
Semester Thesis
Documentation

Dashboard KPI for OST
Semester: Autumn 2024

Date: 19.12.2024

Project Team: Christoph Bodschwinna
Philipp Frank

Project Advisor: Laurent Metzger
Fabio Daniel Marti

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

Introduction

Many companies today use Key Performance Indicators (KPIs) to monitor trends and
to control their decision-making processes. The OST has also implemented KPIs to
get a comprehensive overview of various aspects of their organization. Currently, these
KPIs are manually tracked in a large Excel sheet. However, as the datasets grow, this
approach becomes increasingly challenging to manage.

Objective

The goal of this semester thesis was to develop a prototype for a web application that
could eventually replace the current solution. The application must support the cre-
ation and adjustment of KPIs and their formulas, include a user permission system to
restrict access to certain data, and provide a method for entering new data. Addition-
ally, it should allow for filtering and visualizing data sets in graphs to facilitate informed
decision-making.

Conclusion

The prototype developed in this project supports all previously mentioned functionalities
and introduces several new features. Users can add supplementary information to data
entries, providing context for anomalies such as sudden spikes or drops in graphs. A date
filter has also been added, allowing users to select specific time periods when necessary.
Currently, the application supports importing large datasets directly from CSV files. In
the future, the application could be further improved by retrieving data automatically
from surrounding systems, reducing maintenance efforts and minimizing errors caused
by manual user input.

In conclusion, this project has successfully delivered a prototype that improves confiden-
tiality, accessibility, and user experience. Future enhancements will continue to refine
the tool, ensuring it remains adaptable and meets evolving needs.

Keywords: Key Performance Indicators (KPIs), Web Application

i

Contents

I Management Summary 1

1 Management Summary 2
1.1 Introduction . 2
1.2 Technologies . 2
1.3 Result . 3
1.4 Conclusion . 7

II Product Documentation 8

2 Requirements 9
2.1 Functional Requirements . 9

2.1.1 Use Case Diagram . 9
2.1.2 Use Case Description . 11

2.2 Non-Functional Requirements . 16
2.2.1 Verification of Non-Functional Requirements 18

3 Domain Analysis 19
3.1 Domain Model . 19

3.1.1 Explanations . 20

4 Architecture 22
4.1 Stakeholders . 22
4.2 Scope and Context . 22

4.2.1 Interfaces . 22
4.3 Solution Strategy . 23

4.3.1 Web Application Architecture . 23
4.3.2 User Roles . 23
4.3.3 Calculation of KPIs . 23
4.3.4 Data Format for KPIs . 23

4.4 Software Structure . 24
4.4.1 Backend Software Structure . 24
4.4.2 Frontend Software Structure . 26

ii

4.5 Building Block View . 27
4.5.1 Whitebox Overall System . 27
4.5.2 Building Blocks . 27
4.5.3 Level 1 . 28
4.5.4 Level 2 . 28

4.6 Deployment View . 29
4.7 Architectural Decisions . 30

4.7.1 Frontend . 30
4.7.2 Backend . 30
4.7.3 Database . 31
4.7.4 Other . 31

4.8 Encountered Problems . 31
4.8.1 Issues with the Server . 31
4.8.2 Incorrect Formulas . 32
4.8.3 Change of Requirements . 32
4.8.4 Limitations of UI Library . 32

5 Quality Measures 33
5.1 Definition of Done . 33
5.2 SonarQube . 33

5.2.1 Quality Gates . 34
5.3 CI/CD Pipeline . 35
5.4 Test Concept . 35

5.4.1 Testing Strategy . 35
5.4.2 Test Environment . 35
5.4.3 Test Deliverables . 36
5.4.4 Test Schedule . 36
5.4.5 Test Roles . 37
5.4.6 Test Artefacts . 37

6 Result 38
6.1 Functional Requirements . 38

6.1.1 Notable Use Cases . 39
6.2 Non-Functional Requirements . 41

7 Conclusion 42
7.1 Result Reflection . 42
7.2 Outlook . 43
7.3 Closing Statement . 43

Bibliography 43

List of Illustrations 44

iii

List of Tables 45

Glossary 47

iv

Part I

Management Summary

1

Chapter 1

Management Summary

1.1 Introduction

Key Performance Indicators (KPIs) are measurable metrics that help organizations track
progress toward specific business goals. By offering clear, quantifiable data, KPIs provide
valuable insights into the effectiveness of strategies, processes, and operations. They are
used across various departments and industries to assess success, pinpoint areas for
improvement, and guide data-driven decision-making.

KPIs can differ based on an organization’s objectives, which may include financial per-
formance, customer satisfaction, operational efficiency, or other critical areas of growth.
The OST also tracks KPIs to monitor important trends within the organization.

Currently, KPIs are managed through a large Excel sheet, which is manually updated.
As data sets continue to grow, this method is becoming increasingly difficult to maintain.
The aim of this semester’s thesis is to develop a prototype that can eventually replace
the existing solution.

1.2 Technologies

The assignment was broadly defined, enabling an independent selection of suitable tech-
nologies. The web application is divided into two parts. The frontend handles most
user interactions and is developed using TypeScript and React. The backend is respon-
sible for data persistence in a PostgreSQL database and KPI calculations, implemented
with Python and Django. Both parts are deployed on an Ubuntu virtual machine using
Docker containers, which host the frontend, backend, and database. This architecture
was chosen to ensure that each part can be replaced with new versions or alternative
frameworks if required. Communication between the frontend and backend is facilitated
through REST API calls.

2

1.3 Result

The project resulted in a user-friendly web application that incorporates a user permis-
sion system to control access to specific data based on user roles. This ensures that only
authorized users can view or modify certain information. The application includes a lo-
gin page for secure access and user settings, where they can update personal information
such as their name, email, and password.

Figure 1.1: Web Application User Settings

3

The application includes two distinct dashboards, each designed to address specific re-
quirements. Both dashboards offer filtering options based on date and provide additional
settings to control whether invalid values are displayed and whether indicators for sup-
plementary information should be shown on the graphs. Displayed data entries can be
easily adjusted by clicking on them directly within the graph, which opens a form to
modify the KPI variables for the selected data entry. Additionally, all graphs can be
downloaded as PNG images for further use.

The first dashboard focuses on presenting all KPIs for a single institution within the
organization, providing a detailed and comprehensive overview of its performance.

Figure 1.2: Web Application Dashboard

4

The second dashboard enables the comparison of KPIs across multiple institutions, of-
fering insights into trends and variations.

Figure 1.3: Web Application KPI Comparison

5

Additionally, the application streamlines the import of large datasets, making it easier
to integrate new information for institutions. Users can also download a pre-configured
import template tailored to the selected institution, ensuring valid data fields and con-
sistency.

Figure 1.4: Web Application Import Form

At the end of the import process, a report is generated to provide feedback on its success
or highlight any issues encountered. The report specifies problems such as missing user
permissions for certain KPI variables, non-existent variables in the input data, or invalid
values that were provided. This immediate feedback ensures, that users can quickly
identify and address any errors.

Figure 1.5: Web Application Import Report

6

An admin panel, provided by the backend, enables administrators to manage users,
user roles, the organizational structure and configure the required KPIs, including their
respective formulas. This ensures flexibility in adapting the system to evolving require-
ments while maintaining consistency and accuracy in KPI calculations.

Figure 1.6: Web Application Admin Panel

1.4 Conclusion

The developed prototype introduces several new features. A permission system has been
implemented to define relevant KPIs for specific institutions while restricting user access
as needed. Users can now add supplementary information to data entries, providing
context for anomalies such as sudden spikes or drops in graphs. Additionally, graphs
can be easily downloaded for inclusion in reports or presentations. A date filtering
feature has also been implemented, allowing users to select specific time periods for
more targeted analysis.

Despite these advancements, the data gathering process still has room for improvement.
At present, users are required to manually collect data from external systems, prepare
it for import and complete the upload process. Automating data retrieval directly from
these systems would significantly reduce the time currently needed to maintain the data
and minimize errors associated with manual input.

In summary, the project successfully delivered a prototype that enhances data confiden-
tiality, accessibility, and overall user experience. Future improvements will ensure that
the tool remains adaptable and continues to meet evolving needs.

7

Part II

Product Documentation

8

Chapter 2

Requirements

2.1 Functional Requirements

2.1.1 Use Case Diagram

Actors

• User:

– Goal: Log in to their account.

• Authenticated User:

– Goal: Enter new KPI data, view the dashboard, and update their password.

• Admin:

– Goal: Manages KPIs, users and user roles.

• Mail Server:

– Goal: Send emails to users.

9

Use Case Diagram for Admin and User

Figure 2.1: Use Case Diagram for Admin and User

10

Use Case Diagram for Authenticated User and Mail Server

Figure 2.2: Use Case Diagram for Authenticated User and Mail Server

2.1.2 Use Case Description

The two most important cases will be written in the fully dressed and the remainder in
the casual format.

Casual use cases

• UC-1 CRUD Users: The admin can create, read, update and delete users for
the dashboard. He can also reset the password for a user if necessary.

• UC-2 CRUD User Roles: The admin can create, read, update and delete user
roles. The user roles determine which KPI data the associated users are allowed
to see and edit.

• UC-3 CRUD KPI Roles: The admin can create, read, update and delete KPI
roles. The KPI roles determine which KPI the associated users are allowed to see.

11

• UC-4 CRUD KPIs: The admin can create, read, update and delete KPIs.

• UC-5 CRUD Institutions: The admin can create, read, update and delete
institutions.

• UC-6 CRUD KPI Fields: The admin can create, read, update, and delete fields
that are used in the formula of a KPI.

• UC-7 Authentication: The users and admin can log into their accounts with an
email and password.

• UC-8 Password Change: The authenticated user can navigate to their profile
settings where he can reset his password.

• UC-9 Import Data for KPI: The authenticated user can import data entries
for existing KPIs.

• UC-10 Get Data Import Template: The authenticated user can download the
template that can be used for importing data for a KPI.

• UC-11 View Dashboard: The authenticated user can view all KPIs they are
authorized to track on the dashboard. Each KPI includes a trend indicator show-
ing whether it has improved, remained steady, or declined, along with optional
additional details.

• UC-12 Filter Dashboard: The authenticated user can filter the KPI data based
on a specific time span.

• UC-13 Set Email Notification: The authenticated user can go to their profile
settings to choose whether they want to receive email notifications and select a
specific day of the month for the notifications to be sent.

• UC-14 Download Graph: The authenticated user can download the graph from
a KPI.

12

Fully dressed use cases

ID UC-15

Name Navigate Dashboard

Actor Authenticated User

Description The authenticated user can navigate to the details of a KPI (go one
tracking lower).

Pre-condition

• The user is authenticated.

• The user has permission to view KPI data for a lower tracking.

• At least one KPI is defined.

• Multiple KPI data entry are available.

Basic-Flow

• The user clicks on a displayed KPI and is redirected to a lower
tracking.

Alternative-
Flow

The user cannot navigate to a lower tracking due to missing the
necessary permissions.

Post-condition The user still has the permissions to view KPI data on a lower
tracking.

Result The user can see the KPI data one tracking lower on the dashboard.

Table 2.1: Use Case: Navigate Dashboard

13

ID UC-16

Name CRU Data for KPI

Actor Authenticated User

Description The authenticated user can create, read and update data entries for
existing KPIs.

Pre-condition

• The user is authenticated.

• At least one KPI is defined.

Basic-Flow

• The user navigates to the ‘Dashboard‘.

• They click on the graph at the data entry they wish to change.

• The user completes the form.

• They save their entry.

Alternative-
Flow

Submitting new KPI data fails when not all required fields are filled
out or if the user lacks the necessary permissions to add or update
the data.

Post-condition The user is navigated back to the dashboard.

Result The user can see the newly added or updated KPI data on the
dashboard.

Table 2.2: Use Case: CRU Data for KPI

14

Use Case Priority

The following list defines the priority of the previously defined use cases.

1. UC-11 View Dashboard

2. UC-15 Navigate Dashboard

3. UC-16 CRU Data for KPI

4. UC-12 Filter Dashboard

5. UC-7 Authentication

6. UC-1 CRUD Users

7. UC-2 CRUD User Roles

8. UC-3 CRUD KPI Roles

9. UC-4 CRUD KPI

10. UC-5 CRUD Institutions

11. UC-6 CRUD KPI Fields

12. UC-8 Password Change

13. UC-9 Import Data for KPI

14. UC-10 Get Data Import Template

15. UC-14 Download Graph

16. UC-13 Set Email Notification

15

2.2 Non-Functional Requirements

ID NFR-1

Category Performance

Requirement The dashboard needs to load in less than 2 seconds.

Measures The dashboard’s average load time must be under 2 seconds.

Measuring
technique

Chrome DevTools will be utilized to measure the website’s load time.

Priority High

Result

Figure 2.3: Lighthouse Performance

Table 2.3: Non-Functional Requirement: Dashboard Performance

16

ID NFR-2

Category Maintainability

Requirement The API must be capable of being tested automatically.

Measures Tests should cover 80% of the backend code.

Measuring
technique

Tests will automatically run on every Git commit and will fail if the
coverage target isn’t met.

Priority High

Result

Figure 2.4: Backend Code Coverage

Table 2.4: Non-Functional Requirement: API Maintainability

ID NFR-4

Category Maintainability

Requirement Clean Code

Measures Methods with identical functionality should not be defined more
than once.

Measuring
technique

Generating code metrics using SonarQube and verifying function
reuse.

Priority Medium

Result

Figure 2.6: Backend Sonar

Figure 2.7: Frontend Sonar

Table 2.6: Non-Functional Requirement: Code Maintainability

17

ID NFR-3

Category Accessibility

Requirement The application should be accessible to a wide range of users.

Measures The frontend must achieve a minimum audit score of 90 in Google
Lighthouse.

Measuring
technique

Google Lighthouse in Chrome DevTools will be utilized.

Priority High

Result The minimum Google Lighthouse score was achieved in all sections
except for Best Practices. This is due to the prototype running on
HTTP instead of HTTPS.

Figure 2.5: Lighthouse Results

Table 2.5: Non-Functional Requirement: Accessibility Compliance

2.2.1 Verification of Non-Functional Requirements

The non-functional requirements (NFRs) that can be verified automatically will be as-
sessed throughout the entire implementation phase. The remaining NFRs will be eval-
uated during week 13.

18

Chapter 3

Domain Analysis

3.1 Domain Model

Figure 3.1: Domain Model

19

3.1.1 Explanations

This section provides some clarifications for the domain model.

Institution

The university’s structure can be viewed as a tree, with four main hierarchical levels:
OST, Department, Faculty, and Institute. To help visualize this concept, the following
is a partial representation of the tree.

OST

Department Informatik

Institute INS

Institute IFS

Institute I3

Department Technik

Faculty Elektrotechnik

Institute ICOM

Institute IMES

Faculty Maschinentechnik

Institute ILT

Institute IPEK

Institute IWK

. . .

. . .

KPI

The available options for the field reporting period are as follows:

• academic year: KPIs are reported once a year in October, after the start of the
academic year.

• yearly: KPIs are reported once a year in December.

• trimester: KPIs are reported every four months, in April, August, and December.

• monthly: KPIs are reported every month.

20

The options for the field target are as follows:

• positive: The KPI should aim to increase indefinitely, with higher values being
ideal.

• negative: The KPI should aim to decrease indefinitely, with lower values being
ideal.

• zero: The KPI should aim to approach zero.

KPIRole

KPIRoles determine access to KPIs and can be applied to both institutions and users.

Additional and Extra Information

Additional information is a static text that is used to display general information for a
KPI. Extra information is a text that provides context or explanations for a given data
entry.

21

Chapter 4

Architecture

The following chapter is based on the arc42 method.[7]

4.1 Stakeholders

These are the stakeholders for the project and their expectations:

Stakeholder Expectations

Supervisor The project meets academic standards.

Technical Advisor The code meets technical industry standards.

Developer Receive clear requirements.

Customer The application meets all requirements.

Table 4.1: Stakeholders and Their Expectations

4.2 Scope and Context

The functionality of the application is defined in section 2.1 Functional Requirements.
As this is a prototype, the automatic collection of data through APIs from surrounding
systems is out of scope.

4.2.1 Interfaces

For deployment, SSH is utilized to deploy the application to the server from GitLab.
The application itself provides one main interface: the backend offers a REST API for
the frontend.

22

4.3 Solution Strategy

The following sections outline some of the core decisions. The architectural decisions
regarding technology can be found in section 4.7 Architectural Decisions.

4.3.1 Web Application Architecture

The application is divided into two parts: the frontend and the backend. This separation
allows each part to utilize its specific capabilities and provides the possibility to replace
one part with a new version if needed. The backend is responsible for managing user
accounts, handling database interactions, and providing an admin panel. The frontend
delivers various dashboards with filtering options to display and compare data, while
also managing all interactions for non-admin users.

4.3.2 User Roles

Since the university’s structure is hierarchical, user roles determine whether a user can
view data at different levels of the hierarchy. This approach reduces the configuration
effort for administrators, as they do not need to create separate roles for each department.
Instead, a single role, such as ‘Head of Department‘, can be applied universally across
departments. Alternatively, permissions could be structured so that each user role defines
access to specific institutions. However, this would increase the configuration effort, as
each department would require its own role configuration (e.g., ‘Head of Department for
CS‘ and ‘Head of Department for economy‘).

4.3.3 Calculation of KPIs

Discussions with advisors and the customer revealed that the KPI formulas should be
adaptable. It was decided that data should be entered for specific fields, such as earnings
or expenses, and these fields would then be used in the KPI formulas. This approach
offers the advantage that if a field is used in multiple KPIs, only one data entry is
needed. Furthermore, previously entered data does not need to be re-entered for each
new period.

4.3.4 Data Format for KPIs

Since the data consists of exports from existing systems and the purpose of the appli-
cation is to display a dashboard in an efficient and user-friendly manner, all data is
stored in a single table with fields rather than in separate tables for each data type (e.g.,
personal data, financial data).

23

4.4 Software Structure

The following directory trees define the structure used in the application development
process.

4.4.1 Backend Software Structure

The backend is organized into six main components:

• models/: Connects the database with Python, providing an ORM for efficient
data access.

• serializers/: Prepares data for views and validates incoming data.

• views/: Manages incoming HTTP requests and permissions, delivering responses
in a JSON format.

• admin/: Provides functionality for managing application data through the admin
panel.

• permissions/: Defines custom permissions for controlling access to views.

• static/: Contains static files, including the user guide and custom CSS for styling
the admin panel.

dashboard-kpi-backend/

src/

manage.py

dashboard kpi/

signals.py

backend.py

forms.py

helpers/

migrations/

models/

permissions/

serializers/

static/

tests/

helpers/

models/

views/

views/

admin/

dashboard kpi backend/

settings.py

24

urls.py

templates/

• manage.py: The primary file for managing the Django server, including starting,
creating and applying migrations.

• settings.py: Contains configuration settings such as database configurations, in-
stalled apps, and middleware.

• urls.py: Maps URL patterns to their corresponding views, defining the applica-
tion’s routing structure.

• backend.py: Defines a custom authentication backend that allows users to au-
thenticate using their email addresses instead of usernames.

• forms.py: Defines custom forms for creating and updating user instances, includ-
ing password validation and management.

• signals.py: Implements signal handlers to invalidate cached data.

25

4.4.2 Frontend Software Structure

The frontend is organized into five main parts:

• public/: Contains static files.

• apis/: Manages REST API calls for backend communication.

• components/: Includes reusable components.

• pages/: Contains the application’s main pages.

• views/: Defines various dashboard views.

dashboard-kpi-frontend/

patches/

public/

src/

apis/

fetch/

components/

data-import-steps/

timeline-items/

kpi-card/

data-chart/

sidebar/

user-forms/

helpers/

DataMapper.ts

hooks/

pages/

types/

views/

App.tsx

tests/

resources/

index.html

• DataMapper.ts: Transforms backend DTOs into the required frontend objects.

• App.tsx: The main component that handles theme management, date display
localization, and routing for pages and views.

• index.html: The root HTML page of the application.

26

4.5 Building Block View

4.5.1 Whitebox Overall System

The backend communicates with the database to verify credentials and return content
to the user. Within the OST network, the frontend is accessible via HTTP on port 3000,
and the backend on port 4434.

4.5.2 Building Blocks

Figure 4.1: Building Blocks

27

4.5.3 Level 1

The user interacts with the frontend, which requests all necessary information from the
backend server via an API. The backend server, in turn, has access to the database.
The admin connects directly to the backend’s admin panel.

Name Responsibility

Frontend Manages user interactions, authentication and user profiles.

Backend Handles all application logic, responds to API calls and pro-
vides access to the admin panel.

Database Stores all data required by the backend.

Table 4.2: Level 1 Components and Their Responsibilities

4.5.4 Level 2

Name Responsibility

App Manages routing and theming in the frontend.

Pages The application’s main pages.

Views Individual views used within pages.

Api Handles API requests to the backend.

URL Manages routing in the backend.

Views Handles requests and responses.

Serializers Validates data.

Models Manages data interactions with the database.

Admin Manages the admin panel.

Table 4.3: Level 2 Components and Their Responsibilities

28

4.6 Deployment View

The production environment runs on an Ubuntu VM hosted within the OST infras-
tructure. On this VM, Docker containers are used to run the frontend, backend and
database. The database is not accessible from outside the VM and is only reachable
from the backend container. PostgreSQL is used as the database system.
The production environment is structured as follows:

Figure 4.2: Deployment View

29

4.7 Architectural Decisions

4.7.1 Frontend

Development Stack

Vite, TypeScript and React were chosen for their speed, reliability and scalability. Vite
enables fast development with native ES modules, TypeScript improves code quality
through static typing and React’s component-based architecture ensures reusability and
efficient rendering.

UI Library

Mantine was selected for its comprehensive component library, which provides a wide
range of customizable components that accelerate the development process. This library
promotes consistency in design and simplifies the implementation of user interfaces.
Additionally, Mantine offers built-in support for themes and responsive design. The
extensive documentation allows for an efficient implementation.[5]

State Persistence

User and authentication data are stored in the browser’s local storage, allowing users to
stay logged in across multiple tabs without needing to log in again. Selected filters and
other temporary states are stored in session storage, ensuring they persist even after a
page reload. Since session storage is unique to each tab, it prevents any confusion or
unintended filter changes when reloading different tabs.

4.7.2 Backend

Development Stack

Python was selected for its simplicity, versatility and strong community support in back-
end development. Django complements this with its built-in ORM, REST framework
for fast API development and an admin panel that reduces implementation time.[3]

Caching

To improve the performance and consistency of frequently used endpoints, caching was
introduced. Primarily, these endpoints pertain to the structure of institutions and their
associated permissions. To maintain full control over caching and its invalidation, a
low-level cache API with model signals was chosen. This approach allows for selectively
deleting the cache for a specific user when that user’s data is updated or when there are
changes in an institution or its permissions. The cache key was designed to include the
name of the view, the user, and the user ID, as responses may vary for each user. The
‘clear()‘ function was deliberately avoided for deleting cache keys, as its use can lead to
unintended side effects.[4]

30

https://vite.dev
https://www.typescriptlang.org
https://react.dev
https://mantine.dev
https://www.python.org
https://www.djangoproject.com

Evaluation of Formula

The ‘evaluate()‘ function from the ‘numexpr‘ library was chosen for evaluating the for-
mula because it offers much of the functionality of ‘eval()‘ while being safer. This safety
stems from its design, as it only allows a restricted set of operators and functions specif-
ically for numerical computations.[2]

Theme for Admin Panel

To enhance the user experience in the backend admin panel, a theme was used. Jazzmin
was chosen due to its modern design, as well as its quick and easy setup process.

4.7.3 Database

PostgreSQL

PostgreSQL was chosen for its robustness, ACID compliance and support for complex
data types, ensuring high performance, reliability and data integrity.

4.7.4 Other

Server

The OST server was selected because it resides within the OST VPN, which enhances
security. Additionally, the production version is expected to be deployed on the same
infrastructure.

Code Analysis Tool

SonarQube was selected over SonarCloud because the free version of SonarCloud does
not support private projects. Since this project involves OST KPIs, making it public
was not an option, leading to the choice of SonarQube.

4.8 Encountered Problems

Only issues with an impact of at least one day are mentioned here.

4.8.1 Issues with the Server

During development, two unexpected problems occurred with the server:

• A server restart initiated by the INS broke the SonarQube instance, causing the
loss of custom configurations. The configurations were manually re-applied to
restore functionality.

• The server storage was exhausted due to old Docker images not being deleted.
After identifying the issue, the pipeline was updated to remove outdated images
after deploying the latest one.

31

https://www.postgresql.org

4.8.2 Incorrect Formulas

Some of the provided KPI formulas differed from those used in the current solution. Out
of the six that could be verified, three were found to be different:

• CEPY: The provided formula divides by the current period, whereas the current
solution divides by the absolute value of the previous period.

• CRC: The provided formula divides by the current period, whereas the current
solution divides by the absolute value of the previous period.

• AAR: In the provided formula, the calculation uses the number of employees and
the number of reported cases of illness. In the current solution, both values are
represented in hours, and instead of the number of employees, the target time of
employees is used.

CSPY could not be verified, but based on the discrepancies in the other formulas, it is
also likely to involve division by the absolute value of the previous period.

Consequently, the formulas that could be verified were updated to match those in the
current solution.

4.8.3 Change of Requirements

After the MVP demonstration, the end-user decided to move away from entering data
monthly and instead opted to import the data in one go. As a result, the email reminder
feature was removed and the remaining features were reevaluated and reprioritized.

4.8.4 Limitations of UI Library

The line chart component provided by the Mantine library was initially considered but
had too many limitations for the required use cases. To address this, a custom line
chart component was developed using Mantine’s underlying chart library Recharts. This
ensured the implementation of all necessary features while maintaining the same look
and feel as the Mantine component.

32

https://recharts.org

Chapter 5

Quality Measures

5.1 Definition of Done

The following criteria establish benchmarks for determining when our product incre-
ments are deemed complete, ensuring a common understanding among the team of what
‘done‘ entails[1]:

• The intended functionality is operational.

• All automated tests have successfully passed.

• The code has met all quality gates.

• The code adheres to all standard criteria.

• Documentation is current.

• The project plan is updated.

• Time tracking is accurate.

5.2 SonarQube

SonarQube is an open-source platform created by SonarSource for continuous code qual-
ity inspection. It offers a suite of static code analysis tools that identify bugs, vulner-
abilities and code smells across various programming languages. SonarQube integrates
effortlessly with popular version control systems such as GitHub and GitLab, provid-
ing automatic analysis and real-time feedback on code quality within the development
workflow. This functionality enables teams to uphold high standards, recognize techni-
cal debt and improve software maintainability and reliability. Additionally, SonarQube
produces detailed reports and metrics to track code quality trends and prioritize areas
for improvement.[6]

33

We incorporate SonarQube into our development process for several key reasons.
First, it aids in detecting and addressing code issues early in the development lifecy-
cle, which minimizes the risk of introducing bugs and vulnerabilities into our software.
SonarQube also provides actionable insights and recommendations, empowering devel-
opers to write cleaner and more maintainable code.
Its seamless integration with our CI/CD pipeline allows us to automate code analysis
and uphold quality standards throughout the workflow. Additionally, SonarQube offers
comprehensive metrics, including lines of code, duplication, complexity, and code cover-
age, which help us assess the quality and maintainability of our codebase.
By analyzing these metrics, we can identify areas for improvement, track code quality
over time and optimize our development process.

5.2.1 Quality Gates

Different quality gates have been configured and applied for both the frontend and
backend.

Frontend

• Duplicated Lines are less than 5%

• Maintainability Rating is A

• Reliability Rating is A

• Security Hotspots Reviewed is 100%

• Security Rating is A

Backend

• Coverage is more than 80%

• Duplicated Lines are less than 5%

• Maintainability Rating is A

• Reliability Rating is A

• Security Hotspots Reviewed is 100%

• Security Rating is A

34

5.3 CI/CD Pipeline

The GitLab CI/CD pipelines consist of the following stages:

• lint: Running the linter, performing a type check, and checking code formatting
(frontend only).

• build: Building the application (frontend only).

• test: Running the linter (backend only) and executing tests.

• sonar: Performing a code quality analysis using SonarQube.

• deploy: Building a docker image and deploying it to the OST server.

The pipeline is triggered with each new commit to the main branch or for every merge
request, excluding the deploy stage in the latter case. It is defined in the .gitlab-ci.yml
file located in the project’s root directory.

5.4 Test Concept

The test concept defines the scope, methodology, resources and timeline for testing ac-
tivities. The test plan specifies the subjects, functionalities to be tested and assigned
responsibilities. Together, these provide the foundation for organizing the testing pro-
cess, allocating resources and executing the tests efficiently.

5.4.1 Testing Strategy

The testing strategy will include the following steps:

• Identification of test cases

• Execution of tests (both manual and automated)

• Reporting of bugs and issues

• Retesting of bugs / issues after they have been resolved

5.4.2 Test Environment

Server

• OS: Ubuntu 22.04.5 LTS

• Docker: 27.3.1

• Docker Compose: 2.29.7

• Postgres: Version 16

35

Client

• OS: macOS Sequoia Version 15.1.1, Windows 11 Version 10.0.22.631

• Browser: Chrome Version 131.0.6778.140

5.4.3 Test Deliverables

The test deliverables are:

• Test Artifacts

5.4.4 Test Schedule

Testing will be conducted before each milestone (MVP, Beta, Final) using the relevant
test cases.

Rough Planing

• Week 9: Test MVP (DTC-1 – DTC-12, ATC-1 – ATC-9)

• Week 12: Test Beta (DTC-1 – DTC-20, ATC-1 – ATC-20)

• Week 14: Test Final Submission (all)

Detailed Planing

Frontend
The frontend application will mostly undergo manual testing. We have decided against
extensive HTML/component tests due to the time it would require to implement them.
The testing approach includes:

• UI/UX: Testing with Google Lighthouse

• Code style: ES-Lint checks within the pipeline

• Usability: Conducting usability tests with non-technical users

The different test cases can be found in the appendix.

Backend
Our backend will be tested through automated unit tests. These unit tests will be run
alongside a code coverage checker to ensure we cover as much of our codebase as possible,
with a target of achieving 80% code coverage.
The testing strategy includes:

• Functionality: Unit tests within the pipeline

• Code coverage: Sonar check within the pipeline

• Code style: Ruff checks within the pipeline

36

5.4.5 Test Roles

• Lead: Responsible for designing test cases, executing them and reporting results.

• Tester: Responsible for executing tests, reporting bugs and retesting issues.

5.4.6 Test Artefacts

The different test artefacts can be found in the appendix.

37

Chapter 6

Result

6.1 Functional Requirements

The following use cases have been successfully implemented. Detailed descriptions of
each use case are provided in section 2.1.2 Use Case Description.

Available in the admin panel:

• UC-1 CRUD Users

• UC-2 CRUD User Roles

• UC-3 CRUD KPI Roles

• UC-4 CRUD KPIs

• UC-5 CRUD Institutions

• UC-6 CRUD KPI Fields

Available in the frontend:

• UC-7 Authentication

• UC-8 Password Change

• UC-9 Import Data for KPI

• UC-10 Get Data Import Template

• UC-11 View Dashboard

• UC-12 Filter Dashboard

• UC-14 Download Graph

38

• UC-15 Navigate Dashboard

• UC-16 CRU Data for KPI

The use case ‘UC-13 Set Email Notification‘ was not implemented due to time constraints
and changes in prioritization. Further details are provided in the section 4.8.3 Change
of Requirements.

6.1.1 Notable Use Cases

The results for the following use cases are described in more detail.

UC-2 CRUD User Roles

The matrix below defines the access permissions for user roles. This approach simplifies
configuration for administrators and enhances clarity, as it eliminates the need to create
separate roles for each individual user.

Figure 6.1: Matrix for user role access.

39

UC-4 CRUD KPIs

KPIs can be configured in the admin panel by completing the appropriate form. Below is
an example of a filled-out form for the KPI ‘Average Monthly Staff Turnover (AMST)‘.

Figure 6.2: An example of a KPI in the admin panel.

40

UC-11 View Dashboard

The configured KPIs will be automatically accessible in the frontend. Below is the same
example, now displayed with data already populated.

Figure 6.3: An example of a KPI in the frontend.

6.2 Non-Functional Requirements

The following NFRs were successfully implemented and met:

• NFR-1: The dashboard’s average load time must be under 2 seconds.

• NFR-2: Tests should cover 80% of the backend code.

• NFR-3: The frontend must achieve a minimum audit score of 90 in Google Light-
house.

• NFR-4: Methods with identical functionality should not be defined more than
once.

Details of the results can be found in section 2.2 Non-Functional Requirements.

41

Chapter 7

Conclusion

7.1 Result Reflection

The goal of this project was to develop a prototype to replace the current Excel sheet
used for calculating and managing key performance indicators (KPIs).

The primary challenges with the existing solution are its limited scalability and lack
of user permissions. As the dataset grows, managing and maintaining the Excel sheet
becomes increasingly difficult. Additionally, the absence of a permission system means
users can either view all data or none, raising concerns about the confidentiality of sen-
sitive information. Moreover, KPI graphs need to be manually adjusted, which becomes
increasingly time-consuming as the number of institutions grows.

The prototype developed in this project addresses these issues. As a web service, it can
be accessed via a browser, making data easier to share and update. A permission system
has been implemented, enabling the definition of relevant KPIs for specific institutions
and restricting user access where necessary. The prototype dynamically calculates all
KPI formulas and visualizes them in interactive graphs.

Additionally, the prototype introduces several useful features. Users can add supplemen-
tary information to data entries, helping to explain anomalies such as sudden increases
or drops in a graph. Graphs can be easily downloaded for use in reports or presentations.
A date filtering feature has also been implemented, enabling users to select on specific
time periods. This enables more precise analysis of trends and patterns, empowering
users to make better-informed decisions based on recent or relevant historical data.

To facilitate a smooth transition, the prototype includes all existing institutions, along
with their associated permissions and KPIs, as part of the initial setup. It also supports
importing large datasets directly through CSV files.

42

7.2 Outlook

The data gathering process for the tool has room for improvement. Currently, users
must manually collect data from surrounding systems, prepare it for import, and then
complete the import process. Automating data retrieval directly from these systems
would significantly reduce maintenance efforts and minimize errors caused by manual
user input.

Another potential enhancement is enabling the direct referencing of other KPIs within
formulas. At present, users must re-enter the entire formula of another KPI when ref-
erencing it, which adds unnecessary complexity. Allowing direct KPI references would
simplify formula definitions and further improve the user experience.

As this is a prototype, the focus was primarily on achieving feature parity, resolving
functional issues in the existing solution and enhancing user experience. Moving the
application from HTTP to HTTPS would notably improve its overall security.

Although efforts were made to keep the frontend and backend clean and maintainable,
further improvements are possible. For instance, implementing an interface that allows
the frontend to retrieve types directly for the API would reduce the need for double
definitions and prevent type inconsistencies when changes occur. This would streamline
development and enhance overall system reliability.

Additional features or enhancements:

• Enable the login system to utilize the Switch edu-ID, as all end-users will be OST
employees.

• Include additional details in graph downloads for better usability.

• Implement caching for KPI results, as older results are less likely to change.

• Add support for importing data from multiple institutions simultaneously.

• Add support for categorizing KPIs (e.g., by staff category or degree programs).

• Add functionality to generate reports directly from the dashboard.

7.3 Closing Statement

In conclusion, this project has successfully delivered a prototype that improves confiden-
tiality, accessibility, and user experience. Future enhancements will continue to refine
the tool, ensuring it remains adaptable and meets evolving needs.

43

Bibliography

[1] Atlassian. What is the Definition of Done? https://www.atlassian.com/agile/

project-management/definition-of-done, 2024. Accessed: 2024-10-04.

[2] David M. Cooke, Francesc Alted, et al. NumExpr 2.0 User Guide. https://numexpr.
readthedocs.io/en/latest/user_guide.html, 2024. Accessed: 2024-12-12.

[3] Django Software Foundation. Django Documentation. https://www.

djangoproject.com, 2024. Accessed: 2024-10-27.

[4] The Python Software Foundation. The low-level cache API. https://docs.

djangoproject.com/en/5.1/topics/cache/#the-low-level-cache-api, 2024.
Accessed: 2024-12-12.

[5] Vitaly Rtishchev and Contributors. Mantine Documentation. https://mantine.

dev, 2024. Accessed: 2024-12-06.

[6] SonarSource. SonarQube 10.6 Documentation. https://docs.sonarsource.com/

sonarqube/10.6/, 2024. Accessed: 2024-10-01.

[7] Dr. Gernot Starke. arc42 Documentation. https://arc42.org/overview, 2024.
Accessed: 2024-12-14.

44

https://www.atlassian.com/agile/project-management/definition-of-done
https://www.atlassian.com/agile/project-management/definition-of-done
https://numexpr.readthedocs.io/en/latest/user_guide.html
https://numexpr.readthedocs.io/en/latest/user_guide.html
https://www.djangoproject.com
https://www.djangoproject.com
https://docs.djangoproject.com/en/5.1/topics/cache/#the-low-level-cache-api
https://docs.djangoproject.com/en/5.1/topics/cache/#the-low-level-cache-api
https://mantine.dev
https://mantine.dev
https://docs.sonarsource.com/sonarqube/10.6/
https://docs.sonarsource.com/sonarqube/10.6/
https://arc42.org/overview

List of Figures

1.1 Web Application User Settings . 3
1.2 Web Application Dashboard . 4
1.3 Web Application KPI Comparison . 5
1.4 Web Application Import Form . 6
1.5 Web Application Import Report . 6
1.6 Web Application Admin Panel . 7

2.1 Use Case Diagram for Admin and User . 10
2.2 Use Case Diagram for Authenticated User and Mail Server 11
2.3 Lighthouse Performance . 16
2.4 Backend Code Coverage . 17
2.6 Backend Sonar . 17
2.7 Frontend Sonar . 17
2.5 Lighthouse Results . 18

3.1 Domain Model . 19

4.1 Building Blocks . 27
4.2 Deployment View . 29

6.1 Matrix for user role access. 39
6.2 An example of a KPI in the admin panel. 40
6.3 An example of a KPI in the frontend. 41

45

List of Tables

2.1 Use Case: Navigate Dashboard . 13
2.2 Use Case: CRU Data for KPI . 14
2.3 Non-Functional Requirement: Dashboard Performance 16
2.4 Non-Functional Requirement: API Maintainability 17
2.6 Non-Functional Requirement: Code Maintainability 17
2.5 Non-Functional Requirement: Accessibility Compliance 18

4.1 Stakeholders and Their Expectations . 22
4.2 Level 1 Components and Their Responsibilities 28
4.3 Level 2 Components and Their Responsibilities 28

46

Glossary

AAR Average Absenteeism Rate, an OST KPI.

CEPY Change of Earnings from previous year, an OST KPI.

CRC Change of Return per Capita, an OST KPI.

CSPY Change of Subsidies from previous Year, an OST KPI.

DTO Data Transfer Object, an object used to transfer data between processes, layers,
or systems, typically without containing any business logic.

INS Institute for Network and Security, an OST institute.

KPI Key Performance Indicator, a measurable value that demonstrates how effectively
an individual, team, or organization is achieving a specific objective.

ORM Object-Relational Mapping, a technique that maps database tables to objects,
simplifying database interactions.

Tracking This term refers to the various institutional levels for which KPIs are tracked.
The terminology is taken directly from the current solution.

47

	I Management Summary
	Management Summary
	Introduction
	Technologies
	Result
	Conclusion

	II Product Documentation
	Requirements
	Functional Requirements
	Use Case Diagram
	Use Case Description

	Non-Functional Requirements
	Verification of Non-Functional Requirements

	Domain Analysis
	Domain Model
	Explanations

	Architecture
	Stakeholders
	Scope and Context
	Interfaces

	Solution Strategy
	Web Application Architecture
	User Roles
	Calculation of KPIs
	Data Format for KPIs

	Software Structure
	Backend Software Structure
	Frontend Software Structure

	Building Block View
	Whitebox Overall System
	Building Blocks
	Level 1
	Level 2

	Deployment View
	Architectural Decisions
	Frontend
	Backend
	Database
	Other

	Encountered Problems
	Issues with the Server
	Incorrect Formulas
	Change of Requirements
	Limitations of UI Library

	Quality Measures
	Definition of Done
	SonarQube
	Quality Gates

	CI/CD Pipeline
	Test Concept
	Testing Strategy
	Test Environment
	Test Deliverables
	Test Schedule
	Test Roles
	Test Artefacts

	Result
	Functional Requirements
	Notable Use Cases

	Non-Functional Requirements

	Conclusion
	Result Reflection
	Outlook
	Closing Statement

	Bibliography
	List of Illustrations
	List of Tables
	Glossary

