
HSR – University of Applied Sciences Rapperswil

Institute for Software

Master Thesis

ReDHead - Refactor Dependencies
of C/C++ Header Files

Lukas Felber
lfelber@hsr.ch

http://redhead.ifs.hsr.ch

supervised by Prof. Peter Sommerlad

July 2010

lfelber@hsr.ch
http://redhead.ifs.hsr.ch

Abstract

Even though C++ belongs to the most widely spread programming languages and is
used in many different areas very effectively and also very often, it has long ago been
outperformed by other languages, most notably Java, in terms of the power of IDEs and
their features. There are C++ IDEs which provide a limited support for some features,
like for example refactoring. But these cannot even come close to what, for example,
Eclipse’s Java Development Tools provide.

In the scope of this master thesis, the ReDHead tool is developed, which adds addi-
tional features to the C++ IDE Eclipse CDT. These features provide functionality to
statically analyze the include dependencies of C++ header files and provide suggestions
and hints on how the include structure of a C++ software project can be optimized.

The aim of these optimizations is to (1) improve code quality, (2) reduce code coupling,
(3) lower compile-time and (4) improve the speed of the development process of C++
software.

Real C++ projects often span millions of lines of code which are distributed over
several hundred source and header files. Also initially well designed projects develop a
complex net of include dependencies over the years, which is often almost impossible
to understand and manage. As a side effect, compile time rises significantly. Hence,
the possibility to approach such design issues supported by an automated static include
analysis tool is a crucial advantage.

The name ReDHead origins from the idea to support a software engineer while Refactor
Dependencies of C++ Header Files.

Following, a list of features provided by the ReDHead tool:

• Organize includes

• Find unused includes

• Directly include referenced files

• Find unused files

• Static code coverage

The last feature mentioned, static code coverage, is actually a special type of code
slicing feature, which is very helpful to understand a program’s design and expose unused
code parts.

2

Contents

1 Introduction 6
1.1 Importance of IDE Features . 6
1.2 Static Include Analysis . 6
1.3 Choice of IDE . 7
1.4 Important Terms . 7
1.5 Static Analysis in General . 8
1.6 Feasibility Study . 9
1.7 Document Overview . 9

2 Abstraction Concept for C++ Source Code 10
2.1 AST . 10
2.2 System Dependence Graph . 11
2.3 ReDHead Graph . 15
2.4 Conclusion . 16

3 Used CDT and Eclipse Components 20
3.1 Eclipse CDT . 20

3.1.1 Compile Configurations . 20
3.1.2 AST and Indexer . 20

3.2 UI Elements . 21

4 Dependency Optimization Algorithms 22
4.1 Finding Unused Includes . 23

4.1.1 Optimal Include Path Selection . 24
4.1.2 Algorithm Enhancements . 27

4.2 Organize Includes . 27
4.3 Directly Include Referenced Declarations 28
4.4 Find Unused Files . 30
4.5 Static Code Coverage . 32
4.6 Replace Includes with Forward Declarations 35

4.6.1 Refactor Towards iosfwd . 36
4.7 Introduce Redundant Include Guards . 36
4.8 Finding Optimal Insert Positions . 37
4.9 Include Substitution . 39

5 ReDhead Data Structure 40
5.1 Logical and Physical Design . 41

3

5.2 Declaration References . 42
5.3 Declaration Reference Dependencies . 42

5.3.1 Preprocessor Symbols . 45
5.3.2 Function-like Macros . 45
5.3.3 Templates . 46

5.4 Includes . 46
5.5 Include Paths . 47

6 Implementation 48
6.1 Used CDT Functionality . 48

6.1.1 AST . 48
6.1.2 Indexer . 49
6.1.3 INames . 49

6.2 ReDHead Data Structure . 49
6.2.1 Data Stores . 53
6.2.2 Clean Up . 53

6.3 Optimization Algorithms . 53
6.4 UI Integration into Eclipse . 55

6.4.1 Codan . 56
6.4.2 Problem Feedback . 56

6.5 Testing . 56
6.5.1 External Include Directories . 58

7 User Manual 59
7.1 ReDHead Introduction . 59
7.2 Usage . 60

7.2.1 CDT Codan Integration . 64
7.3 ReDHead Code Analysis Algorithms . 65

7.3.1 Finding Unused Includes . 65
7.3.2 Organize Includes . 66
7.3.3 Auto Organize Includes . 66
7.3.4 Directly Include Referenced Declarations 67
7.3.5 Finding Unused Files . 69
7.3.6 Static Code Coverage . 70

7.4 How ReDHead Include Analysis Works . 71

8 Market Analysis 73
8.1 Similar CDT Features . 74

9 Challenges 76
9.1 Adapting the CDT Index . 76
9.2 Synchronism of CDT Index and AST . 77
9.3 Algorithm Performance . 77
9.4 Preprocessor Problems . 80

4

10 Outlook 83
10.1 Improvements . 83
10.2 Unimplemented Features . 88

10.2.1 ReDHead include tag cloud . 88
10.2.2 ReDHead graph view . 88
10.2.3 Implement further algorithms . 88
10.2.4 Combine compile configuration results 89

A Continuous Integration Setup 90
A.1 Continuous Integration Introduction . 90
A.2 ReDHead Project Server . 90

A.2.1 Git . 90
A.2.2 Hudson . 91
A.2.3 Trac . 91
A.2.4 Apache Configuration . 92

A.3 Automated Building of the ReDHead Plugin and Its Tests 94
A.3.1 Build Scripts . 95

A.4 Automated Build of the Documentation 100

B Eclipse Plugin Samples 101
B.1 UI Menu Integration . 101

B.1.1 Extending the Main Menu-Bar . 101
B.1.2 Extending the Navigator’s Pop-up Menu 102

B.2 Example Problem Marker . 104
B.2.1 Customized Markers . 105

B.3 Example Quickfix . 106
B.4 Example Codan Checker . 108
B.5 Undo-Redo Operations . 109

C Organizational 110
C.1 Project Environment . 110

C.1.1 Development Environment . 110
C.1.2 ReDHead Build Server . 111

C.2 Project Plan . 111
C.3 Time Schedule . 113
C.4 CDT Bug Tickets . 114
C.5 Personal Impression . 114
C.6 Changes Since Term Project . 116

D Nomenclature 117

5

1 Introduction

This paper was written within the scope of my master thesis at University for Applied
Science in Rapperswil, Switzerland. The ReDHead project was initially started as a
term project [Fel09] and then continued as this master thesis. The project covers a time
period of about 900 working hours in the master thesis and 400 hours in the term project.

The Eclipse plugin ReDHead, which’s development was started during the term project,
adds static includes analysis features to Eclipse CDT. This is done in the hope that de-
veloping C++ will get more comfortable an less complex. The overall aim is to help
clean up the include structure of C++ projects while also reducing compile time.

To read and understand this paper, knowledge about C/C++ [Str97] and software
engineering is required. I will not give any introduction into C/C++ or any common
software engineering concepts. To comprehend the Continuous Integration Setup Ap-
pendix A of this paper, basic knowledge about the Linux operating systems and Ant
[Apaa] is recommended.

1.1 Importance of IDE Features
When developing C++ source code, one can choose from a variety of integrated devel-
opment environments (short IDE), which try to support developers in doing so. All of
these IDEs provide support for syntax highlighting. Many of them provide enhanced
searching features. But often, additional features that go beyond this range are rare.
Every feature that helps a developer to find information he is looking for in existing
code, speeds up software development and thus decreases the complexity of analyzing,
understanding and enhancing code. So, the more of these features an IDE provides, the
more helpful it becomes in the hands of a capable software engineer, which, instead of
spending hours on scanning code manually, can focus on engineering better software.

1.2 Static Include Analysis
Compared to the import mechanism of Java, the mechanisms that C++ brings along
with include directives, can, in bigger projects, become quite tedious and add a lot of
complexity. Because the include mechanism works transitively, it is more complicated
and thus adds, inadequately used, a lot of unnecessary complexity to C++ projects. A
whole project of C++ code files depicts a complex construct of source and header files,
of which often many rely on each other. A project which was not well designed from the
start, is often hard to refactor when it comes to cleaning up and maintaining an existing

6

include structure. Often, nobody dares to even try to remove existing include directives,
because the effect it will have can be very unpredictable.

Because of the amount of information we are talking about is often huge, it makes
sense to approach this issue with automated features which can process the information
far quicker than a human could when browsing and analyzing code manually. This is
where the motivation for a static include analysis plugin origins.

1.3 Choice of IDE
The reason to choose Eclipse CDT to implement a plugin for was simple. The IDE
already provides good support for code navigation and some refactoring support. I do
not want to push any commercial solution to develop C++ code, so the open source IDE
Eclipse CDT was the favorite choice. The features already contained in CDT provide a
good code base for a static include analysis plugin.

1.4 Important Terms
In this paper I often talk about static include dependency analysis. Let us find out
what this exactly means when considering a given C++ project. In the source code,
one uses C++ identifiers which here are referred to as declaration references. This can,
for example, be the name of a called function, a type or a variable. These declaration
references refer to declarations that can be found somewhere in the current file itself
or in any included header file. Static include dependency analysis means to find such
dependencies and use this information to optimize a project’s include structure in any
way.

To better understand what the declaration and declaration reference term means, have
a look at Figure 1.1.

Figure 1.1: Declaration Reference Illustration

7

Note that text highlighted in green are declarations whereas red text represents a
declaration references. Red dashed lines implies a dependency between a declaration
reference and a declaration which, from now on, will be called a declaration reference
dependency.

Here, I would also like to highlight that in C++, a definition is always also a decla-
ration. Hence, when the term declaration is used, if not specified otherwise, it refers to
either a definition or a declaration.

An important term, which also needs clarification here, is the term include path.
Normally, people think of include paths as an argument passed to a C++ compiler,
which then is used to locate required header files. As an example, GCC accepts an
include path as value of the option -I. Actually, the argument passed is the path of a
directory, which would make the term include directory path more accurate.

The term include path, in the scope of this documentation and also the ReDHead
plugin, refers not to these compiler include paths but rather to an ordered set of include
dependencies which forms a path form one C++ code file to a target C++ header file.
An include dependency in Figure 1.1 is depicted as a blue arrow. As an example, in
Figure 1.1, one can see two different include paths form file a.cpp to file a.h. The first
one is just “-> a.h”, the second one is “-> b.h -> a.h”. So the ordered set of the first
path contains only one element, the one of the second include path contains two.

1.5 Static Analysis in General
One should be aware that optimizing the include structure of a project is only a small
part of possible features that can be implemented with the help of static code analysis.
As already mentioned, Eclipse JDT is a very noteworthy example which contains a wide
range of such features which make the life of a software engineer much more comfortable.
These features help a software engineer to procure high quality code in the shortest
possible time period. Here, an (incomplete) list of features being provided by Eclipse
JDT that rely on static code analysis:

• Refactoring (see [Fow99])

• Open declaration

• Auto-completion of code while typing

• Quickfixes for errors like:
– Implement method
– Add field
– Create class
– Surround with try catch
– Change type of variable
– Change method signature

8

• Organize imports

• Open type hierarchy

• Open call hierarchy

• Outline view

• Show syntax error while typing

• etc.

1.6 Feasibility Study
In the term project, which preceded this master thesis, there was a feasibility study
done on the topic static include analysis for C++. Here, I would like to refer to the
documentation [Fel09] of the term project, Chapter 2, where the documentation of the
feasibility study is found. As can be guessed, since the project was extended to this
master thesis, the result of the study was that in general a static include analysis for
C++ is implementable. The task, however is far from trivial and there are still some
minor problems that needs to be approached.

1.7 Document Overview
Before starting the implementation of ReDHead, there was a lot of thinking about what
basic structure is required to even be able to run static include analysis on. The out-
come of this can be found in Chapter 2. Chapter 3 describes what choices I made about
how to engage the development of the ReDHead plugin. Chapter 4 describes the static
include analysis algorithms, which will help a software engineer when looking at a C++
project’s include structure. Note that not all the introduced algorithms have been imple-
mented yet. The basic data structure provided by ReDHead, which is used by the static
include analysis algorithms, is described in detail in Chapter 5. The following Chapter
6 introduces details about the ReDHead plugin’s implementation and its components.
Chapter 7 describes the ReDHead features in a user centered aspect. A list of several
other tools, which also cope with C++ static analysis is available in Chapter 8. Infor-
mation about tasks that were especially hard can be found in Chapter 9. In Chapter
10 there is information about plugin features which could not yet be implemented. Ap-
pendix A contains information about the continuous integration server setup, followed
by useful Eclipse plugin example code in Appendix B. Organizational information about
the ReDHead project can be found in Appendix C.

9

2 Abstraction Concept for C++ Source
Code

Obviously, it is not enough to just textually parse source code to do static analysis.
It is clear, that to effectively perform static analysis, an abstract representation of the
elements which are contained in the C / C++ programming language is required. Since
I am not the first person which is in need of such an abstract code representation, I had
a look at existing concepts which could be helpful in performing static include analysis.

2.1 AST
The first abstract code representation I want to talk about, which is used often for code
analysis, is the Abstract Syntax Tree (short AST). The AST is a tree data structure
which contains nodes that represent C / C++ language constructs. This can for example
be statements, class declarations, variable names etc.

An AST is a very capable construct to find certain node types. This is one thing that
is needed when performing static analysis. However, this is only the first step to perform
static include analysis. Imagine that when one encounters the following statement in an
AST.

1 MyClass ∗ myClass ;

The instantiation contains the name MyClass, which refers to a class declaration that
is located somewhere else. So, MyClass is a declaration reference. To perform detailed
static analysis, it is required to find the declaration of exactly that class. Finding this
declaration reference dependency, however, goes beyond the possibilities of an AST. In
the following Section 2.2, we will be looking for a solution of that problem.

10

2.2 System Dependence Graph
To fill the gap revealed in the previous section, one can use the code representation of
the system dependence graph (short SDG) which will be introduced in this section.

The system dependence graph was initially introduced in 1990 by Horwitz et al.
[HRB90]. It defines an abstract graph representation for a procedural programming
language which supports function calls, but neither object orientation, macros nor other
language constructs of C++. The difference here to an AST is, that an AST is confined
to a single code file, whereas a SDG is not.

System dependence graphs were introduced as a instrument to help in the process
of slicing. Slicing is a graph traversal process which, given a program point p and a
variable x, finds all parts of a program which affect and are affected by x at point p. This
slicing process can be helpful to perform debugging [ADS93], automatic parallelization
[BW88, Wei83] or to automatically integrate program variants [HPR89].

In 1996, Larsen and Harrold introduced a SDG for object oriented languages while
using the language C++ for examples [LH96]. In Figure 2.1 one can find an example of
an SDG which does not yet uses object orientation. So Figure 2.1 is a SDG as defined by
Horwitz et all. [HRB90]. In the following example images, the C++ source code given
in Figure 2.1 will be adapted so it uses object orientation and also polymorphism.

Figure 2.1: Elevator Example System Dependence Graph with Function Calls [LH96]

To basically understand the graph, it is important to map vertices to code statements
by using the labels on the left side of the source code (e.g. E0 on the first code line).
Solid edges in the graph depict possible program execution control flow. Here, I would
like to specially mention the two function call vertices C7 and C9 which are connected by
a function call edge to the function definition vertex E11. Dashed graph edges represent
a program’s data flow. S1, for example, is connected by a data flow edge to S6 because

11

the value of the variable floor that is defined in S1 is used in S6.
To understand the data flow in and out of a function call, actual-in (e.g. A1 in),

actual-out (e.g. A1 out), formal-in (e.g. F1 in) and formal-out (e.g. F1 out) vertices
have been added to the graph. These can be mapped to source code with the help of
the Key for Parameter Vertices agenda.

For a precise description of the graph, I refer to [LH96] and [HRB90].

The following Figure 2.2 introduces the class Elevator, which splits te beforehand
introduced elevatro program into member functions. Note that there is not yet a main
program available in the figure. It will follow in Figure 2.4.

Figure 2.2: Object Oriented System Dependence Graph [LH96]

Note that the next two graphs contain part of their preceding graphs, which means
that one must also take into account the code which accompanies these preceding graphs
and their the codes line labels to understand the meaning of the current graph.

Compared to the graph in Figure 2.1, this graph also contains member function edges,
which are represented ad bold dashed edges which connect the class vertex CE1 to its
member function vertices (e.g. E7).

12

Shown in Figure 2.3 is the class AlarmElevator which inherits from Elevator.

Figure 2.3: Object Oriented Polymorphic System Dependence Graph [LH96]

The AlarmElevator’s elements are placed in the graph above the horizontal, dashed
and waved line, whereas the base class’ elements are located bellow. This line is crossed
in two cases. The first is by member function edges since the deriving class inherits
these member functions. The second case is by member function call edges in the case
of overloaded member functions when calling their super implementation.

In the following Figure 2.4, the main program is shown, which uses either the Alarm-
Elevator or the Elevator class. Note the vertex C38, which calls the overloaded member
function go(), connects to the artificial vertex P1, which again leads to both the imple-
mentations of the go() member function. This is due to the fact, that the evaluation of
which member function is really called is only possible at runtime.

13

Figure 2.4: Main Function [LH96]

14

When taking into account the introduced graphs above, we now have a SDG for object
oriented C++, which allows us to solve the problem of resolving declaration reference
dependencies by traversal. However, there are many points which mark the C++ SDG
as suboptimal.

Unneeded edges Several edge types given in the C++ SDG are not important for static
include analysis. This includes the control flow, the data flow, the parameter-in
and the parameter-out edges.

Costly graph traversals it will be very time-consuming to traverse a whole graph for
only trying to resolve one declaration reference dependency.

Vertices are not distinct A single vertex in the C++ SDG can contain several declara-
tion references.

Missing Physical Design Elements To perform static include analysis, it is required
that the vertices for physical design elemements, namely source and header files,
are also represented in the graph. This allows then to also introduce graph edges
which represent include directives which are also required. The C++ SDG only
contains logical design elements at the moment. A more detailed description on
logical and physical design can be found in Section 5.1.

As can be deduced from the list above, also the C++ SDG is not the optimal ab-
stract code representation to perform static include analysis. The following Section 2.3
introduces a graph, which is, in my point of view, optimal to perform static include
analysis.

2.3 ReDHead Graph
This section will introduce the ReDHead graph, which is designed to hold all the infor-
mation that is required to provide the ability to perform static include analysis in a fast
and intuitive way.

The introduction to the ReDHead graph will be accompanied with example graphs
that represent the same C++ code that was already present in the SDGs in Section 2.2.

A ReDHead graph basically consists of 5 different elements, whereof three are ver-
tices and two are directed edges. A black rectangle represents a source or header file
vertex. These can be connected with blue solid edges, which depict include directives.
Green rectangles represent declaration vertices. Declaration reference are represented by
vertices which are red ovals. And lastly, red dashed edges depict declaration reference
dependencies.

The label of a vertex can be interpreted as following: The first part is the name of
the correlating declaration or declaration reference. In the case of many declaration
references with long names, the names are replaced with DR which is simply short for
Declaration Reference. The number following the name of the vertex represents the

15

code line number in which the vertex origins. The code segments’ lines are numbered
in green on the left-hand side of the source code. In the case of several declaration
references on the same line, the line number is followed by a “ ” and in index number
which indicates the position of the declaration reference on that line. As an example, let
us assume there is a document with the code i = j; on line 15 and a graph containing
the vertex labeled DR15 2. Then, the vertex depicts the 2nd declaration reference which
originates from code line 15, which is j.

Note that a file-contains edge has been omitted since one can plainly see that all the
declaration and declaration reference vertices would have one, leading to the file vertex
that contains them.

Also note that each declaration and declaration reference vertex correlates exactly to
one node of an AST. This is very helpful because this will allow to continue the traversal
of the ReDHead graph into the AST and also the other way around.

Figure 2.5 shows the ReDHead graph that correlates to the SDG from Figure 2.1,
which is also contained in the Figure 2.5.

To let the graphs be compared easily, the vertices in the ReDHead graphs are arranged
as similar as possible to the arrangement of the SDG. Obviously, in the SDG there are no
vertices for variable definition, whereas in the ReDHead graph there are. Some nodes in
the SDG are represented in the ReDHead graph as several declaration reference. These
declaration reference are enveloped by a black, dotted oval which is labeled with the
name of the correlating vertex name in the SDG.

The graph shown in Figure 2.6 depicts the object oriented SDG which was shown in
Figure 2.4. In the figure, one can also see the include dependencies between different
source and header files. The program’s source code and the SDG of Figure 2.4 including
additional green line numbers necessary to comprehend the ReDHead graph in Figure
2.6, can be found in Figure 2.7.

2.4 Conclusion
As was explained, the Abstract Syntax Tree, the System Dependence Graph and also the
ReDHead graph each are very useful to perform static code analysis. When one focuses
on static include code analysis though, the ReDHead graph, combined with additional
information from ASTs, is the optimal provider for the required information.

16

Figure 2.5: Simple Example for a ReDHead Graph

17

Figure 2.6: Complex Example for a ReDHead Graph

18

Figure 2.7: Comparison SDG and Code for Figure 2.6

19

3 Used CDT and Eclipse Components

This chapter describes the environment of the ReDHead plugin in detail. There are
reasons given for the choice of the IDE and the used software components, on which
ReDHead will be built upon.

3.1 Eclipse CDT
The plugin that will be developed in the scope of the ReDHead project will be an Eclipse
plugin to be used together with C++ IDE Eclipse CDT. CDT contains a, yet still almost
empty, static analysis framework called Codan, which the ReDHead plugin can hook
itself into. Also, CDT provides access to AST structures for C++ code. Furthermore,
there is the CDT indexer which provides indispensable help when resolving declaration
references.

3.1.1 Compile Configurations
When developing C++ software, one normally uses a build system like make, cmake,
qmake etc. These build systems are used to assemble the numerous arguments which
will be passed to the compiler that is used to compile the C++ software. These argu-
ments, coming from the build system, combined with a compilers own arguments, result
in a so called compile configuration, which is mainly used by the compiler itself. However,
a key feature to successfully run static software analysis is such a compile configuration.
Without the compile configuration, one could not reliably resolve all dependencies con-
tained in the C++ software since a lot of ambiguous cases would arise.

Acquiring such a compile configuration is a very complex process since there are many
different C / C++ compilers which normally comes along with one of several different
build system. How costly it can be to obtain such compile configurations is in detail
described in [BBC+10].

Seen form this point of view, it becomes clear, that to effectively develop static include
analysis for C++ code, a powerful IDE which already provides a suitable compile con-
figuration is required. Since CDT does this, I can safe a lot of time in the development
process of the ReDHead plugin.

3.1.2 AST and Indexer
CDT’s AST and Indexer functionality already provides probably all the basic information
which is needed to statically analyze C++ code. To effectively do so, this information

20

will be used to set up a powerful data structure on which static include analysis will be
performed.

Each C++ project in Eclipse CDT already provides what was before referred to as
compile configuration. In the project properties the user can set preprocessor symbols
manually if he wants to do so. Since this information is, by default, used to build CDT
ASTs, this CDT compile configuration is, in my point of view, a very good point to start.

The include analysis of the file or project could also be done on the basis of a completely
user defined compile configuration, which can be set in a ReDHead properties page.
Concretely, this would mean that the user can define if a preprocessor symbol is set or
not set, what include directories shall be considered, and so on. ReDHead would then
analyze only these code parts, which are active in means of the preprocessor symbols in
the compile configuration.

Such a properties page would mean additional effort and does something very similar
to what CDT already provides. Hence, I will not implement such a properties page.

3.2 UI Elements
Invoking a static include optimizer is achieved through menu entries. As an alterna-
tive, for certain optimizers, also the automatic invocation while the user is typing is a
promising feature used by ReDHead. This alternative can be achieved, by using the
CDT Codan framework [cod09].

The best point to start with static include analysis results in the perspective of visu-
alization is to add makers to CDT editor instances for optimization suggestions and let
the user choose how to go on from there. The user then can decide if he wants to solve
the highlighted problem by applying a proposed quickfix. In Eclipse, these proposals
can be activated by the user when pressing ctrl+1.

In certain cases, only adding markers will not be a favorable solution. For such cases,
an other presentation possibility was found. In the ReDHead plugin, this is a dialog
which lets the user decide on what to do with optimization suggestions.

21

4 Dependency Optimization Algorithms

In this section I describe static include analysis algorithms which are considerd useful
for a C++ software engineer. These algorithms are the main features of the ReDHead
plugin. They are based on the ReDHead data structure described in Chapter 5, which
provides them with the basic functionality to perform static include analysis.

The following sections contain a pseudo-code implementation. These pseudo-code
listings give a good overview of the real algorithm implementations. They are not a
complete representation of the functionality since this would bloat the pseudo-code to
much. But they should give a good idea on how an algorithm basically works.

Figure 4.1 shows a simplified version of the ReDHead graph as described in Chapter 2.
These kind of figures will be used to support the introduction of the algorithms described
in the following sections. Compared to the other graphs that are present in this paper,
these graphs also show include paths.

Figure 4.1: Example Include Path Graph

Black rectangle vertices depict a file which contains a declaration reference. The letter
inside of the rectangle is the name of this declaration reference and not the name of the
file. A brown diamond-shaped vertex illustrates a declaration. Also here, the contained
name describes the name of the declaration and not the one of the file. Blue, solid edges
visualize includes, whereas red, dashed edges depict declaration reference dependencies.
And lastly, the violet dashed-dotted edges implie include paths. Note that include paths
are, as already mentioned in Chapter 1, a set of includes. So they always go along one
or several blue edges. In the case of an include path with a length of two or more, it also
goes on through files, as can be seen in the file vertices A and C.

22

The last part in this chapter, Section 4.8, describes how the best position to insert an
include is found. This part is used by all the algorithms which propose the insertion of
include directives.

4.1 Finding Unused Includes
Eclipse JDT automatically marks all unnecessary Java import statements which are
contained in a Java source file. The algorithm described here is the C++ equivalent to
the one of Java. One should be aware that Java imports are not transitive whereas C++
includes are, which makes the task much more difficult than the one in Java.

This algorithm is file based, which means that its starting position is one given C++
source or header file. The algorithm is also available for a whole project. In this case
the algorithm is run for each C++ file that is contained in the given project.

To give an overview, the algorithm is first described in pseudo-code:

includeList := findListOfIncludes (presentFile)
2

declarationRefList := findAllDeclarationReferences (presentFile)
availableIncludePathList := findListOfIncludePaths (declarationRefList)

5
pickedIncludeList := filterAvailableIncludePaths (availableIncludePathList)
unusedIncludeList := removeAllRequiredIncludes (includeList , pickedIncludeList)

8
markIncludesAsUnused (unusedIncludeList)

To help understanding the textual description which follows, the example in Figure
4.2 was added here. The active file on which the algorithm is run is the one represented
as black box labeled D, H, G in the bottom of the graph.

Figure 4.2: Find Unused Includes Example

The first step of the algorithm gathers all present include directives in the file (pseudo
code line 1). This information can be retrieved by the the active file. In the example
figure, these includes are the blue arrows which lead to A, B, C, D, E and K. In a second
step, the algorithm collects all declaration references contained in the given file (pseudo
code line 3). In the example, these are the declaration references D, H and G. For each

23

declaration reference it finds the correlating declaration and the include paths which leads
from the active file to the file containing the declaration (pseudo code line 4). In the
example graph, these are all the include paths in the graph. Note here that sometimes
it is possible that there is more than one include path that leads to the file containing
the declaration as can be seen in the example graph for declaration H. Also note that the
resulting list availableIncludePathsList in most cases contains more include paths
than required. So proposing only the include to K to be removed in the example graph
would not be accurate.

The next step is to find all required includes by filtering the list availableInclude-
PathList (line 6) or rather their first path elements. This filtering process should only
select all these includes in the list availableIncludePathList, so that all files which
contain used declarations are still reachable at least once. This filtering process is rather
complex and is thus described in detail in the following subsection 4.1.1. The following
step is to remove all required includes form the list includesList which yields a list of
remaining includes which are all these that are unneeded (line 7).

The component which decides which of all available include paths contained in the
active file (list includePathList) is best to be left in the document, the routine filter-
AvailableIncludePaths(), are described in the following section.

4.1.1 Optimal Include Path Selection
The reason for the presence of this section is, that a declaration which is required through
a declaration reference in the current file can be included through several include paths.

If there are several possible paths available to navigate through include directives to a
declaration and these paths have different starting include elements, one needs to decide
which one of them is the best one because, seen from the given declaration reference,
only one of these starting includes is required to be included in the current document.
To make a good decision, however, one does not only need to look at the in include paths
leading from one declaration reference to one declaration but at all of these relations.
This means that, given all the include paths leading out of the current document, one
can remove some paths until all the paths are necessary so that it is still possible to
reach all the declarations which are used through declaration references in the current
document.

filterAvailableIncludePaths (availableIncludePathList) {
pickedIncludeList := EmptyIncludeList ()

3
pickMandatoryIncludes (pickedIncludeList)
while hasIncludeChoice (availableIncludePathList) {

6 removeWorstChoice (availableIncludePathList)
pickMandatoryIncludes (pickedIncludeList , availableIncludePathList)

}
9 return pickedIncludeList
}

The process of finding all the required includes is achieved by picking includes until all
the includes which are required are in the list pickedIncludesList. Picking includes

24

happens in pickMandatoryIncludes(), in pseudo code line 4 and 7. For each path
of which the target file cannot be reached through any other path, the first element
in the path is thus mandatory to satisfy some declaration reference dependencies in
the active file. In pickMandatoryIncludes(), all these first elements are added to
the list pickedIncludesList. When an include is picked, all the include paths which
start with the picked include are not needed anymore because their target file is now
reachable through the picked include. This means, that not only the include paths
itself, but also all others which have the same targets can be removed from the list
availableIncludePathsList.

Now, one checks if the list availableIncludePathsList is not empty. If it is, there
is nothing to do anymore and the list of picked includes can be returned.

At the moment after all the mandatory includes have been picked, of all the first
elements of the remaining include paths in availableIncludePathsList, must at least
one be unnecessary. So next, in removeWorstChoice(), of all remaining first elements of
the include paths in availableIncludePathsList, the worst one is selected. Then, all
the paths in availableIncludePathsList which start with that element are removed.
It is now possible, that some of the remaining first elements became mandatory. So the
process of pickMandatoryIncludes() and removeWorstChoice() is repeated until the
availableIncludePathsList is empty.

The tricky part here, which makes the find unused includes algorithm interesting, is
the decision of determining which one of the remaining includes is the worst one. The
question that arises here, is the one of what makes includes good or bad. To measure
goodness or badness, I use two characteristics of an include.

The first characteristic is the amount of target files that are reachable through a given
include. In the example Figure 4.2 the include to A can reach both D and H whereas
through the include to E, only H can be reached.

The second characteristic that is used is the amount of all recursively included files.
The include to E includes two files (E, H), whereas the one to B includes four (B, F,
I, H). Using the two characteristics in the following formula, a penalty is calculated for
each remaining include. The include with the biggest penalty is the one that is selected
for removal in removeWorstChoice().

penalty = (2 + amountRecusivelyIncludedF iles)/amountTargetF ilesReachable2

Important to see is that the selection of the include to remove is a heuristic approach.
The penalty calculation above is not a perfect metric to find the worst include. This
means that in very special cases it can happen, that the find unused includes algorithm
proposes not as many includes for removal as possible. The heuristic approach here was
chosen, so that the algorithm is able to deliver suggestions in the shortest possible period
of time. An optimal calculation would, with big C++ files, take minutes if not hours to
complete.

25

Example Run

To help understand the process of the filtering of the available include paths which was
described in 4.1.1, the process will be illustrated here with an example. Figure 4.3 is a
repetition of Figure 4.2 additionally containng numbers indexing the include paths, to
make the description steps bellow easier. Also, the pseudo code given in Section 4.1.1 is
repeated again so one does not have to leaf back and forward continuously.

Figure 4.3: Find Unused Includes Example with Numbered Include Paths

filterAvailableIncludePaths (availableIncludePathList) {
2 pickedIncludeList := EmptyIncludeList ()

pickMandatoryIncludes (pickedIncludeList , availableIncludePathList)
5 while hasIncludeChoice (availableIncludePathList) {

removeWorstChoice (availableIncludePathList)
pickMandatoryIncludes (pickedIncludeList , availableIncludePathList)

8 }
return pickedIncludesList

}

Execution Point availableIncludePath-
List

pickedIncludeList Additional Information

line 4 {1,2,3,4,5,6,7} { } In pickMandatoryIncludes, include C gets selected since the target
file of include path 6 (G) can only be reached through C. include path 7
thus gets removed from availableIncludePathList

line 6, iteration 1 {1,2,3,4,5,6} {C} Penalties: A = (2 + 3)/22 = 1.25, B = (2 + 4)/12 = 6,
D = (2 + 1)/12 = 3, E = (2 + 2)/12 = 4. B is worst, so the include
paths 5 and 6 get removed.

line 7, iteration 1 {1,2,3,4} {C} None of the includes A, B, D or E is mandatory required so nothing is
picked.

line 6, iteration 2 {1,2,3,4} {C} Penalties: A = (2 + 3)/22 = 1.25, D = (2 + 1)/12 = 3,
E = (2 + 2)/12 = 4. E is worst, so the include path 4 get removed.

line 7, iteration 2 {1,2,3} {C} In pickMandatoryIncludes include A gets selected since the target file
of include path 3 (H) can only be reached through A. include paths 1, 2
and 3 gets removed from availableIncludePathList because all their
target files (D, D and H) are reachable through A.

line 5, iteration 3 {} {C, A} The iteration is stopped here since availableIncludePathList is
empty.

26

4.1.2 Algorithm Enhancements
When running this algorithm on a real C++ source file, the file contains quite a lot of
declaration references which thus also often yield a lot of duplicate include paths. The
number of declaration references and include paths handled by the find unused includes
algorithm can easily go into the thousands. Thus, grouping both of them already on
construction, so that there are no duplicates, decreases their number a lot. Besides a
huge performance gain, the algorithm is not affected at all through this change.

4.2 Organize Includes
Eclipse JDT contains an organize imports feature that can be used to automatically
import all needed classes into a Java class. The target of the Organize Includes algorithm
is to do the same thing in C++ code with includes.

Organizing includes basically does two different things. The first thing is to finds
includes that are unused and to propose them for removal. This part is already covered
by the finding unused includes algorithm described in 4.1. A small difference here is that
organizing includes only makes sense in the scope of a single file and not in the scope of a
whole project. The second thing that organize includes does, is to add missing includes,
which are required to successfully compile the active file. To achieve this goal, the
ReDHead plugin needs a possibility to resolve declaration references to any declarations
in a project’s scope. This includes for example also the declarations of the C++ Standard
Library or any other headers which are available in the project.

The following pseudo code implementation gives a good overview of the task that is
fulfilled by the organize includes algorithm.

declarationRefList := findAllDeclarationReferences (presentFile)
2 filesToIncludeList := EmptyIncludeList ()

for declarationRef in declarationRefList {
5 declarationRefDependency := findDeclarationRefDependency (declarationRef)

declaration := findDeclaration (declarationRefDependency)
includePathList := findIncludePathsToDeclaration (declarationRef , declaration)

8
if isEmpty (includePathList) {

addToList (filesToIncludeList , fileOf (declaration))
11 }

}
proposeToInclude (filesToIncludeList)

14
runFindUnusedIncludesAlgorithm (presentFile)

The pseudo code implementation should be understandable easy enough. First all
declaration references are collected. Then, for each of these declaration references, first
the declaration reference dependency and then the declaration is found and the include
paths are retrieved that lead form the declaration reference to the declaration. Should the
list of retrieved include paths be empty, an include to the file that contains the declaration

27

is suggested to be added. The last pseudo code line triggers the find unused includes
algorithm, which is, as already mentioned, part of the organize includes algorithm.

The graph in Figure 4.4 illustrates a simple example to organize includes.

Figure 4.4: Organize Includes Example Graph

The declaration references which are gathered in pseudo code line 1 are for the exam-
ple: C, D and F. When finding include paths in pseudo code line 7, the retrieved list
for C is empty and a suggestion for an include to the file containing the declaration of C
is added in pseudo code line 10. Why the include to A is proposed for removal in code
line 15, can in detail be read in the description of the find unused includes algorithm in
Section 4.1.

4.3 Directly Include Referenced Declarations
The directly include referenced declarations algorithms is based on the idea one should
not rely on included header files to again include others. To clarify this, an example
is given. In the graph on the left hand side in Figure 4.5 one sees, that both the files
labeled A,B,C and A use the declarations B and C. If, for any reason, the file labeled
A now looses the dependency to C and the include to C gets thus removed (graph in
Figure 4.5 on the right-hand side), there will be no available include path to C, which
results in compiler error in the file labeled A,B,C. This happens, even if the file labeled
C has not been changed at all.

In Figure 4.6 the same situation is given again, but with additional includes from the
file labeled A,B,C to B and C. Here, the problem at hand will never arise when the
include from A to C gets removed. So by directly including the referenced declarations
B and C, the (transitive include) coupling to A can be reduced. The C++ code at hand
will get less error-prone to changes in the include structure.

This idea which was introduced above can also be found described in [Lak96] on page
113.

So the current algorithm allows the user to automatically suggest the inclusion to
declarations which are used in a given file. This strategy is closely related with Java’s

28

Figure 4.5: Problematic Example Graph

Figure 4.6: Unproblematic Example Graph

29

way of importing classes, since every class that is used needs to be imported directly
in Java’s code files. To refactor towards this goal, one the one hand one needs to add
include directives for every not yet directly included declaration. On the other hand, one
needs to remove include directives which do not include any used declarations directly.

The following listing shows the algorithm’s pseudo code:

includeList := findListOfIncludes (presentFile)
includesToRemoveList := includeList

3
if existsFileNameCorrelatingHeaderFile (presentFile) {

fileNameCorrelatingHeaderFile := getFileNameCorrelatingHeaderFile (presentFile)
6 addToList (includeList , findListOfIncludes (fileNameCorrelatingHeaderFile))
}
declarationRefList := findAllDeclarationReferences (presentFile)

9 filesToIncludeList := emptyList ()

for declarationRef in declarationRefList {
12 declaration := findeDeclaration (declarationRef)

referencedFile := getFileOfDeclaration (declaration)
if not containedInList (includeList , referencedFile) {

15 addToList (filesToIncludeList , referencedFile)
}
removeFromList (includesToRemoveList , referencedFile)

18 }
proposeToInclude (filesToIncludeList)
proposeToIRemove (includesToRemoveList)

The algorithm’s pseudo code actually covers a special case which arises if the present
file is an implementation file of a C++ class (e.g. Something.cpp) that is defined in
the header file which correlates by file name to the present file (e.g. Something.h). In
this case, all the files which are included in this header are treated as if they would be
contained in the present file (pseudo code line 4-7).

Besides the effect of decreased coupling which was already described above, the algo-
rithm has the positive effect that, even if the include list might grow significantly, there
are no more unused declarations included than possible. This might result in a slightly
optimized compile time. One should also be aware that this algorithm sometimes stands
in conflict with the find unused includes algorithm. When including all used declarations
directly, it might happen, as can be seen in the example in Figure 4.6, that some of them
are, in the resulting include structure, included indirectly through several include paths
which then will cause the find unused includes algorithm to propose the removal of some
includes.

4.4 Find Unused Files
Find unused files is an algorithm that informs the user about files in his project which
contain dead code. In a big C++ project this might come in very handy because the task
would be very time-consuming and error-prone when executed manually. This algorithm
is intended to be run on a full project and not on a single file. When it is triggered in

30

the context of a single file, the find unused files algorithm is triggered on the enclosing
project instead.

The following pseudo code implementation introduces the algorithm:

1 unusedFileList := findAllFileInProject (presentProject)

for sourceFile in findAllSourceFilesIn (presentProject) {
4 removeFromList (unusedFileList , sourceFile)

for include in recursivlyGetIncludes (sourceFile) {
includedFile := findIncludedFile (include)

7 removeFromList (unusedFileList , includedFile)
}

}
10

markFilesAsUnused (unusedFilesList)

Note that the find unused files algorithm, as it is described above, is also capable of
finding several headers which are unused but which include each other. This can also
be seen on the example run demonstrated bellow on the example project in Figure 4.7.
Note that all the node labels in this graph do not represent declaration and declaration
reference names as usual. Here they just represent the name of the file.

Figure 4.7: Example for Finding Unused Files

Each line in the following table represents one iteration of the outer loop in the pseudo
code implementation (line 3).

Execution Point unusedFilesList sourceFile Additional Information

Iteration 1 {A.cpp, B.cpp, C.cpp, A.h, B.h,
C.h, D.h, E.h, F.h, G.h, H.h, I.h,
J.h, K.h}

A.cpp In the current iteration, the files {A.cpp,
A.h, B.h, E.h, H.h, I.h} get removed
from unusedFilesList

Iteration 2 { B.cpp, C.cpp, C.h, D.h, F.h, G.h,
J.h, K.h}

B.cpp In the current iteration, the files {B.cpp,
B.h, I.h, H.h} get removed from
unusedFilesList

Iteration 3 {C.cpp, C.h, D.h, F.h, G.h, J.h,
K.h}

C.cpp In this iteration, the files C.cpp, K.h} get
removed from unusedFilesList

The remaining files in the list unusedFilesList (C.h, D.h, F.h, G.h, J.h) are
marked as unused.

31

4.5 Static Code Coverage
As already described in Section 4.3, there are often declaration included which are not
all used.

The aim of the static code coverage algorithm is to highlight which parts of a project’s
code is used and which ones are unused. To achieve this goal, one searches all declarations
in a project which are active. Then, one finds all used declarations by traversing the
ReDHead graph along all the declaration reference dependency edges, starting with the
previously found active declarations.

Note that such a traversal of the ReDHead graph is very similar to the slicing process.
A slicing process, as introduced in detail in [HRB90], is performed on a graph similar
to the SDG introduced in Section 2.2. The process performed here, in the static code
coverage algorithm is, as mentioned, only similar.

A normal program slice is defined as parts of a program with respect to program point
p and variable x. It consists of all statements and predicates of the program that might
affect the value of x at point p. To produce a slice, a SDG is traversed along its control
flow and data flow edges.

The static code coverage algorithm starts to slice with a given set of program point
that are considered as active. Here, the focus is not on the data flow and the control
flow edges, but rather only on the function call edges as in Figure 2.1. As already shown
in the Section 2.3, what is a call edge in an SDG is represented in the ReDHead graph
as a declaration reference dependency. So one might say that the ReDHead static code
coverage algorithm is a more coarse grained slicing algorithm.

To find all active program points, one must first see if the project under consideration
produces an executable, which implies that it has a main function, or if it does not,
which makes the project, as it will be called hence, a library project.

In the case that there is a main function, this function combined, with all the public
variables and static member variables, make the collection of active program points.

In the case of a library project, all declarations contained in any source, but not header
files, are taken as active.

32

Here the algorithm in pseudo-code:

1 unusedDclarationList := recursiveFindAllIncludedDeclarations (presentProject)
activeDeclarationList := findActiveDeclarations (presentProject)
usedDeclarationList := emptyList ()

4
removeAll (unusedDclarationList , activeDeclarationList)
addAll (usedDeclarationList , activeDeclarationList)

7
for declaration in activeDeclarationList {

containedDeclarationRefList := findContainedDeclarationRefs (declaration)
10 for declarationRef in containedDeclarationRefList {

newDeclaration := findeDeclaration (declarationRef)
appendToList (activeDeclarationList , newDeclaration)

13 addToList (usedDeclarationList , newDeclaration)
removeFromList (unusedDclarationList , newDeclaration)

}
16 }

markUsed (usedDeclarationList)
markUnused (unusedDclarationList)

Note that in pseudo code line 12, a declaration is appended to the list active-
DeclarationList. The loop in line 8 is at that moment iterating over exactly this
list. I assume here that (1) this does not break the execution of the pseudo code and (2)
that the appended element is included into the iteration on line 8. This rather strange
behavior is here used to keep the pseudo code as small and as simple as possible.

Figure 4.8 will demonstrate the algorithm in the given sample run.

Figure 4.8: Static Code Coverage Example

In the sample run table which follows, the notation global:main.cpp can be read as
declaration of global in file main.cpp. Note that each table entry represents an iteration

33

of the outer loop in pseudo code line 8. The declaration variable in line 8 is always
the first element shown in column activeDeclarationList. This means that all the
declarations that have already been iterated over, are not shown in the column anymore.

Execution
Point

activeDeclaration-
List

unusedDclarationList usedDeclarationList Additional Information

Iteration 1 {main:main.cpp,
global:main.cpp}

{A:A.h, foo1:A.h, foo2:A.h,
A:A.cpp, foo1:A.cpp, foo2:A.cpp,
bar1:bar.h, bar2:bar.h,
bar1:bar.cpp, bar2:bar.cpp}

{main:main.cpp, global:main.cpp} Function main uses A:A.h, foo1:A.h, A:A.cpp. These
are removed from unusedDclarationList and added
to activeDeclarationList and
usedDeclarationList

Iteration 2 {global:main.cpp,
A:A.h, foo1:A.h,
A:A.cpp}

{foo2:A.h, foo1:A.cpp, foo2:A.cpp,
bar1:bar.h, bar2:bar.h,
bar1:bar.cpp, bar2:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp}

Definition global uses bar2:bar.h which is removed
from unusedDclarationList and added to
activeDeclarationList and usedDeclarationList

Iteration 3 {A:A.h, foo1:A.h,
A:A.cpp, bar2:bar.h}

{foo2:A.h, foo1:A.cpp, foo2:A.cpp,
bar1:bar.h, bar1:bar.cpp,
bar2:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h}

Class declaration A does not refers anything so
nothing is added or deleted.

Iteration 4 {foo1:A.h, A:A.cpp,
bar2:bar.h}

{foo2:A.h, foo1:A.cpp, foo2:A.cpp,
bar1:bar.h, bar1:bar.cpp,
bar2:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h}

Member function declaration foo1 refers foo1:A.cpp
which is removed from unusedDclarationList and
added to activeDeclarationList and
usedDeclarationList

Iteration 5 {A:A.cpp, bar2:bar.h,
foo1:A.cpp}

{foo2:A.h, foo2:A.cpp, bar1:bar.h,
bar1:bar.cpp, bar2:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h, foo1:A.cpp}

Constructor definition A does not refers anything so
nothing is added or deleted.

Iteration 6 {bar2:bar.h,
foo1:A.cpp}

{foo2:A.h, foo2:A.cpp, bar1:bar.h,
bar1:bar.cpp, bar2:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h, foo1:A.cpp}

Function declaration bar2 refers bar2:bar.cpp which
is removed from unusedDclarationList and added
to activeDeclarationList and
usedDeclarationList

Iteration 7 {foo1:A.cpp,
bar2:bar.cpp}

{foo2:A.h, foo2:A.cpp, bar1:bar.h,
bar1:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h, foo1:A.cpp,
bar2:bar.cpp}

Member function definition foo1 does not refers
anything so nothing is added or deleted.

Iteration 8 {bar2:bar.cpp} {foo2:A.h, foo2:A.cpp, bar1:bar.h,
bar1:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h, foo1:A.cpp,
bar2:bar.cpp}

Function definition bar2 does not refers anything so
nothing is added or deleted.

Iteration 9 {} {foo2:A.h, foo2:A.cpp, bar1:bar.h,
bar1:bar.cpp}

{main:main.cpp, global:main.cpp,
A:A.h, foo1:A.h, A:A.cpp,
bar2:bar.h, foo1:A.cpp,
bar2:bar.cpp}

Loop iteration ends here since
activeDeclarationList is empty.

The result of the algorhtim run is, that the declaration and definition for both foo2
and bar1 are unused and the rest of the project is in use.

34

4.6 Replace Includes with Forward Declarations
If a type gets used in a file and is only used as pointer or reference type, there is no
requirement to actually include the full declaration of that type. Instead, a forward
declaration is enough.

include ”A.h” // Example with an i n c l u d e d i r e c t i v e

3 class B {
public :

void foo (const &A a) ;
6 } ;

class A ; // Example with a forward d e c l a r a t i o n

3 class B {
public :

void foo (const &A a) ;
6 } ;

The example given above demonstrates this. The advantage of the second listing over
the first one is that the coupling between the two involved files in the first listing is
removed and that the compile time is diminished.

The idea behind the replace include with forward declaration algorithm is to find
scenarios similar to the first listing and refactor them so they become like the second
listing.

Note that forward declarations are always possible where an incomplete type is suf-
ficient. More information about incomplete typess can be found in the C++ Standard
[Ins03].

The following listing shows a pseudo code implementation of the algorithm:

declarationRefList := findAllDeclarationRefs (presentFile)
declarationSet := findAllReferencedDeclarations (declarationRefList)

3
for declaration in declarationSet {

refsToDeclarationList := findRefsToDeclaration (declarationRefList , declaration)
6 if canReplaceWithForwardDeclaration (declaration , refsToDeclarationList) {

includesToRemove := findRemovableIncludesTo (declaration) // normally only 1
proposeForRemoval (includeToRemove)

9 proposeToAddForwardDeclaration (declaration)
}

}

Note that the declaration which are found in pseudo code line 2 are added to a set,
which implies that, even if there are several different declaration references to the same
declaration, only one of them will be contained in the set. This is enough to represent
the relation to the declaration.

35

The function canReplaceWithForwardDeclaration() checks several conditions which
needs to be satisfied so that an include can be replaced with a forward declaration. These
conditions are introduced in the following listing.

1 canReplaceWithForwardDeclaration (refsToDeclarationList , declaration) {
if not areUsedInOnlyDeclaration (refsToDeclarationList) and not ←↩

areOnyPointerAndRefs (refsToDeclarationList) {
return false

4 }
includePathList := findPathsTo (declaration) // normally only 1 path
includeList := firstElementsOf (includePathList)

7 if not areAllIncludesOnlyUsedToResolve (includeList , refsToDeclarationList) {
return false

}
10 return true

}

Note here that the areUsedInOnlyDeclaration() function tests, if the refsToDec-
larationList are only used in declarations which are not themselves definitions.

4.6.1 Refactor Towards iosfwd
The standard C++ library contains a file named iosfwd which contains forward decla-
rations for common input and output stream types. As an algorithm extension to the
one which replaces includes with forward declarations, one could in the case of streams,
add an include directive to iosfwd instead of forward declaring the used stream types.

4.7 Introduce Redundant Include Guards
Every C++ developer knows that include guards are necessary to prevent redefinition
of symbols (mostly types). Include guards achieve that each file is only included exactly
once. So during compilation, the same include files is opened and closed in numbers,
only to find that there is nothing to do with it because it was already included earlier.
In big software project, this results in a considerable amount of time that is wasted
by opening and again closing files. The open and close operations executed by the
compiler, however, can be prevented by introducing redundant include guards in the file
which includes a header file. A more detailed description of redundant include guards
can be found in [Lak96] on page 82. Here a dummy example:

1 //main . cpp
include ” header .h”
include ” header .h”

4 # include ” header .h”
include ” header .h”

36

1 // header . h
ifndef HEADER H
define HEADER H

4
class A { } ;

7 # endif /∗ HEADER H ∗/

When compiling the code from the previous listings, the file header.h is opened and
closed four times. The operation, however, was only required exactly once. By intro-
ducing redundant include guards into main.cpp, as can be seen in the following listing,
results in faster compile time.

//main . cpp
2 # ifndef HEADER H

include ” header .h”
endif /∗ HEADER H ∗/

5 # ifndef HEADER H
include ” header .h”
endif /∗ HEADER H ∗/

8 # ifndef HEADER H
include ” header .h”
endif /∗ HEADER H ∗/

11 # ifndef HEADER H
include ” header .h”
endif /∗ HEADER H ∗/

14 # ifndef HEADER H
include ” header .h”
endif /∗ HEADER H ∗/

Adding redundant include guards, as demonstrated above, is an annoying, time-con-
suming and also error-prone task. Thus, adding automated support in form of a ReD-
Head algorithm that adds redundant include guards will be a very valuable feature when
utilizing redundant include guards. The following listing demonstrates the algorithm:

allIncludesList := findAllIncludes (currentFile)
2

for include in allIncludesList {
includedFile := includedFileOf (include)

5 if not alreadySurroundedByIncludeGuards (include) and containsIncludeGuards (←↩
includedFile) {

includeGuardName := findIncludeGuardNameIn (includedFile)
proposeToSurroundWithIncludeGuard (include , includeGuardName)

8 }
}

4.8 Finding Optimal Insert Positions
Some of the static include analysis algorithms described above propose that new include
directives should be added to a code file. If a software engineer decides to apply the pro-
posed changes, the questions arises where the optimal position is to insert the proposed
include directives.

37

This section describes the ReDHead component which calculates insert offset for in-
clude directives for a given source or header file.

The simplest answer to this position question is to just insert them at the beginning
of the document. There are two problems with this solution. The first one is that,
when inserting include directives into a header file, the include guards are bypassed.
The second one is that, when inserting into a source file, one is strongly disadvised to
insert additional include directives in front of the one that includes the header file which
correlates by name to the source file’s name. The reason for this is given on page 110 in
[Lak96].

So a better place to insert includes is after the last of the already contained include
guards. However, this is tricky because one should never insert in the scope of a condi-
tional compilation block.

include ” Onething .h”
ifdef WIN32

3 #include ” Anotherthing .h”
endif
/∗ . . . ∗/

For the code given in the listing above, the correct insert position is not after the
second include directive but after the #endif statement. However, that one should
never insert inside of a conditional compilation block is not true in a single case. This
is the case with include guards.

1 # ifndef A FILE H
define A FILE H

#include ” Onething .h”
4 #include ” Anotherthing .h”

class AClass { } ;
endif

Inserting after the #endif here is wrong because it belongs to the include guard. The
listing above brings us to the next restriction. One of course should never insert after
declaration (here AClass). So the point to insert in the listing above would be is obvious
place after the last include directive and before the AClass declaration.

In the case that there is an include guard but no include directives, then the point to
insert further includes is directly after the definition of the include guard’s symbol.

A sample of the conflicting case can be found in the following listing:

ifndef A FILE H
define SOME OTHER THING

3 #include ” Onething .h”
#include ” Anotherthing .h”
class AClass { } ;

6 # endif

In this case there is no valid include guard which means that there is only a conditional
compilation block. Firstly, we want to insert after that conditional compilation block.

38

But secondly, we cannot insert after the first declaration in the code. The tradeoff which
is taken here is to insert at the beginning of the document.

4.9 Include Substitution
In the case of certain external library header files, the process of algorithms which
propose to add includes is sometimes to explicit. I will demonstrate the problem with
an example from the C++ Standard Library. Imagine the following C++ code:

int main () {
std : : vector<int> v ;

3 return 0 ;
}

When running find unused includes, adding #include <bits/stl vector.h> would
be suggested. This suggestion is not wrong at all since the class vector is declared in
exactly that file. But still, a software engineer would be surprised by the suggestion
since one expects the proposal of #include <vector>.

To solve the problem at hand, ReDHead algorithms do, before suggesting to insert
includes, check a given list of include substitutions which in cases as the one mentioned
above yields the correct include proposal.

This list was not created by hand, but is rather generated automatically from the
given C++ standard library header directory.

39

5 ReDhead Data Structure

The algorithms described in the previous Chapter 4 are, as already mentioned, based
on the the ReDHead data structure, of which the functionality is describe in the current
chapter in detail. The ReDHead data structure is an implementation of the ReDHead
graph, that was described in Section 2.3. Basically, the ReDHead data structure gives
access to the vertices and edges that were described with the ReDHead graph. Also,
this chapter will contain ReDHead graph images which are used to describe special code
scenarios.

Note that this chapter gives no internal implementation details of the ReDHead data
structure. More information about internal implementation details can be found in
Section 6.2 in the following Chapter 6.

The following class diagram in Figure 5.1 shows an overview of the of the important
classes that are contained in the ReDHead data structure.

Figure 5.1: ReDHead Data Structure

Each of the components in the redhead.logicaldesign package grant access to the
component’s name as well as to location information which consists of file offset, line
number, line offset and length. The components in the redhead.physicaldesign pack-
age can each yield information about its location, meaning a file or folder path.

40

How the ReDHead data structure can be used to traverse the graphs, which were
introduced in Section 2.3 and Chapter 4, can be seen in Figure 5.1 by following the
diagram’s edges. As can be seen in Figure 5.1, a ReDHeadDeclarationReference can
yield several DeclarationReferenceDependencies. Actually, there are several methods
available to retrieve a apart of these available dependencies. In the Section 5.3 a detailed
description is given on what these methods are and why they are necessary.

The following sections in this chapter describe noteworthy details about the ReDHead
data structure that were important to implement the algorithms described in Chapter 4.

5.1 Logical and Physical Design
The terms logical and physical design have already briefly been mentioned in Section
2.2. Here I will give a more detailed explanation on the two design approaches.

In the diagram in Figure 5.1, one can see the logical design components on the left
hand side and the physical design components on the right hand side. Note that, com-
pared to the ReDHead graph, the physical design components were extended by the
ReDHeadProject and the RedHeadWorkspace.

Logical design is what most software engineer understand just as design of a soft-
ware product. Logical design components are for example functions, classes, structs and
namespaces. They can be used to organize the functionality of a software product so it
gets a useful, understandable and does not contain redundant code. Some of the men-
tioned components use others. This creates coupling between these components which is
represented in the ReDHead data structure with the DeclarationReferenceDependency
class instances..

Physical design, on the other hand, is something very similar in the task of designing.
But one could say it is a second dimension of the design process. Here, the question is
how to organize a system’s physical units. These units are files and directories, and the
relation between them, the include directives. It also belongs to the tasks of the physical
design to put the components of the logical design into the physical units in a smart
manner.

Obviously, the two ways to design are not completely independent of each other since
the coupling which, exists in the logical design, influence the include structure of a project
which belongs to the physical design. And the logical design’s components are distributed
in the physical design’s units, the files. To develop a good software product, both the
task of logical and physical design should get enough attention. If one is neglected, the
software products code quality is decreased.

41

5.2 Declaration References
ReDHeadDeclarationReferences can be obtained from any ReDHeadFile. Often, many
ReDHeadDeclarationReferences contained in one file refer exactly to the same ReDHead-
Declaration. To prevent the repeated execution of the same operation on similar
ReDHeadDeclarationReferences, only one of these similar ReDHeadDeclarationRef-
erences is returned by the class ReDHeadFile. So the set returned contains only as
many ReDHeadDeclarationReferences as there are different ReDHeadDeclarations
referenced. This optimizes the runtime of the algorithms which use the ReDHead data
structure

5.3 Declaration Reference Dependencies
A ReDHeadDeclarationReference is able to return several DeclarationReference-
Dependency instances.

Note here that, to improve the readability, this was neglected in the pseudo code
implementations of the ReDHead algorithms in Chapter 4.

A ReDHeadDeclarationReference is also able to filter this collection of dependencies
according to certain criteria. The following example ReDHead graphs in this section
introduce these filtering functions of the ReDHeadDeclarationReference in detail.

Figure 5.2 contains four code files, one contains the definition of the class X, two others
each contain a forward declaration of the class X. The last file contains a ReDHead-
DeclarationReference to class X. The class ReDHeadDeclarationReference contains
the method getAllDependencies(), which returns the complete list of available Decla-
rationReferenceDependencies, which here are all the red, dashed edges. Note that
the list also include a dependency to the forward declaration which is not included in
the file main.cpp.

Figure 5.2: All Available DeclarationReferenceDependencies

The graphs shown in Figure 5.3 shows all the DeclarationReferenceDependencies
which are returned by the method getIncludedDependencies() of the class ReDHead-

42

DeclarationReference. The dependency to the file Xfwd1.h which is not included,
was grayed out and is not contained in the collection returned by getIncludedDe-
pendencies().

Figure 5.3: Only Inclucded DeclarationReferenceDependencies

Method getRequiredDependencies() returns only these DeclarationReferenceDepen-
dencies that are required, which is here the one to the declaration of class X in file X.h. To
find out which of all the available DeclarationReferenceDependencies are required,
the ReDHead data structure evaluates if a forward declaration of class X is sufficient or
not. In Figure 5.4, x in the file main.cpp is neither a pointer nor reference-variable, so
the definition of X is required.

Figure 5.4: Only Required DeclarationReferenceDependencies

In Figure 5.5, the class X is in main.cpp only used as a pointer-variable. So a forward
declaration is enough. This results that in this case, getRequiredDependencies of the
class ReDHeadDeclarationReference will return the dependency to the forward decla-
ration in the file Xfwd2.h. Note here, that this dependency to the forward declaration is
preferred over the one in the file Xfwd1.h, because Xfwd1.h is not included into main.cpp.

43

Figure 5.5: Only Required DeclarationReferenceDependencies

Namespaces in C++ are a somewhat special construct because they can be defined
several times. Initially, this leads to the problem that the algorithms find unused includes
proposed to include all the files which contain a definition of a used namespace, which
of course is wrong. The solution of the problem in the ReDHead data structure is, that
only these definitions are referenced, which are also used. What used here means can
be seen in Figure 5.6. The one dependency to file unused.h is not returned because it is
also not used.

Figure 5.6: Only Required Namespace DeclarationReferenceDependencies

The ReDHead graph does not represent the ReDHead data structure in every detail.
The reason for this is, that the code which represents a ReDHeadDeclaration of course
contains the name which is declared. So the code that yields ReDHeadDeclaration actu-
ally also always yields a ReDHeadDeclarationReference. This means that for each dec-
laration contained in a ReDHead graph, there should also be a DeclarationReference-
Dependency edge that leads to itself. The reason, not to show these edges in the ReDHead
graph, is, that this would only be redundant information which would bloat the graph.

44

In the ReDHead data structure however, this so called self dependency is useful since
otherwise the resolution of a DeclarationReference that origins from the code of a def-
inition would sometimes not yield any DeclarationReferenceDependencies. Yielding
one DeclarationReferenceDependency to itself is a more dynamic solution.

As shown in Figures 5.1, one ReDHeadDeclarationReference in some cases return
not only one, but rather several, DeclarationReferenceDependencies. The following
subsections, besides the examples given above, show some additional special cases which
should be considered to understand he ReDHead data structure.

5.3.1 Preprocessor Symbols
Normally, the ReDHead data structure contains DeclarationReferenceDependencies
independent of whether the file containing the ReDHeadDeclaration is included by
the one that contains the ReDHeadDeclarationReference. In the case of preproces-
sor symbols, as shown in Figure 5.7, this is not the case. In the case in which such a
DeclarationReferenceDependency would be available, the algorithm find unused in-
cludes would falsely propose to include file other.h, which would then practically destroy
the effect of conditional compilation, which of course we do not want.

Figure 5.7: Preprocessor Symbols

5.3.2 Function-like Macros
The example Figure 5.8 shows the DeclarationReferenceDependencies that are pro-
duced for function-like macros. Important here to understand is, that, since macro ex-
pansion is textual replacement, the call to the AB() macro in file DIRECT CALL.h does
not create a DeclarationReferenceDependency to the macro’s definition which also
originates from DIRECT CALL.h. Instead, these DeclarationReferenceDependencies
originate in files containing calls to that macros, which is the file main.cpp in the exam-
ple.

45

Figure 5.8: Function Style Macros

5.3.3 Templates
Figure 5.9 demonstrates, that ReDHeadDeclarationReferences which originate from
template functions or template classes, often yield several DeclarationReferenceDep-
endencies to any ReDHeadDeclaration which might match. Important here is, that
there is no determination if all these ReDHeadDeclarations are really required eventu-
ally. In certain cases, this could result in false positives in proposition made by some
ReDHead algorithms.

Figure 5.9: C++ Templates Example

5.4 Includes
Instead of introducing an own class that represents include relations, ReDHead uses
the existing class of CDT to represent include relations, since the required information
about the include relation can be acquired there. The class in Figure 5.1 which is labeled
IIncludeStatement does not exists with that name. The reason to call it like this, is,

46

that there are actually two classes which are used to represent include directives in CDT,
which can both be used for my cause. Sadly, they do not share any common interface
or super class.

Also, the Figure 5.1 is not completely correct here because it makes the reader believe
that the IIncludeStatement gives access to the included ReDHeadFile instance (dashed
arrow edge), which of course is not true since CDT has no relations to ReDHead. Instead
of directly giving access to the included ReDHeadFile, a helper class’ method takes care
of that task.

5.5 Include Paths
Include paths are, as first mentioned in 1.4, an ordered set of include relations. Very
important here is the fact, that in the ReDHead data structure, an include path is defined
as the path that leads out of any file to a target file. The originating file, however is no
part of the path. So the IncludePath instances in Figure 5.10, are all considered equal.
This allows for example to easily compare include paths independent of the file which
contains them.

Figure 5.10: Equal Include Paths Example

47

6 Implementation

This chapter describes implementation details which are worth mentioning. To give
an overview of the whole plugin, the class diagram of the important classes is shown
in Figure 6.1. For detailed description of the classes shown in the diagram, read the
following sections.

Figure 6.1: ReDHead Class Diagram

6.1 Used CDT Functionality
The ReDHead data structure which was introduced in Chapter 5 gets constructed with
information which is delivered from CDT components. The important part of these
components are introduced here.

6.1.1 AST
Abstract Syntax Trees in CDT are instances of IASTTranslationUnit. These grant
access to IASTNode that represent declarations, includes, macro definitions and so on.
To find certain node type one can use node visitors to traverse AST’s. Instances of

48

IASTTranslationUnit can be constructed with the help of a file-name and the CDT
helper class CoreModelUtil.

6.1.2 Indexer
The CDT indexer is a very important CDT component, since it provides the ReDHead
data structure with the functionality to find the dependencies between declaration ref-
erences to declarations. Concretely, it can resolve IBindings which for example can be
acquired by the AST nodes of type IASTName as described in 6.1.3.

Also, the CDT indexer can produce lists of all transitively included files that are
included into one given file.

IIndex instances can be acquired through the CDT plugin class CCorePlugin.

6.1.3 INames
Instances of CDT’s IName represent C++ identifiers in C++ code. In CDT, there are
two basic subtypes of IName. These are IASTName and IIndexName. The first one can
be found by traversing ASTs, the second one by querying the CDT indexer. ReDHead
uses INames when producing the ReDHead data structure.

6.2 ReDHead Data Structure
This section will describe internal implementation details of the ReDHead data structure.
For a detailed description of the functionality provided by the ReDHead data structure
I refer to Chapter 5.

Figure 6.2 shows the ReDHead data structure’s starting components for the ReDHead
algorithms.

Figure 6.2: Basic ReDHead Data Structure

I decided to implement my own file, project and workspace classes to avoid a lot
of helpers and wrappers. The reason for this decision are experiences of several other
Eclipse plugin projects I worked on that also used existing classes which could not be
adapted or extended directly. These are namely Ruby Refactoring [CFS06] and CDT
C++ Refactoring [Ins].

49

Because I work with Eclipse and CDT, the ReDHead data structure is based on the
resource classes provided from Eclipse and CDT as shown in Figure 6.2. The ReDHead
resource classes add additional functionality which is used by the ReDHead algorithms.

In order to be able to optimize static include analysis, additional information is needed.
An overview over the components which provide this information is given in Figure 6.3.

Figure 6.3: Complete ReDHead Data Structure

Note that the dashed diagram relations require a helper class method in order to find
the related component.

Also note that package names all begin with redhead. This is short for ch.ifs.hsr.redhead,
which is the base name of all ReDHead packages.

The following paragraphs describe the components contained in the class diagram. The
description contains explanation on what other components are required to construct a
component and where ReDHead gets access to it.

Resource Classes
Classes contained in the resource package redhead.resources represent files or fold-
ers used in the ReDHead plugin. All these classes are initiated with their correlating
Eclipse equivalent, which can be accessed through static methods of the Eclipse class
ResourcesPlugin.

Access to ReDHeadFiles is granted by ReDHeadProject instances which themselves
can be found with the help of the ReDHeadWorkspace. The ReDHeadWorkspace is ac-

50

cessible through the Singleton instance of the ReDHead plugin (see Singleton pattern in
[GHJV97]).

Each ReDHeadFile contains the AST that represents the file. This AST is used either
by the file itself to construct ReDHeadDeclarationReference and to return includes or
for individual analysis by any ReDHead algorithm.

C++ Element Classes
The classes in the package redhead.cxxelements encapsulates a certain CDT AST or
index element. Information that is required by ReDHead algorithms considering these
classes can be accessed there.

ReDHeadDeclarationReference

A ReDHeadDeclarationReference can be seen as an abstract AST node representation.
It represents a C/C++ identifier that can be resolved to a ReDHeadDeclaration, which
makes the AST node that it contains an instance of IASTName. ReDHeadDeclaration-
References are accessible through a ReDHeadFile which creates ReDHeadDeclaration-
Reference instances by traversing the file’s AST for certain IASTName instances.
The ReDHeadDeclarationReference to a collection of DeclarationReferenceDepend-
encies.

A ReDHeadDeclarationReference, which represents a C++ namespace name, is in-
stantiated as the subclass NamespaceDeclarationReference, which uses an additional
filtering criteria in the overloaded method getRequiredDependency(). This is required
to achieve the behavior described in Section 5.3 (Figure 5.6).

ReDHeadDeclaration

A ReDHeadDeclaration encapsulates an IName. It is the representation of that AST
node to which a ReDHeadDeclarationReference resolves to. The IIndexName instance,
which is necessary to create a ReDHeadDeclaration, is returned when resolving the
IBinding of the IASTName contained in a given ReDHeadDeclarationReference.

Resolving and acquiring the IBinding is somehow complicated because there are sev-
eral different approaches which need to be combined to find the correct IName instances.

Dependency Classes
Dependency classes represent dependencies between other ReDHead classes. There is
always a origin and a target file involved.

DeclarationReferenceDependency

The DeclarationReferenceDependency class represents a link between a ReDHead-
DeclarationReference and a ReDHeadDeclaration. For its creation, an instance of one

51

of the linked classes, which are described above, is required. The DeclarationRefer-
enceDependency gives access to IncludePaths. The DeclarationReferenceDepend-
ency is the right class for this, because it can get access to both the originating and
target ReDHeadFile of the SourcePaths.

IncludePath

An IncludePath represents one path of include edges from an include ReDHeadFile
to a targetReDHeadFile. This can be seen as the physical design equivalent of a
DeclarationReferenceDependency, which itself a logical design element (see 5.1 for
information about the two designs). The small difference here is, that, as described in
5.5, IncludePath does not contain the originating ReDHeadFile as starting element but
starts with the file that is included.

As can be seen in the Figure 6.3, the elements contained in IncludePaths are not
files, but rather IIndexInclude. These can be used to find both the including and the
included file. Important to know here is, that ReDHead only makes use of the included
file. This gives the advantage that IncludePath instances can be reused and compared,
independent of the file that contains the first include. So as an example, each IncludePath
generated by the code #include <vector>, independent of the file that contains it, is
considered equals.

Note also here, that, instead of IIndexIncludes one could also use IASTPeprocessor-
IncludeStatements. They can basically provide the same information as the IIndex-
Include. In spite of the same functionality, as already mentioned in Chapter 5, they do
not share any common interface or base class.

IncludePaths are always constructed as a collection since there might always exists
several paths from a first included file to a target file. To explain the construction of
IncludPath instances, I must first explain the two subclasses of IncluePath.

Up to now, what was referred to as a include path is actually an instance of Full-
IncludePath. The FullIncludePath contains all the path elements starting with the
first included file. To construct a FullIncludePath the whole include structure, starting
on the originating file, is recursively traversed to find the target file. The traversal
functionality is provided by the CDT indexer.

To minimize construction time of a FullIncludePath, the recursive traversal to find
the target file, in the case of the target file is part of the current project and the traversal
leaves the scope of the current project, skips further traversing outside of the project.
This is done under the assumption that header files, which are not part of the project,
also do not again include headers that themselves are inside of the project.

The second subclass of IncludePath is the FirstLastElementIncludePath. The
clue here is that it only contains the IIndexInclude to the first included file and the
one to the last included file. Most of ReDHead’s algorithm do not care at all about
the elements in between the first and the last one. The CDT indexer can, without any
recursive traversal, deliver all the files which are transitively included through a given

52

originating file. It is clear that path construction here takes much less time in the case
of FirstLastElementIncludePath.

Lazy Loading
For all the above described classes, contained fields which can be retrieved through getter
methods are lazy loaded. So fields are not initialized on object construction but on first
access which prevents the evaluation of unnecessary elements and ensures that evaluation
is only done once.

6.2.1 Data Stores
During the phase of optimizing the ReDHead data structure as described in 9.3 sev-
eral store classes were created to prevent the unnecessary recreation of data structure
elements. These were created to store:

• ReDHeadDeclarations

• IncludePaths

• IncludeSubstitutions as introduced in Section 4.9

• IIndexIncludes

• ReDHeadSuggestions

6.2.2 Clean Up
When setting up data structures which allocate a lot of memory, one needs to make
sure that as much of the occupied memory is released as fast as possible again. In Java,
releasing memory is of course achieved by the garbage collector, however this is only
done with objects that are not referenced anymore. So an important task, after the
ReDHead plugin performed static include analysis, is for the ReDHead data structure
to be cleaned up completely. This implies that all information which is to outlast the
cleanup process cannot contain parts of the ReDHead data structure. This means, that
ReDHeadSuggestion instances cannot keep members such as ReDHeadFiles, AST nodes,
or ReDHeadDeclarationReferences. But still they must be capable to create ReDHead-
QuickFixes that propose solutions for the suggested problems. So what now remains in
ReDHeadSuggestions are names of files and offset locations of nodes which are required
to generate ReDHeadQuickFixes.

6.3 Optimization Algorithms
Figure 6.4 shows the class diagram that demonstrates how the ReDHeadOptimizer works.
The ReDHeadOptimizer uses one or several ReDHadAlgorithms, which’s task is to collect

53

ReDHeadSuggestions. These suggestions each give a hint on anything that is not optimal
when looking at the include structure of the given C/C++ code.

As a sample the class diagram contains the find unused includes algorithm.

Figure 6.4: Optimization Algorithms Class Diagram

Each of the ReDHeadAlgorithms looks at the ReDHead data structure and tries to lo-
cate potential points that could be optimized. The ReDHeadOptimizer gathers all these
points in the form of ReDHeadSuggestions. The UI component which makes use of the
gathered suggestions is the ReDHeadOptimizationRunner which is described in the fol-
lowing section. Often, ReDheadSuggestions also bring along a solution proposal in the
form of a ReDHeadQuickFix that can fix the problem which the suggestion points out.
The following list shows the algorithms which have been implemented during the ReD-
Head project. There will not be any further description on them since their functionality
was already described in Chapter 4 in detail.

• Finding Unused Includes

• Organize Includes

• Directly Include Referenced Declarations

• Find Unused Files

• Static Code Coverage

54

6.4 UI Integration into Eclipse
In this section the classes contained in the package redhead.ui of Figure 6.1 are in-
troduced. For a user centered description of the ReDHead interface components read
Section 7.2.

To add user interface components such as menu entries and markers to Eclipse, one
uses Eclipse’s extension points by adding XML extension tags to the plugin.xml of the
ReDhead plugin.

ReDHead uses the following extension points:

• org.eclipse.help.toc to add the ReDHead user manual to the Eclipse help.

• org.eclipse.cdt.codan.core.checkers to use the CDT’s Codan framework.

• org.eclipse.ui.actionSets to add menu entries to the main menu bar of Eclipse.

• org.eclipse.ui.bindings and org.eclipse.ui.commands to bind the shortcut ctrl+shift-
+o to the auto organize includes algorithm menu entry.

• org.eclipse.ui.perspectiveExtensions to bind the ReDhead Static Analysis main menu
bar additions to the CDT perspective.

• org.eclipse.ui.popupMenus to add pop-up sub-menus to the C++ Project, Project
Explorer and Navigator view of Eclipse.

• org.eclipse.ui.editors.annotationTypes and org.eclipse.ui.editors.markerAnnotation-
Specification To give the ReDheadMarkers a custom appearance.

• org.eclipse.cdt.ui.quickFixProcessors to register the ReDHeadQuickFixProcessor
which links ReDHeadQuickFixes to the ReDHeadMarkers.

• org.eclipse.core.resources.markers to define own ReDHead marker types.

Concrete examples on how these extension points are used can be found in Appendix B.

In the previous section, the ReDHeadOptimizer was introduced. This component is
used by the ReDHeadOptimizationRunner which is invoked through a ReDHeadAction.
The ReDHeadAction is the element which was registered by the extension points org.-
eclipse.ui.actionSets and org.eclipse.ui.popupMenus and is thus bound to the registered
menu items which are also registered through these extension points. The ReDHeadAction
is responsible to find the starting point for the ReDHeadAlgorithms to run. This starting
point is either a ReDHeadProject or a ReDHeadFile.

Whenever the ReDHeadOptimizationRunner is triggered through a click on a menu en-
try and thus a ReDHeadAction, it shows the ReDHeadSuggestions produced by the ReD-
Head algorithms in Eclipse. This is either done by displaying the ReDHeadSuggestion-
Dialog or by adding markers to the CDT editor. The ReDHeadSuggestionDialog is
introduced in 7.2. If the ReDHeadSuggestionDialog is used or not can be configured by
the user. To find out more about this read 7.2.

55

When the user requests quickfixes for any ReDHeadMarker, the ReDHeadQuickFix-
Processor is called, which returns the ReDHeadQuickFix that can solve the suggestion
indicated by a ReDHeadMarker.

Note that the ReDHead annotations, which are introduced in 7.2 and are produced
by the static code coverage algorithm, are in real normal Eclipse markers. The only
difference to others is that annotations have a more customized appearance. So instead
of adding marker icons they just highlight text.

6.4.1 Codan
Above, the extension point org.eclipse.cdt.codan.core.checkers was mentioned. This ex-
tension point is used to register the organize includes algorithm as a Codan checker.
This causes the algorithm to also be triggered while the user is typing.

6.4.2 Problem Feedback
Sometimes, ReDHead algorithms encounter problems during execution. Such problems
are logged, and also presented to the user by using the logging functionality of Eclipse.
To log such problems, IStatus instances are created which are passed to this logging
functionality.

These statuses are then (1) presented to the user after the ReDHeadOptimization-
Runner stopped running and (2) added to the Error Log view of Eclipse.

6.5 Testing
In modern software engineering, one uses automated tests which are run repeatedly
when adding or changing code. During development, the tests are expanded so they also
cover newly implemented functionality. In this section I describe the ReDHead testing
framework and show how a sample test looks like.

A ReDHead test normally runs the following steps:

1. Setup a C++ project to test on

2. Add some testing source and header files

3. Run a method under test, which might be:
• Run an algorithm
• Access elements of the ReDHead data structure
• Access ReDHead dependency classes

4. Check the results on correctness

5. Clean up the project that was tested on

56

Luckily, Eclipse CDT already contains refactoring tests which proceed in a very similar
way as described in the list above. It provides an elegant solution which covers points
1, 2 and 5 from the list above. The ReDHead testing framework thus is an adaptation
of the refactoring testing framework.

To write a new test, one has to provide the source code that will be added to the
project to test on. Additionally, a test class is needed that runs the method under test
and validates the results.

The source code of the testing project is provided in one file in a special file format
which is then interpreted by the testing framework. Here, the file CoverageTest2Many-
Files.rts as an example:

// ! CoverageTest2ManyFiles
2 //#ch . hsr . i f s . r e d h e a d t e s t s . c o v e r a g e t e s t s . CoverageTest2ManyFiles

//@A. cpp
include ” Unused .h”

5 # include ”Used.h”

int main (int argc , char ∗∗ argv) {
8 X x ;
}
//@Unused . h

11 class Unused { } ;
//@Used . h
class X { } ;

Note that the example file contains code segments which represent three small C++
files. The comment //@A.cpp for example signals the start of file A.cpp. The first line
of the listing is the test’s name and the second one denotes the test class which will be
instantiated.

The test class CoverageTest2ManyFiles.java looks like this:

p u b l i c c l a s s C o v e r a g e T e s t 2 M a n y F i l e s e x t e n d s R e D H e a d T e s t {
2

p u b l i c C o v e r a g e T e s t 2 M a n y F i l e s (f i n a l S t r i n g name , f i n a l V e c t o r<T e s t S o u r c e F i l e> f i l e s) {
s u p e r (name , f i l e s) ;

5 }

@ O v e r r i d e
8 p r o t e c t e d v o i d r u n T e s t () t h r o w s T h r o w a b l e {

S t a t i c C o v e r a g e A n a l y s i s A l g o r i t h m a l g o r i t h m = n e w S t a t i c C o v e r a g e A n a l y s i s A l g o r i t h m () ;
List<R e D H e a d S u g g e s t i o n> s u g g e s t i o n s = r u n A l g o r i t h m s (a l g o r i t h m) ;

11
a s s e r t E q u a l s (3 , s u g g e s t i o n s . s i z e ()) ;
S t r i n g e x p e c t e d T e x t I n U s e = ” T h i s d e c l a r a t i o n is in u s e t h r o u g h t h e f i l e A . c p p . ” ;

14 S t r i n g e x p e c t e d T e x t N o t I n U s e = ” T h i s d e c l a r a t i o n is n o t in u s e t h r o u g h t h e f i l e A . c p p . ” ;
a s s e r t S u g g e s t i o n (s u g g e s t i o n s . g e t (0) , ” A . c p p ” , e x p e c t e d T e x t I n U s e , 39 , 41) ;
a s s e r t S u g g e s t i o n (s u g g e s t i o n s . g e t (1) , ” U s e d . h ” , e x p e c t e d T e x t I n U s e , 0 , 12) ;

17 a s s e r t S u g g e s t i o n (s u g g e s t i o n s . g e t (2) , ” U n u s e d . h ” , e x p e c t e d T e x t N o t I n U s e , 0 , 17) ;
}

}

The shown test first instantiates the algorithm StaticCoverageAnalysisAlgorithm
which it wants to test. Then it runs the algorithm and retrieves the proposed ReDHead-
Suggestion. In the second part of the test, attributes of these suggestions are tested on
their correctness.

57

6.5.1 External Include Directories
Per default, testing projects do not contain any references to external include directories.
This also includes the C++ standard library. This makes sense because the testing
project would become machine dependent since there might be different library version
which are installed in different locations.

Nevertheless, tests are required which can validate the correct behavior of the ReD-
Head plugin concerning these external include directories. The refactoring test frame-
work, on which the ReDHead testing framework is based on, however this did not provide
the possibility to specify any such external include directories. After spending a lot of
time to figure out how the CProject instance that was created in the setup phase of
the test could get added such directory paths, I found the correct way to achieve what
I desired. However, CDT’s approach to solve this problem is quiet strange.

p r i v a t e v o i d a d d E x t e r n a l P a t h s () {
2 S t r i n g [] p a t h s = n e w S t r i n g [] {” / p a t h / to / f i r s t / d i r ” , ” / p a t h / to / s e c o n d / d i r ” } ;

T e s t S c a n n e r P r o v i d e r . s I n c l u d e s = a r r a y ;
}

5
@ O v e r r i d e
p r o t e c t e d v o i d t e a r D o w n () t h r o w s E x c e p t i o n {

8 T e s t S c a n n e r P r o v i d e r . c l e a r () ;
}

To make the testing indexer also consider the external directories I want to add, they
do not have to be added to the created instance of ICProject, but rather to the globally
accessible field TestScannerProvider.sIncludes. As can be seen in the listing, the
TestScannerProvider has to be cleared after the test was run in the tearDown method.
I think do I not have to go into detail here to show that this is not a very nice approach
to solve the problem at hand.

58

7 User Manual

A detailed description of the features provided by the ReDHead plugins is given here.
Whereas in Chapter 6 the focus was on the technical implementation details, it is now
on the user centered features. Note that this chapter (1) is readable independently of
the rest of this documentation, and (2) is also contained in the ReDHead plugin itself
as user manual which can be reached under Help -> Help Contents -> ReDHead Static
Include Analysis.

The ReDHead plugin is a static source code analysis tool for C++ projects with
the focus on include structure optimization. This help provides information about how
the plugin is used, about its functionality and how results are presented to the C++
developer.

The ReDHead Help contains the following sections:

• Introduction 7.1

• Usage 7.2

• ReDHead Code Analysis Algorithms 7.3

• How ReDHead Analysis Works 7.4

7.1 ReDHead Introduction
The ReDHead plugin is a static source code analysis tool for C++ projects with the focus
on include structure optimization. The name ReDHead means Refactor Dependencies
of Header Files.

Target is to support a C++ developer in the task to design the include structure in a
given project. The programmer is provided with suggestions which will help him in an
easy way to improve the include structure of his project.

Improving the include structure of a big C++ project is a very tedious and also
delicate task which consumes a lot of time. The process of improving and cleaning up
of the include structure is crucial to maintain the overview in a project and to minimize
compile time. A very time consuming task is, for example, finding unused includes in
source and header files. In complex systems, it is practically impossible to detect if an
include directive is still in use or not.

The aim of ReDHead is to assist the user in this challenge and heavily reduce time
consumption.

59

The help section Usage 7.2 describes how the ReDHead plugin can and should be used
and how that is achieved. The section ReDHead Code Analysis Algorithms 7.3 gives a
detailed description about the available algorithms and the suggestions they propose.
The last section How ReDHead Analysis Works 7.4 gives a general insight into what the
ReDHead Plugin does and how static include code analysis is achieved in Eclipse CDT.

7.2 Usage
This section of the ReDHead help shows how a programmer can make use of the include
structure optimization algorithms provided by the ReDHead plugin. The description
includes information on how to trigger a ReDHead algorithm and on how the outcome
is presented to the user.

Running a ReDHead Algorithm
A ReDHead algorithm can be started in two different places. Either through the main
menu-bar entry, which is visible when the C++ perspective is active.

60

Or through the pop-up menu accompanying a source or header file or a C++ project
in either the C++ Explorer, the Project Explorer or the Navigator Eclipse view.

As can be seen in the sample screenshot, some of the algorithms can not be started
on a project. These can only be triggered if the focus is either on a source or header file
in the C++ Explorer, Project Explorer or Navigator, or inside of an open C++ editor.

61

Visualization of ReDHead Suggestions
As already mentioned, ReDHead algorithms produce suggestions that provide informa-
tion on the given code. These suggestions will be visualized either in the ReDHead
suggestion dialog or they will be shown in the C++ editor in the form of markers or
annotations.

ReDHead Suggestion Dialog

The ReDHead suggestion dialog will show up with almost all algorithms, but only if the
Show Analysis Result in Dialog checkbox menu entry is enabled. Note that this checkbox
menu entry is only available through the main menu-bar entry (first screenshot above).

The ReDHead suggestion dialog will not show up when running Static Code Coverage
or Auto Organize Includes.

In the suggestion dialog one can choose how to proceed. There are options to apply
to all the suggestions or only to these that are checked in the suggestion tree on the left
side.

62

ReDHead Suggestion Markers

ReDHead suggestion makers show up in the editor as normal markers with one of ReD-
Head’s icons.

ReDHead Annotations

Annotations are added to the editor when running Static Code Coverage on a C++
project.

Applying Proposed Suggestion Solutions
Almost all of the ReDHead suggestions bring along solution proposals (called QuickFix)
which can be applied on a given document to resolve the issue. These solution proposals
will be shown by putting the cursor on a line containing a marker and pressing ctrl+1.

63

After applying a quickfix on a document, the document will be adapted according to
the current suggestion and the marker will be removed.

Deleting ReDHead Markers

There are two ways to get rid of ReDHead editor markers (without applying them). To
delete one or several specific markers one can use the the Problems view of Eclipse.

To delete all ReDHead markers, choose Remove all Static Analysis Markers from
the ReDHead menu. In addition it is also possible to remove all static code coverage
annotations from a project.

Codan Integration
In the subsection CDT Codan Integration 7.2.1 you can find a description on what the
Codan framework is, on the integration of ReDHead into the Codan framework and how
the integration can be configured.

7.2.1 CDT Codan Integration
CDT Codan [cod09], which stands for code analysis, is the CDT framework for static
code analysis. If provides other Eclipse plugins such as ReDHead with the possibility
to analyze C++ code while the user is typing. The Codan framework [cod09] allows to
analyze C++ code while the user is typing. ReDHead brings along an Organize Includes
implementation for the Codan framework. So as long as the ReDHead Organize Includes

64

Codan implementation is active, markers which propose to add and remove include
directives will appear automatically when C++ programmer is typing.

Configuring Codan

The Codan Organize Includes can be enabled and disabled under Window -> Preferences
-> C++ -> Code Analysis -> ReDHead Organize Includes.

7.3 ReDHead Code Analysis Algorithms
This help sections describes each ReDHead algorithm provided in a subsection. To find
out how to use ReDHead algorithms read section Usage 7.2.

This ReDHead Help section contains the following subsections:

• Find Unused Includes 7.3.1

• Organize Includes 7.3.2

• Auto Organize Includes 7.3.3

• Directly Include Referenced Declarations 7.3.4

• Find Unused Files 7.3.5

• Static Code Coverage 7.3.6

7.3.1 Finding Unused Includes
The Find Unused Includes algorithm analyzes either a whole C++ project or a single
source file to find all #include-statements which are not necessarily required. Consider
the following example:

include <vector>
include <s t r i n g>

3
int main () {

std : : string s ;
6 }

Clearly the first include directive is not needed here. When running the Find Unused
Includes algorithm on the sample code it will suggest the removal of the first include as
shown in the following screenshot.

65

7.3.2 Organize Includes
The Organize Includes algorithm analyzes a single file and tries to make all necessary
suggestion so that the file will then compile without giving any warning of the type ”XY
was not declared in this scope.”. In addition it will suggest the removal of all unnecessary
includes. Consider the following example:

include <vector>

3 int main () {
std : : string s ;

}

When running the Organize Includes algorithm on the sample code it will suggest the
removal of the currently existing include and the insertion of an include directive to
<string>).

7.3.3 Auto Organize Includes
The Auto Organize Imports proposes the same suggestion as the Organize Imports 7.3.2
algorithm. But it does not add markers or shows the ReDHead Suggestion Dialog.
Instead of that, it automatically applies all the solution proposals to the generated
suggestions. To each automatically applied change an info marker is added so the user
can track the applied changes and also revert them if he likes.

To use this feature as fast as possible, it is also bound to the shortcut ctrl+shift+o.

66

7.3.4 Directly Include Referenced Declarations
Directly including referenced files will suggest to add an include directive to each header
file that defines a type that is used in a file under consideration.

This will alter the include structure of a project in favor of the reduction of include
dependencies, coupling and compile time.

A detailed description why directly directly including referenced files is useful can be
found in the book Large-Scale C++ Software Design [Lak96] by John Lakos on page
113.

As an example, consider the following C++ project graph:

Note that the blue relations (arrows) between the files (boxes) represent include direc-
tives in the originating file which includes the target file. Red dashed arrows represent
dependencies to declared types in header files.

67

The result, when running the algorithm on the file main.cpp and then on the file
other.cpp is shown in the two following figures.

68

7.3.5 Finding Unused Files
The Find Unused Files algorithm always analyzes a whole project for files that are not
used at all. Files that are not in use can eihter directly be removed with the help of the
ReDHead Suggestion Dialog or marked as unused in the corresponding files.

As an example, consider the following C++ project:

When running the Find Unused Files algorithm, the file Unused.h will be proposed to
be removed as can be seen in the screenshot.

69

7.3.6 Static Code Coverage
The Static Code Coverage algorithm analyzes a whole C++ project and helps the pro-
grammer gain insight into which parts of his code are effectively used and which are not.
Compared with other code coverage tools, ReDHead does not need to run the code itself
to find unused parts.

The Static Code Coverage algorithm can run in two different modes. In the main-
mode, where a main() function is present in the project, only the main function and
global variables are used as starting point. In the library-mode, where a main() function
is not available, all declarations in source files are used as starting point.

The Static Code Coverage algorithm can decide for itself in which mode it will run,
depending on the presence of a main() function. Consider the following example code:

1 void bar () { }

int foo () {
4 return 42 ;
}

7 void nothing () { }

int main () {
10 bar () ;

}

13 int x = foo () ;

Since a main function is available here, the algorithm will run in the main-mode. This
means the starting point consists of the main function and the definition of the int x.
The functions foo and bar are reachable through the starting point, whereas nothing is
not. So the result, as can be seen below, marks all the declarations expect the nothing
function as used.

70

7.4 How ReDHead Include Analysis Works
All the ReDhead static include analysis algorithms are based on the ReDHead data struc-
ture which is constructed with code information obtained from the CDT AST (Abstract
Syntax Tree) and the CDT Indexer. The ReDHead data structure contains several types
of elements which are introduced in the following subsections.

Some of the element types’ descriptions will make use of the graph in the following
image on the right hand side. On the left hand side, the C++ source code that produced
the graph is given. Element labels in the graph that end with square brackets which
contain a number (e.g. [7]) indicate that the element belongs to this source code line.

File
A file represents the physical file that is present on the file system. In the graph im-
age above it is represented as a box. The file elements provide access to the include
dependency and declaration reference elements.

Include Dependency
An include dependency represents an include directive that is a link between an including
file and an included file. It is represented in the graph as a solid blue arrow. The element
grants access to both the including and the included file and to the include path element
which is described bellow.

Declaration
A declaration element represents a normal C++ declaration (class forward declaration,
variable declaration, typedef, class declaration, etc.). Note that a C++ definition is
always also a declaration. In the graph, a declaration is represented as a green box.

71

Declaration Reference
A declaration reference represents any C++ element that references a declaration. This
can for example be the name of a class, a variable name or a function name. A declaration
reference grants access to the declaration reference dependency element. In certain cases,
a declaration reference gives access to several declaration reference dependencies. In the
graph, a declaration reference is represented as a red circle.

Declaration Reference Dependency
A declaration reference dependency is the link between a declaration reference and a
declaration. Through the declaration reference dependency ReDHead algorithms can
gain access to include path elements. Sometimes there are several such elements returned
by a declaration reference dependency. The declaration reference dependency element is
represented in the graph as a red, dashed arrow.

Include Paths
An include path is a list of include directives which lead from a declaration reference to
a declaration. Include paths are not directly visible in the graph above. But they can be
seen as a combination of several blue arrows.

Note that the term include path does not refer to what is known as include path that
is passed to a C++ compiler and is actually the name of a directory that contains C++
header files.

Example Algorithm Run
A ReDHead algorithm starts in a given point, which is either a C++ file or project
and scans the ReDHead data structure for certain parts of information it is looking for.
It could for example look for declaration reference dependencies which do no yield any
include paths (which means that we are missing an include directive).

In the end, the algorithm assembles a collection of suggestions which are then presented
to the user. The necessary information on where an Eclipse editor marker should be
placed or where a solution should be inserted can be obtained form the collected data
structure elements.

72

8 Market Analysis

This chapter gives an overview of the market of all C++ static code analysis tools. Note
that only a part of these tools mentioned in the following table compete with the Eclipse
ReDHead plugin. Most of them do not provide static include analysis features but
rather other static analysis features. The list ranges form academical to commercial,
open source, etc.

St
at

ic
C

od
e

A
na

ly
si

s
(n

on
-i

nc
lu

de
)

R
es

ol
ve

D
ep

en
de

nc
ie

s

V
is

ua
liz

e
D

ep
en

de
nc

ie
s

F
in

d
U

nn
ee

de
d

In
cl

ud
es

O
rg

an
iz

e
In

cl
ud

es

C
od

e
C

ov
er

ag
e

O
nl

y
C

P
la

tf
or

m

ID
E

In
te

gr
at

io
n

O
ut

-D
at

ed

C
om

m
er

ci
al

Cppcheck X × × × × × × W & L X × ×
Dehydra × × × × × × × L × × ×
Pork × × × × × × × L × × ×
Treehydra × × × × × × × L × × ×
Mygcc X × × × × × × L × × ×
CodeSonar X × × × × × × W & L × × X

Coverity Static
Analysis

X X × × × X × W & L X × X

Klocwork Insight X X × × × × × W & L X × X

PolySpace X × × × × × × W & L X × X

PC-Lint / FlexeLint X X × X × × × W & L X × X

C++lint X X X × × × × W & L X × X

QA·C++ X × × × × × × W & L X × X

Safer C X × × × × × × W & L × X ×
Goanna X × × × × × × W & L X × X

Splint X × × × × × × L X × ×
AbsInt X X X × × × × W & L × × X

Uno X × × × × × × ? × X ×
LDRA Testbed X X × × × X × W & L × × X

Parasoft C/C++
Quality Solution

X × × × × × × W & L X × X

73

St
at

ic
C

od
e

A
na

ly
si

s
(n

on
-i

nc
lu

de
)

R
es

ol
ve

D
ep

en
de

nc
ie

s

V
is

ua
liz

e
D

ep
en

de
nc

ie
s

F
in

d
U

nn
ee

de
d

In
cl

ud
es

O
rg

an
iz

e
In

cl
ud

es

C
od

e
C

ov
er

ag
e

O
nl

y
C

P
la

tf
or

m

ID
E

In
te

gr
at

io
n

O
ut

-D
at

ed

C
om

m
er

ci
al

PVS-Studio X × × × × × × W X × X

Cantata++ X X × × × X × W & L X × X

Logiscope X X × × × X × W & L × × X

Visual Assist X X X × × × × × W X × X

IncludeManager X X only
includes

× × × × W X × ×

CScout Refactoring
Browser

X X × × × × X W & L × X ×

Eclipse CDT X X includes
as tree

× × × X W & L X × ×

Note that in the content of the column Platform, W refers to Windows and L refers
to Linux and Unix like platforms.

Also note that there are projects lists which can be used to perform static analysis, but
do only provide directly usable features. This means that, before being able to use, the
user has to provide some kind of script, which then is used to perform customized static
analysis. Because of that, such features to not have a check mark in the the column
Static Code Analysis (non-include).

The list given above can also be found in the ReDHead wiki http://redhead.ifs.
hsr.ch/wiki/SimilarTools. The list given there also contains links to the tool’s home-
pages.

For a list of tools which directly compete with the features of ReDHead, I refer to the
Chapter 5 in [Fel09].

8.1 Similar CDT Features
Also CDT itself contains some limited static code analysis itself. These are, on the one
side, the build output which is parsed and added to the CDT editor in form of makers.
Additionally to this, the newest version of CDT also brings along some rather simple
Codan checkers. These are listed in the following list:

• StatementHasNoEffectChecker

• CatchByReferenceChecker

• NamingConventionFunctionChecker

74

http://redhead.ifs.hsr.ch/wiki/SimilarTools
http://redhead.ifs.hsr.ch/wiki/SimilarTools

• NonVirtualDestructor

• SuggestedParenthesisChecker

• AssignmentInConditionChecker

75

9 Challenges

During the development of the ReDHeadPlugin, some tasks were especially hard to
complete. The most noteworthy of these tasks are described in this chapter.

9.1 Adapting the CDT Index
Normally, the CDT indexer is aware of all the C++ code which is somehow reachable
through any of the source files which are contained in a project. This means that all
the headers which are included into any source file are represented in the CDT index.
However, headers which are not included in any way are not represented in the indexer.
This is even true for header files that are contained in the current CDT project itself.

For the ReDHead plugin, this brings forth the problem that when using a type in any
file, even if a type is declared inside of a header file in a given project, there will be no
suggestion generated to include this header file because the relation from the usage of
the type to its declaration is not possible due to the indexer’s ignorance of the header
file.

For header files present in the current CDT project, this issue can be solved easily
because the indexer can be configured to also index all header files. However, this does
not remove the whole problem since the ReDHead plugin is also supposed to be able to
propose includes to external header files. This can be header files of the C++ standard
library or any other header which is contained in one of the include directories that is
linked to the CDT project.

Also, the remaining problem can be solved thanks to the indexers capability of indexing
certain specified file up-front. Files to parse up-front can be configured as a property
of a project’s indexer. So the solution to make all types known to the indexer that are
not located inside of the project itself is, to add all the external header files to this list.
The list of course grows very long since only the C++ standard library (version 4.4)
already contains about 4’600 header files. Often, there are also several other libraries
included which lets the list grow again. Parsing all these files takes a lot of time of
course. The good thing here is, that the adaptation of the index is persistent so that it
is only necessary one for a project.

So the ReDHead plugin adapts the index of a project by letting the indexer parse all
the files, which are contained in any include directory or sub-directory that are known to
a CDT project. An instance of ICProject is capable of returning all these directories as
instances of IIncludeReferences. By recursively traversing each of these directories, a

76

list of all contained files is created and provided to the projects index as parse up-front
list. Then the indexer needs to be re-indexed once.

This adaptation of the index does, up to now, happen implicitly when any ReDHead
algorithm is run. Re-indexing the whole indexer each time an algorithm is run is of
course suboptimal. Because of that, before the index is adapted, it is checked if the
adaptation is possible at all.

9.2 Synchronism of CDT Index and AST
The CDT Codan framework triggers implemented checkers while the user is typing. The
AST which is passed to the checker to be examined is created with the current content
of the open editor. This means that the contained node is up-to-date, even if the file
that is edited has not yet been saved. The problem which here arises, is that changes on
files which have not been saved, are also not yet represented in the CDT indexer. This
results in the fact, that whenever a codan checker makes use of the CDT indexer, the
information that it contains might be outdated. The state of the AST and the indexer
thus is not necessarily the same during the Codan checker’s work. This can, for example,
result in a list of includes returned by the indexer which is bigger or smaller than the
list which is returned when accessing the same list trough the AST.

The result of this effect is, that static analysis which is done by also using the index
instead of only the AST, can yield results which are totally wrong. To approach this
issue, I reported the problem as a bug of CDT. Sadly, the bug ticket has already been
closed as WONTFIX with hint that one must consider the possibility that node position
returned by the index might not be up-to-date and thus the node positions of the AST
should be used because they are up to date. The possibility of added or removed nodes
has somehow skipped the CDT developers’ attention.

9.3 Algorithm Performance
When I first implemented the ReDHead data structure and some of the ReDHead algo-
rithms, my main focus was to develop well designed code that produces correct results
on the various, but small code samples which form the ReDHead test suite. The tests
represent the various features and possibilities well. The only thing that these small
artificial code fragments can not do is representing a real world C++ project which
comprises a large amount of code.

To test the result of the ReDHead algorithms, I used a real C++ project which is under
development at the Institute for Software in Rapperswil. The first few runs were a bit
disillusioning because the algorithms, even when initiated only on a single file, performed
very badly both in means of memory and execution time. A run the find unused includes
algorithm on one code file took more than five minutes and used more than one gigabyte
of memory. When the algorithm was triggered on the whole project, after running for

77

more than half an hour, the algorithm was interrupted by an OutOfMemoryError because
the two gigabyte memory which were available for the application were exhausted.

Clearly, the ReDHead plugin was in dire need of some performance optimization. Dur-
ing the following work to make ReDHead perform better, memory usage and execution
time were regularly measured to judge the achieved advancement. Before presenting
these measured numbers, following some numbers on the previously mentioned C++
project. Measurements were performed either on one specific single file or on the whole
project. The file contains 200 line of C++ code (while skipping comments and empty
lines). The whole project consists of about 190 source and header files, totaling to about
30’000 lines of C++ code.

The following tree charts give an overview on the performed measurements. The first
two Figures 9.1 and 9.2 show the execution, first of the single file and then on the whole
project. The third Figure 9.3 shows the memory usage of both the file and project runs.
Each dot on a chart line represents a measurement. Sometimes, measurements where
only taken for either file or project. In this case some dots are missing. These remaining
spaces on the line are necessary, so that the chronological order between file and project
measurement is still evident.

Figure 9.1: Execution Time Single File

The peak which arises from measurement 13 and 14 was the adaptation toward first-
last-element include pahts based on IIndexs which was introduced in 6.2. This adapta-
tion, including adequate caching mechanisms, was finished at measurement 15. When
comparing measurement 9 and 15, it becomes obvious that the adaptation was prosper-
ous.

78

Figure 9.2: Execution Time Project

The measurements on the whole project do only start at index 3. The reason for
this is that before, the running of the find unused includes algorithm did not terminate
successfully due to the already mentioned OutOfMemoryError.

Figure 9.3: Memory Usage

All the memory measurement shown in Figure 9.3 do also cover the memory consump-
tion of the testing Eclipse instance as well. The consumption of the Eclipse application
is roughly 50 to 80 megabytes.

As can be seen in the charts, the performance gain is fortunately very big. To makes
this possible, several changes have been introduced. Firstly, a lot of caching was added
so that none of the ReDHead object which can be seen in Figure 5.1 are instantiated
more than necessary. To show how important this is, the following list contains some

79

information on this.

• Instantiations of ReDHeadDeclarationReferences was reduced to 37%.

• Instantiations of IncludePaths was reduced to less than 1%.

• Instantiations of ReDHeadDeclarations was reduced to less than 30%.

Further optimal improvements have been achieved by optimizing the iterations during
the creation and traversal of the ReDhead data structure. To give an example, ReDHead
now often uses iterators of Java collection which allow to remove the current element
instead of collecting elements to remove in order to prevent a ConcurrentModification-
Exception.

Also, a lot of bugs have been fixed among which the most severe one caused the
memory consumption to raise exponentially.

Also noteworthy here is that all the measurements have been taken directly after the
the testing Eclipse instance was started. Due to caching in the CDT indexer, if one
re-runs an algorithm after a first launch, the execution time is lowered again by 35 to
50 percent.

9.4 Preprocessor Problems
While creating ReDHeadDeclarationReferences of a given file, ReDHead needs to lo-
cate all IASTName instances which can be found in the AST of the file. This process
proved to be more complex than I initially thought of, because it is quite complicated
to get all these IASTNames. Most names can be found easily enough by using a visitor
to traverse the AST.

When it comes to preprocessor nodes, which also are represented inside of the AST the
visiting behavior of CDT becomes a bit strange because preprocessor-related names, for
example macro function calls or preprocessor symbols, are not visited. Some instances,
like for example IASTPreprocessorFunctionStyleMacroDefinition or IASTPrepro-
cessorIfdefStatement, contain a getter method for its IASTName, the accept() method
which would be responsible to initiate a visitor to visit the visitName() method with
that name is not even overloaded.

It gets even more complicated when it comes to instances of IASTPreprocessorIf-
Statement and IASTPreprocessorElifStatement. These instances are not able to
return any contained IASTNames directly. The only way I could figure out to get all
required IASTNames out of these instances is shown in the following code listing.

80

private static void addAllChildNamesHack (IASTPreprocessorStatement node) {
2 IASTNodeSelector selector = node . getTranslationUnit () . getNodeSelector (null) ;

int curOffset = node . getFileLocation () . getNodeOffset () ;
int endOffset = curOffset + node . getFileLocation () . getNodeLength () ;

5 IASTName name = null ;
do {

name = selector . findFirstContainedName (curOffset , endOffset − curOffset) ;
8 if (name != null) {

foundName (name) ;
if (name . getParent () instanceof IASTPreprocessorMacroExpansion) {

11 IASTPreprocessorMacroExpansion expansion = (←↩
IASTPreprocessorMacroExpansion) name . getParent () ;

for (IASTName nestedName : expansion . getNestedMacroReferences ()) {
foundName (nestedName) ;

14 }
}
curOffset = name . getFileLocation () . getNodeOffset () + name . getFileLocation←↩

() . getNodeLength () ;
17 }

} while (name != null) ;
}

I think it is obvious that this is a very strange way to offset-crawl a given IASTPrepro-
cessorStatement to reach the contained IASTNames. Noteworthy here is, that the
IASTNames returned by getNestedMacroReferences() in listing line 11 are not found
by the selector object and thus need to be considered as shown in the listing.

Vast Amount of CDT and Eclipse Code
To find certain information, it could not be avoided that I had to browse the vast amount
of CDT’s and Eclipse’s implementation. In general this code is well designed and also
easy to read and understand. The crux however lies in its extent. There is so much code
that one can spend hours trying to find a certain thing. Often one then discovers that,
had one looked at “the other” code section first, it would only have taken some minutes
to find. Such incidences can probably not be avoided, but can still be very unnerving.

Resolving Declaration References
Resolving a declaration reference to its declaration means in the CDT code to resolve one
IASTName to another IASTName. To do so in the normal cases is very simple. I however
soon discovered that there are many different ways to do so and that for many different
scenarios another approach is required to resolve the dependency. After inspecting a lot
of CDT code, I found that the method runOnAST in the class OpenDeclarationsJob was
the right spot to begin searching. What I discovered there, was that the steps performed
to find the target IASTName is a huge mess of different ways with scores of loops, if-then-
else statements, casts and much more to get only one other IASTNode. After spending a
lot of time to find out all of this, I was able to do the resolution I required to fulfill my
test’s requirement. It was not necessary to re-implement all of these ways that I found.
This can be positive and also negative. Either some of the CDT code is old and was

81

not yet removed because no one was sure if it really can be removed, or I will find other
scenarios in the future which will force me to re-implement also all or some of these
remaining ways.

82

10 Outlook

In the future, the development of the ReDHead Eclipse plugin will go on. There is a
good chance that the plugin might get a commercial product distributed by a partner
company.

However, the ReDHead plugin is far from finished. The following sections in this chap-
ter list tasks that have not yet been achieved in the ReDHead master thesis. The tasks
are grouped into features that can be improved and other ones that are still completely
missing.

10.1 Improvements
Improve accuracy of static code coverage
The static code coverage algorithm is not precise enough when it comes to the instanti-
ation of types. Regard the following example code listing.

struct X {
2 X () ;

X (int i) ;
} ;

5
X x (42) ;
X ∗pX = new X (7∗6) ;

Running the static code coverage algorithm on the sample given above, it will mark all
the constructors and also their implementation as used. Of course this is not completely
correct here.

The reason for this is that the the CDT AST does not contain a IASTName node which
refers to the constructor calls. One could argument that such a IASTName is obviously
not be required because the name of the second constructor is not used in the term
x(42)). Nevertheless, without this IASTName, there is no way to let the CDT indexer
resolve the relation to the second constructor which clearly exists in the mentioned term.
The IASTName instance which is created in the initialization new X(7*6) however, refers
to the correct constructor.

The static code coverage algorithm now just treats all the constructors, and also the
destructor, if one exists, as used because otherwise all of these would be marked as
unused which in almost every case leads to wrong results. This approach is for certain
scenarios not accurate enough. The listing given above without the last code line is such
a case.

83

I see three possible solutions for this problem. The first is to file a CDT bug and
hope that they will introduce the additional mentioned IASTName to the CDT AST. The
second solution is to extend the ReDHead data structure that it manually finds such
problems when constructing DeclarationReferenceDependencies. The last solution
would be to add special checking functions to the static code coverage algorithm which
are aware of this problem and navigate manually to the required constructor to mark it
as used.

Both latter solutions of course are suboptimal and would slow the ReDhead algorithms’
execution.

Make ReDHeadSuggestionStore persistent
Suggestions that are created by a ReDhead algorithm get stored in the ReDHeadSug-
gestionStore. At the current time, these stored suggestions get lost when Eclipse is
shut down. A useful enhancement thus would be to make these suggestions persistent
so that possible suggested solutions could still be applied after Eclipse was restarted.

Check for Includes to add when proposing to remove one
The problem at hand here was already explained in the the description of the algorithm
directly include referenced includes 4.3. Suppose a code file A relies upon B to include
C. In the case that the remove unused includes algorithm proposes the include to C to
be removed because it is not required anymore there, A will not have an include path to
C anymore. So an improvement for the find unused includes algorithm would be to also
propose to add an include to C in file A alongside of the proposal to remove the include
to C from B.

Complete directly include referenced declarations
The directly include referenced declarations algorithms proposes to add include direc-
tives to all the files which contain referenced declarations. When applying all these
suggestions, the situation might arise, that some of the already existing includes in the
file under consideration are not needed anymore. So, as already described in the pseudo
code in Section 4.3, the directly include referenced declarations algorithms should propose
includes, which become useless after applying all suggestion solutions, as removable.

Make find unused includes compatible to directly include referenced
declarations
The problem here is demonstrated on the graphs in Figure 10.1

When applying the directly include referenced declarations on the graph in the left-
hand side of the figure, one is suggested to add an include to the file labeled C. After
applying the suggestions solution one gets the graph in the right-hand side of the figure.
When now running the find unused includes algorithm on the graph on the right-hand
side it proposes to remove the just added include to the file labeled C again.

84

Figure 10.1: Compatibility Problem

Both the algorithms work perfectly right. Thus both the suggestions to once remove
and once add the include are no false positives when only considering the task of each
of the applied algorithms. Nevertheless, find unused includes should be configurable to
not propose includes which directly include a referenced type to be removed.

Organize includes should also propose forward declarations
The organize includes algorithm suggests to add additionally required include directives.
Whenever it is enough, it suggests to include a file that only contains a forward decla-
ration of a referenced type. Instead of suggesting this, it would be even better to just
propose to add the forward declaration itself instead of including one. It is obvious that
this would not reduce the coupling of the file current file.

Organize includes should also propose the removal of forward declarations
The last section suggested to improve the organize includes algorithm by the capability
to propose the insertion of forward declarations of types. Furthermore, it would also
be useful if it could propose forward declarations to be removed in the case when it is
not used anymore. Once it does, one should consider to change the algorithms name,
because it does not exactly organize only includes anymore.

Not adapt the CDT indexer automatically
During the testing phases of the ReDHead plugin, it became clear that adapting the
CDT indexer automatically as described in 9.1 when a ReDHead algorithm is run, is
not the optimal solution. The machine on which I developed ReDHead has a solid state
hard drive (SSD) which is about tree time faster than a normal hard drive. Due to this,
I underestimated the time which is required to (1) rebuild the index and (2) check if a
index adaptation is even necessary. When testing on an older notebook with projects
that link to include directories of several external libraries, it came clear that adapting
the index takes far more than a minute. Also testing if an adaptation is necessary alone
took almost up to a minute.

85

So a better way of adapting the index would be to trigger the process by the user
manually with the help of a menu entry.

Prevent index adaptation for each project
Often, a CDT Eclipse workspace contains many projects which themselves depend on
each other. Each of these projects often depend on the same external libraries. During
the adaptation of a projects indexer as described in 9.1, each project belonging to one
project indexes all these external library header, independently if they have already been
indexed by the indexer of other projects. When indexing the whole standard C++ and
boost library’s headers more than ten times, a lot of unnecessary time will be wasted
when waiting for the re-indexing task to complete.

A good thing here would be to have a common indexer which can be shared among
projects, which contains information about all these external headers which are con-
tained in every newly created C++ project. The CDT IIndex instances already work in
composite way. This means that one can, by using the static methods of CCorePlugin,
request one IIndex instance which actually encloses the indexes for several projects. If
such a common indexer, as I suggested, exists, one could easily achieve that when re-
questing the index for one project, a composite indexer that combines both the indexer
of the project and the common one.

Make index adaptation configurable
Instead of letting the indexer index every include directory known to a project, the
directories, of which all files are added to the indexer, should be configurable by the
user. This would help shorten the adaptation time since the header file, for example of
the C++ standard library, are often included several time in different version, whereof
of course only the newest is used.

Markers should be clickable
As described several times before, the user needs to press ctrl+1 to show available
quickfixes for a ReDHead marker. It is not possible to just click with the left mouse
button to see the available quickfixes. Since for makers in the Java editor this is possible,
it should also be available for ReDHead markers.

#pragma, #define and #undef directives
#pragma, #define and #undef statements in file A can in certain situations have an
impact on all include files which are included after such a statement. The bad thing
here is, this can not only be headers which are included after the statement under
consideration in file A itself, but also file B which contain an include to A or files that
are included into B after the include to A.

The problem that arises here, is that it is practically impossible to decide, if adding
or removing an include to such a file A has any impact on other files or not. A valuable

86

enhancement for ReDHead would be to inform the user about this possible impacts
by pointing out that there might be unwanted side effects when adding or removing a
certain include directive as proposed by a current suggestion.

Type incomplete type names should be resolvable
When opening an empty C++ file and typing mytype t;, the organize includes algo-
rithm is not capable to help because the name of the type mytype is incomplete. only
the code in one of the following listings can make use of the organize includes algorithm.

using namespace mynamespace ;
2 mytype t ;

1 mynamespace2 : : mytype t ;

It would be very nice if ReDHead was capable of proposing one out of several includes
to one out of all types which map the incomplete name mytype. The crux here is, that
the CDT indexer will probably help in solving this problem.

User problem feedback
During traversal of the ReDHead data structure by any ReDHead algorithm, there are
some kind expected problems which might occur. This can for example be includes or
declaration references that cannot be resolved to the target file or the declaration. Such
problems are at the moment reported to the user with the help of the IStatus logging
support of Eclipse. In the case of such problems, after the algorithm finished running,
a pop-up dialog is presented by Eclipse which contains problem messages which were
constructed by ReDHead.

In the case when algorithm results are presented in the ReDHeadSuggestionDialog
this Eclipse pop-up dialog is only shown after the suggestion dialog has been closed
again. This is of course suboptimal since the user should get notified about these poten-
tial problem before he decides to apply all quickfixes directly in the suggestion dialog.
A helpful enhancement would be to integrate the created problem messages into the
ReDHeadSuggestionDialog.

Configurability of include substitution
The include substitution feature which is described in 4.9, right now only works for the
standard C++ library’s headers. Since this feature would also be useful for the headers
of other libraries, it should be adaptable by the user in a ReDHead properties page.

Add support for polymorphic member function calls to static code coverage
The ReDHead data structure does not yield any declaration reference dependencies when
resolving a declaration reference in file F1 of a member function M1 which is declared

87

virtual in class C1 to an overridden member function in a deriving class C2. On first
sight, this looks like a bug. It is not though, since when for example determining which
header files need to be included into F1, it would be wrong to propose an include to the
file containing C2.

This now yields the problem, that the static code coverage algorithm does not mark
all overriding member function of M as used, but rather only the member function M
of the base class.

I see two approaches to solve this problem. The first is to make the ReDhead data
structure configurable so it can handle both required situations by yielding declaration
reference dependencies to overloading member function for the static code coverage al-
gorithm, but by yielding only one dependency to the base class for all other ReDHead
algorithms. The second approach is to make the static code coverage algorithm aware
of the problem and have it construct additional dependencies to overloading member
function.

10.2 Unimplemented Features
10.2.1 ReDHead include tag cloud
A tag cloud is a cloud of words or terms, where each term has a custom font size
depending the amount of use of the given file. These different sized terms are arranged
to form a cloud of words. When looking at such a cloud, one can get a limited, but still
nice overview on the focal point of the cloud. So an include tag cloud would visualize
all the includes which are contained in a project as such a cloud, which helps the user
to realize within seconds the mainly used files in his project. It can also help to detect
coupling in physical design.

10.2.2 ReDHead graph view
A tree view which visualizes declaration reference dependencies or include dependencies
is in my point of view a very valuable feature. I was not able to spend any time on this
feature yet and thus added this point to the Chapter Outlook 10.

10.2.3 Implement further algorithms
In this project, not all of the algorithms proposed in Chapter 4 were implemented. One
of the major goals in a future work will be to implement further algorithms and enhance
the existing ones. The following list shows the algorithms that are yet to be implemented:

• Replace includes with forward declarations 4.6

• Introduce redundant include guards 4.7 which is described in detail also in [Lak96]
on page 85.

88

10.2.4 Combine compile configuration results
The rather vague idea that is described here is to, instead of running static analysis with
only one compile configuration (see 3.1.1), run it with several ones. Compile configura-
tion-specific ReDHead data structures could then be compared to gain a more detailed
insight into the include structure of a given project.

89

A Continuous Integration Setup

In this section you can find a detailed description how the ReDHead continuous integra-
tion environment is set up.

A.1 Continuous Integration Introduction
When changing existing software one should always make sure that one does not break
any existing features while adding or changing others. To not put ones luck to the
test using continuous integration [Fow] is crucial. In continuous integration, the whole
project is built periodically and automated tests are run on the server to make sure that
a software project is running properly.

This task is mastered by the build server Hudson [Sun] which observes the Git repos-
itory and builds the ReDHead plugins and this documentation automatically when the
repository was updated. Then it triggers the automated ReDHead project tests. The
result is published on the ReDhead webpage http://redhead.ifs.hsr.ch/hudson/. I
myself am notified about success or failure through my RSS feed-reader.

A.2 ReDHead Project Server
The build server used in the ReDHead project is a virtual server provided by HSR. The
following sections describe the software component which are running on the server and
provide some notes on the setup.

A.2.1 Git
To maintain the ReDHead repository, Git [Git] is running on the server. Setting up Git
on the remote side is easy.

$ sudo apt−get install git−core
2 $ mkdir ReDHead . git

$ cd ReDHead . git
$ git −−bare init

To initially check out the repository on the client one does:

$ sudo apt−get install git−core
2 $ git clone <username>@<servername>: ReDHead . git

90

http://redhead.ifs.hsr.ch/hudson/

username is the username of the user on the server in which’s home directory the repos-
itory was created and servername is the ip-address or the DNS name of the server.

A.2.2 Hudson
To automate the build of my plugins, my documentation and running the tests on the
server, I use the Hudson continuous integration server. Hudson is configurable on its
webpage, which makes its use very simple. It supports automated Git checkout and
running of Ant and shell scripts. These scripts that are called are responsible to build
the ReDHead plugin, to run its tests and to deliver the results back to Hudson.

Installing Hudson is simple:

1 $ sudo echo ”\ndeb http :// hudson -ci.org/ debian binary /” >> /etc/apt/ sources .←↩
list

$ sudo apt−get update
$ sudo apt−get install hudson

4 $ sudo /etc/init . d/ hudson start

Now you can connect to http://localhost:8080/ and configure Hudson from there. To
run an Ant or shell script automatically just add a job, let Hudson check out the Git
repository if it was updated and run the Ant or shell script.

A.2.3 Trac
The project management system Trac 0.11 is used as ticketing system and to present
the ReDHeadProject to the public. After the installation, one is able to browse the Git
repository source online and the Hudson build status is shown in the Trac timeline.

Trac is running as an Apache module. So the first setup step is to install Apache and
Trac.

$ sudo apt−get install apache2
2 $ sudo easy install Trac

$ apt−get install libapache2−mod−python libapache2−mod−python−doc
$ a2enmod mod python

Now we create the ReDHead Trac project.

$ sudo mkdir /var/lib/trac/ ReDHead /
2 $ sudo trac−admin /var/lib/trac/ ReDHead / initenv

$ sudo chown −R www−data /var/lib/trac/ ReDHead /

To install the Trac plugins which enable Git and Hudson support download the zipped
sources from http://trac-hacks.org/wiki/GitPlugin and http://trac-hacks.org/
wiki/HudsonTracPlugin, unzip them and run each ones setup.py script.

The last thing to do is to adapt the Trac configuration which is located at /var/lib/-
trac/ReDHead/conf/trac.ini. I will only post the lines that I have added or modified.

91

http://trac-hacks.org/wiki/GitPlugin
http://trac-hacks.org/wiki/HudsonTracPlugin
http://trac-hacks.org/wiki/HudsonTracPlugin

[components]
hudsontrac . hudsontracplugin . hudsontracplugin = enabled

3 tracext . git . ∗ = enabled

[git]
6 cached repository = true

git bin = /usr/bin/git
persistent cache = true

9 shortrev len = 6

[header logo]
12 alt = IFS Logo

height = −1
link = http : // redhead . ifs . hsr . ch

15 src = site/LOGO IFS TRANSPARENT RIGHT COLOR ENGLISH . png
width = −1

18 [hudson]
alternate success icon = true
feed url = http : // localhost / hudson / rssAll

21 main page = http : // redhead . ifs . hsr . ch/ hudson

[trac]
24 # . . .

repository dir = /home/felu/ ReDHead . git
repository type = git

27 # . . .

Note that site refers to the path /var/lib/trac/ReDHead/htdocs.

A.2.4 Apache Configuration
The Apache web-server is reachable on port 80 from the internet. Apache redirects
requests to Trac, Hudson and delivers ReDHead resources. The following listings show
the apache-config located in /etc/apache2/sites-enabled/trac.

92

The first part of the config shows the typical Trac apache config.

<Virtua lHost ∗>
2 ServerAdmin lfelber@hsr . ch

ServerName redhead . ifs . hsr . ch
DocumentRoot /var/www

5 ErrorLog /var/log/ apache2 / error . trac . log
CustomLog /var/log/ apache2 / access . trac . log combined

8 <Locat ion />
SetHandler mod python
PythonInterpreter main interpreter

11 PythonHandler trac . web . modpython frontend
PythonOption TracEnv /var/lib/trac/ ReDHead
PythonOption TracUriRoot /

14 PythonOption PYTHON EGG CACHE /tmp
</ Locat ion>

17 <Locat ion / l o g i n>
AuthType Basic
AuthName ”trac”

20 AuthUserFile /etc/ apache2 /trac . passwd
Require valid−user

</ Locat ion>

The rest of the config shown here allows access to the resource files which are published
to /var/www/ReDHeadFiles by the automated build.

<Locat ion ”/ ReDHeadFiles ”>
2 SetHandler file

</ Locat ion>
</ Virtua lHost>

Since Hudson runs an independent application it needs its own port. My Hudson runs
on port 8080 which is not reachable from the outside. To make Hudson accessible from
the outside, I use Apache’s mod proxy as a reverse http proxy. The following listing
shows the mod proxy configuration located in /etc/apache2/mods-enabled/proxy.conf.

<IfModule mod proxy . c>
2 ProxyPass / hudson http: // localhost:8080 / hudson

ProxyPassReverse / hudson http: // localhost:8080 / hudson
ProxyRequests Off

5 ProxyPreserveHost On

<Proxy ∗>
8 Order deny , allow

Allow from all
</Proxy>

The crux here is to get Hudson itself running not on “/” but on “/hudson/”. To ac-
complish this the argument –prefix=/hudson needs to be added the to the hudson script
located in /etc/default/hudson.

93

. . .
2 HUDSON ARGS=”--webroot =/ var/run/ hudson /war --prefix =/ hudson ”

A.3 Automated Building of the ReDHead Plugin and Its Tests
To build and test my plugins on the ReDHead server automatically with Hudson, a script
is needed which is capable of first building the ReDHead plugins and then executing its
tests. The crux here is, that my plugins contain dependencies to Eclipse and Eclipse
CDT components.

Running tests in Eclipse is easy and can be done through “Run AS → JUnit Plugin
Test”. This sets up a complete new Eclipse instance which includes all the plugins in the
current workspace, runs the Eclipse instance and starts the tests through the Eclipse-
Ant-Runner in that instance. The results of the test run is shown in the JUnit view of
the invoking Eclipse instance.

To mimic exactly this behavior on the server requires several steps:

1. Starting a virtual display (which is required to launch the tests)

2. Set up a complete new Eclipse instance which contains all required CDT plugins.

3. Build the ReDHead plugins while resolving the plugins dependencies against the
Eclipse instance set up in the previous step.

4. Install the ReDHead plugins into the Eclipse instance.

5. Launch the ReDHead tests

6. Stop the virtual display

After the execution of all of these steps, the result of the launched tests can be recycled
by Hudson and presented on the Hudson build server page.

94

A.3.1 Build Scripts
The ReDHead build environment is fully contained in the ReDHead repository in the
folder build which is shown in Figure A.1. This brings the big advantage, that, after the
repository has been checked out on any computer, the automated build can be launched
without any additional configuration.

Figure A.1: Build directory overview

The following sections describe how the steps listed in A.3 are accomplished. To trigger
the whole build process, the following command can be executed in the repository’s build
directory from a command shell. This is exactly what the Hudson build server does after
having automatically checked out the ReDHead Git repository.

1 . / build . sh

95

The first two and the last step are taken care of by the ReDHead build.sh script which
can be seen in the following listing:

The ReDHead bu i ld s c r i p t s e t s up the environment to run the bu i ld . xml ant ←↩
s c r i p t

2
make sure we ' re in the cur rent d i r
cd `dirname $0 `

5
if [−f /usr/bin/Xvfb]
then

8 #export d i s p l a y
export DISPLAY =:2
#s t a r t v i r t u a l X d i s p l a y (on : 2)

11 . / startXvfb . sh start
else
echo ” running without virtual display ”

14 fi

#setup
17 echo ” cleaning directory results ”

rm −rf results
mkdir results −p

20
#unzip ing
echo ” unzipping eclipse ”

23 tar xzf resources /eclipse−SDK−3.6M5−CDT−linux−gtk . tar . gz −C results /

Let ' s go !
26 java −jar results / eclipse / plugins /org . eclipse . equinox . launcher˙1 . 1 . 0 . v20100118 .←↩

jar \
−ws gtk −arch x86 −os linux −application org . eclipse . ant . core . antRunner

29 #stop v i r t u a l X d i s p l a y
if [−f /usr/bin/Xvfb]
then

32 . / startXvfb . sh stop
fi

The important parts of the script are lines 11, 23, 26, 31. On line 11 the virtual display
Xvfb is started. Line 23 extracts the Eclipse instance, which already contains all required
CDT plugins. On line 26 the Equinox Ant runner which is contained in the previously
extracted Eclipse instance is launched. The Ant runner will run the build.xml which
takes care of the remaining build tasks. Here, launching a normal Ant runner would
not be enough since the Equinox Ant runner provides parameters and tasks which are
required to build the ReDHead plugins and to run its tests. Line 31 shuts down the
virtual display again.

96

The script which is responsible to start and stop the virtual display Xvfb is shown in
the following listing:

#! / bin /bash
start () {

3 Xvfb : 2 −nolisten tcp −shmem >>/tmp/Xvfb . out 2>&1&
RETVAL=$?
echo

6 return $RETVAL
}

9 stop () {
killall Xvfb
return 0

12 }

case ”$1” in
15 start)

start
; ;

18 stop)
stop
; ;

21 esac

The build process which is launched through the build.xml is an Eclipse PDE build
process that is capable of building plugins and running tests with minimal configuration
effort. Since Eclipse products are always distributed as features, which are a set of
Eclipse Plugins, there is also a ReDHead testing feature which contains the ReDHead,
the ReDHead Codan and the ReDHead test plugins. The PDE build process is configured
in the file config/build.properties. The values I had to set can be seen in the following
listing:

topLevelElementId = ch . hsr . ifs . redhead . tests . feature
buildDirectory=results

3 baseLocation=results / eclipse

The original build.properties file is a template which can be found in the extracted
Eclipse instance in the eclipse/plugins/org.eclipse.pde.build */templates/headless-build/
directory. It is quite big but setting the three properties shown above is sufficient.

97

The following listing shows a shortened version of the build.xml file which is responsible
for building the ReDHead plugins, installing them into Eclipse and running the tests.

<project d e f a u l t=” build ”>

3 <target name=” build ” depends=”init , setup ”>
<antcall target=”install -redhead - source ”/>
<antcall target=”zips”/>

6 <antcall target=” tests ”/>
<antcall target=”publish -test - results ”/>

</ target>
9

<target name=”init”>
< !−− s e t s many path / f i l e p r o p e r t i e s −−>

12 </ target>
< !−− . . . −−>

15 <target name=”install -redhead - source ”>
<copy t o d i r=”${buildDirectory}/ features /ch.hsr.ifs. redhead . feature ”>
<fileset d i r=”${basedir}/../ Software /ch.hsr.ifs. redhead . feature ”/>

18 </ copy>
<copy t o d i r=”${buildDirectory}/ plugins /”>
<fileset d i r=”${basedir}/../ Software /”>

21 <include name=”ch.hsr.ifs. redhead /**”/>
<include name=”ch.hsr.ifs. redhead . tests /**”/>
<include name=”ch.hsr.ifs. redhead . codan /**”/>

24 </ fileset>
</ copy>

</ target>
27

<target name=”zips” depends=”init ,init -eclipse - props ”>
<ant a n t f i l e=” build .xml” d i r=”${pde. build . scripts}”>

30 <property name=” builder ” value=”${basedir}/ config ” />
</ant>

</ target>
33

<target name=” tests ” depends=”init” u n l e s s=” hasErrors ”>
<record name=”${testReportDir}/ testsLog .txt” a c t i o n=” start ” l o g l e v e l=”←↩

verbose ”/>
36 <unzip src=”${redhead . featureZip}” dest=”${buildDirectory}” />

<ant a n t f i l e=”test.xml”>
39 <property name=”eclipse -home” value=”${eclipse .home}”/>

<property name=”library -file” value=”${eclipse .home}/ plugins /org. eclipse .←↩
test˙3 .3.0/ library .xml”/>

<property name=”os” value=”${baseos}”/>
42 <property name=”ws” value=”${basews}”/>

<property name=”arch” value=”${basearch}”/>
</ant>

45
<xslt style=”${basedir}/ JUNIT .XSL” in=”${testReportDir}/ch.hsr.ifs. redhead .←↩

tests . ReDHeadTestSuiteAll .xml” out=”${testReportDir}/ junits .html” />
<record name=”${testReportDir}/ testsLog .txt” a c t i o n=”stop” />

48 </ target>

<target name=”publish -test - results ”>
51 <copy f i l e=”${testReportDir}/ junits .html” t o f i l e=”/var/www/ ReDHeadFiles /←↩

junits .html” f a i l o n e r r o r=” false ”/>
</ target>

</ project>

98

Building the ReDHead plugins first requires to copy the source code of the plugins
to the expected location. This is done by the Ant-target install-redhead-source.
Building the ReDHead feature itself is achieved in the Ant-target zips. Note that the
property builder which is passed there refers to the config directory which contains the
build.properties file which is listed above.

The Ant-task tests extracts the previously built ReDHead feature into the Eclipse
instance and launches the Ant file test.xml which is listed bellow. Executing the tests
results in the file ch.hsr.ifs.redhead.tests.ReDHeadTestSuiteAll.xml which contains the
test results. This file is used by the Hudson build server to display as result. The file
is then also XSLT-transformed into a HTML file which can be found on the ReDhead
web-site.

The following listing shows the text.xml file that is responsible to start the testing
instance of Eclipse and also run the ReDHead tests.

1 <project name=” ReDHead Automated Tests ” d e f a u l t=” redhead ” b a s e d i r=”.”>

<property name=”redhead -loc” value=”${eclipse -home}/ redhead˙tests˙data˙dir ”/>
4

<target name=” redhead ”>
<ant target=”ui -test” a n t f i l e=”${library -file}” d i r=”${eclipse -home}”>

7 <property name=”data -dir” value=”${redhead -loc}”/>
<property name=”plugin -name” value=”ch.hsr.ifs. redhead . tests ”/>
<property name=” classname ” value=”ch.hsr.ifs. redhead . tests .←↩

ReDHeadTestSuiteAll ”/>
10 </ant>

</ target>

13 </ project>

Important to see here is that the name of the base ReDHead test suite is passed in listing
line 12 to the Ant task ui-test which is started in line 9.

99

A.4 Automated Build of the Documentation
On the ReDHead Hudson server, there is also an Ant task which is automatically run to
build the project documentation which the is published automatically to /var/www/ReD-
HeadFiles. The documentation is then directly accessible from the Trac Wiki, where you
can find a link to it.

The Ant build file to build the documentation requires the Ant task latex which comes
in a jar that can be downloaded from the Ant webpage from http://Ant.apache.org/
external.html. The build file build.xml, which can be found in the Documentation
directory of the repository, is short compared to others:

<project d e f a u l t=”all”>
2 <taskdef name=” latex ”

classname=”de. dokutransdata . antlatex . LaTeX ”
classpath=”/usr/ share /ant/lib/ant - latex .jar”/>

5
<target name=” doLaTeX ”>
< l a t e x

8 l a t e x f i l e=” ReDHead .tex”
verbose=”on”
c l ean=”on”

11 pdftex=”on”
workingDir=”.”

/>
14 </ target>

<target name=” CopyDoc ”>
17 <copy f i l e=” ReDHead .pdf”

t o f i l e=”/var/www/ ReDHeadFiles / ReDHead .pdf”/>
</ target>

20 <target name=”all” depends=”doLaTeX , CopyDoc ” />
</ project>

100

http://Ant.apache.org/external.html
http://Ant.apache.org/external.html

B Eclipse Plugin Samples

Here you can get insight into how I adapted the Eclipse user interface to my needs.
Each Eclipse plugin is configured in its plugin.xml file which, together with the MANI-
FEST.MF, is the entry point to integrate itself into Eclipse.

B.1 UI Menu Integration
To integrate the ReDHead functionality into the Eclipse menu, one uses several extension
points to register action classes which are instantiated when the menu entry is clicked
on. Then the run method of the action is executed. Depending on what kind of menu is
extended, the interface for the action class is either IWorkbenchWindowActionDelegate
or IObjectActionDelegate.

B.1.1 Extending the Main Menu-Bar
The following listing which belongs to the plugin.xml demonstrates how to extend the
main menu-bar of Eclipse with an example menu bar entry. The extension point that is
used here is org.eclipse.ui.actionSets.

<? xml version=”1.0” encoding=”UTF -8”?>
<? e c l i p s e version=”3.4”?>

3 <p lug in>

<ex tens i on po int=”org. eclipse .ui. actionSets ”>
6 <a c t i o n S e t l a b e l=” ReDHead Action Set” v i s i b l e=” false ” id=” ReDHeadActionSet ”>

<menu l a b e l=” ReDHead Static Analysis ” id=” staticAnalysisMenu ”>
<s e p a r a t o r name=” StaticAnalysisSeparator ”/>

9 </menu>
<a c t i o n

c l a s s=”ch.hsr.ifs. redhead .ui. actions . FindUnusedIncludesAction ”
12 i con=” icons / unusedInclude .gif”

id=”ch.hsr.ifs. redhead . actions . FindUnusedIncludesAction ”
l a b e l=”Find unused includes ”

15 menubarPath=” staticAnalysisMenu / StaticAnalysisSeparator ”
t o o l t i p=” Finds unused includes and marks them.”>

<enablement>
18 <or>

<o b j e c t C l a s s name=”org. eclipse .cdt.core. model . ITranslationUnit ”/>
<o b j e c t C l a s s name=”org. eclipse . jface .text. ITextSelection ”/>

21 <and>
<o b j e c t C l a s s name=”org. eclipse .core. resources . IResource ”/>

< !−− . . . −−>

101

1 < !−− . . . −−>
<or>
<o b j e c t S t a t e name=” extension ” value=”cpp”/>

4 <o b j e c t S t a t e name=” extension ” value=”c”/>
<o b j e c t S t a t e name=” extension ” value=”h”/>
<o b j e c t S t a t e name=” extension ” value=”hpp”/>

7 </ or>
</and>

</ or>
10 </ enablement>

</ a c t i o n>
</ a c t i o n S e t>

13 </ extens i on>

<ex tens i on po int=”org. eclipse .ui. perspectiveExtensions ”>
16 <p e r s p e c t i v e E x t e n s i o n target ID=”org. eclipse .cdt.ui. CPerspective ”>

<a c t i o n S e t id=” ReDHeadActionSet ”/>
</ p e r s p e c t i v e E x t e n s i o n>

19 </ extens i on>

</ p lug in>

The sample action which is added here will show up in the menu as can be seen in
Figure B.1.

Figure B.1: Example Menu Entry

The visible label of the menu-bar entry is set in listing line 7. The one of the menu
entry itself can be found in line 12. The action class which will be instantiated and
executed when the menu entry is clicked is specified in line 11. The menubar path
defined in line 15 binds the menu entry to the menu which is defined in line 7 and 8.
The enablement which starts in line 17 represents a binary expression and causes the
menu entry to be disabled if the current selection should not be in one of C Editor or
on any C++ file or project.

The second extension which can be seen on line 36 causes the menu to only be shown
when the C++ perspective is active.

B.1.2 Extending the Navigator’s Pop-up Menu
The XML extension point, which adds a menu to the pop-up which shows up when
right-clicking on items, takes effect on all of the following Eclipse views.

• C++ Explorer

• Project Explorer

• Navigator

102

Demonstrated in the following listing is the extension point org.eclipse.ui.popupMenus
.

<? xml version=”1.0” encoding=”UTF -8”?>
<? e c l i p s e version=”3.4”?>

3 <p lug in>

<ex tens i on po int=”org. eclipse .ui. popupMenus ”>
6 <ob j e c tCont r ibut i on

id=”ch.hsr.ifs. redhead .ui. popupMenu ”
o b j e c t C l a s s=”java.lang. Object ”>

9 <menu
id=” popupReDheadMenu ”
l a b e l=” ReDHead Static Analysis ”

12 path=” additions ”>
<s e p a r a t o r name=” StaticAnalysisSeparator ”/>

</menu>
15 <a c t i o n

c l a s s=”ch.hsr.ifs. redhead .ui. actions . FindUnusedIncludesAction ”
enablesFor=”1”

18 i con=” icons / unusedInclude .gif”
id=”ch.hsr.ifs. redhead . actions . FindUnusedIncludesAction ”
l a b e l=”Find unused includes ”

21 menubarPath=” popupReDheadMenu / StaticAnalysisSeparator ”
t o o l t i p=” Finds unused includes and marks them.”>

</ a c t i o n>
24

<v i s i b i l i t y>
<or>

27 <o b j e c t C l a s s name=”org. eclipse .cdt.core. model . ITranslationUnit ”/>
<and>
<o b j e c t C l a s s name=”org. eclipse .core. resources . IProject ”/>

30 <o b j e c t S t a t e name=” nature ” value=”org. eclipse .cdt.core. cnature ”/>
</and>
<o b j e c t C l a s s name=”org. eclipse .cdt.core. model . ICProject ”/>

33 <and>
<o b j e c t C l a s s name=”org. eclipse .core. resources . IResource ”/>
<or>

36 <o b j e c t S t a t e name=” extension ” value=”cpp”/>
<o b j e c t S t a t e name=” extension ” value=”c”/>
<o b j e c t S t a t e name=” extension ” value=”h”/>

39 <o b j e c t S t a t e name=” extension ” value=”hpp”/>
</ or>

</and>
42 </ or>

</ v i s i b i l i t y>
</ ob j ec tCont r ibut i on>

45 </ extens i on>

</ p lug in>

The sample action which is added here will show up in the pop-up menu as can be
seen in Figure B.2.

The label of the menu that is added can be found in code line 11 together with the
menu that is defined in line 9. The menu is added to the separator group extentions,
which by default already exists. The label of the added menu entry, together with the
icon definition and the class which will be instantiated and run when the menu entry is
clicked on, can be found inside of the action definition starting on line 15. In line 21,

103

Figure B.2: Example Pop-up Menu Entry

the action is coupled to the menu defined in line 9 and its contained separator (line 13).
Note that the visibility which starts in line 25 defines a boolean expression. This

expression is used to determine if the added menu is visible for a given selected item.

B.2 Example Problem Marker
The example shown here creates and removes a dummy marker into the file opened in
the active CDT editor.

To create a marker put the following code into the run method of an action class .See
Section B.1 to find out how to add actions to Eclipse menus.

1 public void run (final IAction action) {
CEditor ceditor = (CEditor) PlatformUI . getWorkbench () .←↩

getActiveWorkbenchWindow () . getActivePage () . getActiveEditor () ;
IResource resource = ceditor . getInputCElement () . getResource () ;

4 try {
IMarker marker = resource . createMarker (ICModelMarker . C MODEL PROBLEM MARKER←↩

) ;
marker . setAttribute (IMarker . MESSAGE , ” myDescription ”) ;

7 marker . setAttribute (IMarker . SEVERITY , IMarker . SEVERITY ERROR) ;
marker . setAttribute (IMarker . CHAR START , 3) ;
marker . setAttribute (IMarker . CHAR END , 5) ;

10 } catch (CoreException e) {
System . err . println (”Ups , exception with sample marker ”) ;
e . printStackTrace () ;

13 }
}

Removing all existing markers can be achieved with the following code (also in the
run method of an Action class)

1 public void run (final IAction action) {
CEditor ceditor = (CEditor) PlatformUI . getWorkbench () .←↩

getActiveWorkbenchWindow () . getActivePage () . getActiveEditor () ;
IResource resource = ceditor . getInputCElement () . getResource () ;

4 try {
resource . deleteMarkers (null , true , IResource . DEPTH INFINITE) ;

} catch (CoreException e1) {
7 System . err . println (” deleting markers failed ”) ;

e1 . printStackTrace () ;
}

10 }

104

B.2.1 Customized Markers
In certain cases, one wants to give a marker, which is added, custom properties. This
can for example be to add an own marker icon, to define a background color etc. The
following listing shows how such a marker definition looks. It defines a mew marker type
which, instead of showing the normal problem icon, shows a customized ReDHead icon.

<? xml version=”1.0” encoding=”UTF -8”?>
2 <? e c l i p s e version=”3.4”?>
<p lug in>

5 <ex tens i on
po int=”org. eclipse .core. resources . markers ”
id=”ch.hsr.ifs. redhead . unusedincludemarker ”>

8 <super type=”org. eclipse .core. resources . problemmarker ”/>
<p e r s i s t e n t va lue=”true” />

</ extens i on>
11

<ex tens i on po int=”org. eclipse .ui. editors . markerAnnotationSpecification ”>
<s p e c i f i c a t i o n

14 c o l o r P r e f e r e n c e V a l u e=”254 ,155 ,0”
annotationType=”ch.hsr.ifs. redhead . unusedincludeannotation ”
v e r t i c a l R u l e r P r e f e r e n c e V a l u e=”true”

17 co lo rPre f e renceKey=” indexResultIndicationColor ”
contr ibutesToHeader=” false ”
overv iewRulerPre fe renceValue=”true”

20 pre sentat ionLayer=”3”
t e x t S t y l e P r e f e r e n c e V a l u e=”NONE”
symbol ic Icon=” warning ”

23 i con=” icons / unusedInclude .gif”
l a b e l=” Unused Include Directive ”
t extPre f e r enceVa lue=”true”

26 textPre fe renceKey=” indexResultIndication ”
v e r t i c a l R u l e r P r e f e r e n c e K e y=” indexResultIndicationInVerticalRuler ”
overv iewRulerPreferenceKey=” indexResultIndicationInOverviewRuler ”

29 showInNextPrevDropdownToolbarActionKey=”←↩
isIndexResultInNextPrevDropdownToolbarAction ”

showInNextPrevDropdownToolbarAction=”true”
isGoToNextNavigationTargetKey=” isIndexResultGoToNextNavigationTarget←↩

”
32 isGoToNextNavigationTarget=” false ”

isGoToPreviousNavigationTargetKey=”←↩
isIndexResultGoToPreviousNavigationTarget ”

i sGoToPreviousNavigat ionTarget=” false ”>
35 </ s p e c i f i c a t i o n>

</ extens i on>

38 <ex tens i on po int=”org. eclipse .ui. editors . annotationTypes ”>
<type

markerType=”ch.hsr.ifs. redhead . unusedincludemarker ”
41 name=”ch.hsr.ifs. redhead . unusedincludeannotation ”>

</ type>
</ extens i on>

44
</ p lug in>

Creating a customized marker requires three things. The first is the definition of a
new marker (listing line 5). The second thing is the definition of a the marker’s look

105

(line 12). The last thing is to link the new marker look to the new marker definition
(line 38). The new icon which is shown with our new maker can be found on line 23.

In the marker definition above, there is a marker id defined for the new marker on list-
ing line 7. To create a maker of the newly defined type, one can follow the example shown
in the previous Section B.2, expect that, instead of the term ICModelMarker.C MODEL -
PROBLEM MARKER which also refers to a marker id, one can use the new id ”ch.hsr.ifs.-
redhead.unusedincludemarker”. The resulting maker can be seen in Figure B.3.

Figure B.3: Example Customized Marker

B.3 Example Quickfix
In Eclipse, quickfixes are attached to problem markers. They are shown in Eclipse
when pressing ctrl+1. To get the ReDHeadQuickFixes into Eclipse, I needed to add the
following to the plugin.xml. This registers the ReDHeadQuickFixProcessor so it gets
asked for quickfixes by Eclipse.

<? xml version=”1.0” encoding=”UTF -8”?>
<? e c l i p s e version=”3.4”?>

3 <p lug in>
<ex tens i on po int=”org. eclipse .cdt.ui. quickFixProcessors ”>
<qu ickFixProces sor id=” ReDHeadQuickFixProcessorsExtension ” name=” ReDHead ←↩

Quickfix Processor ”
6 c l a s s=” redhead .ui. ReDHeadQuickFixProcessor ”>

<handledMarkerTypes>
<markerType id=”org. eclipse . myplugin . audits ”/>

9 </handledMarkerTypes>
<enablement>
<with v a r i a b l e=” projectNatures ”>

12 < i t e r a t e operator=”or”>
<equa l s va lue=”org. eclipse .cdt.core. cnature ”/>

</ i t e r a t e>
15 </ with>

</ enablement>
</ qu ickFixProces sor>

18 </ extens i on>

</ p lug in>

106

The class attribute of the quickFixProcessor defines the name of the QuickFix-
Processor class which is shown here:

1 public class ReDHeadQuickFixProcessor implements IQuickFixProcessor {
public ICCompletionProposal [] getCorrections (final IInvocationContext context ,←↩

final IProblemLocation [] locations) throws CoreException {
ArrayList<ICCompletionProposal> proposalList = new ArrayList<←↩

ICCompletionProposal >() ;
4 proposalList . add (new ReDHeadDummyCompletionProposal ()) ;

return proposalList . toArray (new ICCompletionProposal [0]) ;
}

7
public boolean hasCorrections (final ITranslationUnit unit , final int problemId←↩

) { return true ; }
}

Here the RedHead ICCompletionProposal implementation is used. You can see a
dummy implementation of this class here:

public class ReDHeadDummyCompletionProposal implements ICCompletionProposal {

3 public String getIdString () {return ” myDummyID ” ;}
public int getRelevance () {return 0 ;}
public void apply (final IDocument document) {/∗ apply changes here ∗/}

6 public String getAdditionalProposalInfo () {return ”My accurate description .” ;}
public String getDisplayString () {return ” ReDHead dummy QuickFix ” ;}

9 public IContextInformation getContextInformation () {return null ;}
public Image getImage () {return null ;}
public Point getSelection (final IDocument document) {return null ;}

12 }

I should probably mention here that the quickfix in CDT is only shown when invoked
through ctrl+1 and not by clicking on the problem marker’s icon. However it seams that
this is also true for all the other CDT problem markers. I will not investigate further on
this issue, but this should maybe be looked into.

107

B.4 Example Codan Checker
The CDT Codan framework allows to check the content of documents also while typing.
The components that can be added to the Codan framework are called Codan checkers.
When a file gets changed in a C++ editor, each Codan checker is called to analyze the
document and report problems. These problems will then be shown as markers in the
editor. Given some useful checkers, this is a very nice feature that helps to produce
C++ code even more easy. The following listing shows the additions, which have to be
added to plugin.xml to implement a Codan checker.

<? xml version=”1.0” encoding=”UTF -8”?>
<? e c l i p s e version=”3.4”?>

3 <p lug in>
<ex tens i on po int=”org. eclipse .cdt. codan .core. checkers ”

id=”org. eclipse .cdt. codan .core. internal . checkers ”>
6 <checker

c l a s s=”ch.hsr.ifs. redhead . codan . checkers . ExampleChecker ”
id=”ch.hsr.ifs. redhead . codan . checkers . ExampleChecker ”

9 name=”Find Unused Includes Checker ”>
<problem

category=”org. eclipse .cdt. codan .core. categories . ProgrammingProblems ”
12 d e f a u l t S e v e r i t y=” Warning ”

id=”ch.hsr.ifs. redhead . codan . problems . ExampleProblem ”
messagePattern=”{0}”

15 name=” Unused Include ”/>
</ checker>

</ extens i on>
18 </ p lug in>

In the listing above, the Codan checker class is registered (listing line 7). Its impelen-
tation is shown in the following listing. Beside the checker itself, additionally, a problem
type is registered (code line 11).

public class ExampleChecker extends AbstractIndexAstChecker {
private static final String ER ID = ”ch.hsr.ifs. redhead . codan . problems .←↩

ExampleProblem ” ;
3

@Override
public void processAst (IASTTranslationUnit ast) {

6 reportProblem (ER ID , ast . getDeclarations () [0] , ”This declaration is a ←↩
problem .”) ;

reportProblem (ER ID , ast . getDeclarations () [2] , ”This one as well.”) ;
}

9 }

The example checker shown above calls the reportProblem method twice, each time
reporting a given AST node as a problem. This will cause Codan to mark these two
nodes in the editor.

108

B.5 Undo-Redo Operations
When ReDHead applies a quickfix, normally, TextChangees are applied on IDocument
instances. These operation automatically add IUndoableOperations to Eclipse, which
allows the user to undo and redo the applied text change with the help of the Edit menu.
If one wants to add such undo and redo behavior for any custom operation, this can
be done as shown in the following example listing. The custom operation, which shall
be undoable and redoable in the listing could for example be a change which deletes an
other file. In this case, the Change argument passed into addUndoRedoOperation of in
the listing would be a DeleteFileChange instance.

private void addUndoRedoOperation (Change change) {
IUndoableOperation operation = new ChangeOperation (change) ;

3 IWorkbench workbench = PlatformUI . getWorkbench () . getActiveWorkbenchWindow () .←↩
getWorkbench () ;

IOperationHistory operationHistory = workbench . getOperationSupport () .←↩
getOperationHistory () ;

operation . addContext (IOperationHistory . GLOBAL˙UNDO˙CONTEXT) ;
6 try {

operationHistory . execute (operation , null , null) ;
} catch (ExecutionException e) {

9 throw new ReDHeadException (e) ;
}

}

109

C Organizational

In this chapter you can find organizational information about the ReDHead project. You
will find a list of tools I used, followed by some information about the project plan and
the time schedule. The last section contains my personal impression.

C.1 Project Environment
The environment consists of two parts. This is on the one hand my notebook where
I develop and document on and on the other hand the project server which is used to
present the project to the public, to maintain the project repository and to build and
test my code and documentation.

C.1.1 Development Environment
The following list describes all the components which were used to develop the ReDHead
plugin and to write this documentation.

Ubuntu As development platform I used an Ubuntu 9.10, code-name Karmic Koala
[Ubu].

Git Git [Git] version 1.6.3.3 serves as the repository for ReDHead so all changes that
are done are loged an trackable.

Eclipse As development editor I used the well known Eclipse Platform [Eclb].

CDT refactoring-test-editor To write down automated testing C/C++ code I used the
refactoring-test-editor which was developed by Emanuel Graf.

TeXlipse Eclipse Plugin As LATEX editor, the Eclipse plugin TeXlipse [Tex] was used.

texlive The TexLive Ubuntu packages are required to compile this LATEX-documentation.

Visio To draw a part of the code diagrams, I used Microsoft Visio [Micb].

Dia All class diagrams were drawn with the open source tool Dia [Dia] as well as some
other of the diagrams contained in this documentation.

110

C.1.2 ReDHead Build Server
The ReDHead project server can be found at http://redhead.ifs.hsr.ch/. The fol-
lowing components are running on the server.

Ubuntu The server operating system is a Ubuntu 8.04.3 LTS [Ubu].

Git Git [Git] version 1.6.4.3 runs on server side to store the repository.

Apache Apache version 2.2 is used as web server [Apab].

Trac As a project management environment, I use Trac version 0.11 [Edg].

texlive The TexLive packages are required to compile the LATEX-documentation [Tex].

Hudson The build server in use is Hudson version 1.323 [Sun].

Ant Building of the ReDHead plugin is done with the help of Ant tasks [Apaa].

C.2 Project Plan
I this section you can find two versions of the ReDHead project plan of this master
thesis. Figure C.1 shows the initial project plan that was created in the frist week of the
master thesis.

Figure C.1: Initial Project Plan

Note that the investigation on the task Run continuously in background yielded that
keeping the ReDHead data structure up-to-date on changes in ASTs and indexer would be
very complex to achieve and also is not necessary because the ReDHead data structure as
it is available now performs very well so that even reconstructing it while a programmer
is typing each time works well enough.

The task Investigate on SDG / Slicing resulted in the Chapter 2 of this documentation.

111

http://redhead.ifs.hsr.ch/

During the first half of the master thesis, the project plan was refined. There were
several tasks that were added which where necessary so the ReDHead data structure
worked precisely and also fast enough. Note also that, due to some of these added tasks,
others have been postponed to the end of the project. The decision to postpone these
tasks was taken either with the approval or even because of the advise of my supervisor.

The resulting project plan can be seen in Figure C.2.

Figure C.2: More Detailed Project Plan

112

C.3 Time Schedule
In Figure C.3 the blue bars show how many hours I worked each week. The yellow line
shows the weekly target time of the project. In green you can see the average work-time
of the the past weeks.

Figure C.3: Weekly working hours

Figure C.4 shows the accumulated working hours over the whole project period. In
orange you see the time I totally worked, in blue the target time.

Figure C.4: Total working hours

113

C.4 CDT Bug Tickets
The following list shows all the CDT bug tickets that were created during the ReDHead
master thesis. Most of the bugs deal with very special indexer scenarios. Indexer bug
tickets were processed by the CDT developer Markus Schorn who reacted very quickly
and also very competently.

https://bugs.eclipse.org/bugs/show bug.cgi?id=295424 Calling the quick-fix menu
in an editor and double clicking on No suggestions available, the document was
deleted from offset 0 to the offset of the caret.

https://bugs.eclipse.org/bugs/show bug.cgi?id=296906 Sometimes, it was not pos-
sible to resolve the operator << for the indexer. This bug reported the problem.

https://bugs.eclipse.org/bugs/show bug.cgi?id=306819 The problem describe here
is to find all IASTNames also inside of IASTPreprocessorStatements which was
already described in 9.4. Note that this problem was and will not be fixed.

https://bugs.eclipse.org/bugs/show bug.cgi?id=312399 This bug was reported be-
cause when clicking on a name after an #undef statement, a NullPointerException
was thrown.

https://bugs.eclipse.org/bugs/show bug.cgi?id=316931 Assumed there is a function
that takes an int argument. The function is first declared where the argument’s
name is j and then defined where the name is i. When asking the indexer to
resolve the declaration’s name j, the result was that it returned a reference to i
in the definition, but not to j itself, as it normally would.

https://bugs.eclipse.org/bugs/show bug.cgi?id=316836 This bug is the one that has
already been discussed in 9.2 that concerns the synchronism of AST and indexer
in the case of modified, not yet saved, files. This problem has not been solved.

C.5 Personal Impression
My overall personal impression on the ReDHead project is very positive. I was able
to gain even more experience on how to work in software projects. The big difference
between this project and predecessor project like my diploma thesis [CFS06] was that I
was completely on my own. The following two lists show positive and negative points of
these projects.

Positive Points:

Only my own code All the code which was written in this project is completely my
own. This raises the overview I have over the project code. Like this I can make
sure there is no unknown code duplication.

114

https://bugs.eclipse.org/bugs/show_bug.cgi?id=295424
https://bugs.eclipse.org/bugs/show_bug.cgi?id=296906
https://bugs.eclipse.org/bugs/show_bug.cgi?id=306819
https://bugs.eclipse.org/bugs/show_bug.cgi?id=312399
https://bugs.eclipse.org/bugs/show_bug.cgi?id=316931
https://bugs.eclipse.org/bugs/show_bug.cgi?id=316836

Effectively implemented design Based on the improved overview of the code I can de-
sign (and also re-design) more effectively because I have all the knowledge thats is
needed for this task.

Supervisor When working alone, the person in the supervising role gets much more
important because he is the sole person you can go to with problems.

Early documentation I started documenting very early in the term project. This is a
very good thing to do because one does not need to reconstruct precise knowledge
one had at a past time.

Extensive Performance Testing Even due to the fact that I used a bigger, real C++
project to test how the ReDHead plugin performs, I think that I should have put
more focus on this issue. The fact that I found out that parts of the developed
components do not perform fast enough to be used in a release highlights this fact.

Negative Points:

Early documentation Even though early documentation is, as mentioned, a good thing
to write down detailed knowledge at a given time, one has to re-process these
parts again and again because the circumstances change while the project proceeds.
When software components change during refactoring, or maybe even are removed,
the docuemtation changes along all over. This results in a big loss of time which
could have been spent on other tasks.
The optimal way to document during a software project thus is, in my point of
view, to document early and continuously, but rather than writing full text passages
which can be considered finished at the time of writing, while only updating the
outline and writing text in a sketchy style. Like this, all the facts which are
important to end up in the documentation will be available, while the loss of time
when re-processing the documentation will be small, because the real docuemtation
text will only be written during the ending phase of the project and thus only once.

Discipline and Motivation When one works completely alone, except for the weekly
meetings with the supervisor, work discipline is bound to falter from time to time.
I think I could master this difficulty quite well, but if I could choose, I would
definitely prefer a team project because the obligation towards and the help from
other team-members makes this barrier much smaller.

Overall, I think this master thesis was a great experience to add to my growing
collection of software engineering projects that I worked on.

At this point I want to thank my advisor, Prof. Peter Sommerlad, for all the guidance
I received and for the motivation he helped to raise.

115

C.6 Changes Since Term Project
Some section of figures in this documentation, which, for the integrity of the documenta-
tion, could be set aside, are either completely, or in a reformulated, also contained here.
The following two list identifies such sections.

• Adapted: Paragraph describing Figure 1.1 and the figure itself.

• Unchanged: JDT feature list in Section 1.5

• Adapted: Section 3.1

• Adapted and extended: Section 4.6

• Unchanged: First three paragraphs of Section 6.2

• Adapted: Section 6.3

• Unchanged: Section 6.5, extended with Subsection 6.5.1

• Unchanged: Section Vast Amount of CDT and Eclipse Code and Resolving Decla-
ration References in Chapter 9

• Adapted: Section 10.2.2

• Unchanged: Appendix Section A.1 and A.2 and A.4

• Adapted: Appendix Section A.3

• Unchanged: Appendix Section B.2 and B.3

• Unchanged: Appendix Section C.1

116

D Nomenclature

Annotation An annotation, as we use the expression here, is highlighted text within an
editor. Note that there are also Java Annotation. What I refer to as annotations
here are not Java Annotations. An Annotation can not only highlight text with
a background-color, but also with an icon or by underlining the text with sinuous
lines.

AST Abstract Syntax Tree

CDT C++ Development Tooling [Ecla]

Completion proposal Other term for quickfix.

Declaration The term declaration refers to C++ type, function, or variable declarations
and so on.

Declaration Reference A declaration reference denotes for example be a function call,
type or variable name.

IDE Integrated Development Environment

Include Guard This term denotes conditional inclusion like #ifdef, #ifndef that guard
#include directives

JDT Java Development Tooling [Eclb]

Quickfix A quickfix is the Eclipse construct that comes along with a problem marker
and can be applied to quickly solve a given problem denoted by the problem marker
at hand.

Type Type in C++ means a class, struct, template or fundamental type.

VS Visual Studio [Mica] statements.

SDG System Dependence Graph [HRB90]

PDG Program Dependence Graph [HRB90]

Graph A graphic depicting the relationship between vertices

Edge A relation visualization on a graph

Vertex A item contained in a graph

117

Physical Design see page 12 in [Lak96]

Logical Design see page 12 in [Lak96]

GCC Gnu Compiler Collection

Eclipse PDE Eclipse Plugin Development Environment

118

Bibliography

[ADS93] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford. Debugging
with dynamic slicing and backtracking. Software Practice and Experience,
23:589–616, 1993.

[Apaa] The Apache Ant Project, http://ant.apache.org/. Apache Ant Homepage.

[Apab] The Apache Software Foundation, http://httpd.apache.org/. Learning the
Java Language.

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A
few billion lines of code later: using static analysis to find bugs in the real
world. Communications of the ACM, 53(2):66–75, 2010.

[BW88] Lee Badger and Mark Weiser. Minimizing communication for synchronizing
parallel dataflow programs. In ICPP (2), pages 122–126, 1988.

[CFS06] Thomas Corbat, Lukas Felber, and Mirko Stocker. Refactoring Support for
the Eclipse Ruby Development Tools. http://r2.ifs.hsr.ch/trac, 2006.

[cod09] Codan - CDT Code Analysis. http://wiki.eclipse.org/CDT/designs/StaticAnalysis,
2009.

[Dia] Dia Community, http://projects.gnome.org/dia/. Dia Homepage.

[Ecla] Eclipse Foundation, http://www.eclipse.org/cdt/. Eclipse CDT.

[Eclb] Eclipse Foundation, http://www.eclipse.org/. Eclipse Homepage.

[Edg] Edgewall Software, http://trac.edgewall.org/. Trac Homepage.

[Fel09] L. Felber. ReDHead - Refactor Dependencies of C/C++ Header Files.
http://redhead.ifs.hsr.ch/ReDHeadFiles/ReDHead EndOfTermProject.pdf,
2009.

[Fow] Martin Fowler. Continuous Integration. Martin Fowler.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999.

[GHJV97] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, July 1997.

119

[Git] The Git Project, http://git-scm.com/. Learning the Java Language.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating non-interfering
versions of programs. ACM Transactions on Programming Languages and
Systems, 11:345–387, 1989.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages
and Systems, 12:26–60, 1990.

[Ins] Institute for Software, HSR University of Applied Sciences,
http://r2.ifs.hsr.ch/cdtrefactoring. CDT C++ Refactoring Homepage.

[Ins03] British Standards Institute. The C++ Standard: Incorporating Technical
Corrigendum No. 1. John Wiley & Sons, Hoboken, NJ, USA, 2003.

[Lak96] John Lakos. Large-scale C++ software design. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1996.

[LH96] L. Larsen and M.J. Harrold. Slicing object-oriented software. Software En-
gineering, International Conference on, 0:495, 1996.

[Mica] Microsoft Corporation, http://www.microsoft.com/visualstudio/en-us/. Mi-
crosoft Visual Studio Homepage.

[Micb] Microsoft Corporation, http://office.microsoft.com/en-us/visio/. Visio
Homepage.

[Str97] Bjarne Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[Sun] Sun Microsystems, Inc., http://hudson-ci.org/. Hudson Homepage.

[Tex] Texlipse.sf.net community, http://texlipse.sourceforge.net/. TeXlipse Home-
page.

[Ubu] Ubuntu Community, http://www.ubuntu.com/. Ubuntu Homepage.

[Wei83] Mark Weiser. Reconstructing sequential behavior from parallel behavior pro-
jections. Inf. Process. Lett., 17(3):129–135, 1983.

120

	Introduction
	Importance of IDE Features
	Static Include Analysis
	Choice of IDE
	Important Terms
	Static Analysis in General
	Feasibility Study
	Document Overview

	Abstraction Concept for C++ Source Code
	AST
	System Dependence Graph
	ReDHead Graph
	Conclusion

	Used CDT and Eclipse Components
	Eclipse CDT
	Compile Configurations
	AST and Indexer

	UI Elements

	Dependency Optimization Algorithms
	Finding Unused Includes
	Optimal Include Path Selection
	Algorithm Enhancements

	Organize Includes
	Directly Include Referenced Declarations
	Find Unused Files
	Static Code Coverage
	Replace Includes with Forward Declarations
	Refactor Towards iosfwd

	Introduce Redundant Include Guards
	Finding Optimal Insert Positions
	Include Substitution

	ReDhead Data Structure
	Logical and Physical Design
	Declaration References
	Declaration Reference Dependencies
	Preprocessor Symbols
	Function-like Macros
	Templates

	Includes
	Include Paths

	Implementation
	Used CDT Functionality
	AST
	Indexer
	INames

	ReDHead Data Structure
	Data Stores
	Clean Up

	Optimization Algorithms
	UI Integration into Eclipse
	Codan
	Problem Feedback

	Testing
	External Include Directories

	User Manual
	ReDHead Introduction
	Usage
	CDT Codan Integration

	ReDHead Code Analysis Algorithms
	Finding Unused Includes
	Organize Includes
	Auto Organize Includes
	Directly Include Referenced Declarations
	Finding Unused Files
	Static Code Coverage

	How ReDHead Include Analysis Works

	Market Analysis
	Similar CDT Features

	Challenges
	Adapting the CDT Index
	Synchronism of CDT Index and AST
	Algorithm Performance
	Preprocessor Problems

	Outlook
	Improvements
	Unimplemented Features
	ReDHead include tag cloud
	ReDHead graph view
	Implement further algorithms
	Combine compile configuration results

	Continuous Integration Setup
	Continuous Integration Introduction
	ReDHead Project Server
	Git
	Hudson
	Trac
	Apache Configuration

	Automated Building of the ReDHead Plugin and Its Tests
	Build Scripts

	Automated Build of the Documentation

	Eclipse Plugin Samples
	UI Menu Integration
	Extending the Main Menu-Bar
	Extending the Navigator's Pop-up Menu

	Example Problem Marker
	Customized Markers

	Example Quickfix
	Example Codan Checker
	Undo-Redo Operations

	Organizational
	Project Environment
	Development Environment
	ReDHead Build Server

	Project Plan
	Time Schedule
	CDT Bug Tickets
	Personal Impression
	Changes Since Term Project

	Nomenclature

