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Abstract

This project explores the development of a Natural Language to SQL (NL-to-SQL) system using
Large Language Models (LLMs). The primary objective is to research different approaches of
generating SQL from NL and evaluate their feasibility. Subsequently a PoC was implemented to
demonstrate real-world usefulness.

The research found four key approaches which were evaluated: pure LLM, in-context learning,
fine-tuning the LLM, and Retrieval-Augmented Generation (RAG). Fine-tuning was ruled out due
to an insufficient amount of training data and time. The remaining three approaches were imple-
mented in Python and relevant LLM APIs and thoroughly evaluated.

Key findings indicate that while pure LLM approaches and in context learning provide a base-
line, RAG significantly enhances the accuracy and reliability of the generated queries. The results
of the test queries were evaluated in terms of 1. similarity (how similar is an output compared to
the example solution?), 2. validity (is the output valid SQL?), 3. executability (can the output be
executed and are the generated column names correct?), 4. reliability (how similar is the output
to the same user prompt?).

Testsets were divided into two grades: basic and advanced, based on its complexity. For the
advanced test cases, on average 45% can be executed on the databases, with only 70% of the re-
quested columns extracted. Hallucinations could not be completely eliminated when extending
the scope of the context, resulting in the low number of executable SQL queries. In this thesis,
the llama3.2 model was found to have the most potential for further development.

The PoC application demonstrates the feasibility of using RAG with metadata about database

schemas as well as JSONL input of users to generate SQL from NL, offering a user-friendly inter-
face for both technical and non-technical users.
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Management Summary and Web Publication

0.1. Background

In recent years Large Language Models have conquered the classrooms. Students and teachers
alike use them for support. Those models rely on huge amounts of data. They can also be used
to process huge amounts of data. This leads to the idea to use them on databases. As data is
of value it should be a basic skill to use SQL to query databases. The usage of LLM'’s can help to
overcome a lack of this skill. NL-to SQL systems can use LLM'’s while providing more context and
guidelines than the LLM'’s themselves. Various benchmarks to evaluate the performance of NL-
to-SQL systems already exist and with LLM’s getting smaller and more powerful the foundation
for NL-to-SQL systems exist.

0.2. Objectives

The team aims to test different approaches on building an NL-to-SQL chatbot. A foundation
for future product development should be laid, comparing different LLM'’s and evaluating the
approaches as well as existing frameworks.

0.3. Approach

At the beginning of the project the focus lay on research to understand the current state-of-the-
art for using LLM’s and approaches on NL-to-SQL systems. This research identified four core
approaches: pure LLM as a baseline, in-context learning, fine-tuning the LLM, and Retrieval- Aug-
mented Generation (RAG). Fine-tuning was ruled out due to an insufficient amount of training data
and time. The remaining three approaches were implemented in Python and relevant LLM APls
and thoroughly evaluated. Four mid-sized and one small LLM were selected for performance
evaluation, including Mistral, phi3:3.8b, falcon7b, llama3.1:8b, and GPT-40-mini. The decision to
use rather smaller LLM'’s was based on the capabilities of homecomputers as well as the avail-
able hardware for this project. After the first test runs falcon7b had to be substituted as the
hallucinations were too strong. Falcon7b was substitued with phi3:14b. Two datasets were se-
lected: One was provided by DataGovernance Technologies (MS SQL Server) and for the OST
use case the well-known Pagila dataset(PostgreSQL) was used. The test SQL queries and their
corresponding NL texts were extracted from database lecture slides and others were generated
using ChatGPT. They were divided into basic and advanced test cases. As a benchmark an ex-
isting NL-to-SQL system was evaluated as well, by name: vanna.ai. It turned out to need more
training than considered at first.

0.4. Results

When comparing the LLM’s most of the times gpto4-mini and llama were leading, while the small-
est LLM phi3:3.8b could not be fully hindered from hallucinating.
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The results of the test queries were evaluated in terms of 1. similarity (how similar is an answer
compared to the example solution?), 2. validity (is the output valid SQL?), 3. executability (can the
output be executed and are the generated column names correct?) 4. reliability (how similar are
answers to the same question?). It proved difficult to evaluate similarity using the usual cosine
function, as the same query output can be achieved with different queries. Since the pure LLM
approach guesses table names, the similarity metric was still considered useful for comparison.
While executability includes validity, the validity metric can be achieved without the correct table
names, which is needed for comparison to the pure LLM approach. For the advanced test cases,
on average 45% can be executed on the databases, with only 70% of the requested columns
extracted. Getting the LLMs to output valid SQL without additional explanations was a challenge.
The hallucinations could not be completely eliminated, resulting in the low number of executable
SQL queries. The reliability metric in Fig. 3 shows the high number of hallucinations by phi3:3.8b.
As probably the smallest LLM in these tests, it proved particularly difficult to produce valid SQL.
This thesis found potential to be further exploited.

0.5. Outlook

This project has successfully laid the foundation for future advances in NL-to-SQL systems. Fur-
ther work should focus on eliminating the hallucinations, as well as providing more fine-grained
test metrics to analyse the LLM’s shortcomings thoroughly. Emerging approaches left out by this
thesis should be looked into by name multi-step reasoning and structured outputs.

0.6. Conclusion

This project successfully evaluated and compared different approaches by way of implementa-
tion of a testing scripts with benchmarks, which allows for easy comparison between different
LLMs and approaches.

Furthermore, the project then successfully implemented these findings in a chatbot, which
allows users to query databases with minimal technical understanding. For more tech-savvy
users, it allows them to provide further context by way of uploading jsonl files with SQL to NL
mapping. This allows the user to add information, that may not be contained in the database
itself, such as domain specific terms or abbreviations.

For tech-illiterate users, the chatbot provides a user-friendly interface, where they can ask ques-
tions in natural language and receive SQL queries as well as the resultset in return - the only
requirement being a direct connection to the database. Users do not have to worry about the
underlying training logic, as the chatbot will automatically train on the database data.

It also allows the users to easily choose between LLMs, ensuring data privacy where only self-
hosted LLMs are used.
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1. Introduction

The recent Artificial Intelligence (Al) hype has led to more investments in Al research and devel-
opment. This has led to the development of more sophisticated Al models that can perform a
wide range of tasks. One of the most popular Al models is the (LLM. LLMs are Al models that can
understand and generate human language. They have been used in various applications such as
chatbots, language translation, and text summarization. One of the most recent applications of
LLMs is in the field of (Natural Language to Structured Query Language (NL-to-SQL)) systems.
NL-to-SQL systems are Al systems that can convert natural language queries into Structured
Query Language (SQL) queries. This has the potential to make databases more accessible to
non-technical users.

1.1. Objectives

The primary objective of this project, is to evaluate approaches to provide LLMs with context
in order to generate more consistent output. The two main stakeholders are DataGovernance
Technologies (DGT), which aims to make its solution available to a broader audience, and Eastern
Switzerland University of Applied Sciences (OST), which aims to provide students with a tool that
makes learning SQL more interactive, fun, engaging and efficient.

1.2. Problem Statement

Currently students and non-technical users struggle to query databases using SQL. While they
can use LLMs to generate SQL queries, the output often needs further corrections, due to the
lack of context. This project aims to evaluate the possible solutions to this problem, reducing
the need for SQL knowledge.

1.3. Overview

This document outlines the approach taken to conduct research on the topic, our testing ap-
proaches and the implementation of the PoC. It provides a comprehensive overview of the cur-
rent state of the art, the problem domain, the architectural strategies employed, and the quality
measures instituted throughout the development process. Additionally, it details the project’s
timeline, resource allocation, risk management strategies, and the methodologies used to en-
sure a structured and effective execution. In subsequent chapters, we will delve into the project’s
requirements—both functional and non-functional—, and architecture. We will also discuss the
quality measures that have been applied, the initial project proposal, project plan, time tracking,
personal reports, meeting minutes, and the bibliography. The document concludes with an evalu-
ation of how the project’s objectives were met and an outlook on potential future developments.
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2. Assignment

2.1. Background

One of the objectives of the Swiss software company DataGovernance Technologies Ltd (DGT)
is to provide non-technical professionals with actionable insights derived from data. The emer-
gence of Large Language Models (LLMs) has made this vision increasingly attainable, particu-
larly by enabling the generation of SQL queries directly from natural language (NL) input.

Similarly, OST seeks to address a related challenge by making the process of learning SQL
more accessible and engaging for their students. Through interactive and efficient methods,
OST aims to simplify the complexities of SQL for learners. This project explores the various
approaches available for translating NL into SQL, evaluating their effectiveness and potential.

As part of this investigation, a proof of concept (PoC) was implemented to demonstrate and as-
sess these methodologies in practice. Not everybody knows SQL although most people should,
since data is everywhere and data is most likely stored in a database.

2.2. Task

This project concerns itself with two main goals:
+ Evaluate the effectiveness and state-of-the-art of Text-to-SQL generation.

+ Develop an PoC application that can query SQL databases (PostgreSQL and MS SQL) using
natural language.

The following subtasks are to be completed:
+ Research and evaluate the state-of-the-art approaches in Text-to-SQL generation.
+ Develop a test script comparing and evaluating the different approaches.
+ Develop a PoC application that can query SQL databases using natural language.

The project will build on the work done in the bachelor thesis Natural Language to GraphQL(2024).

2.3. Proposed Methodology

The Unified Process Model serves as a template:
* Inception: Define the project scope, requirements and conduct research.
+ Elaboration: Evaluate the state-of-the-art approaches and develop a test script.
+ Construction: Implement the PoC application using the best approach.

+ Transition: Document the results and hand over the project to the stakeholders.
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2.4. Specifications/Constraints

+ The project should be developed using open-source tools and libraries.
+ The PoC application should be able to query both PostgreSQL and MS SQL databases.

+ The PoC should be able to execute the queries and show the results in a user-friendly fron-
tend.

2.5. Deliverables

+ Documentation, including text abstract (English), management summary (English), brochure
abstract

+ A test script comparing and evaluating the different approaches.

« A PoC application that can query SQL databases using natural language.

Additionally, the requirements of the Computer Science program and the OST (deadlines, evalu-
ation, documents, etc.) apply.
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3. Conditions and Constraints

This chapter outlines the conditions and constraints under which this project operates. These
provide the framework within which project decisions are made and guide the technical and or-
ganizational approach of the project.

3.1. Project Conditions

+ Stakeholders: The System under Development (SUD) must cover use cases in the interest
of two stakeholders: DGT as well as OST. The SUD must therefore be usable for education
as well as data engineering, and for laymen.

+ SQL Assistance: The project seeks to build a fullstack webapplication that assists in tasks
pertaining to SQL.

+ Client Specifications:

3.2. Technical Constraints

+ Technology Stack: The backend and frontend must be decoupled, so after this project
completes the SUD can easily be integrated into the DGT client, i.e. the frontend can be
switched out.

« Open Source Software: Because of data privacy concerns preference should be given to
open source LLMs over which DGT and OST have complete control.

3.3. Operational Constraints

« Compliance: All development and documentation adhere to the rules and standards set
forth by the Bachelor's/Master’s thesis guidelines of the OST Computer Science program.

3.4. Delivery Constraints

+ Software Quality: The delivered PoC must adhere to the highest standards of software
quality, including clean, decoupled code.

+ Documentation: Comprehensive documentation is required, including a text abstract in En-
glish, a management summary, and a technical report, among potentially other agreed de-
liverables.

This framework of conditions and constraints will shape the project’s execution, ensuring that

the development process aligns with the needs of DGT and OST, technical best practices, and
academic requirements.
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4. Procedure and Structure of the Thesis

4.1. Introduction

This section describes the methods and approaches used in conducting the research and devel-
opment of the project. It serves to give an overview of the project and the steps taken to complete
it.

4.2. Problem and Task Introduction

The primary objective of this project is to create a fullstack webapplication which helps the user
understand and access data which lies in a relational database. LLMs already assist in generat-
ing SQL queries; they are however often faulty because they lack the information of the database
schema. The challenge lies hereby in finding ways of injecting the database schema knowledge
of a specific database into the LLM such that the LLM can give more accurate, as well as more
complex assistance than without knowledge of the database schema. This project aims to re-
solve this problem by exploring various possibilities of injecting said domain knowledge such as
fine-tuning an LLM, few-shot learning and other paradigms. Finally, a proof of concept must be
implemented as a fullstack webapplication.

4.3. Procedure

The project was executed using the Scrum methodology, with 2-week sprints to ensure continu-
ous delivery and adaptation. The following steps were taken to complete the project, though not
as sequentially as implied by the numbering. For instance, in order to stay agile it is important to
introduce additional metrics should the initially chosen metrics not suffice.

4.3.1. Step 1: Research and Requirements
+ Objective: Conduct thorough research

« Activities:

Establish requirements for the project with stakeholders.

Establish an overview of existing approaches which are able to fulfill said require-
ments.

Document the approaches as well as their potential.

Choose the most promising approaches for further evaluation.

+ Risks: Miscommunication between stakeholders and project team
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4.3.2. Step 2: Metrics
+ Objective: Establish metrics for comparing approaches

+ Activities:
— Research existing metrics for evaluating and evaluating seq-2-seq models and their
output.

— Choose the most suitable metrics, based on their ability to distinguish between the ap-
proaches and their potential to provide insights to users, future developers and stake-
holders.

+ Risks: Choosing insufficient metrics, not being able to evaluate the approaches.

4.3.3. Step 3: Testdata
+ Objective: Establish a set of testdata for evaluating the approaches

+ Activities:
- Generate testdata based on the DataGovernance Technologies Database (DGDB).
— Generate testdata based on the Pagila database.

+ Risks: Human bias in generating testdata, not enough testdata

4.3.4. Step 4: LLMs
+ Objective: Choose LLMs for evaluation

+ Activities:
- Research existing LLMs and their capabilities.
- Establish criteria for selecting LLMs.
— Select four LLMs for further evaluation.

+ Risks: Human bias in generating testdata, not enough testdata

4.3.5. Step 5: Testscript Development
+ Objective: Rank the approaches

+ Activities:
- Implement logic to run the testdata through LLMs.
- Implement logic to evaluate the output of the LLMs.

* Risks:
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4.3.6. Step 6: System Design and Implementation of the PoC
+ Objective: Design and implement the PoC
+ Activities:
— Design the architecture of the PoC.

- Evaluate different frameworks and technologies
- Develop the PoC using best practices and the chosen technologies.

* Risks: Technical implementation challenges, integration issues.

4.4. Participants Involved

The following individuals were involved in the project:
+ Supervisor: Prof. Stefan Keller
* Project Team: Fiona Pichler, Benjamin Kern
+ CEO Data Governence Tech: Georg Bommer

+ OST Advisor: Prof. Dr. Mitra Purandare (provided valuable feedback during the mid-term
presentation)

4.5. Summary

In summary, this chapter has provided an overview of the procedure and structure of the work
involved in this project. It has outlined the steps taken, as well as its associated risks, and the
key participants involved in the project. Additionally, it has introduced the problem and task, and
provided an overview of the remaining parts of the submission.
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5. State of the Art and Related Work

5.1. Introduction

Initially we focused on refreshing our knowledge concerning seq-2-seq models (and LLMs) which
was acquired from the modules Al Foundations and Al Applications. While the refreshers were
interesting, it soon proved to be much too low level to concern ourselves with transformer archi-
tecture.

Advancement in the Al field have been so vast and rapid, that there are now purpose built
abstractions on much higher levels.

When exploring approaches we found the following:

5.1.1. Purellm

This is the most obvious approach and only serves as a baseline. No further modification is
needed, only setup of self-hosted LLMs.

5.1.2. In Context Learning

This approach was already mentioned in the bachelor thesis proceeding this project about gen-
erating natural language to graph gl [4]. Due to the short timeframe between the two projects, no
noteworthy additions can be made here and the reader is referred to [4] for further information.

5.1.3. Finetuning

Finetuning works by getting a so called foundation model, which is then further trained on ad-
ditional data to achieve better performance on a specific task. A simple example which does
not concern itself with LLMs would be a foundational model which has learned to identify edges,
now being finetuned in order to recognize numbers. The same could be attempted for generating
SQL queries; while the model has certainly been trained on SQL queries, it has not been trained on
the specific database schema. Finetuning would then be used to train the model on the specific
schema, using example queries. The research conducted here however led to the revelation that
we would need "to have thousands or tens of thousands of example" [2] queries, which is not
feasible for our project. Furthermore, this would indicate that for each new database schema,
the model would need to be retrained using again thousands of examples, which again would
need to be generated by hand.

5.1.4. RAG

RAG works by inserting relevant context into a vector database. Unlike relational databases the
database is not queried by SQL queries, but by strings which are embedded to find the most
relevant entries stored in the database. This retrieved context can then be passed to the LLM.

Research revealed that one of the most widely adopted vector databases is ChromaDB, highly
regarded for its ease of use and scalability as well as flexibility.
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The following quote from a book provides interesting insights for comparing finetuning and
RAG:

"The decision of whether to implement RAG or fine-tune a model relies on the proportion of
parametric versus non-parametric information. The fundamental difference between a model
trained from scratch or fine-tuned and RAG can be summed up in terms of parametric and non-
parametric knowledge:

« Parametric: In a RAG-driven generative Al ecosystem, the parametric part refers to the gen-
erative Al model’'s parameters (weights) learned through training data. This means the
model’s knowledge is stored in these learned weights and biases. The original training
data is transformed into a mathematical form, which we call a parametric representation.
Essentially, the model “remembers” what it learned from the data, but the data itself is not
stored explicitly.

+ Non-Parametric: In contrast, the non-parametric part of a RAG ecosystem involves storing
explicit data that can be accessed directly. This means that the data remains available
and can be queried whenever needed. Unlike parametric models, where knowledge is em-
bedded indirectly in the weights, non-parametric data in RAG allows us to see and use the
actual data

"[5, p. 4] The author further explains that RAG and finetuning are not mutually exclusive, but can
instead be combined.

However the ever changing nature of datbases (and its all too well-known need for migration
management) makes RAG the much more alluring option, as everytime the database changes,
the model would need to be retrained. Updating RAG information on the other hand is much
quicker and simpler.

5.1.5. Structured Output

Structured output [3] has been introduced by OpenAl in the midst of this bachelor thesis. It pro-
vides a way of standardizing the output of LLMs in a structured way, reducing hallucinations and
improving reliability in further processing of the output. The general approach to this problems
has previously been to instruct the LLM in the prompt to use delimiters and special formatting.
This was also discussed in the natural language to graphQL thesis [4] . The output can then be
further cleaned using regular expressions. Unfortunately we did not have time in this thesis to
test the real-world applicability of this approach. Since it promises more reliable output, it will
most likely find wider adaptation in the future.

5.1.6. Multi-step reasoning

Multi-step reasoning is an approach in which an Al model solves a complex problem by breaking
it down into smaller, manageable steps. In the context of NL-to-SQL (natural language to SQL)
generation, multi-step reasoning allows a LLM to methodically convert a natural language query
into an SQL query by reasoning about intermediate steps.

While this approach has not been implemented in our PoC, the PoC could easily be extended
to include this approach, thanks to the modular pipeline design. Extending the current approach
with this could improve query generation for queries which contain multiple complex joins and
many foreign keys.

The steps taken by multi-step reasoning are as follows:
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5.1.6.1. Decomposition of the Query

The natural language query is broken into smaller semantic components (e.g., SELECT clause,
FROM clause, WHERE clause). The LLM identifies relevant database entities (tables and columns)
separately for different components.

5.1.6.2. Iterative Execution

The SQL query is built incrementally. After each step, the generated SQL is checked for correct-
ness or modified based on user input or further logical steps.

5.1.6.3. Logical Reasoning

The LLM applies rules to handle: Joins between tables based on foreign key relationships. Group-
ing and aggregation logic for functions like SUM, COUNT, etc. Conditions in the WHERE clause
or logical operators (e.g., AND, OR).

5.1.6.4. Intermediate Validation

At each step, intermediate outputs are verified: Are the columns or tables valid? Is the query
logically coherent? This can be implemented via schema validation, execution on a database, or
simulated reasoning.

5.1.6.5. Use of Feedback

When dealing with ambiguous queries, the LLM can iteratively clarify intent: E.g., “Did you mean
to include all rows or only those where column X is not null?”

5.1.7. Agent-like function calling

Agent-like function calling is a concept where the language model operates in a step-by-step,
"‘goal-directed" manner, using discrete functions to reason through problems and generate so-
lutions in a structured way. In the context of NL-to-SQL generation, this approach breaks down
the natural language query and iteratively invokes various "agent-like" functions, each handling
a part of the problem, to build the SQL query step by step. This allows the system to manage
complexity and ambiguities more effectively while handling user input in a more structured way.

This approach sounds very similar to multi-step reasoning, but is more modular. It splits the
reasoning task into separate functions or agents, with each "agent" independently performing a
specific part of the process (such as parsing the query, extracting entities, handling joins, etc.).
These agents work independently but coordinate toward solving the problem. The key difference
here is that there is not necessarily one central model processing through all the steps, but sev-
eral "agents" each handling a task.

While this approach was not implemented, adding it to the PoC would be relatively simple due
to the modular pipeline design.

Agent-like function calling can be applied in the context of generating SQL queries from natural
language prompts in the following way:

Fiona Pichler, Benjamin Kern Page 11 of 67



O OST Report
Eastern Switzerland Text-to-SQL for DataGovernance Technologies and Education

University of Applied Sciences

5.1.7.1. Interpretation of User Query (Agent: Language Understanding Agent)

+ Function Goal: First, the system needs to understand the natural language query and inter-
pret the intention behind it (e.g., extract entities, operations).

+ Function: The model analyzes the user’s query and generates a high-level understanding of
the goal.
5.1.7.2. Identify Relevant Tables and Columns (Agent: Database Schema Agent)

+ Function Goal: The system needs to understand which database tables, columns, and re-
lationships will be relevant for the query.

+ Function: This agent queries the database schema (e.g., table names, columns, foreign key
relationships) to narrow down the relevant tables and fields that will participate in the query.
5.1.7.3. Determine Joins and Relationships (Agent: Relational Query Agent)

+ Function Goal: For more complex queries, especially those involving multiple tables, the
system must figure out how to join these tables.

+ Function: Using the database schema information, this agent determines which tables need
to be joined (based on primary/foreign key relationships) and builds the necessary JOIN
statements.

5.1.7.4. Handle Time Constraints or Filters (Agent: Condition Handling Agent)

+ Function Goal: If the query includes filters like dates, ranges, or other conditions, the system
needs to add these constraints properly.

+ Function: This agent analyzes any conditions present in the query and integrates these into
the SQL WHERE clause, such as a range or specific value for columns.

5.1.7.5. Construct Aggregations and Groupings (Agent: Aggregation Agent)

« Function Goal: If the query requests an aggregation (e.g., SUM(), COUNT(), AVG(), etc.), the
system needs to create the aggregation functions correctly and group the data accordingly.

+ Function: This agent reads the high-level intent (e.g., show total sales) and generates the
proper SQL aggregation, ensuring proper grouping.
5.1.7.6. Generate SQL Code (Agent: Code Generation Agent)

+ Function Goal: Finally, the various agents, having decomposed the problem into manage-
able tasks, need to generate the final SQL query.

+ Function: This agent assembles all previous components into a valid SQL query and pro-
vides it to the user.
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5.1.8. NLQ translation system

This book proposes interesting algorithms, which do not concern themselves with LLMs, but
focus on building SQL by using linguistic and syntactic patterns. As the authors describe:

"Giordani and Moschitti [76] designed an NLQ translation system that generates SQLs based on
grammatical relations and matching metadata using NL linguistic and syntactic dependencies
to build potential SELECT and WHERE clauses, by producing basic expressions and combining
them with the conjunction or negation expressions, and metadata to build FROM clauses that
contain all DB tables" [1, p. 23]

Further research (and even the authors of this book) go on to explain the limitations of this ap-

prach, as it cannot handle complex queries. Implementations of such approaches are therefore
deemed futile.
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6. Evaluation

6.1. Introduction

This chapter goes into the findings of this project, evaluating its outcomes against predefined
objectives and criteria.

6.2. Evaluation Methodology

6.2.1. Qualitative Criteria

Qualitative criteria involve descriptive and interpretive measures. In this project, qualitative cri-
teria were assessed based on the requirements discussed with DGT. The need for simplicity in
the PoC which implies high usability, and the need to have loose coupling, such that the backend
can be integrated in the DGT client, was particularly emphasized.

6.2.2. Quantitative Criteria

Quantitative criteria involve numerical and statistical measures. These include similarity, exe-
cutability, and reliability metrics. The project utilized various quantitative measures to assess
the effectiveness of the different approaches to NL-to-SQL translation.

6.3. Assessment of Results

6.3.1. Data Collection and Analysis

In this project testdata was generated based on the DGDB and the Pagila database. This data was
then used to evaluate the different approaches. The analysis focused on evaluating the similarity
to the solution and the reliability across different testruns of the generated SQL queries. Tech-
niques like cosine similarity and executability checks were employed to enhance the evaluation
process.

6.3.2. Evaluation Metrics

Key metrics used in the evaluation included:

+ Similarity: The similarity metric compares the output of the LLM with the sample solution
provided by the test set. Cosine similarity was used to measure how close the generated
SQL queries were to the expected ones.

+ Executability: This metric checks whether the generated SQL queries can be executed on
the target database without errors. It also evaluates the correctness of the result set.

+ Reliability: This metric assesses the consistency of the LLM’s responses to the same query
over multiple runs.
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6.4. Achievement of Objectives

6.4.1. Objective Fulfillment

This project consisted of two main objectives: Evaluating and comparing promosising approaches
and implementing a proof of concept. The first objective was successfully achieved through the
evaluation of different approaches to NL-to-SQL translation using a variety of metrics. The ex-
ecutability metric proved crucial in proving that Retrieval Augmented Generation (RAG) is by far
the most promising approach.

Furthermore, the second objective was also successfully achieved through the development
of a fullstack web application that integrates LLMs and the RAG approach to provide users with
a natural language interface to a relational database.

All should and must requirements were met, with the only feature left out being user manage-
ment. This was however to be expected from the beginning, as it was out of scope for this project.
The PoC allows users to easily connect databases and LLMs (open source as well as OpenAl).
The explainer mode allows for non-technical users to ask information about queries with context,
while the generator mode allows for the generation of SQL queries and immediate display of the
resultset in the table. Advanced users can add context of their own by uploading files.

6.4.2. Discrepancies and Unexpected Outcomes

While most objectives were met, some challenges were encountered. For instance, the issue of
hallucinations in LLMs was not completely resolved, leading to occasional inaccuracies in the
generated SQL queries. Additionally, the performance of the system varied depending on the
complexity of the queries and the quality of the input data.

6.5. Future Research Directions
Future work could focus on further refining the RAG approach to reduce hallucinations and im-

prove the accuracy of the generated SQL queries. Additionally, exploring other emerging tech-
niques such as multi-step reasoning and structured outputs could provide further enhancements.

6.6. Conclusion
Overall, this project successfully demonstrated the feasibility of using LLMs and RAG for NL-to-

SQL translation. The developed PoC provides a strong foundation for future advancements in
Al-powered database accessibility and education.
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7. Project Vision and Implementation Strategy

7.1. Project Vision

The goal of this project is a full stack application, which can be connected to a database and
an LLM to query the database using natural language. The application uses the chosen LLM to
convert natural language to SQL. To find the best results, different LLMs can be connected to the
application.

We strive to implement an application and evaluate results which satisfy both the needs of OST
as well as DGT.

7.2. Background

While databases are omnipresent in todays digital world, not everybody "speaks” SQL. Telling
an application in natural language what to do in a database, makes data more accessible for
everybody. Existing final products are limited and often do not satisfy all the requirements posed
by OST and DGT, such as data privacy, modularity and support of open source technologies.

7.3. Implementation Strategy

We aim to conduct this project using an iterative and agile approach. We will start by researching
the state of the art in the field of LLMs and their application in the context of database querying.
We will then proceed to implement a prototype of the application, which will be used to test the
different LLMs. The results of these tests will be used to refine the application and the LLMs
used. We will then conduct further tests to evaluate the performance of the application and the
LLMs. The final application will be compared to existing solutions to determine its effectiveness.
At the end of the project we will compare the result with the conditions and constraints estab-
lished, the assignment as well as the fulfillment of gathered requirements.
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8. Outcomes: Assessment and Objectives
Fulfillment

8.1. Assessment of Results
This project identified the most promising approaches, measured and compared them and suc-

cessfully implemented the PoC. Results were compared with the existing product Vanna.ai. The
resulted work was evaluated in terms of requirements and the quality of metrics chosen.

8.2. Achievement of Objectives
All objectives were successfully met during this project. Thorough research was conducted,

evaluation metrics chosen and different approaches implemented. Requirements of both the
academic and commercial world were met and the PoC was successfully implemented.

8.3. Conclusion
This project has successfully managed to satisfy the needs of two stakeholders with different

requirements, priorities and interests. The PoC proves valuable for further development not only
to DGT, but also to OST.
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9. Conclusions and Future Directions

9.1. Conclusions

The project found that the PoC was able to successfully generate SQL queries from natural lan-
guage input. The PoC was able to generate queries with a high degree of accuracy, and the results
were consistent across different LLMs and testdata sets.

The metrics used for evaluation where wisely chosen and the executability metric in particular
was a good indicator of the quality of the generated queries. Overall, the PoC has laid a solid
foundation for future development and research in the field SQL query generation from natural
language. This project is also very relevant in regards to data privacy; while LLMs like ChatGPT
are very powerful, they lack the security of selfhosted models. Since our PoC supports all Ollama
models, this has opened up great potential for retaining DGT customers data privacy.

9.2. Future Directions

For DGT, future directions will involve the integration of the PoC backend into the existing client,
as well as integrating it into the security framework of said client.

For OST, future directions will presumably involve further research into the effectiveness of the
different LLMs and the impact of the testdata on the results. Besides exploring alternative ap-
proaches one could also investigate how RAG performance can be furtherimproved - for example
by including more sample queries for training.

9.3. Final Thoughts

Lessons learned include the importance of iterative development. No matter how great the plan-
ning is done in the beginning, requirements and tasks will evolve over time, especially when deal-
ing with problems in the Al space.

Despite that, we managed to deliver a solid PoC and a testing script with results that clearly
distinguishes the different approaches, LLMs and testdata sets.
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1. Overview

1.1. Purpose

The purpose of the software project documentation is to provide a comprehensive and detailed
account of the development and implementation of the developed NL-to-SQL-system.

1.2. Content

1.2.1. Vision

Outlines the project objectives, problem statement, and the strategic approach taken to address
the identified issues.

1.2.2. Requirements Specification

Lists the functional and non-functional requirements for the PoC.

1.2.3. Design

Discusses design decisions and considerations leading to the final PoC.

1.2.4. Implementation

Describes the implementation of the main application.

1.2.5. Test

Defines the test metrics, tested approaches and overall the testing process.

1.2.6. Result

Provides an assessment of the project’s outcomes, the results of the tests and highlighting the
main achievements and areas of improvement.

1.2.7. Further Development

Suggests approaches and subjects for further development considering the findings of this project.

1.2.8. User Documentation

Offers documentation to set up the main application implemented in this project.
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2. Vision

For more details see chapter 7. Project Vision and Implementation Strategy.
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3. Requirement Specification

This chapter defines the requirements for the SUD. Use cases are defined, which are then used
to outline the functional as well as the non-functional requirements.

3.1. Prioritization

Requirements are prioritized according to the following three levels. These levels refer to their
respective importance of a proof of concept, not necessarily respective to a finished product.

Must These requirements are essential for the proof of concept and must be fulfilled.

Should These requirements should be fulfilled for an extensive evaluation of the proof of con-
cept.

Could These requirements would be "nice to have" - they are deemed out of scope of this project
and may only be fulfilled if there is a surplus of time.

3.2. Use Case Diagram

In this section we first present the use case diagram. Subsequently we elaborate on the intro-
duced actors.
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Figure 3.1.: Use case diagram

3.2.1. Actors

We outline the three different actors that will be using our system.

3.2.1.1. Student

The software should be used in education - help students creater a more in-depth understanding
quicker than before. As such, one actor is a typical student. He is defined by incompetence
regarding SQL.

3.2.1.2. Auditor

Since this thesis also has an industry partner, some roles follow from this. One such role is the
auditor: Data Governance Tech provides a client for mining semi-structured data. This data can
then be used to verify compliance. If companies have certifications, then they typically have an
auditor come in and verify compliance. As such, this auditor needs to verify things such as least-
privilege, need-to-know and similar concepts. An auditor typically has more of a legal background,
rather than a technical one. This means that his SQL knowledge is limited or non-existent. He
should only have access to the files pertaining to the audit.
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3.2.1.3. Data Engineer

The last actor is a typical data engineer at Data Governance Tech. His job is to maintain the data
pipeline, which includes the DGDB, the DGDWH as well as the OLAP cube. His knowledge in re-
gards to SQL is extensive, but may be limited in regards to the vast schema the data pipeline uses.
engineer may need help in creating or adapting the complex queries used in the data pipeline.
3.2.1.4. Administrator

The administrator is the admin of the SUD. He is responsible for connecting new models as well
as setting up new users. He may also train models on new database schema given the necessary
instructions.

3.3. Use Cases

In the following section we outline the use cases that the SUD should satisfy.

3.3.1. UCO0O0: Setup and Configuration

3.3.1.1. Main Success Scenario

The administrator sets up the new system. He adapts the system to a new database schema.
He then sets up the users, as well as their security levels.

3.3.1.2. Alternate Scenarios

If there is an error during setup / configuration the admin is presented with as much information
as possible allowing him to remedy the error.

3.3.2. UCO1: Simplified Query Construction for Learning
3.3.2.1. Main Success Scenario

A student who is learning SQL uses the system to convert natural language questions into SQL
queries to help understand how data is queried from databases and thus help students learn SQL
by showing how natural language questions map to SQL queries. In order to achieve that, the stu-
dent inputs a query like 'Show me the students who scored above 90 in math’, and the system
generates the SQL query SELECT * FROM students WHERE math_score > 90;. With this gener-
ated query, the system then queries the database. The query is then shown to the user, as well
as its output.

3.3.2.2. Alternate Scenarios

If the query cannot be executed against the database, or a SQL error is thrown, then the query is
shown to the user. If no query could be generated, then the user receives as much information
about the error as possible, without compromising security.
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3.3.3. UC02: Query Explanation for Educational Purposes
3.3.3.1. Main Success Scenario

The system explains complex SQL queries in simple, understandable terms. In doing so it pro-
vides detailed explanations to help the student understand query components (joins, subqueries,
CTEs, etc.). The student submits a query and asks for an explanation, receiving a step-by-step
breakdown.

3.3.3.2. Alternate Scenarios

If the query cannot be explained, then the user receives again as much information as is possible
without compromising security.

3.3.4. UC03: Compliance Data Extraction via NL
3.3.4.1. Main Success Scenario

An auditor with limited SQL knowledge inputs a natural language request to retrieve data related
to compliance (e.g., access logs or permission levels). The SUD helps auditors quickly extract
compliance-relevant information without needing to learn SQL. Thus the auditor inputs a simple
query like, "List all users with admin privileges,' and the system generates the SQL query ‘SELECT
* FROM users WHERE role = 'admin’;’. Futhermore, the SUD can also handle complex queries.
Data Governance Tech integrates with various sources such as Exchange, Active Directory and
many more. Thus, there are many different types of users. If the auditor requests information
about users then the system generates a query which queries the correct subset of users.

3.3.4.2. Alternate Scenarios

If the query cannot be explained, then the user receives again as much information as is possible
without compromising security. If the query returns information that the auditor is not allowed to
access, then said information is filtered out. The reason for filtering and the information about
the filtered content is then presented to the auditor alongside the result.

3.3.5. UCO04: Assistance with Complex Query Generation
3.3.5.1. Main Success Scenario

The system helps the data engineer create or optimize complex SQL queries using natural lan-
guage descriptions and thus allows engineers to focus on business logic rather than the details
of SQL query syntax. The engineer requests "l need to adapt the datapipeline such that exchange
users are included in the overall entities and can be mapped as owner of emails in the OLAP
cube". The system then tells the engineer where and how the SQL queries in the SSIS have to be
changed, adapted or added.

3.3.5.2. Alternate Scenarios

Security is of no concern here, as there is only testdata in the system or local installation that the
data engineer is working on. If there is an error in generating the instructions and queries, then
as much information as possible is presented to the data engineer, facilitating the debugging
process.
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3.3.6. UCO5: Query Optimization Suggestions
3.3.6.1. Main Success Scenario

The system analyzes a SQL query which has been provided by the data engineer and offers opti-
mization suggestions based on the structure and data pipeline. Suggestions include but are not
limited to improving query performance by suggesting indexes, optimizations, or rewrites.

3.3.6.2. Alternate Scenarios

If there is an error, then once again as much information as possible is presented to the data
engineer, as security is of no concern.

3.4. Functional Requirements

The following table describes the requirements derived from the use cases listed above, as well
as referencing the specific use case it has been derived from.

A complex query is defined as a query that includes atleast one of these: CTEs, multiple joins,
window functions, aggregation functions.
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Number

Title

Derived
from UC

Level

Description

Fulfilled

FRO1

LLM-
Connection

ucoo

Must

The SUD provides an interface for
connecting LLMs that is general-
ized, so OpenAl GPT as well as open
source models can be connected.

Yes

FRO2

User-
Administratig

ucoo
n

Could

The SUD provides the possibility
to administrate users as well as
configure different security levels
based on tables in a database for
said users.

No

FRO3

Fullstack

uco3

Must

The SUD is a fullstack webappli-
cation. Since we also target non-
technical users, it must be user-
friendly and thus not only a console
application.

Yes

FRO4

NL-to-SQL

ucon,
uco3

Must

The SUD generates simple SQL
queries from NL input, validates
them and shows them to the user.

Yes

FRO5

Result-Or-
Query

ucon,
uco3

Must

When a query has been validated,
it is executed against the database
and the results can be shown to the
user.

Yes

FRO6

Execute-
Query

uco1,
uco3

Must

If the intent is to generate a query
then the SUD shows both the gener-
ated query and the results.

Yes

FRO7

Explain-
Query

uco2

Must

When presented with a complex
query (as it occurs in a datapipeline
for example) the system explains in
plain language the concepts behind
the queries (e.g. AzureSecEntities
table contains users from Azure)
and what the query does.

Yes

FRO8

Debug-Info

uco4

Should

The SUD helps the user (in this
case data engineer) generate and
extend complex queries for the dat-
apipeline.

Yes

FRO9

Optimize-
Query

uco5

Should

The SUD helps the user optimize
queries for performance and sim-
plicity.

Yes

FR10

Security

uco3

Could

The SUD implementes security
based on security information in
the database. Error messages only
contain information that the user is
allowed to access.

No
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3.5. Non-Functional Requirements

We keep track of the non-functional requirements in accordance to the FURPS Standard, where
FURPS stands for Functionality, Usability, Reliability, Performance, and Supportability. Since func-
tional requirements are outlined above, they are omitted here.

3.5.1. Usability
NFR Title Level Description Fulfilled
NFRO1 Usability Must The SUD is a fullstack webappli- | Yes
cation. Since we also target non-
technical users, it must be user-
friendly and thus not only a console
application.
NFR02 Loading- Must For requests that take long, an indi- | Yes
Feedback cator is shown to the user.
3.5.2. Reliablity
NFR Title Level Description Fulfilled
NFRO3 Failure in Query | Must The SUD handles failed execution of | Yes
building generated queries gracefully.
3.5.3. Performance
NFR Title Level Description Fulfilled
NFRO4 Answer-in-10s Must Any request to the SUD is answered | Yes
within 10 seconds.

3.5.4. Supportablity

NFR Title Level Description Fulfilled
NFRO5 Decoupled- Must The code and architecture is writ- | Yes
Design ten highly cohesive and decoupled

wherever appropriate, allowing for
easy changes in datastore, SUD and
frontend/backend technology.

3.6. Outcome
As one can clearly see, all must and should requirements are fulfilled. The could requirements

are not fulfilled, which was to be expected as they are out of scope for this project and only meant
to be implemented if there is a surplus of time.
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4. Design and Architecture: Approaches and

Testing Script

This chapter is split into two main sections: The first section discusses the approaches and the
testing script, while the second section dives into the chatbot application.

This chapter outlines the architectural framework and design decisions of the project, focus-
ing on how the object-oriented problem domain is structured and potentially interfaced with a

database for data persistence.

4.1. Approaches

Table 4.1.: Approaches

Method

Description

Pure LLM

Asking the LLM with no further context or training for a
solution, solely based on the users prompt.

In context learning

The Prompts include 3 example prompts specific to the
database with answers.

RAG (Retrieval Augmented Genera-
tion)

The user prompt is embedded and subsequently com-
pared with the content in a vector database, such that rele-
vant context can be retrieved. This relevant context is then
passed alongside the user prompt to the LLM.

Finetuning

Continue the model’s training and adjusting the parame-
ters for a certain task.

4.1.1. Pure LLM

The LLM is asked to give a PostgreSQL solution for a Natural Language Question without further
context, though an instruction was added that the output should be a valid SQL query.

4.1.2. In context learning

The LLM is asked to give a PostgreSQL solution for a Natural Language Question, three examples

are given with the prompt.

4.1.3. RAG

The principle of storing relevant information about the database in a vector database. The con-
tent is stored as a document alongside metadata. In our case there were three different types of
RAG:
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+ RAG with MS SQL database
+ RAG with PostgreSQL database
« RAG with JSONL database

4.1.3.1. Database RAG

The following information is extracted from the database using the respective Information Schema
Tables: Tablenames, Columnnames, Column Types, Foreign Keys as well as Table Descriptions
which can be added by the programmers in PgAdmin or SQL Server Management Studio respec-
tively.

When implementing RAG, the question arises how this information should be stored in the
vector database. The following options were considered:

Option 1: Storing Each Table as a Document This approach organizes the schema at the table
level, making it easy to retrieve metadata for a single table, including all its columns and relation-
ships. It works well for simple schemas where queries are likely to focus on individual tables.
However, for complex queries involving multiple tables, it can be limiting, as the retrieved context
may lack detailed cross-table information.

Option 2: Storing Each Column as a Document This method provides the most granular level
of information by treating each column as a separate document. It allows for precise retrieval
of metadata, including data types, constraints, and foreign key relationships. While it generates
more documents, this approach excels in scenarios where queries are complex and span multiple
tables, as it maximizes the amount of relevant context that can be retrieved.

Option 3: Storing Foreign Key Relationships as Documents By isolating foreign key relation-
ships, this approach focuses specifically on table connections. It is particularly useful for un-
derstanding the relational structure of the database. However, it may fall short in providing the
complete context required for complex queries, as it omits details about individual columns out-
side the relationships.

Option 4: Storing the Entire Database Schema as a Single Document This approach captures
the schema as a whole, making it ideal for small databases or global schema overviews. While it
provides comprehensive information, it is less efficient for retrieval in large schemas, as queries
often only require parts of the schema. Retrieving and processing the entire schema can intro-
duce unnecessary overhead.

Evaluating the best option Given that your queries are complex, often span multiple tables,
and require as much detailed context as possible for accurate SQL generation, Option 2: Storing
Each Column as a Document is the most suitable approach. The reasons are as follows:

+ Fine-Grained Context Retrieval: With each column as a document, the RAG system can
retrieve specific details about the columns mentioned in the user's query. This level of
granularity ensures no critical context is missed.

« Multi-Table Queries: Complex queries often require information from multiple tables. Column-
level documents allow the system to piece together information from all relevant tables and
their columns, including relationships, data types, and constraints.

+ Comprehensive Context: More context typically leads to better LLM performance. By in-
cluding metadata for every column, the LLM has access to detailed schema knowledge,
improving its ability to generate accurate SQL queries.
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+ Scalability for Complex Schemas: In large databases with numerous tables and relation-
ships, column-level granularity ensures that the schema is well-represented without requir-
ing retrieval of unrelated data.

While other options have their strengths, **storing each column as a document (Option 2)**
provides the most flexibility and depth of context, especially for handling the complex, multi-table
queries typical in your use case. By retrieving detailed metadata for each column, the system can
generate precise and context-aware SQL queries, ensuring high accuracy and relevance.

4.1.3.2. JSONL RAG

The JSONL RAG serves as an additional input method for users, allowing them to directly in-
fluence the context available. Some databases like Pagila contain tablenames which are self-
explanatory. However, this is not always the case: DGDB for instance uses a lot of abbreviations
as well as domain-specific terms. In such cases, it is helpful to allow the users to add context.
This context must be mapping between what should be applied in SQL (e.g. SP in tablename)
and NL (e.g. Sharepoint is a Microsoft Product used to share information).

4.1.4. Fine Tuning

During the mid-term presentation we asked Mitra Purandare on her views of the potential of fine-
tuning. The discussion revealed that training data for the database would most likely be insuf-
ficient as compared to the vast amount of data that the LLM was trained on. Given the time-
constraints of this project it was therefore decided not to pursue this approach.
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5. Design and Architecture: Chatbot Application

This section explores the various design decisions and architectural considerations made during
the development of the chatbot application. It discusses the choice of technologies, frameworks,
and the overall structure of the system.

5.1. Technology Stack

The following section explores the choice of technologies and frameworks used in the project,
detailing the rationale behind each selection and how they contribute to the system'’s overall de-
sign and functionality.

5.1.1. OpenWebUI

OpenWebUI is a self-hosted WebUI which supports interacting with various LLM runners. Open-
WebUI provides a comprehensive set of features right out of the box as the following non-conclusive
list shows:

« Popular LLMs can be connected directly via the User Interface (RAG)

+ RAG for PDF files is supported straight out of the box via an inbuilt ChromaDB

+ Basic Usermanagement (admin vs non-admin roles with option for read-only chats)
+ Chathistory

+ Extensibility through pipelines

Ease of Development: Frontend must not be implemented, chat functionality is already existing
which greatly facilitates initial development as the developer must not bother with websockets
for chat interactivity. The functionality of the chat can be expanded via so called "pipelines” or "ac-
tions". Instead of directly connecting an LLM , one can choose to connect a pipeline. A pipeline
is just a method that receives the users input as a parameter and then returns the generated
response. This method is fully customizable and as such can be used to implement filters for se-
curity or RAG with a db of one’s own choice. However, in our testing of this functionality we could
not get OpenWebUI to recognize our pipeline file as a pipeline and it therefore never showed up
in the frontend. In such cases, one must then start debugging OpenWebUI's own code, which is
rather cumbersome. While OpenWebUI would facillitate and speed up intial development, this
initial progress could be lost further down the line for the aforementioned reasons.

Backend Flexibility The pipeline provides great flexibility in processing the user requests. Fur-
ther extensibility however is not intended and therefore difficult; for instance if one would like
to extend the functionality of the user management then this would need to be done by working
through the implementation of OpenWebUIs usermodel - something which the creators did not
intend. This could also lead to conflicts in the future, when the creators release updates to the
usermanagement.

Future Proof If OpenWebUIs code is changed beyond additional files, then in pullrequests from
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the forked repository one must resolve merge conflicts of code that was not written by our team.
This could prove difficult in the future. Futhermore, if OpenWebUIs development is halted, then
the software could be a security risk in the future.

Frontend Features Beyond its very comprehensive set of standard features, OpenWebUI also
provides so called "valves" for its pipelines, which are values that can be changed by the user
through the frontend. Their intent can be freely chosen by the developer. This allows the user
to enter api credentials for LLMs, connection strings, privacy settings and more, as they can be
accessed in the pipeline through environment variables.

Community and Support Documentation is lackluster and seems to serve more the purpose
of marketing rather than comprehensive technical documentation. It is also rather limited. The
community is small.

5.1.2. Django with Frontend Framework

Ease of Development Initial development is cumbersome, as one needs to write a lot of boiler-
plate code for the chat interactivity by using websockets.

Backend Flexibility Backend flexiblity is also guaranteed, as one is not restricted by concepts
such as piplines provided by OpenWebUI. Futhermore, Django provides built in features such as
user management, an admin panel and more. These are easily customizable and extensible. If
one does not want to use these options, then one can also implement their own usermanage-
ment.

Frontend Features Frontend can be fully customized - Settings can easily be added, returned data
can be represented in a html table or any other type of table, etc. Maximum flexibility is guaran-
teed. However, all features must be built from the ground up, which may involve some boilerplate
code.

Future Proof Django is the most used python backend framework to date and is therefore future
proof. As for the frontend framework - one can be chosen with the same quality attributes.
Community and Support Because of its popularity, Django has a large community and support.

5.1.3. Flask with Frontend Library

Ease of Development Same as with Django, with the difference being that Flask is more lightweight
and does not include as many built-in features as Django does. This lack of in-built funtionality
makes Flask the slightly worse option when it comes to ease of development.

Backend Flexibility Same as with Django, but additional plugins must be searched for by the de-
veloper themselves.

Frontend Features Frontend can be fully customized - Settings can easily be added, returned data
can be represented in a html table or any other type of table, etc. Maximum flexibility is guaran-
teed. However, all features must be built from the ground up, which may involve some boilerplate
code.

Future Proof Flask is the after Django the most used python backend framework. As for the fron-
tend framework - one can be chosen with the same quality attributes.

Community and Support Because of its popularity, Flask has a large community and support.
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Criteria Weight | Django w/ Frontend | Flask w/ Frontend OpenWebUI
Value | Weighted | Value | Weighted | Value | Weighted

Ease of De- 0.4 8 3.2 6 2.4 5 2.0

velopment

Backend 0.2 10 2.0 10 0.2 3 0.6

Flexibility

Frontend 0.1 9 0.9 9 0.9 7 0.7

Features

Future 0.2 10 2.0 10 2.0 3 0.6

Proof

Community 0.1 8 0.8 8 0.8 3 0.3

and  Sup-

port

Total 1.0 8.9 6.3 4.2

Table 5.1.: Evaluation Table with Subcolumns for Each Option

As the focus of this thesis lies on building a PoC and on exploring the capabilities of LLMs to
generate and understand SQL, the weight of ease of development is rather high.

In the context of choosing a backend framework

facing the need for simple setup, quick development and extensibility

we decided for Django

neglecting other on first sight simpler frameworks

to achieve sophistication and extensibility in the backend

accepting the initial complexity of getting familiar with Django templates and
the like.

5.1.4. Frontend Frameworks

As the goal of this project was to build a PoC, the frontend framework was not a priority and
should be kept as simple as possible. Furthermore, the backend should be incorporated into the
DGT Client in the near future. Since DGT primarily uses Blazor with WebAssembly, the frontend
will be switched out. Loose coupling of the frontend and backend is therefore a priority.

In the context of choosing frontend frameworks

facing the need to have a decoupled frontend and backend

we decided for a pure JS and CSS frontend

neglecting sophisticated design in the frontend

to achieve simplicity

accepting the need to write CSS manually instead of using bootstrap or similar.
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6. Implementation

Since the testing scripts were primarily used to evaluate the approaches we did not invest a lot
of time into decoupling the code.

This chapter therefore dives into the implementation of the main chatbot application. The
application was implemented using the Django framework.

6.1. Frontend

The frontend structure follows the structure proposed by Django. There are three main pages:
+ Chat page
* LLM Preferences page
+ Database Preferences page

To reduce duplicate code, styling which could be shared, was placed in the static directory
served by Django. The frontend communicates with the backend using a REST API, which leads
to desirable loose coupling. To allow for chat functionality, messages and responses are sent
through Django Channels (websockets). All other requests are made via the REST API.

6.2. Backend

We focused on clean, decoupled code in the backend. There are three main Django apps:
+ chat
« preferences

* core

6.2.1. chat

The chat app’s only purpose is to handle the chat functionality and the chat page. The user can
choose to use the explainer mode, which changes the instructions used in the backend to prompt
the LLM. If the user uses the generator mode, the query is generated and if possible executed.

6.2.2. preferences

The preferences app handles the LLM and database preferences. This includes their requests,
models needed as well as the views.
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6.2.3. core

The core app contains the main logic of the application, such as RAG and the pipeline. The code
is written modularly so if the pipeline (which is responsible for processing the user input) needs
an additional stage, it can easily be added there.

For RAG and LLMs we used abstract classes to essentially define an interface. This allows
programmers to easily add new LLM types or RAG models supporting new SQL dialects.

6.3. Models

The following diagram depicts the models used in the PoC chatbot application. Chatsettings are
used to store the users preferences of the chat window, such as selected database. Database-
Files are the files which the user uploads to the application to give further context on the con-
nected database. A note to future developers: When handling files one must be careful of the
type when retrieving or deleting; one might only delete the file record, not the actual file itself.

==gnumeration== Z=enumeraton==
limtype mode
OpenAl generator
Ollama explainer
I Y
LLMConfig ChatSettings
type: limtype mode: mode
name:sir 1= "1 selacted_database: DatabaseConfig
connection_string:sir selected_lim: LLMConfig
train_on_schema:bool DI 1

1
I

DatabaseFile DatabaseConfig

1— ==enuUmeraton==

. ) o«
database: DatabaseConfig type: dbtype » dbtype
file:file name-str MSSQL
train bool connection_string:sir Postgres

train_on_schema:bool train_on_schema: bool

Figure 6.1.: Diagram depicting the objects used in the application

6.4. RAG

Due to the high importance of RAG we attempt to explain it here a bit further.
The following graphic depicts how the application uses RAG to generate SQL queries.
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Figure 6.2.: Diagram depicting the flow of the request to the RAG

When the user prompts the chatbot with a question, the pipeline processes the input. The
users prompt is embedded and the RAG model retrieves the 10 closest embeddings (KNN with
K =10). The content of the retrieved embeddings is then passed as context to the LLM, and the
LLM output returned to the user. The attentive reader might notice that embeddings are inserted
twice; once with the NL part embedded, and once with the SQL part embedded. This allows to
retrieve the most relevant context for both usecases; generating queries and explaining queries.

6.5. Limitations

As of right now, the application only supports a single user, as user settings are only kept for one
entity and database connections, as well as LLM settings, are not directly linked to a user. Due
to the lack of time, usermanagement has not been implemented.
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7. Test

7.1. Test Metrics

7.1.1. Correct PostgreSQL Syntax

The goal of our application is valid SQL output. We used a parser to check the syntax. Every
output was checked whether it had errors. The result of this test is the average for each testcase
for aresponse to have an error or not. For PostgreSQL pglast was used. For T-SQL no parser was
found.

7.1.2. Similarity to target SQL

We compared the response of the LLM to the expected SQL statement by calculating the sim-
ilarity, by embedding the answers as vectors and calculating the cosine distance. This helped
to compare the different LLMs and approaches. While raising the problem that some responses
though more similar to the solution are not valid SQL. The metric was still considered usefull for
comparison but can not show the quality of a response by itself.

7.1.3. Executability

Executability includes correct table and column names as well as validity and the intended use.
The Responses were executed on the database and the retrieved data was compared to the ex-
pected data from the example solution. As pure LLM and In-context learning have no to almost
no knowledge of the correct table und column names this metric was mostly to measure the
RAG's performance and to compare it to vanna.ai.

7.1.4. Reliability

How similar is the Response to the same question. We asked the same question 5 times and cal-
culated the similarity, of the first output to the output when asked again. output 1 was compared
to output 2 output 2 was compared to output 3 and so on. We calculated the average similarity
of these four results.

7.1.5. Performance

The approaches were tested in parallel on different hardware to increase efficiency. Therefore
performance was not measured. The tests focused on the quality of the output instead of the
velocity of the LLM’s. There are already a lot of measurements online to compare different LLM’s
and it was not considered a crucial part for this thesis.

7.2. Testsets

The Testsets were divided into two levels, basic and advanced to get a more fine grained view,
what each approach can cope with. Each Testcase was a json object containing an "SQL" string
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and an "Natural Language (NL)" string.

7.2.1. PostgreSQL

Around 40 NL-SQL pairs were taken from the Database course. They had to be edited for the
natural language to be more specific. 70 more were generated using ChatGPT. Those testcases
were devided into 53 basic and 53 advanced testcases. The number was a result of choosing
the best testcases and eliminating very similar ones.

7.2.2. T-SQL

Since DGDB contains fewer tables with actual data and more tables which are required to run and
manage the DGT Client (such as metatables about the state of Scanners), the set of queries with
human-understandable output is rather limited. Therefore the advanced testset only contains 30
queries, which do include information a user might inquire about (e.g. retrieving the total amount
of users, combining Sharepoint and Fileshare users). The basic testset of DGDB therefore con-
tains 50 queries, while the advanced set contains 30 queries. The queries were generated by
hand by one of the authors of this paper.

7.3. Tested Approaches

7.3.1. Pure LLM

For comparison the LLM's response to pure specific directions, with no examples given was
tested. A lot of prompt engineering was needed, to get useful responses. The following prompt
was used along with the database type passed as PostgreSQL or MS SQL:

"You are a Translator. You Translate Natural Language into valid {dbtypel} code." +
f"You only answer in valid {dbtype} code. Your answer is directly fed to the database.
Only emit code, emit valid {dbtype}, the answer should be 100\% {dbtypel}"+
f"remove all notes, remove all assumptions , remove all explanations from your answer.
The whole answer has to be valid {dbtype} code.

Only use the examples and context provided here as help,
ONLY add the information that the user asked for.
The context is as follows: No context provided.

7.3.2. In context learning

The next step from Pure LLM was in context learning where examples are provided as part of
the prompt. Three examples that where not part of the test sets were chosen. The examples
were the same for the basic and the advanced test sets. The Prompt was the same but with the
following context added for PostgreSQL:

"’Here are 3 examples: ’ +
’userprompt "Count the number of rentals made by each customer,
sorted by the highest number of rentals",
response "SELECT customer\_id, COUNT(x*) AS rental\_count FROM
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rental GROUP BY customer\_id ORDER BY rental\_count DESC" °

’userprompt "List all categories with the count of films in each,
sorted by the highest number of films",
response "SELECT category.name, COUNT(film\_category.film\_id)
AS film\_count FROM category JOIN film\_category
ON category.category\_id = film\_category.category\_id
GROUP BY category.name ORDER BY film\_count DESC" °’

’userprompt "Calculate the duration of each rental
in days for returned rentals",

response "SELECT rental\_date, return\_date,
EXTRACT (DAY FROM return\_date - rental\_date) AS rental\_duration
FROM rental WHERE return\_date IS NOT NULL"

For T-SQL the same prompt was used with the following context:

’Here are 3 examples: °’
’userprompt "Give me all azure users which
do not have a Security Identifier",
response '"select * from AzureSecEntity where SID is null"’

’userprompt "I want to know the total number of olap cubes
which do not include sharepoint versions",
response "select count(*) from cube where IncludeSPVersions = 0;"’

’userprompt "Give me all the confluence pages
which have more than 5 files attached",
response '"select * from ConfluencePage where FileCount > 5;"’

7.3.3. Vanna.ai

For comparison vanna.ai was tested using all four LLMs except for the gpt 40-mini model. It
was connected to the PostgreSQL Test-Database and trained with the database schema as well
as the same three examples, we used for in context learning. Since DGDB contains confidential
information, Vanna.ai was only tested with the PostgreSQL database.

7.3.4. RAG / our application

The Heart of this SA/ BA was also tested, using RAG to translate NL to SQL. The RAG application
is more thoroughly described in section RAG.

7.4. Testing application

Using python scripts for each Testing criteria, the results are summarized in a table to compare
them. For each of the two test sets and each of the four approaches the tests were run 10 times,
to then use the average of the results. The sample size is rather small due to the time it took
to get the samples. 10 samples per approach per testcase was the best trade off to get more
objective results in a short time.
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8. Result

This chapter dives into the results found by our testing script. Results were averaged over 10
testruns. Finally, the results were grouped by LLM, Database and testset (basic vs advanced)
The following tables depict these results. To give readers immediate context, the highest value
achieved for the DGDB is highlighted in orange, the highest value for the OST is highlighted in
yellow, and the highest value overall is highlighted in green.

8.1. Similarity

The similarity metric compares the output of the LLM with the sample solution provided by the
testset. As a similarity metric the cosine function was chosen, as it takes the direction of the em-
bedding vector into account. It is therefore the best possible choice for comparing embeddings.
The value of the similarity is therefore in the range of [-1;1] where 1 corresponds to equality.

8.1.1. Pure LLM

Similarity (%)

LLM Data- basic advanced
base
avg max avg max
Mistral-7b DGDB | 0.52 0.54 0.59 0.60
Mistral-7b OST 0.92 0.93 0.75 0.77
phi3:3.8 DGDB | 0.39 0.56 0.41 0.58
phi3:3.8 OST 0.86 0.89 0.53 0.74
llama3.2 DGDB | 0.49 0.52 0.61 0.63
llama3.2 OST 0.94 0.94 0.78 0.79
phi3:14 DGDB | 0.59 0.63 0.60 0.62
phi3:14 OST 0.88 0.89 0.76 0.77
gpt-4o-mini: | DGDB | 0.57 0.54 0.63 0.66
gpt-4o0-mini: | OST 0.94 0.94 0.80 0.81

As one can see based on the highlighted numbers, the highest similarities were achieved on the
OST (Pagila) database. This is rather obvious, as Pagila uses tablenames which are not domain
specific, such as "Users" for users, whereas the DGDB uses the table "SecEntity" (i.e. Security
Entities) among others to store users. Since the Pure LLM approach has no context, it has no
chance of ever guessing the tablename SecEntity correctly.
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8.1.2. In Context Learning

Similarity (%)
LLM Data- basic advanced
base

avg max avg max
Mistral-7b DGDB | 0.60 0.62 0.65 0.67
Mistral-7b OST 0.89 0.90 0.77 0.78
phi3:3.8 DGDB | 0.43 0.61 0.38 0.64
phi3:3.8 OSsT 0.54 0.89 0.46 0.76
llama3.2 DGDB | 0.64 0.67 0.65 0.67
llama3.2 OST 0.95 0.97 0.80 0.81
phi3:14 DGDB | 0.66 0.67 0.65 0.67
phi3:14 OST 0.90 0.91 0.78 0.79
gpt-4o-mini: | DGDB | 0.62 0.64 0.67 0.68
gpt-4o-mini: | OST 0.95 0.96 0.78 0.80

Unsurprisingly the in context learning approach performs slightly better, since some tablenames
are provided as context. Since only 3 example solutions are provided to the LLM, the results are
only marginally better.

8.1.3. RAG

Similarity (%)
LLM Data- basic advanced
base

avg max avg max
Mistral-7b DGDB | 0.47 0.48 0.56 0.58
Mistral-7b OST 0.68 0.70 0.65 0.66
phi3:3.8 DGDB | 0.28 0.54 0.27 0.57
phi3:3.8 OST 0.39 0.76 0.33 0.68
llama3.2 DGDB | 0.53 0.55 0.61 0.63
llama3.2 OST 0.79 0.81 0.70 0.72
phi3:14 DGDB | 0.55 0.61 0.60 0.62
phi3:14 OST 0.80 0.81 0.71 0.72
gpt-4o-mini: | DGDB | 0.64 0.71 0.63 0.63
gpt-4o-mini: | OST 0.88 0.89 0.76 0.77

Surprisingly RAG seems to perform comparibly to the other approaches, when only taking the
similarity into account. This is because of model hallucinations; even if the model is instructed
to only add necessary information it often injects more information than necessary, because it
is provided in the context. One might ask why the similarity metrics of purellm is similar for RAG.
While pure LLM must completely guess tablenames, for some tablenames the guess is quite
similar. E.g. instead of accessing the table DoMailFolder, it tries to access MailFolder, which is

incorrect but similar enough as to not affect similarity significantly.
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8.2. Reliability

Reliability only depends on the LLM as all inputs are the same, the results were grouped per LLM
and the average taken. The low result of phi3:3.8 emphasizes the model’s hallucinations. Since
it is probably the smallest model in this test, this is no surprise.

LLM Reliability (%) Rank (1 = best)
Mistral-7b-v.01 0.86 4
phi3:3.8 0.26 5
llama3.2 0.97 1
phi3:14 0.91 3
gpt-4o0-mini: 0.93 2

8.3. Executability

Since similarity metrics alone have been proven to be insufficient in distinguishing the approaches,
we also took executability into consideration. The output of the LLM has been run on the appro-
priate database i.e. Pagila or DGDB. Furthermore, for each output it was calculated how many
columns appear in the sample solution. E.g. if the resultset contained the columns "firstname"
and "lastname”, and the sample solution was "select firstname, lastname from users;" a perfect
column identification took place. This metric however must be taken with a grain of salt, as some
sample queries also included "select * from users;" - since no columns were explicitly asked for,

the columns identified would be 0.

8.3.1. PureLLM

columns correctly identified (%)
LLM Data- basic advanced

base
avg max avg max

queries executable on database (%)
basic advanced

avg max avg max

Mistral-7b DGDB | 0.00 0.05 0.00 0.00

0.10 0.17 0.05 0.05

Mistral-7b OST 0.50 0.63 0.00 0.00

0.06 0.08 0.00 0.00

phi3:3.8 DGDB | 0.00 0.00 0.00 0.00 0.04 0.04 0.05 0.05
phi3:3.8 OST 0.72 1.0 0.00 0.00 0.07 0.1 0.02 0.02
llama3.2 DGDB | 0.34 1.0 0.73 1.0 0.08 0.20 0.08 0.15
llama3.2 OST 0.63 0.71 0.37 1.0 0.21 0.23 0.03 0.06
phi3:14 DGDB | 0.04 0.34 0.26 0.50 0.06 0.10 0.06 0.10
phi3:14 OST 0.67 1.0 0.16 1.0 0.02 0.02 0.03 0.06

gpt-4o-mini: | DGDB | 0.17 0.40 0.28 0.50

0.14 0.20 0.08 0.15

gpt-4o-mini: | OST 0.53 0.60 0.10 0.25

0.1 0.13 0.05 0.08
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8.3.2. In context learning

columns correctly identified (%) | queries executable on database (%)
LLM Data- basic advanced basic advanced
base

avg max avg max avg max avg max
Mistral-7b DGDB | 0.40 1.0 0.25 0.50 0.04 0.07 0.05 0.05
Mistral-7b OST 0.59 0.68 0.41 0.50 0.50 0.53 0.16 0.19
phi3:3.8 DGDB | 0.70 1.0 0.00 0.00 0.05 0.07 0.00 0.00
phi3:3.8 OST 0.50 0.58 0.50 1.0 0.29 0.32 0.05 0.08
llama3.2 DGDB | 0.83 1.0 0.48 1.0 0.08 0.13 0.05 0.05
llama3.2 OST 0.61 0.66 0.53 0.63 0.71 0.77 0.36 0.43
phi3:14 DGDB | 0.86 1.0 0.00 0.00 0.07 0.10 0.00 0.00
phi3:14 OST 0.60 0.67 0.42 0.58 0.39 0.49 0.12 0.21
gpt-4o-mini: | DGDB | 0.40 0.60 0.44 0.50 0.08 0.13 0.08 0.13
gpt-4o-mini: | OST 0.69 0.71 0.46 0.55 0.71 0.77 0.59 0.68

As one can see in the above two tables, execution metrics suffer for pure LLM and in context
learning, since a similar enough tablename is no longer sufficient. The tablename must be en-
tirely correct, or the query cannot be executed.

8.3.3. Vanna.ai
columns correctly identified (%) queries executable on database (%)
LLM Data- basic advanced basic advanced
base

avg max avg max avg max avg max
Mistral-7b OST 0.59 0.79 0.42 0.80 0.27 0.32 0.1 0.18
phi3:3.8 OST 0.43 0.55 0.28 0.67 0.17 0.23 0.03 0.04
llama3.2 OST 0.55 0.61 0.50 0.67 0.49 0.52 0.21 0.28
phi3:14 OST 0.46 0.55 0.25 0.5 0.32 0.38 0.09 0.13

Since Vanna.ai is trained on the database, it is able to generate much more accurate queries in
comparison to in context learning and pure LLM.
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8.3.4. RAG

columns correctly identified (%) | queries executable on database (%)
LLM Data- basic advanced basic advanced

base
avg max avg max avg max avg max

Mistral-7b DGDB | 0.25 0.63 0.05 0.33 0.05 0.07 0.09 0.15

Mistral-7b OST 0.66 0.73 0.51 0.88 0.25 0.30 0.06 0.09

phi3:3.8 DGDB | 0.29 0.5 0.02 0.08 0.13 0.20 0.1 0.2

phi3:3.8 OST 0.56 0.78 0.43 0.7 0.17 0.21 0.08 0.09

llama3.2 DGDB | 0.41 0.53 0.41 0.57 0.38 0.47 0.34 0.45

llama3.2 OST 0.64 0.68 0.45 0.61 0.62 0.64 0.30 0.38

phi3:14 DGDB | 0.30 0.57 0.09 0.33 0.23 0.40 0.25 0.35

phi3:14 OST 0.62 0.69 0.42 0.50 0.40 0.45 0.12 0.19

gpt-4o-mini: | DGDB | 0.49 0.58 0.1 0.16 0.71 0.80 0.80 0.90

gpt-4o-mini: | OST 0.70 0.73 0.50 0.55 0.62 0.66 0.45 0.55

As one can clearly see, our RAG performs best in terms of executability, even outperforming
vanna.ai. Being able to retrieve the most similar information from the database, gives it an agility
that in context learning and pure LLM lack.
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9. Further Development

This chapter explores potential avenues for the further development of the project, highlighting
both functional enhancements and methodological approaches to continue evolving the system.
The importance of further development to stakeholders is discussed, along with guidelines for
documenting future work and evaluating its impact on the project.

9.1. Challenges of Further Development

Challenges of further development include the following:

+ Security: While blacklisting tables and columns may provide some security, more granular
security will be challenging to be implemented. E.g. some endusers may be allowed to
access information about some movies, but not all. This use case will become relevant for
DGT in the future.

+ Context Scope: One of the challenges identified in this project is the balance between pro-
viding enough context, while not providing too much. Too much context leads to hallucina-
tions, while too little leads to poor performance of executability metrics.

9.2. Potential Functional Enhancements

The following functional and non-functional requirements could be addressed in future iterations
of the project:
* New Features or Functionalities:

- Implementing user management to support multiple users with different roles and
permissions.

- Adding support for more SQL dialects beyond PostgreSQL and MS SQL.

+ Improvements or Refinements to Existing Features:

- Improving the accuracy of SQL query generation by refining the RAG approaches and
implementing alternative approaches revealed in the research, such as structured out-
put.

- Enhancing the error handling and feedback mechanisms to provide more informative
responses to users.

9.3. Methodological Approach to Further Development
Future development should be approached with a focus on clean, change-friendly design. This
includes:

+ Conducting regular code reviews to maintain code quality.

+ Implementing continuous integration and continuous deployment (CI/CD) pipelines to stream-
line the development process.
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9.4. Importance of Further Development to Stakeholders

Further development is crucial from a stakeholder perspective for several reasons:

+ Making databases accessible: By improving the existing application, databases are made
more accessible to a broader audience, including non-technical users.

+ Functional Expansion: Adding new features and functionalities can enhance the system'’s
value to users and stakeholders.

* Introduce more metrics: While the metrics introduced in this project were sufficient to eval-
uate the approaches, more fine-grained metrics could provide deeper insights into the sys-
tem'’s performance and how it could be further improved.

9.5. Guidelines for Documenting Further Development

Documentation should be kept short and concise, as to avoid a large amount of documentation
which is quickly outdated. Further development should take advantage of the decoupled nature
of the codebase and continue to ensure clean, modular code which in turn reduces the need for
extensive documentation.

9.6. Evaluation and Timing

Further development may take different paths for DGT and OST due to their different goals. While
security may be of relevance to DGT, increasing the quantifiability of the performance of system
may be more important to OST. This is due to the fact that OST represents academic interests,
while DGT represents commercial interests.

The timing of further development should also take releases of new LLMs and general ad-
vances in the Al space into account.
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10. User Documentation

10.1. Testscript

Since the testing script is not designed for endusers in mind, the instructions will be ommitted
here and can instead be found in the README of the testing script.

10.2. Chatbot Application

This section provides a user guide for the Chatbot application developed in this project. The Chat-
bot is designed to help users query SQL databases using natural language inputs. The application
is accessible via a web interface and provides a user-friendly environment for interacting with the
database.

10.2.1. Getting started
Navigate to

\chatdjango\ChatApp

and follow the steps described in the README in the same directory. This starts the application.

10.2.2. DB Preferences

From the chat page, navigate to the by db preferences by pressing the DB Connections button.
Here you can add new database connections. Before training, make sure the connection works
by pressing the Test Connection button.

You can upload multiple jsonl files with SQL to NL mappings, providing further context for the
database. To enable rag training, make sure the toggles are enabled. Train on Schema leverages
the direct connection to the database to extract metadata about its tables.

They must be in the following format (json objects as lines):

{"SQL": "SELECT * FROM table", "NL": "Get all entries from table"}

Make sure to hit the save button before clicking the Train button. While training is in progress,
a spinner will be displayed.

Fiona Pichler, Benjamin Kern Page 48 of 67



OST SW Project Documentation
Eastern Switzerland Text-to-SQL for DataGovernance Technologies and Education

University of Applied Sciences

Database Preferences

Database 15
Name: [Pagila )

Type: [Postgres v| ( Test Connection

Connection String: | postgresql:/postgres:passw
Upload Files: | Choose File | No file chosen

@ Train on Schema

Train ) ( Delete Save )

Database 16

Name: DGDB ]

Type: [MSSQL v| (  Test Connection

Connection String: | DRIVER=ODBC Driver 17 f

Upload Files: | Choose File | No file chosen

@D Train on Schema

" -
Train | Delete | Save )

database_files/dgdb.jsonl \\/ Delete )

( Add New Database )

Figure 10.1.: DB Preferences page

10.2.3. LLM Preferences
From the chat page, navigate to the by LLM preferences by pressing the LLM Connections button.
Two types are currently supported:

+ Locally hosted Ollama models

+ OpenAl models

LLM Preferences

LLM 2

Name: | gpt-4o0-mini
Type: OpenAl v

API Key: [sk-proj-mLx2dhbDrVgnefc

Save Delete

( Add New LLM

Figure 10.2.: LLM Preferences page

Make sure that the modelname corresponds to the actual name of the model, like gpt-4o0-mini.
For OpenAl, an api key is required.

10.2.4. Chat page

Choose one of the databases and LLMs you have set up; use the dropdowns to select them.

On the main chatpage you can also choose the mode; either explainer or generator. Paste a
query in the input field and press enter. While the chatbot is processing your request, a spinner
will be displayed.
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DB C i LLMC

Mode: Database: (Pagila VJ LLM: [gpt-40-mini V]

SELECT category_id, COUNT(film_id) AS film_count FROM film_category GROUP BY category_id ORDER BY
film_count DESC LIMIT 1;

This SQL query is designed to find out which film category contains the most films in the *film_category™ table.
Let’s break it down step-by-step: 1. **SELECT category_id, COUNT(film_id) AS film_count**: - This part of the
query means we want to select two pieces of information: - “category_id": the ID of the category. -
"COUNT((film_id)": the number of films that belong to each category (the total count of film IDs for each category).
We are naming this count as “film_count™. 2. **FROM film_category**: - This indicates that we are retrieving data
from the “film_category’ table. 3. **GROUP BY category_id**: - This groups the results by "category_id". It means
that for each unique category ID, all the film IDs under that category will be counted together. 4. **ORDER BY
film_count DESC**; - After counting the films in each category, we want to sort the categories by the number of
films they contain. 'DESC" means "descending," so we will start with the category that has the most films. 5.
**LIMIT 1**: - This limits the results to just one record. In this case, we only want the category with the highest
count of films. Putting it all together, the query is asking for the category ID that has the highest number of films,
along with the count of those films. The result will give you just one category ID and how many films are in that
category.

[Type your message here.. ] [ Ask j

Figure 10.3.: Chat page in explainer mode

To generate queries, use the mode generator.
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DB C i LLM C:

Mode: Database: (Pagila VJ LLM: Cgpt—4o—mini VJ

10 v entries per page Search:

category_id 4 film_count

15 74

Showing 1 to 1 of 1 entry 1

give me the category with the most films

SELECT category_id, COUNT(film_id) AS film_count FROM film_category GROUP BY category_id ORDER BY
film_count DESC LIMIT 1;

e your message here.. Ask
Type y g

Figure 10.4.: Chat page in generator mode with successful query

If the query cannot be executed, the result will be displayed in red. In the case below the query
could not be executed, as the wrong database was selected (while pagila contains an actor table,
DGDB does not).
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DB Connections | | LLM Connections

—_—— p N
Mode: ( Generator v)  Database: ( DGDB v) LLM: ( gpt-do-mini v)

10 v entries per page Search

Hi User! ¢

If the query is generated successfully, you will see the output here

Showing 1o 1 of 1 entry 1

give me all actors

SELECT DISTINCT actor_name FROM actors;

Type your message here. ‘ { Ask
N ) J

Figure 10.5.: Chat page in generator mode with failed query
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O OST Projectmanagement and Projectmonitoring

1. General Considerations

This chapter addresses the foundational elements that underpin the project’s execution, focusing
on standards compliance and configuration management practices.

1.1. Standards

Throughout the project, various standards were adhered to in order to ensure quality and inter-
operability. These standards included coding standards and data exchange formats.

+ Coding Standards: The project followed PEP8 for Python coding to maintain readability and
consistency across the codebase.

+ Data Exchange Formats: JSONL was used as the primary data format for storing training
data. Furthermore, JSON was used for API communication in the PoC, ensuring compati-
bility and ease of integration.

1.2. Configuration Management

Configuration management strategies employed in the project included the use of various devel-
opment tools and software to support the development process.

1.2.1. Development Tools

Several development tools were used throughout the project, each playing a specific role in the
development lifecycle.

+ Operating Systems: Since MS SQL server only runs on Windows, it was decided to only
employ Windows hardware.

+ Azure DevOps: Utilized for issue management, sprint planning, version control, release
management, pull requests and branching strategies and deployment (latex pipeline). For
the PoC no such pipeline could be established, as this would have required tight integration
of DGT infrastructure with OST, which was not possible due to security and data privacy
concerns.

+ Pylint: Used to ensure adherence to coding standards and identify potential issues in the
codebase.

+ LaTeX: Employed for creating the project documentation, ensuring a professional and struc-
tured format.
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1.2.2. Deployed Software

The project’s infrastructure included various software components:

+ Databases: MS SQL Server for hosting DGDB. PostgreSQL was used for Pagila. ChromaDB
to store the embeddings of RAG. SQLite as the database to store settings and configuration
of the PoC.

+ Server Software: Ollama was used to allow easy hosting of open source models. The PoC
also required Visual Studio C++ Build Tools to be installed on the system, in order for Chro-
maDB to work.

+ Third-Party Services: Integrated various libraries and services to enhance functionality and
performance, including ChromaDBs embedding functions.
1.2.3. Software Versioning and Dependencies

A structured approach was taken to manage software versioning and dependencies:

+ Version Control: Git was used for version control, with a clear branching strategy to manage
development cycles.

+ Dependency Management: Managed using virtual environments Venv as well as Miniconda
requirements files in Python, ensuring consistent environments across different stages of
development.

1.2.4. Software Quality

To ensure software quality, Pylint was used to monitor for code quality issues. This setup pro-
vided immediate feedback, highlighting potential issues early in the development process and
maintaining high standards throughout the project.

1.2.5. Git Workflow and Branching Strategy

A Pull Request workflow was employed to maintain code quality and ensure the stability of the
main branch. Key aspects included:

1.2.5.1. Pull Requests and Branch Protection

+ Pull Request Review: Every PR required approval from a designated reviewer before merg-
ing to the main branch.

+ Main Branch Protection: The main branch was protected to ensure that only approved
changes were merged, maintaining the integrity of the codebase.
1.2.5.2. Branching Strategy

The branching strategy facilitated collaboration and organized development:

+ Documentation Repository: Branches were created directly from the main branch.

+ Code Repository: Feature branches were created from the main branch and further divided
into branches associated with specific backlog items.
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1.2.5.3. Naming Strategy

Consistent naming conventions were maintained to ensure clarity and organization:

+ Feature Branches: Prefixed with "/feat".

+ Bug Branches: Prefixed with "/bug".

This naming convention helped organize branches in Azure DevOps Overview, creating a hier-
archical folder structure.

Example Naming Convention Branch names typically adhered to the following format:
"/feat/FeatureNumber/BacklogItemNumber-Desc"

This structured approach streamlined development processes and enhanced visibility across
the project.
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2. Project Management

This chapter outlines the project management methodologies and planning strategies employed
throughout the project lifecycle, ensuring the structured progression from inception to transition.

2.1. Approach

Our project management approach is rooted in the Scrum framework, adapted to meet the unique
challenges and requirements of our project. This agile methodology facilitated rapid iterations,
enabling us to respond to changes efficiently. Bi-weekly sprints were the cornerstone of our
process, with each sprint leading to a potentially shippable product increment.

2.2. Resources

The project resources were the following:
+ Benjamin Kern, 360 hours
+ Fiona Pichler, 240 hours
+ Cloud: Azure DevOps

+ Test data: Pagila and DGDB databases

2.3. Scheduling

The project was scheduled regarding six milestones, with the start date on 19.09.2024 and the
end date on 10.01.2025. The Milestones were always scheduled at the end of a sprint. The
scheduling strategy was structured as follows using the Rational Unified Process model phases:

+ Inception: Approximate vision, defining the scope, and rough estimates for efforts.

+ Elaboration: Identification of most requirements, iterative implementation of core architec-
ture, resolution of high risks, and more realistic estimates for efforts.

+ Construction: Iterative implementation of functionality, resolution of lower risks, and prepa-
ration for deployment.

+ Transition: Beta tests, deployment, and tying up any loose ends. In regard of Christmas and
New Years holidays this phase is schedules for longer than usual.
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Milestone | Date Description Deliverables

MO 06.10.2024 | Project Kickoff Dev Infrastructure, Project Goal De-
fined, Long term plan

M1 20.10.2024 | Project Governance | Initial requirements (NFR and FR),
Riskmanagement

M2 03.11.2024 | Data Sources Testdata bases established

M3 17.11.2024 | Architecture Tools, Libraries, Frameworks, APIs
evaluated, Core Architecture estab-
lished.

M4 15.12.2024 | MVP MVP implemented

M5 10.01.2025 | Project End Documentation finalized, Deliver-
ables packaged and delivered

2.4. Milestones

2.4.1. Timeline Diagram

2024 2025

Sep Oct Nov Dec Jan

Project Phases —
Inception | [
Elaboration L
Construction ]

Transition |

-§
I

Figure 2.1.: Project Timeline

2.5. Process and Meetings

Project meetings were an integral part of the Scrum process, with sprint planning sessions every
two weeks.

2.6. Organization and Roles
Due to the higher expected workload of Benjamin, it was decided that Benjamin would be re-

sponsible for the implementation of the PoC (chatbot application), while Fiona would focus on
the initial testing scripts. The testing scripts were then finished in a joint effort, after being further

Fiona Pichler, Benjamin Kern Page 58 of 67



O OST Projectmanagement and Projectmonitoring

Eastern Switzerland Text-to-SQL for DataGovernance Technologies and Education

University of Applied Sciences

extended by Benjamin. Fiona was tasked with generating the queries for Pagila, while Benjamin
was responsible for the DGDB.

2.7. Risk Management

Risk management is vital for project success, ensuring potential issues are identified, assessed,
and mitigated. Below is an overview of identified risks, their descriptions, proposed mitigation
strategies, and current status. The risk assessment matrix illustrates the impact and likelihood
of each risk before and after implementing mitigation measures.

Nr. Risk Description Mitigation Status
R1 Self-hosting LLMs requires pow- | Request servers from OST and | Resolved
erful hardware DGT (AzureCloud) with dedi-
cated GPUs.
R2 Data privacy concerns of DGT Use DGT servers for hosting crit- | Resolved
ical data - never transfer the
DGDB to OST servers

R3 Chosen approaches not per- | Implement modular design for | Resolved
forming as well as expected, | easy replacement slow compo-

thus needing replacement nents
R4 lliness of team members Ensure regular work status up- | Resolved
dates in issue management sys-
tem

Table 2.1.: Risk Assessment and Mitigation

Impact | Very Unlikely | Unlikely | Possible | Probable | Very Likely
Critical
Serious
Moderate
Minor
Negligible

Table 2.2.: Project risk assessment matrix before mitigation

Impact | Very Unlikely | Unlikely | Possible | Probable | Very Likely
Critical
Serious
Moderate
Minor
Negligible R4 R1 R2

Table 2.3.: Project risk assessment matrix after mitigation
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Despite the initial concerns, only a single risk materialized during the project, since OST was
taking down the powerful dedicated GPU server (R1). We were however able to run the tests
before the server was taken down, therefore rendering the requested servers from DGT unneces-
sary. It was nevertheless a wise foresight.
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3. Project Monitoring

3.1. Timetracking

Time tracking was conducted to ensure efficient use of resources and to maintain an accurate
record of the hours spent on various tasks throughout the project. The pie chart below illustrates
the distribution of time across different project activities such as coding, documentation, meet-
ings, research, and other miscellaneous tasks. This detailed tracking helped in identifying areas
where more effort was needed and ensured appropriate workload distribution.

3.1.1. Benjamin

Since Benjamin worked on the testing script and implemented the PoC by himself, the time spent
coding makes up the majority of his time.

Time Spent Per Category

Admin 7
Conception 18
Documentation 89
Infrastructure 18
Planning 9
Research 16
Code 200
Testing/Testdata

=]

Meetings 35.5
Total 357
u Admin = Conception m Documentation m Infrastructure m Planning = Research m Code m Testing/Testdata m Meetings
Figure 3.1.: Timetracking Chart for Benjamin
3.1.2. Fiona

The following graphic depicts the time spent by Fiona on the project, also distinguising the time
spent by different categories.
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Admin 0 Time Spent Per Category
Conception 115
Documentation 16.5
Infrastructure 8
Planning 9
Research 44
Code 77
Testing/Testdata 37
Meetings 34
total 237
= Admin = Conception = Documentation = Infrastructure = Planning = Research = Code = Testing/Testdata = Meetings
Figure 3.2.: Timetracking Chart for Fiona
3.1.3. Total

The following chart depicts the total time spent on the project by both team members. Since this
has been the bachelor thesis of Benjamin, his expected workkload was 12 ECTS points, while
Fiona's workload was 8 ECTS points resulting in aproximately 360 and 240 hours of work respec-
tively.

Fiona Benjamin Total Time Spent
237 357

m Fiona = Benjamin

Figure 3.3.: Timetracking Chart for Total
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3.2. Project Management

Two-week sprints were used for project management, following the Agile methodology. This
approach allowed for regular assessment of progress and quick adjustments to the project plan.
Each sprint began with a planning meeting to outline tasks and set goals, followed by standups
to discuss progress and address any impediments. The burndown chart below illustrates the
progress of the project across multiple sprints. The chart shows the total scope of work and the
amount of work completed over time. It should however be taken with a grain of salt, as often
times the amount of work was underestimated. Furthermore, some issues were not accounted
forin the burndown chart, as we pivoted when new feedback was introduced by the stakeholders.
Since the burndown was automatically generated by Azure Devops, it was not possible to adjust
it to the new circumstances.

Burndown Effort
9/22/2024 - 12/15/2024 Remaining

Completed ‘] 00% Average _‘] 2 Items not t 0 Total Scope 1 30
Increase

burndown estimated

=

9/22/2024 Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6

B Remainin g B Completed — Burndown — Total Scope

Figure 3.4.: Burndown Chart
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Acronyms

Al Artificial Intelligence. 2,9, 10, 15,18

DGDB DataGovernance Technologies Database. 7, 14, 27, 35, 43-45, 47
DGT DataGovernance Technologies. 2, 3, 5, 14, 38, 50, 51

LLM large language model. v, 2, 3, 5-7,9, 10, 13-16, 18, 30, 33, 36—-47, 51, 53

NL Natural Language. 3, 43, 44

NL-to-SQL Natural Language to Structured Query Language. 2,15
OST Eastern Switzerland University of Applied Sciences. 2-5, 45, 51
PoC proof of concept. v, 2-5, 8, 10, 11, 14, 15, 18, 38, 40

RAG Retrieval Augmented Generation. 15, 18, 33, 34, 36, 40—-42, 44, 46, 49, 50
RAG User Interface. 36

SQL Structured Query Language. 2-5, 14-16, 18, 26, 28-30, 34, 40-42, 44, 50, 52
SUD System under Development. 5, 25, 27, 28, 30, 31
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Glossary

Azure DevOps Azure DevOps is a set of development tools used for software development. It is
a cloud-based service that provides version control, reporting, requirements management,
project management, automated builds, testing and release management capabilities.. 58,
60

ChromaDB ChromabDB is a database that stores the embeddings of RAG.. 59

Git Git is a distributed version-control system for tracking changes in source code during soft-
ware development. It is designed for coordinating work among programmers, but it can be
used to track changes in any set of files.. 59

LaTeX LaTeX is a high-quality typesetting system; it includes features designed for the produc-
tion of technical and scientific documentation. LaTeX is the de facto standard for the com-
munication and publication of scientific documents.. 58

Miniconda Miniconda is a free minimal installer for conda. It is a small, bootstrap version of
Anaconda that includes only conda, Python, the packages they depend on, and a small
number of other useful packages, including pip, zlib and a few others.. 59

Ollama Ollama is a tool that allows easy hosting of open source models.. 18, 59

PEP8 PEP8 is a coding convention for the Python programming language. It is a set of rules that
specify how to format Python code for maximum readability.. 58

Pull Request A pull request is a method of submitting contributions to an open development
project. It is often used in web development and software development, and it is a way of
managing changes to a codebase.. 59

Pylint Pylintis atool that checks for errors in Python code, tries to enforce a coding standard and
looks for code smells. It can also look for certain type errors, it can recommend suggestions
about how particular blocks can be refactored and can offer you details about the code’s
complexity.. 58, 59

Venv Venv is atool that creates isolated Python environments. It allows you to manage separate
package installations for different projects.. 59

Visual Studio C++ Build Tools Visual Studio C++ Build Tools is a standalone build tools package
that allows you to build C++ applications.. 59
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