
Concept Alternatives for the Management
of Architectural Decisions in Clean

Architectures

Raphael Schellander
Supervised by Olaf Zimmermann

Eastern Switzerland University of Applied Sciences

February 23, 2025

i

Abstract — As software systems become more complex, it is increasingly
important to design architectures that can adapt to change, scale effectively,
and remain easy to manage. Clean Architecture is a popular approach that
helps achieve these goals by organizing systems into layers, each with clear
responsibilities. However, applying Clean Architecture can be challenging,
especially when it comes to making and keeping track of important architec-
tural decisions. The existing decision management tools often lack domain-
specific features and can be difficult to use. There is a need for a better
tool that not only helps document decisions, but also guides users through
making them in a structured and consistent way. The objective of this
project was to design a new tool concept to address the shortcomings of cur-
rent tools for managing architectural decisions, particularly in the context
of Clean Architecture. This involved analyzing existing tools to understand
their limitations, developing a conceptual framework for a new tool that
guides users through architectural decision-making, and creating an initial
proof-of-concept to demonstrate feasibility. The envisioned tool should help
users make decisions in a guided manner and to document those decisions in
a way that supports the development of the software. The second objective
was to analyze and collect key architectural decisions that repeatedly occur
when working with Clean Architecture. The resulting collection is envisioned
to guide software architects and developers effectively when they make deci-
sions that align with the key principles of Clean Architecture. This collection
also serves as an example of a guidance model that shows the viability of the
proposed tool concepts. The project resulted in an outline for the new tool
and a proof-of-concept implementation in Go. The new tool will have an
easy-to-use command line interface. It works in combination with the Clean
Architecture decision collection that provides concise step-by-step guidance
on key architectural decisions such as setting up the initial structure of the
system, defining key components and choosing how different parts of the sys-
tem will interact. The proof-of-concept, while simple, demonstrates how such
a tool could work and lays the foundation for further development. Future
enhancements could include features such as interactive decision workflows,
integration with software development environments, and advanced analysis
tools (for example, machine learning) to help make better decisions. Overall,
the tool together with the proof-of-concept provide a suited starting point
for improving the way in which architectural decisions are made and docu-
mented, helping to create more flexible and maintainable software systems.

ii

Contents

1 Introduction 1

2 Clean Architecture 3

2.1 Software Design Principles . 3

2.1.1 SOLID Principles . 3

2.1.2 Component Principles . 5

2.2 Architecture Layers . 6

2.2.1 Entities . 7

2.2.2 Use Cases . 8

2.2.3 Interface Adapters . 9

2.2.4 Frameworks and Drivers . 10

3 Architectural Decisions 12

3.1 Architectural Decision Records . 14

3.1.1 Nygard Format . 16

3.1.2 Y-Statement . 18

3.1.3 Markdown Architectural Decision Records (MADR) 20

3.2 Tools . 22

3.2.1 Tool Comparison . 23

3.2.2 Tool Showcase: adr-tools . 25

iii

3.2.3 Concept Alternative: ADG-Tool 31

4 Clean Decision Handbook 36

4.1 Defining the Architecture’s Initial Layout 38

4.2 Deciding the Boundaries for Entities 41

4.3 Selecting Use Cases . 43

4.4 Choosing Patterns for Interface Adapters 45

4.5 Selecting Frameworks and Drivers 47

4.6 Deciding on Data Flow and Transformations 49

4.7 Optimizing for Performance and Scalability 51

4.8 Integrating with External Systems 53

5 Conclusion 55

iv

1 Introduction

When developing complex software systems, making informed architectural deci-
sions is fundamental to the success and longevity of the system. These decisions
affect certain aspects of the software, from its structure and functionality to its
scalability and maintainability. As systems grow in size and complexity, the need
for an architectural framework becomes increasingly important. One such frame-
work that has gained widespread attention is Clean Architecture introduced by
Robert C. Martin [1], a style of software architecture that emphasizes the separa-
tion of concerns and the independence of business logic from external frameworks.
However, within the context of Clean Architecture, making informed architectural
decisions can be challenging, particularly when trying to balance project-specific
needs with the overarching principles of the framework.

This thesis aims to address the knowledge gap in architectural decision-making
within the Clean Architecture framework by providing a practical guide tailored
to software architects, developers, and technical leads. These professionals, who
are responsible for making and managing architectural decisions in complex soft-
ware systems, are the primary audience of this work. The goal is to provide them
with the tools and insights necessary to make decisions that align with Clean Ar-
chitecture principles. The first part of this thesis includes a thorough exploration
of the foundational concepts of Clean Architecture (Section 2) and architectural
decisions (Section 3.1). This involves detailing how Clean Architecture principles
influence architectural decision-making and how Architectural Decision Records
(ADRs) serve as a practical tool for documenting these decisions. Following this
theoretical foundation, the thesis includes an analysis of some of the existing tools
for managing ADRs in Section 3.2.1. Additionally, a SWOT (Strengths, Weak-
nesses, Opportunities, Threats) analysis for one specific tool is included in Section
3.2.2 to provide a deeper understanding of its applicability. Following the analysis
of existing tools is the development of functional and non-functional requirements
for a new tool concept aimed at improving the management of architectural deci-
sions in Section 3.2.3. These requirements and user stories are based on the insights
gained from the tool analysis and reflect the practical needs of software architects
and developers. The resulting concept serves as a blueprint for a proof-of-concept
implementation. Furthermore, the thesis explores and documents architectural
decisions that are particularly relevant to Clean Architecture in Section 4. This
collection should be comprehensive enough to ensure no critical aspects are over-
looked, yet concise enough to remain accessible. This practical guide aims to
help architects and developers in navigating the complexities of Clean Architec-
ture, enabling them to make informed decisions that are consistent with both the
framework’s principles and the unique needs of their projects.

1

Ultimately, this thesis aims to provide a well-rounded understanding of how to
effectively manage architectural decisions in systems, especially using Clean Archi-
tecture, along with a practical concept for a tool that addresses current limitations
in ADR management. The following sections begins with the foundational con-
cepts by looking at the key software principles and architectural layers of Clean
Architecture. We then look at what architectural decisions are, why they are
important, and how they can be effectively managed using ADRs.

2

2 Clean Architecture

Clean Architecture is a style of software architecture introduced and popularized
by Robert C. Martin in his book “Clean Architecture: A Craftsman’s Guide to
Software Structure and Design” [1]. This architecture emphasizes the separation
of concerns by organizing the codebase into layers, each with different responsi-
bilities. The core idea is to ensure that the business logic, i.e., the most critical
and stable part of the system (referred to as policy), remains unaffected by ex-
ternal factors such as frameworks, databases and user interfaces (referred to as
details). This independence from external factors allows for another key princi-
ple of Clean Architecture, the ability to delay and defer decisions. According to
Martin, a good software architect decouples the policy from the details so that de-
cisions about the details can be delayed and deferred [1, p. 140]. For example, the
decision of whether to deploy on the web, the cloud or a mobile device should not
affect the core business rules. This level of flexibility is critical in environments
where technologies and requirements can change rapidly. The origins of Clean
Architecture can be traced back to earlier architectural styles, such as the Hexag-
onal Architecture introduced by Alistair Cockburn [2] and the Onion Architecture
proposed by Jeffrey Palermo [3]. Martin built on these ideas to develop a more
general approach that could be applied to a wide range of software projects. [1,
p. 202] [4]

2.1 Software Design Principles

Clean Architecture is based on software design principles which are important to
understand as they build the foundation of any good architecture. This includes
the SOLID Principles as well as the Component Principles, and Martin devotes
significant attention to these principles in his book.

2.1.1 SOLID Principles

The SOLID Principles are a set of five design guidelines that serve as the basis for
creating what Martin refers to as clean code. These principles were introduced by
Martin and are widely recognized as best practice in software engineering intended
to make code more understandable, flexible, and maintainable. Using the analogy
of real-world architecture, Martin describes the code as the bricks that are used

3

to build walls and rooms, and "if the bricks are not well made, the architecture of
the building does not matter much." [1, p. 57] The five principles are:

• Single Responsibility Principle (SRP): This principle states that a class
should have only one reason to change, i.e. it should have only one job
(which is not clearly defined and dependent on your specific business logic).
By ensuring that each class or module has a single responsibility, the code
becomes more modular and easier to understand, test and maintain. [1,
p. 61-67]

• Open/Closed Principle (OCP): According to this principle, software en-
tities (such as classes, modules and functions) should be open to extension
but closed to modification. This means that the behavior of a module can be
extended without modifying its source code, protecting existing functionality
while allowing new features to be added. [1, p. 69-75]

• Liskov Substitution Principle (LSP): This principle states that objects
of a superclass should be replaceable by objects of a subclass without af-
fecting the correctness of the program. In other words, a subclass should
reinforce, not weaken, the expectations set by its parent class, ensuring that
derived classes can stand in for their parent classes without causing errors.
[1, p. 77-82]

• Interface Segregation Principle (ISP): This principle recommends that
clients should not be forced to depend on interfaces that they do not use.
This principle encourages the creation of smaller, more specific interfaces
rather than large, general-purpose ones, which helps to reduce unnecessary
dependencies and increase code modularity. [1, p. 83-86]

• Dependency Inversion Principle (DIP): The final principle advises that
code which implements high-level policy should not depend on the code that
implements low-level details; instead, details should depend on policies. This
principle promotes decoupling by ensuring that the high-level code relies on
interfaces or abstract classes rather than concrete implementations of low-
level details, making the system more flexible and easier to adapt to change.
[1, p. 87-91]

4

2.1.2 Component Principles

The Component Principles play a crucial role in the way software modules, or a
collection of code, is structured in software systems. These principles are primar-
ily concerned with ensuring that the system remains modular, maintainable, and
scalable as it evolves. Using the real-world analogy again, these principles provide
guidelines on how the walls should be arranged into rooms and buildings as "large
software systems, like large buildings, are built out of smaller components." [1,
p. 93] The Component Principles can be divided into two categories; Component
Cohesion and Component Coupling.

Component Cohesion deals with the questions which classes belong in which
components and it includes three principles:

• Reuse/Release Equivalence Principle (REP): This principle states
that the granularity of a component should be based on its potential for
reuse and its ability to be independently released. Essentially, a compo-
nent should be designed so that it can be easily reused and released as a
standalone unit. [1, p. 104-105]

• Common Closure Principle (CCP): According to this principle, classes
that change for the same reason and at the same time should be grouped
together into a single component. This ensures that when changes are nec-
essary, they are localized, reducing the impact on the overall system. [1,
p. 105-107]

• Common Reuse Principle (CRP): This principle advises that classes
that are used together should be packaged together. If one class is reused,
the others are likely to be reused as well, minimizing the risk of depending
on parts of a component that are not needed. [1, p. 107-108]

Component Coupling deals with the relationships between components and also
consists of three principles:

• Acyclic Dependencies Principle (ADP): This principle dictates that
the dependency structure between components should never form cycles.
This ensures that the system remains flexible and that components can be
independently developed and maintained. [1, p. 112-119]

5

• Stable Dependencies Principle (SDP): According to this principle, a
component should only depend on components that are more stable than
itself. Stability here refers to the likelihood of change; more stable compo-
nents are less likely to change, providing a solid foundation for dependent
components. [1, p. 120-125]

• Stable Abstractions Principle (SAP): This principle complements the
SDP by stating that a component should be as abstract as it is stable. Stable
components should be highly abstract, meaning that they define interfaces
and abstract classes rather than concrete implementations, thus making them
more resilient to change. [1, p. 126-132]

Together, the SOLID Principles and the two categories of the Component Princi-
ples provide a strong foundation and similar themes can be recognized throughout
the layered architecture style of Clean Architecture which is discussed in the fol-
lowing section.

2.2 Architecture Layers

In Clean Architecture, the system is organized into four main layers, as shown
in Figure 1, where the outer layers can depend on the inner layers, but not vice
versa, which is known as the dependency rule. Figure 1 is a similar representation
of the layers to that used in the book, but it includes more information about
the contents of the two inner layers (as this is missing from the original diagram)
and the titles of the layers are placed inside the rings with an underscore for more
clarity. This section explains each layer, starting from the inner layer, the most
important, to the outer layer, the least important. For better illustration, we will
use an example and apply it to each layer, which is also shown in a similar diagram
in Figure 2. For this example, consider the development of an e-commerce shop,
that allows registered customers to browse a catalogue of products and place orders
online, using an external system such as PayPal or Stripe for payment.

6

Figure 1: Clean Architecture layers

2.2.1 Entities

Entities represent the most general and high-level rules of the application. They
are central to the domain and, in the case of an enterprise, encapsulate the
enterprise-wide business rules and can therefore be used by many different ap-
plications in the enterprise. An entity can be an object with methods or a set of
data structures and functions. They are the least likely to change and therefore
have no dependencies on any other layer. [1, p. 204]

For example, an e-commerce shop as described in the beginning would include
entities like ‘Payment’, ‘Product’, ‘Customer’, as shown in Figure 2, and many
more that are critical to the business model of an e-shop. A ‘Payment’ entity
would include information such as the payment ID, amount, currency, and status.
It might also include simple logic to calculate the total amount after applying
a discount, determine if the payment is complete based on its status, or verify
if the payment amount is within valid ranges (e.g., minimum order amount). A
‘Product’ entity would contain attributes like product ID, name, description, price,

7

and stock level, with logic to adjust stock levels after a purchase, and a check if
the product is in stock. Similarly, a ‘Customer’ entity would include attributes
such as customer ID, name, email, and address, which might also include logic to
validate the format of the customer’s email, check if the customer is eligible for a
loyalty discount, or update the customer’s address when a new one is provided.

2.2.2 Use Cases

While entities can be thought of as enterprise-wide business rules, Use Cases are
application-specific business rules. Use cases are specific functionalities or features
of the application that do not change unless the operational requirements of the
application change. They orchestrate the flow of data to and from the entities and
use their functionality to achieve a specific goal. Changes to the entities can affect
this layer, but not vice versa, and changes to any of the outer layers do not affect
the use cases according to the dependency rule. [1, p. 204] However, some use cases
may require functionalities from external systems and this is where the dependency
inversion principles as described in Section 2.1.1 comes into play. By using ab-
stractions instead of implementations, the use case never creates any dependencies
to an outer layer, and only during runtime will the abstraction get replaced with
the implementation, for example by using a pattern called dependency injection
[5].

Consider now the example use cases shown in Figure 2. The ‘ProcessPayment’
use case would be responsible for handling the entire payment workflow. This use
case would retrieve the total cost of the order from the ‘Product’ entity, create
a ‘Payment’ entity with the relevant details, and then interact with an external
payment service (using an abstraction) to process the payment. If the payment is
successful, the ‘Payment’ entity would be updated accordingly, and control could
be passed to another use case, such as ‘UpdateInventory’, which would manage the
stock levels of products after a purchase. It would retrieve the necessary product
information from the ‘Product’ entity and decrease the stock levels based on the
quantity purchased. This use case ensures that inventory is accurately tracked,
preventing overselling and maintaining up-to-date stock information. The ‘Regis-
terCustomer’ use case, on the other hand, would handle the process of registering a
new customer. It would gather customer details, such as name, email, and address,
validate the data (perhaps by using some basic logic within the ‘Customer’ entity),
and then store the new customer information in the database by interacting with
the ‘Customer’ entity.

8

As you can see, one use case does not necessarily only make use of just one entity.
For example, ‘ProcessPayment’ would need information from the ‘Product’ entity
to calculate the accurate amount for all products to create a ‘Payment’ entity
with the correct total. Also, use cases can be used together in succession; for
instance, after the payment is processed and verified by ‘ProcessPayment’, the
‘UpdateInventory’ use case would ensure that the stock of the purchased items is
updated accordingly.

2.2.3 Interface Adapters

Interface Adapters serve as a bridge that convert data from the format most con-
venient for the use cases and entities, to the format most convenient for some
external systems, such as the user interface or the database. [1, p. 205] Within
this layer, several key patterns are commonly used to manage different aspects of
the system’s interaction with external components.

Gateways [6] are used to abstract interactions with external systems such as
databases, or third-party APIs. They act as an interface between the internal
use cases and these external systems, ensuring that the core business logic does
not directly depend on these external systems. For instance, the ‘PaymentGate-
wayAdapter’ in our e-commerce platform would handle communication with pay-
ment services like PayPal or Stripe by handling the protocols and translating data
formats from our application, like the ‘Payment’ entity, to a format required by
these services.

Repositories [7] are responsible for managing the communication between the ap-
plication and the data source, typically a database but it could also be the file
system or cloud storage. They abstract the complexities of data storage and
retrieval, ensuring that the use cases do not need to interact directly with the
database. This separation allows for easier maintenance and the flexibility to
change the data source or the way data is stored without impacting the business
logic. For Example ‘InventoryRepository’ is used to interact with and update the
database when the ‘UpdateInventory’ use case has changed the stock amount of a
‘Product’.

Controllers [8] are responsible for handling user input and directing it to the ap-
propriate use case, interpreting requests from the user interface and invoking the
corresponding use case with the necessary data. In our e-commerce example,
an ‘CustomerController’ would handle HTTP requests for registering a customer,

9

extract the relevant data, and pass it to the ‘RegisterCustomer’ use case for pro-
cessing.

The presenter pattern [9] is employed to manage UI logic by transforming the
data output from the use cases into a format suitable for display by the user
interface. This ensures that the UI layer remains as simple as possible, with all
the data formatting and presentation handled by the presenter. In our e-commerce
example, we have a ‘CustomerPresenter’ for showing the customer information in
the profile tab, transforming the data from the ‘Customer’ entity into a format
that is easily rendered by the front-end framework. This might involve formatting
dates, combining first and last names into a full name, or organizing data into a
layout that fits the design of the profile page.

2.2.4 Frameworks and Drivers

Frameworks and Drivers is the outermost layer of the architecture, encompass-
ing the various frameworks, tools, and services upon which the system depends,
including devices, web frameworks, user interfaces, databases, and external inter-
faces. This layer is considered the most volatile, meaning it is most susceptible to
change as technologies evolve and new requirements emerge. One of the key prin-
ciples of Clean Architecture is to keep the core business logic isolated from these
external technologies, allowing them to be replaced or upgraded without affecting
the inner layers. [1, p. 205-206]

For example, in our e-commerce platform as shown in Figure 2, a web framework
like React or Angular would handle the requests coming from a browser. This
could be a request from a customer to create a new account, which would be
passed to the ‘CustomerController’, then to the ‘RegisterCustomer’ use case, and
when the operation is complete would notify the ‘CustomerPresenter’, which would
finally prepare the data for the browser to show the customer their profile page
after successful registration. This is a very simple example of the entire workflow,
starting from the outermost layer going inwards to the use case and entities layer,
before coming out again, and in a real project such a registration process would
probably involve many more controllers, use cases, entities, etc. The database
used by our e-commerce platform is another example of the benefit of isolating
this layer. If we initially use a SQL database, but later need to switch to a
NoSQL solution to handle more complex queries or larger datasets, this change
would only affect the frameworks and drivers layer. Use cases and abstractions
that make changes to the database store, such as the ‘UpdateInventory’ use case

10

and the ‘InventoryRepository’, have no dependencies on the actual framework
used. Finally, we can see a similar benefit for the way our e-commerce shop
handles payments. We have the benefit of implementing multiple options for the
user, as the ‘ProcessPayment’ use case works the same no matter what system we
use, for example PayPal or Stripe, and the ‘PaymentGatewayAdapter’ will choose
accordingly.

Figure 2: Clean Architecture layers; e-commerce shop example

The goal of Clean Architecture is to create systems that are resilient to change, easy
to understand and easy to maintain. Similar to the Single Responsibility Principle
we have seen in Section 2.1.1, Clean Architecture allows for a clear separation
of concerns by organizing the code base into distinct layers, each with specific
responsibilities. This separation ensures that changes to one part of the system
do not inadvertently affect other parts, making it easier to develop, maintain and
test each layer independently, while reducing the risk of introducing errors into
other layers when making changes. The Dependency Rule, which says that source
code dependencies must point only inward, allows for another key benefit of Clean
Architecture, the ability to defer decisions. The ability to defer certain decisions,
such as the choice of database technology or UI framework, allows the development
team to focus on the core business logic first.

11

3 Architectural Decisions

Architectural decisions play an important role in influencing the non-functional
characteristics or qualities of a software system, such as performance, flexibility,
scalability and maintainability. Each decision addresses a specific, architecturally
significant design problem for which there are several possible solutions. The deci-
sion process involves selecting the most appropriate solution by carefully consider-
ing how it will affect the desired quality attributes of the system. These decisions
may apply to the entire software system, or may focus on only one or more of its
core components. [10] As Jansen and Bosch highlight, making architectural design
decisions explicit is essential to prevent knowledge from being lost, which can lead
to increased complexity and higher maintenance costs. By focusing on these deci-
sions, we can create a system architecture that is more robust, easier to maintain,
and adaptable to new requirements. [11] Documenting these decisions is important
to maintain transparency and ensure that developers and stakeholders understand
the reasoning behind them. It is also useful for reviewing and remembering why a
decision was made, along with its outcome. This is where Architectural Decision
Records (ADRs) come in. ADRs are a structured way of capturing the context,
rationale and consequences of architectural decisions. [12] They are an essential
tool for tracking the evolution of the system’s architecture over time. ADRs are
discussed in more detail in Section 3.1.

To better understand the architectural decision-making process, consider the pro-
cess flow diagram shown in Figure 3. This diagram outlines an example of a
structured and iterative approach to making and documenting architectural deci-
sions. It is important to note that this is not a fixed or universally defined process,
but rather a simple framework for illustrative purposes, which can be adapted to
suit the specific needs of your project. The process begins with the identifica-
tion of an architectural problem or requirement. Once identified, the next step
is to gather and refine the relevant requirements and constraints, ensuring that
all critical factors are considered. This is followed by the evaluation of options,
where different architectural solutions are assessed based on how well they meet
the analyzed requirements. Once a decision is made, it is documented in an ADR
to ensure transparency and traceability. The proposed ADR is reviewed by the
relevant stakeholders and either marked as accepted and implemented or as un-
acceptable, while the process returns to refine the requirements. As the project
evolves, the decision can be revisited even after it has been implemented, if any of
the requirements have changed, or simply as a periodic update.

12

Figure 3: Architectural decision-making process (own presentment)

Consider, for example, the need to determine the architectural style for a new
software project:

1. The identified problem is that the project requires a well-defined architectural
style that will guide the structure and development of the application. The decision
needs to focus on selecting an architecture that fulfills the specific requirements of
the project.

2. To make an informed decision, it is essential to gather and refine the project’s
specific requirements. Key considerations include the necessity for scalability to
manage growing user demand, ease of deployment and updates, fault isolation
to prevent failures in one part of the system from affecting the whole, and the
operational complexity of managing the system. Other constraints, such as the
development team’s expertise, the time-to-market, and the available budget, must
also be taken into account.

3. Two architectural styles are evaluated (for the simplicity of this example) based
on how well they meet the requirements of the project. The first option is a
monolithic architecture style; this approach builds the application as a single,
cohesive unit, and while this simplifies initial development and deployment, it can
make it difficult to scale the system as the application grows. The second option

13

is a microservices architecture style; this style divides the application into smaller,
independently deployable services and offers benefits such as independent scaling
of services, better fault isolation and the ability to deploy updates to individual
services without affecting the entire system, but it also introduces complexity in
areas such as inter-service communication, data consistency and management of
distributed transactions.

4. After carefully evaluating the options, a decision is made based on how well
each architectural style fits the refined requirements. If independent scaling and
fault isolation are critical, the team may opt for a microservices architecture.
Conversely, if simplicity and rapid initial development are priorities, a monolithic
architecture may be the preferred choice. This decision is documented in an ADR,
which captures the context, rationale and expected consequences of the chosen
architecture. In this case, the decision is made to adopt a monolithic architecture
for the project. This choice is based on the need for simplicity and rapid initial
development, which are critical in the early stages of the project.

5. The ADR is then reviewed by key stakeholders, including project managers, lead
architects and development teams. If the decision is approved, it is implemented
as described. If the decision is not approved by the stakeholders, the requirements
may be reviewed and the evaluation process repeated to consider other options.

6. If the decision to use a monolithic architecture is accepted, the system is de-
veloped accordingly. As the project evolves, particularly as it increases in size
and complexity, the architectural decision may be revisited. For example, as the
application scales and new features are added, the development team might con-
sider moving to a microservices architecture to handle the increased complexity
and improve scalability. This potential shift would also be documented and re-
viewed based on the new requirements to ensure that the architecture continues
to effectively meet the needs of the project.

3.1 Architectural Decision Records

Architectural Decision Records (ADRs) are a structured approach to documenting
the architecturally significant decisions made during the design and development
of a software system. The practice of documenting these decisions ensures that
the reasoning behind each choice is clearly understood, not only at the time the
decision is made, but also in the future when the system may be modified, or simply
as a reminder to avoid repeated discussions and having to make the decision again

14

because it has been forgotten. The concept of ADRs was popularized by Michael
Nygard in a blog post [12], where he introduced the idea of capturing architectural
decisions in a lightweight and accessible format. Nygard argues that traditional
documentation methods often fail to stay current, leading to a disconnect between
the intended architecture and its actual implementation. He advocates for ADRs as
a more lightweight and effective approach to documenting architectural decisions.
ADRs allow teams to capture the reasoning behind decisions in a way that is
easier to maintain and update, ensuring that the architecture remains coherent and
aligned with the project’s development. It is essential to integrate ADRs into the
team’s development workflow, making them part of the decision-making process
rather than an afterthought and several tools exists to facilitate this process. We
will have a look at some of these available tools in Section 3.2.

An ADR should be clear, concise and focused on a single decision, making it easier
for future teams to understand and, if necessary, revise the decision based on new
information or changing circumstances. To maximize the effectiveness of ADRs,
it is important to maintain consistency across the project by using a standardized
format for all records. This consistency makes it easier to navigate and under-
stand the documented decisions over time. In addition to the format suggested in
Nygard’s original blog post, several others have been created to standardize the
documentation of ADRs. These formats vary in complexity and focus, allowing
teams to choose the one that best suits their project’s needs. Figure 4 shows
three different formats of recording architectural significant decisions, which will
be discussed in more detail in the following sections. The formats includes the one
originally outlined by Nygard, YStatements, and Markdown Architectural Deci-
sion Records (MADR). It is important to note that whichever format is chosen, it
can be adapted to suit specific needs.

Figure 4: Formats for documenting Architectural Decision Records (ADRs) [13]

15

3.1.1 Nygard Format

The Nygard format, introduced by Michael Nygard in his influential blog post [12],
is one of the most widely recognized and adopted approaches to documenting Ar-
chitectural Decision Records (ADRs). The format is designed to be lightweight
and straightforward, focusing on capturing the essential aspects of an architectural
decision without overwhelming the reader with unnecessary details. The simplic-
ity of the format makes it accessible and easy to integrate into the development
process, ensuring that it is used consistently and effectively across the project.

The Nygard format typically includes the following components:

• Title: The title is a brief and descriptive summary of the architectural
decision. It should be concise yet informative, providing enough context
for someone skimming through the ADRs to understand the essence of the
decision. The title serves as the first point of reference, making it easy to
identify the decision at a glance.

• Context: This section provides the background and rationale for the deci-
sion. It describes the circumstances that led to the need for an architectural
decision, including any relevant project goals, constraints, and challenges.
The context helps to frame the decision, ensuring that future readers under-
stand the problem that was being addressed. This section is crucial because
it situates the decision within the broader scope of the project, allowing oth-
ers to see why this particular decision was necessary and how it fits into the
overall architecture.

• Decision: The decision section clearly states what choice was made and why.
It should be a definitive statement that leaves no ambiguity about what was
decided. This section often includes a brief explanation of why this option
was chosen over others, emphasizing the trade-offs that were considered. The
decision should be articulated in a way that it can stand alone, providing a
clear directive to anyone who needs to implement or understand the outcome.

• Status: The status indicates the current state of the decision, such as ‘pro-
posed’, ‘accepted’, ‘superseded’, or ‘deprecated’. This allows the team to
track the lifecycle of the decision over time, particularly if the decision is
revisited or revised as the project evolves. The status helps maintain clarity
about whether the decision is currently in effect or if it has been replaced by
a new one.

16

• Consequences: This section outlines the expected outcomes of the decision,
both positive and negative. It is important to be thorough in documenting
the consequences to provide a balanced view of the decision’s impact. By
documenting the consequences, the ADR provides a foresight into the impli-
cations of the decision, helping teams prepare for and mitigate any potential
challenges.

The strength of the Nygard format lies in its simplicity. By concentrating on the
most critical aspects of a decision — what was decided, why it was necessary,
and what the outcomes might be — this format ensures that ADRs are easy to
create, maintain, and understand. However, a drawback of the format is that the
context section is too broad and does not specify what and how much should be
mentioned. This leads some users to provide far too much unnecessary context,
bloating the ADR, while others provide too little context, making the subsequent
decision outcome unclear. It is also not clear why only a status was included to
provide metadata, and not other important information such as a timestamp for
the date of creation.

Figure 5 shows an example of how the Nygard format might look like in practice.
This could be such an ADR that was documented as part of the decision-making
process example in Section 3, where after initially using a monolithic approach,
the decision was made to change to microservices due to changing requirements.

17

Title:

Microservices Architecture for E-Commerce System

Context

We initially chose to implement a monolithic architecture for
easy development in the beginning stages of development. Due
to increasing traffic and frequent updates, the choice between a
microservices and a monolithic architecture has gotten relevant
again.

Decision

We will adopt a microservices architecture, dividing the application
into smaller, independently deployable services to allow independent
scaling, fault isolation, and adaptability to changing requirements.

Status

Accepted (whereas the initial ADR would now be marked as superseded)

Consequences

- Positive: Enhanced scalability, fault isolation, and flexibility
in updating and deploying individual services.
- Negative: Increased complexity in managing inter-service
communication, data consistency, and distributed transactions.

Figure 5: Architectural Decision Record in Nygard format for using microservices.

3.1.2 Y-Statement

The Y-Statement format is a structured approach to documenting architectural
decisions in a single, comprehensive sentence by focusing on the rationale behind
them, i.e., to clarify why (‘Y’) a decision was made, and was introduced by Olaf
Zimmermann in a presentation at the SATURN 2012 conference [14] and elabo-
rated upon in various publications and articles. [15] [16] It addresses six critical
aspects that encapsulate the essence of the decision-making process, starting with
outlining the situation (context, requirements, options) before narrowing down
to a specific decision and providing the reasoning (results, consequences). More
specifically, the structure of a Y-statement is as follows:

18

• In the context of <use case and/or component>: This part sets the
stage by describing the situation or environment in which the decision is
being made. It outlines the specific circumstances that are driving the need
for a decision.

• Facing <non-functional concern>: This section identifies the key re-
quirements or challenges that the decision must address. These could be
technical constraints, business needs, performance goals, or any other fac-
tors that are influencing the decision.

• We decided <option 1>: Here, the decision itself is clearly stated. This is
the choice that has been made in response to the context and requirements.

• And neglected <option 2..n>: This part acknowledges the alternatives
that were considered but ultimately not chosen. Including this information
provides insight into the decision-making process and shows that different
options were assessed.

• To achieve <quality>: This section explains the intended result or benefit
of the decision. It describes what the decision is expected to accomplish.

• Accepting that <consequences>: Finally, this part documents the trade-
offs or potential negative consequences of the decision. This ensures that the
downsides of the decision are understood and accepted by the team.

Y-Statements improve on the criticism of the Nygard format by adding a non-
functional requirements section to provide more specific context, including the
neglected options next to the decision, and mentioning the consequences of the
decision next to the expected result. However, it does not include any metadata
such as a status or timestamp.

Figure 6 shows an example of how a Y-statement could be used to describe another
architectural decision in our e-commerce shop. The Y-Statement captures the
entire decision-making process in a concise, easy-to-understand manner.

19

In the context of building an e-commerce platform with a need for
fast and reliable order processing,

facing the requirement to minimize downtime during peak shopping
seasons,

we decided to implement a queue-based order processing system,

and neglected a real-time processing approach,

to achieve greater reliability and fault tolerance during high
traffic periods,

accepting that this will introduce slight delays in order
confirmation and add complexity to the system.

Figure 6: Architectural Decision Record in Y-Statement format for choosing order
processing strategy.

3.1.3 Markdown Architectural Decision Records (MADR)

Markdown Architectural Decision Records (MADR) [17] is a format for document-
ing architectural decisions by leveraging the simplicity of Markdown syntax and
was introduced in a puplication by Oliver Kopp, Anita Armbruster, and Olaf Zim-
mermann [18]. This format is particularly well-suited for integration with version
control systems, allowing teams to track changes to their architectural decisions
alongside their source code. By using Markdown, MADR makes it easy for devel-
opers to create, edit, and review ADRs using familiar tools, while maintaining a
consistent and organized structure. MADR provides templates for both a short
and a long version of the decision record, giving teams the flexibility to choose the
level of detail that best fits their needs.

The short version of MADR is designed for decisions that can be documented in
a brief manner, with just enough information to capture the essential details. It
includes the following sections [19]:

• Context and Problem Statement: This section provides the background
and motivation for the decision. It outlines the specific problem or challenge
that needs to be addressed.

20

• Considered Options: Here, the various options or alternatives that were
considered during the decision-making process are listed. This provides a
record of what was evaluated before making the final decision.

• Decision Outcome: This section clearly states the decision that was made,
summarizing the choice and its justification.

The long version of MADR builds on the short version by adding additional sec-
tions that provide a more comprehensive overview of the decision. This version is
ideal for more complex decisions that require thorough documentation. It includes
[19]:

• Consequences: This section outlines the expected results of the decision,
both positive and negative. It is important to document these consequences
to ensure that the team is aware of the trade-offs involved.

• Pros and Cons of the Options: In this section, the advantages and
disadvantages of each considered option are listed. This helps to clarify why
certain options were chosen over others, providing transparency and insight
into the decision-making process.

• More Information: This optional section can include any additional de-
tails, references, or documentation that are relevant to the decision. It serves
as a catch-all for information that does not fit neatly into the other sections
but is still important to record.

The complete MADR template is available for download from GitHub [20] and
can then be imported into your project repository, where it can be adapted to suit
your specific needs. Again, MADR provides more specific context and information
about the ADR than the Nygard format, with many optional sections that can be
used or not as needed. It also includes more metadata information at the beginning
of the file, such as status, date and decision makers. [21]

Figure 7 shows an example MADR using the short version template for a decision
related to our e-commerce platform.

21

–-
status: Accepted
date: 2024-09-06
deciders: RS
–-

Choice of Database system for E-Commerce Platform

Context and Problem Statement
We are developing an e-commerce platform that needs to support a
growing number of users and transactions. As the platform expands,
the scalability and performance of our database become critical
concerns. We need to decide on a database technology that can
handle large volumes of data, ensure quick transaction processing,
and provide flexibility for future growth.

Considered Options
SQL Database (e.g., PostgreSQL)
NoSQL Database (e.g., MongoDB)
NewSQL Database (e.g., CockroachDB)

Decision Outcome
Chosen option: "NoSQL database", specifically "MongoDB", based
on the need for horizontal scalability and flexibility in handling
unstructured data.

Figure 7: Markdown Architectural Decision Record format for choosing a database
system.

3.2 Tools

As the complexity of software systems increases, so does the importance of ef-
ficiently managing all the decisions that have been made. To aid this process,
several tools have been developed to assist architects and developers in creating,
managing, and visualizing Architectural Decision Records (ADRs). Most of these
tools were identified through the ADR GitHub organization website [13], which
serves as a central hub for ADR-related resources and tools. Additionally, more
general tools not specifically related to ADR were discovered through targeted on-
line searches using terms like ‘architectural’, ‘decision’, ‘management’, and other

22

related keywords. These searches yielded tools that, while not exclusively designed
for ADR management, offer relevant functionality that can be adapted for this pur-
pose. These tools vary in functionality from simple file management utilities to
more comprehensive platforms that integrate directly into development environ-
ments. The use of ADR tools is motivated by the need for consistency, traceability,
and efficiency in the management of architectural decisions. As projects evolve,
maintaining an organized and accessible record of ADRs becomes essential. Based
on their functionality, the analyzed ADR tools can be broadly categorized into the
groups described in the following section.

3.2.1 Tool Comparison

Tools for Visualising and Navigating ADRs: These tools provide interfaces
for browsing and visualizing ADRs, often generating logs, web pages or other
navigable formats that make it easier to explore existing decision records. They
are particularly useful for teams that need to review and reference ADRs on a
regular basis.

Tools for Creating and Managing ADRs: These tools focus on the creation,
organization and storage of ADRs. These tools often provide features such as
templates, integration with version control systems and the ability to embed ADRs
directly into the code base, ensuring that documentation is closely linked to the
development process. Within this category there are tools specifically designed
to allow ADRs to be embedded directly into code as annotations or attributes,
making the decision documentation process more natural for developers. There are
also command line interface (CLI) tools and integrated development environment
(IDE) plug-ins, as well as web-based applications, that simplify the workflow by
providing developers with utilities to create and manage ADRs directly from their
development environments or web browser.

General Decision-Making Tools: Although not specifically designed for ADRs,
these tools support decision-making processes and may be adapted for use in man-
aging architectural decisions. They include features for collaborative decision-
making, trade-off analysis and prioritization (these tools are commercial solutions
and have not been tested specifically for ADRs).

Table 1 compares twelve ADR tools, categorizes them into one of the three groups
mentioned above and describes their primary functionality. In Section 3.2.2 we
will take a closer look at one particular tool for further analysis.

23

Tool Name Category Platform Primary Functionality
adr-log [22] Visualizing and Navigat-

ing ADRs
Command-line Interface
(CLI)

Generates a log of ADRs from a specified folder,
providing an overview and easy navigation capa-
bilities.

adr-viewer [23] Visualizing and Navigat-
ing ADRs

Web-based Generates web pages from ADRs, making them
easy to read and navigate.

e-adr [24] Creating and Managing
ADRs

Embedded (Java) Embeds ADRs directly in Java code using anno-
tations.

architectural-decision
[25]

Creating and Managing
ADRs

Embedded (PHP8) PHP8 library for documenting ADRs using at-
tributes directly in the codebase.

adr-tools [26] Creating and Managing
ADRs

CLI Lightweight and easy to use CLI tool for creating
and managing ADRs. Provides utilities for work-
ing with ADRs directly from the terminal. More
details in Section 3.2.2.

talo [27] Creating and Managing
ADRs

CLI CLI tool for managing, creating, updating, and
exporting ADRs and other documents like RFCs.

log4brains [28] Creating and Managing
ADRs

Integrated Development
Environment (IDE)

Docs-as-code tool for logging ADRs from an IDE
and publishing them as a static website.

pyadr [29] Creating and Managing
ADRs

CLI CLI tool for managing the ADR process lifecycle.

adr-manager [30] Creating and Managing
ADRs

Web-based Web application for creating and managing
ADRs in Markdown (MADR). User-friendly web
interface for managing ADRs.

Loqbooq [31] General Decision-Making
Tool

Web Application, Slack
Plugin

Logs and manages team decisions with features
like Slack integration, PDF/CSV export, and se-
cure data storage.

Loomio [32] General Decision-Making
Tool

Web Application Collaborative decision-making platform with
tools for consensus-building, voting, and commu-
nication.

Expert Choice [33] General Decision-Making
Tool

Application Decision-making software for prioritizing options,
allocating resources, and scenario planning.

Table 1: Comparison of Architectural Decision Record (ADR) tools

24

3.2.2 Tool Showcase: adr-tools

In this section we will take a closer look at one particular tool, Nat Pryce’s adr-
tools [26], analyzing its features, strengths, weaknesses and potential applications.
This analysis will provide insights into how this tool can be used to support and
improve the management of architectural decisions. The findings from this analysis
will form the basis for an outline of an alternative tool, which will be presented
in Section 3.2.3, together with a proof-of-concept implementation. The decision
to focus on adr-tools for the analysis in this section was based on its focus on
the fundamental concepts of managing Architectural Decision Records (ADRs), as
well as being a very lightweight tool that is easy to test and analyze. adr-tools is
one of the most popular tools for ADRs, based on the number of stars it has on
GitHub. It is also the basis for several other tools, such as adr-log and adr-viewer,
which are included in the comparison in Table 1. To do a comprehensive analysis
of adr-tools, we will first provide a simple demonstration of how to use the tool,
before continuing with a SWOT (Strengths, Weaknesses, Opportunities, Threats)
analysis (see Figure 9).

Command Description
adr init <dir> Initializes a new log of ADRs in the directory <dir>.
adr new <title> Creates a new, numbered ADR with the given <ti-

tle>. The number increases with each decision and
starts with 0001-<title>. The created ADR uses the
Nygard format (see Section 3.1.1) and includes the
current date.

adr link <source>
<src desc> <trgt>
<trgt desc>

Links two ADRs, establishing a relationship between
<source> and <target>, represented by their ADR
number (e.g. 0001, or simply 1). The description is
used in the respective ADR under the status section.
Linking the same ADRs multiple times will stack in-
stead of removing any old links.

adr list Lists all ADRs located inside the directory initialized
with ‘adr init’.

adr config Displays or sets configuration options for adr-tools.
adr generate toc Generates a table of contents for the ADR log.
adr generate graph Generates a graph of ADRs showing links between

them (requires Graphviz installed).

Table 2: Usage of Nat Pryce’s adr-tools [26]

25

Usage

To install and set up adr-tools, you can either clone the repository or download the
latest release from the project’s GitHub page. Once you have the files, you should
add the ‘src’ directory to your system’s ‘PATH’ environment variable so that the
commands can be used globally from any directory. Depending on your operating
system, you can also use package managers such as Homebrew on MacOS or Linux
to install adr-tools more conveniently. On a Windows system, adr-tools can only
be used within the Windows Subsystem for Linux (WSL), where you would follow
the same setup steps as in a Linux environment. Once these steps have been
completed, the tool is ready to use.

As an example we will demonstrate the usage of adr-tools commands (as shown
in Table 2) by documenting the decision of choosing between a monolithic or a
microservices approach as an architectural style:

1. Initialize ADR Directory. Begin by setting up your ADR directory within your
project using the ‘adr init’ command (this only needs to be done the first time).
This will create a structured directory for all your ADRs, including an initial ADR
with number 1:

> adr init doc/adr

2. Create a new ADR. Following the example of a decision-making process de-
scribed in Section 3, we create a new ADR to document the decision for using a
monolithic approach for our e-commerce system (ADR 2), as well as another ADR
for when we ultimately decided to replace it with a microservices style (ADR 3).
This command generates a new markdown file within your ‘doc/adr’ directory with
a template where you can record the context, decision, and consequence (the file
will be directly opened in your editor of choice, if configured):

> adr new "Monolithic Architecture for E-Commerce System"
> adr new "Microservices Architecture for E-Commerce System"

3. Document the Decision. Fill in the generated ADR files with relevant details,
as for example seen in Figure 5, in your editor of choice.

26

4. Link Related ADRs. If you have other ADRs that are related to each other, you
can use the ‘adr link’ command to link them together. The following command
for example, establishes a relationship between the two ADRs we created. Under
the status section, ADR 2 will say "superseded by" with a link to the ADR 3 file,
and ADR 3 will say "supersedes" followed by a link to the ADR 2 file.

> adr link 3 "supersedes" 2 "superseded by"

5. List ADRs. To review all documented decisions, you can use the ‘adr list’
command. This provides a quick overview of all ADRs inside the folder initialized
in step 1, making it easier to track and reference them:

> adr list

6. Generate a graph to visualize ADRs. To visually review all documented deci-
sions, you can use the ‘adr generate graph’ which generates a visualization of the
links between decision records in Graphviz format (example Figure 8):

> adr generate graph

Figure 8: Visual representation of links between ADRs

27

SWOT Analysis

Strengths: adr-tools is characterized by its simplicity and ease of use. The usage
through the command-line interface (CLI) allows users to quickly create, view,
and manage ADRs with minimal setup or configuration. A key strength of adr-
tools is its ability to generate consistent and sequentially numbered ADRs, which
is particularly valuable for maintaining an organized and traceable decision log.
The tool also facilitates linking ADRs, making it easier to navigate through related
decisions, a task that would be more cumbersome if done manually in a traditional
text editor. This is even further improved by the support to generate a graphical
representation of the linked ADRs in Graphviz format. Additionally, ADRs can
easily be integrated with Git to ensure that decisions are version-controlled along-
side the source code, providing a transparent and historical record of architectural
decisions that evolve over time. The open-source nature of adr-tools is another
strength, as it allows for community contributions, flexibility, and adaptability to
different project needs. This adaptability is demonstrated by the fact that adr-
tools is the basis for several other tools in the ADR domain. Another advantage
of adr-tools is its long-term compatibility, as it is implemented using shell scripts,
a fundamental and stable component of Linux systems.

Weaknesses: While adr-tools offers several benefits, it also has notable weak-
nesses. One of the primary criticisms is that it functions largely as a file creation
tool, using a specific template that users must mainly fill in themselves. This
raises the question of whether the tool, despite the benefit of linking ADRs, pro-
vides enough added value over simply using a text editor to create and manage
ADRs. The lack of a Graphical User Interface (GUI) or Integrated Development
Environment (IDE) integration could be considered as a drawback, especially for
teams that prefer visual tools or have members who are less comfortable with
command-line operations. This is also illustrated by the fact that although it is
possible to create a graphical representation showing the links between ADRs,
adr-tools will only create a text output which has to be imported into another
tool capable of visualizing the Graphviz format. Furthermore, adr-tools does not
directly support Windows, limiting its accessibility in development environments
that do not utilize POSIX systems like Linux or macOS. Additionally, as adr-
tools requires manual effort to configure and integrate into a project, it may not
offer significant time-saving benefits compared to other tools that provide more
automation or built-in integrations.

28

Opportunities: adr-tools has significant potential for growth and innovation
within the domain of architectural decision management. While the management
of the ADR link is one of the greatest benefits provided, a major opportunity lies
in developing the tool into a more comprehensive tool. This could include the
integration of commands that allow the user to create and select from templates
or models to suit the specific ADR needs of their project, which could greatly
increase the value added by using such a tool. Furthermore, features that go be-
yond simple file creation could be introduced, such as advanced decision analytics
and visualization tools that help teams understand the impact of their decisions
over time. For instance, adr-tools could be enhanced with capabilities to track the
interdependencies between ADRs, visualize decision trees, or map out the poten-
tial consequences of different architectural choices. Additionally, the tool could
integrate with machine learning algorithms to suggest potential decisions based on
historical data, industry best practices, or even the current project-specific ADRs.
Implementing automation features, such as automated reminders to update ADRs,
could further improve usability and ensure that ADRs are maintained consistently.

Threats: adr-tools faces several threats that could affect its adoption and rele-
vance. The preference for GUI-based tools as well as IDE plugins, particularly in
teams with members that are less familiar with CLI operations, could be a signif-
icant threat as these teams may be drawn to tools that offer a more visual and
user-friendly experience. In addition, the emergence of new tools with more ad-
vanced features could reduce the adoption rate of adr-tools. Another threat comes
from the growing trend toward automation and AI-driven development processes.
As artificial intelligence and machine learning are increasingly used to assist in
decision-making and code generation, there is a risk that adr-tools, which relies
on manual input and management, may be perceived as outdated or insufficiently
advanced for modern development practices. If AI-powered tools begin to offer
automated ADR generation, suggestions, and real-time impact analysis, develop-
ers might prefer these more dynamic solutions over adr-tools. If adr-tools fails to
keep up with these trends, it could see a decline in its user base.

29

Figure 9: SWOT Analysis of adr-tools [26]

30

3.2.3 Concept Alternative: ADG-Tool

In the previous sections, we compiled a collection of tools for managing Architec-
tural Decision Records (ADRs), with a particular focus on adr-tools, and analyzed
its strengths and weaknesses. The analysis highlighted several opportunities for
improvement and potential areas where a new tool could provide enhanced func-
tionality and usability. This section presents the concept of the Architectural
Decision Guidance (ADG) tool, which was developed in response to the findings
of the previous analysis. The ADG-Tool aims to address the identified weaknesses
and capitalize on the opportunities to provide a more comprehensive approach to
working with ADRs. The ADG-Tool is currently at the prototype stage, providing
a very simple proof-of-concept that lays the foundation for more advanced func-
tionality in the future, possibly in a follow-up thesis. The main focus of this tool
lies in one of the opportunities outlined in the SWOT analysis in Section 3.2.2,
namely the opportunity for a new tool to not only assist in the creation and man-
agement of ADR files, but also to act as a guidance system and assist the user in
the architectural decision-making process. For this proof-of-concept, this meant
adding commands similar to how adr-tools creates ADRs, but for creating new
templates and models. This allows users to build a knowledge base of different
templates used for different scenarios. This also links back to Clean Architecture,
as the collection of decisions outlined in Section 4 can be used as a Clean Archi-
tecture model, and each decision in the collection is a template that can be used
to create ADRs, in line with Clean Architecture principles. For starters, the pro-
totype is just like adr-tools, a simple Command-line Interface (CLI) tool that can
create and manipulate files. It provides a solid starting point for a tool that could
significantly improve the way software architects and developers manage architec-
tural decisions in their projects. The ADG proof-of-concept is designed to support
two primary user groups; knowledge engineers and software architects/developers.

The knowledge engineer is responsible for designing and maintaining guidance
models that encapsulate best practices and decision-making frameworks for specific
architectural styles or project requirements. These models serve as templates
that guide the decision-making process for other users. Consider the following
user stories designed for the proof-of-concept outlining the usage for a knowledge
engineer:

• As a knowledge engineer, I want to create a new guidance model using the
command ‘adg create <model>’ so that it can be used to navigate the pro-
cess of making architectural decisions. This allows me to encapsulate best
practices and structured decision-making processes into a model that can

31

be reused across multiple projects. For example, I might create a guidance
model that provides detailed steps for implementing decisions in alignment
with Clean Architecture principles.

• As a knowledge engineer, I want to add decision points to a guidance model
using the command ‘adg add <model> <decision>’ so that the model pro-
vides detailed guidance for specific architectural decisions. This feature en-
ables me to ensure that the guidance model covers all necessary aspects of
the decision-making process, helping users to make informed decisions. For
instance, I might add decision points that address common challenges such
as selecting an architectural style or deciding on a technology stack.

The software architect/developer uses the guidance models created by the knowl-
edge engineer to make informed decisions tailored to their specific project needs.
The tool helps them apply best practices and maintain consistency across their
architectural decisions. Consider the following user story designed for the proof-
of-concept outlining the usage for a software architect/developer:

• As a software architect/developer, I want to instantiate decisions from a
guidance model using the command ‘adg init <model> <path>’ so that I can
start making architectural decisions for my project in a structured manner.
This allows me to leverage the expertise encapsulated in the guidance model,
ensuring that my decisions are aligned with best practices. For example, I
can instantiate a Clean Architecture model for my e-commerce platform and
follow the predefined decision points to ensure a well-structured architecture.

The ADG-Tool prototype is implemented in Go [34] and provides the commands
outlined in the user stories. The proof-of-concept intentionally focuses on the
guidance part, and does not include basic features that are present in adr-tools
for managing and linking individual ADRs. The primary functionalities of the
tool are organized around creating and managing guidance models, which serve
as structured frameworks for making architectural decisions. Go was chosen as a
programming language, as it is fairly simple to create basic CLI applications, but
a language like Python would have also been a good choice. During the research
phase we also experimented with extending and creating new functionality for
adr-tools using shell scripts, but in order not to exclude support for Windows we
decided to build a prototype from scratch.

The first core feature of the ADG-Tool is the ability to create a new guidance
model. By using the command ‘adg create <model>’, users can generate a new

32

directory within the adg-models folder. This directory becomes the root for a new
guidance model, where subsequent decision points can be added. This feature is
particularly useful for establishing a template that encapsulates best practices for
architectural decisions, ensuring consistency and reusability across projects. For
instance, when a knowledge engineer creates a model for Clean Architecture, the
resulting directory structure provides a clear, organized framework for document-
ing and guiding architectural decisions. The following command will create a new
directory called ‘clean-architecture’ inside the ‘adg-models’ directory:

> adg create clean-architecture

The tool also enables users to add decision points to an existing guidance model
using the command ‘adg add <model> <decision>’. This command creates a
new Markdown file representing a decision point within the specified model. Each
decision point can include detailed guidance on specific architectural decisions, al-
lowing for a structured and comprehensive decision-making process. For example,
a decision point might guide users through the process of deciding for a specific
use case in a system using Clean Architecture, like outlined in the architectural
decision in Section 4.3. The following command will create a new file called ‘3-
select-use-cases’ inside the ‘adg-models/clean-architecture’ folder:

> adg add clean-architecture 3-select-use-cases

Another essential feature of the ADG-Tool is the ability to initialize a model
for use in a specific project. Using the command ‘adg init <model> <path>’,
users can copy an existing model’s structure into a specified path within their
project directory. This feature integrates the guidance model into the development
workflow, ensuring that all relevant architectural decisions are considered from the
outset of the project. For example, when a software architect initializes a Clean
Architecture model within their project, they can immediately begin following the
predefined decision points, ensuring that their architectural decisions align with
best practices. The following command will copy all decision from the ‘clean-
architecture’ model to the specified path:

> adg init clean-architecture project/doc/adr

33

The Clean Decision Handbook outlined in Section 4 effectively acts as a knowl-
edge base or template library within the ADG-Tool. When integrating the Clean
Decision Handbook with the ADG-Tool, each decision outlined in the handbook
corresponds to a decision point within a guidance model. This integration allows
users to instantiate a project with a predefined set of architectural decision tem-
plates, ensuring that the decision-making process follows a logical, structured path.
For instance, when a software architect initializes a Clean Architecture model using
the ADG-Tool, the tool will generate a series of decision points based on the tem-
plates provided in the model (handbook). Each of these decision points can then
be customized according to the specific needs of the project. The ADG-Tool’s com-
mand ‘adg init <model> <path>’ facilitates this process by creating a structured
environment where the architect can systematically work through each decision,
filling in the details relevant to their project, while maintaining consistency with
the principles outlined in the handbook. Again this is still a very rudimentary
approach to a guidance model, as the prototype as of now simply copies the files
from the knowledge base to the specified project path, not much different than
adr-tools simply creates text files with a specific ADR template in your desired
location. But there are several opportunities outlined in Section 3.2.2 to improve
this decision guidance prototype in the future.

While the ADG-Tool prototype offers a basic yet functional approach to guide the
architectural decisions, several enhancements could further elevate its utility and
effectiveness. The ADG-Tool must meet several non-functional requirements to
ensure its effectiveness and broad usability. It should be highly usable, providing
clear and concise commands with comprehensive in-tool help documentation, and
guiding users through the decision-making process with intuitive messages and
prompts. Performance is another key factor, as the tool should perform actions
quickly, especially when reading from or writing to disk, to ensure smooth opera-
tion in a development environment. Reliability is critical, as the tool should handle
errors, providing users with meaningful error messages to help them recover from
failures. In addition, the tool should be maintainable, with a well-documented and
organized code base that follows coding standards, making it easy to update and
integrate with future technologies. Scalability is important to accommodate dif-
ferent project sizes, ensuring that the tool can handle increasing numbers of ADRs
as projects grow. Security measures must also be in place to protect sensitive ar-
chitectural decisions and ensure data integrity. Finally, the tool must be portable,
capable of running on multiple operating systems with minimal code changes, and
it should minimize dependencies to simplify installation in different environments.
Further opportunities mentioned in the SWOT analysis could be explored and po-
tentially realized in a follow-up thesis, expanding the tool’s capabilities beyond its

34

current scope. One of the most promising areas for enhancement is the develop-
ment of an interactive decision-making workflow. Such a feature would guide users
step-by-step through the decision-making process, providing real-time feedback
and context-sensitive suggestions based on the specifics of the project. This would
transform the ADG-Tool from a static file creation utility into a dynamic assis-
tant that actively supports architects in making well-informed decisions. Another
potential enhancement is the integration with popular Integrated Development
Environments (IDEs). By developing plugins for IDEs like Visual Studio Code or
IntelliJ IDEA, the ADG-Tool could become seamlessly integrated into the daily
workflow of developers, allowing them to manage ADRs directly from their cod-
ing environment. This integration would not only streamline the decision-making
process but also ensure that architectural decisions are made in close alignment
with the actual codebase. Lastly, exploring the use of machine learning algorithms
could open up new possibilities for the ADG-Tool. By analyzing historical data,
industry best practices, and project-specific requirements, machine learning could
provide decision recommendations, highlight potential risks, and even automate
certain aspects of the decision-making process.

35

4 Clean Decision Handbook

In the previous sections, we explored the importance of managing architectural
decisions and the tools available to support this aspect of software development.
With a solid foundation in place, we will now focus on the application of these con-
cepts within the Clean Architecture framework. Following the conceptual overview
in Section 2, we will present a Clean Decision Handbook that provides insights into
key architectural decisions that are critical for systems using a Clean Architecture
approach. For each clean decision, an example will be provided to help architects
and developers maintain adherence to Clean Architecture. But first, we will dis-
cuss the development of this handbook, considering its target audience, the scope
of the decisions it covers, and the methods used to extract and organize the guid-
ance provided. This discussion will provide insights into how the Handbook can
be used in practice and its limitations. By the end of this section, readers will have
a comprehensive understanding of how to apply Clean Architecture principles to
their architectural decision-making processes.

The decision guidance developed in this section is primarily aimed at software
architects and software developers who are responsible for making and guiding
architectural decisions within their project. These individuals are often tasked with
ensuring that their software systems are not only functional, but also maintainable,
scalable and adaptable to future changes. The handbook is relevant to those who
wish to apply the principles of Clean Architecture, which can provide significant
benefits, as discussed in detail at the beginning of this thesis. The handbook
is structured so that the decisions build on each other, starting with the most
important decisions covering high-level architectural requirements, down to the
less important decisions covering low-level implementation details. This follows the
common theme in Clean Architecture of high-level policies and low-level details.
The idea is that a team can follow these decisions more or less step by step to design
a system, whether it is a completely new project from scratch, or an existing project
that is being rebuilt in a Clean Architecture style. Therefore, the decisions covered
in this handbook represent a selected subset of the overall architectural scope.
While they address many of the most critical aspects of getting started with Clean
Architecture, they do not cover every possible decision an architect might face.
Instead, it focuses on decisions that have the greatest impact on maintaining the
integrity of Clean Architecture principles, such as defining the initial architecture
layout with its entities and use cases, choosing the right patterns, and managing
dependencies to frameworks and external systems. The guide is intended to be a
starting point rather than a comprehensive guide. Architects are encouraged to
adapt and extend the guidance provided, taking into account the specific needs

36

and constraints of their projects. The templates used throughout the handbook
are illustrative and, while they cover common challenges, they may not address all
the unique situations that may arise when faced with a particular decision. They
are intended to help architects and developers understand the implications of each
decision and how it fits with the overall architectural objectives.

We derived the architectural choices presented in this handbook from a detailed
study of Robert C. Martin’s book “Clean Architecture” [1], supplemented by prac-
tical insights from the area of architectural decision-making covered in the previous
sections, as well as our own professional experience of working with software using
a Clean Architecture style. The process involved analyzing the key principles un-
derlying Clean Architecture, as discussed in Section 2.1, or the layered structure
with its emphasis on separation of concerns and the dependency rule, as discussed
in Section 2.2. An overview of the result can be seen in Figure 10, which illustrates
a clear flow of decisions to be made. It is important to note that the decisions
enclosed in the larger box cover decisions relating to the architectural layers and
should therefore be made in the order shown. However, the bottom three decisions
can be made after any of the decisions in the big box if necessary, indicated by an
arrow going from the big box, and there is an additional fourth placeholder box
representing other decisions that may need to be made.

Figure 10: Clean Decisions

37

4.1 Defining the Architecture’s Initial Layout

One of the earliest and most critical decisions in applying Clean Architecture is to
define the initial layout of the architecture. This decision is about committing to
the overarching structure and principles of Clean Architecture, which fundamen-
tally dictate how the entire system will be organized and maintained over time.
By choosing Clean Architecture, you are choosing to enforce a layered approach
where the core business logic, encapsulated in entities, is isolated from external
concerns by layers such as use cases, interface adapters, frameworks and drivers.
[1, Chapter 22]

There are several key aspects to this decision. First, it requires a commitment to
the Clean Architecture model itself. This choice is important because it defines
the basic structure of the system and ensures that responsibilities are clearly sepa-
rated across the different layers. Secondly, defining the initial layout also involves
determining how to implement the prescribed layered structure within the specific
context of your project. While Clean Architecture provides a general framework —
entities, use cases, interface adapters, frameworks and drivers — there is flexibility
in how these layers are applied. Depending on the complexity and needs of the
project, the layers can be expanded or adapted [1, p. 205], but the core principle
remains the same; to keep the business logic isolated from external systems, thus
maintaining the flexibility of the architecture.

This fundamental choice influences how all subsequent decisions are made, ensuring
that the architecture remains robust and adaptable over time. It is about laying
the groundwork for how the components of the system will interact, ensuring that
the core business logic remains unaffected by changes in external systems.

Example: In our e-commerce platform scenario, defining the initial layout of
the architecture would involve committing to Clean Architecture and deciding
that the system will be structured into the four primary layers: Entities, Use
Cases, Interface Adapters, and Frameworks and Drivers. This structure will guide
how the codebase is organized, ensuring that the core business logic, such as how
orders are processed, is insulated from changes in external systems such as database
technology or the UI framework. For this first decision, we will provide a completed
ADR of this example (see Figure 12) based on the template (see Figure 11) to get
a first idea. For the following decisions, only the template will be provided.

38

Title

Defining the Architecture’s Initial Layout for <project>

Context

We are developing a project that <context>. It needs to
be maintainable, adaptable to future changes, <additional
requirements>.

Decision

We have decided to adopt the Clean Architecture model as the
foundational structure and the system will be organized into <n>
distinct layers:
- Entities: Representing the core business objects and rules, such
as <some examples>.
- Use Cases: Managing the application-specific business logic and
workflows, such as <some examples>.
- Interface Adapters: Handling the interactions between the
internal layers and external systems, such as <some examples>.
- Frameworks and Drivers: The outermost layer includes frameworks,
such as <some examples>.
- <additional layers>

Status

Proposed

Consequences

- Positive: This layered approach will ensure that the core
business logic remains insulated from changes in external systems,
maintaining the system’s flexibility and adaptability over time.
- Negative: Initial setup and adherence to the Clean Architecture
model may require more upfront effort and learning for the
development team. The strict separation of layers may introduce
additional complexity in managing dependencies and ensuring that
communication between layers is efficient and well-structured.
- <additional consequences>

Figure 11: Template Architectural Decision Record (Nygard) for defining the ini-
tial Clean Architecture layout, with placeholders denoted by angle brackets (<>).

39

Title

Defining the Architecture’s Initial Layout for the E-Commerce
Platform

Context

We are developing a e-commerce platform that provides users a way to
order and buy our products online. It needs to be maintainable,
adaptable to future changes, be able to integrate with various
payment gateways, and supporting both web and mobile interfaces.

Decision

We have decided to adopt the Clean Architecture model as the
foundational structure and the system will be organized into 4
distinct layers:
- Entities: Representing the core business objects and rules, such
as ‘Payment‘, ‘Customer‘, and ‘Product‘.
- Use Cases: Managing the application-specific business logic and
workflows, such as ‘RegisterCustomer‘ and ‘ProcessPayment‘.
- Interface Adapters: Handling the interactions between the
internal layers and external systems, such as data translation and
communication with databases, APIs, and user interfaces.
- Frameworks and Drivers: The outermost layer includes frameworks,
such as the web server, database technology, and UI frameworks.

Status

Accepted

Consequences

- Positive: This layered approach will ensure that the core
business logic remains insulated from changes in external systems,
maintaining the system’s flexibility and adaptability over time and
allows to implement both web and mobile interfaces without affecting
the core business logic.
- Negative: Initial setup and adherence to the Clean Architecture
model may require more upfront effort and learning for the
development team. The strict separation of layers may introduce
additional complexity in managing dependencies and ensuring that
communication between layers is efficient and well-structured.

Figure 12: Example Architectural Decision Record (Nygard) for defining the initial
layout of an E-commerce shop, using the template from Figure 11, filling in the
placeholders.

40

4.2 Deciding the Boundaries for Entities

Entities represent the core business rules of the system and are the most stable and
reusable elements in Clean Architecture. Deciding how to define the boundaries
of these entities is critical, as it determines how well they can encapsulate critical
business logic while remaining independent of external factors such as databases
or user interfaces. This decision involves identifying the key business concepts that
should be modelled as entities, as opposed to use cases, and ensuring that these
entities are designed to work independently of how data is stored, retrieved or
presented to users. Entities should not contain complex application-specific func-
tionality. [1, p. 190, 204]. This decision involves defining the boundaries of the
entity layer by analyzing the core business model and defining which entities the
application needs to fulfil the business rules. [1, Chapter 17, 18] Deciding these
boundaries closely aligns with the principles of Domain-Driven Design (DDD),
which emphasizes that entities should represent key business concepts within a
bounded context, ensuring that they are cohesive and encapsulate only the nec-
essary business logic. Vaughn Vernon’s "Implementing Domain-Driven Design"
provides further insights into how to define these boundaries effectively. [35] A
decision here could be as simple as defining and clarifying one or more entities
that encompass a particular business rule required by the system. A template for
making this type of decision can be seen in Figure 13.

Example: In our e-commerce platform, the ‘Payment’ entity would encapsulate
information about a specific payment, such as the amount, currency, and status
that a customer’s payment has been successfully processed. However, the Pay-
ment entity should not process a transaction using implementations of payment
processing systems (e.g. PayPal). Instead, these functionalities and dependencies
should be handled by other layers (e.g. use cases, interface adapters) to ensure
that the ‘Payment’ entity remains consistent and reusable across different appli-
cations or contexts, since the information about a payment is generally the same
and independent of how it has been processed by different applications.

41

Title

Defining the Boundaries for Entities in <project> encapsulating
<business rule>

Context

We are designing the core business rules for <project>, which
need to be stable and reusable across different applications and
independent of external frameworks or systems. The entities must
encapsulate <business rule> while remaining isolated from external
systems.

Decision

We have decided to define the following entity/entities to represent
the core business rules:
- <entity 1>: Represents <key business concept>, responsible for
<specific business logic>.
- <more entities>

Status

Proposed

Consequences

- Positive: The entities will be stable and reusable, allowing for
consistency across different applications and contexts.
- Negative: The strict independence of entities from external
systems may require additional effort to ensure proper encapsulation
and separation of concerns.
- <additional consequences>

Figure 13: Template Architectural Decision Record (Nygard) for deciding the
boundaries of one (or multiple) entities, with placeholders denoted by angle brack-
ets (<>).

42

4.3 Selecting Use Cases

Use cases in Clean Architecture represent the application-specific business rules
that dictate how the system behaves in response to certain actions or events. Use
cases should be designed to manage specific workflows or processes, ensuring that
they are focused and free from unnecessary dependencies on the outside world. [1,
p. 148, 191-193, 204] A decision involves deciding on a specific use case, outlining
the workflow required by the application and the actions that will be performed
by the use case. In practice, many use cases are required for an application, and
therefore several decisions are recorded for selecting the many different use cases.
A template for making this type of decision can be seen in Figure 14.

Example: In our e-commerce platform, the ‘RegisterCustomer’ use case would be
responsible for managing the entire workflow of creating an account for a new cus-
tomer. This includes validating the details provided by the user upon registration,
creating a new ‘Customer’ entity and updating our customer database and notify-
ing the UI that the registration was successful (using abstractions and dependency
injections to comply with the dependency rule). By isolating this logic within a
dedicated use case, the system can adapt to changes, such as adding additional
validation, without changing the core ’customer’ entity. This separation ensures
that each aspect of the process is handled consistently and that the use case can
be reused or extended as required.

43

Title

Selecting the Use Case for <specific workflow> in <project>

Context

We need to implement a use case that handles the <specific
workflow>. This use case will manage the application-specific
business logic associated with <specific action or event> and must
remain independent of external systems.

Decision

We have decided to structure the <use case> to handle the <specific
workflow> by performing the following actions:
- <action 1>: <describe specific action the use case will perform>.
- <more actions>

Status

Proposed

Consequences

- Positive: The use case will provide a clear and isolated
management of the workflow, making it adaptable to future changes.
- Negative: Additional interfaces may need to be developed to
ensure that the use case remains decoupled from external systems.
- <additional consequences>

Figure 14: Template Architectural Decision Record (Nygard) to select and imple-
ment a specific use case, with placeholders denoted by angle brackets (<>).

44

4.4 Choosing Patterns for Interface Adapters

Interface adapters are responsible for translating data between the internal layers of
the system (entities and use cases) and external systems (such as the user interface
or databases) [1, p. 205]. Deciding which patterns to use for these adapters is
critical, as it directly affects the system’s ability to maintain a clean separation
between its core logic and the external environment. Common patterns include
the Repository pattern for data access and the Presenter pattern for handling
UI interactions. The goal is to decouple the business logic from volatile external
systems, while maintaining the flexibility and maintainability of the architecture.
[1, Chapter 23] A template for making this type of decision can be seen in Figure
15.

Example: In our e-commerce platform, since we need to interact with a database,
the repository pattern might be best suited to abstract the interaction between
the ‘UpdateInventory’ use case and a MongoDB database. Instead of the use
case interacting directly with the database, it interacts with a ProductRepository
interface, which then manages the database operations. Similarly, a controller
pattern could be used to handle HTTP requests, such as a request to register a
new account, from the web application, converting these requests into actions that
the use cases can process. This approach ensures that changes to the database or
user interface do not require changes to the core business logic.

45

Title

Choosing the <pattern> in <project>

Context

We need to choose a pattern for <detail> to ensure effective
translation of data between <specific use case> and <external
system> to prevent direct dependencies to external systems.

Decision

We have decided to implement the <pattern> for <detail>.
This pattern will:
- <responsibility 1>: <describe how the pattern will handle
specific interaction or data translation>.
- <more responsibilities>

Status

Proposed

Consequences

- Positive: The use of <pattern> will ensure that changes to
<external system> do not impact <core business logic>.
- Negative: Implementing <pattern> may introduce additional
complexity in managing the interactions between layers.
- <additional consequences>

Figure 15: Template Architectural Decision Record (Nygard) to choose a pattern
for the interface adapters, with placeholders denoted by angle brackets (<>).

46

4.5 Selecting Frameworks and Drivers

While Clean Architecture advises against letting specific technologies dictate the
overall system architecture, the choice of frameworks and drivers for the outer-
most layer is still a critical decision. This decision involves selecting technologies
that are best suited to the current needs of the project, while ensuring that these
technologies can be replaced or upgraded without affecting the core architecture.
Technologies chosen for this layer should be focused on external concerns like
databases, user interfaces, and third-party services. The core business logic should
never directly depend on these technologies, preventing tight coupling. The deci-
sion should be made with replaceability in mind, allowing the system to evolve as
technologies change without disrupting the core business logic. [1, Chapter 30-32]
A template for making this type of decision can be seen in Figure 16.

Example: For our e-commerce platform, we might initially choose PostgreSQL as
our database technology and React as our front-end framework. These technologies
are chosen based on their current fit with the needs of the project. However, by
restricting them to the framework and driver layer, we ensure that the system
remains flexible. In the future, if we decide to switch to a NoSQL database or
adopt a different front-end framework, we can do so without having to change the
core business logic or use cases, thus maintaining the adaptability of the system.

47

Title

Selecting the <technology> for <project>

Context

For <specific functionality>, we need to select a technology
that meets current project requirements in terms of
<performance/scalability/availability/etc.>, and can be easily
replaced or upgraded in the future without affecting the core
business logic by isolating it within the Frameworks and Drivers
layer.

Decision

We have chosen <technology> for <functionality> within the
Frameworks and Drivers layer. The decision was based on the
following criteria:
- <reason 1>: <describe why this technology is suitable>.
- <more reasons>

Status

Proposed

Consequences

- Positive: The system will remain adaptable to future technology
changes, maintaining the core architecture’s stability.
- Negative: The initial integration may require additional effort
to ensure the technology remains confined to the Frameworks and
Drivers layer.
- <additional consequences>

Figure 16: Template Architectural Decision Record (Nygard) to select a framework
or driver, with placeholders denoted by angle brackets (<>).

48

4.6 Deciding on Data Flow and Transformations

The flow and transformation of data between layers is another critical decision
in Clean Architecture. This involves choosing the appropriate data formats at
each layer boundary and deciding how data should be transformed as it moves
between layers. The objective is to maintain clarity and consistency in how data
is handled, ensuring that transformations do not introduce unnecessary complexity
or tightly couple different parts of the system. The data flow should be designed
to support the separation of concerns, with each layer only dealing with data in its
relevant context. Typically this data consist of simple data structures, like simple
data transfer objects, a hashmap containing the important information, or even
just arguments in function calls. The idea is to not pass entire entity objects or
database rows and never violate the dependency rule. [1, p. 207] A template for
making this type of decision can be seen in Figure 17.

Example: When a customer places an order on our e-commerce platform, the
HTTP request data received by the web server would first be transformed into a
domain-specific format before being passed to the PlaceOrder use case. This en-
sures that the use case operates with data in a format that aligns with the business
logic. Once the order is processed, the resulting data would be transformed back
into a format suitable for the user interface, allowing the response to be presented
to the customer. By handling data transformations at the boundaries between
layers, we maintain the integrity and independence of each layer.

49

Title

Deciding on Data Flow and Transformation for <interaction>

Context

We need to define how data will flow and be transformed during
<interaction>. The data must be appropriately formatted at each
layer boundary, maintaining clarity and consistency in the system.

Decision

We have decided that during <interaction>, data will flow from
<source layer> to <target Layer> and will be transformed as follows:
- <transformation 1>: Data will be transformed from <source format>
to <target format> when moving from <source layer> to <target
layer>.
- <more transformations>

Status

Proposed

Consequences

- Positive: This clear data flow reduces the risk of errors and
keeps layers decoupled and independent.
- Negative: Implementing these transformations may introduce
complexity in ensuring consistency across layers.
- <additional consequences>

Figure 17: Template Architectural Decision Record (Nygard) for deciding data flow
and transformations, with placeholders denoted by angle brackets (<>) Template
ADR (Nygard).

50

4.7 Optimizing for Performance and Scalability

Optimization is not necessarily one of the first things to consider when designing
the architecture of a system, and Martin even refers to it as a low-level architec-
tural concern, since with a clean architecture it can be completely encapsulated
and separated from the business rules [1, p. 281], which is why it is also one of
the later decisions in this collection. As Kent Beck put it (quoted by Martin in
the book) "First make it work. Then make it right. Then make it fast". [1,
p. 258] Nevertheless, decisions about optimizing for performance and scalability
are important, especially in systems that are expected to handle large volumes of
data or high transaction rates. The challenge is to achieve optimization without
compromising the flexibility of the architecture. This involves choosing strategies
that allow the system to scale horizontally or vertically, or perform faster, while
maintaining a clean separation between tiers. The idea is that the core business
and application logic does not need to worry about performance or scalability.
For example, if a use case needs to call a computationally expensive algorithm,
the implementation should be extracted as a service and placed in the framework
layer. This allows the use case to call the service interface, while we can adapt
and change or even replace the algorithm to optimize it, without affecting the
use case itself. Another example of a common optimization technique is database
partitioning, and since the database is a detail belonging to the outermost layer
[1, p. 277], optimizing it will not affect the core business logic. A template for
making this type of decision can be seen in Figure 18.

Example: For scalability in our e-commerce platform, we might decide to imple-
ment a queue-based order processing system to ensure greater reliability and fault
tolerance during high traffic periods. This will ensure that the system can handle
high volumes of traffic without overwhelming the server, although it may result
in slight delays in order confirmation on the user side. In addition, caching could
be implemented to reduce the load on the database during peak traffic periods.
Both of these optimization strategies are isolated in the outer layer so that the
system can scale effectively while maintaining a clean separation between the core
business logic and these optimization implementations.

51

Title

Implementing <optimization strategy> for <workflow>

Context

We need to address optimize <workflow> to ensure the system can
<requirements> while maintaining Clean Architecture principles.
This optimization must be confined to the outer layers to avoid
compromising the flexibility and independence of the core business
logic.

Decision

We have decided to implement <optimization strategy> to optimize
<workflow>. This strategy will involve:
- <action 1>: Implementing <specific optimization strategy> by
<technique to isolate from business logic>.
- <more actions>.

Status

Proposed

Consequences

- Positive: The system will be optmized based on <benefits> while
maintaining its clean architectural structure.
- Negative: The chosen strategy may introduce complexity in
ensuring the system remains decoupled and maintainable.
- <additional consequences>

Figure 18: Template Architectural Decision Record (Nygard) for optimizing per-
formance and scalability, with placeholders denoted by angle brackets (<>).

52

4.8 Integrating with External Systems

Integration with external systems, such as third-party APIs or systems from exter-
nal companies, is a common requirement in modern software systems. However,
these integrations must be handled carefully to avoid introducing tight coupling or
compromising the flexibility of the architecture. A change by an external system
should not cause our system to break, which means that we want to have an asym-
metric relationship with any external system. [1, p. 172] Asymmetric means that
the external system (or rather the implementation of it in our framework layer)
depends on the use cases of our application and not vice versa. If there is a change
in a third-party API, the inner layers are unaffected. This decision is similar to the
technology selection decision, and involves selecting an external system that can
be replaced or upgraded without affecting the core architecture. Without proper
setup in the interface adapter layer, we would not be able to integrate such exter-
nal systems without creating dependencies, so this decision is one of the last to be
made. A template for making this type of decision can be seen in Figure 19.

Example: For payment processing in our e-commerce platform, we may want to
use third-party payment services such as PayPal or Stripe. By setting up a gateway
interface properly, we are able to isolate the integration details and the core logic
for processing orders remains the same regardless of which payment service is used.
This approach ensures that the system can easily switch to a different payment
provider in the future without requiring changes to the core business logic or use
cases.

53

Title

Integrating <external system> with using <integration approach>

Context

We need to integrate <external System> with while ensuring that the
core business logic remains independent of it. The integration must
be managed to avoid tight coupling and maintain the architecture’s
flexibility.

Decision

We have decided to integrate <external system> using <integration
approach> to manage interactions. This approach includes:
- <action 1>: <describe how the external system will be integrated
without affecting core logic>.
- <more actions>

Status

Proposed

Consequences

- Positive: The core business logic will remain decoupled from
external systems, ensuring long-term adaptability.
- Negative: Implementing this integration approach may require
additional effort to maintain consistent communication and
interaction.
- <additional consequences>

Figure 19: Template Architectural Decision Record (Nygard) for for integrating
external systems, with placeholders denoted by angle brackets (<>).

54

5 Conclusion

This thesis has explored the management of architectural decisions in Clean Ar-
chitecture, presenting both theoretical insights and practical solutions for handling
architectural decisions in modern software systems. Clean Architecture’s emphasis
on maintaining flexibility and separation of concerns makes it an excellent candi-
date for systems that require long-term adaptability and maintainability. The core
of this work has revolved around understanding the crucial role of architectural
decisions and the tools and processes required to manage them effectively.

Section 2 of the thesis began by introducing the basic software design principles
and the four layers (Entities, Use Cases, Interface Adapters, and Frameworks and
Drivers) of Clean Architecture. A case study of an e-commerce platform was used
to demonstrate the practical application of these layers and to help the reader
understand how Clean Architecture principles are applied in real-world scenarios.

In Section 3, the thesis explored the process of documenting architectural decisions
through the use of Architectural Decision Records (ADRs). This section covered
the importance of documenting decisions for long-term maintenance, transparency
and decision traceability. The introduction of decision documentation formats such
as the Nygard format, Y-statement and MADR provided a structured way of cap-
turing the rationale and consequences of architectural decisions. The discussion
highlighted the strengths and weaknesses of each format, supported by specific
examples tailored to the e-commerce platform case study, such as the choice be-
tween microservices and monolithic architecture, or the selection of technology
frameworks.

Building on this foundation, Section 4 presented the Clean Decision Handbook, a
key contribution of this thesis. This handbook provides a structured framework for
managing Clean Architecture decisions, with templates tailored for different types
of decisions. Each decision was carefully categorized, including decisions related
to defining the architecture layout, selecting use cases, choosing patterns for inter-
face adapters, and addressing performance and scalability concerns. The templates
provided actionable guidance for architects and developers to make informed, con-
sistent decisions within the context of Clean Architecture. The handbook serves as
a practical tool for applying the theoretical concepts discussed in previous sections
to ensure that architectural decisions are made in accordance with Clean Archi-
tecture principles. Looking forward, extending the Clean Decision Handbook to
include a more comprehensive set of architectural decisions for Clean Architecture
could increase its utility for larger, more complex systems. In addition, explor-

55

ing the application of these principles and developing a more general handbook
for different architectural styles beyond Clean Architecture could provide valuable
insights for broader use cases.

Section 3.2.3 discussed the ADG-Tool prototype, which was developed to address
some of the gaps identified in existing ADR tools. Although the prototype is still in
its early stages, it provides a starting point for more advanced tools in the future.
The ADG-Tool is designed to help architects and developers create, manage and
track architectural decisions using predefined templates and structured processes.
While the prototype provides basic functionality, such as creating and initializ-
ing decision models, the potential for future enhancements is significant. Future
iterations of the tool could include interactive decision workflows, real-time collab-
oration and integration with development environments, as described in Section
3.2.3. This prototype lays the groundwork for future research and development in
this domain. In a follow-up thesis, the tool could be further developed to include
advanced decision analysis, more robust collaboration features, and real-time im-
pact analysis of architectural decisions. Integration with machine learning could
provide decision recommendations based on historical data, allowing the tool to
become a dynamic assistant in the decision-making process.

In conclusion, this thesis has contributed both theoretical knowledge and prac-
tical tools for managing architectural decisions within Clean Architecture. By
effectively documenting these decisions and providing tools to guide the decision-
making process, architects and developers can ensure that their systems remain
flexible, maintainable and adaptable to future challenges. The work done here is
a step towards a more structured and traceable approach to software architecture,
with the potential for significant progress in future research and tool development.

56

References

[1] R. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Prentice Hall, 2018.

[2] A. Cockburn, “Hexagonal Architecture,” 2005, accessed: September 6, 2024.
[Online]. Available: https://alistair.cockburn.us/hexagonal-architecture/

[3] J. Palermo, “The Onion Architecture : part 1,” 2008, accessed:
September 6, 2024. [Online]. Available: https://jeffreypalermo.com/2008/07/
the-onion-architecture-part-1/

[4] R. Martin, “The Clean Architecture,” 2012, accessed: September 6,
2024. [Online]. Available: https://blog.cleancoder.com/uncle-bob/2012/08/
13/the-clean-architecture.html

[5] M. Fowler, “Inversion of Control Containers and the Dependency
Injection pattern,” 2004, accessed: September 6, 2024. [Online]. Available:
https://www.martinfowler.com/articles/injection.html?ref=danyow.net

[6] ——, “Gateway,” 2021, accessed: September 6, 2024. [Online]. Available:
https://martinfowler.com/articles/gateway-pattern.html

[7] ——, “Repository,” 2003, accessed: September 6, 2024. [Online]. Available:
https://martinfowler.com/eaaCatalog/repository.html

[8] ——, “Front Controller,” 2003, accessed: September 6, 2024. [Online].
Available: https://martinfowler.com/eaaCatalog/frontController.html

[9] ——, “Supervising Controller,” 2006, accessed: September 6, 2024. [Online].
Available: https://martinfowler.com/eaaDev/SupervisingPresenter.html

[10] O. Zimmermann, “From Architectural Decisions to Design Decisions,” 2021,
accessed: September 6, 2024. [Online]. Available: https://medium.com/
olzzio/from-architectural-decisions-to-design-decisions-f05f6d57032b

[11] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural De-
sign Decisions,” 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), 2005.

[12] M. Nygard, “Documenting Architecture Decisions,” 2011, accessed:
September 6, 2024. [Online]. Available: https://www.cognitect.com/blog/
2011/11/15/documenting-architecture-decisions

57

https://alistair.cockburn.us/hexagonal-architecture/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://www.martinfowler.com/articles/injection.html?ref=danyow.net
https://martinfowler.com/articles/gateway-pattern.html
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/frontController.html
https://martinfowler.com/eaaDev/SupervisingPresenter.html
https://medium.com/olzzio/from-architectural-decisions-to-design-decisions-f05f6d57032b
https://medium.com/olzzio/from-architectural-decisions-to-design-decisions-f05f6d57032b
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions

[13] ADR GitHub Organization, “Architectural Decision Records,” accessed:
September 6, 2024. [Online]. Available: https://adr.github.io

[14] O. Zimmermann, “Making Architectural Knowledge Sustainable – The Y-
Approach, Industrial Practice Report and Outlook,” in Proceedings of the 9th
Annual SATURN Conference, 2012.

[15] ——, “Y-Statements,” 2021, accessed: September 6, 2024. [Online]. Available:
https://medium.com/olzzio/y-statements-10eb07b5a177

[16] ——, “Architectural Decisions — The Making Of,” 2021, accessed: September
6, 2024. [Online]. Available: https://www.ozimmer.ch/practices/2020/04/
27/ArchitectureDecisionMaking.html

[17] ADR GitHub Organization, “Markdown Architectural Decision Records,”
accessed: September 6, 2024. [Online]. Available: https://adr.github.io/
madr/

[18] O. Kopp, A. Armbruster, and O. Zimmermann, “Markdown Architectural De-
cision Records: Format and Tool Support,” in Proceedings of the 10th Central
European Workshop on Services and their Composition, 2018.

[19] ADR GitHub Organization, “Markdown Architectural Decision Records
Examples,” accessed: September 6, 2024. [Online]. Available: https:
//adr.github.io/madr/examples.html

[20] ——, “GitHub repository: adr/madr,” accessed: September 6, 2024. [Online].
Available: https://github.com/adr/madr/

[21] O. Zimmermann, “The Markdown ADR (MADR) Template Explained
and Distilled,” 2022, accessed: September 6, 2024. [Online]. Available:
https://ozimmer.ch/practices/2022/11/22/MADRTemplatePrimer.html

[22] ADR GitHub Organization, “GitHub repository: adr/adr-log,” accessed:
September 6, 2024. [Online]. Available: https://github.com/adr/adr-log

[23] A. Wilson, “GitHub repository: mrwilson/adr-viewer,” accessed: September
6, 2024. [Online]. Available: https://github.com/mrwilson/adr-viewer

[24] ADR GitHub Organization, “GitHub repository: adr/e-adr,” accessed:
September 6, 2024. [Online]. Available: https://github.com/adr/e-adr

[25] C. Sprayberry, “GitHub repository: cspray/architectural-decision,” accessed:
September 6, 2024. [Online]. Available: https://github.com/cspray/
architectural-decision

58

https://adr.github.io
https://medium.com/olzzio/y-statements-10eb07b5a177
https://www.ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
https://www.ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html
https://adr.github.io/madr/
https://adr.github.io/madr/
https://adr.github.io/madr/examples.html
https://adr.github.io/madr/examples.html
https://github.com/adr/madr/
https://ozimmer.ch/practices/2022/11/22/MADRTemplatePrimer.html
https://github.com/adr/adr-log
https://github.com/mrwilson/adr-viewer
https://github.com/adr/e-adr
https://github.com/cspray/architectural-decision
https://github.com/cspray/architectural-decision

[26] N. Pryce, “GitHub repository: nypryce/adr-tools,” accessed: September 6,
2024. [Online]. Available: https://github.com/npryce/adr-tools

[27] Canpolat, “GitHub repository: canpolat/talo,” accessed: September 6, 2024.
[Online]. Available: https://github.com/canpolat/talo

[28] T. Vaillant, “GitHub repository: thomvaill/log4brains,” accessed: September
6, 2024. [Online]. Available: https://github.com/thomvaill/log4brains

[29] E. Sciara, “GitHub repository: opinionated-digital-center/pyadr,” ac-
cessed: September 6, 2024. [Online]. Available: https://github.com/
opinionated-digital-center/pyadr

[30] ADR GitHub Organization, “GitHub repository: adr/adr-manager,” accessed:
September 6, 2024. [Online]. Available: https://github.com/adr/adr-manager

[31] Coding Friends GmbH, “Loqbooq,” accessed: September 6, 2024. [Online].
Available: https://loqbooq.app/how-it-works

[32] Loomio Cooperative Limited, “Loomio,” accessed: September 6, 2024.
[Online]. Available: https://www.loomio.com

[33] E. Choice, “The Analytic Hierarchy Process: Structured Decisions,” accessed:
September 6, 2024. [Online]. Available: https://www.expertchoice.com/
ahp-software

[34] R. Griesemer, R. Pike, and K. Thompson, “Go programming language,”
accessed: September 6, 2024. [Online]. Available: https://go.dev

[35] V. Vernon, Implementing Domain-driven Design. Addison-Wesley Profes-
sional, 2013.

59

https://github.com/npryce/adr-tools
https://github.com/canpolat/talo
https://github.com/thomvaill/log4brains
https://github.com/opinionated-digital-center/pyadr
https://github.com/opinionated-digital-center/pyadr
https://github.com/adr/adr-manager
https://loqbooq.app/how-it-works
https://www.loomio.com
https://www.expertchoice.com/ahp-software
https://www.expertchoice.com/ahp-software
https://go.dev

	Introduction
	Clean Architecture
	Software Design Principles
	SOLID Principles
	Component Principles

	Architecture Layers
	Entities
	Use Cases
	Interface Adapters
	Frameworks and Drivers

	Architectural Decisions
	Architectural Decision Records
	Nygard Format
	Y-Statement
	Markdown Architectural Decision Records (MADR)

	Tools
	Tool Comparison
	Tool Showcase: adr-tools
	Concept Alternative: ADG-Tool

	Clean Decision Handbook
	Defining the Architecture's Initial Layout
	Deciding the Boundaries for Entities
	Selecting Use Cases
	Choosing Patterns for Interface Adapters
	Selecting Frameworks and Drivers
	Deciding on Data Flow and Transformations
	Optimizing for Performance and Scalability
	Integrating with External Systems

	Conclusion

