
H

H

TERM PROJECT, FALL SEMESTER 2012

elevator

C++11 Enhancements for Eclipse CDT

Authors

André Fröhlich

Christian Mollekopf

Advisor

Peter Sommerlad

Task

We want to develop two Eclipse-Plugins to help developers writing and fixing code ac-
cording to the C++11 standard.

The first plugin concentrates on initializers and should detect both uninitialized declara-
tions, as well as non C++11 initializations and allow to easily fix or convert to C++11
initializations. For instance would an uninitialized declaration, such as:

int x;

be marked in the code and a quickfix for the issue would ask the developer for an initial-
ization value and fix the initialization:

int x{};

The second plugin should allow to extract lambda expressions into functions or functors to
allow for code reuse. This includes identifying local variables which need to be passed to
the generated function/functor, identifying if the variables should be passed by reference
or by value, and asking for a suitable name for the function/functor.

For instance could a lambda expression like this:

[](int x, int y) { return x + y; }

be transformed into a reusable function like this:

int add(int x, int y) { return x + y; }

Or a lambda expression from:

auto a = [](int x, int y) { return x + y; }

to:

struct Addition {
int operator()(int x, int y) { return x + y; }

};

A dialog box may prompt for a name, similar to the existing Ëxtract Function...̈refactoring.

Both Plugins should be developed together with suitable documentation, and a fully au-
tomated and installable build.

Abstract

The aim of this project was to develop an Eclipse plug-in to help highlighting and fixing
initialization issues in respect to the new C++11 brace-initializer syntax. The C++11 brace-
initializer provides a uniform syntax for initialization, and is preferred in C++11 code over
pre-C++11 initialization mechanisms such as copy-initialization or direct-initialization.

The developed Eclipse plug-in detects initialization issues and provides an automated
quickfix, to make it as easy as possible to fix initialization issues. Besides detecting issues,
the plug-in also ensures that no semantic changes are introduced by a quickfix, so the
resulting code is equivalent.

The plug-in is written in Java, using Eclipse CDT’s Codan, which is a static code anal-
ysis framework for C++, providing an abstract syntax tree, that we traverse and modify
to detect and fix the issues. To realize the Eclipse plug-in the existing quickfix-plug-in
framework was used to ensure that the plug-in integrates well into eclipse and behaves as
any other quickfix plug-in.

To enable efficient fixing of larger code-bases to C++11-initializations, an additional mass-
refactoring has been implemented. This functionality can be triggered from the usual
refactoring menus, to fix either complete source files or even full projects.

Management Summary

This chapter shows you the goals of the Elevator project, gives you an overview how the
Elevator plug-in can help you converting existing C++source code to the new C++11 syntax
and ends with a look at what can be improved even more.

Prior to C++11 there was no uniform way to initialize variables. In addition uninitialized
variables are a common issue. C++11 introduced with brace initialization a uniform way
to initialize variables. Take a look at this simple example.

int a();
int b = 4;
int c(2);
int d;

Notice that the last variable is not initialized. The other variables show common ways to
initialize variables. In C++11 we can uses braces {} for initialization.

int a{};
int b{4};
int c{2};
int d{};

This new syntax can also be used like an initalizer list to initialize sequences of values. It
also prevents narrowing issues.

During the project we have developed an Eclipse CDT plug-in that helps to convert
C++source code to the new C++11 syntax. After installating the plug-in it highlights any
occurrence of a variable initialization not using the new brace syntax. To resolve a issue
a developer can select it and use the provided Eclipse quickfix to resolve it. In addition it
is possible to convert all occurrences in the active editor or even in the project.

To achieve this the plug-in uses the static code analysis frame of Eclipse CDT. It can parse
and alter the abstract syntax tree und find issues and convert them.

The Elevator Eclipse CDT plug-in in action

Even the plug-in is useful to convert legacy code, it would be nice to be able to convert the
code back to not use the new brace syntax. This could be useful when one wants to use
new code in a project where the new C++11 syntax is not permitted. Unfortunately we
had not enough time to implement this feature. It would also be conceivable to support
more C++11 features.

5

Contents

1. Introduction 8

2. Analysis 9
2.1. Special Cases . 10

2.1.1. Container using an initializer-list-constructor 10
2.1.2. Use of implicit type conversion when using direct- or copy-initialization 10
2.1.3. boost::assign . 10
2.1.4. Reference initialization . 11
2.1.5. Declaration Lists . 12
2.1.6. Function declarations . 12
2.1.7. Pointers . 12
2.1.8. Member variables . 12
2.1.9. Constructor init-list . 13

2.2. Features . 13
2.2.1. Marker . 13
2.2.2. Quickfix . 13
2.2.3. Reverse-Quickfix . 13
2.2.4. Mass-Refactoring . 13
2.2.5. Reverse-Refactoring . 13

3. Implementation 14
3.1. Logical Structure . 14
3.2. Implementation Details . 14

3.2.1. Control Flow . 14
3.2.2. Checker . 15
3.2.3. Quickfix . 15
3.2.4. Mass conversion . 16

3.3. Unit Tests . 17
3.4. Review . 17

3.4.1. Checker . 18
3.4.2. Quickfix . 18
3.4.3. Problems . 18
3.4.4. Reverse Quickfix . 18

4. Conclusion 19
4.1. Project Review . 19
4.2. Outlook . 19
4.3. Planning . 20

4.3.1. Spent Time . 21
4.4. André Fröhlich . 22
4.5. Christian Mollekopf . 23

6

A. Appendix 24
A.1. Environment . 24

A.1.1. Version Management . 24
A.1.2. Build System . 24
A.1.3. Project Management . 26
A.1.4. Continuous Integration . 26
A.1.5. Documentation . 27

A.2. Eclipse Framework . 27
A.2.1. CDT Plugin interface . 27
A.2.2. AST . 28
A.2.3. AbstractIndexAstChecker . 28
A.2.4. AbstractAstRewriteQuickfix . 28
A.2.5. Testing . 29

A.3. User Manual . 31
A.3.1. Installation . 31
A.3.2. Detection . 31
A.3.3. Conversion . 32
A.3.4. Mass Conversion . 33

B. Glossary 34

7

1. Introduction

Everyone who writes C++code, occasionaly forgets to initialize variables. The code com-
piles and often the programm seems to work as expected. Unfortunatly this is error-prone
and can lead to undefined behaviour.

With the introduction of the C++11 standard there is a new, simple and consistent way to
initialize variables using curly braces.

It would be convient if the integrated development enviroment could provide some assis-
tance for such cases. In the Eclipse CDT there are already markers avaible for various
kinds of hints, and some even provide quickfixes as needed.

The idea is to develop a new Eclipse CDT plugin which provides a marker for the intro-
duced problem, as well as a quickfix which allows to fix the problem automatically.

The plug-in should for example detect and mark the following uninitialized variable:

int i;

An invocation of the corresponding quickfix, would then result in the variable being default
initialized:

int i{};

Similarly non-C++11 code should be refactored to use the C++11 initializer syntax:

int i = 1;
int y(1);

would result in:

int i{1};
int y{1};

8

2. Analysis

The following relevant cases of initialization exist:

No. Name Example

1. No initialization for POD types int x;

2. Constructor default initialization T x;

3. Direct initialization T x(3);

4. Copy initialization T x = 3;

5. Braced-init-list default initialization T x{};
6. Braced-init-list initialization T x{3};

Table 2.1.: Initializations

The default strategy for conversion looks the follwing:

Description Detected Converted

POD default initialization 1. int x; 5. int x{};
Default initialization 2. T x; 5. T x{};
Direct initialization 3. T x(3); 6. T x{3};
Copy initialization 4. T x = 3; 6. T x{3};
Reverse default initialization 5. T x{}; 2. T x = T();

Reverse direct initialization 6. T x{3}; 3. T x(3);

Table 2.2.: Default Conversions

Example:

T x; //=> T x{};

T x(3); //=> T x{3};

T x(3, 2); //=> T x{3, 2};

T x(3, func()); //=> T x{3, func()};

9

2.1. Special Cases

The following section lines out the existing special cases where the default strategy does
not apply.

2.1.1. Container using an initializer-list-constructor

If a type has an initializer-list constructor, we cannot convert the constructor call to the
initializer-list syntax without introducing potential ambiguity.

Example:

vector<int>(4,2) //=> vector<int> x{2,2,2,2}, not vector<int>x{4,2}.

Strategy:
If the constructor call contains arguments and the type contains an initializer-list-constructor,
the call must not be converted to the braced-init-list.

2.1.2. Use of implicit type conversion when using direct- or
copy-initialization

Direct-initialization using the Constructor-initializer and copy-initialization allow the use
implicit type conversion, but the direct-initialization using the brace-initializer does not.
Therefore conversions of an initialization which relies on implicit type conversion must not
be carried out automatically. The user may decide to use explicitconversion, but this is
not safe to do automatically.

Example:

int i = 3.2; // => int i{3.2}; //Invalid!
int i = 3; // => int i{3};

Strategy:
Only convert automatically if types are matching exactly and no implicit conversion is
happening. This can be checked by looking for an appropriate constructor in the target
type.

2.1.3. boost::assign

Initializations using boost::assign have to be skipped as we cannot convert them.

Example:

10

//works
boost::unordered_map<int, std::string> map = boost::assign::map_list_of
(1, string("Air"))
(2, string("Dark"));

//doesn’t work
boost::unordered_map<int, std::string> map {boost::assign::map_list_of
(1, string("Air"))
(2, string("Dark"))};

The second example doesn’t work because the unordered map has no constructor which
takes a generic list (the return type of map list of), and the type must match exactly
when using the brace-initializer. When using the equal-initializer on the other hand, the
type must only be convertible to the target type. The conversion would thus break valid
code.

Non initialization boost::assign uses can be safely ignored though, as we can default-
initialize the vector as usual.

vector<int> x; //=> vector<int> x{};
x += 1, 2, repeat(8, 5), 7;

Strategy:
If boost::assign is detected within a declaration, the declaration should be skipped.

2.1.4. Reference initialization

Uninitialized references should be ignored by the plugin as they’re illegal anyways and
cannot be default initialized. Equal-Initialized references should be converted to the brace-
initializer as usual, but as there is a bug in the current standard, this feature should be
configurable and disabled by default.

Example:

int x;
int &y = x; //=> int &y{x}; //Illegal in current standard but valid in future

revision

Strategy:
Ignore uninitialized references. Configurable conversion for copy-initialized references.

Note:
While the used draft of the C++11-standard1 does not support initializing references using
the brace-initializer syntax, the feature is being worked on and future versions of the
standard should support this..

1N3337, Working Draft, Standard for Programming Language C++.

11

2.1.5. Declaration Lists

Multiple uninitialized declarations should be handled properly.

Example:

int x, y=3, z(4); //=> int x{}, y=3, z{4}

Strategy:
Iterate over declarations and handle each individually.

2.1.6. Function declarations

Function declarations have the same syntax as a constructor call but must be ignored.

Example:

int x();

Strategy:
Ignore function declarations.

2.1.7. Pointers

Pointers should be default initialized just as any other variable resulting in a nullptr.

Example:

int *x; => int *x{};

Strategy:
Initialize as usual.

2.1.8. Member variables

Member variables should be ignored, as this can lead to a change of semantics and the
initialization is covered upon instantiation.

Example:

struct A {
int x;

};

Strategy:
Ignore member variables.

12

2.1.9. Constructor init-list

Constructor init-lists should be converted to C++11-initialization as well.

Example:

C(): a(1), b(2){}; // => C(): a{1}, b{2}{};

Strategy:
Initialize as usual.

2.2. Features

The plugin is implemented as a Marker with a Quickfix to correct the problem. Addition-
ally a refactoring will be provided to enable mass conversion.

2.2.1. Marker

The plugin should detect missing, invalid and non-C++11 initializations and set a marker
accordingly. This marker is then visible in the editor window and helps the developer to
spot initialization errors and allows to trigger a matching quickfix.

2.2.2. Quickfix

The quickfix should allow for automatic correction of the detected problems. It can be
invoked as usual in Eclipse by clicking on the marker or using the quickfix-shortcut.

The quickfix should honor the current text-selection, so if i.e. only a single variable is
marked within a declaration list only that one should be refactored.

2.2.3. Reverse-Quickfix

To revert the quickfix operation a Quick-Assist should be provided to revert the operation.
The reverse operation should not be implemented as quickfix as this would result in always
a problem being detected (either the quickfix or the reverse-quickfix).

2.2.4. Mass-Refactoring

The mass-refactoring allows to automatically fix all initialization problems in a file or
project, to allow efficiently fixing larger codebases.

2.2.5. Reverse-Refactoring

The reverse-refactoring allows to convert either individual or batch convert all C++11
initializations to non-C++11 initializations.

13

3. Implementation

3.1. Logical Structure

To implement the desired functionality, we use the project structure as described in the
appendix. It consists of several Eclipse/Maven projects:

• One eclipse project contains the core functionality

• One eclipse project contains the unit tests

• An eclipse parent project to reference the other two projects

The core functionality is split up in one class for the checker and one for the quickfix.

3.2. Implementation Details

The plugin was implemented using the CDT-plugin framework for quickfixes and uses the
Abstract Syntax Tree (AST)1 provided by Codan2, the static code analysis framework.
Further information about CDT-plugin development can be found in A.2.1

3.2.1. Control Flow

The basic cotrol-flow goes the following:

1. The Checker traverses the AST of reports any problems found using reportProblem

()

2. CDT places a marker in the editor for every reported problem, and allows the user
to trigger the quickfix if QuickFix.isApplicable() returns true

3. If the quickfix gets triggered QuickFix.modifyAst() get’s called which applies the
quickfix by replacing the offending statement using ASTRewrite.replace()

1Wikipedia, Abstract Syntax Tree — Wikipedia, The Free Encyclopedia.
2wiki.eclipse.org, Codan Static Analysis.

14

3.2.2. Checker

Since we’re primarily interested in declarators, the primary entry point for the checker
is:

int visit(IASTDeclarator element)

The function consists of all cases which we explicitly want to avoid and should be skipped,
and in the end the detection of the initializers which we want to detect and report a
problem for.

According to the problem analysis the following declarations are explicitly ignored:

• function declarations

• parameter declarations

• already correctly initialized variables

• class members

• types with initializer-list constructors

• initializations using boost::assign

• initializations using implicit type conversions

Constructor init-lists aren’t part of a declarator and are therefore individually handled
in:

int visit(IASTInitializer initializer)

Detected problems for which a quickfix should be provided are reported using the reportProblem

() function which takes the following arguments:

• String id: The problem id which is used in the plugin.xml to connect the quickfix to
the problem.

• IASTNode node: The node where the problem was found, which is used for the
marker position.

• Object [] args: Arguments which can be used to transport further information to
the quickfix.

3.2.3. Quickfix

Before the quickfix is executed, the framework checks if the quickfix is applicable to the
problem using:

bool isApplicable(IMarker marker)

15

This function should return true if the quickfix is applicable to the problem, or false if
not.

The following function is called if a quickfix is executed:

void modifyAST(IIndex index, IMarker marker)

The index is used to retrieve the AST and the marker contains the position where a
problem was detected.

Since the marker only contains the absolute position in the file, the target statement first
needs to be retreived from the AST:

IASTNode targetStatement = getEnclosingDeclarator(astName);

Once the traget statement is identified, the quickfix can be applied to generate a replace-
ment statement:

IASTNode newStatement = resolveConstructorInitializer(ast.getASTNodeFactory(),
targetStatement);

While generating the replacement statement, it is important to copy as much as possible
from the original statement, to avoid changing any unnecessary aspects of the original
statement. This is generally achieved by copying the full declarator and then replacing
the initializer only.

Finally the function applies the quickfix and modifies the AST using:

ASTRewrite r = ASTRewrite.create(ast);
r.replace(targetStatement, newStatement, null);
Change c = r.rewriteAST();
c.perform(new NullProgressMonitor());

This results in the code being effectively modified in the editor.

3.2.4. Mass conversion

The mass conversion features triggers all the markers found. This works similar to the
CheckTestCase class which also has to invoke the quickfixes from markers in an editor.

First the markers as well as an instance of the quickfix are required.

IMarker[] markers = projectResource.findMarkers(
IProblemReporter.GENERIC_CODE_ANALYSIS_MARKER_TYPE,
true,
2);

AbstractCodanCMarkerResolution quickFix = new QuickFix();

16

It is now possible to iterate over the array of markers and invoking the quickfix for each
marker.

for (IMarker marker : markers) {
quickFix.run(marker);

}

The difference between doing a mass refactoring for the current editor and the current
project is the resource we need to obtain the markers from.

The current editor is accessible with the getActivePage() Method from the current work-
bench window. The editor also provides a way to get the project.

IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow workbenchWindow = workbench.getActiveWorkbenchWindow();
IWorkbenchPage workbenchPage = workbenchWindow.getActivePage();
IEditorPart editor = workbenchPage.getActiveEditor();
IEditorInput editorInput = editor.getEditorInput();
IResource editorResource = ResourceUtil.getResource(editorInput);
IResource projectResource = editorResource.getProject();

All dirty editors have to be saved:

editor.doSave(null);
PlatformUI.getWorkbench().saveAllEditors(false);

3.3. Unit Tests

There are two test cases. The first simply tests for placed markers to investigate the
behavior of the Checker.java class. The other one focuses on testing all functionalty
covered by the Quickfix.java class.

Care has been taken that each testcase only tests a single requirement and that the tests
are a simple as possible.

The checker testcases cover all default conversions as well as well as all exceptions which
are explicitly ignored as listed in 3.2.2. Further tests have been added for likely false-
positives. Full path coverage is not targeted, there are as few tests as possible and as
many as necessary.

More information about the unit-test framework can be found in A.2.5.

3.4. Review

The implementation can sometimes be a bit of a drag as much of the work consists of
figuring out how to find a particular statement in the AST, which basically is a huge type
hierarchy, so one usually has to cast the way through all the interfaces to finally get the
statement one is looking for. Also since there exists such a mass of types in the tree it is

17

often very difficult to figure out which statement actually conveys the information one is
looking for. Therefore a lot of work has to be done using a testcase and the debugger to
get what one wants, using lots of internal api and usually overly complex processes, which
can then be cleaned-up in a second round.

3.4.1. Checker

While the code should be fairly easy to understand and extend, it is also very easy to break
one of the special cases as they are all implemented in the same function as conditional
return’s, all cases affect each other directly. The test-driven development approach is
therefore essential with all basic cases covered by the testcases.

Most parts are implemented cleanly, but the following implementations should be re-
vised:

• Checker.getTargetTypeConstructors: Uses internal API due to an exception being
thrown when using the interface.

• Checker.hasInitializerListConstructor: Relies on string comparison to detect the ini-
tializer list type (which i.e. doesn’t work with typedefs).

3.4.2. Quickfix

The quickfix implementation has to detect the problem case again (although the checker
already did that once), which means there is some duplication. For this reason the
ch.hsr.ifs.cdt.elevator.initializerlist.Problems class was meant as a way to bundle the prob-
lem information, so it could be used from both the checker and the quickfix parts. Since
the duplication is marginal, the Problems class wasn’t really used in the end though. This
could be refactored to either use the Problems class properly, or remove it entierly.

3.4.3. Problems

• It is not possible to select multiple variables in the editor and apply the quickfix to
those only, as this is not supported by the framework.

3.4.4. Reverse Quickfix

Due to the limited time available it was not possible to implement the reverse quickfix
functionality. As there exists no prepared solution for Quickassists using CDT, this would
have to be developed as well, and that would have been too much effort within the available
time.

18

4. Conclusion

4.1. Project Review

While the problem we wanted to solve seemed fairly trivial at first, we quickly started to
discover more and more cases where the default method of simply replacing any existing
initializer with the brace-initializer does not work. This in turn required a deeper analysis
of the C++code to be able to judge if a quickfix can be safely applied or not. Of course, as
we tried to understand the C++code better, that opened new problems again; i.e. as you
try to understand if two types are compatible you have to start inspecting the constructors
of the target type, you have to deal with reference types, you have to deal with builtin
types (which might or might not have a non-narrowing conversion), you have to deal with
template types (which you first have to fully expand due to the use of using namespace

and namespace X = Y, and so on. So in that respect the problem became a lot complexer
than we expected initially, but at the same time also more interesting of course.

From a project management side, the project went fairly smooth. The regular meetings
forced us to concentrate on individual tasks which we could accomplish, which in turn
ensured we could put all our effort in accomplishing those tasks and not in finding out
what there is to do. We could have used the bugtracker more rigorously, which would
have improved the visibility of the current project status. Also, it wasn’t ideal how we
initially setup the bugtracker, with the traget versions misused as timeboxed milestones,
and with a strong focus on the gantt-chart, which resulted in duplicating bugs, just for
the sake of having it under every target milestone in the gantt-chart. That is of course
not helpful for establishing the current state of the project and results in a lot of effort for
maintaining the bugtracker. Once we settled for using just tickets with sub-tickets, that
effort was reduced a lot, and helped us to get meaningful information from the bugtracker
(e.g. what there is to do).

Overall the project was managed fairly efficiently, and we learned some points where we
can improve in future projects.

The resulting plugin should do it’s job well, and since it was developed with care that no
valid code is broken, it should also not get in the way of the developer, which is of course
very important for a plugin that aims to support. The plugin may still have some rough
spots which would need to be ironed out, simply because it didn’t receive any real world
testing so far, and will first need to prove itself by being used productively.

Unfortunately we didn’t manage to implement all the features we planned for originally,
such the reverse refactoring, and the extract-lambda plugin.

4.2. Outlook

Further development could tackle the following problems:

19

Reverse refactoring To get C++11 code to compile with a non-C++11 compiler, it would
be desirable to have a reverse refactoring, which transforms C++11 initializations to non-
C++11-initializations. This refactoring should be applicable to single statements, as reverse
operation of the quickfix, but also as mass-refactoring to fix larger code-bases.

Support for further C++11 features The plugin could provide support for more C++11
features, which are not limited to the new initializerlist syntax. The aim should be to
help developers leveraging the new features of C++11 and to make it easier to modernize
existing code-bases using this plugin.

Extract-lambda expressions plug-in The extract-lambda expression refactoring could be
provided as a separate plugin or as part of elevator plugin.

4.3. Planning

The following figures show the planning as initially estimated, after a first revision in week
45, and how it ended up to be at the end of the project.

Figure 4.1.: Initial Planning

Figure 4.2.: First Iteration

20

Figure 4.3.: Final Planning

The planning changed quite a bit over time as we found new requirements or removed
planned features, and had to be adjusted accordingly.

4.3.1. Spent Time

Figure 4.4.: Spent Time

The time we spent on the project fluctuated a bit around the 17.5h per week which was the
expected effort. The initial peak was during the setup of the buildsystem, which caused
some trouble, followed by a large drop caused by private responisbilities and followed by
illness. The curves stabilized afterwards until the end of the project, where we had to give
another boost to finish the documentation. The curves look very similar since we usually
worked together on Monday and Tuesday.

21

4.4. André Fröhlich

Since I had not much experience with C++, I wanted to do this project. I was also a
good way to refresh my knowledge from the C++module (Programmieren 3). It was also
important to me to work on something that seemed to be useful in the end.

My professional background was to be a web-developer, so many things were new to me -
at least the application of them in such a big project.

I had a little experience with latex and git and I was able to learn much using these tools
so extensive during the project. I never used a continuous integration server, but it was
pretty easy. However, as we were only two this would not have been necessary.

Redmine as a project management tool was not bad, but in hindsight I would have pre-
ferred something simpler and more agile. Maybe a little more like Github. The time
tracking and project planning was pretty time consuming with Redmine.

Although I am convinced my Java programming experience is nod bad, I still had some
respect for the Eclipse framework. At the same time it was a joy to be able to learn
something new.

However, the framework was also a little tedious. It’s incredibly large and therefore
requires a lot of time in order to find your way. That is also the reason why the project
has not progressed as quickly as I desired. Many problems that I thought they were
difficult to solve were actually quite simple. On the other hand the framework complicated
problems.

We often had to search on the internet to solve a particular problem or find out how
something works. We also had to read the source to understand how to use the API.

Altough it was interesting to explore the framework, so it cost us too much time. I would
have preferred to implement more features instead.

Either way, it was a very good experience and preparation for the bachelor thesis, and I
enjoyed working with Christian.

22

4.5. Christian Mollekopf

Having worked most of my professional, private and academic life with C/C++ and even
from that part a large part was spent with the Qt-Framework and tools like git and cmake,
this project took me out of my comfort zone to face some new technologies.

This was my second real Java-based project, and the first time I worked with maven, the
eclipse-framework, jenkins, and latex.

Maven proved to be somewhat of an entry barrier, mostly due to the lack of documentation
how to build eclipse plugins using it. I appreciate the declarative aspect of the pom.xml
files though and find it an interesting approach compared to the traditional Makefiles/Ant
scripts. Another interesting aspect is that maven wants to provide more than just building,
and even goes some steps to direct publishing, right from the same tool. All in all, a
refreshing new take at buildsystems.

It was also nice to finally get to know jenkins a little closer, which does indeed a nice job
as an automated buildsystem. I personally didn’t use it a lot, as I anways run all the tests
locally regularly, and with a two man team the gain isn’t really there.

Latex provided about what I expected; a steep learning curve until we had figured out all
the necessary quirks, but it was a breeze working with it afterwards. Especially due to
the excellent interoperability with git because of the plaintext files. Also, the produced
documentation really does looks fantastic compared to any word document or alike.

I wasn’t overly impressed by the eclipse framework. I’m sure there are reasons why it is
what it is, but I just don’t like how eclipse seems to try to develop everything there is to
an IDE in one gigantic framework, instead of using existing or creating new self-contained,
reusable libraries. At least that was my first impression. The parts we’ve been working
with worked well enough, but didn’t really give the feeling of an overall concept and a good
design, but rather as if they were just hacked together to get some job done. That feeling
was probably also fueled by a lack of documentation and thus, also understanding.

Since a large part of the work consisted of searching through API’s for the right function
to call, to get the needed information, and not solving generally hard problems or writing
a lot of code, I learned to appreciate some debugging tools eclipse and java have to offer.
We also succeeded in using the test driven appraoch much more rigorously than I ever
managed before, and I think that this really payed off.

Overall, I think I learned quite a lot of things, even if not primarily in programming, but
more in the realm surrounding it.

23

A. Appendix

A.1. Environment

A.1.1. Version Management

We decided to use Git as our verison control system. Although an installation on the
provided server (sinv-56051.edu.hsr.ch) would be an easy task, using Ubuntu’s apt-get
command, we used the Git service on git.hsr.ch. In case this services turns out to be
unreliable it is possible to migrate to an own Git installation with a minimum of effort.

06.11.12 15:26SCM Manager

Seite 1 von 1https://git.hsr.ch/#repositoryPanel;8c8fd3b7-d84f-4b8d-ad2e-40b24a400759

© SCM Manager angemeldet als afroehli - 1.20

Activities Repositories

 Hinzufügen

 Entfernen

 Aktualisieren

Filter: Search:

Name Typ Kontakt Beschreibung Erstellungsdatum Url

main (4 Repositories)

HSRCampusApp Git tcharrie@hsr.ch 2012-09-24 17:… https://git.hsr.ch/git/HSRCampusApp

NeoMap Git tbinna@hsr.ch NeoMap Server… 2012-07-03 08:… https://git.hsr.ch/git/NeoMap

NeoMapApp Git tbinna@hsr.ch NeoMap Androi… 2012-07-04 13:… https://git.hsr.ch/git/NeoMapApp

elevator Git cmolleko@hsr.ch 2012-09-19 13:… https://git.hsr.ch/git/elevator

elevator Einstellungen Berechtigungen WebHooks

Name: elevator
Typ: Git (git)
Kontakt: cmolleko@hsr.ch
Url: https://git.hsr.ch/git/elevator
Checkout: git clone https://afroehli@git.hsr.ch/git/elevator

Commits Source,

Figure A.1.: Git Configuration Settings

06.11.12 15:24SCM Manager

Seite 1 von 1https://git.hsr.ch/#repositoryPanel;8c8fd3b7-d84f-4b8d-ad2e-40b24a400759

© SCM Manager angemeldet als afroehli - 1.20

Activities Repositories

 Hinzufügen

 Entfernen

 Aktualisieren

Filter: Search:

Name Typ Kontakt Beschreibung Erstellungsdatum Url

main (4 Repositories)

HSRCampusApp Git tcharrie@hsr.ch 2012-09-24 17:… https://git.hsr.ch/git/HSRCampusApp

NeoMap Git tbinna@hsr.ch NeoMap Server… 2012-07-03 08:… https://git.hsr.ch/git/NeoMap

NeoMapApp Git tbinna@hsr.ch NeoMap Androi… 2012-07-04 13:… https://git.hsr.ch/git/NeoMapApp

elevator Git cmolleko@hsr.ch 2012-09-19 13:… https://git.hsr.ch/git/elevator

 Ok

 Abbrechen

elevator Einstellungen Berechtigungen WebHooks

 Hinzufügen

 Entfernen

afroehli OWNER

cmolleko OWNER

m1stocke READ

psommerl READ

Name Typ Gruppen Berecht…

Figure A.2.: Access Configuration

We added read-only access for our advisors in addition to obvious access rules for us.

Although we are both familiar with Git and it now belongs to the school curriculum, we
want to point out that there is an excellent free book1 written by Scott Chacon available
as a reference.

A.1.2. Build System

The buildsystem is based on maven and tycho.

1Chacon, Pro Git .

24

Maven

Apache Maven2 is not really a traditional buildsystem, but rather a system to specify the
project structure, in a way that enables automated builds. Unlike traditional Makefiles
known from C/C++ development, or ANT files, which are just scripts executing a bunch
of commands, maven pom-files specify projects modules, dependency repositories, and
various plugins which serve a certain purpose, such as executing automated tests. That
means the specification is much more declarative, in constrast to the imperative nature of
traditional buildsystems.

Due to the high level of abstraction, it is fairly complex to understand what is happening
and how to get started, but the resulting system is very powerful. The buildsystem we set-
up, installs the complete build environment, including all required dependencies, runs all
automated tests, creates an eclipse repository and builds the latex based documentation.

That means, all that is required to build the project on a new system is:

• Installing Git and Maven

• Checking out the git repository of the project

• Running ”maven clean verify latex:latex” will clean any existing leftovers from pre-
vious builds, build both the Eclipse plug-in and the documentation (including down-
loading all required dependencies), and run all the unit-tests of the project.

This ensures the project can be built on any machine with a minimum of effort, and that
a the builds are fully reproducible.

Tycho Tycho3 is a maven plug-in providing integration for Eclipse plug-in projects. It
extracts information from the existing eclipse spec-files (i.e. plugin.xml), and provides that
meta-information to maven, so no duplication is required although two differen buildsys-
tems are used.

Further information on setting up tycho can be found here4.

To execute unittests, the tycho-surefire-plugin was used.

Documentation Since the documentation is written in latex, it is built as well using
maven. To build the documentation, the maven-latex-plugin from www.codehaus.org5

was used.

The documentation can be built using the maven ”latex:latex” target.

2Apache-Foundation, Apache Maven.
3eclipse.org, Tycho.
4Vogel, Tycho tutorial .
5codehaus.org, Latex Maven Mojo.

25

Eclipse-integration While the maven-eclipse integration works well based on the tycho
plugin, the other way is barely existing. While there are maven integration plugins, eclipse
doesn’t really internally use maven to build the project, but uses it’s own build-tools
anyways. All the maven integration tools do, is allowing to schedule a maven build from
eclipse, but since the result isn’t used by eclipse afterwards, that functionality is hardly
useful.

A.1.3. Project Management

For collaboration we decided to use Redmine. Redmine is a free and open source, web-
based project management and bug-tracking tool6.

The installation process was fairly simple. Using the apt-get command we installed the
redmine as well as the apache2 and the libapache2-mod-passenger packages. The later is
an apache module for supporting Ruby on Rails on which Redmine is built.

sudo apt-get install redmine libapache2-mod-passenger
sudo ln -s /usr/share/redmine/public/ /var/www/redmine
sudo nano -w /etc/apache2/mods-available/passenger.conf

PassengerDefaultUser www-data

sudo nano -w /etc/apache2/sites-available/default

<Directory /var/www/redmine>
RailsBaseURI /redmine
PassengerResolveSymlinksInDocumentRoot on

</Directory>

sudo service apache2 restart

A.1.4. Continuous Integration

For continuous integration we decided to use Jenkins, a popular and extendible server.
Jenkins only needs a Java Servlet container to run on.

For our project we set up two jobs. One for building the plug-in and the second for
building the documentation.

Both jobs are configured to grep the source code from our git repository and build it with
maven. The jobs are triggered to be run once an hour if a change in the repository was
made.
6Wikipedia, Redmine — Wikipedia, The Free Encyclopedia.

26

With maven it was possible to build as well as test the plug-in using Jenkins.

To get the source from the git repository we used the Git Jenkins plug-in. Because
the tests require an X server for running Eclipse the Xvfb was also used. To build the
documentation with LATEX no special Jenkins plug-in was needed as we used maven to
build the documentation.

A.1.5. Documentation

The documentation was written using LATEX. It is recommended to use the texlive LATEX
distribution, which was used in the version 2012.

The following wikibook7 contains a lot of helpful tipps for working with latex.

A.2. Eclipse Framework

To implement the C++ refactoring plugin, ”Codan”, the static analysis framework of
CDT, has been used.

For providing Quickfixes, two major parts are required. First detecting problems and
setting an according marker with a provided quickfix option, and second applying the
actual quickfix.

A.2.1. CDT Plugin interface

A CDT plugin has the following required parts:

• plugin.xml: Describes and defines the used extension points.

• Activator implementing the AbstractUIPlugin interface: Defines a PLUGIN ID. The
Activator is referenced in the MANIFEST.MF as Bundle-Activator, and controls the
plugin lifecycle.

Used Extension Points as defined in plugin.xml:

• org.eclipse.cdt.codan.core.checkers: Defines a checker which can be used to detect
problems and place a marker. The extension point is also used to define specific
problems.

• org.eclipse.cdt.codan.ui.codanMarkerResolution: Defines a resolution for a problem
(Quickfix).

• org.eclipse.cdt.codan.ui.codanProblemDetails: Allows to supply additional informa-
tion about the found problem.

• org.eclipse.core.resources.markers: Allows to define custom markers.

Further information on eclipse plugin development can be found in the tutorials here8.

7WikiBooks, LaTeX — Wikibooks, Open books for an open world .
8Vogel, Eclipse tutorials.

27

A.2.2. AST

The following is a list of the most important AST nodes:

• IASTDeclarator: A Declarator node (a single variable with a type and initializer).

• IASTInitializer: An initializer node.

• IASTExpression: Contains type information.

• ICPPConstructor: A constructor with arguments.

• ICPPClassType: Allows to retrieve constructors of a type (including implicit con-
structors).

• IType: Represents a type, which can be either a builtin type or also a custom type.

• IASTName: Represents a name in the program such as a variable name.

• IBinding: The binding represents the semantics of a name. It can i.e. be used to get
the fully expanded type of a name, which uses typedefs for the type specification.

While there are many more, these are the most important ones used throughout the code,
so it is vital to understand all of them. Most of them have several specialized subclasses,
so it is always a good idea to have a look at the type hierarchy should a new class appear
while writing/debugging code.

A.2.3. AbstractIndexAstChecker

The org.eclipse.cdt.codan.core.cxx.model.AbstractIndexAstChecker is a visitor9, which tra-
verses the Abstract Syntax Tree (AST), everytime CDT’s parser detects a modfication.
The tree is traversed top-down, node by node, using the processAst() member function.
The return value of processAST() allows the implementation to decide if it wants to go
any deeper in the tree or stop at the current node. Using the reportProblem() function,
found problems can be reported (using the problem ID as specified in plugin.xml), which
results in a marker being placed in the editor.

A.2.4. AbstractAstRewriteQuickfix

The org.eclipse.cdt.codan.ui.AbstractAstRewriteQuickFix interface requires essentially two
functions to be implemented for a quickfix:

• isApplicable() gets a marker as argument and should return true if the quickfix is
applicable to the reported problem.

• modifyAST() receives a marker and the current project index, to apply the actual
quickfix by modifying the AST.

Since problems are reported per declarator, the quickfix also only operates on single
declarators (and not complete declarations). This ensures that i.e. variables in declaration-
lists are processed individually.

9Wikipedia, Visitor Pattern — Wikipedia, The Free Encyclopedia.

28

A.2.5. Testing

The unittests are in a separate project to avoid dependencies from the plugin to test-
libraries. The test is implemented as a separate plugin, which is loaded into an eclipse in-
stance and runs all the tests. For checker test-cases there is the org.eclipse.cdt.codan.core.test.CheckerTestCase
interface, for QuickfixTests there exists no official equivalent though. Therefore the Quick-
FixTestCase class was copied from the internal API of codan.

The InitializerCheckerTest contains all tests for the checker part, while the Initializ-
erQuickfixTest contains the tests for the quckfix. Both require all tests to be prefixed
with ”test” and execute all tests in a random order.

Checker Tests Checker Tests allow the specification of a codefragment in a comment
above the testfunction, which is then loaded into the editor when the test is executed.
One can then assert in which line an error should be detected.

An example test looks like this:

// class T;
// T x;
public void testFindUninitializedType() {

loadCodeAndRunCpp(getAboveComment());
checkErrorLine(2);

}

This test ensures that an error is detected on the second line of the comment, upon T x;,
which is an uninitialized variable.

Similarly it is possible to check that no error has occured:

// int foo();
public void testIgnoreFunctionDecl() {

loadCodeAndRunCpp(getAboveComment());
checkNoErrorsOfKind("elevator.initializerlist");

}

By using checkNoErrorsOfKind("elevator.initializerlist"); instead of checkNoErrors

();, one can circumvent problems due to some built-in plugins reporting code-issues, such
as an error being reported regarding a declared but never defined function foo() here.

Quickfix Tests The Quickfix test also loads a codefragment from the comment above the
testfunction, and then runs the Quickfix on that codefragment. The assert checks if the
expected transformation is present in the result string.

An example test looks like this:

// class T{};
// T x;
public void testUninitializedClass() throws Exception {

loadcode(getAboveComment());
String result = runQuickFixOneFile();

29

assertContainedIn("T x { };", result);
}

This test ensures that the result contains the string T x ;.

Running the Tests

The tests should be executed as ”JUnit Plug-in Test” using JUnit4. It is possible to
either execute the whole testproject, but also individual test-classes or even individual
test-functions.

Problems

• It is not always guaranteed that a unittest behaves exactly the same as if an eclipse
instance was started and a certain feature tested manually. This is because some
parts are not covered by the unittests, such as the isApplicable function of the
Quickfix.

• Note that the Quickfix tests depend on the formatting setting in eclipse as it is a
simple string comparison including whitespace.

• The Quickfix-test depends on a startup delay to ensure the plugin is loaded. De-
pending on the hostcomputer this delay can be too small, resulting in failing tests.
The delay can be adjusted in QuickFixTestCase.runQuickFixOneFile (i.e. to 1500).

30

A.3. User Manual

The Elevator plug-in for Eclipse CDT gives you the ability to detect and convert unini-
tialized and initialized varbiables to the new C++11 style brace initialization syntax.

A.3.1. Installation

This manual asumes that you are familar with Eclipse and Eclipse plug-in installation.
To install the Elevator plug-in simply add the update site and install the plug-in. After
the installation was succesful, you’ll find under ”Code Analysis” in the Eclipse preferences
window a new problem item called ”Non- or ill-initialized variable”.

Figure A.3.: The code analysis preference page

A.3.2. Detection

Figure A.4.: An open file with detected issues

The plug-in automaticaly detects initialization issues and marks them in the editor.

31

A.3.3. Conversion

Figure A.5.: Invoking a quickfix

To convert a detected issue, you can click on the icon on the side and chose the provided
quickfix to convert the issue.

Figure A.6.: The file after the conversion of the first issue

32

A.3.4. Mass Conversion

It is possible to convert all issues at once. To accomplish this simply choose ”Convert”
from the ”Elevator” menu.

Figure A.7.: Convert all issues of the current editor

Figure A.8.: All initialization issues are gone

To convert all issues of the current project, choose ”Convert Project” from the ”Elevator”
menu.

33

B. Glossary

Name Description

Declaration A specification how a name should be interpreted: int f(int
x)

Declarator A single variable, function or type within a declaration: int
x

Initializer A specification of the initial value of a declaration

initializer-list-constructor Constructor using the std::initializer list template

nullptr A Null-Pointer

target type Left-hand side type in assignment

source type Left-hand side type in assignment

narrowing conversion conversion with precision loss (int x = 3.2; //=¿ x = 3)

Conversion constructor Constructor taking single argument of source type, allowing
a non-narrowing conversion

AST Abstract Syntax Tree1

Table B.1.: C++

Name Description

Not Initialized int x;

List-initialization Initialization from a braced-init-list
({3,4,3})

Constructor-Initializer (direct-initialization) int x(3);

Equal-Initializer (copy-initialization) int x = 3;

Brace-Initializer int x{3};
Constructor init-list C(): a(1), b(2), c3;

Table B.2.: Initializations

34

Bibliography

Apache-Foundation. Apache Maven. [Online; accessed 13-11-2012]. 2012. url: http://
maven.apache.org.

Chacon, Scott. Pro Git. 1st. Berkely, CA, USA: Apress, 2009. isbn: 978-1430218333. url:
http://git-scm.com/book/.

codehaus.org. Latex Maven Mojo. [Online; accessed 13-11-2012]. 2012. url: http://
mojo.codehaus.org/latex-maven-plugin/.

eclipse.org. Tycho. [Online; accessed 13-11-2012]. 2012. url: http://eclipse.org/
tycho/.

N3337, ISO/IEC. Working Draft, Standard for Programming Language C++. Geneva,
Switzerland: ISO/IEC, 2012. url: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2012/n3337.pdf.

Vogel, Lars. Eclipse tutorials. [Online; accessed 13-11-2012]. 2012. url: http://www.
vogella.com/eclipse.html.

— Tycho tutorial. [Online; accessed 13-11-2012]. 2012. url: http://www.vogella.
com/articles/EclipseTycho/article.html.

WikiBooks. LaTeX — Wikibooks, Open books for an open world. [Online; accessed 13-11-
2012]. 2012. url: http://en.wikibooks.org/wiki/LaTeX.

wiki.eclipse.org. Codan Static Analysis. [Online; accessed 13-11-2012]. 2012. url: http:
//wiki.eclipse.org/CDT/designs/StaticAnalysis.

Wikipedia. Abstract Syntax Tree — Wikipedia, The Free Encyclopedia. [Online; accessed
13-11-2012]. 2012. url: http://en.wikipedia.org/wiki/Abstract_syntax\
_tree.

— Redmine — Wikipedia, The Free Encyclopedia. [Online; accessed 13-11-2012]. 2012.
url: http://en.wikipedia.org/w/index.php?title=Redmine&oldid=
521828609.

— Visitor Pattern — Wikipedia, The Free Encyclopedia. [Online; accessed 13-11-2012].
2012. url: http://en.wikipedia.org/wiki/Visitor_pattern.

35

http://maven.apache.org
http://maven.apache.org
http://git-scm.com/book/
http://mojo.codehaus.org/latex-maven-plugin/
http://mojo.codehaus.org/latex-maven-plugin/
http://eclipse.org/tycho/
http://eclipse.org/tycho/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.vogella.com/eclipse.html
http://www.vogella.com/eclipse.html
http://www.vogella.com/articles/EclipseTycho/article.html
http://www.vogella.com/articles/EclipseTycho/article.html
http://en.wikibooks.org/wiki/LaTeX
http://wiki.eclipse.org/CDT/designs/StaticAnalysis
http://wiki.eclipse.org/CDT/designs/StaticAnalysis
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/w/index.php?title=Redmine&oldid=521828609
http://en.wikipedia.org/w/index.php?title=Redmine&oldid=521828609
http://en.wikipedia.org/wiki/Visitor_pattern

	Introduction
	Analysis
	Special Cases
	Container using an initializer-list-constructor
	Use of implicit type conversion when using direct- or copy-initialization
	boost::assign
	Reference initialization
	Declaration Lists
	Function declarations
	Pointers
	Member variables
	Constructor init-list

	Features
	Marker
	Quickfix
	Reverse-Quickfix
	Mass-Refactoring
	Reverse-Refactoring

	Implementation
	Logical Structure
	Implementation Details
	Control Flow
	Checker
	Quickfix
	Mass conversion

	Unit Tests
	Review
	Checker
	Quickfix
	Problems
	Reverse Quickfix

	Conclusion
	Project Review
	Outlook
	Planning
	Spent Time

	André Fröhlich
	Christian Mollekopf

	Appendix
	Environment
	Version Management
	Build System
	Project Management
	Continuous Integration
	Documentation

	Eclipse Framework
	CDT Plugin interface
	AST
	AbstractIndexAstChecker
	AbstractAstRewriteQuickfix
	Testing

	User Manual
	Installation
	Detection
	Conversion
	Mass Conversion

	Glossary

