
Rapid Prototyping in TypeScript

Semester Thesis - HS 2024

Department: Computer Science
Field of Study: Software Engineering

Authors

Isaia Brassel
isaia.brassel@ost.ch

Matriculation: 22-173-264

Silvan Kisseleff
silvan.kisseleff@ost.ch

Matriculation: 22-176-135

Involved People

Olaf Zimmermann
olaf.zimmermann@ost.ch

Advisor

Version: 1.0.0
Date: 2024-12-19

mailto:isaia.brassel@ost.ch
mailto:silvan.kisseleff@ost.ch
mailto:olaf.zimmermann@ost.ch

Semester Thesis Rapid Prototyping in TypeScript

Abstract
Building a fullstack web application with NodeJS in today’s landscape of countless frameworks and libraries can

be daunting. Which ones should be chosen? How to configure the chosen libraries so that they work together
seamlessly rather than against each other? Many technologies and libraries feature a simple “hello world”

tutorial but combining the technologies together to craft a powerful fullstack web application is not
straightforward. The lack of a good introduction to a new technology slows down the development process and
distracts developers from focusing on what truly matters: building features. For this purpose we developed an
approach with rapid prototyping. Our proof of work focuses on fast development without the need of always
adapting the API when changes are made. Our approach to rapid prototyping is based on a GraphQL API that
supports code generation with the help of TypeGraphQL-Prisma, which creates the resolvers for create read

update and delete operations for each data model out of the box. To bring rapid prototyping to the developers,
we created an easy to understand tutorial with Docusaurus, a static website generator that makes it easy to build
documentation-focused web applications that are accessible and engaging, that we refined based on feedback we

gathered from user testing. The tutorial demonstrates our technologies in a realistic and easy to understand
example application where you can make ticket reservations for a cinema chain.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

II
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Management Summary
Context
Research into rapid prototyping tools highlighted the potential to significantly simplify application development
by focusing on adaptability and efficiency. To achieve this, we selected tools and techniques to build an application
with a GraphQL API that dynamically adjusts through generated code. This setup eliminates the need for manual
updates whenever changes are introduced, making the process faster and more reliable. To help users understand
the dynamic approach, we created a demo application and a tutorial. The demo application is an online ticket
reservation for a cinema. We chose this domain because it is easy to understand. The tutorial guides users through
every aspect of our rapid prototyping method in an interactive way. As users work through the tutorial, they gain
practical experience with the tools and techniques, enabling them to apply this approach to their own projects.
The GraphQL API is implemented with Apollo Server, combined with automatically generated resolvers based on
TypeGraphQL Prisma. TypeGraphQL Prisma provides out-of-the-box support for create, read, update, and delete
(CRUD) operations for every data model, reducing the effort required to build and maintain the API. For custom
operations we leverage TypeGraphQL so that complex processes can still be realized. The frontend is built with
React. This setup ensures a dynamic, responsive user experience. For the tutorial, we used Docusaurus, a static
website generator that makes it easy to build documentation-focused web applications that are accessible and
engaging for users to learn and explore our template. This combination of technologies streamlines the develop-
ment process, providing both a practical introduction to rapid prototyping and a robust foundation for scalable
application development.

Figure 1: Seating plan screen of the demo application

Solution
Our solution is a simple project template that demonstrates how to use our chosen technologies in a rapid prototype
manner. We use a GraphQL API with Apollo Server, combined with resolvers automatically generated from our
object relational mapper Prisma that supports create, read, update and delete out of the box for each data model.
The user interface is built with React and uses the GraphQL client Apollo Client to talk with our GraphQL API. By
writing easy to understand tutorials and creating a demo application in a well-known domain, we created a product

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

III
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

that brings rapid prototyping to the user. The tutorial shows how it is possible to adapt the already existing features
with rapid prototyping. It is also possible to create new features from scratch. To assure, that the developer does
not get stuck on some steps, we also provided a solution for every single step, which the developer can look at if he
needs to. We also ensured that the developer does not have to waste time on a complicated setup by implementing
the entire application in Docker containers, simplifying the process. Different user tests showed that the tutorials
are easy to understand and intuitive and that our template increases productivity.

Figure 2: Screen of the first tutorial

Future work
This project also serves as a basis for a consecutive project where one could build a web tool that allows the creation
of CRUD API’s with an interactive user interface to define and build the data model. We defined a list of possible
features and deliverables in the appendix.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

IV
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Table of Contents
1 Introduction ... 1

1.1 Why should one read this documentation? ... 1
1.2 Target audience ... 1
1.3 How should one read this documentation? .. 1
1.4 Rapid prototyping .. 1

2 Glossary .. 3

Product description .. 4

3 Domain analysis ... 5

4 Requirements .. 6
4.1 Actors .. 6
4.2 Use case diagram .. 6
4.3 Functional requirements ... 7

4.3.1 FR1: View next movies ... 7
4.3.2 FR2: View seating plan for movie ... 7
4.3.3 FR3: Reserve movie ticket online .. 7
4.3.4 FR4: Confirm movie ticket reservations offline ... 7

4.4 Non-functional requirements .. 8
4.4.1 NFR1: Browser independent functionality .. 8
4.4.2 NFR2: Operating system independent functionality .. 8
4.4.3 NFR3: Simple setup with minor effort. .. 8
4.4.4 NFR4: The demo app is simple and compact. ... 9
4.4.5 NFR5: Responsive user interface ... 9

5 Tutorials ... 10
5.1 Structure ... 11

5.1.1 Getting started ... 11
5.1.2 Application deep dive .. 12
5.1.3 Extending a data model ... 12
5.1.4 Creating a data model .. 12
5.1.5 Further details .. 12

Product realization ... 13

6 Architecture ... 14
6.1 Evaluation of technologies ... 14

6.1.1 Web framework ... 14
6.1.2 Component library ... 14
6.1.3 GraphQL code generation ... 14

6.1.3.0.1 Postgraphile .. 15
6.1.3.0.2 GraphQL-Code-Generator .. 15
6.1.3.0.3 TypeGraphQL-Prisma: ... 15

6.1.4 Build tool ... 15
6.1.5 Movie data .. 16
6.1.6 API patterns ... 16

6.2 C4 model ... 17

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

V
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.2.1 System context model (C1) and Container diagram (C2) .. 17
6.2.2 Component diagram (C3) .. 18

6.3 Sequence diagram .. 18
6.4 User interface sketches ... 19
6.5 Folder structure ... 22
6.6 Project setup .. 22

6.6.1 Linting and formatting .. 22
6.6.2 Containerization ... 23
6.6.3 Docker orchestration ... 23
6.6.4 Building ... 23
6.6.5 CI/CD ... 24

6.7 Authentication / Authorization ... 25
6.7.1 Important note ... 25
6.7.2 Authentication ... 25
6.7.3 Authorization ... 28

6.8 Error handling ... 28
6.8.1 Invalid JWT .. 29
6.8.2 RLS violations .. 29
6.8.3 Client side error handling ... 30

7 Quality measures .. 31
7.1 Test concept ... 31

7.1.1 Quadrant one ... 31
7.1.2 Quadrant two ... 32
7.1.3 Quadrant three .. 32
7.1.4 Quadrant four .. 32
7.1.5 Level of testing .. 32
7.1.6 Time of testing ... 32
7.1.7 Summary ... 32

7.2 Testing protocols .. 32
7.2.1 Manual tests ... 32

7.2.1.1 Browser independent functionality (NFR1) ... 32
7.2.1.2 Operating system independent functionality (NFR2) .. 33
7.2.1.3 Simple setup with minor effort (NFR3) ... 33
7.2.1.4 The demo app is simple and compact (NFR4) ... 33
7.2.1.5 Responsive user interface (NFR5) ... 33

8 API generation tool .. 35
8.1 Requirements ... 35

8.1.1 R1 Create and edit a data schema ... 35
8.1.2 R2 Verify data schema .. 35
8.1.3 R3 Custom resolvers ... 35
8.1.4 R4 Save the data schema ... 35
8.1.5 R5 Error handling ... 36
8.1.6 R6 Allow access constraints ... 36

8.2 What should get generated .. 36

Summary ... 37

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

VI
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

9 Summary .. 38
9.1 Overall thoughts ... 38
9.2 Alternative ways ... 38

Appendix ... 39

10. Test protocols ... 40
10.1. Integration test template .. 40
10.2. End to End testing (E2E) ... 41

10.2.1. Login roundtrip .. 41
10.2.2. Genre filter on overview page .. 41
10.2.3. Detail movie view .. 42

10.3. User tests .. 43

Figures .. 45

Bibliography ... 46

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

VII
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

1 Introduction
We, Silvan Kisseleff and Isaia Brassel, are software engineering students at OST Rapperswil. We both have a strong
interest in web development and focus our studies around it. Since APIs are always a big topic when it comes to
web development, we decided that our semester thesis will revolve around it. Sadly working with APIs isn’t always
as easy as you would like it to be. And because of this we decided to work on a proof of work for rapid prototyping.

1.1 Why should one read this documentation?
Great product ideas arise every single day, but implementing these ideas quickly in a prototype to test it, is not
always as easy and cheap as we would want it to be. One can create a static wireframe to visualize a product idea,
but there is much more value when there is a clickable and working prototype that enables the implementation of
processes and that have some sort of persistence to discover issues with the project idea and the required tweaks.

When implementing such a prototype as a developer, one would want to spend most of the time implementing
features and quickly adjust existing data structures rather than spending time writing boiler plate code, repeating
the same model bindings for the tenth time, and adjusting big models to fit for the newly adapted view of the
problem. There are many existing libraries and frameworks in the NodeJS environment that do most of the heavy
lifting, but it is not very easy to combine these parts into a powerful tool but rather a messy and confusing process
until everything works together as intended. There are plenty “Hello World” tutorials for each of these libraries but
the combination of these tools is not trivial and straightforward. This is why we see a gap where we can provide a
clear structured solution.

This is where this proof of work comes to work. We demonstrate in a easy to understand and practical example how
rapid prototyping can be simpler, faster and safer than traditional approaches. This allow a developer to spend the
valuable time developing new features rather then fighting the technologies and frameworks while still have the
extendability and maintainability that one would desire. Our practical example is a simple cinema ticket reservation
application where a user can view the next movies and make a reservation for a certain screening.

Trough the tutorials it is possible to learn how to extend this application in a practical manner with guided tutorials
that let the developer discover the effectiveness of our chosen frameworks and libraries. It also serves as a base for
future tools that might get developed.

1.2 Target audience
This documentation is intended for tech-leads or software architects or software engineers that want to discover
a simple approach to rapid prototyping. The tutorial and documentation are somewhat understandable for non-
professionals, but certain details are not fully explained and require additional research by the reader. We are writing
this project as a semester thesis so this documentation also serves as a result based documentation for our advisor
or for any competitor interested in our project.

1.3 How should one read this documentation?
This documentation provides more of a deep dive into the project and shines a light to our decisions and thoughts
when designing the application and rapid prototyping approach. For a more hands-on approach we have created
a step by step tutorial that allows a developer to discover the functionality of this tech stack and understand how
to extend this prototype. We did not copy all parts from either side to the other so it will not suffice to just read
either one, they are indented to be read together. We recommend completing the tutorial first. For those interested
in additional background information or further details about our decisions, this documentation can be consulted.

1.4 Rapid prototyping
Before we dive into our project we want to clarify the term “Rapid prototyping” in a more detailed manner. Rapid
prototyping is the process of building a MVP (minimal viable product) in a quick fashion. A MVP is working
application that represents the complexity and scale of the actual product that requires to be build. Traditional

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 1 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

approaches to rapid prototyping sometimes lack the ability for customization and fine grain control which do not
make them viable production software. Our approach allows the developer to still have these controls and with a
few tweaks to the setup one could even deploy it as a production grade software.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 2 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

2 Glossary
See agile glossary for common abbreviations used in this documentation. See Domain analysis for further expla-
nation for domain specific terms.

Apollo Client A GraphQL client that can create and send GraphQL queries.
Apollo Server A GraphQL server that can resolve GraphQL requests.
CRUD Create, read, update and delete.
Docusaurus Static site generator for creating documentation websites using Markdown and React.
Earthfile Configuration file for Earthly.
Earthly Build tool to build docker images with local artifacts.
Express Minimal framework to create web applications and APIs, used by Apollo Server.
GraphQL Query language for APIs and a runtime to fulfill these queries.
Javascript A programming language commonly used for web development.
JWT JSON Web Token, a secure compact way to transmit credentials.
Material UI Component library for React that follows the Material Design guideline.
Mutation A GraphQL query that modifies data (create, update and delete).
Nginx High-Performance web server and reverse proxy.
Node A JavaScript runtime that can run on different platforms (cross-platform).
PostgreSQL Open source relational database.
Prisma ORM for TypeScript, also used for database access.
Prisma datasource Defines the connection to the persistence layer for Prisma.
Prisma generator A generator that determines what artifacts are created from the Prisma schema.
Prisma schema The source of truth, that defines the data models.
Resolver A function that is responsible to populate a field in a GraphQL query.
RLS Row level security, per table row access restriction.
TypeGraphQL Library to create resolvers for a GraphQL server.
TypeGraphQL-Prisma Prisma generator to create TypeGraphQL resolvers.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 3 / 46
OST RJ

https://www.agilealliance.org/agile101/agile-glossary/

Part I
Product description

Semester Thesis Rapid Prototyping in TypeScript

3 Domain analysis
We demonstrate the rapid prototyping with the help of a sample application: a cinema ticket reservation system.
We decided for this simple and known domain so that it is easy to understand the technical part of our template
rather then being confused with the chosen domain. In this chapter we describe the domain and the definitions of
different jargon words.

Moviegoer The customer that wants to watch a movie.
Cashier The employee that confirms a ticket reservation offline at the cinema locally.
Movie A movie can be showed in multiple hall at multiple dates.
Screening A single instance where the movie is being showed.
Hall The room where the movie is being played at. It contains seats.
Seat A single seat inside a hall that can be reserved for a single screening. A seat knows its position inside a hall

and if he is reserved or not.
Reservation A reservation for one or multiple seats in a screening for a specific movie in a specific hall. The seats

are not confirmed yet, but no one else can reserve the seat.

In Figure 3 we visualize the relations of the different domain classes with a UML class diagram. Note that this
diagram shows the domain state at the end of the tutorials and not the current implementation state of the template.

Figure 3: Analysis level domain model (UML class diagram)

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 5 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

4 Requirements
Our product and domain story is based upon the example product from the Domain Story Telling company [1].
We modified and enhanced the example domain story to develop a user-friendly product that effectively facilitates
teaching various aspects of the technologies.

4.1 Actors
Here are the actors for our example application and their goals listed:

• Moviegoer
‣ Confirm the reserved tickets at the Cashier in person.
‣ View upcoming screenings of movies.
‣ View seating plan for a movie.
‣ Make an online reservation for a screening of a movie.

• Cashier
‣ Can confirm reserved tickets in person to a Moviegoer.
‣ View upcoming screenings of movies.
‣ View seating plan for a screening of a movie.

• Cinema System
‣ Processes the confirmations of the cashier.
‣ Updates seating plan with the reservations.

4.2 Use case diagram
In the Figure 4 we visualize the different actors and their use cases in a use case diagram. It shows for example the
primary actor “Moviegoer” with the use case “View next screenings of movies” with the secondary actor “Cinema
System”. The remaining use cases are to be read the same way.

Figure 4: Use case diagram

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 6 / 46
OST RJ

https://domainstorytelling.org/quick-start-guide

Semester Thesis Rapid Prototyping in TypeScript

4.3 Functional requirements
In this chapter we describe the functional requirements for the example application. Certain requirements are kept
brief while the most important requirements are described with a fully dressed requirement template. The template
for the use cases is based on Craig Larman’s template for brief and fully dressed use cases [2].

4.3.1 FR1: View next movies
Main success scenario

• A Moviegoer and a Cashier can see a list of the next available movies and general information about the movie
like duration, genre, time and cinema hall.

Alternate scenario

• If no movies are available, a text informing that no upcoming movies exist should be displayed.

4.3.2 FR2: View seating plan for movie
Main success scenario

• A Moviegoer and a Cashier can see the current seating plan for a specific movie and see which seats are still free.

Alternate scenario

• If no seats are available anymore, it should not be possible to do any reservations. Also a fully booked seating
plan should be displayed.

4.3.3 FR3: Reserve movie ticket online
Scope Frontend
Level User-goal
Primary actor Moviegoer
Stakeholders and interests

• Moviegoer: The Moviegoer wants a simple way to make a reservation for a certain screening of a movie.
• Backend: The Backend wants to ensure that no double booking of an available seat can be done.

Preconditions

• Movie exists
• Screenings for movie exists
• Seating for screening exists

Main success scenario

1. Moviegoer selects movie
2. Moviegoer selects screening
3. Moviegoer selects seat(s)
4. Moviegoer reserves the seat(s)
5. Moviegoer sees reserved seat(s)

4.3.4 FR4: Confirm movie ticket reservations offline
Scope Frontend
Level User-goal
Primary actor Cashier
Stakeholders and Interests

• Cashier: The Cashier wants a simple way to confirm a ticket reservation for a certain screening of a movie.
• Backend: The backend wants to ensure that no double booking of an available seat can be done.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 7 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Preconditions

• Movie exists
• Screenings for movie exists
• Seating for screening exists

Main success scenario

1. Cashier selects a movie.
2. Cashier selects a screening.
3. Cashier suggests available seat(s).
4. Moviegoer chooses seat(s).
5. Cashier selects seat(s).
6. Cashier confirms the selected seat(s) for the Moviegoer.

4.4 Non-functional requirements
The following non-functional requirements are listed and categorized according to ISO/IEC 25010 [3].

4.4.1 NFR1: Browser independent functionality
Category Compatibility -> Interoperability
Description The demo application, that we use for our proof of work, has to run in the most used browsers on

their latest versions. Such as: Google Chrome and FireFox.
Acceptance criteria A user should be able to run the app locally on his device and use any of the above mentioned

browsers on their latest LTS-version. Without any additional setup the app should work.
Verification process

• Clone the git repository.
• Setup according to the README.
• Start app with docker-compose.
• Open the app in one of the browsers.
• Check if the app can complete all its processes.
• Repeat with another browser until you checked both browsers.

Verification period After every sprint, the app will be checked for compatibility on the different browsers.

4.4.2 NFR2: Operating system independent functionality
Category Portability -> Installability
Description The demo application, that we use for our proof of work, has to run on the most common operating

systems such as: Mac OS, Windows and Ubuntu Linux.
Acceptance criteria A user should be able to run the app locally on his device that runs any of the above

mentioned operating systems on their latest LTS-version.
Verification process

• Clone and start the app according to the README on Windows.
• Clone and start the app according to the README on Mac OS.
• Clone and start the app according to the README on Ubuntu Linux.

Verification period After the first construction sprint and in the transition sprint, the app will be checked for
compatibility on the different operating systems.

4.4.3 NFR3: Simple setup with minor effort.
Category Flexibility -> Installability

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 8 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Description The application, that we use for our proof of work, must be easy to setup. The user should be able to
run it without a lot of effort on MacOS, Linux or Windows. Note: We do not support native setup. The main
reason for this is that we have multiple applications that require different multiple steps to setup which would
have to be done manually if you would want to run the project locally in a native way. To avoid impactful drift
between development setup and production setup that would run on your servers we also streamedlined the
setup to minimize the differences. Furthermore we also have different applications that talk to eachother and
to avoid violating Cross-Origin Resource Sharing (CORS) policy we use a reverse-proxy which would have to
be configured and running locally aswell. Due to all these reasons we opted to not support a native setup and
focused on our streamlined setup with Docker and Earthly.

Acceptance criteria A user should be able to clone the git repository and start the application with a few
commands.

Verification process

• Clone the app from the gitlab repo.
• Start the app according to the README.
• Check if the app is running without any errors.

Verification period After the alpha release of our project

4.4.4 NFR4: The demo app is simple and compact.
Category Product Quality -> Quality use
Description The app should have a domain that everyone is familiar with. It shouldn’t be for software engineers

exclusive. Furthermore should the app be held simple.
Acceptance Criteria A person that isn’t specifically versified in software engineering should be able to use the

application. The application also shouldn’t have more than 5 screens and every screen should be reachable
within 2 clicks.

Verification process

• Have someone who is not particularly familiar with web development test the app.
• The person should be able to use the web the intended way.
• The person has to reach every screen within 2 clicks from the landingpage.

Verification period After the alpha release of our project

4.4.5 NFR5: Responsive user interface
Category Interaction Capability -> Operability
Description The application should be responsive on multiple screen sizes. Reaching from mobile to big screens.
Acceptance criteria The app should be responsible on a screen-width reaching from 640px to 2560px.
Verification process

• Open a dev tool and test a screen with a width of 640px.
• Open a dev tool and test a screen with a width of 780px.
• Open a dev tool and test a screen with a width of 1024px.
• Open a dev tool and test a screen with a width of 1280px.
• Open a dev tool and test a screen with a width of 2560px.

Verification period After the alpha release of our project

In the next chapter we will describe the tutorials created to teach the use of our template.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 9 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

5 Tutorials
We want to provide the developer with tutorials that allow him to understand how the technologies and frameworks
work together and guide him on how he can extend the current state of the application ranging from simpler to more
complex adjustments that could also arise if he would decide to build a new application with these technologies.

For the step by step tutorials we provide the exact code snippet required, the file where it should be added or
replaced and give instruction on how to confirm if the changes were successful, we did not include exact screenshots
of the UI because we already provide the exact snippet and thus the result is quite obvious if it worked or not.

To create engaging and user friendly tutorials we use Docusaurus as seen in Figure 5 that allows us to create
rendered React pages with code snippets, info boxes and much more from simple Markdown files.

Figure 5: Rendered Markdown pages

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 10 / 46
OST RJ

https://docusaurus.io/

Semester Thesis Rapid Prototyping in TypeScript

5.1 Structure
To keep the tutorial interesting and engaging we split up the tutorials into smaller tasks that are linked together to
achieve a certain goal. In Figure 6 you can see a screenshot of the tutorial website showcasing the different chapters
of the tutorials and how they are linked together. In the bottom half of the figure you can see that you can directly
jump to the previous or next step of the tutorials allowing a guided reading in the intended order.

Figure 6: Getting started tutorials

5.1.1 Getting started
The first guide explains how he, the developer, can get started with this tutorial. This includes prerequisites on
both the software side, meaning software that the developer requires to be installed on his machine, and on the
knowledge side, meaning what the developer should already be familiar with in order to understand this tutorial.
We do not list every prerequisites like “should be familiar with the terminal” our target audience will already fulfill
these and would only clutter our already sizeable prerequisites scaring potential developers away.

To allow the developer to confirm his knowledge is suffice for the tutorial, we list important topics that we do not
explain inside our tutorial but use for our solutions.

It is important to explain how the developer can start the application locally in order to follow the tutorials. Our
setup sadly is not perfect. The watchers that try to recompile the project whenever you perform changes in your
code do not always register all the changes. This will lead to errors that can be fixed by just triggering the watchers
again or restarting them. We made sure to also explain these errors right at the beginning when trying to start the
application.

Before we explain the application we give a brief overview of the domain that the application resides in. In this
case it’s the cinema ticket reservation domain. Similar to the domain analysis in this documentation we state the
different domain models and their relationships. We also list the use cases that the application wants to cover. Note
that not all the use cases stated there are already implemented.

Finally we give an overview of the architecture of the application so that the developer can understand what
components there are and with what they interact with. To further boost the understandability of our technology

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 11 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

stack we added a sequence diagram to show exactly what technology or library is talking to each other and in what
chronological order.

5.1.2 Application deep dive
We want to provide further details about each of the major components of our architecture, the backend, the
frontend and the proxy. This will help the developer to understand the greater picture before trying to adjust it. In
this section we also explain framework or library specific parts, and what adjustments can be done for a production
variant.

5.1.3 Extending a data model
For our first tutorial we want a simple start into the whole tech stack. As a first task we want the developer to just
add a property to an existing model. He will learn how he has to perform migrations, encounter a common error
with migrations that happens when you add a column to existing data but do not provide a clear instruction how
the existing data should be handled. Next he will also get his first experience in using the playground to test the
API in a simple and direct matter. Lastly he will also learn how to extend the frontend by adjusting the query and
the components responsible for the respective information.

5.1.4 Creating a data model
A more advanced tutorial is required to handle the whole workflow that the developer would encounter on a regular
basis when he would intend to use this prototype for a project of his own. The developer will learn how to add a
new model with a various relationships including many-to-many and one-to-many. Not all features can be covered
with CRUD operations so we also let the developer create a custom resolver for a custom operation. He will learn
how to protect and expose resources and create different advanced access policies. He will make more complicated
adjustments in the frontend by writing his own mutation and lastly even creating a whole page from scratch that
is protected against unauthorized access.

5.1.5 Further details
The last part of our documentation contains an FAQ (frequently asked questions) where we document common
errors that you could encounter with the technologies and its limitations.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 12 / 46
OST RJ

Part II
Product realization

Semester Thesis Rapid Prototyping in TypeScript

6 Architecture
In this chapter we summarize decisions, patterns and explain the structure of the software components and how
the interact with each other.

6.1 Evaluation of technologies
In this section we give a overview of the major decisions of the evaluations we did for the possible technologies
and compared different competitors. The decisions are documented using the “Markdown Architectural Decision
Records” (MADR) template [4].

6.1.1 Web framework
Context and problem statement
For an interactive user experience we want to use a web framework in order to build a representative example
application that a developer also would use for their respective project.

Considered options
• Angular
• Vue
• React

Decision outcome
We decided to use React for our project because:
• It is a widely popular framework.
• It is well known even with newcomers in the developer community.
• Project setup is quite easy to understand and slim in comparison with e.g. Angular.
• Apollo Client (the GraphQL query client) natively supports React.
• Silvan already has extensive knowledge with the framework.

6.1.2 Component library
Context and problem statement
To save time and cut down on complexity we want to use a component library. It will help us to build a web
application that is appealing without having to construct complex components.

Considered options
• Material UI
• Ant Design
• React Bootstrap

Decision outcome
We decided to use Material UI for our project because:
• It is the most popular component library in React.
• It provides sophisticated components with configurable features.
• It is based on the Google Material Design which is created by experts in the area of UI/UX design patterns and

frontend development.
• It is simple to use and the documentation is easy to understand.

6.1.3 GraphQL code generation
Context and problem statement
The major focus of this proof of work is to enable rapid prototyping for a developer. In order to focus on prototyping
rather than writing boilerplate code for CRUD operations we want a way to generate these GraphQL resolvers
automatically from the database schema of our ORM Prisma.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 14 / 46
OST RJ

https://angular.dev/
https://vuejs.org/
https://react.dev/
https://mui.com/material-ui/getting-started/
https://ant.design/
https://react-bootstrap.netlify.app/

Semester Thesis Rapid Prototyping in TypeScript

Considered options
• Postgraphile
• GraphQL-Code-Generator
• TypeGraphQL-Prisma

6.1.3.0.1 Postgraphile
Postgraphile is a library that automatically generates a GraphQL server from a running database allowing CRUD
operations on all tables without coding a single line.

Pros:
• Low effort is required to get a running GraphQL server.
• Postgraphile is optimized for performance.

Cons:
• Extending to manual queries and mutations requires the manual typing of the type definitions.
• Can’t keep type definitions and functions in synchronization automatically, would have to be done manually.

6.1.3.0.2 GraphQL-Code-Generator
This library can generate empty resolvers out of a predefined GraphQL schema. The resolvers do not have any
business logic inside them but only the typings in an empty skeleton.

Pros:
• Can generate resolvers and types out of a graphql schema.
• Has great Typescript integration.

Cons:
• No automated integration to the database.
• Not practical for CRUD operations since you would have to write a lot of types in the schema and connect them

tediously with the database.

6.1.3.0.3 TypeGraphQL-Prisma:
Generates CRUD resolver from the Prisma schema in TypeGraphQL. The resolvers have full database access and
can expose them to the GraphQL API.

Pros:
• Resolvers are always in sync with the database schema.
• Allows custom resolvers with the help of TypeGraphQL.

Cons:
• Heavy abstraction because the library does all the heavy lifting.
• Not a batteries included variant, requires bundling and tooling configurations

Decision outcome
We decided to use TypeGraphQL-Prisma for our project because:
• It automatically generates a complete CRUD resolver which allows complete usage of the Prisma Client

via GraphQL.
• Allows custom resolvers to be created for custom processes with TypeGraphQL.
• Does not require any manual work to keep GraphQL schema and database schema in sync.

6.1.4 Build tool
Context and problem statement
We require generation from Prisma (client and resolver), compilation from TypeScript to Javascript, and bundling
for Docker.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 15 / 46
OST RJ

https://www.graphile.org/postgraphile/
https://the-guild.dev/graphql/codegen
https://prisma.typegraphql.com/

Semester Thesis Rapid Prototyping in TypeScript

Considered options
• Dockerfile
• Native installing and generation
• Earthly

Decision outcome
We decided to use Earthly for this project because:
• Earthly is a isolated build tool running inside docker leading to reproducible builds without misconfiguration

errors.
• In contrast to pure Dockerfile it does allow to save artifacts like node_modules or the generated code to the local

machine to allow IDE support. This is a huge plus considering that we want to create a project that is easy and
smooth to setup. It also helps us to minimize the risk of the “it runs on my machine” problem.

• It is still a simple way of writing the build process in an understandable way.

6.1.5 Movie data
Context and problem statement
In order to display movies in the application we need an example data set of possible movies including certain
information about the movie like title, genre and movie poster.

Considered options
• Create a data set from scratch
• Use an external API like OMDB
• Use an existing data set from a public Github repo like Movie-Demo

Decision outcome
We decided to use an existing JSON with the data because:
• It is simple to use.
• We do not need to worry about an account for an api or any other credentials.
• It saves us a lot of time

6.1.6 API patterns
The TypeGraphQL-Prisma library generates resolvers for all CRUD operations, these are unprotected by default.
This is a problem since we don’t want to expose all the data to every user, we will use the information holder
resource pattern (IHR). The IHR is designed to expose domain data entities in APIs while maintaining implemen-
tation encapsulation and supporting concurrent access. It allows structured, shareable data to be accessible across
distributed systems, enabling the create, read, update, delete (CRUD), and search operations. By abstracting data
manipulation into dedicated endpoints, IHR promotes consistency and integrity in systems with complex entity
relationships. This approach aligns well with microservices principles, like loose coupling and independent deploy-
ability. Real-world examples include APIs for customer information, document databases, and metadata in analytics
platforms. Our resolvers, that will be generated, are implementing this pattern. The reason for this is, that we have
an independent resolver for every operation.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 16 / 46
OST RJ

https://earthly.dev/
https://www.omdbapi.com/
https://github.com/toedter/movies-demo/tree/master
https://api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource.html
https://api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource.html

Semester Thesis Rapid Prototyping in TypeScript

6.2 C4 model
We based our domain analysis on the C4 model that we learned in a bachelor module at OST called “Software
Engineering Practices 2” [5].

6.2.1 System context model (C1) and Container diagram (C2)
As seen in Figure 7 we combined the system context diagram (C1) and the container diagram (C2) into a single one,
since we have no external system interactions and this way you get a good understanding of the system.

Figure 7: System context model (C1) and Container diagram (C2)

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 17 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.2.2 Component diagram (C3)
On level three (C3) as seen in Figure 8 we added a component diagram to get an overview of the API container.
Since a C4 code diagram would be to detailed without any benefits we skipped it.

Figure 8: Component diagram C3

6.3 Sequence diagram
The following Figure 9 visualizes what happens when in the frontend a simple request is triggered until it receives
the data. It also visualizes the technologies that are working with each other.

Figure 9: Sequence diagram

In the frontend a GraphQL query or mutation is formed and prepared with the required parameters. The frontend
uses Apollo Client to send the GraphQL request to the GraphQL API. To reach the GraphQL API we send the
request to our reverse proxy, which runs with nginx, that forwards the request to the HTTP server on our backend
server. The Apollo Server, which is a GraphQL Server, uses Express as the HTTP server. The HTTP server parses
incoming HTTP requests and forwards the GraphQL body to the Apollo Server. The Apollo Server then parses and

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 18 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

validates the GraphQL query and forwards the proper parameters to the correct resolver. The resolver is written
with TypeGraphQL and is responsible to fulfill the query. It performs the business logic of the application and
the associated database query. If you build a large scale application you can split up the resolver into different
components so that the business logic can be separated into different parts. What approach you use is your
responsibility and has to be chosen with your specific requirements and needs.

6.4 User interface sketches
In this section you can see our sketches and wire frames for our user interface (UI), we focused that the UI is self
explanatory and intuitive to use so that we do not confuse the user or the developer with the example application
but rather enabling them to use and extend the application with ease.

Figure 10: Landingpage sketch

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 19 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Figure 11: Movie search sketch

Figure 12: Ticket reservation sketch

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 20 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Figure 13: Login sketch

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 21 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.5 Folder structure
The following is a visualization of the folder structure of this project. Note that some files have been omitted because
we do not want to explain each file but only the ones that might change and that are of significance.

apps/ -> Hosts all application code
├── api/ -> Hosts the code for the GraphQL API
│ ├── Earthfile -> Defines how to build the API container
│ ├── prisma/ -> Hosts the ORM definition
│ │ ├── schema.prisma -> Single source of truth of the database
│ │ ├── migrations -> Hosts all migrations scripts that were generated
│ │ └── generated -> Hosts all generated code from the Prisma schema like Prisma Client and
TypeGraphQL resolvers
│ ├── src -> Hosts the source code of the API and any custom resolvers
│ ├── package.json -> Defines the API application related dependencies
│ └── tsconfig.json -> Defines the API application specific TypeScript configs
├── documentation/ -> Hosts the code for the documentation application for the tutorial
│ ├── Earthfile -> Defines how to build the documentation container
│ ├── docs -> Holds the .MD files that contain the tutorial
│ ├── src -> Hosts the code for the documentation application
│ ├── static -> Hosts assets like images
│ ├── docusaurus.config.ts -> Configuration file for docusaurus
│ ├── sidebars.ts -> Configuration file for the order of the tutorial
│ ├── package.json -> Define the documentation application related dependencies
│ └── tsconfig.json -> Define the documentation application specific TypeScript configs
├── frontend/ -> Hosts the code for the demo frontend application
│ ├── Earthfile -> Defines how to build the frontend container
│ ├── src -> Hosts the source code of the frontend and all its components
│ ├── codegen.ts -> Configuration file for the type generation of all GraphQL queries and
mutation responses
│ ├── package.json -> Define the frontend application related dependencies
│ ├── tsconfig.json -> Define the frontend application specific TypeScript configs
│ └── vite.config.ts -> Define the frontend application specific Vite configs
└── proxy/ -> Hosts the config for the reverse proxy
 └── nginx.conf -> Define the reverse proxy settings
docs -> Hosts the source code for the written documentation
gitlab-ci.yml -> Define the CI/CD pipeline
docker-compose.yml -> Defines the container orchestration
Earthfile -> Defines how to build this entire project
eslint.config.mjs -> ESLint configs
format.sh -> Small script to format all files
package.json -> Defines global dependencies for this project for linting and formatting
pnpm-workspace.yaml -> Defines the workspace of this monorepo
prettier.config.js -> Prettier configs

6.6 Project setup
For this project we opted for a monorepo to host the source code for all the different applications. We decided to
do so, because the code fragments are tightly coupled to each other. This allows for rapid prototyping because the
frontend code is highly aware of the structure of the api. It makes the code more unified since the formatting, linting
and building can be streamlined with the same tools and configuration. For the configuration of the monorepo we
opted for pnpm [6] with it’s workspace feature.

6.6.1 Linting and formatting
For formatting we opted for the opinionated styling of Prettier. It follows best practices on code formatting and
allows less time to be spend on discussing code styles and more time on actually building the project. A formatter

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 22 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

alone will only help with indentation, spacing and so on, but it wont help with faulty code like unused variables
or use before declarations. For these checks we need a linter. We opted for the most widely used linter in the
TypeScript community ESLint.

The configuration for ESLint is based on the configuration generated by creating a new Vite project and follows the
recommendation of the different rule set plugins like typescript-eslint or eslint-plugin-react. The configu-
ration for prettier is adapted to the configuration of eslint so that they do not try to overwrite each other.

6.6.2 Containerization
We could just run the project locally, but there are several possible issues that can happen due to different machine
configuration. To resolve these issues we want to run our application inside different Docker containers. This will
allow us to build isolated and reproducible applications that work on all major operating systems.

After the development cycle finishes, its common to deploy the code to a production system. The development
variant and the production variant are not identical tho because the development variant supports various features
that make development more efficient but are not as performant as compiled production code without these devel-
opment features. For that reason we also create a variant of the docker images usable for a production environment.

6.6.3 Docker orchestration
We use Docker Compose to define the multi-container application. It allows for a developer to start the project with
a single command without knowing the entirety of the project. The configuration file ensures that the containers
always start with the configurations and volumes that they require.

For a production variant we created a separate Docker Compose configuration that uses the production variant
images and does not mount the code into the code. The configuration exists as a basis for a configuration of
a production server. The configuration serves as an example and should be adapted to the requirements of the
infrastructure of the production server.

6.6.4 Building
As already discussed in the evaluation of build tools we use Earthly in this project because we want reproducible
builds that work independently of your machine configuration. This will allow us to reach more developers and
allow them to test this project without having to spend time fixing a build that does not work on their machine.

The build process is defined as close to the code as possible, so the build configuration for the GraphQL API
application is inside it’s folder in /apps/api.

Each build process also defines how to build a Docker image and what artifacts, from that build process, have to
be saved to the local machine. This includes all node_modules folders, that contain the code dependencies, all the
generated code like the Prisma Client and the generated TypeGraphQL resolvers.

The reason we have to save these artifacts locally is, that the IDE of the developer also understands the project and
can provide useful recommendation and understands the types and their available properties.

Next to the development variant we also provide building instructions for a production variant. The production
variant differs from the development variant because it compiles the code and does not support hot-reloading of
the code like in the development variant. A challenge was the generated typings for the frontend because in the
development mode the generator listens to the live backend but during a build in a pipeline it is not feasible to have
a backend running. So we had to implement steps so that the schema can be generated manually and copied into
the frontend container during build time so that we can support also generating the types from a static schema
instead of a live backend.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 23 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.6.5 CI/CD
We have a Gitlab CI/CD pipeline that continuously checks our source code. A merge request can only be merged
when the entire pipeline succeeds. We have a job that checks that all lines conform the Prettier standard and a
different one that checks if everything is satisfying the ESLint rules. Lastly whenever a tagged commit is pushed, the
documentation is built into a PDF. For a production variant we also build the images in the production configuration
and push them to the Gitlab container registry, so that they could be pulled from a production server.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 24 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.7 Authentication / Authorization
As most applications we require authentication and authorization for our protected resources, this means that
someone has to log in before he can access a certain resource, and for certain resources we even require him to
be the corresponding owner else, he cannot view the data. For this we require some mechanism to verify if he has
access to the resource or not.

By default, our TypeGraphQL-Prisma library will generate CRUD resolvers for all our data models, these CRUD
resolvers are unprotected by default which allows any user (even not logged in) to perform the operation. We want
to disallow that by leveraging the RLS (row level security) feature that comes with Postgres. This will allow us
to create powerful policies for access restriction and enforce these securities even with custom resolvers that we
might write at a later time, meaning we only have to think of our access to the model when creating the model
and do not have to fear that in some later stages we forget to implement the same security restrictions on a newly
created custom resolver that tries to implement some custom process.

An alternative to using RLS would be to create a wrapper around each resolver and expose the wrappers. In these
wrappers you would perform your checks and then trigger the code of the generated resolvers. This is not the best
solution because it requires a lot of manual work, because for a single model multiple resolvers will be generated,
which all would have to be wrapped. When adding relationships you would always have to remember the access
permissions of the related model and be sure to implement them accordingly and keep them in sync. So for a more
robust and simpler version we opted for RLS.

6.7.1 Important note
In a real world application you should never do authentication and authorization or any identity management
by yourself from scratch like we do it here in the example application. We do a simple mechanism since your
company might already have a authentication/authorization mechanism and the focus point of this project is rapid
prototyping rather than security. It serves as a simple and understandable mechanism for learning purposes. You
should consider well vetted open source projects that are respected by the security community like Keycloak or
Zitadel. Make sure to self host these authentication applications rather than using their cloud to increase security
even further since you do not have to give away your data.

6.7.2 Authentication
To verify if a person is who he claims to be, we implemented a simple login and register mechanism. This starts
with the model of a user.

Figure 14: User data model

Before a user can log in, he has to register himself to the application. For this we created a custom resolver to resolve
the incoming request. The resolver is located in the file /apps/api/src/resolvers/auth/Register.resolver.ts.
See the following activity diagram.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 25 / 46
OST RJ

https://www.keycloak.org/
https://zitadel.com/docs/self-hosting/deploy/compose

Semester Thesis Rapid Prototyping in TypeScript

Figure 15: Register activity diagram

After the user is registered, a login can be performed. For this we also created a custom resolver to create the JWT
(JSON Web Token). Note that here we return an access token without a refresh token. This is for simplicity only.
In a real production environment, it would be quite annoying to be logged out after the short lived access token
expires. Since the whole token management should not be done by yourself, but rather the authentication and
authorization software like Keycloak, we do not show an example of how this could be done.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 26 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Figure 16: Login activity diagram

On the frontend the JWT is stored in the localstorage. Note that this is only for simplicity, if you would want to
protect your token against malicious access from either third party library or XSS (Cross-site scripting) attacks you
could consider to store the token in a secured session cookie, that is only accessible by the browser by setting the
HttpOnly flag.

Now for every request done by the Apollo Client, the JWT will be added in a authorization header as a bearer
token.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 27 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.7.3 Authorization
Now with the JWT we have the ability to allow or deny access to certain resources. For this we leverage RLS. In
order for the policies to gain access to the JWT body, we override all requests made by the Prisma Client. We set a
custom config that is valid for the execution of the database transaction which contains the body of the JWT. With
this, each policy can make powerful restriction based on the database row and the JWT.

CREATE POLICY access_to_own_transactions ON "transactions" TO api USING (
 "user_id" = current_setting('jwt.claims.sub')
);

This is a simple example policy that only allows access to a row in the fictional table transactions, when the value
of the column user_id matches the one given in the JWT body.

The Prisma Client with the JWT information, that will be subject to the RLS policies, is used by default and is the
only access to the database that the generated resolvers from TypeGraphQL-Prisma will have. For custom resolvers
we also create a second Prisma Client instance with elevated privileges to perform certain database operations,
that should still be performable by the backend but not directly through the API e.g. reading the password field of
a user to validate the login.

To realize these two different Prisma Client instances we create two different PostgreSQL roles: api and
api_elevated. The api role is used for all queries and default operations, which is subject to the policies. The
api_elevated role will be used for the certain edge cases where we need higher access.

6.8 Error handling
Error handling in a GraphQL environment is not as straight forward as in REST. RESTful environments use HTTP
status codes to communicate errors, while in GraphQL this is only used in a limited fashion. In the Apollo Server,
our GraphQL server, only responds with a different status code than 200 in certain cases. [7]
• 500: Apollo Server hasn’t correctly started up or is in the process of shutting down.
• 500: Apollo Server encountered an error while setting up the context.
• 500: Apollo Server encountered an unexpected error while processing the request.
• 405: Invalid HTTP method was used.
• 400: Apollo Server cannot parse the request body to a valid GraphQL document.

Because in GraphQL you can batch multiple requests into a single one, it is not always clear as to what the status
code should be set.

Here is an example of multiple fictional queries being batched together:

query MoviesAndUsers {
 movies {
 title
 }
 users {
 email
 }
}

If the request for movies is valid and data should be returned it would implicate that the status code should be 200.
But the request to users is not allowed and a error is thrown, this would implicate that the status code should be
401/403. In the end the question remains which status code should be returned? To avoid this you have a data and
a errors field in the GraphQL response where errors and response data can coexist while always using the status
code 200 (expect for the above listed cases).

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 28 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Note that the Apollo Client (that is sending the requests) has different error policies [8] that define how the response
looks like if an error occurred in a resolver:

• none (default): If there was an error, the error is returned and the response data is set to undefined, even if the
any resolvers return data.

• ignore: Errors are ignored and not returned, partial data will be returned as well as if no error occurred.
• all: Both error and partial results are returned.

6.8.1 Invalid JWT
We allow the user to provide a JWT, as a Bearer token, for his requests to the API. If a JWT is provided we parse
and validate the token to check if it’s a genuine and valid token. If not we do not process the request even when
the requested source would not require a JWT. We also return the request with the status code 401 Unauthorized
because the user provided invalid credentials.

6.8.2 RLS violations
Due to our RLS policies, unauthenticated or forbidden accesses to certain tables can be prohibited entirely. When
still trying to access these resources the database will throw an error that is propagated to the Prisma Client and
then to the GraphQL server which returns the following error:

"errors": [
 {
 "message": "\nInvalid `helpers_1.getPrismaFromContext)(ctx).user.findMany()` invocation
in\n/app/prisma/generated/type-graphql/resolvers/crud/User/UserCrudResolver.js:85:62\n\n 82 }\n
83 async users(ctx, info, args) {\n 84 const { _count } = (0,
helpers_1.transformInfoIntoPrismaArgs)(info);\n→ 85 return (0, helpers_1.getPrismaFromContext)
(ctx).user.findMany(\nError in batch request 1: Error occurred during query execution:
\nConnectorError(ConnectorError { user_facing_error: None, kind: QueryError(PostgresError { code:
\"42501\", message: \"permission denied for table User\", severity: \"ERROR\", detail: None,
column: None, hint: None }), transient: false })",
 "locations": [
 {
 "line": 5,
 "column": 3
 }
],
 "path": [
 "users"
],
 "extensions": {
 "code": "INTERNAL_SERVER_ERROR",
 }
 }
],

This error is too detailed and exposes too much of our server. So we implement a check before the error is returned,
to catch these types of errors and return a nicer error:

"errors": [
 {
 "message": "insufficient credentials for requested sources provided",
 "extensions": {
 "code": "FORBIDDEN"
 }
 }
],

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 29 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

6.8.3 Client side error handling
On the client side you can either use operation error level handling, meaning that where you declare the operation
you also handle possible errors:

const { loading, error, data } = useQuery(GET_MOVIES);

if (error) return <p>Error occurred {error.message}</p>

Or you can handle errors on an application level, meaning that every response is checked if an error occurred and
if so it will be dealt with in a common approach regardless of what operation triggered the error:

const errorLink = onError(({ graphQLErrors, networkError }) => {
 if (graphQLErrors)
 graphQLErrors.forEach(({ message }) =>
 console.log(
 `Error occurred: ${message}`
)
);
 if (networkError) console.log(`Network error occurred: ${networkError}`);
});
...
const client = new ApolloClient({
 link: from([errorLink, authLink, httpLink]),
 cache: new InMemoryCache(),
})

In the demo application we use application level error handling for global errors that are not directly related with
the operation. This is the Unauthorized error where the JWT is no longer valid and network errors. All operation
related errors, like when a user try to register and the email was already in use, are handled on an operation level.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 30 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

7 Quality measures
7.1 Test concept
We create our test concept based on the test quadrants from the agile testing methodology. The test concept is
divided into the agile test quadrants (see below).

Figure 17: Agile testing quadrants [9]

7.1.1 Quadrant one
Unit tests would make sense for any product of scale, but for our project we focused on creating a useable and easy
tutorial for rapid prototyping. Because of the time limit we opted to not setup a automated test suit since this would
require a lot of initial setup work in order to have it runnable and working with our CI/CD pipeline. If you opt to
copy our template and implement your own product we highly recommend to test all critical and breakable parts
of your application. This would include all permissions (RLS), all your business logic from the backend (split them
from the resolver to make them testable), and any other component critical for a smooth operation. As a testing
library we would suggest Jest and for a mocking database test containers. If you intent to have end-to-end testing
we would recommend a sophisticated testing framework like Cypress or Playwright.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 31 / 46
OST RJ

https://jestjs.io/
https://testcontainers.com/?language=nodejs
https://www.cypress.io/
https://playwright.dev/

Semester Thesis Rapid Prototyping in TypeScript

7.1.2 Quadrant two
The second quadrant should assure that we are testing the code and the application continuously during the process,
not just at the end. We will do manual integration and system tests to ensure that all parts of our system works
correctly together. We will conduct the tests after every construction sprint and while developing when needed.
See chapter Test protocol for the detailed manual tests. In the appendix is a test protocol overview with our manual
and user tests that we have conducted.

7.1.3 Quadrant three
The third quadrant focuses on exploratory and usability testing. Since our proof of work for rapid prototyping
should be easy to use by different developers we will do usability testing with external developers. This will give
us feedback on how easy our app is to use and adapt with the given tutorial.

7.1.4 Quadrant four
As our project is too small for load and performance testing, we decided not to plan such tests.

7.1.5 Level of testing
Our main focus lies on manual user testing. With these kinds of tests, we will get the most benefit. Because real
developers can give us the best feedback about the usability and complexity of our application. Despite that, as
described, we will do (manual) integration tests to see the individual components working together.

7.1.6 Time of testing
• Manual unit tests: after every construction sprint.
• Integration test: after every construction sprint.
• User tests: after every construction sprint, maybe even during a construction sprint if needed. This will only

affect the demo app and not the rapid prototyping.
• Testing of the rapid prototyping: We won’t have a testable version of the rapid prototyping after every sprint. So

we will start testing it after the second construction sprint is completed and then after each sprint
• Further functional tests: In the last regular construction sprint (construction sprint 3).

7.1.7 Summary
Our main testing strategy will be manual and user tests. The reason for that is the nature of our project. A big part
is the understandability and simplicity. External developers should be able to use and adapt our application without
too big of an effort.

7.2 Testing protocols

7.2.1 Manual tests
To assure that the tests will be executed the same way every time we wrote a testing protocol that refers to our NFRs.

7.2.1.1 Browser independent functionality (NFR1)
Description In this test the compatibility with different browsers is tested.
Preconditions The app is running on your local machine. The app should have been started as described in the

README. The browsers Chrome, FireFox and Safari are installed.
Test steps

1. Open the app in the one of the above mentioned browsers.
2. Check all currently available movies.
3. Make a ticket reservation for a movie.
4. Repeat the last two tests for the remaining browsers. Make sure to make a reservation on a different movie.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 32 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Expected result The used account has three reservations for different movies. It is possible to check all the
available movies in all of the browsers. There should not be a major difference in behavior during the process.

7.2.1.2 Operating system independent functionality (NFR2)
Description In this test the compatibility with different operating systems is tested. The main goal is to test if the

app runs app runs without any major disruptions.
Preconditions The app is cloned in a directory of your choice. If possible a VM with the operating systems MacOS,

Ubuntu Linux and Windows is set up. Else the test needs to be done on multiple devices. Docker should also
be installed on the different operating systems.

Test steps

1. Choose one of the operating systems.
2. Let the app run as described in the README.
3. Repeat this step for the other two operating systems.

Expected result The app should start with the steps described in the README. This should be the same for all
of the stated operating systems.

7.2.1.3 Simple setup with minor effort (NFR3)
Description In this test the simplicity and functionality of the setup is tested. We build the app to be started with

minor effort.
Preconditions The tester has docker installed on his machine.
Test steps

1. Open the README and exactly do whats stated in the README

Expected result The app should start as described in the README. The tester does not have to execute any
other commands or tasks then as described in the README. After the steps the app should be running on his
localhost.

7.2.1.4 The demo app is simple and compact (NFR4)
Description In this test, we wan’t to assure that the demo application is not to complex and therefore has only a

few screens.
Preconditions The app is running.
Test steps

1. Open the app on the overview screen.
2. Click on a movie of your choice.
3. Click on a screening.

Expected result You need 3 clicks to get to the seating plan of a screening.

7.2.1.5 Responsive user interface (NFR5)
Description In this test the responsiveness of the app is tested. The app should look good on different screen sizes.
Preconditions The tester uses a browser with developer tools. The app also should be running. The user will use

the screen sizes: 640px, 780px, 1024px, 1280px, 2560px.
Test steps

1. Open the app on the overview screen.
2. In the developer tools start with the screen size 640px.
3. Check the whole screen for any errors.
4. Repeat the last step with the remaining screen sizes (780px, 1024px, 1280px, 2560px).
5. Repeat the last two steps with the screens: Login screen, ticket reservation screen, search screen.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 33 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Expected result The app looks good on every browser width. There shouldn’t be any elements overlapping or
missing. The user also will not have to scroll in width only in height.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 34 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

8 API generation tool
As a secondary objective in our semester thesis, we want to conduct an analysis to identify requirements and
critical success factor for a possible future API tool which can be used to define a schema and generate a CRUD
API from it. The tool should be implemented as web-application with a simple drag and drop editor to create and
edit a data schema. For every model of the data schema the respective CRUD operations should be fully generated
and downloadable in order to allow customization of the generated code.

For this project you could leverage Prisma with the corresponding TypeGraphQL-Prisma generator. The data
schema that would be created in the drag and drop editor could correspond to the same format of a Prisma schema.
From the schema with the generator TypeGraphQL-Prisma you can generate CRUD resolvers for a GraphQL API
which would have to be bundled together into a Apollo Server.

8.1 Requirements
The following requirements were defined for a generator of a GraphQL API but can also be adapted to a traditional
REST API with some minor adjustments. So when you read a query it corresponds to a GET request and a mutation
to either a DELETE, POST or PUT.

8.1.1 R1 Create and edit a data schema
It should be possible for a user to simply create a data model with all its properties:
• model name
• primary key

‣ allow combined primary key
‣ allow different types of primary key: UUID or just a simple auto incremental counter

• properties
‣ customizable names
‣ customizable data type (string, number, date, raw bytes …)
‣ simple constraints (uniqueness, min-/max-length, regular expression pattern)

• relationships
‣ support for one-to-many, many-to-one and many-to-many relationships
‣ circular relationships

After creating a model, it should still be possible to edit a saved data model with all its properties.

8.1.2 R2 Verify data schema
In order to prevent failures in generating the API, simple checks should already be performed during the creation
of the data schema:
• uniqueness of names of models and their respective properties
• valid relationships (not pointing to a non existing model)

8.1.3 R3 Custom resolvers
Most applications require some custom processes and not just CRUD operations, so in the generator it should be
possible to create a simple skeleton for custom either a query or a mutation. Make sure that the custom resolvers
are also bundled into the final resulting API. For the custom queries and mutations you should be able to define
the parameters in the editor.

8.1.4 R4 Save the data schema
The web-application should also provide persistence for the data schema. A user should be able to create an account
and all the data schemas that he creates should be saved to his account. This allows him to continue the editing of
the data schema at a later point rather than just in one instance and then having to start again from scratch.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 35 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

8.1.5 R5 Error handling
The generated API should have some basic error handling implemented so that in case of faulty use it does not
return an Internal Server Error but rather the respective error code with a meaningful description.

8.1.6 R6 Allow access constraints
As an advanced requirement access constraints could be implemented as well. This would allow the user to define
who has access to certain models or even certain instances. An example for model access would be: a user with the
role ADMIN has access to the model billing but no one else. An example for instance access would be: a user has
access to all the posts where he is marked as the creator but should not be able to access any posts of a different
creator.

8.2 What should get generated
From the finished schema the user should be able to generate the source code for a API tool that includes the
following:

• the generated CRUD resolvers and the custom resolvers
• a server that bundles the different resolvers together
• SQL code to create a database according to the data schema
• everything that is needed to run the application (e.g. docker-compose configuration, TypeScript configuration,

npm dependencies list, README with the required steps to start the application)
• basic automated test setup to demonstrate how the user can automatically test the application
• configuration for clean code (e.g. ESLint configs)

The user should be able to get the code running with minimal effort and all required manual steps should be
described in great detail.

Extendable or adjustable parts should be clearly marked and communicated (e.g. how to add a custom logger, how
to actually populate the custom resolvers …).

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 36 / 46
OST RJ

Part III
Summary

Semester Thesis Rapid Prototyping in TypeScript

9 Summary
A short summarization of our thesis.

9.1 Overall thoughts
We see that with this approach, you can save time in developing a full-stack application. You can develop features in
a hasty manner without compromising on authorization / authentication security and still have type safety across
the frontend and the backend. We do acknowledge that we have many dependencies on different core libraries
which is not always a good thing. Also the learning curve for the first project might be quite steep. But when trying
to build an application with this template for the second or third time, you will get acquainted with the way it all
works together and will give you a efficiency boost.

9.2 Alternative ways
In order to cut down on dependencies an alternative to NodeJS could be used that was released during the
development of this project: Deno V2. It is an alternative Javascript runtime that has many helpful tools integrated
to the system itself like testing, formatting, linting, running TypeScript directly, enhanced security features and
much more. With the newly released version it claims to also be NPM compatible which would allow us to still
run our NPM packages that are responsible in this template for rapid prototyping. It would be interesting to try
and test this template but using Deno V2 instead of all the other custom NPM dependencies that we use for these
mentioned tasks.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 38 / 46
OST RJ

Part IV
Appendix

Semester Thesis Rapid Prototyping in TypeScript

10. Test protocols
For our tests we will mainly focus on integration tests, end to end tests and user tests. All these tests will be executed
manually for simplicity.

10.1. Integration test template
Since a good user experience and an easy to understand software is crucial for this project, we will focus a lot on
manual user tests. For this purpose we wrote three different type of tests. First we have the integration tests, they
will assure that the whole setup works properly. Second there are the End-To-End (E2E) tests. These tests will be
executed by ourself to assure that the key functionalities of our software are working. The last type of tests are the
user tests. An external person that has little to no knowledge of this project will do these tests. That way we will
get important information about how understandable our tutorials and software are.
Prconditions Docker v26+ and Earthly v0.8.15+ are installed.
Tester -
Steps

Step Description Result
1 The project can be cloned from our public GitHub.
2 The project can be built with Earthly.
3 The project can be started with docker compose.
4 All four applications (frontend, database, api, documentation) are running.
5 The database migrations can be applied and the data gets generated.
6 The demo application can be opened on localhost:8080.

Table 1: Integration test (template)

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 40 / 46
OST RJ

https://www.docker.com/
https://earthly.dev/
https://gitlab.ost.ch/sai21-pj18/sa

Semester Thesis Rapid Prototyping in TypeScript

10.2. End to End testing (E2E)
This section E2E tests. These tests will be done manually.

10.2.1. Login roundtrip
Preconditions Docker compose is running. The application started and can be opened on localhost:8080. You

shouldn’t be logged in with any account.
Tester -
Steps

Step Description Expected result
1 Open localhost:8080. The tester gets redirected to localhost:8080/

login.
2 Click on the link: Sign up at the bottom of the login

form.
The tester gets redirected to localhost:8080/

register

3 Create a new user with the email testone@user.ch
and the password SuperSecretPassword

The tester gets redirected back to localhost:8080/
login

4 Log in with your new created account. For E-Mail
you use testone@user.ch and for the password

SuperSecretPassword

The tester is able to log in and is getting redirected
to localhost:8080/.

5 On the top right click the Logout button. The tester is not logged in anymore. The button
states Login and when the tester checks the local

storage, there is no JWT anymore.

Table 2: E2E Test-One

10.2.2. Genre filter on overview page
Preconditions Docker compose is running. The application started and can be opened on localhost:8080. You

should be logged in with the E-Mail user1@user.com and the password SuperSecretPassword.
Tester -
Steps

Step Description Expected result
1 Open localhost:8080. The Movie-Overview-Page on localhost:8080 gets

displayed. There are multiple different Movies.
2 Click on the Genre-Filter to the left of the movies.

Choose the filter Documentation.
The movies They Shall Not Grow Old and
Midnight Family are getting displayed. The movie

Pain & Gain should not be displayed.
3 Click on the Genre-Filter to the left of the movies.

Add the filter Action. Now there should be the two
filters Documentation and Action.

The movies They Shall Not Grow Old, Midnight
Family andPain & Gain are getting displayed.

Table 3: E2E Test-Two

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 41 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

10.2.3. Detail movie view
Preconditions Docker compose is running. The application started and can be opened on localhost:8080. You

should be logged in with the E-Mail user1@user.com and the password SuperSecretPassword.
Tester -
Steps

Step Description Expected result
1 Open localhost:8080. The Movie-Overview-Page on localhost:8080 gets

displayed. There are multiple different Movies.
2 Click on the movie The Irish Man. The tester gets redirected to localhost:8080/

details/*(The id can vary because the id gets gen-
erated randomly). Screenings with different dates

are displayed on the details page.
3 Click on the Location-Filter and choose a different

one.
The screenings, that are displayed, show a different
time and hall than the screenings on the previous

location.

Table 4: E2E Test-Three

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 42 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

10.3. User tests
Since our goal is to make an easy to understand application that can be extended, user tests are really important.
For a measurable progress we defined test scenarios a user has to do. The goal is to get feedback from the user on
where we can improve and what parts are already good as they are.

Template demo application testing

Step Description Goal Feedback
Setup Set up the whole project according to

the README.md
All four applications (frontend, data-
base, api, documentation) are running.

Login Open localhost:8080 and create a new
login.

The user is able to log in with his new
created account.

Filter Head to the movie overview and filter
for different movies.

The user gets displayed movies in the
genre he filtered for.

Screening Open a seating plan for a specific screen-
ing of a movie.

The user sees the seating plan of the
chosen movie.

Logout The user logs himself out. The user is logged out

Table 5: Demo-App-Test-Template

Template tutorial extending existing model

Step Description Goal Feedback
Prisma Schema Update the Prisma schema ac-

cording to the tutorial.
metascore is added to the movie

table
Update Database Update the Database according to

the tutorial.
The metascore is added in the
database. All four apps (frontend,
database, api, documentation) are
running with the updated schema.

Playground Create a GraphQL-Query to ac-
cess the information about the

metascores

The movies and their metascore
are displayed on the Apollo

Client.
Adjust seeding Adjust the seeding data according

to the tutorial.
The metascore is added in the

seed file.
Query Adjust the query in the frontend

according to the tutorial.
The data of the query now also

contains the metascore.
Rendered information Adjust the rendered information

and add new texts in the transla-
tion file.

The metascore is displayed in the
application.

Table 6: Rapid-Prototyping-Test-Template

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 43 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Template Create new model

Step Description Goal Feedback
Prisma Schema Update the Prisma schema ac-

cording to the tutorial.
Reservation and
ReservationToSeat is added

in the schema.
Update Database Update the Database accord-

ing to the tutorial.
The Reservation and
ReservationToSeat are
added in the database. All four
apps (frontend, database, api,
documentation) are running

with the updated schema.
Adjust seeding Adjust the seeding data ac-

cording to the tutorial.
The Reservation and
ReservationToSeat are

added in the seed file.
Playground Create queries according to

the tutorial.
Empty reservations are dis-

played.
Playground with authoriza-

tion
Create queries according to

the tutorial.
A reservation with an id is

displayed.
Create custom resolver Create the resolver according

to the tutorial.
A custom resolver got created.

Expose resolver Expose the resolver according
to the tutorial.

Resolver got added to
schema.ts

Playground Execute queries according to
the tutorial.

A list with OccupiedSeats is
displayed.

Extend Frontend Adapt the frontend according
to the tutorial.

Frontend got extended with
selectable seats.

Create own page Create a new page as accord-
ing to the tutorial.

New page got created and the
reservations can be viewed.

Table 7: Rapid-Prototyping-Test-Template

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 44 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Figures
Figure 1: Seating plan screen of the demo application .. 3

Figure 2: Screen of the first tutorial ... 4

Figure 3: Analysis level domain model (UML class diagram) ... 5

Figure 4: Use case diagram ... 6

Figure 5: Rendered Markdown pages ... 10

Figure 6: Getting started tutorials ... 11

Figure 7: System context model (C1) and Container diagram (C2) ... 17

Figure 8: Component diagram C3 ... 18

Figure 9: Sequence diagram .. 18

Figure 10: Landingpage sketch .. 19

Figure 11: Movie search sketch .. 20

Figure 12: Ticket reservation sketch .. 20

Figure 13: Login sketch ... 21

Figure 14: User data model ... 25

Figure 15: Register activity diagram .. 26

Figure 16: Login activity diagram ... 27

Figure 17: Agile testing quadrants [9] .. 31

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 45 / 46
OST RJ

Semester Thesis Rapid Prototyping in TypeScript

Bibliography
[1] “Quick-Start-Guide.” Accessed: Sep. 23, 2024. [Online]. Available: https://domainstorytelling.org/quick-start-

guide

[2] Craig Larman, UML and Patterns - Use Cases. pp. 63–72. Accessed: Dec. 12, 2024. [Online]. Available: https://
www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf

[3] “ISO/IEC 25010.” Accessed: Dec. 12, 2024. [Online]. Available: https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010

[4] “adr/madr.” Accessed: Dec. 12, 2024. [Online]. Available: https://github.com/adr/madr

[5] “Software Engineering Practices 2.” Accessed: Dec. 13, 2024. [Online]. Available: https://studien.ost.ch/
allModules/public/40859_M_SEP2.html

[6] “Fast, disk space efficient package manager.” Accessed: Sep. 20, 2024. [Online]. Available: https://pnpm.io/

[7] “Apollo Server - Error handling.” Accessed: Nov. 15, 2024. [Online]. Available: https://www.apollographql.com/
docs/apollo-server/data/errors#setting-http-status-code-and-headers

[8] “Apollo Server - Error policy.” Accessed: Nov. 15, 2024. [Online]. Available: https://www.apollographql.com/
docs/react/data/error-handling#graphql-error-policies

[9] “Testing quadrants.” Accessed: Dec. 12, 2024. [Online]. Available: https://tryqa.com/what-are-test-pyramid-
and-testing-quadrants-in-agile-testing-methodology/

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 46 / 46
OST RJ

https://domainstorytelling.org/quick-start-guide
https://domainstorytelling.org/quick-start-guide
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://github.com/adr/madr
https://studien.ost.ch/allModules/public/40859_M_SEP2.html
https://studien.ost.ch/allModules/public/40859_M_SEP2.html
https://pnpm.io/
https://www.apollographql.com/docs/apollo-server/data/errors#setting-http-status-code-and-headers
https://www.apollographql.com/docs/apollo-server/data/errors#setting-http-status-code-and-headers
https://www.apollographql.com/docs/react/data/error-handling#graphql-error-policies
https://www.apollographql.com/docs/react/data/error-handling#graphql-error-policies
https://tryqa.com/what-are-test-pyramid-and-testing-quadrants-in-agile-testing-methodology/
https://tryqa.com/what-are-test-pyramid-and-testing-quadrants-in-agile-testing-methodology/

	Introduction
	Why should one read this documentation?
	Target audience
	How should one read this documentation?
	Rapid prototyping

	Glossary
	Product description
	Domain analysis
	Requirements
	Actors
	Use case diagram
	Functional requirements
	FR1: View next movies
	FR2: View seating plan for movie
	FR3: Reserve movie ticket online
	FR4: Confirm movie ticket reservations offline

	Non-functional requirements
	NFR1: Browser independent functionality
	NFR2: Operating system independent functionality
	NFR3: Simple setup with minor effort.
	NFR4: The demo app is simple and compact.
	NFR5: Responsive user interface

	Tutorials
	Structure
	Getting started
	Application deep dive
	Extending a data model
	Creating a data model
	Further details

	Product realization
	Architecture
	Evaluation of technologies
	Web framework
	Component library
	GraphQL code generation
	Postgraphile
	GraphQL-Code-Generator
	TypeGraphQL-Prisma:

	Build tool
	Movie data
	API patterns

	C4 model
	System context model (C1) and Container diagram (C2)
	Component diagram (C3)

	Sequence diagram
	User interface sketches
	Folder structure
	Project setup
	Linting and formatting
	Containerization
	Docker orchestration
	Building
	CI/CD

	Authentication / Authorization
	Important note
	Authentication
	Authorization

	Error handling
	Invalid JWT
	RLS violations
	Client side error handling

	Quality measures
	Test concept
	Quadrant one
	Quadrant two
	Quadrant three
	Quadrant four
	Level of testing
	Time of testing
	Summary

	Testing protocols
	Manual tests
	Browser independent functionality (NFR1)
	Operating system independent functionality (NFR2)
	Simple setup with minor effort (NFR3)
	The demo app is simple and compact (NFR4)
	Responsive user interface (NFR5)

	API generation tool
	Requirements
	R1 Create and edit a data schema
	R2 Verify data schema
	R3 Custom resolvers
	R4 Save the data schema
	R5 Error handling
	R6 Allow access constraints

	What should get generated

	Summary
	Summary
	Overall thoughts
	Alternative ways

	Appendix
	Test protocols
	Integration test template
	End to End testing (E2E)
	Login roundtrip
	Genre filter on overview page
	Detail movie view

	User tests

	Figures
	Bibliography

