
Semester Project

Network Configuration Automation with
Infrahub and Nornir

Semester HS 2024

Version 1.0
December 20, 2024

Students: Simon Linder
Polina Lisetska
Ramon Stutz

Advisors: Urs Baumann
Jan Untersander

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

Network Configuration Automation with Infrahub and Nornir v 1.0

1. Abstract
This document outlines the design and implementation of an automated system for VLAN

management as part of the project “Network Configuration Automation with Infrahub
and Nornir”. The solution leverages Infrahub as a single source of truth, providing a uni-
fied platform for managing network infrastructure data. Nornir, a Python-based automation
framework, handles configuration deployment with dry-run validation to detect potential mis-
configurations.

• Infrahub serves as the central repository for network infrastructure data, providing version
control and collaboration through GitLab.

• Python Transformers: convert Infrahub data into a Pydantic model representing YANG
models.

• NETCONF XML Exporter generates valid NETCONF payloads.

• Nornir automates the deployment of NETCONF configurations, offering flexibility and
scalability.

• Conditional Runner enforces concurrency limits and controlled task execution, enhancing
automation stability.

Key Features
• Dry-Run Validation: Identifies misconfigurations preemptively.

• Reconciliation Mechanism: Detects configuration drifts for remediation.

• Centralized Management: Streamlines oversight of network configurations.

Benefits
Automating VLAN configuration reduces human intervention, minimizes errors, and enhances
network reliability. Validation and centralized management improve efficiency, reliability, and
scalability.

Conclusion
The “Network Configuration Automation with Infrahub and Nornir” project automates
VLAN management by enforcing validation and centralizing oversight, modernizing network man-
agement for greater efficiency and scalability.

1. Abstract i

Network Configuration Automation with Infrahub and Nornir v 1.0

2. Vision
Each company manages a network inventory in some form. Imagine leveraging this inventory to

automate the deployment of network configurations. Infrahub centralizes network configurations,
enabling network operators to easily update the user-friendly inventory system. By automating
deployment, our solution ensures the consistent application of the desired state across the network.
Pydantic is utilized for model validation, enhancing data integrity and ensuring configuration
validity. This streamlines network management and improves efficiency. The platform is designed
to be easy to use, scalable, and secure, allowing network operators to focus on strategic initiatives
and innovation.

Goals
• The centralization of network configurations

• The automation of network configuration deployment

• Reconciliation of the desired state across the network

• The enhancement of data integrity

• The streamlining of network management

• The improvement of efficiency

Technologies
We leverage cutting-edge technologies that are not yet widely adopted in the industry. Infrahub
serves as the inventory system and configuration user interface. Data from Infrahub is transformed
into a Pydantic model, and Nornir is utilized to deploy NETCONF configurations to network
devices.

Technology stack

• Infrahub

• Pydantic

• Nornir

• NETCONF

• YANG

2. Vision ii

Network Configuration Automation with Infrahub and Nornir v 1.0

3. Management Summary
Initial Situation
Network configuration management is a critical aspect of maintaining modern infrastructures,
requiring consistent updates and validations across a wide range of devices. Traditionally, this
process is time-consuming, error-prone, and often relies on manual intervention, which can lead
to inconsistencies and network disruptions. Organizations often struggle with reconciling cur-
rent network states with their desired configurations while ensuring operational stability and
scalability. Furthermore, auditing is tedious with configurations distributed across devices.

Objective
The project, Network Configuration Automation with Infrahub and Nornir, aims to enhance
network configuration management by automating deployment tasks and consolidating network
configurations through a centralized system, Infrahub. Developed by OpsMill, Infrahub merges
Git’s version control with the flexibility of graph databases, offering a unified platform for man-
aging infrastructure data. Our solution focuses on continuous reconciliation, ensuring that the
network’s state is consistently aligned with the defined configurations.

Figure 3.1.: The diagram shows an automated deployment via Infrahub, Prefect, and IaC Worker,
integrating validation and deployment.

By centralizing oversight through Infrahub and automating deployment tasks with the Nornir
framework, the project significantly improves efficiency and control. To enhance scalability and
modularity, we integrated Prefect for workflow orchestration, NETCONF for communication, and
dry-run validation to preview configurations before applying them safely. Designed for diverse
network environments, it supports various device types and YANG models for compatibility.
GitLab integration adds version control and traceability, while the Conditional Runner plugin for
Nornir enhances stability by managing concurrency limits during maintenance. These features
collectively streamline network operations and improve overall efficiency.

3. Management Summary iii

Network Configuration Automation with Infrahub and Nornir v 1.0

Results
The project successfully delivered a comprehensive and automated network configuration system
tailored for VLAN management. By leveraging Infrahub as the single source of truth, the solu-
tion ensures all network data remains centralized, consistent, and easily accessible. Nornir was
employed as the core automation framework, enabling efficient deployment of configurations while
supporting dry-run validation to identify and prevent potential issues before applying changes.
To ensure system stability and reliability, Conditional Runner was integrated, allowing for
controlled execution and reducing the likelihood of unexpected failures. Additionally, GitLab
was utilized for version control, ensuring that all changes are tracked, auditable, and aligned with
modern CI/CD practices.

In summary, this integrated solution significantly enhances scalability and improves reliabil-
ity by minimizing human errors through automation and introducing robust validation mecha-
nisms. Furthermore, it strengthens overall network stability by enforcing consistent configu-
rations and maintaining visibility into all changes. By reducing manual effort, the system not
only saves time but also allows network teams to focus on higher-value tasks, ultimately driving
operational efficiency and improving long-term maintainability.

3. Management Summary iv

Network Configuration Automation with Infrahub and Nornir v 1.0

4. Acknowledgments
We sincerely express our deepest gratitude to our advisors, Urs Baumann and Jan Untersander,

for their professional support and expert guidance throughout the course of this project. Their
insightful advice and constructive feedback have been valuable and helpfull.

We are also grateful to the OpsMill Infrahub and Prefect Discord communities for their quick
and helpful responses during challenging moments.

Finally, we thank our friends and family for proofreading and providing valuable feedback.

4. Acknowledgments v

Network Configuration Automation with Infrahub and Nornir v 1.0

Contents
1. Abstract i

2. Vision ii

3. Management Summary iii

4. Acknowledgments v

Contents vi

I. Product Documentation 1

1. Requirements 2
1.1. Functional Requirements . 2

1.1.1. Persona . 2
1.1.2. User Stories . 2

1.2. Non-Functional Requirements . 4
1.2.1. Approach . 4

2. Preliminary Work 5

3. Architecture 6
3.1. Introduction and Goals . 6
3.2. Context Diagram (Level 1) . 7
3.3. Container Diagram (Level 2) . 8
3.4. Component Diagram (Level 3) . 10
3.5. Architectural Decisions . 12

3.5.1. Connection Plugin . 12
3.5.2. Diff Implementation Strategy . 13

4. Quality Measures 14
4.1. Organizational Means . 14
4.2. Guidelines . 14

4.2.1. Python - PEP8 . 14
4.2.2. Four-Eyes Principle . 14

4.3. Tools Used to Assess Product Quality in CI/CD 14
4.3.1. Ruff . 15
4.3.2. MyPy . 15
4.3.3. Bandit . 15
4.3.4. Pytest and Coverage . 15

4.4. Manual Testing . 15
4.5. Code Review . 17
4.6. Conclusion . 17

CONTENTS vi

Network Configuration Automation with Infrahub and Nornir v 1.0

II. Technical Documentation 18

1. Overview 19

2. Nornir NETCONF Deployment 20
2.1. Nornir NETCONF Tasks . 20

2.1.1. Retrieving Configuration . 20
2.1.2. Desired State . 21
2.1.3. Validate or Deploy Configuration . 21
2.1.4. Diff Functions . 22
2.1.5. NcDiff . 22
2.1.6. Mail . 23

2.2. Making the Code Generic for Different YANG Models 25
2.3. Typer CLI GUI . 26
2.4. Prefect . 26
2.5. Conclusion of the Nornir NETCONF Deployment Component 29

3. YANG and Pydantic Models 30
3.1. YANG Models . 30

3.1.1. Cisco Native YANG Model - Interface . 30
3.1.2. Openconfig YANG Model - vlans . 31

3.2. Pydantic Model . 31

4. XML Exporter 33
4.1. Python Libraries . 33
4.2. XMLModelConverter . 33

4.2.1. Static Methods . 33
4.2.2. Pydantic Data Types . 33
4.2.3. Public Function - to XML . 34
4.2.4. Namespace Handling . 35
4.2.5. Limitations . 37
4.2.6. Public Function - to Basemodel . 38

4.3. More Information . 40
4.3.1. Demo . 41

5. Infrahub GitLab Integration 42
5.1. Infrahub . 42

5.1.1. Schema . 42
5.1.2. Schema Customization . 42

5.2. GitLab . 45
5.2.1. GitLab Integration . 45
5.2.2. GraphQL . 46
5.2.3. PythonTransform . 46
5.2.4. Checks . 50

6. Nornir Conditional Runner 53
6.1. Introduction . 53
6.2. Fail Limits Feature . 53
6.3. Logging . 53
6.4. Demo . 54
6.5. Error Handling / Fallback to Default Behavior of the Threaded Runner 54

CONTENTS vii

Network Configuration Automation with Infrahub and Nornir v 1.0

6.6. Code Decisions . 55
6.7. Testing . 56
6.8. Publishing and CI/CD . 56
6.9. Integration into Our Project . 57
6.10. Conclusion of the ConditionalRunner Component 58

7. Infrastructure 59
7.1. Overview . 59

7.1.1. Development Environment . 59
7.1.2. Production Environment . 59

7.2. Development Setup . 59
7.2.1. Devcontainer . 59
7.2.2. Task . 59
7.2.3. Poetry . 60
7.2.4. Docker-Compose . 60
7.2.5. Prefect . 60

7.3. Production . 60
7.3.1. Infrahub Helm . 60
7.3.2. Cert-Manager . 61
7.3.3. Prefect and Ingress . 61
7.3.4. Custom Prefect Worker and Dockerfile . 61

7.4. Conclusion of Infrastructure . 62

8. Technical Issues and Obstacles 63
8.1. NETCONF XML Exporter Class . 63
8.2. Nornir NETCONF Deployment . 63
8.3. Nornir Replace Operation . 64
8.4. Conversion to Cisco Native Model . 64

8.4.1. Conclusion of the Switch to the Cisco Native Model 68

III. Project Documentation 69

1. Results 70

2. Conclusion 71
2.1. Further Improvements . 71

3. Project Planning 72
3.1. Processes . 72
3.2. Architectural Roles . 72
3.3. Meetings . 72
3.4. Phases . 73

3.4.1. Time Table . 75
3.5. Risk Management . 75

3.5.1. Risks . 75
3.5.2. Risk Countermeasures . 76
3.5.3. Risk Matrix . 77
3.5.4. Risk summary . 77

3.6. Planning Tools . 77
3.6.1. JIRA . 77

CONTENTS viii

Network Configuration Automation with Infrahub and Nornir v 1.0

3.6.2. Clockify . 77
3.6.3. Overleaf . 77

List of Tables 78

List of Figures 79

Acronyms 81

Glossary 82

IV. Appendix 83

1. Nornir Connection Plugin Analysis 84

2. Nornir Configuration 88
2.1. Installation . 88
2.2. Usage . 88

2.2.1. Host Example . 88

3. Nornir Configuration 90

Bibliography 91

CONTENTS ix

Part I.

Product Documentation

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1. Requirements
The requirements for the project are divided into two categories: functional and non-functional

requirements.

1.1. Functional Requirements
The functional requirements are derived from the actors and their goals, as outlined in user
stories identified during a dedicated requirements meeting with our customer, INS. The actors
are grouped into two key personas: (1) Admin (Network Architect/Administrator), representing
the individual responsible for managing INS’s network, and (2) User (Network Operator), rep-
resenting the person using our solution. Overall, these functional requirements provide us with
comprehensive coverage of our assignment and serve as a clear roadmap for our development.

1.1.1. Persona
• Admin (Network Architect/Administrator): A technical expert responsible for de-

signing, automating, and overseeing the network architecture. The Admin ensures that the
overall network design is scalable, secure, and compliant with organizational standards, and
supervises the deployment and integration of network changes.

• User (Network Operator): A less technical persona responsible for maintaining and
managing the day-to-day operations of the network infrastructure. The User performs
network configuration updates, ensures network stability, and handles troubleshooting tasks.

1.1.2. User Stories
In this section, we outline the user stories for the project, each written from the perspective of
the defined personas. The user stories are categorized into two scopes: (1) In Scope – user stories
that will be implemented as part of this project; (2) Implementation Out of Scope – user stories
that will not be required for this project but could be implemented if there is enough time and
may be documented for potential future work.

In Scope
• U-1: As a User, I want a centralized inventory system (Infrahub) that manages the cur-

rent and desired state of the network, so that I can easily view and update the network
configuration without needing manual tracking.

• U-2: As a User, I want to reliably apply the VLAN network configurations only using the
easy GUI of the inventory system, so that I do not need to connect to each network device
individually and manually configure them.

• U-3: As a User, I want to simulate VLAN configuration changes with a dry run, so that I
can verify the network updates before they are applied and avoid potential errors.

• U-4: As a User, I want to easily adjust network VLAN configuration inputs via Infrahub,
so that I can quickly respond to network changes or issues without reconfiguring everything
from scratch.

• U-5: As a User, I want to receive notifications when a configuration change is applied
successfully or fails, so that I can stay informed about the state of the network in real time.

1. Requirements 2 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

• U-6: As an Admin, I want the solution to utilize structured data, such as Pydantic models
for data structures and NETCONF XML payloads with universal YANG models wherever
possible, to ensure that configurations stay consistent and compatible across a wide range
of network devices.

• U-7: As an Admin, I want to parallelize the configuration using Nornir but ensure with
a custom runner certain conditions, such as ensuring that the two core routers do not
update simultaneously. This will allow for faster reconfiguration while maintaining network
stability.

• U-8: As an Admin, I want the solution to utilize the machine configuration standard
NETCONF so that configurations can be reliably applied without needing to undo current
configurations that were applied manually or resetting a device before deployment.

• U-9: As an Admin, I want a solution that will compare the current network state with
the desired state before applying changes, so that I only implement necessary updates and
maintain network stability.

• U-10: As an Admin, I want the system to apply changes only when there is a difference
between the current and desired state, so that I avoid unnecessary changes and keep the
network running efficiently.

• U-11: As an Admin, I want the solution to perform a rollback of the configuration changes
if the configuration fails, so that I can ensure the network remains operational and stable.

• U-12: As an Admin, I want access to logs of configuration changes and dry run results so
that I can review and troubleshoot any issues that arise after the solution has applied a
configuration or rejected one.

Out of Scope
• U-13: As a User, I want access to simplified logs and results of configuration changes

and dry runs back in Infrahub, so that I can review and troubleshoot any issues after
configurations are applied.

• U-14: As an Admin, I want detailed feedback in Infrahub from the dry run and configura-
tion deployment, so that I can ensure the configurations are correct and troubleshoot any
issues before deployment.

• U-15: As an Admin, I want the solution to also configure and monitor the base configuration
of the network devices, so that I can ensure that the network devices are correctly configured
and operational.

• U-16: As an Admin, I want the system to support version control for configurations, so
that in case of a failure, I can roll back to the previous state without experiencing downtime.

1. Requirements 3 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1.2. Non-Functional Requirements
1.2.1. Approach
The non-functional requirements were established during the requirements analysis meeting with
INS and are derived from the functional requirements. Based on ISO/IEC 25010, they are
categorized as follows:

In Scope
• Reliability: The system should ensure that network configuration changes are applied

correctly 99.9% of the time.

• Compatibility: The system must comply with industry-standard protocols like NET-
CONF and YANG, ensuring compatibility with existing networking hardware and con-
figurations.

• Security: Access to the system should be restricted based on user roles and permissions.

• Maintainability: Maintainability refers to the system’s ability to efficiently adapt to
changes through modularity, reusability, analysability, modifiability, and testability.

Out of Scope
• Performance Efficiency: The system should optimize resource utilization and maintain

high performance under load, ensuring timely deployment of configurations.

• Interaction Capability: The system must be user-friendly, providing appropriate user as-
sistance, error protection, and self-descriptive messages for troubleshooting and operations.

• Flexibility: The system should support diverse network environments and scalability to
adapt to future infrastructure needs.

1. Requirements 4 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

2. Preliminary Work
Several open-source projects, including "Infrahub," "Nornir_Netconf," "Pydantic," and "Py-

dantify," are currently available. However, these tools have not yet been integrated to support
our specific use case. Consequently, there is no existing preliminary work to build upon within
the context of our project. Additionally, bridging these tools will facilitate streamlined network
configuration management.

2. Preliminary Work 5 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3. Architecture
This document outlines the network automation system’s architecture using the C4 model,

emphasizing core components, interactions, and architectural considerations. It serves as a refer-
ence for understanding the system, supported by Use Case, Context, Container, and Component
diagrams to illustrate various levels of detail.

3.1. Introduction and Goals
The project’s goal is to develop an automated network management system using Infrahub
as a central hub and single source of truth for network configurations. The system automates
pulling current network states, validating changes via dry runs, and applying new configurations to
network devices using the NETCONF protocol. Python is the primary language for automation,
integrated with Pydantic for model generation based on YANG data models, chosen for its
compatibility with our Python-based ecosystem.

Use Cases Diagram As the architecture is complex, we created use case diagrams to illustrate
the system’s functionality, highlighting two workflows: change of the desired config and
change of the running config. The diagram includes the Pydantic Model component, rep-
resenting interactions typically encapsulated within an Infrahub Artifact. This approach clarifies
the data flow and conversion steps added by the project.

Figure 3.1.: Use Case Workflow 1: Changing the network VLAN configuration

3. Architecture 6 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 3.2.: Use Case Workflow 2: Showing the reconciliation of desired and running config

3.2. Context Diagram (Level 1)
The context diagram provides a high-level overview of the system and its interactions with ex-
ternal entities, such as users and other systems.

Figure 3.3.: C4 Context Diagram

3. Architecture 7 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1. User: The user (network administrator or operator) interacts with Infrahub or Prefect to
configure and manage the network.

2. Network Configuration Automation with Infrahub and Nornir: As our code resides
within Infrahub and Nornir, and both use Prefect for workflow orchestration, the system
we develop is a combination of all these components. The components interact with each
other to manage the network configuration using concepts like signal, events, and the wish
template pattern (GraphQL).

• Infrahub: Serves as the system’s user interface, managing both the network device
inventory and desired states of the network.

• Nornir: This Python automation framework handles network configuration tasks,
including fetching the current network state, detecting differences between the current
network and desired state, deploying changes, validating configurations, and notifying
the network administrator about network changes.

• Prefect: Orchestrates the system’s workflows, managing task initiation and providing
feedback to the user. It provides a user interface for the network administrator to
interact with the system.

3. Network Devices: External systems (routers, switches, etc.) managed via NETCONF.
In our case, they are two Cisco Catalyst 9300 switches.

3.3. Container Diagram (Level 2)
The container diagram breaks down the system into its main containers, illustrating how each
part collaborates to deliver overall functionality.

Figure 3.4.: C4 Container Diagram

3. Architecture 8 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Key Containers
1. User: Interacts with the system through a web interface (UI) to provide the desired network

state and review logs and feedback from dry runs and configuration deployments.

2. Infrahub Server: Handles multiple tasks:
• Web API/UI: Interface for network operators to interact with Infrahub.
• Inventory Management: Stores managed network devices and their configurations.
• State Management: Manages the network’s desired state.
• Pydantic Model + XML Generation: Generates Pydantic models from YANG

models for validating configurations and transforming them into XML for NETCONF.
• Workflow Orchestration: Prefect orchestrates deployments, sending events to the

sa-worker container and providing feedback via Prefect Artifacts.

3. IaC-Worker: Handles network configuration tasks:
• NETCONF Interaction: Applies configurations and retrieves current states.
• Diff: Compares current and desired states to identify changes.
• Dry Run Execution: Simulates changes before application.
• Reconciliation Loop: Ensures devices are in the desired state, notifying adminis-

trators of discrepancies.
• Configuration Deployment: Applies desired state changes to devices.
• Logging and Feedback: Provides logs and error messages for verification and trou-

bleshooting.

4. Network Devices: External systems communicating with our IaC-workers via NETCONF
to receive configurations and report states.

5. SMTP Server: Sends feedback to network administrators.

3. Architecture 9 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3.4. Component Diagram (Level 3)
This diagram details Infrahub’s internal components, illustrating their interactions. We split the
diagram into infrastructure and code components, aligning with our Infrastructure as Code (IaC)
approach to enhance clarity and synchronization between infrastructure and software components.

Figure 3.5.: C4 Component Diagram, showing the Infrastructure and Code components

3. Architecture 10 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Key Components
1. Infrastructure:

• Kubernetes Cluster: Hosts Infrahub and IaC-Worker containers.
• Kubernetes Ingress: Routes traffic to Infrahub and Prefect containers, utilizing

HTTPS and a wildcard certificate from cert-manager and Let’s Encrypt.
• Infrahub: Central UI managing the network’s desired state and generating custom

NETCONF artifacts.
• Prefect: Orchestrates system workflows, manages configurations, and handles internal

Infrahub tasks.
• Infrahub Task Worker: Handles tasks from Prefect, including artifact generation

and running Python transformers.
• Infrahub DB: Stores the network’s desired state in a GraphQL database.

2. Code:
• YANG Models: Utilizes OpenConfig VLAN and Cisco native interfaces YANG mod-

els to generate Pydantic models for network configuration.
• Pydantify: Generates Pydantic models from YANG definitions.
• XML Exporter: Converts Pydantic models into NETCONF XML payloads.
• Python Transform: Transforms Infrahub data into Pydantic models using GraphQL

to retrieve data from Infrahub DB.
• Artifact Definition: Bundles Python transformers and XML Exporter into Infrahub

Artifacts based on proposed changes.
• Checks: Validates network configuration changes before deployment using data from

the Infrahub DB.
• Infrahub Schema: Customizes the UI and impacts the database schema.
• SA Nornir NETCONF: Fetches inventory, retrieves configurations, performs diffs,

and handles deployment and reconciliation loops.
• Deployment Repo: Stores infrastructure as code, including Kubernetes resources,

Helm charts, and Dockerfiles for Infrahub and IaC-Worker.
• Nornir_Conditional_Runner: Ensures secondary devices remain online during

primary device configuration changes.

3. Architecture 11 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3.5. Architectural Decisions
During the prototype setup to test components and their interactions, we made several key
decisions:

3.5.1. Connection Plugin
Establishing a stable connection with network devices required a reliable plugin supporting the
NETCONF protocol.

Requirements for the Connection Plugin:

1. Compatibility with Cisco IOS-XE and Arista EOS devices for integration testing.

2. Independent management of connection opening and closing.

3. Performance and reliability.

4. Ease of use and integration with the Nornir framework.

5. Comprehensive documentation.

6. Active maintenance.

7. Support for methods to get, lock, unlock, edit, commit, and validate configurations, enabling
dry runs.

8. Structured output (XML or JSON) with RPC object attachment for advanced operations.

Tested Plugins We evaluated three NETCONF plugins/libraries: Nornir-Netconf, NCDiff, and
Scrapli.

1. NCDiff: Extends the ncclient NETCONF client with diff capabilities. Although it meets
our requirements, its performance was insufficient for our use case.

• Pros: Provides diff capabilities and extensive functionality.
• Cons: Slower performance and requires loading all YANG models, which is unneces-

sary for our needs.

2. Nornir-Netconf: Offers a high-level API for interacting with network devices using NET-
CONF via ncclient. It fully satisfies our requirements with reliable performance.

• Pros: Well-integrated with Nornir, reliable, easy to use, with performance nearly
matching Scrapli.

• Cons: XML formatting in replies is less refined, though this can be mitigated with an
XML formatter.

3. Scrapli_Netconf: Provides a user-friendly implementation for NETCONF interactions
using the Scrapli driver, offering superior performance with additional setup requirements.

• Pros: Well-documented, easy to use, well-maintained, and the fastest among the
tested plugins.

• Cons: Requires additional setup with ssh2, including installing libssh2 and downgrad-
ing Python to 3.10. Also necessitates switching the devcontainer to support specific
ssh2 ciphers.

3. Architecture 12 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Decision We selected the Nornir-Netconf plugin for its comprehensive fulfillment of our require-
ments and straightforward setup. Its ease of integration with our existing infrastructure made it
the optimal choice for managing network automation tasks.

The full analysis is available in Appendix 1.

3.5.2. Diff Implementation Strategy
We needed to decide where to perform the diff between the current and desired network device
configurations.

The Two Options:

1. XML Diff within Nornir Automation Framework: Perform the diff by fetching and
comparing current and desired states within the Nornir framework. This allows validation
before applying changes and ensures Infrahub artifacts follow the device’s YANG Model
NETCONF.

• Pros: Easy implementation and integration, clear separation between Nornir automa-
tion and Infrahub, and uniform Infrahub artifacts.

• Cons: Generating human-readable diff reports is challenging, and the diff logic strug-
gles with namespace handling and complex structures.

2. Model Diff within Pydantic Model: Perform the diff earlier by generating Pydantic
models from running NETCONF XML. This approach requires implementing a NETCONF
to Pydantic converter and designing a suitable data structure for Infrahub artifacts.

• Pros: Generates smaller, more efficient NETCONF payloads by including only changes.
• Cons: Requires additional development for conversion, complex data structures for

artifacts, and challenges in producing human-readable diff reports.

While the Pydantic model diff offers technical efficiency, the XML diff provided sufficient perfor-
mance (4-6 seconds) and allowed us to maintain lower complexity during the initial development
phase.

Decision We opted to perform the diff within the Nornir automation framework using XML
diffing. This choice prioritized safety and reduced development time, enabling us to focus on
integrating complex YANG models and documenting the system. Although we began imple-
menting the Pydantic model diff as a side task, challenges in creating human-readable reports
and addressing YANG model issues led us to continue with the XML diff. Future improvements
may revisit the Pydantic model diff if deemed necessary.

Conclusion The decision to use XML diff in the Nornir automation framework proved correct,
as integrating all components revealed an error in the OpenConfig Interfaces YANG model imple-
mentation on Cisco switches. This prompted a shift to the Cisco native interfaces YANG model,
which required additional time. Although we initiated the Pydantic model diff and successfully
implemented the NETCONF to Pydantic converter, generating human-readable diff reports re-
mained challenging. Given the complexity of the Cisco native interfaces YANG model and the
priority of system documentation, we continued with the XML diff approach. The Pydantic
model diff will remain a potential future enhancement to further improve the system.

3. Architecture 13 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

4. Quality Measures
This chapter outlines the quality measures implemented throughout the project to ensure high

standards in code development, testing, and deployment. These measures encompass organiza-
tional practices, coding guidelines, and tools used for continuous integration and deployment.

4.1. Organizational Means
Merge Requests Merge Requests (MRs) are crucial for maintaining code quality. They combine
code review with the Four-Eyes Principle, promoting collaboration, early issue detection, and
protecting the stability of the main branch. This fosters a culture of shared responsibility and
continuous improvement.

Definition of Done Our Definition of Done ensures that every task, feature, or deliverable meets
clear standards of quality, completeness, and readiness. A task is considered done only when it
satisfies the following criteria:

1. Development: All code is written, committed, and pushed to the repository.

2. Code Quality: The code has been reviewed and approved through a merge request fol-
lowing the Four-Eyes principle. The code passes the automated GitLab CI/CD pipeline or
GitHub Actions.

3. Documentation: Product or project documentation is always up-to-date.

4. Functionality: The feature or task meets all the acceptance criteria outlined in the user
story or task description.

4.2. Guidelines
4.2.1. Python - PEP8
Our Python code adheres to the PEP8 standard to ensure consistency, readability, and main-
tainability across the project. Following PEP8 aligns our code with industry practices, covering
aspects such as indentation, naming conventions, and spacing. This standardization improves
team collaboration and makes the codebase easier to understand and extend.

4.2.2. Four-Eyes Principle
Our development process strictly follows the Four-Eyes Principle to ensure code quality and
integrity. This principle requires that every change be reviewed and approved by at least one
other team member before being merged. It helps identify potential errors, ensures adherence to
coding standards, and fosters a collaborative approach to problem-solving.

4.3. Tools Used to Assess Product Quality in CI/CD
Our continuous integration and continuous deployment (CI/CD) processes are powered by GitLab
CI/CD, ensuring efficient and reliable product builds, tests, and deployments. This automation
streamlines our development workflow, maintaining high standards of quality and consistency
across all code repositories.

4. Quality Measures 14 of 91

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

We employ a unified CI/CD pipeline logic for all repositories, utilizing GitLab CI/CD or GitHub
Actions. This standardization ensures that every repository adheres to the same rule set. Our
CI/CD pipeline includes the following stages:

The shared before script installs Poetry and the necessary development dependencies, which
include:

• ruff

• mypy

• bandit

• pytest

• coverage

4.3.1. Ruff
We use Ruff to ensure that the code consistently conforms to the PEP8 standard1. Ruff is
configured in the project.toml to enforce coding style guidelines, detect potential issues, and
maintain uniformity.

4.3.2. MyPy
We utilize MyPy as a type checker to ensure type correctness throughout our Python codebase. By
enforcing static type checking, MyPy helps detect type-related errors early in the development
process, improving code reliability and reducing runtime issues. We incorporate type hints to
enhance code readability and comprehension.

4.3.3. Bandit
Bandit is used to check for security vulnerabilities in our code. We have configured Bandit
to check for all issues and warn in the pipeline if any are found. For example, we mitigated
security issues with the etree library by using the defusedxml library in the nornir NETCONF
deployment code.

4.3.4. Pytest and Coverage
Pytest is used to run tests in the codebase. We have written tests for the nornir conditional
runner as this code is open-sourced. For other code, we focused on manual testing due to time
constraints. Pytest generates a coverage report, which is then uploaded to GitLab or GitHub.

4.4. Manual Testing
Manual testing was essential for our project, especially when working with physical devices that
had implementation errors in the OpenConfig Interfaces model. We dynamically adapted to
changes, which was more efficient with a good infrastructure setup and manual tests than unit
tests. Additionally, it would be difficult to just test our code without the physical devices,
Infrahub and Nornir, as we do not want to test their code. A lot of mocking would be needed to
test the code without the physical devices, which would not help us as we do not actually see if
it works or if we run into another well-hidden bug of the surrounding systems.

1PEP8 guidelines: December 11, 2024 https://peps.python.org/pep-0008/

4. Quality Measures 15 of 91

https://peps.python.org/pep-0008/

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

To show this with an example: At one point, we did not know for sure if the OpenConfig
model was badly implemented on our test devices, overwriting VLANs as described in chapter
Technical Issues and Obstacles 8, or if our code was incorrect. We decided to manually test
the code with different devices, as this is a feature of OpenConfig to be vendor-independent, to
ensure that the code was correct and that the devices were the issue.

We tested it against a virtual Arista switch included in an example of Containerlab2. To set
up this test, we ran Infrahub in the normal local devcontainer and the virtual Arista switch in
a separate virtual Linux x86 machine on the same network, kindly provided by our advisor to
minimize our setup time. We then forwarded the localhost ports of our local machine to its
network address using socat3. This allowed us to set the correct environment variables on the
virtual Linux machine running the Containerlab and start our Nornir NETCONF code loading the
inventory based on the environment variables. We manually created the inventory and interface
data for an Arista switch in Infrahub and ran the code. We then checked the Arista switch to see
if the VLANs were not overwritten, which indicated that the OpenConfig model was not correctly
implemented on the Cisco devices. The Arista switch even automatically created a VLAN range
for the VLANs next to each other.

1 <config>
2 <interface-mode>TRUNK</interface-mode>
3 <native-vlan>1</native-vlan>
4 <trunk-vlans>100</trunk-vlans>
5 <trunk-vlans>200</trunk-vlans>
6 <trunk-vlans>201</trunk-vlans>
7 </config>
8

Resulted in the following configuration, which you can see in Figure 4.1 and Figure 4.2.

Figure 4.1.: Arista VLAN configuration after config deployment

Figure 4.2.: Arista XML running config, showing the configuration of multiple trunk VLANs

2Containerlab quickstart demo: December 15, 2024 https://containerlab.dev/quickstart/
3socat: December 15, 2024 https://linux.die.net/man/1/socat

4. Quality Measures 16 of 91

https://containerlab.dev/quickstart/
https://linux.die.net/man/1/socat

Product Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Way Forward: Finally, we tested if the same bug was present on a physical Cisco switch when we
used the Cisco native model, as we needed a solution for the physical devices. For this, we simply
changed the defaults.yaml to use the Cisco native model, ran the function get_running_config,
changed the trunk VLAN list, and deployed the running config back to the switch again. This
was successful, and the VLANs were not overwritten. So we had our way forward.

4.5. Code Review
We conducted code reviews at critical points in the project to ensure a comprehensive understand-
ing of the entire project and to maintain high code quality. We utilized GitLab Merge Requests
for this purpose. Once a feature was completed on a feature branch, a merge request to the main
branch was created. This merge request was then reviewed by at least one other team member
before being merged. At one point, when we combined our solutions, we held a meeting for a
code walkthrough to ensure that everyone had a brief understanding of the entire codebase and
could proceed with the integration of the components.

4.6. Conclusion
Our project adheres to a set of quality measures and guidelines to ensure that the code is of high
quality, maintainable, and reliable. By following these practices, we aim to deliver a robust and
scalable solution that meets the requirements of our stakeholders and our personal ones. Our
continuous integration and deployment processes, along with manual testing and code reviews,
help us maintain a high standard of quality throughout the development lifecycle. We are com-
mitted to delivering a product that is well-documented, thoroughly tested, and free of defects,
ensuring a positive user experience and long-term success.

Our CI/CD pipeline ensures automatically that our code is always formatted, linted, checked,
and deployed in a consistent manner, maintaining high code quality and security standards.

4. Quality Measures 17 of 91

Part II.

Technical Documentation

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1. Overview
The technical part of this documentation outlines the critical components, methodologies, and

tools used in our project. Each section provides detailed insights into specific aspects of the
system, from the deployment process to the handling of issues. Below is a summary of the topics
covered:

Nornir NETCONF Deployment Details the deployment process using Nornir, focusing on its
integration with NETCONF for network automation. It explains the setup, configuration, and
execution of automated workflows to streamline network operations.

YANG and Pydantic Models Discusses the use of YANG models for defining network configu-
rations and their translation into Python data structures using Pydantic. This section explains
which YANG models are used and how we transformed them into the Pydantic model.

XML Exporter Covers the XML exporter function, which converts a given Pydantic model into
a NETCONF-compliant XML.

Infrahub GitLab Integration Focuses on the integration with Infrahub and GitLab for version
control and CI/CD pipelines. It explains how infrastructure code is managed, reviewed, and
deployed, emphasizing collaboration and automation.

Nornir Conditional Runner Introduces the conditional runner feature in Nornir, allowing for
flexible execution of tasks based on dynamic conditions.

Infrastructure Describes the underlying infrastructure supporting the system, including the
environment setup, tooling, and resource management.

Issues and Obstacles Reflects on the challenges encountered during the development process
and the solutions implemented to overcome them.

1. Overview 19 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

2. Nornir NETCONF Deployment
We utilize the Nornir framework, a Python-based automation tool, to deploy configurations to

network devices. Nornir supports inventory management through plugins like nornir_infrahub,
which integrates seamlessly with our single source of truth (Infrahub) for device information
and enables concurrent task execution for each device. Nornir’s design emphasizes simplicity
and modularity, making it easy to create flexible automation using Python code. For device
communication, we chose the nornir_netconf plugin, specifically designed for managing network
devices via the Network Configuration Protocol (NETCONF) protocol. This chapter outlines the
steps for deploying configurations to network devices using Nornir and NETCONF.

2.1. Nornir NETCONF Tasks
We structured the code into four callable functions (get_running_config(), desired_state(), val
idate(), and deploy()) in the main program, each leveraging underlying logical components.
For example, the validate() and deploy() functions essentially share the same logic but are
executed with different values for Nornir’s dry-run variable. This distinction allows validate()
to serve as a safety precaution, keeping the network administrator informed and involved in the
process, rather than fully automating configuration changes without oversight. By using vali
date(), administrators can observe the tool’s behavior and gain confidence in its accuracy before
transitioning to the deploy() function, trusting it to configure the desired state as defined in
Infrahub.

2.1.1. Retrieving Configuration
get_config_by_filter(task: Task, from_running: bool = True) -> Result:

Before deploying configurations, we first need to retrieve the current configuration from the
network devices based on the selected YANG model. This step is essential to ensure that devices
are in a consistent state and that configurations are up to date. To perform this task, we use the
nornir_netconf plugin, which provides a straightforward interface for connecting to devices and
retrieving configuration data. Since we utilize two different YANG models, we created a generic
function that retrieves configuration data for all the specified models and filters, consolidating
the data into a single XML NETCONF file per device.

This is done using the configuration in the defaults.yaml file, which stores the YANG model
and the filters in a YAML file.

2. Nornir NETCONF Deployment 20 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Example of the configuration in the defaults.yaml file: OpenConfig-interfaces and OpenConfig-
vlan are used

1 yang:
2 - interface:
3 filter: |
4 <interfaces xmlns="http://openconfig.net/yang/interfaces">
5 <interface>
6 <config>
7 </config>
8 <ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
9 <switched-vlan xmlns="http://openconfig.net/yang/vlan">

10 <config>
11 </config>
12 </switched-vlan>
13 </ethernet>
14 <routed-vlan xmlns="http://openconfig.net/yang/vlan">
15 </routed-vlan>
16 </interface>
17 </interfaces>
18 ids:
19 - tag: "{http://openconfig.net/yang/interfaces}interface"
20 id_tag: "{http://openconfig.net/yang/interfaces}name"
21 replace:
22 - <routed-vlan xmlns="http://openconfig.net/yang/vlan">
23 - <config>
24 - vlan:
25 filter: |
26 <vlans xmlns="http://openconfig.net/yang/vlan">
27 </vlans>
28 ids:
29 - tag: "{http://openconfig.net/yang/vlan}vlan"
30 id_tag: "{http://openconfig.net/yang/vlan}vlan-id"
31 replace:
32 - <vlans xmlns="http://openconfig.net/yang/vlan">

Since the data we retrieve from the devices can be quite large and can easily fill the entire
vertical space of any terminal, we implemented a debug parameter which writes the NETCONF
XML to a file. Later, we modified it to create a Prefect artifact as well, which is even easier
for the user to see the output of the NETCONF XML as it is presented as a markdown artifact
inside the actual task.

2.1.2. Desired State
desired_state(task: Task) -> Result:

To obtain the desired state, we use the Infrahub SDK to retrieve the configuration from an
Infrahub artifact. During development, we utilized a local file to store the desired state because
the python_transformations, the Pydantic model, and the xml_exporter for Pydantic were
still under development.

2.1.3. Validate or Deploy Configuration
validate_or_deploy_config(task: Task) -> Result:

After retrieving the configuration data, we validate it against the desired configuration to iden-
tify any discrepancies. This step ensures that configurations are consistent across all devices

2. Nornir NETCONF Deployment 21 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

and adhere to the intended state. To detect deviations, we created a diff() function that com-
pares the current configuration with the desired state, generating a report that highlights any
differences. This report informs the user of any discrepancies.

If differences are detected, we apply the configuration to the device’s candidate store for fur-
ther validation. To achieve this, we added specific NETCONF replace operations to certain tags
of the desired configuration. Replacing the entire configuration was not feasible because the
OpenConfig-interfaces model does not support the replace operation for interfaces, and we
only wanted to replace a small portion of the interface while leaving the ip configuration un-
touched. This adjustment allows for greater flexibility by enabling the addition of tag containers
to be replaced alongside the filters within the tool configuration defaults.yaml, which is handled
by the function add_replace_operations().

Once the device validates the configuration, a report is generated and sent to the user. The user
reviews the report and confirms the changes. If the user is satisfied with the validation results,
the configuration is committed to the device by rerunning the same function with the dry-run
option set to false.

2.1.4. Diff Functions
diff(task: Task, first_xml: str, second_xml: str) -> Result:

Comparing two XML files turned out to be more challenging than initially estimated. We
initially intended to use the xml-diff library, but its output was not very human-readable, as
shown in figure 2.1. Therefore, we decided to write our own diff() function.

The diff() function takes two XML files as input and returns a list of differences. It is based
on the xml.etree.ElementTree library (later swapped with defusedxml for security reasons)
and recursively traverses the XML tree to find differences. The function compares the tag,
text, and attributes of each element and appends the differences to a list. It also handles cases
where elements are in a different order, generating a human-readable report that highlights the
differences between the two configurations.

Both the diff() function and xml-diff use special identifiers to locate the nodes to compare.
These identifiers are stored in the defaults.yaml file next to the corresponding filter. Both
functions are implemented and can be enabled or disabled using start parameters. They can even
be used in combination. By default, the self-developed diff() function is used, but this can be
configured in the defaults.yaml file.

1 # config
2 xmldiff: false
3 etreediff: true
4 ncdiff: false
5 debug: false

2.1.5. NcDiff
validate_or_deploy_config(task: Task) -> Result: in nr_tasks_ncdiff.py

During our evaluation of connection plugins, we initially implemented the diff function using
NcDiff due to its straightforward approach. However, we found NcDiff to be too slow for our needs
as it downloads all YANG models before performing the diff. Despite its slower performance,
we retained NcDiff as a fallback option to mitigate the risk of bugs in critical components.
Implementing the same logic in a different plugin was straightforward. NcDiff follows the same
logic but uses a different connection plugin and diff mechanism. For the diff, it always loads the
configuration into the candidate store and downloads it again to compare it with the running
configuration. It can be enabled or disabled using start parameters.

2. Nornir NETCONF Deployment 22 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 2.1.: Mail showcasing one etree diff change box followed by many xml-diff boxes represent-
ing the same change

2.1.6. Mail
send_email(task: Task, device_name: str, is_successful: bool, etreediff: Union[List[str],
None] = None, xmldiff: Union[List[str], None] = None, ncdiff: Union[str, None] = None,) ->
Result:

To notify the user of the deployment results, we implemented several email functions. While
text-based emails would have sufficed, we opted for HTML emails for a better user experience.
Two examples are shown in figure 2.2 and figure 2.3. The email is sent to the user after the
deployment or validation is completed and includes a summary of the deployment status and the
diff report.

The configuration for the mail settings can be found in the defaults.yaml file.
1 mail:
2 smtp_server: "smtp.ost.ch"
3 port: 25
4 sender: "iac_sa@ost.ch"
5 to: "Simon.linder@ost.ch"

2. Nornir NETCONF Deployment 23 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 2.2.: Deploy mail showcasing the removal of a trunk VLAN

Figure 2.3.: Validate Mail showcasing one missing <vlan> and <switchport-config> tags

2. Nornir NETCONF Deployment 24 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

To prevent flooding the user with emails, the mail is only sent if there is a diff, which should
only occur if someone changes the desired state in Infrahub or makes changes on the device.

Although we anticipate that it won’t be frequently used once the code runs smoothly, we
implemented a send_error_email(mail: Dict[str, Union[str, int]], result: Result) -> None:
function to notify users or developers during the development phase if any tasks fail. This
function sends an email containing the error message and its traceback. It is invoked within the
main function to alert the user when an issue arises anywhere in the code. The email is sent
to the recipient specified in the defaults.yaml file. Since the email is directed to the network
administrator, the traceback is included for detailed debugging.

Figure 2.4.: Error mail with traceback

2.2. Making the Code Generic for Different YANG Models
We aimed to make the code as generic as possible. Consequently, we utilized the defaults.yaml
file of Nornir as the configuration file for the entire tool. This approach allows for future integra-
tion into the Infrahub artifact, enabling communication with various devices like Arista, Nokia,
and Cisco simultaneously, each with their own YANG models. However, since the INS is primarily
focused on Cisco Catalyst devices, we concentrated on finding models suitable for these targets
and only configured them in the defaults.yaml.

The defaults.yaml file includes the YANG model used as a filter element, allowing us to
extract only the relevant sections of the device configuration needed for our operations.

2. Nornir NETCONF Deployment 25 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Additionally, the tool requires the ids of the YANG containers essential for the diff function.
This ensures that the container GigabitEthernet1/0/1 is always compared with its counterpart
GigabitEthernet1/0/1 in the running configuration, maintaining consistency in the comparisons.

To enhance customizability and performance, we introduced a replace list containing the XML
tags of the containers where configuration replacements are required. This decision addresses
limitations in certain YANG models, as not all of them support the replace function at the top-
level element. For instance, the openconfig-interface model on Cisco switches, or the cisco-native
model, becomes inefficient and generates excessively large configurations when attempting to
replace all elements across containers.

The defaults.yaml structure we designed enables us to work with multiple YANG models
simultaneously. This includes handling multiple ids within a single model (e.g., in the case of
cisco-native) and specifying highly targeted configuration snippets containing only the desired
elements for replacement.

2.3. Typer CLI GUI
Initially, we utilized the Typer CLI for interacting with the tool. This command-line interface
allowed us to execute the tool with various parameters and provided an entry point, such as
iac_sa validate, to run specific functions. The Typer app context was particularly useful for
initializing the Nornir inventory with the Infrahub SDK and global variables like the debug option.

Figure 2.5.: Typer CLI GUI

Subsequently, we transitioned to using the Prefect GUI due to its user-friendly interface and
scheduling capabilities for the validate() function. While the Typer CLI remains available
for command-line interactions and serves as an alternative GUI, the Prefect GUI is now the
recommended method for interacting with the tool.

2.4. Prefect
To execute our Nornir NETCONF tool, we utilize Prefect, a Python-based workflow management
system. Prefect allows us to define, schedule, and monitor complex workflows with ease. Its
intuitive interface simplifies the creation of workflows by enabling us to define tasks, dependencies,
and schedules directly from our Python code using annotations on the functions.

Figure 2.6 illustrates a deployment run using Prefect, showcasing its user-friendly interface
and robust capabilities. Each device gets its own task, which can be opened to see the sub-
task of the main task, which is named the same as the device, by utilizing the parameter

2. Nornir NETCONF Deployment 26 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

task_run_name=’{task.host.name}’ in the function decorator @task(). Additionally, the parame-
ter log_prints=True is used to print the output of the task to the Prefect log.

Figure 2.6.: Prefect deploy run showing the subtasks of one device followed by the second device

We also utilize Prefect to orchestrate the execution of our tool, offering comprehensive monitor-
ing and logging capabilities to track the progress of configuration deployments and troubleshoot
any issues that arise. Prefect’s artifact feature allows us to provide detailed results after each task,
facilitating easy exploration and analysis. Additionally, Prefect’s user-friendly interface simplifies
the management and monitoring of our workflows, enhancing overall efficiency.

Figure 2.7 illustrates the Prefect artifact generated during a deployment task, showcasing the
detailed information available for analysis.

These Prefect artifacts are markdown files created by the function create_artifact(result:
Result, jobname: str, is_xml: bool) -> None: which we wrote to convert any Nornir result we
get into a markdown file, which was challenging as we wanted a nice and clean output.

By leveraging Prefect, we can automate the configuration deployment process, ensuring con-
sistent configurations across all devices. Prefect’s intuitive interface supports the scheduling of
recurring jobs, aligning with DevOps principles of continuous integration and continuous deploy-
ment (CI/CD). This approach facilitates Infrastructure as Code (IaC) by pulling the latest code
from the main branch into a Prefect worker. The worker operates within a custom Docker con-
tainer that includes all necessary Python dependencies, ensuring seamless and efficient execution
of the deployment process while maintaining a clear separation between code and infrastructure.

Figure 2.8 illustrates a Prefect artifact generated during a validation task, showcasing the
detailed information available for analysis.

2. Nornir NETCONF Deployment 27 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 2.7.: Prefect deploy artifact showing one device with two changes

Figure 2.8.: Prefect artifact of the validate task

2. Nornir NETCONF Deployment 28 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

2.5. Conclusion of the Nornir NETCONF Deployment Component
The Nornir NETCONF deployment tool provides a robust and flexible solution for managing
network device configurations. By leveraging the Nornir framework and the NETCONF protocol,
we can automate configuration deployments, ensuring consistency and accuracy across all devices.
The tool’s modular design and extensible architecture enable us to work with multiple YANG
models simultaneously, providing a versatile solution for managing network configurations. By
integrating with Prefect, we can orchestrate the deployment process, schedule recurring jobs, and
monitor the progress of configuration deployments. This solution aligns with DevOps principles,
enabling Infrastructure as Code (IaC) and supporting continuous integration and continuous
deployment (CI/CD) practices. Overall, the Nornir NETCONF deployment tool offers a powerful
and efficient solution for managing network device configurations and automating the deployment
process, and I am quite proud of the modularity and flexibility of the codebase. Additionally,
exploring Prefect was a great experience.

2. Nornir NETCONF Deployment 29 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3. YANG and Pydantic Models
YANG models define the data structure for communication between the application and net-

work devices. Pydantic models, which are Python classes, represent these YANG models in
a Python-friendly format. Using the Pydantify tool, we generate Pydantic models from YANG
models. These Pydantic models validate the data sent to network devices and are used to generate
the corresponding XML for Netconf protocol communication.

3.1. YANG Models
We leverage YANG models to define the structure of both the Pydantic model and the NET-
CONF XML. YANG is a widely adopted language designed to structure data in an intuitive and
organized way. Many network vendors provide their own YANG models tailored to their spe-
cific devices, while the OpenConfig YANG model serves as a vendor-neutral standard, creating a
unified framework for all network devices.

For our project:

• OpenConfig YANG Model: Used for the VLANs section, ensuring broad compatibility
across different devices.

• Cisco Native YANG Model: Selected for the interfaces section to meet a key customer
requirement—managing Cisco switches effectively.

This combination was chosen to balance compatibility and address specific customer needs as
well as challenges encountered during development. For more details, please refer to the chapter
"Issues and Obstacles."

To facilitate the transformation from YANG models to Pydantic structures, we use the Python
tool "Pydantify".

3.1.1. Cisco Native YANG Model - Interface
To meet the specific requirements of our project and ensure compatibility with Cisco switches,
several modifications were made to the Cisco Native YANG Model for interfaces. These adjust-
ments were necessary to align the model with the structure expected by the switches and to
simplify the Pydantic model generation. Below are the changes implemented:

1. Remove Unnecessary Parts of the YANG Model: This reduction was made because
Pydantic structures are generated for every grouping in the YANG model. By removing
unused groupings, we streamlined the structure, focusing on the required data and making
the Pydantic models more concise. We only need the interface-switchport-grouping.

2. Simplify the Selected Grouping: This ensured that only the necessary fields were
included, optimizing the structure and avoiding irrelevant elements. We only need the
following Containers

1 container switchport-config {
2 container switchport {
3 container mode {...}
4 container access {
5 container vlan {...}
6 }
7 container trunk {

3. YANG and Pydantic Models 30 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

8 container allowed {
9 container vlan {...}

10 }
11 }
12 container native {...}
13 }
14 }

3. Add a vlans Leaf Inside the vlan Container: This change was required because Cisco
switches include an additional vlans container after the vlan container in their configuration.

1 container trunk {
2 container allowed {
3 container vlan {
4 leaf vlans {!Allow List}
5 }
6 }
7 }

4. Convert the mode Leaf to a Container and set the value to empty: This adjustment
was necessary because Cisco switches use closed tags (containers) for these values rather
than enumerated values.

1 container mode {
2 description
3 "Set trunking mode of the interface";
4 leaf access {
5 type empty;
6 }
7
8 leaf trunk {
9 type empty;

10 }
11 }

5. Rename the switchport-wrapper Container to switchport-config: This change was
required because Cisco switches only accept switchport-config as the tag name.

1 grouping interface-switchport-grouping {
2 container switchport-config {...}
3 }

3.1.2. Openconfig YANG Model - vlans
We utilize the OpenConfig YANG Model for the VLAN definition. Unlike the Cisco Native
YANG Model, the OpenConfig model was used without any modifications, ensuring a standard
and vendor-neutral implementation.

3.2. Pydantic Model
The two Pydantic models generated from the YANG models using Pydantify required additional
customization to meet the project’s requirements and streamline their structure:

3. YANG and Pydantic Models 31 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1. Modified Aliases for Containers After Switchport:
• This adjustment ensured the correct namespace was applied. By default, all containers

in the interface model were assigned the "cisco-native" namespace due to their origin in
the same YANG file. By modifying the aliases, the desired namespaces were correctly
created.

2. Removed Overlapping Containers and Adjusted References:
• Pydantify generated duplicate containers for each interface type, leading to redundancy

and requiring manual intervention to input data into the model.
• To resolve this, overlapping containers were removed, and their references were up-

dated. Since all interface types shared identical containers and leaves, this adjustment
significantly streamlined the structure.

3. Merged the Two Files into a Single Model Class:
• This integration simplified usage by providing a central structure for interacting with

the data and avoided the need to manage multiple files or classes.

3. YANG and Pydantic Models 32 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

4. XML Exporter
This chapter details the configuration of the Python class XMLExporter. To bridge the gap

between the data in Infrahub and the Nornir plugin, we aim to load the data into a Pydantic
model and subsequently transform it into a NETCONF-compliant XML format. Our primary
objective was to design the exporter to be as generic as possible, ensuring that no modifications
would be required if changes were made to the Pydantic model in the future.

4.1. Python Libraries
lxml The lxml library is utilized because it provides advanced XML handling features, such as
the getparent() method. This function is essential for validating the presence of a namespace in
one of the parent elements of the XML tree. The necessity of this Python library is discussed in
the "Issues and Obstacles" chapter.

pydantic The Pydantic library is employed to ensure reliable data validation and parsing. Py-
dantic enables the definition of structured models with strict type enforcement, ensuring that the
data used to generate XML is accurate and conforms to the expected schema. This guarantees
consistency in the input data, reduces errors, and simplifies the transformation process. Its robust
validation capabilities make Pydantic a critical component of the workflow.

Enum The Enum module is used to define and manage enumerations, providing a set of symbolic
names bound to unique, constant values. Enums ensure clarity and consistency in the code by
restricting values to predefined options, thereby reducing the risk of invalid inputs. This enhances
the robustness, readability, and maintainability of the code, especially when dealing with fixed
sets of choices or configurations.

4.2. XMLModelConverter
4.2.1. Static Methods
Only static methods are employed in this code as it operates without the need for object instances.
This approach simplifies the design, tying all methods to the class itself rather than to individual
objects.

4.2.2. Pydantic Data Types
Various data types are used in the code, such as List, Enums, Strings, Integers, etc. This document
does not delve further into these general data types. Additionally, the new data types from
Pydantic, "BaseModel" and "RootModel," are utilized.

BaseModel The "BaseModel" type from Pydantic refers to any model from Pydantic. In the
current use case and to clarify with the YANG Model Types, BaseModels include:

• Container

• Leafs

4. XML Exporter 33 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

RootModel The "RootModel" type from Pydantic is a subcategory and a more specific data
type within Pydantic. It is used for Leafs and the end of the model. To simplify understanding
with the YANG Model Types, Root Models include:

• Leafs

4.2.3. Public Function - to XML
The "to xml" function converts a Python model (of type BaseModel) into a NETCONF-compatible
XML document. An XML structure with a specific namespace is generated, and the model’s
structure is mapped into corresponding XML tags. The code operates as follows:

1. Creating the XML Tree: The function begins by creating an XML tree with a root
element <config> and a specified namespace.

1 root = etree.Element("{urn:ietf:params:xml:ns:netconf:base:1.0}config")

2. Recursive Rendering: The function recursively iterates over the Pydantic model to de-
termine whether a new XML tag needs to be created, if it is a list, or if an existing tag’s
value should be set.

1 if isinstance(model, BaseModel):
2 for modelkey in model.model_fields:
3 if isinstance(model, RootModel):
4 # Call function renderrootmodel (Point 3 - Recursive Root

Rendering)
5 if isinstance(getattr(model, modelkey), list):
6 # Create new XML Tag for every list entry - Namespace Selection

is described in Chapter 4.2.4
7 # Call same Function with every list entry
8 if isinstance(getattr(model, modelkey), BaseModel):
9 # Create new XML Tag - Namespace Selection is described in

Chapter 4.2.4
10 # Call same Function with next Element in the Model
11)
12 return roottree

3. Recursive Root Rendering Upon reaching the end of a model, the function iterates over
the Root Models. As Pydantic generates multiple Root Leafs from the YANG Model, the
value is nested in Root Models. A second recursive function is created to traverse the last
model until a data type is encountered.

1 if isinstance(model, RootModel):
2 # Call same Function with next Leaf
3 elif isinstance(model, bool):
4 return str(model).lower() # Lowercase is required as Cisco Switch

interprets bools in lowercase
5 elif isinstance(model, (str, int)):
6 return model
7 elif isinstance(model, Enum):
8 return model.value
9 return None

4. XML Exporter 34 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 4.1.: Flow Chart to Function ’to xml’

4.2.4. Namespace Handling
To set the correct namespace at the lowest XML tag in the tree, the alias from Pydantic (generated
with the namespace from the YANG file) is used to obtain the correct namespace, and a rendering
function sets it on the lowest element.

The namespace is calculated by splitting it into two parts: namespace and tag name.
1 modelkey_parts = modelkey.split(":", 2)

Handling Cisco Native for Interfaces

1 if "Cisco-IOS-XE" in modelkey_parts[0]:
2 # Create a list with Element 0 = "http://cisco.com/ns/yang/" and Element 1 =

Left Part of the Alias
3 # Combine the list without any separator

4. XML Exporter 35 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Handling OpenConfig for VLANs

1 if "Cisco-IOS-XE" in modelkey_parts[0]:
2 else:
3 # Further split the left part of the alias by the dash "-" into a list
4
5 # Iterate over the list and modify the values as follows:
6 match namespace:
7 case "openconfig":
8 return "http://openconfig.net/yang/"
9 case "if":

10 return "interfaces/"
11 case _:
12 return namespace
13 # Combine the list without any separator

1. The function checkifnamespaceisintree is called with the arguments (tree, namespace).

2. It is verified whether the tree contains the same namespace as the alias.

3. A recursive iteration over all parents is performed as long as:
• The namespace matches the namespace from the TreeElement, resulting in a return of

True.
• The root element is reached, resulting in a return of False.

4. When "False" is obtained, the namespace tag is set.

4. XML Exporter 36 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 4.2.: Namespace Handling

4.2.5. Limitations
Due to the specific requirements of the NETCONF XML format, certain non-generic modifications
have been implemented:

• Namespaces are hardcoded; for example, "Cisco-IOS-XE" must be changed to
http://cisco.com/ns/yang/. If Cisco alters its namespace or new YANG models with
different namespaces are utilized, the code must be adjusted.

• The NETCONF configuration namespace is hardcoded as
{urn:ietf:params:xml:ns:netconf:base:1.0}.

• The root tag is explicitly set to "config".

4. XML Exporter 37 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

4.2.6. Public Function - to Basemodel
The "to basemodel" function converts a given XML document into a Python model. The XML
structure is parsed, and the elements are mapped back into the corresponding fields of the model.
This method is used to transform data from XML format into a Python object for further pro-
cessing or manipulation.

The operation is as follows:

1. The first root element is obtained, and the recursive function is called.
1 dict = XMLModelConverter._to_dict(tree.getroot())

2. A recursive iteration over the given XML tree is performed, creating a dictionary for each
new tag.

1 result = {}
2 for child in tree:

3. The XML tag is split by "}" and the second part is retained, as the tag contains namespace
and name. Only the name is required. If a value exists in the XML, it is retrieved.

1 name = child.tag.split("}", 1)[-1]
2 text = child.text.strip() if child.text else None

4. The name is manually adjusted to match the correct name for Pydantic. This manual task
addresses the differences between NETCONF and Pydantic.

1 match name:
2 case "vlan-id": # Optional: Adjust names
3 name = "vlan_id"
4 case "GigabitEthernet":
5 name = "gigabit_ethernet"
6 case "TenGigabitEthernet":
7 name = "ten_gigabit_ethernet"
8 case "TwentyFiveGigE":
9 name = "twenty_five_gig_e"

10 case "FortyGigabitEthernet":
11 name = "forty_gigabit_ethernet"
12 case "switchport-config":
13 name = "switchport_config"

5. It is verified whether the element has children:
1 if len(child):

4. XML Exporter 38 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

When children are present:

1. The recursive function is called with the
next element and saved.

1 child_dict =
XMLModelConverter._to_dict(child)

2. It is checked whether there is more than
one element with the same tag, for exam-
ple, multiple <GigabitEthernet>. If so, it
is saved in a list; otherwise, it is saved as a
new dictionary entry.

1 if name in result:
2 if not isinstance(result[name],

list):
3 result[name] = [result[name]]
4 result[name].append(child_dict)
5 else:
6 result[name] = child_dict

When no children are present:

• It is verified whether the name is already
in the dictionary; otherwise, an empty dic-
tionary is saved as the value. The empty
dictionary is necessary due to the empty
tag <trunk/> and <access/> in the Mode
Container.

1 if name in result:
2 if not isinstance(result[name],

list):
3 result[name] = [result[name]]
4 result[name].append(text)
5 else:
6 result[name] = text if text else

{}

• It is checked whether the XML tag has a
list as its value.

1 if not isinstance(result[name], list):
2 result[name] = [result[name]]
3 result[name].append(child_dict)

4. XML Exporter 39 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 4.3.: Flow Chart to Function ’to basemodel’

4.3. More Information
The code is published in the GitHub Project1. For additional information or comments, you are
welcome to try out the XMLExporter in the GitHub repository.

1GitHub NetconfXMLExporter: December 16, 2024 https://github.com/raemsli/NetconfXMLExporter.git

4. XML Exporter 40 of 91

https://github.com/raemsli/NetconfXMLExporter.git

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

4.3.1. Demo
The GitHub repository also includes a short demo with some interfaces and VLANs in Cisco
Native and OpenConfig form for better explanation.

4. XML Exporter 41 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

5. Infrahub GitLab Integration
For versioning and storage of our Python scripts, we utilize the integration between Infrahub

and GitLab. This setup ensures efficient management of our codebase, enabling version control,
collaboration, and seamless deployment workflows. GitLab provides robust versioning and repos-
itory management, while Infrahub facilitates infrastructure automation, ensuring a streamlined
and scalable development pipeline.

5.1. Infrahub
We initially started using Infrahub version 0.16. Since Infrahub is a relatively new platform, it
still undergoes frequent updates. Midway through our project, it had a major release, upgrading
to version 1.0.0. Following that, several new releases were rolled out, focusing on enhancing
functionality and fixing bugs.

5.1.1. Schema
The schema in Infrahub defines the structure, behavior, and relationships of entities within the
system and directly influences the design of the GUI and data structure of Infrahub. This subsec-
tion provides an overview of the schema’s components, including nodes, attributes, and relation-
ships. Our straightforward design decision was driven by the client’s needs. The primary goal
was to make it as simple as possible, ensuring ease of use.

5.1.2. Schema Customization
Infrahub’s schema is highly customizable, allowing users to define nodes, attributes, and relation-
ships to match their specific use cases. This schema provides a robust framework to define and
manage networking resources. By extending or modifying nodes, attributes, and relationships,
users can tailor Infrahub to their specific requirements.

For further details, refer to the Infrahub Schema Documentation1.

Detailed Components

The components seen in the schema diagram 5.1 directly correspond to the nodes in the GUI
menu, as shown in Figure 5.2. Each node represents a specific entity in the system, such as a
device, interface, or VLAN. The relationships between nodes define how they interact and connect
with each other. The schema’s structure is designed to reflect the real-world relationships between
network devices and their configurations.

Nodes: Nodes represent the main entities within the system. Each node includes metadata
such as name, namespace, attributes, and relationships.

Our Nodes
1. Device: Represents network devices with attributes like name, description, platform,

user, password, port, and status. The relationships include interfaces.

2. Interface: Describes network interfaces, associated with a device. Attributes include
name, description, mode, and status, with relationships to device, ip_address, and
VLANs.

1Infrahub Schema Documentation: December 16, 2024 https://schema.infrahub.app

5. Infrahub GitLab Integration 42 of 91

https://schema.infrahub.app

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 5.1.: Infrahub schema diagram

Figure 5.2.: Infrahub Menu showing all the nodes that are in the schema

3. VLAN: Represents VLAN configurations, with attributes for name, vlan_id, and status.
This node is used to create a resource pool, allowing one to assign the pool to an interface,
and Infrahub will create a new VLAN with the next free vlan_id.

4. IP Prefix and IP Address: Defines IP-related entities in the IPAM namespace, inheriting
from built-in Infrahub components.

1. Attributes define the properties of a node. Each attribute may include:

• name: The attribute name must be unique within a model and must be all lowercase.

• kind: The data type, such as Text, Number, or Dropdown.

• unique: Indicates if the value of this attribute must be unique in the database for a given
model.

• optionality: Indicates whether the attribute is mandatory or optional.

Example:

5. Infrahub GitLab Integration 43 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1 attributes:
2 - name: name
3 kind: Text
4 unique: true
5 - name: status
6 kind: Dropdown
7 choices:
8 - name: active
9 label: Active

10 description: "Device is active"
11 color: "#7fbf7f"
12

2. Relationships define connections between nodes. Each relationship includes:

• name: The relationship name must be unique.

• identifier: Unique identifier of the relationship within a model; identifiers must match to
traverse a relationship in both directions.

• peer: The related node or entity.

• kind: The nature of the relationship (e.g., Component, Parent, or Attribute).

• cardinality: Specifies the number of connections (e.g., one, many).

Example:
1 relationships:
2 - name: interfaces
3 identifier: "device__interface"
4 cardinality: many
5 peer: NetworkInterface
6 kind: Component

3. Inheritance and Uniqueness Nodes can inherit properties from other entities or enforce
uniqueness constraints.

Example:
1 inherit_from: ["CoreArtifactTarget"]
2 uniqueness_constraints:
3 - ["device", "name__value"]

4. Icons and Display Infrahub supports customizable icons and display labels for visual repre-
sentation in the UI.

Example:
1 icon: "mdi:router-network"
2 display_labels:
3 - "name__value"

After defining the schema, the nodes, attributes, and relationships are displayed in the Infrahub
UI as seen in Figure 5.3.

5. Infrahub GitLab Integration 44 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 5.3.: Infrahub showing all the interfaces that are currently available on a specific device

5.2. GitLab
To manage and store Schemas, PythonTransformations, Checks, Artifact Definitions, and
GraphQL Queries, we integrate Infrahub with GitLab for version control and file storage. This
integration provides a secure and efficient way to track changes to our scripts while maintaining
a history of revisions.

The GitLab repository instance is hosted at our university’s GitLab (gitlab.ost.ch), chosen
specifically for its enhanced security and suitability for handling sensitive data. This ensures that
all scripts and configurations are kept in a secure environment that meets our data protection
requirements.

5.2.1. GitLab Integration
For authentication, we use a GitLab Access Token. This token allows Infrahub to securely interact
with our GitLab repository, providing the necessary permissions to pull branches and commits
while ensuring that access is properly controlled.

The integration within Infrahub is configured as a repository, which allows us to automatically
pull all branches and commits. This setup ensures that any changes made to the repository are
automatically reflected in the Infrahub system without the need for manual intervention.

We opted for a Repository integration rather than a Read-only Repository for practical
reasons. With a Read-only Repository, new commits would need to be manually loaded by
updating the "ref" in the repository definition. This process could introduce unnecessary delays
and manual steps, so using a fully functional repository that supports automatic pulling of new
commits and branches provides a more streamlined and efficient workflow.

5. Infrahub GitLab Integration 45 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

5.2.2. GraphQL
We use a GraphQL query to retrieve and filter data from Infrahub. The flexibility of GraphQL
allows us to specify the individual device name in the query, enabling us to tailor the request to
the specific device’s data. This is essential because we create a separate NETCONF XML for
every device and only require the data linked to the specific device. In the GraphQL query, this
is achieved as follows:

Listing 5.1: GraphQL query to retrieve device-specific data
1 query GetDevice ($device: String!) {
2 NetworkDevice(name__value: $device) {
3 edges { ... }
4 }
5 }

The query processes the data and returns it as a dictionary, which is subsequently passed to
the transformation function.

5.2.3. PythonTransform
To convert the retrieved data into a NETCONF XML, we employ a Python-based transformation.
This transformation is implemented as a class that inherits from the InfrahubTransform base
class. The core asynchronous function is transform, which takes self and data as arguments.
Additionally, the GraphQL query required to fetch the data must be defined prior to implementing
the transformation logic. To better understand how the function operates, refer to the flow
diagram in Figure 5.4.

5. Infrahub GitLab Integration 46 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 5.4.: Flow diagram for the Python Transformation Function
For clarity, the transform function is divided into four key parts:

1. Class Definitions

2. Creating the VLAN Model (yellow in Figure 5.4)

3. Creating the Interface Model (light orange in Figure 5.4)

4. Using the XMLExporter class to convert the Pydantic model into a NETCONF XML.

Class Definitions Using the InfrahubTransform Python library, we define the transformation
class and inherit its methods. Within the inherited class, we specify the GraphQL query name
and implement the asynchronous transform function, which accepts self and the data obtained
from GraphQL.

1 from infrahub_sdk.transforms import InfrahubTransform
2
3 class TransformIntoNetconf(InfrahubTransform):
4 query = "GetInterfacefromDevice"
5
6 async def transform(self, data: Dict[str, Any]) -> str:
7 # Implementation goes here

5. Infrahub GitLab Integration 47 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Creating the VLAN Model
For the VLAN model, we adhere to the structure of the OpenConfig YANG model. The input
data is nested, with the key edges containing a list of all VLANs defined in Infrahub. We iterate
through this list, extract the required values from the nested dictionaries, and assign them to a
Pydantic container. Finally, we append the container to a newly created list.

1 vlanlist = []
2
3 for vlan in data["NetworkVlan"]["edges"]:
4 vlanname = vlan["node"]["name"]["value"]
5 vlanid = vlan["node"]["vlan_id"]["value"]
6 vlanentry = VlanListEntry2(
7 vlan_id=vlanid, config=ConfigContainer(vlan_id=vlanid, name=vlanname)
8)
9 vlanlist.append(vlanentry)

Creating the Interface Model
For the interface model, we follow the Cisco native structure. The logic mirrors that used for
VLANs: iterating through interfaces, creating the appropriate containers, and appending them
to the corresponding lists.

1 gigabit_ethernet_interfacelist = []
2 ten_gigabit_ethernet_interfacelist = []
3 twenty_five_gigabit_ethernet_interfacelist = []
4 forty_gigabit_ethernet_interfacelist = []
5
6 for intf in data["NetworkDevice"]["edges"][0]["node"]["interfaces"]["edges"]:
7 # Create interface list entries
8
9 match interfacespeed:

10 case "GigabitEthernet":
11 gigabit_ethernet_interfacelist.append(interfacelistentrys)
12 case "TenGigabitEthernet":
13 ten_gigabit_ethernet_interfacelist.append(interfacelistentrys)
14 case "TwentyFiveGigE":
15 twenty_five_gigabit_ethernet_interfacelist.append(interfacelistentrys)
16 case "FortyGigabitEthernet":
17 forty_gigabit_ethernet_interfacelist.append(interfacelistentrys)

However, Cisco’s native structure is more complex, requiring additional logic. This section is
further divided into sub-steps for clarity:

Interface Name The interface speed (e.g., "GigabitEthernet") and name (e.g., "1/0/1") are
combined in Infrahub but need to be separated for Cisco. A regex function is used to split these
values based on the following pattern:

1. Unlimited letters

2. One or two digits

3. Optional backslash or empty string (e.g., Vlan1 is valid)

4. One or two digits, or empty

5. Optional backslash or empty string (e.g., GigabitEthernet1/1 is valid)

5. Infrahub GitLab Integration 48 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

6. One or two digits, or empty

If no match is found, the interface is skipped. Otherwise, the regex splits the name into two
parts:

1 pattern = r"(.*?)([0-9](?:/[0-9](?:/[0-9]([0-9])?)?)?)$"
2
3 match = re.match(pattern, intf["node"]["name"]["value"])
4 if not match:
5 continue # Skip this interface if the name doesn't match the pattern
6
7 interfacespeed = match.group(1)
8 interfacename = match.group(2)

Container Matching Each port speed requires a specific container and mode. Using a match-
case clause, we define the container for each case. If no match is found, the interface is created
with just a name (equivalent to "no config" in Cisco):

1 trunkvlanidlist = []
2
3 match intf["node"]["mode"]["value"]:
4 case "trunk":
5 for trunkvlan in intf["node"]["vlan"]["edges"]:
6 # Assign VLAN IDs to trunkvlanidlist
7
8 interfacelistentrys = InterfaceListEntry(
9 name=interfacename,

10 switchport_config=SwitchportConfigContainer(
11 switchport=SwitchportContainer(
12 mode=ModeContainer(trunk=TrunkLeaf()),
13 trunk=TrunkContainer(
14 allowed=AllowedContainer(
15 vlan=VlanContainer2(
16 vlans=",".join(map(str, trunkvlanidlist))
17)
18)
19),
20)
21),
22)
23
24 case "access":
25 interfacelistentrys = InterfaceListEntry(
26 name=interfacename,
27 switchport_config=SwitchportConfigContainer(
28 switchport=SwitchportContainer(
29 mode=ModeContainer(access=AccessLeaf()),
30 access=AccessContainer(
31 vlan=VlanContainer(
32

vlan=intf["node"]["vlan"]["edges"][0]["node"]["vlan_id"]["value"]
33)
34),
35)
36),
37)
38

5. Infrahub GitLab Integration 49 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

39 case _:
40 interfacelistentrys = InterfaceListEntry(
41 name=interfacename,
42 switchport_config=SwitchportConfigContainer(),
43)

Building the Final Model
Finally, we create the model, convert it into XML, and return it as a string. Currently, Infrahub
only supports JSON and plain text as artifact types, so the XML must be returned as a string.
Support for XML as a native data type is planned for future releases.

1 model = Model(
2 vlans=VlansContainer(vlan=vlanlist),
3 native=NativeContainer(
4 interface=InterfaceContainer(
5 gigabit_ethernet=gigabit_ethernet_interfacelist,
6 ten_gigabit_ethernet=ten_gigabit_ethernet_interfacelist,
7 twenty_five_gig_e=twenty_five_gigabit_ethernet_interfacelist,
8 forty_gigabit_ethernet=forty_gigabit_ethernet_interfacelist,
9)

10),
11)
12 xmlcontent = XMLModelConverter.to_xml(model)
13 xml_string = ETree.tostring(xmlcontent, encoding="unicode")
14 return parseString(xml_string).toprettyxml()

Artifact Definition
Artifacts are used to link the generated NETCONF XML with the corresponding devices in
Infrahub. Whenever a value is changed in Infrahub, a new artifact is automatically created to
reflect these changes, and the previous artifact is stored for versioning purposes. This ensures
that every version of the configuration is preserved and can be referenced as needed.

Artifacts are defined using an Artifact Definition, which specifies the necessary parameters
and input variables for the artifact. For our use case, the Artifact Definition is configured with
several key elements:

• PythonTransformation: The transformation logic that converts the data from Infrahub
into a Pydantic model and generates the NETCONF XML.

• GraphQL: The GraphQL query used to retrieve the device-specific data from Infrahub.

• Device as Input Variable: The device being processed, which serves as the input for the
transformation.

• StandardGroup: A group of target devices that the artifact applies to. The devices in
this group are considered the recipients of the generated NETCONF XML.

5.2.4. Checks
We decided to create our custom check to address a specific need in our Infrahub schema. The
Interface node in our schema supports multiple modes: none, trunk, and access. According to
configuration standards, interfaces in access mode should be associated with exactly one VLAN,
while interfaces in trunk mode can have multiple VLANs.

5. Infrahub GitLab Integration 50 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

However, due to the cardinality setting for the relationship, we had to choose many to allow
multiple VLANs for trunk mode. This created a challenge: it became possible to assign more
than one VLAN to interfaces in access mode, violating our intended configuration rules.

To solve this, we implemented a custom check. This check ensures that any proposed changes
to the schema are validated against the rule that access mode interfaces must have exactly one
VLAN. If an interface in access mode is found to have more than one VLAN, the check logs an
error, notifying users that this configuration is not allowed.

The validate_interfaces.py script implements a custom Infrahub check named check_access_mode.
This check was created to ensure compliance with network configuration rules regarding VLAN
assignments for interfaces in access mode. We created this check with the help of the Infrahub
documentation.2.

How It Works:

1. GraphQL Query: The GetInterfaceDetails query fetches details about all interfaces,
including their mode and associated VLANs.

2. Validation Logic: The check_access_mode class processes the query results. For each
interface in access mode, it counts the associated VLANs. If the count is not exactly one,
an error is logged.

3. Error Logging: Errors include detailed messages identifying the misconfigured interface
and the number of associated VLANs:

1 Interface 'Interface1' is in 'access' mode but has 2 VLAN(s).

After creating a proposed change with an incorrect configuration (in our example, configuring
the interface in access mode with 2 VLANs), the check will fail, and a window will appear as you
can see in Figure 5.5.

Figure 5.5.: Check ’check_access_mode’ failed because an interface in ’access’ mode has 2 VLANs

2Infrahub Documentation: December 16, 2024 https://docs.infrahub.app/topics/check

5. Infrahub GitLab Integration 51 of 91

https://docs.infrahub.app/topics/check

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Use Case: This check is particularly useful during:

• Schema Updates: Ensuring new configurations comply with access mode VLAN rules.

• Data Imports: Validating imported data to maintain consistent relationships and avoid
misconfigurations.

• Automated Pipelines: Running this check as part of CI/CD workflows to catch errors
before deployment.

Benefits:

• Prevents invalid configurations, reducing troubleshooting time.

• Ensures adherence to network standards for VLAN assignments.

• Automates validation, eliminating manual checks and improving efficiency.

5. Infrahub GitLab Integration 52 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

6. Nornir Conditional Runner
To ensure the network remains operational during configuration updates, especially when the

changes extend beyond VLANs or if there is a misconfiguration, we have been tasked with devel-
oping a custom runner plugin for Nornir. This plugin will help manage and control task execution
to avoid disruptions and maintain network stability. This part of the project is open-source and
will be published on GitHub1 and made available through PyPi2.

6.1. Introduction
The ConditionalRunner is a custom Nornir runner that enforces concurrency limits based on host
groups. It allows you to control task execution by defining limits on the number of simultane-
ous tasks for specific groups of hosts, ensuring your Nornir tasks do not update vital network
devices simultaneously. You can also specify skipping the rest of the group if a certain number
of vital tasks fail. It is built on the threaded runner, with added conditional group_limits and
group_fail_limits managed internally by a data structure consisting of semaphores, conditions,
and counters, allowing tasks to remain idle in a waiting state until the start conditions are met.
Installation and usage instructions are available in Appendix 2.

6.2. Fail Limits Feature
The group_fail_limits option allows you to specify the maximum number of failed tasks for a
group before the runner skips the remaining tasks in the group. This feature is useful when you
want to limit the impact of failing tasks on your network. For example, if one core device fails,
you may want to skip the rest of the core devices to avoid further issues. The runner will only
skip the tasks that are still waiting to run, not those that are already running.

The skip_unspecified_group_on_failure option sets the fail limit to 1 for all groups that do
not have a group_fail_limit specified. This default behavior can be overridden by specifying
skip_unspecified_group_on_failure = False, which will cause the runner not to skip the unspec-
ified groups on failure. The specified group_fail_limits will always be used to skip the group on
failure.

6.3. Logging
The ConditionalRunner leverages Python’s built-in logging system to provide insights into its
operation. It logs key events, such as:

• Warnings when a group is configured on a host but is missing in group_limits, defaulting
to the global limit.

• Warnings when an invalid or missing conditional_group_key causes a fallback to host
groups.

• Warnings if the group_fail_limits for a group are met or exceeded.

1GitHub repository: December 11, 2024 https://github.com/InfrastructureAsCode-ch/nornir_conditional_
runner

2PyPi package: December 11, 2024 https://pypi.org/project/nornir-conditional-runner/

6. Nornir Conditional Runner 53 of 91

https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner
https://pypi.org/project/nornir-conditional-runner/

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 6.1.: Demo topology with conditional groups

6.4. Demo
A demo is available in the GitHub repository3. The topology of the INS network is utilized to
demonstrate the ConditionalRunner, as it presents an interesting and complex use case involving
circular conditions.

6.5. Error Handling / Fallback to Default Behavior of the Threaded
Runner

• If the conditional_group_key is provided but no conditional groups are defined in the host
data, the runner will warn you and default to using the host groups as the conditional
groups.

• If no group_limits are specified for a group, the runner will default to using the global
num_workers value as the limit.

• If neither group_limits nor a conditional_group_key are provided, the runner will fall back
to using the host groups as conditional groups, with the default limits set to the global
num_workers. This behavior mirrors that of the default threaded Nornir runner.

• Invalid group limits (i.e., non-positive integers) will result in a ValueError.

3GitHub repository - demo: December 11, 2024 https://github.com/InfrastructureAsCode-ch/nornir_
conditional_runner/blob/main/demo/demo.py

6. Nornir Conditional Runner 54 of 91

https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/blob/main/demo/demo.py
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/blob/main/demo/demo.py

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

6.6. Code Decisions
Initially, we tried to implement the ConditionalRunner with a combination of 4 but quickly realized
that although this approach might be sufficient to meet the requirements, there is a better way
to implement the runner. We decided to implement the runner using a combination of concepts
we learned in the course on parallel programming. Semaphores are used to control the number of
tasks that can run concurrently, conditions to signal when a task can start running, and counters
and locks to keep track of failed tasks. The first prototype of the runner used only semaphores,
but this meant that once a semaphore was locked, a task further down in the start list that could
have started was also blocked. We first solved this issue by implementing a start queue and
shuffling the tasks in the queue. This approach worked but used a small portion of CPU cycles
to shuffle the queue and perform a busy wait. As shown in Figure 6.2, the CPU usage is only the
busy wait, as the tasks we run just wait for 20 seconds.

Figure 6.2.: Resource usage with busy wait

Therefore, we decided to eliminate the busy wait and add conditions, dispatching the task
start into its own function so that later tasks can skip waiting ones. This approach allowed us to
implement the runner more efficiently and reliably. Additionally, we reduced the CPU usage to
0% when the tasks are waiting to start, as shown in Figure 6.3.

Figure 6.3.: Resource usage of the final conditional runner

We even achieved performance comparable to the threaded runner. As shown in Figure 6.4,
the threaded runner has overhead to start a task of around 21 milliseconds.

4Nornir Filter: December 11, 2024 https://nornir.readthedocs.io/en/latest/howto/advanced_filtering.html

6. Nornir Conditional Runner 55 of 91

https://nornir.readthedocs.io/en/latest/howto/advanced_filtering.html

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 6.4.: Threaded runner 20s task - all run in parallel

The ConditionalRunner has about the same overhead (28 milliseconds) to start a task as the
threaded runner, as shown in Figure 6.5, even though the ConditionalRunner has to resolve some
circular conditions and start the tasks in two batches sequentially.

Figure 6.5.: Conditional runner 20s task - many conditions causing two batches

6.7. Testing
Testing the ConditionalRunner was crucial to ensure its reliability and stability. We used the
Pytest framework to write unit tests for the runner, covering various scenarios and edge cases.
The tests are available in the GitHub repository5. The test coverage of 98.8% is highlighted as a
badge on the repository to build confidence with new users.

To ensure we only test our runner code and not the Nornir code, we used unittest.mock to
mock the Nornir tasks and results.

6.8. Publishing and CI/CD
The ConditionalRunner is published on PyPi and available for download using pip. This is done
using the GitHub Actions CI/CD pipeline6, which automatically tests the package for Python
3.8 - 3.13, builds, and publishes it to PyPi when a new release/version is created on GitHub.
The code is formatted and linted using ruff and checked with mypy for type hints. Additionally,
the code coverage is checked with pytest-cov and automatically uploaded to a JSON on GitHub
Pages7 which is used by the coverage badge.

5GitHub repository - test: December 11, 2024 https://github.com/InfrastructureAsCode-ch/nornir_conditional_
runner/blob/main/tests/test_conditional_runner.py

6GitHub Actions CI/CD pipeline: December 11, 2024 https://github.com/InfrastructureAsCode-ch/nornir_
conditional_runner/blob/main/.github/workflows/main.yaml

7GitHub Pages branch: December 11, 2024 https://github.com/InfrastructureAsCode-ch/nornir_conditional_
runner/tree/gh-pages

6. Nornir Conditional Runner 56 of 91

https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/blob/main/tests/test_conditional_runner.py
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/blob/main/tests/test_conditional_runner.py
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/blob/main/.github/workflows/main.yaml
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/blob/main/.github/workflows/main.yaml
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/tree/gh-pages
https://github.com/InfrastructureAsCode-ch/nornir_conditional_runner/tree/gh-pages

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Additionally, we placed the ConditionalRunner in the official Nornir Plugin List8 and it appears
that users are responding positively.

6.9. Integration into Our Project
Integrating the ConditionalRunner into our project was straightforward as we could replace the
threaded runner with our conditional runner and set the group limit to 1.

1 nr: Nornir = InitNornir(
2 runner={
3 "plugin": "ConditionalRunner",
4 "options": {
5 "num_workers": 2,
6 "group_limits": {
7 "CiscoSwitches": 1,
8 },
9 "group_fail_limits": {

10 "CiscoSwitches": 1,
11 },
12 "skip_unspecified_group_on_failure": True,
13 },
14 },
15)

In Infrahub, a device can be added to groups that it belongs to, as shown in Figure 6.6.

Figure 6.6.: Group definition in Infrahub

As a result, it is clearly seen that the task for each device starts one after the other, as shown
in Figure 6.7.

8Official Nornir Plugin List: December 11, 2024 https://nornir.tech/nornir/plugins/

6. Nornir Conditional Runner 57 of 91

https://nornir.tech/nornir/plugins/

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 6.7.: Prefect with conditional runner

6.10. Conclusion of the ConditionalRunner Component
Developing the ConditionalRunner for Nornir was a great experience. We learned a lot about
the Nornir framework, threading, and concurrency in Python. Additionally, we valued the op-
portunity to contribute to the open-source community and connect with the bright minds in the
network automation community.

6. Nornir Conditional Runner 58 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

7. Infrastructure
Our infrastructure is separated into two parts: the development environment using Docker and

the production environment on Kubernetes.

7.1. Overview
This document outlines the infrastructure setup for our project. Our infrastructure is divided
into two main environments: the development environment using Docker and the production
environment on Kubernetes. This separation allows us to develop and test our application in an
isolated environment before deploying it to production.

7.1.1. Development Environment
The development environment is designed to provide a consistent and isolated setup for each
developer. We use Docker to create a devcontainer that includes all necessary tools and de-
pendencies. This setup ensures that all developers work in the same environment, reducing the
chances of environment-specific issues.

7.1.2. Production Environment
The production environment is hosted on a Kubernetes cluster, providing scalability and reliabil-
ity. We use various tools and configurations to deploy our application, ensuring it runs smoothly
in production.

7.2. Development Setup
We decided to first build the infrastructure in a development environment (docker-environment)
and then move to production. This was done to create an easy playground for each of us to test
and develop the application rapidly without interrupting each other.

7.2.1. Devcontainer
The devcontainer is used for our convenience, as it allows us to have a consistent development
environment. The code can also be run within a virtual environment on the host machine, as
described in the ReadMe.md1. However, the devcontainer takes care of installing all the CLI tools
and environment variables for us. Additionally, if we break something during development, we
can simply delete the container and start over. We need Python and Docker-in-Docker in the de-
vcontainer. Additionally, we automatically install Prefect, Task, Poetry, and all the dependencies
of our project.

7.2.2. Task
Task2 is used to make it easy to set up and run the whole project with a few commands. The
command task setup creates a virtual environment, installs all the dependencies, starts Infrahub,
the Prefect server, and the Prefect pool. The command task load-data loads the Prefect de-
ployments into Prefect and the data of our Cisco switches into Infrahub. There are also tasks

1GitLab repository - ReadMe: December 11, 2024 https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/ins_
network_automation/-/blob/main/README.md?ref_type=heads

2Task Website: December 11, 2024 https://taskfile.dev/

7. Infrastructure 59 of 91

https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/ins_network_automation/-/blob/main/README.md?ref_type=heads
https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/ins_network_automation/-/blob/main/README.md?ref_type=heads
https://taskfile.dev/

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

like start, stop, prefect-stop, and destroy, which take care of all the other needs we had during
development.

7.2.3. Poetry
Poetry3 is used to manage the dependencies of our project. It is a great tool for managing
dependencies and the virtual environment. A package is created from our project and groups the
dependencies to separate the development dependencies from the production dependencies. This
way, we can easily install the production dependencies in the production environment and only
the development dependencies in CI jobs. Poetry also takes care of creating a CLI shortcut for us,
so we can run the project with iac_sa and register the connection plugin for NcDiff. Additionally,
the rule set for Ruff4 and MyPy5 are defined in the pyproject.toml file.

7.2.4. Docker-Compose
A stable version of the Infrahub docker-compose file is slightly modified so the Infrahub task
worker is able to run lxml, as we need it for the transfer function of the Infrahub artifact.

7.2.5. Prefect
We use our own instance of the Prefect server in the test setup, unlike in production. This way,
we can easily test the Prefect flows and the Prefect workers and break things in Prefect without
any consequences. Additionally, the first version of Infrahub did not use Prefect as a backend, so
we had to use our own instance of Prefect.

7.3. Production
The production environment is hosted on a Kubernetes cluster. The following tools are used to
deploy our application.

7.3.1. Infrahub Helm
The Infrahub Helm chart is used to deploy the Infrahub application on the Kubernetes cluster.
The default Helm chart values are slightly modified to fit our needs. HTTPS extraTLS is added,
which works with a wildcard certificate. The package lxml is added to the Infrahub worker by
adding the install command to the args of the pod. In the future, this could be improved by
using a custom Docker image with the package already installed. Additionally, we had to give
the RabbitMQ pod more resources and adjust the startup probes, as it was taking too long to
start up and Kubernetes was killing the pod. This was suggested to us by an ObsMill engineer in
their Discord channel.6 We did not set it to unlimited, as the pod could potentially take up all
the resources of one node. We just gave it a few more resources and adjusted the startup probes.
The discrepancy between the default values probably comes from the fact that our Kubernetes
cluster does not have as much IOPS all the time as required by ObsMill.7

3Poetry Website: December 11, 2024 https://python-poetry.org/
4Ruff bleeding edge formatter and linter: December 11, 2024 https://docs.astral.sh/ruff/
5MyPy static type checker: https://www.mypy-lang.org
6ObsMill Discord: December 13, 2024 https://discord.com/channels/1212332642801025064/

1301914405176475729/threads/1312826976905723905
7ObsMill Website: December 13, 2024 https://docs.infrahub.app/topics/hardware-requirements/

7. Infrastructure 60 of 91

https://python-poetry.org/
https://docs.astral.sh/ruff/
https://www.mypy-lang.org
https://discord.com/channels/1212332642801025064/1301914405176475729/threads/1312826976905723905
https://discord.com/channels/1212332642801025064/1301914405176475729/threads/1312826976905723905
https://docs.infrahub.app/topics/hardware-requirements/

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

In an older version of Infrahub (v1.0.8), we had to replace the NFS provisioner with a different
one, as the one in the chart was not working. The stable/nfs-client-provisioner chart8 is used,
and the values are changed to disable the Infrahub chart. This was fixed in the newer version
of the NFS provisioner. This error probably also came from the fact that ObsMill is still rapidly
developing Infrahub and changed the NFS provisioner to a ReadWriteOnce PersistentVolume.

7.3.2. Cert-Manager
We use cert-manager9 to manage the certificates for our application. Cert-manager is a Kuber-
netes add-on to automate the management and issuance of TLS certificates from various issuing
sources. We use Let’s Encrypt as the issuer for our certificates. The certificates are stored in a
secret and mounted to the Infrahub ingress. The certificates are automatically renewed by cert-
manager. We had to use the ACME DNS-01 challenge, as our website is not publicly reachable.

7.3.3. Prefect and Ingress
In production, we did not use our own instance of Prefect, as we could simply reuse the one from
Infrahub and save some resources. Additionally, we gained some insight into the inner workings
of the event-based job starts of Infrahub. For this, we just added a custom ingress to the Prefect
server, which could reuse the same wildcard certificate.

7.3.4. Custom Prefect Worker and Dockerfile
To run the Nornir NETCONF deployment code on the Kubernetes cluster, we had to create a custom
Docker image.

At first, we experimented with Prefect’s Kubernetes working pool.10 However, as all the
documentation was just for AWS, GCP, or Azure clusters, we looked at the chart to add a
Prefect worker to Kubernetes.11 In this chart, we found a locally hosted option, but it was
protected by "accountId" and we figured, as it was not documented, it is not included anymore
in the free tier. We managed to run a Prefect worker pool on the local machine with access to the
Kubernetes config, which was able to create new pods for flow runs, but Prefect is designed to
install dependencies on the worker using Environment Variables. This means it always installs
the Python package dependencies at flow start. Alternatively, Prefect provides the option to use
a custom Docker image but only from a public registry for Kubernetes pools, and one still needs
a machine that runs all the time and has access to create pods on the Kubernetes cluster.12

At this point, inspired by the fact that a worker can also pull just code from a private git
repository, we figured we could also use a custom Docker image running a small Python Prefect
script which we developed ourselves by combining a few Prefect functions we found in the Prefect
documentation.13 This way, we only pull the code into a running container and do not have to
pull a Docker image from a registry every time a flow wants to run, and we do not need to build
and publish a new container every time the code changes, decoupling the infrastructure from the
code. This ensures that the infrastructure is just there to support the code’s requirements and

8NFS Service Provisioner: December 13, 2024 https://github.com/kubernetes-sigs/
nfs-ganesha-server-and-external-provisioner/tree/HEAD/charts/nfs-server-provisioner

9Cert-Manager Website: December 13, 2024 https://cert-manager.io/
10Run Prefect flows on Kubernetes: December 13, 2024 https://docs.prefect.io/v3/deploy/

infrastructure-examples/kubernetes
11Prefect Helm Chart: December 13, 2024 https://github.com/PrefectHQ/prefect-helm
12Prefect Kubernetes Worker: December 13, 2024 https://docs.prefect.io/v3/deploy/infrastructure-examples/

kubernetes
13Run Prefect flows in Docker container: December 13, 2024 https://docs.prefect.io/v3/deploy/

infrastructure-examples/docker

7. Infrastructure 61 of 91

https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner/tree/HEAD/charts/nfs-server-provisioner
https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner/tree/HEAD/charts/nfs-server-provisioner
https://cert-manager.io/
https://docs.prefect.io/v3/deploy/infrastructure-examples/kubernetes
https://docs.prefect.io/v3/deploy/infrastructure-examples/kubernetes
https://github.com/PrefectHQ/prefect-helm
https://docs.prefect.io/v3/deploy/infrastructure-examples/kubernetes
https://docs.prefect.io/v3/deploy/infrastructure-examples/kubernetes
https://docs.prefect.io/v3/deploy/infrastructure-examples/docker
https://docs.prefect.io/v3/deploy/infrastructure-examples/docker

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

dependencies, as it is Prefect’s goal. First, the gitOps.py14 loads the source code from the git
repository using an access token secured in a Prefect secret. Then it converts the source code
containing flows to Prefect deployments and serves the deployments to the Prefect server. The
validate flow has a schedule of 30 minutes.

The Dockerfile15 we created is based on a Python bookworm image, installing all the depen-
dencies we need for the code to run with the same project.toml and poetry.lock as the nornir
NETCONF deployment code repository. This Docker container is automatically built and pushed to
the GitLab registry on every merge to the main branch. This Docker image is used by the iac-
prefect-worker deployment in the Kubernetes cluster, which can also run in multiple replicas.
The second replica will take over once the first goes down and is recreated by Kubernetes, as we
quickly found out by testing it, deleting an iac-prefect-worker pod.

7.4. Conclusion of Infrastructure
In conclusion, our infrastructure setup allows us to develop and deploy our application efficiently.
The development environment using Docker provides a consistent and isolated environment for
each developer, while the production environment on Kubernetes ensures scalability and reliabil-
ity. The use of tools like Task, Poetry, and Prefect streamlines our workflow and makes it easy
to manage dependencies and automate tasks.

14GitLab repository - gitOps.py: December 13, 2024 https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/
deployment-repo/-/blob/main/gitOps.py?ref_type=heads

15GitLab repository - Dockerfile: December 13, 2024 https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/
deployment-repo/-/blob/main/Dockerfile?ref_type=heads

7. Infrastructure 62 of 91

https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/deployment-repo/-/blob/main/gitOps.py?ref_type=heads
https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/deployment-repo/-/blob/main/gitOps.py?ref_type=heads
https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/deployment-repo/-/blob/main/Dockerfile?ref_type=heads
https://gitlab.ost.ch/ins-stud/sa-ba/sa-hs24-iac/deployment-repo/-/blob/main/Dockerfile?ref_type=heads

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

8. Technical Issues and Obstacles
During the implementation of our system, we faced several technical challenges that impacted

the development process. In this chapter, we describe these obstacles and the solutions we devised
to overcome them. By addressing these issues, we were able to refine our approach, improve
system performance, and ensure a more robust and efficient solution.

8.1. NETCONF XML Exporter Class
Problem The namespaces in a NETCONF XML must match exactly what the Cisco switch
expects. However, Pydantic often compresses and aliases namespaces, which causes mismatches.
For example: Correct Namespace: "http://openconfig.net/yang/vlan"

Pydantic Alias: "openconfig-vlan:vlan-id"

Solution

1. Split the Alias: We split the Pydantic alias into two parts at the colon symbol. The right
side (e.g., "vlan-id") becomes the XML tag name.

2. Map the Left Side: We split the left side (e.g., "openconfig-vlan") at the dash and use a
match-case statement to map each part to the correct namespace (e.g., "http://openconfig.net/yang").

3. Manual Mapping: We manually define each alias compression performed by Pydantic to
ensure the correct namespace is used.

This approach ensures the namespaces in the generated XML match exactly what the Cisco
switch expects. You can find more details and the code implementation in Chapter 4.2.4.

8.2. Nornir NETCONF Deployment
Problem Comparing two XML files is challenging because the order of the XML tags can vary.
This makes it difficult to determine if two XML files are identical. Initially, it always compared
two different interfaces because the order of the tags was different or the content was similar
(deep-diff behavior). Additionally, the XML diff returned by the xmldiff library is not very
useful for a user-friendly report.

Solution

1. Use IDs for the XML tags: We use IDs for the XML tags to ensure that the order of the
tags does not affect the comparison. This allows us to compare the content of the XML
files rather than the order of the tags.

2. Write a Custom XML Diff: We write a custom XML diff that compares the content of the
XML files and generates a user-friendly report. This allows us to attach the report to the
email notification and provide the user with a clear overview of the differences between the
XML files.

More information can be found in the XML Diff section 2.1.4.

8. Technical Issues and Obstacles 63 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

8.3. Nornir Replace Operation
Problem The YANG model OpenConfig interfaces implementation on the Cisco switches does
not support the replace operation on a complete interface.

Solution We use the merge operation to update the interface configuration and only replace
the subcontainer of the interface. This allows us to update the interface configuration without
affecting the rest of the configuration.

More information can be found in the Validate or Deploy Configuration section 2.1.3.

8.4. Conversion to Cisco Native Model
Problem During the integration and testing of all the components, we realized that the Cisco
switches have a poor implementation of the OpenConfig YANG model in the trunk VLAN list.
The Cisco implementation is not fully compliant with the OpenConfig YANG model. OpenConfig
VLAN has multiple VLANs represented as multiple <trunk-vlan> tags.

1 <config>
2 <interface-mode>TRUNK</interface-mode>
3 <trunk-vlans>100</trunk-vlans>
4 <trunk-vlans>200</trunk-vlans>
5 </config>

If we configure the trunk-vlans manually on the switch, the switch will reply with the above
XML if we run get_running_config(). However, if we configure the trunk-vlans using the same
NETCONF XML again, the switch ends up configuring just one VLAN. The second one overwrites
the first one. To verify this was not a fault of our system, although it was unlikely after the test
described above, we conducted a test with virtual Arista switches. The Arista switches did not
have this problem. They were able to configure multiple VLANs with the same XML. As you
can see in the Testing section 4.4.

Solution Apparently, there is no other way than to switch to the native Cisco YANG model.
We wanted to avoid this because the OpenConfig model is less vendor-specific and much easier
to use. However, the Cisco model is better implemented on the Cisco Catalyst devices.

1. Nornir NETCONF Deployment: To switch to the native Cisco model, we simply had
to change the defaults.yaml file to use the Cisco model instead of the OpenConfig model
and figure out how to use multiple IDs for the same model as the Cisco native model creates
a container for each interface speed (e.g., GigabitEthernet and TenGigabitEthernet) as
you can see in snippet 3. Additionally, we had to figure out the correct tags for the IDs and
improve the self-developed diff() function to work with multiple IDs. The defaults.yaml
file can be found in Appendix 3.

2. Python Transformation
a) Structure In the Python Transformation, the basic structure of the Cisco Native

Interface Model is significantly different from the structure of the OpenConfig Model.
Because of this, we had to rebuild the function to fit the structure of the new model.
The following is an example of the code we had to change:

1 # Code Example from Python Transform with OpenConfig Vlans
2 InterfaceListEntrys = InterfaceListEntry(
3 name=intfname,
4 config=ConfigContainer2(

8. Technical Issues and Obstacles 64 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

5 name=intfname,
6 type=typeIntf,
7),
8 ethernet=EthernetContainer(
9 switched_vlan=SwitchedVlanContainer(

10 config=ConfigContainer7(
11 trunk_vlans=trunkvlanidList
12)
13)
14)
15)

1 # Code Example from Python Transform with Cisco Native Trunk Vlans
2 interfacelistentrys = InterfaceListEntry(
3 name=interfacename,
4 switchport_config=SwitchportConfigContainer(
5 switchport=SwitchportContainer(
6 mode=ModeContainer(
7 trunk=TrunkLeaf()
8),
9 trunk=TrunkContainer(

10 allowed=AllowedContainer(
11 vlan=VlanContainer2(
12 vlans=",".join(map(str, trunkvlanidlist))
13)
14)
15),
16)
17),
18)

More details on the Python Transformation are in Chapter 5.2.3.
b) Interface Names One main difference is the naming of the interfaces. In OpenConfig,

we had simply a name tag like ’FortyGigabitEthernet1/0/1’, but Cisco Native requires
its own tag for the interface type ’FortyGigabitEthernet’ and the name as 1/0/1. As
we decided to leave the data in Infrahub as the interface name ’FortyGigabitEther
net1/0/1’, we split this namespace with a regex into two parts. You can find the
implementation in Chapter 5.2.3.

c) Register Namespace As a follow-up to the switch from the ElementTree Python
library to the LXML Python library, we had to register the namespace in the Python
Transformation. The assignment of the namespace happens in the XMLExporter func-
tion, but in resolving a bug, the ElementTree Element loses the reference as soon as the
function is over. To solve this, we registered the namespace in the Python Transform
function with ETree.registernamespace(′nc′,′ urn : ietf : params : xml : ns : netconf : base : 1.0′).

3. XML Exporter
a) Change to LXML A significant part of this change was to switch from the Ele-

mentTree XML API to LXML. We were forced to make this change because of its
getparent() function, allowing us to loop over all parents. In OpenConfig, it wasn’t
necessary because a new namespace wasn’t introduced by two neighbors. To clarify,
here is an XML with the Cisco Native Model:

1 <switchport>
2 <mode xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-switch">

8. Technical Issues and Obstacles 65 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3 <!-- Some Containers -->
4 </mode>
5 <trunk xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-switch">
6 <!-- Some Containers -->
7 </trunk>
8 </switchport>

The problem is that the mode tag and the trunk tag have the same namespaces, are
neighbors, and use a new namespace different from the root tag. In the figures below,
we created flowcharts showing how the XMLExporter handles the namespaces, with
the old and the new function.

Figure 8.1.: Flowchart Namespace Handling Function
More information about Namespace Handling is in Chapter 4.2.4.

b) Namespace Handling OpenConfig and Cisco Native have different namespaces and
styles.

’openconfig-interfaces:interfaces’ ’Cisco-IOS-XE-native:native’
In the code, we had to change the handling of the alias. We still split the alias into
two parts by the ’:’, and use the left side as the namespace. However, the differences
are:

i. URLs are different.
ii. Usage of ’-’.

8. Technical Issues and Obstacles 66 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

We solved this by adding an if clause to check if the left side contains ’Cisco-IOS-XE’.
If yes, we create a list with the first entry being the Cisco URL and the second entry
being the part of the alias. In the OpenConfig namespace, we need to actively change
the value because Pydantic creates the alias with the values in YANG, but the Cisco
switch requires different values in some exception cases. More information about the
implementation is in Chapter 4.2.4.

4. YANG Model The Cisco native model is extensive. We had to select just a small part of
the Cisco native interfaces YANG model to be able to configure the trunk and access VLANs.
We found the appropriate branch of the native model with pyang -f tree -p Cisco-IOS-
XE-native/native/interface ./yang/sa1-infra-automation.network.garden/Cisco-IOS-XE-
native.yang. Initially, we tried to use the interface subtree of the Cisco native model.
However, the Pydantic tool ran overnight, used up 40GB of memory, and created 495,939
lines of code. Only once we deleted containers that use the type Decimal64Value, which
was not yet supported by Pydantic, did it become feasible. Making the subtree more specific
was apparently not possible due to the unusual design of the Cisco native model. As we
already knew we could delete containers from the subtree, we decided to delete all the
containers that we do not need to make the output of Pydantic smaller and customize the
YANG model to our needs, as shown in 3. In the end, we reduced the model to less than
500 lines of code.

5. Pydantic Model The change of the YANG model also had an impact on the Pydantic
model, which we couldn’t solve by only modifying the YANG as described at the point
4. Unfortunately, Pydantify creates aliases with the namespace derived from the YANG
model. OpenConfig works well because each container with the required namespace resides
in the correct YANG file. However, Cisco Native YANG models inherit the namespace from
the main YANG file, resulting in all containers sharing the same namespace, and thus the
same alias.
To create the correct namespaces, we manually reviewed a valid Cisco NETCONF XML
file using the command show running-config | format ’netconf-xml’ and manually changed
the namespaces.
Fortunately, since the YANG file wasn’t very large after our modifications, we only needed
to change every alias from the container ‘SwitchportContainer‘ upwards from Cisco-IOS-
XE-native to Cisco-IOS-XE-switch:

1 # Everything on a lower level has alias="Cisco-IOS-XE-switch"
2
3 class SwitchportContainer(BaseModel):
4 mode: Annotated[ModeContainer, Field(None,
5 alias="Cisco-IOS-XE-switch:mode")]
6 access: Annotated[AccessContainer, Field(None,
7 alias="Cisco-IOS-XE-switch:access")]
8 trunk: Annotated[TrunkContainer, Field(None,
9 alias="Cisco-IOS-XE-switch:trunk")]

10 native: Annotated[NativeContainer, Field(None,
11 alias="Cisco-IOS-XE-switch:native")]
12
13 class SwitchportConfigContainer(BaseModel):
14 switchport: Annotated[SwitchportContainer, Field(None,
15 alias="Cisco-IOS-XE-native:switchport")]
16
17 # Everything on a higher level has alias="Cisco-IOS-XE-native"

8. Technical Issues and Obstacles 67 of 91

Technical Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

For more information, see Chapter 3.2.

8.4.1. Conclusion of the Switch to the Cisco Native Model
The switch to the native Cisco model was a necessary evil. The OpenConfig model would have
been much easier to use, but the Cisco switches do not support it well. The Cisco native model
is more vendor-specific and harder to use, but it is better implemented on the Cisco Catalyst
devices. We had to make some adjustments to the YANG model, the Pydantic structure, and
the XML exporter to accommodate the switch to the Cisco native model. However, the switch to
the Cisco native model was necessary to ensure that the system works correctly with the Cisco
Catalyst devices. In the end, it made our solution more robust and proved that we can handle
different YANG models, even large and complex ones like Cisco native.

8. Technical Issues and Obstacles 68 of 91

Part III.

Project Documentation

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1. Results
Key Achievements
The Network Configuration Automation with Infrahub and Nornir project successfully delivered
a comprehensive and automated system for VLAN configuration management. The key achieve-
ments are as follows:

1. Automation of Network Configuration: Utilized the Nornir framework, a Python-
based automation tool, to deploy network configurations efficiently. This automation re-
duced manual intervention, minimized errors, and improved deployment speed.

2. Integration with Infrahub: Employed Infrahub as the single source of truth for managing
and versioning network configurations, ensuring consistency and centralized oversight of
network states.

3. Dry-Run Validation: Implemented a dry-run feature to validate configurations before
deployment, providing a safe mechanism to preview changes and minimize disruptions.

4. GitLab Integration: Integrated GitLab for robust version control and collaboration,
enabling efficient change tracking and auditing.

5. Custom Tools for Stability: Developed the Conditional Runner plugin for Nornir to
enforce concurrency limits and maintain network stability by managing controlled task
execution across devices.

6. Validation and Transformation with Pydantic Models: Integrated Pydantic for
validating network configurations derived from YANG schemas and created XML generators
for NETCONF compatibility.

7. Workflow Orchestration with Prefect: Used Prefect for defining, scheduling, and mon-
itoring workflows, simplifying the management of complex processes and enhancing scala-
bility.

8. Scalability and Compatibility: Designed the system to support multiple YANG mod-
els, enabling compatibility across various device types such as Cisco, Arista, and Nokia.
Optimized performance by adopting lightweight plugins like NornirNETCONF.

9. Configuration Consistency: Implemented XML diff tools and validation scripts to ensure
the alignment of current and desired states, reducing discrepancies and enforcing consis-
tency.

10. Improved Network Reliability: Minimized human errors, reduced manual efforts, and
increased the overall reliability of network operations, allowing network teams to focus on
higher-value, strategic tasks.

1. Results 70 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

2. Conclusion
We have presented a novel approach to configure VLANs across the entire network.
The project has demonstrated that it is possible to abstract the configuration from the devices

and present it in a user-friendly GUI inventory system. The reconciliation of the desired and
running configurations is functioning well and is readable.

The project has shown that it is possible to configure VLANs across the entire network using
a few clicks in our GUI inventory system, which is quite effective. We are confident that the
project can be expanded to include more use cases and more devices. Although we need to be
aware of the limitations of working with YANG models, which we have to use to build correct
configurations for the devices. They support fast and reliable reconciliation once they work, but
YANG models can be complex due to device deviations and vendor-specific implementations.
OpenConfig YANG models alleviate this limitation to some extent, but as we encountered, they
are not always correctly implemented on the devices.

2.1. Further Improvements
Future work could focus on integrating support for additional device types and expanding the
whole system to accommodate more complex network configurations. Additionally, there is po-
tential to simplify the handling of YANG models by developing tools that automatically adjust
for vendor-specific deviations, thereby enhancing the overall expandability and scalability of the
system.

For further improvements, our project could be enhanced by:

• Extending functionality beyond Virtual Local Area Network (VLAN) to include IP man-
agement, routing protocols, and more.

• Centralizing support for additional network device types beyond Cisco, such as Juniper,
Arista, Nokia, or Huawei.

• Evaluating whether comparing the desired state with the current state of the network could
be improved by using Pydantic models.

2. Conclusion 71 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3. Project Planning
3.1. Processes
Our project is structured using an agile project management framework. This approach is par-
ticularly suitable for our needs, as we work with Epics and have a meeting with our advisor every
week. This allows us to stay flexible for changes.

We have organized our project into Phases (in our Jira called Phases), which help us manage our
tasks and maintain clarity throughout the project lifecycle. Each Phase represents a significant
component of our work and is further broken down into Tasks and Subtasks. This structured
approach enables us to effectively track progress and ensure that all aspects of the project are
addressed.

3.2. Architectural Roles
We designated Architecture Agents to leverage each team member’s expertise in different
technologies, fostering knowledge sharing throughout the project. Initially, we held a meeting
to discuss the architecture and assign specific responsibilities. A later chapter will detail the
reasoning behind our architectural decisions.

1. Simon Linder: Implements and manages the Nornir automation framework, handling de-
vice configuration tasks, including fetching the current network state and applying changes.

2. Polina Lisetska: Develops and maintains Infrahub, the single source of truth for network
configurations and user interactions.

3. Ramon Stutz: Responsible for Pydantify, creating Python Pydantic models from YANG
definitions, and developing an XMLExporter to generate Netconf XML for device configu-
rations.

This distribution leverages each member’s strengths while promoting collaborative decision-
making within our team of three developers. It’s essential that everyone contributes their techni-
cal expertise without feeling overruled, collectively shaping the project’s architecture. Although
primary tasks are assigned based on experience (Simon with Nornir automation, Polina with
Infrahub development, and Ramon with Pydantify for YANG model handling), we work closely
together. This vertical slicing allows efficient domain-specific development while ensuring individ-
ual systems integrate seamlessly. We update each other at least twice weekly on current statuses
and challenges, ensuring mutual support and meaningful contributions, especially in architectural
decisions or cross-domain challenges.

3.3. Meetings
We conduct weekly check-ins with our supervisor to address any challenges, deviations, or un-
certainties that may arise. Additionally, our team aims to meet at least once a week to foster
collaboration and support one another. If necessary, we can hold more frequent meetings to
ensure we stay aligned and address any pressing issues promptly.

3. Project Planning 72 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3.4. Phases
In our project, we have established a structured approach to planning by defining Phases as
overarching goals, complemented by high-level tasks. Each Phase is further decomposed into
specific tasks and subtasks, facilitating a clear path toward project completion. The timeline
allocated for each Phase ranges from 1 to 3 weeks, with each Phase assigned to a designated team
member responsible for its execution.

Phase-ID Name Description Due Date Assignee
ACENIWIPN-9 Setup

Environment
We set up our
environment
and build our
architecture to
test the
dependencies.

13.10.2024 Simon Linder

ACENIWIPN-1 Create Infrahub
schema

Write an
Infrahub
schema that
matches the
requirements

03.11.2024 Polina Lisetska

ACENIWIPN-7 Developing
Netconf Script

Develop
Netconf script
which pulls
information
from the
current network
devices and
changes their
configurations.

03.11.2024 Simon Linder

ACENIWIPN-5 XML-Export Develop a
generic Python
script to
translate a
Pydantic model
into a Netconf
valid XML

03.11.2024 Ramon Stutz

ACENIWIPN-8 Create Working
Prototype

Sets up a
working
prototype

17.11.2024 Ramon Stutz

ACENIWIPN-2 Create Infrahub
Artifacts

Create an
Infrahub
Artifact
Definition

17.11.2024 Polina Lisetska

ACENIWIPN-6 Nornir
Conditional
Runner

Create a Nornir
Runner which
runs its Runner
parallel but
with conditions

22.11.2024 Simon Linder

Table 3.1.: Project Phases Overview

3. Project Planning 73 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Phase-ID Name Description Due Date Assignee
ACENIWIPN-3 Extend the

Python Script
to load data
from Netconf
XML

Extend the
Python script
to load the data
from a Netconf
XML into a
Pydantic
model.

01.12.2024 Ramon Stutz

ACENIWIPN-4 Pull
Information
from Infrahub

Create a
function which
pulls
information
from the
Infrahub
RESTCONF
API and loads
it into the
Pydantic
structure

01.12.2024 Polina Lisetska

ACENIWIPN-
69

Setup
Prototype on
K8s Cluster

Deploy the
prototype to
the K8s cluster

07.12.2024 Simon Linder

ACENIWIPN-
19

Testing Test our script 15.12.2024 Polina Lisetska,
Ramon Stutz,
Simon Linder

ACENIWIPN-
12

Documentation Create and
document our
project.

18.12.2024 Polina Lisetska,
Ramon Stutz,
Simon Linder

ACENIWIPN-
14

Project
organization

Organize our
projects

18.12.2024 Ramon Stutz

Table 3.2.: Project Phases Overview 2

3. Project Planning 74 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3.4.1. Time Table

Figure 3.1.: Time Plan of the project

3.5. Risk Management
Like in every other project, risks are always part of it. Our job is to assess, analyze, manage,
and if possible, minimize as many risks as possible. Undetected risks could pose a major threat
to the success of the project.

3.5.1. Risks
1. Scope Creep: Uncontrolled changes or additions to project requirements can lead to scope

creep, causing delays or overruns.

2. Team member falls out: A team member is absent and isn’t capable of working on the
project.

3. Team dynamics: Poor communication, collaboration issues, or lack of cohesion within
the project team can hinder progress and affect project morale.

4. Quality assurance challenges: Ineffective testing practices or inadequate quality assur-
ance measures can result in undetected defects, leading to product failures or customer
dissatisfaction.

5. Project management challenges: Inadequate processes for updating our team project
status or updating the timetable can lead to misunderstandings and hinder progress.

6. Poor Requirements Management: Inadequate gathering, documentation, or manage-
ment of project requirements can lead to misunderstandings, rework, and dissatisfaction
with the final product.

7. Technical challenges: Complex technical requirements, dependencies, or limitations can
pose challenges during development, leading to delays or compromised quality.

3. Project Planning 75 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3.5.2. Risk Countermeasures
Scope Creep

1. Define clear project requirements and objectives from the outset.

2. Regularly review project scope with stakeholders to ensure alignment.

3. Educate stakeholders about the impact of scope changes on project timelines and budgets.

Poor Requirements Management

1. Document requirements clearly and comprehensively.

2. Discuss and review requirements with stakeholders to ensure alignment.

Technical challenges

1. Break down complex tasks into smaller, manageable components.

2. Seek input from subject matter experts and consider alternative solutions.

3. Implement a light version of our desired architecture first to ensure functionality between
the versions.

4. Allocate sufficient resources and time for addressing technical challenges.

5. Conduct a comprehensive technical feasibility study before project initiation.

Team dynamics

1. Foster open communication and collaboration within the team.

2. Address conflicts and misunderstandings promptly and constructively.

3. Provide opportunities for team-building activities and training.

4. Assign roles and responsibilities clearly to avoid ambiguity.

5. Meet weekly to discuss the tasks and problems.

Quality assurance challenges

1. Develop a comprehensive testing strategy and plan.

2. Don’t review your own work; review each other’s work.

3. Plan enough time for testing.

4. Do reviews during the project, not all at the end.

Project management challenges

1. Assign a role to a team member who takes time to update the project management tool
(Jira)

2. Weekly meetings to discuss and assign active and new tasks.

Team member falls out

1. Open conversation and weekly updates on the status of tasks so someone could take over.

2. Properly and up-to-date documentation of the tasks.

3. Project Planning 76 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

3.5.3. Risk Matrix

Figure 3.2.: Risk Management Matrix, also showing the technical challenge "conversion
to Cisco native model"

3.5.4. Risk summary
In the first weeks of the project, we identified and assessed potential risks. We took some risk
measures to minimize them, but unfortunately one risk occurred at week 9 - Technical challenges.
We had to adapt our code to the Cisco Native Model. Because of the risk measures we took, we
were able to manage this risk and successfully finish our project.

3.6. Planning Tools
3.6.1. JIRA
We use Jira because all team members are familiar with it, allowing us to manage our projects
effectively using Epics, Tasks, and Subtasks. Jira also enables us to create timetables, ensuring
clear visibility into project timelines and responsibilities. This familiarity and structured approach
enhance collaboration and streamline our project management processes.

3.6.2. Clockify
We use Clockify because it integrates seamlessly with Jira, providing us easy time tracking on our
tasks. Its graphical reports and filter functions allow us to analyze how time is spent on various
tasks and promote accountability.

3.6.3. Overleaf
Overleaf is an online collaborative platform that simplifies the process of writing and publish-
ing documents using LaTeX. It allows multiple authors to work simultaneously on a document,
making it ideal for academic and technical writing. Overleaf’s built-in templates and real-time
preview features streamline the formatting process, enabling us to focus on content creation while
ensuring high-quality output suitable for publication.

3. Project Planning 77 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

List of Tables
3.1. Project Phases Overview . 73
3.2. Project Phases Overview 2 . 74

LIST OF TABLES 78 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

List of Figures
3.1. The diagram shows an automated deployment via Infrahub, Prefect, and IaC

Worker, integrating validation and deployment. iii

3.1. Use Case Workflow 1: Changing the network VLAN configuration 6
3.2. Use Case Workflow 2: Showing the reconciliation of desired and running config . . 7
3.3. C4 Context Diagram . 7
3.4. C4 Container Diagram . 8
3.5. C4 Component Diagram, showing the Infrastructure and Code components 10

4.1. Arista VLAN configuration after config deployment 16
4.2. Arista XML running config, showing the configuration of multiple trunk VLANs . 16

2.1. Mail showcasing one etree diff change box followed by many xml-diff boxes repre-
senting the same change . 23

2.2. Deploy mail showcasing the removal of a trunk VLAN 24
2.3. Validate Mail showcasing one missing <vlan> and <switchport-config> tags . . . 24
2.4. Error mail with traceback . 25
2.5. Typer CLI GUI . 26
2.6. Prefect deploy run showing the subtasks of one device followed by the second device 27
2.7. Prefect deploy artifact showing one device with two changes 28
2.8. Prefect artifact of the validate task . 28

4.1. Flow Chart to Function ’to xml’ . 35
4.2. Namespace Handling . 37
4.3. Flow Chart to Function ’to basemodel’ . 40

5.1. Infrahub schema diagram . 43
5.2. Infrahub Menu showing all the nodes that are in the schema 43
5.3. Infrahub showing all the interfaces that are currently available on a specific device 45
5.4. Flow diagram for the Python Transformation Function 47
5.5. Check ’check_access_mode’ failed because an interface in ’access’ mode has 2 VLANs 51

6.1. Demo topology with conditional groups . 54
6.2. Resource usage with busy wait . 55
6.3. Resource usage of the final conditional runner . 55
6.4. Threaded runner 20s task - all run in parallel . 56
6.5. Conditional runner 20s task - many conditions causing two batches 56
6.6. Group definition in Infrahub . 57
6.7. Prefect with conditional runner . 58

8.1. Flowchart Namespace Handling Function . 66

3.1. Time Plan of the project . 75
3.2. Risk Management Matrix, also showing the technical challenge "conversion to Cisco

native model" . 77

1.1. Nornir_Netconf Result . 85
1.2. NCDiff Result . 86

LIST OF FIGURES 79 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

1.3. Scrapli Netconf Result . 87

LIST OF FIGURES 80 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Acronyms
ACME Automated Certificate Management Environment. 61

API Application Programming Interface. 9

CI/CD continuous integration and continuous deployment. iv, vi, viii, 14, 15, 17, 19, 27, 29, 52,
56

CLI Command Line Interface. 26, 59, 60, 79

CPU Central Processing Unit. 55

DB Database. 11

DNS Domain Name System. 61

Enum Enumeration. 33

GUI Graphical User Interface. 26, 42, 71

HTML Hypertext Markup Language. 23

HTTPS Hypertext Transfer Protocol Secure. 11, 60

IaC Infrastructure as Code. iii, 9, 10, 11, 27, 29, 79

IP Internet Protocol. 43, 71

JSON JavaScript Object Notation. 12, 56

NETCONF Network Configuration Protocol. i, ii, iii, viii, 3, 8, 9, 11, 12, 13, 15, 19, 20, 21, 22,
26, 29, 34, 37, 38, 50, 63, 64, 70

NFS Network File System. 61

SDK Software Development Kit. 21

SMTP Simple Mail Transfer Protocol. 9

TLS Transport Layer Security. 61

UI User Interface. 9, 11, 44

URL Uniform Resource Locator. 67

VLAN Virtual Local Area Network. i, iv, 2, 6, 11, 16, 17, 24, 30, 31, 36, 41, 42, 43, 50, 51, 52,
53, 64, 67, 70, 71, 79, 86

XML Extensible Markup Language. i, vii, viii, 9, 11, 12, 13, 16, 19, 20, 21, 22, 26, 33, 34, 35,
36, 37, 38, 39, 40, 41, 50, 63, 64, 65, 68, 70, 72, 79

Acronyms 81 of 91

Project Documentation v1.0
Network Configuration Automation with Infrahub and Nornir

Glossary
GitLab GitLab is a web-based DevOps lifecycle tool that provides a Git repository manager,

wiki, issue-tracking, and CI/CD pipeline features, provided by our university.. 42, 45

GraphQL GraphQL is a data query and manipulation language for APIs that allows a client
to specify what data it needs ("declarative data fetching"). Also known under the pattern
name "WishTemplate Pattern".. 8, 11, 45, 46, 50, 51

INS Institute of Network and Security, a research institute at the University of OST, which is
our project partner.. 2, 4, 25, 54

NcDiff NcDiff is a tool that compares two NETCONF configuration files and generates a patch
file that can be used to update the first file to match the second.. 22

PEP8 PEP8 is a style guide for Python code. It is a set of rules that specify how to format
Python code for maximum readability.. vi, 14, 15

YANG YANG is a data modeling language used to model configuration and state data manipu-
lated by a NETCONF agent.. i, ii, iii, vii, 9, 11, 12, 13, 19, 20, 22, 25, 26, 29, 30, 31, 32,
33, 34, 35, 37, 64, 67, 68, 70, 71, 72, 85

Glossary 82 of 91

Part IV.

Appendix

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

1. Nornir Connection Plugin Analysis
1. The connection plugin should be able to communicate with our CISCO IOS-XE devices as

well as Arista EOS devices, if possible, as we plan to conduct integration tests on virtual
Arista devices.

2. It should manage the opening and closing of the connection independently.

3. It should be performant and reliable.

4. It should be easy to use and integrate with the Nornir framework.

5. It should be well-documented.

6. It should be actively maintained.

7. It should support methods to get a configuration, a part of a configuration, lock a configu-
ration, unlock a configuration, edit a configuration, commit a configuration, and validate a
configuration, so we can implement dry run logic.

8. It should return the output in a structured format, such as XML or JSON and attach the
rpc oject for later use of the connection or advanced use.

We looked at 3 NETCONF plugins and libraries, such as Nornir-Netconf, NCDiff, and Scrapli.

1. Nornir-Netconf: Is a plugin for the Nornir automation framework that provides a high-
level API for interacting with network devices using the NETCONF protocol.

• Supported for / Tested on: Integration Tests Devices with full integration tests
with ContainerLab

– Nokia SROS - TiMOS-B-21.2.R1
– Cisco IOSxR - Cisco IOS XR Software, Version 6.1.3
– Cisco IOSXE - Cisco IOS XE Software, Version 17.03.02
– Arista CEOS - 4.28.0F-26924507.4280F (engineering build)

• Transport: SSH
• Supported Methods:

– netconf_capabilities - Return server capabilities from target -> Result.result ->
RpcResult

– netconf_edit_config - Edits configuration on specified datastore (default=”running”)
-> Result.result -> RpcResult

– netconf_get - Returns state data based on the supplied xpath -> Result.result ->
RpcResult

– netconf_get_config - Returns configuration from specified configuration store (de-
fault=”running”) -> Result.result -> RpcResult

– netconf_get_schema - Retrieves schemas and saves aggregates content into a di-
rectory with schema output -> Result.result -> SchemaResult

– netconf_lock - Locks or Unlocks a specified datastore (default=”lock”) -> Re-
sult.result -> RpcResult

1. Nornir Connection Plugin Analysis 84 of 91

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 1.1.: Nornir_Netconf Result

– netconf_validate - Validates configuration datastore. Requires the validate capa-
bility. -> Result.result -> RpcResult

– netconf_commit - Commits a change -> Result.result -> RpcResult
– netconf_rpc

discard is missing but can be implemented with RPC.
• Performance:

– Execution time: 3.869152784347534 seconds
– Execution time: 3.896733045578003 seconds
– Execution time: 3.880706310272217 seconds
– Execution time: 3.850162982940674 seconds
– Execution time: 3.915595769882202 seconds

• Result: Not formatted, but all data is present in
• Notes: The library is based on ncclient, which is a well-known library for NETCONF.

Nice global locking over multiple tasks is possible.
Many tests and examples available.

2. NCDiff: Is a library that provides a simple way to compare two NETCONF configurations.

• Supported for / Tested on:
– Suported devices IOSXE and many others

• Transport: SSH
• Supported Methods:

– netconf_edit_config
– netconf_get
– netconf_get_config
– netconf_lock
– netconf_unlock
– netconf_validate
– diff of models

• Performance: Slow at firs run as if downloads all YANG models
– Execution time: 249.23009967803955 seconds

1. Nornir Connection Plugin Analysis 85 of 91

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 1.2.: NCDiff Result

– Execution time: 5.105539798736572 seconds
– Execution time: 5.8046042919158936 seconds
– Execution time: 5.217963695526123 seconds
– Execution time: 5.310622453689575 seconds

• Result: nice XML output
• Notes: Not perfect for our use case, as it downloads all YANG models at the first

run, which is slow. We only need the models for VLAN.

3. Scrapli Netconf: Is a library that provides a simple way to interact with network devices,
NETCONF is a plugin for the Scrapli which makes it more complex.

• Supported for / Tested on:
– Cisco IOS-XE (tested on: 16.12.03) with Netconf 1.0 and 1.1
– Cisco IOS-XR (tested on: 6.5.3) with Netconf 1.1
– Juniper JunOS (tested on: 17.3R2.10) with Netconf 1.0

• Transport: SSH2 (Plugin for Scrapli; difficult to get running (Key alg))
• Supported Methods:

– get - with "subtree" (default) or "xpath" filter
– get_config - complete config
– edit_config
– lock
– unlock
– commit
– discard
– Delete config
– RPC
– capabilities

1. Nornir Connection Plugin Analysis 86 of 91

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

Figure 1.3.: Scrapli Netconf Result

Validate is missing but can be implemented with RPC
• Performance:

– Execution time: 3.7733654975891113 seconds
– Execution time: 3.775163412094116 seconds
– Execution time: 3.9814963340759277 seconds
– Execution time: 3.8708913326263428 seconds
– Execution time: 3.8404557704925537 seconds

• Result: nice XML output
• Notes: Difficult to configure, as it first runs in to a timeout and then needs to be

reconfigured. SSH2 does not work with python 3.12 only with 3.10 (not documented
only found this out as pytest skips ssh2 unittests with python 3.12). Cipher missmatch
error -> different devcontainer needed.

1. Nornir Connection Plugin Analysis 87 of 91

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

2. Nornir Configuration
2.1. Installation

1 pip install nornir-conditional-runner

2.2. Usage
Replace the default Nornir runner with ConditionalRunner in your configuration:

1 from nornir import InitNornir
2
3 nr = InitNornir(
4 runner={
5 "plugin": "ConditionalRunner",
6 "options": {
7 "num_workers": 10,
8 "group_limits": {
9 "core": 1,

10 "distribution": 2,
11 "edge": 3,
12 },
13 "group_fail_limits": {
14 "core": 1,
15 "edge": 2,
16 },
17 "conditional_group_key": "conditional_groups",
18 "skip_unspecified_group_on_failure": True,
19 },
20 },
21 inventory={
22 "plugin": "SimpleInventory",
23 "options": {
24 "host_file": "demo/inventory/hosts.yaml",
25 "group_file": "demo/inventory/groups.yaml",
26 },
27 },
28)
29
30 def my_task(task):
31 return f"Running on {task.host.name}"
32
33 result = nr.run(task=my_task)
34 print(result)

2.2.1. Host Example
Hosts can define custom groups in their data dictionary using the conditional_group_key provided
in the runner options. The runner will use these groups to enforce the group_limits.

1 host1:
2 data:
3 conditional_groups:

2. Nornir Configuration 88 of 91

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

4 - core
5 host2:
6 data:
7 conditional_groups:
8 - distribution

If the conditional_group_key is not provided, the runner will default to using the host groups.
1 host1:
2 groups:
3 - core
4 host2:
5 groups:
6 - edge

2. Nornir Configuration 89 of 91

Appendix v1.0
Network Configuration Automation with Infrahub and Nornir

3. Nornir Configuration
The final configuration of the Nornir tool defaults.yaml:

1 # yamllint disable rule:line-length
2 data:
3 mail:
4 smtp_server: "smtp.ost.ch"
5 port: 25
6 sender: "iac_sa@ost.ch"
7 to: "Simon.linder@ost.ch"
8 yang:
9 - interface:

10 filter: |
11 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
12 <interface>
13 <GigabitEthernet>
14 <name></name>
15 <switchport-config>
16 </switchport-config>
17 </GigabitEthernet>
18 <TenGigabitEthernet>
19 <name></name>
20 <switchport-config>
21 </switchport-config>
22 </TenGigabitEthernet>
23 <TwentyFiveGigE>
24 <name></name>
25 <switchport-config>
26 </switchport-config>
27 </TwentyFiveGigE>
28 <FortyGigabitEthernet>
29 <name></name>
30 <switchport-config>
31 </switchport-config>
32 </FortyGigabitEthernet>
33 </interface>
34 </native>
35 ids:
36 - tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}GigabitEthernet"
37 id_tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}name"
38 - tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}TenGigabitEthernet"
39 id_tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}name"
40 - tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}TwentyFiveGigE"
41 id_tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}name"
42 - tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}FortyGigabitEthernet"
43 id_tag: "{http://cisco.com/ns/yang/Cisco-IOS-XE-native}name"
44 replace:
45 - <switchport-config>
46 - vlan:
47 filter: |
48 <vlans xmlns="http://openconfig.net/yang/vlan">
49 </vlans>
50 ids:
51 - tag: "{http://openconfig.net/yang/vlan}vlan"
52 id_tag: "{http://openconfig.net/yang/vlan}vlan-id"

3. Nornir Configuration 90 of 91

Network Configuration Automation with Infrahub and Nornir v 1.0

53 replace:
54 - <vlans xmlns="http://openconfig.net/yang/vlan">
55 # config
56 xmldiff: false
57 etreediff: true
58 ncdiff: false
59 debug: false
60
61

3. Nornir Configuration 91

	Abstract
	Vision
	Management Summary
	Acknowledgments
	Contents
	Product Documentation
	Requirements
	Functional Requirements
	Persona
	User Stories

	Non-Functional Requirements
	Approach

	Preliminary Work
	Architecture
	Introduction and Goals
	Context Diagram (Level 1)
	Container Diagram (Level 2)
	Component Diagram (Level 3)
	Architectural Decisions
	Connection Plugin
	Diff Implementation Strategy

	Quality Measures
	Organizational Means
	Guidelines
	Python - PEP8
	Four-Eyes Principle

	Tools Used to Assess Product Quality in CI/CD
	Ruff
	MyPy
	Bandit
	Pytest and Coverage

	Manual Testing
	Code Review
	Conclusion

	Technical Documentation
	Overview
	Nornir NETCONF Deployment
	Nornir NETCONF Tasks
	Retrieving Configuration
	Desired State
	Validate or Deploy Configuration
	Diff Functions
	NcDiff
	Mail

	Making the Code Generic for Different YANG Models
	Typer CLI GUI
	Prefect
	Conclusion of the Nornir NETCONF Deployment Component

	YANG and Pydantic Models
	YANG Models
	Cisco Native YANG Model - Interface
	Openconfig YANG Model - vlans

	Pydantic Model

	XML Exporter
	Python Libraries
	XMLModelConverter
	Static Methods
	Pydantic Data Types
	Public Function - to XML
	Namespace Handling
	Limitations
	Public Function - to Basemodel

	More Information
	Demo

	Infrahub GitLab Integration
	Infrahub
	Schema
	Schema Customization

	GitLab
	GitLab Integration
	GraphQL
	PythonTransform
	Checks

	Nornir Conditional Runner
	Introduction
	Fail Limits Feature
	Logging
	Demo
	Error Handling / Fallback to Default Behavior of the Threaded Runner
	Code Decisions
	Testing
	Publishing and CI/CD
	Integration into Our Project
	Conclusion of the ConditionalRunner Component

	Infrastructure
	Overview
	Development Environment
	Production Environment

	Development Setup
	Devcontainer
	Task
	Poetry
	Docker-Compose
	Prefect

	Production
	Infrahub Helm
	Cert-Manager
	Prefect and Ingress
	Custom Prefect Worker and Dockerfile

	Conclusion of Infrastructure

	Technical Issues and Obstacles
	NETCONF XML Exporter Class
	Nornir NETCONF Deployment
	Nornir Replace Operation
	Conversion to Cisco Native Model
	Conclusion of the Switch to the Cisco Native Model

	Project Documentation
	Results
	Conclusion
	Further Improvements

	Project Planning
	Processes
	Architectural Roles
	Meetings
	Phases
	Time Table

	Risk Management
	Risks
	Risk Countermeasures
	Risk Matrix
	Risk summary

	Planning Tools
	JIRA
	Clockify
	Overleaf

	List of Tables
	List of Figures
	Acronyms
	Glossary

	Appendix
	Nornir Connection Plugin Analysis
	Nornir Configuration
	Installation
	Usage
	Host Example

	Nornir Configuration
	Bibliography

