each team member. This
corresponds almost exactly to the mandatory effort.

Figure 9.1: Work distribution

9.2.2 Work History

This figure shows the logged hours per author, per sprint. Throughout the whole project
the hours spent are similar between both team members.

64

Figure 9.2: Work history

9.2.3 Overview Epics

The following pie chart shows the amount of assigned issues each epic has. The category
”None” includes bugfixes and epics that do not have a parent.

Important to note here, is that the amount of issues does not equal the workload of
an epic. Some issues are more complex than others.

Figure 9.3: Overview of epics

65

9.2.4 Project Timeline

The following timeline shows when which epic was worked on. This graph fairly accu-
rately mirrors the long term plan created at the start of the project.

Figure 9.4: Project timeline

9.2.5 Milestone Fulfilment

All five defined milestones were achieved on time. In general, it can be said that the
project planning is very consistent with the actual accomplished work. Part of the buffer
was needed but the project was still completed on time.

9.3 Repository Analytics

This section covers various repository statistics including the defined test coverage met-
ric.

9.3.1 Test Coverage

The goal of achieving a minimum of 70% test coverage was defined at the start of the
project. Even if testing sometimes had to be postponed, the goal was ultimately achieved
in the frontend and backend. Following figures show the development of the metric on
the develop branch throughout the project.

66

Figure 9.5: Frontend test coverage

Figure 9.6: Backend test coverage

9.3.2 Commits

The amount of commit is mostly spread out. All repositories show a spike during the
initialisation phase, followed by a break where the project planning was the main focus.
Afterwards the commits are evenly spread out.

Figure 9.7: Frontend commits

Figure 9.8: Backend commits

67

Figure 9.9: AWS commits

68

Part IV

Closing Thoughts

69

Chapter 10

Conclusion

This chapter evaluates the success of the product and the project as a whole, while also
outlining future plans.

10.1 AI-Integration

The usage of Textract was a success. Due to Textract being a part of the AWS ecosystem
the integration went seamlessly. Having a dedicated extension specifically for managing
invoices proved to also be highly beneficial.

As expected, there were cases where it came to its limits and was not able to extract
all required information. Its ability to extract data proved to be sufficient for the needs
of the product.

10.2 Evaluating Success

To reiterate, the aim of this project was to create a solution, that provides a central place
where one can manage their invoices. By simply uploading a picture or the original PDF
file of the invoice, the application should scan and extract relevant information. This
information is then available for viewing, editing and deletion.

Based on this goal, 9 use cases and 2 preconditions were defined, alongside 12 NFRs
to ensure quality. For the MVP, use cases UC1 to UC6 were mandatory, as well as the
precondition PC1. The NFRs all had to be validated and accepted. The MVP was
defined, so that upon meeting all requirements, the goal and aim of this project would
be achieved.

Reviewing the documented results, the project was successful. All MVP requirements
have been met and some additional features have also been implemented to create a
better product.

70

10.3 Future

With the mandatory use cases completed, the optional use cases UC7, UC8 and UC9
remain open. In addition, the precondition PC2, providing login authentication with
JWT, was started in Sprint 6 but could not be completed in time.

So the future path of the product is quite clear, with focus on completing the new
authentication method and the open use cases that expand the functioniality of the
currently plain OverviewScreen. There were also requests for a Due Date field from the
conducted usability tests, which would require reviewing the AWS Textract capabilities.

While the team considers the codebase clean, a review and consolidation of the
current state would be recommended before starting work on the new features.

71

Chapter 11

Personal Reports

This chapter contains personal reports by the team members, reflecting on their own
work in this project.

11.1 Tseten Emjee

This project was my second time working on a fully native Android app written in
Kotlin. This being the case, I was able to quickly start into the project. But still there
were some lessons to be learned.

In general the work was smooth, many things of the Android app development pro-
cess I was already familiar with. The cooperation with Roger Marty also went well. We
split up the workload according to our strengths.

What I struggled with, was working with the file system and files in general in
Android. There was an initial hurdle regarding permissions and figuring out a central
snackbar messaging system also proved to be difficult.

The Jetpack UI code while easy and quick for me to write, I can say that I wasn’t
very consistent with parameterizing the composables and the nestings of them. Also
regarding project managment in general, the estimations were often too optimistic. So
one key takeaway for me is the importance of being more generous with my time esti-
mations. Another one would be not to forsake clean code for speed.

My personal goal in this project was to create a clean and best-practice oriented app
architecture. Particularly the data layer, split up into repository and data sources was
a focus for me. So being able to achieve this, was a big highlight for me. In addition
using the more in-depth features of Kotlin like higher-order functions and SharedFlow

for event listing was enjoyable as well.
Overall I am very statisfied with our work in this project. It was an important

learning experience for me.

72

11.2 Roger Marty

For me personally, the project was a success. It was not the first collaboration with
Tseten, and, as with previous projects, the teamwork in this one went really well. We
had constant exchanges and were always up-to-date.

We went into the project knowing our respective strengths and split up the work ac-
cordingly. Tseten was thus ably to fully focus on the app, while I covered the backend,
AWS and infrastructure side.

The main area I need to improve is clearly time estimation. It happened quite of-
ten that I was too optimistic when planning the next iteration of issues and the time
required for them. While the discrepancies were not too large, it happened and should
be considered more carefully in future projects.

One challenge I encountered was regarding the Textract API. The service uses dif-
ferent interfaces when working with single-page versus multi-page documents. This was
not clearly highlighted in the documentation and led to an unexpected hurdle, but I was
still able to implement it, although not in the cleanest approach, which would require
an additional service to be integrated.

Since I did not create that many backends entirely on my own, additional research
was required. It also led to the fact, that I optimized the backend structure a bit in the
middle of the construction phase. This brought me valuable insight and has not kept
me from completing other issues.

One of my highlights had to do with the partially implement login/authentication fea-
ture. Security always plays a big part in an application and although the optional feature
could not be finished on time, I learned a lot. Simply the decision as to which provider to
choose was an important step. I first started with AWS Cognito, because AWS services
were already used in this project. But after research I stumbled across Auth0, which
specialises in the authentication domain. Their documentation and overall features were
superior.

The decision to go with FastAPI was nice as well. It was a fitting framework and I
was able to create a clean backend while following the best practices.

73

Chapter 12

Note of Thanks

We would like to take this opportunity to thank our advisor Martin Seelhofer for his
time and effort. He provided us with an interesting project idea after we reached out to
him.

The weekly meetings were pleasant and informative. In the meetings he guided us
through challenges and uncertainties that arised. This ensured that we stayed on track
and were able to complete this thesis. Even outside of meetings we could contact him
and always received a quick and helpful response.

74

Part V

Lists

75

Glossary

Table 12.1: Glossary

Term Description

API
Application Programming Interface offers endpoints which allows
other applications to access data or other features.

AWS
Amazon Web Services is a widely used cloud that offers many
different services.

CID
A Component Interaction Diagram acts as a high-level sequence
diagram and shows how each component of the C4 model interacts
in their respective use cases.

CI/CD
Through Continuous Integration and Continuous Deployment de-
velopers can make changes quicker and more reliable.

DoD Definition of Done says when an issue can be defined as done.

DoR
Definition of Ready describes when an issue is ready to be put in
the backlog.

FCM
Firebase Cloud Messaging allows the sending of cross-platform
messages for Android, iOS and web application.

FR
Functional Requirements define what features and functionalities
the software should have.

GSI
A global secondary index can be used when queries using at-
tributes other than the specified key attributes are required.

HTTPS
To guarantee security in transit the Hypertext Transfer Protocol
Secure can be used.

Continued on next page

76

Table 12.1 – continued from previous page

Term Description

IaC
Instead of creating e.g. AWS services via the web interface every-
thing can be defined in code using Terraform for example. Infras-
tructure as Code helps with automation and version control.

JWT
JSON Web Token, defines a compact and self-contained way for
securely transmitting information between parties as a JSON ob-
ject.

LOC
Lines of Code is often used as a metric in software projects. It
stands for the number of lines in the source code.

ML
Machine Learning is the study of algorithms which learn from data
and then apply it to unseen data.

MVP
The Minimum Viable Product describes the minimal usable prod-
uct.

NFR
Non-Functional Requirements describe how the software should
behave.

OCR
Optical Character Recognition refers to the process of extracting
contents from an image and convert it into machine-readable text.

RUP
Rational Unified Process describes a software development pro-
cess.

S3
Refers to the AWS Simple Storage Service which is an object stor-
age service that offers high availability, scalability and security.

Scrum Scrum is a project management framework built on being agile.

UUID Is a Universally Unique Identifier to identify entities.

77

Bibliography

[1] ISO25000, “ISO/IEC 25010,” https://iso25000.com/index.php/en/
iso-25000-standards/iso-25010?linkId=100000045879485&utm pview=8, 2022,
[Online; accessed 26-September-2024].

[2] GSMArena, “Samsung Galaxy A21,” https://www.gsmarena.com/samsung galaxy
a21-10172.php, 2024, [Online; accessed 7-October-2024].

[3] Google, “Jetpack Compose,” https://developer.android.com/compose, 2024, [On-
line; accessed 27-September-2024].

[4] tiangolo, “FastAPI,” https://fastapi.tiangolo.com/, 2024, [Online; accessed 19-
December-2024].

[5] HashiCorp, “Terraform AWS Provider,” https://registry.terraform.io/providers/
hashicorp/aws/latest/docs, 2024, [Online; accessed 19-December-2024].

[6] Traefik, “Traefik Proxy,” https://doc.traefik.io/traefik/, 2024, [Online; accessed 19-
December-2024].

[7] containrrr, “watchtower,” https://github.com/containrrr/watchtower, 2024, [On-
line; accessed 19-December-2024].

[8] AWS, “Amazon S3,” https://aws.amazon.com/de/s3/, 2024, [Online; accessed 19-
December-2024].

[9] ——, “AWS Lambda,” https://aws.amazon.com/de/lambda/, 2024, [Online; ac-
cessed 19-December-2024].

[10] ——, “Amazon Textract,” https://aws.amazon.com/textract/, 2024, [Online; ac-
cessed 19-December-2024].

[11] ——, “Amazon DynamoDB,” https://aws.amazon.com/dynamodb/, 2024, [Online;
accessed 19-December-2024].

[12] Firebase, “Firebase Cloud Messaging,” https://firebase.google.com/docs/
cloud-messaging, 2024, [Online; accessed 19-December-2024].

78

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?linkId=100000045879485&utm_pview=8
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?linkId=100000045879485&utm_pview=8
https://www.gsmarena.com/samsung_galaxy_a21-10172.php
https://www.gsmarena.com/samsung_galaxy_a21-10172.php
https://developer.android.com/compose
https://fastapi.tiangolo.com/
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://doc.traefik.io/traefik/
https://github.com/containrrr/watchtower
https://aws.amazon.com/de/s3/
https://aws.amazon.com/de/lambda/
https://aws.amazon.com/textract/
https://aws.amazon.com/dynamodb/
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging

[13] Google, “App Architecture Overview,” https://developer.android.com/topic/
architecture, 2024, [Online; accessed 30-September-2024].

[14] Google, “Hilt,” https://dagger.dev/hilt/, 2024, [Online; accessed 27-September-
2024].

[15] AWS, “Amazon Elastic Container Service,” https://aws.amazon.com/ecs/, 2024,
[Online; accessed 19-December-2024].

[16] ——, “Amazon Elastic Kubernetes Service,” https://aws.amazon.com/de/eks/,
2024, [Online; accessed 19-December-2024].

[17] Figma, “Figma,” https://www.figma.com/, 2024, [Online; accessed 30-September-
2024].

[18] Material Design, “Material 3 Design Kit Plugin,” https://www.figma.com/
community/file/1035203688168086460/material-3-design-kit, 2024, [Online; ac-
cessed 30-September-2024].

[19] ——, “Material Theme Builder Plugin,” https://www.figma.com/community/
plugin/1034969338659738588/material-theme-builder, 2024, [Online; accessed 30-
September-2024].

[20] AWS, “AWS SDK für Python (Boto3),” https://aws.amazon.com/de/
sdk-for-python/, 2024, [Online; accessed 19-December-2024].

[21] J. Leitschuh, “ktlint-gradle,” https://github.com/JLLeitschuh/ktlint-gradle, 2024,
[Online; accessed 26-September-2024].

[22] P. C. Q. Authority, “Flake8: Your Tool For Style Guide Enforcement,” https://
flake8.pycqa.org/en/latest/#, 2024, [Online; accessed 26-September-2024].

[23] P. S. Foundation, “black,” https://github.com/psf/black, 2024, [Online; accessed
26-September-2024].

[24] JUnit, “JUnit 4,” https://junit.org/junit4/, 2024, [Online; accessed 26-September-
2024].

[25] pytest, “pytest: helps you write better programs,” https://docs.pytest.org/en/
stable/, 2024, [Online; accessed 26-September-2024].

79

https://developer.android.com/topic/architecture
https://developer.android.com/topic/architecture
https://dagger.dev/hilt/
https://aws.amazon.com/ecs/
https://aws.amazon.com/de/eks/
https://www.figma.com/
https://www.figma.com/community/file/1035203688168086460/material-3-design-kit
https://www.figma.com/community/file/1035203688168086460/material-3-design-kit
https://www.figma.com/community/plugin/1034969338659738588/material-theme-builder
https://www.figma.com/community/plugin/1034969338659738588/material-theme-builder
https://aws.amazon.com/de/sdk-for-python/
https://aws.amazon.com/de/sdk-for-python/
https://github.com/JLLeitschuh/ktlint-gradle
https://flake8.pycqa.org/en/latest/#
https://flake8.pycqa.org/en/latest/#
https://github.com/psf/black
https://junit.org/junit4/
https://docs.pytest.org/en/stable/
https://docs.pytest.org/en/stable/

List of Figures

1 Used technologies . 4
2 MVP App . 5

1.1 Use Case Diagram . 8

2.1 Domain Model Diagram . 14

3.1 C4 Context Diagram . 18
3.2 C4 Container Diagram - Invoice Scanner 19
3.3 C4 Container Diagram - AWS . 20
3.4 C4 Component Diagram - Mobile App . 21
3.5 C4 Component Diagram - Backend . 22
3.6 Main Workflow CID . 23
3.7 Typical App Architecture from Google [13] 23
3.8 Frontend Pipeline . 25
3.9 Backend Pipeline . 25
3.10 Server Environment . 26

4.1 Main Colors . 28
4.2 Invoice Scanner App Logo . 29

5.1 App Project Structure . 30
5.2 Delete Sequence Diagram . 31
5.3 FakeFactory Class . 31
5.4 API Error Handling . 32
5.5 SharedFlow Notification . 34
5.6 API project structure . 35
5.7 Backend models . 37
5.8 AWS Repository . 38
5.9 Lambda function . 38

6.1 MVP App - Light . 43
6.2 MVP App - Dark . 44
6.3 MVP App - Processing Failed and Delete 45
6.4 MVP App - Tablet Version . 46

80

7.1 Long-Term Plan . 50
7.2 Jira Workflow Scheme . 58

8.1 Gitflow Workflow . 60

9.1 Work distribution . 64
9.2 Work history . 65
9.3 Overview of epics . 65
9.4 Project timeline . 66
9.5 Frontend test coverage . 67
9.6 Backend test coverage . 67
9.7 Frontend commits . 67
9.8 Backend commits . 67
9.9 AWS commits . 68

12.1 Low-Fidelity Designs . 99
12.2 High-Fidelity Designs - Light 1 . 100
12.3 High-Fidelity Designs - Light 2 . 101
12.4 High-Fidelity Designs - Light 3 . 102
12.5 High-Fidelity Designs - Dark 1 . 103
12.6 High-Fidelity Designs - Dark 2 . 104
12.7 High-Fidelity Designs - Dark 3 . 105

81

List of Tables

1.1 Casual Format Use Cases . 9
1.2 Precondition Variants . 10
1.3 NFR1 . 10
1.4 NFR2 . 11
1.5 NFR3 . 11
1.6 NFR4 . 11
1.7 NFR5 . 11
1.8 NFR6 . 12
1.9 NFR7 . 12
1.10 NFR8 . 12
1.11 NFR9 . 12
1.12 NFR10 . 13
1.13 NFR11 . 13
1.14 NFR12 . 13

5.1 Invoice API Endpoints . 36
5.2 User API Endpoints . 36

6.1 Beta NFR Validation . 41
6.2 MVP NFR Validation . 42
6.3 Extra Use Cases . 43

7.1 Short-Term Plan Sprint 1 . 52
7.2 Short-Term Plan Sprint 2 . 52
7.3 Short-Term Plan Sprint 3 . 53
7.4 Short-Term Plan Sprint 4 . 53
7.5 Short-Term Plan Sprint 5 . 53
7.6 Short-Term Plan Sprint 6 . 54
7.7 Short-Term Plan Sprint 7 . 54
7.8 Identified Risks . 55
7.9 Risk Matrix . 55
7.10 Risk Handling . 56
7.11 Risk Changelog . 57

82

8.1 Code Quality Tools . 59
8.2 Gitflow Branch Description . 60

12.1 Glossary . 76
12.2 Usability Testing Protocol . 90
12.3 Usability Testing Results: Beta Release 93
12.4 Usability Testing Results: MVP Release 95

83

Listings

5.1 BaseViewModel Class . 33

84

Part VI

Appendix

85

Task Description

86

87

88

89

Usability Tests

This chapter contains the usability testing protocol as well as the results of all conducted
usability tests.

Table 12.2: Usability Testing Protocol

Nr. What Description

1 First impression

Open the Invoice Scanner app on the smartphone.

• Is the use case of the app identifiable?

• How do you rate the design of the app?

• Do you know what your next step would be?

2 Upload invoice

Upload an new invoice using the app.

• How do you rate the step of uploading a new invoice (use
of camera/file explorer)?

• Did you see the different options available during this pro-
cess?

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

Continued on next page

90

Table 12.2 – continued from previous page

Nr. What Description

3 Overview page

Check the result of the invoice you just uploaded using the
overview page.

• Do you understand what is happening with the invoice
(processing status)?

• Is the overview compact enough and does it still show
everything important?

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

4 Invoice entry

Check the details of the processed invoice and the original
image.

• Are the fields relevant to you?

• Are fields you deem important missing?

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

5 View invoice file

Open the original invoice file that was uploaded.

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

6 Edit entry

Edit the amount field of the scanned invoice, mark it as paid
and save the changes.

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

7 Delete invoice file

Delete the invoice file from the created invoice.

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

Continued on next page

91

Table 12.2 – continued from previous page

Nr. What Description

8 Delete invoice

Delete the whole invoice entry.

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

9 Create entry

Create a manual entry instead of uploading an invoice.

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

10 Add file to entry

Add an invoice to the manually created entry.

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

11 Upload non invoice

Take a photo of something that is not an invoice and upload
it to get it scanned.

• Is the information displayed understandable?

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

12 Information

Find information about the last mobile carrier invoice.

• Who was the biller?

• How much was the invoice?

• What was the date of the invoice?

• What is the invoice number?

• From 1 to 10, how easy and intuitive was the process?

• How could this process be improved?

Continued on next page

92

Table 12.2 – continued from previous page

Nr. What Description

13 Accessibility

Answer the following questions.

• Was the text size easy to read accross the app?

• Was the contrast good accross the app?

• Were all buttons and descriptions clear and helpful?

• Was it easy to navigate inside the app?

14 Performance

Answer the following questions.

• Did the app load quickly when opening the app or switch-
ing between pages?

• Did you notice any delays or lags when performing certain
actions?

• From 1 to 10, how do you rate the speed of the app and
computations (e.g. uploading invoice)?

15 General feedback

Answer the following questions.

• What would you change/improve?

• What additional functionality would you like to have?

• Overall would you say the app is easy to use?

Table 12.3: Usability Testing Results: Beta Release

Nr. Test 1 Test 2

1

• Use case identifiable in title

• Simple, functional

• Yes, the plus button

• Yes, something with invoices and scan-
ning

• Plain, simple, straightforward

• Click on the plus

Continued on next page

93

Table 12.3 – continued from previous page

Nr. Test 1 Test 2

2

• Easy to understand

• Yes

• 10

• -

• Unclear what upload does but steps are
understandable

• Yes, take photo, choose a photo or a
document

• 9

• ”Document” text is on two lines, ini-
tially unclear what happens next

3

• Yes, the uploaded file is being processed

• Yes

• 9

• Entries are not sorted in creation order

• It’s being processed somehow

• Yes, perfect

• 8

• Automatic refresh/tooltip, placeholder
when value not found, entries are not
sorted in order

12

• All information found

• 10

• -

• All information found

• 10

• Search function or similar

15

• Pay-by date instead of issue date

• Detail page with more information

• Overall: App is easy to use

• ”Open” state unclear at this stage,
delete action had to be shown

• More information about the invoice

• Overall: App is easy to use

94

Table 12.4: Usability Testing Results: MVP Release

Nr. Test 1 Test 2

1

• Yes, in title

• Simple, functional

• Yes, the plus button

• Small ”i” in title is weird

• Yes, clear from title

• Nice theme, clean

• Click on the plus (Hinted)

2

• Easy to understand

• Yes

• 10

• -

• Very nice, easy

• Yes, but what files are allowed?

• 10

• Put camera buttons inside the camera
view and make it fullscreen

3

• Yes, the uploaded file is being processed

• Yes

• 9

• Menu button does nothing

• Yes, very clear and nice animation

• Most important things are shown

• 10

• Filter or sort functionality

4

• Yes the fields are relevant

• Pay-by or due date

• 10

• -

• All the fields are important

• Not really

• 10

• -

5
• 10

• -

• 10

• -

6
• 10

• -

• 9

• Ask if changes want to be saved on back
navigation without saving

Continued on next page

95

Table 12.4 – continued from previous page

Nr. Test 1 Test 2

7
• 10

• -

• 10

• -

8

• 10

• Swipe to delete function not really visi-
ble

• 9

• Took a few seconds, wasn’t aware of
both delete methods

9

• 9

• Currency label is on two lines, big num-
bers get converted to scientific notation

• 9

• Currency field wasn’t formatted nicely

10
• 10

• -

• 9

• Add option for image gallery

11

• Yes, its clear something went wrong

• 9

• Popup dialog needs bigger margin for
content

• Yes, nice popup with good information

• 9

• Add placeholders instead of empty fields

12

• All information found

• 10

• -

• All information found

• 10

• -

13

• Yes, text was readable

• Yes, contrast was good

• Yes, button functionality was clear

• Yes, navigation was easy

• Yes

• Yes, dark and light theme had good con-
trast

• Yes, except menu button in Overview
screen

• Yes

Continued on next page

96

Table 12.4 – continued from previous page

Nr. Test 1 Test 2

14

• Yes, the app loads quickly

• Camera takes a second to take a picture

• 9

• Loading times weren’t too long

• Only a tiny bit when opening invoice file

• 9

15

• Pay-by date would be nice, title ”i” is
small

• -

• Overall: App is easy to use

• Unnecessarily big gaps in Detail screen
at the top

• More functionality in Overview page
(filter, sort)

• Overall: App is easy to use

97

98

Designs

Figure 12.1: Low-Fidelity Designs

99

Figure 12.2: High-Fidelity Designs - Light 1

100

Figure 12.3: High-Fidelity Designs - Light 2

101

Figure 12.4: High-Fidelity Designs - Light 3

102

Figure 12.5: High-Fidelity Designs - Dark 1

103

Figure 12.6: High-Fidelity Designs - Dark 2

104

Figure 12.7: High-Fidelity Designs - Dark 3

105

Meeting Minutes

The agendas and decisions of all the weekly meetings with the advisor Martin Seelhofer
are summarised and noted here. For the full insight into the meeting notes check the
Miro board. It is the primary medium to keep track of all meeting related things. Other
meetings such as Sprint Planning etc. are not kept track off, except when big decisions
are made.

19.09.2024

Kick-Off Meeting

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• First meeting and introduction

• Clarification of the task

Decisions:

• We decided to focus on the scanning of invoices for the MVP. However, after initial
research processing receipts should also be possible.

• Relevant fields for the MVP are invoice recipient, invoice number, date and a total
amount. Other fields are outside the MVP scope.

• Deployment to the Google Play Store will not be implemented.

• Additional functionalities can be implemented but will be outside the MVP scope.

23.09.2024

Weekly 1

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

106

https://miro.com/app/board/uXjVLe28N8w=/?share_link_id=890321058974

Agenda:

• Progress Update

• Questions

Decisions:

• Review and reevaluate risks after prototype / proof-of-concept.

• No regular submission of the documentation needed for advisor.

30.09.2024

Weekly 2

Skipped: Skipped due to schedule conflicts.

07.10.2024

Weekly 3

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Questions

Decisions:

• No release APK/AAB needed, but provide instructions for advisor to use app
locally.

• Sequence diagrams can be high-level initially for planning. After implementation
is complete there should be exemplary sequence diagrams of key use cases that
reflect code closely.

14.10.2024

Weekly 4

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

107

Agenda:

• Progress Update

• Questions

Decisions:

• Component interaction diagrams will be used for the high-level sequence diagrams.

• The detail view of an invoice entry will have the option to CRUD the attached
invoice and it will show a preview. However, the preview will have low priority.

Sprint Planning

Attendees: Roger Marty, Tseten Emjee

Decisions:

• New field isPaid for Invoice entity domain model to define if an invoice has been
paid or not which further extends the invoice management functionality.

21.10.2024

Weekly 5

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Questions

Decisions:

• Limit file size of invoice uploads to 20MB, alternatively compress images before
upload.

• Limit file type of invoice uploads to PNG, JPG and PDF.

• New field fcmToken for User entity in domain model for Firebase token.

28.10.2024

Weekly 6

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

108

Agenda:

• Progress Update

• Questions

Decisions:

• CID for the main use case is sufficient. More detailed sequence diagrams could
cover more if needed.

• For additional query flexibility a secondary index will be created in the DynamoDB
database.

04.11.2024

Weekly 7

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Questions

Decisions:

• Research Notification Channels for Firebase notifications (Low priority).

• Return values for endpoints discussed and defined.

11.11.2024

Weekly 8

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Questions

Decisions:

• Re-evaluation of risks and NFRs together with release of Beta.

109

18.11.2024

Weekly 9

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Questions

Decisions:

• Of all optional features, authentication has the highest priority and will be the
focus once everything else is done.

• A service like AWS Cognito or Firebase Authentication will be used.

25.11.2024

Weekly 10

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Presentation of beta release

• Questions

Decisions:

• Use Javadoc or Docstrings for code that is not self explanatory.

• Adjustment of certain NFRs acceptable because they were not defined concise
enough.

02.12.2024

Weekly 11

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

110

Agenda:

• Progress Update

• Questions

Decisions:

• Re-evaluated optional features and decided to use the remaining time to start with
the authentication because all other FRs have been completed.

09.12.2024

Weekly 12

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Presentation of MVP release

• Questions

Decisions:

• An A0 poster is not required.

• No important decisions have been made. Focus on MVP release and demonstration.

16.12.2024

Weekly 13

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee

Agenda:

• Progress Update

• Submission Details

• Questions

Decisions:

• AI/LLMs declaration in documentation

• No need for complete sequence diagram of all systems

111

	I Management Summary
	II Product Documentation
	Requirements
	Functional Requirements
	Actors
	Use Cases

	Non-Functional Requirements
	Performance Efficiency
	Reliability
	Maintainability
	Security
	Interaction Capability

	Domain Analysis
	Domain Model

	Architecture
	Technology Decisions
	Frontend
	Backend
	Infrastructure
	External Interfaces
	Use of AI/LLMs

	C4 Model
	Context
	Container
	Component

	Component Interaction Diagram
	Frontend
	Backend
	CI/CD
	Frontend Pipeline
	Backend Pipeline

	Server Infrastructure
	Extension
	Scaling
	Performance
	Platforms

	Design
	Colors
	Logo
	Prototyping
	Low-Fidelity
	High-Fidelity

	Implementation
	Frontend
	App Architecture
	Error and Response Handling
	Notification Listener

	Backend
	API Architecture
	Endpoints
	Data structures

	AWS
	Architecture
	S3 / Lambda
	DynamoDB

	Results
	NFR Validation
	Beta Validation
	MVP Validation

	Final Product

	III Project Documentation
	Project Plan
	Planning
	Methodology
	Roles and Responsibility
	Meetings
	Long-Term Plan
	Milestones
	Short-Term Plans
	Risk Management

	Tooling
	Documentation
	Code
	Tracking
	Workflow

	Quality Measures
	Code
	Gitflow
	DoR / DoD
	Metrics
	Testing
	Frontend
	Backend

	Pipelines

	Project Monitoring
	Time Tracking Reports
	Time Evaluation
	Work Distribution
	Work History
	Overview Epics
	Project Timeline
	Milestone Fulfilment

	Repository Analytics
	Test Coverage
	Commits

	IV Closing Thoughts
	Conclusion
	AI-Integration
	Evaluating Success
	Future

	Personal Reports
	Tseten Emjee
	Roger Marty

	Note of Thanks

	V Lists
	Glossary
	Bibliography
	List of Figures
	List of Tables
	List of Listings

	VI Appendix

