] HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

“Relational Data Access on Big Data”

Bachelor Thesis

Department of Computer Science
University of Applied Science Rapperswil

Fall Term 2013

Authors: Christof Biichi, Susanne Mathys
Advisor: Prof. Josef M. Joller, HSR
External Co-Examiner: Romeo Kienzler, IBM Innovation Center Zurich

Internal Co-Examiner: Prof. Hansjorg Huser, HSR

Abstract

Abstract

Big Data is an expanding topic in information technology based on the huge amounts of data which
are generated by IT systems. The ability to store structured and unstructured data at petabyte
scale will improve the efforts of business intelligence and widely expand the type of questions which
can be answered with these systems. To address changes in data management for large data ware-
houses (DWH) several new products are released on top of the Hadoop ecosystem. We focus on
storing data for business analytics concerned questions and running queries against it. Where the
Hadoop distributed filesystem (HDFS) has its strengths at parallel processing and reading files in a
sequential access pattern, we are interested in getting answers to business related questions based
on aggregations. Answering these questions calls for range queries accessing subsets of data. The
problem of dealing with files in Hadoop needs knowledge of the Map-Reduce principle and different
languages are used to access the data. Enterprises have to invest time and money in new systems
and know-how for Big Data systems. A new way is to provide the well known ANSI SQL standard
for querying data on Hadoop platforms. Already done investment on the analytics side could be
reused on the new platform.

We have analyzed the capabilities of IBM BigSQL. To compare performance and semantic dif-
ferences between IBM BigSQL and a traditional relational DWH solution, we built up a distributed
IBM DB2 cluster based on IBM Database Partitioning Feature (DPF) technology and used an IBM
BigInsights cluster to execute analytical queries. We have selected the TPC-H benchmark simulat-
ing a typical OLAP workload as use case. We have measured performance of query execution as
well as scaling out characteristics.

The results show us that in some cases processing an analytical query on a Big Data platform
could be more efficient than on relational DWH systems. The Hadoop ecosystem owns lot of poten-
tial but brings along lot of drawbacks as well. But with these in mind, a cost-efficient DWH can be
established. Beside the established traditional way many hadoop-based solutions are in development
to avoid the negative aspects of the Map-Reduce principle. After our research and measurements
during this thesis we came to the conclusion that all of the investigated products could be used in
a production environment. A recommendation which product could be used for analytical queries
depends of many different factors like costs, query execution time and diversity.

Declaration

Declaration

We, Christof Biichi and Susanne Mathys declare,

that the work we present here in form of this bachelor thesis,
is completely developed and written by ourselves.

Any external sources or means are cited as such.

This bachelor thesis was not used in any other

academic grading context or is being published elsewhere.

Rapperswil, December 19, 2013

Christof Biichi

Susanne Mathys

ii

Acknowledgement

Acknowledgement

We, the authors thank ...

Romeo Kienzler for inspiring and supporting us during this thesis and offer us an helping
hand.

... Prof. Dr. Josef M. Joller for giving us an open scope on this work.
... Jurgen Gotz for discussing with us about performance aspects of IBM DB2 DPF.

... Simon Harris for providing us performance related information about IBM BigSQL and Apache
Hive.

IBM Switzerland and Patrick Cadonau, which provide us the technical cluster environment
and the offering to host meetings and presentation.

... to all cross readers of this thesis, which had shared time and expertise.

iii

Contents

Contents

1. Management Summary

1.1.
1.2
1.3.
1.4.
1.5.
1.6.

3.1.

3.2.

4.2.

4.3.

Problem Definition
Solution Proposal
Use case
Experiments

Sample

Results
Future

Introduction

3.0.1.

3.1.1.
3.1.2.
3.1.3.

Hadoop

3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.
3.2.7.

Experiments
4.1. Environment

4.1.1.

IBM DB2 Cluster
Configurations .

4.2.1.

Work

System and Methods

Term Definition .
IBM DB2
IBM DB2 DPF .

IBM DB2 MDC

IBM DB2 PureScale e

Hadoop Ecosystem

IBM Biglnsights

HDFS
Apache Hive . .
HiveQL
IBM BigSQL . .
Presto
3.3. TPC-H Benchmark

Cluster Hardware Information

4.2.2. Database Organization L

4.2.3.

Query Execution

4.2.4. Performance Settings L

IBM Biglnsights Cluster

4.3.1.
4.3.2.
4.3.3.
4.3.4.
4.3.5.
4.3.6.

Hadoop Configurations
Hive Database Organization
Selected Compression Algorithm

Bottleneck

Record Columnar File (RCFile)

Query Execution

L W NDNDNDNDNDN

© 00 3~ O & Ot ol

iv

Contents

4.3.7. Hive Performance Settings Lo
4.3.8. IBM BigSQL Performance Settings
4.4. Prestoo

5. Results
5.1. Comparison of Query Execution Time
5.2. Scale-out Measurements e
5.3. Limitations L e

6. Discussion
6.1. IBM DB2 e
6.2. Apache Hive.
6.3. IBM BigSQL
6.4. Presto e e e e e
6.5. Conclusion e

A. DB2 Database Configuration
A.1. DB2 Registry Settings
A.2. DB2 Database Creation Script
A.3. DB2 Database Index Script

B. Hive Database Configuration
B.1. Database Creation Script

C. TPC-H Queries

D. Project Documentation
D.1. Project Management e
D.1.1. Milestones e
D.1.2. Project Monitoring e
D.1.3. Course of the Project
D.2. Scope of Work oL e

E. Personal Reports

35
35
37
42

43
43
43
44
44
44

46
46
46
50

54
54

60

88
88
88
88
89
91

92

1. Management Summary

1. Management Summary

1.1. Problem Definition

In this thesis we want to point out the semantic differences between processing Big Data with tra-
ditional relational database management system (RDBMS) and hadoop-based NoSQL datastores.
On one side we will build a distributed IBM DB2 cluster, on the other side we will use a Hadoop
cluster based on IBM BigSQL and the Apache Hive database. Predefined analytical queries will
be executed on both systems to measure and compare the performance of those two different ar-
chitecture systems. We want to take a look at the IBM BigSQL solution and if it suits the actual
business requirements in data warehouse questions.

1.2. Solution Proposal

The traditional relational part of our comparison will be a distributed IBM DB2 cluster. Based on
the preconditions we have to choose which product/technology best matches our requirements. We
decide between building an IBM Database Partitioning Feature (DPF) or IBM pureScale cluster.
The Big Data part of our work is covered by Apache Hive and IBM BigSQL on an IBM Biglnsights
cluster.

1.3. Sample Use case

One of the available TPC benchmarks has to be chosen and implemented on our system. Our
problem domain will be analytics of data for Business Intelligence (BI) purposes.

1.4. Experiments

Based on the given use case both clusters have to be adjusted for best performance. Performance
will be evaluated by processing time of the given queries. We do not focus on time for building up
the database or load the tables. Experiments will be done by scaling out from 5 to 10 nodes.

1.5. Results

Summarized the IBM DB2 cluster delivers the fastest processing times. Although Hive is designed
for scaling out to hundreds of nodes, in our case - with using only 10 nodes - query execution times

1. Management Summary

are admissible for this workload. Compared to the other two systems IBM BigSQL has no immense
outliers in our measurement series. With IBM BigSQL, IBM shows the possible capabilities of the
Hadoop platform. A recommendation which system should be used for analytical queries depends
of different factors, for example costs and diversity of workload.

1.6. Future Work

After gathering insights to execute Big Data analytic concerned queries in a Big Data system, a
future project could be to execute a real world use case with a Business Intelligence software like
IBM Cognos BI and compare it with its existing relational solution. Another extension to our work
would be the measurements with Presto or its competitors, like Cloudera Impala.

2. Introduction

2. Introduction

Information is today one of the most essential values of an enterprise as business decisions are
mostly based on information [29]. Time to market and innovation of new products are nowadays
the key factors for enterprises. Data warehouses and BI support the process of making business
decisions. These instruments allow the discovery of hidden pattern like asking unknown relations
between certain facts or entities. This causes an important change: in the past, the question which
has been run against the system was already known at the time of collecting the data, today it is
common practice to catch all the data to hold it for questions which will be asked in the future [28].
That is the reason why Big Data is a hot growing topic in information science.

Databases - which are the fundamental of data warehouses - adapt these new business require-
ments, which is a challenge for a system that was invented decades ago. The systems reach their
limits, because the increase of data is enormous. As an additional difficulty beside the rising of data,
systems are more and more complex to handle as long as workload is distributed across multiple
servers on clusters. Vast amount of data is actually handled by database vendors in tree different
approaches:

— First traditional relational databases are tuned to scale out with partitioning of tables and
support for some semi structured data types such as XML or JSON [8] [34] [32] [31].

— Second in-memory databases like SAP HANA [1] are one of the leading database products on
the market. They provide faster query processing times.

— Third way is to store and process data on a Hadoop system [38].

Enterprises which already hold lots of data, like search engines and social networks, running queries
in fast execution times over their huge collection of data with hadoop-based technologies. Hadoop
allows data distribution and parallelized data access in an efficient way. Disadvantages are the
necessity of learning the new concept and attaining experience during real-world tests. That is why
many enterprises show much respect to this new approach.

Recently providing SQL ANSI query language for data access on the Hadoop platform is getting
more popular. IBM BigSQL brings the benefit of executing SQL queries on their Big Data platform
IBM Biglnsights.

We analyze the ability of IBM BigSQL. In addition, we want to point out the semantic differ-
ences of it and a traditional relational data warehouse solution. Performance measurements are
done by scale out a workload on a distributed IBM DB2 system and on an IBM Biglnsights clus-
ter. With this work, we want to provide recommendations about solving a specific use case. For a
common use case, we selected the TPC-H benchmark which is known as very stressful, but realistic
[33]. During our study we want to explore the benefits and disadvantages of the less known Big
Data system and describe what should be considered while planning to implement such a system.

3. System and Methods

3. System and Methods

Our study is divided into two parts: working on an relational database system and using a Hadoop
system. In this section, we first give an overview about basic terms. As second, we present all prod-
ucts and systems for building up our IBM DB2 distributed cluster. Third, we give an introduction
into the Hadoop ecosystem and used products for our Hadoop cluster. The last part of this chapter
explains the TPC-H benchmark environment.

3.0.1. Term Definition

Shared nothing Architecture
It is a common idea that a database server has local storage, which can be structured best
for needed requirements. Also in an usual distributed database environment, a server has an
exclusive access to its storage, in form of local harddisks. This architecture is represented in
our use case by IBM DB2 DPF.

Shared Disk Architecture
The shared disk architecture is formerly known as clustered file system. A clustered filesystem
can be mounted on multiple servers, while all of those can access the disk simultaneously. If
a server need access to data which is not at his local storage, network traffic is generated
to access the data from one of the other nodes in the clustered filesystem, which have a lot
impact on the disk access time. For relational access on data, the disk access time is the most
important factor.

Schema on write
With schema on write, which is used in relational DBMS, at table creation time the structure
of data in the table is defined. The RDBMS writes the data in that specified structure.
Consistency is verified at the moment the DBMS writes records. When data has to be read
out of the tables, the structure is already defined and consistency is guaranteed. This approach
performs best at relationships in complex data warehouses, like multi dimension clustering.
It is also very space efficient.

Schema on read

When schema on read is used, data is written in records and often records with a separator
character are used. At writing time the DBMS simply writes down the records and does not
verify the data against a defined structure. But when data is read, all the information about
the structure of the records is needed. The schema of a table is used while reading the records
from that table, values are verified only at reading time. While the schema on write performs
best, the schema on read approach scales best, and provides the most possible flexibility. New
generated data can be directly written into the filesystem - the availability of new data is
in realtime, while querying and building aggregations on unstructured or loosely bound data
generates much more I\O.

3. System and Methods

3.1. IBM DB2

IBM DB2 is a well established RDBMS. It is deployed in many reliable environments, at many
large enterprises. IBM DB2 is a leading product from IBM, initially built a few decades ago. To
support todays needs, IBM DB2 has support for object relational features and non-relational data
structures. In the latest implementation, IBM provides a feature namely ” BLU Acceleration” which
uses a NoSQL-Strategy (column-store) and In-Memory technology behind the scenes. With this
functionality IBM DB2 BLU offers a relational DBMS with the benefits of a column store. This can
be defined on table level within the same database. At the moment, this feature is not supporting
multi node configurations, which is the reason it is not comparable to the Hadoop system.

Since the data will be bigger and bigger, IBM DB2 has to support distributed strategies.

We provide a short overview of possibilities to operate with heavy cpu or I\ O-intensive workloads
in a distributed system.

3.1.1. IBM DB2 DPF

IBM DB2 uses a shared-nothing architecture within the Database Partitioning Feature (DPF). DPF
allows you to set up a cluster of multiple nodes, each of it stores a partition of the database. Dis-
tribution of tables is provided with a distribution key (a column you are specifying). Rows of a
table are horizontally partitioned over a hashing function of the specified distribution key column.
Within the database, different partition groups can be used to spread tables across different nodes.
Adding or removing nodes with redistribution of data is provided by IBM DB2 commands, which
is really straight forward. The following figure 3.1 shows the architecture of an IBM DB2 DPF
environment:

3. System and Methods

Client
Node 2 Node 0 Nodel _
DB2 Instance : db2instl DB2 Instance : db2inst1l DB2 Instance : db2instl N
Home: Node0:/db2home/db2instl \ Home: /db2home/db2instl ,Home: Node0:/db2home/db2inst1

Data: /datal/db2instl/NODE00O02 \ Data: /datal/db2inst1/NODE00OOO / Data: /datal/db2inst1l/NODEODO1

o A

shared disc

Figure 3.1.: IBM DB2 DPF

3.1.2. IBM DB2 MDC

Multi Dimension Clustering (MDC) [5] is used to store rows with same values over different dimen-
sions physically together - better known as storing the data in OLAP cubes. This method will reduce
I\O cost for analytical queries. MDC provides performance improvement, when all the queries and
the whole database are created and designed for data warehouse workloads. However, when scaling
out such a system the performance does not really benefit from the additional computing resources
added to the cluster.

3.1.3. IBM DB2 PureScale

IBM DB2 pureScale [6] uses a shared-storage architecture (similar to Hadoop) and presents a fault-
tolerance system. Every single node in the pureScale cluster has a connection to services of the
pureScale server. The high available (HA) pureScale server acts as a master node and controls
requests from clients, manages locking and stores a centralized cache. The member nodes can read
and write the database in shared-storage mode. The pureScale server stores information about
which pages are processed by a member node and stores dirty committed pages from that member
in its centralized buffer pool. Fail-over of one member node does not impact the other members and
the failed node can be recovered from the data of the buffer pool. IBM DB2 pureScale is a solution
for a scale-out high available database system which points more to OLTP workloads.

3. System and Methods

The following figure 3.2 illustrates the architecture of an IBM pureScale environment:

Master pureScale server
Node

A 4

SR - ~
Worker Member 1 Member 2 Member 3
Nodes
. J
A N N
y v \ 4
CEEE— e ™
Storage Shared Data
— \. J

Figure 3.2.: IBM DB2 pureScale

Selected Distribution Strategy

In the context of the TPC-H use case, facing the need to provide a realistic OLAP database system
we decided to use a IBM DB2 DPF cluster. We neglected IBM pureScale and MDC to achieve
a scalable distributed database environment with an architecture that is similar to the Hadoop
ecosystem. IBM pureScale uses only one host per query which means it cannot execute one query
over different nodes in parallel manner. IBM DB2 DPF uses all available computation resources for
one query at a time. By choosing IBM DB2 DPF we are accepting that our IBM DB2 system is
not fault tolerant.

3.2. Hadoop

Hadoop is the open-source implemenation of the Map-Reduce framework. There are other products
behind this topic, but none of them represent the notion of Big Data as much as Hadoop. In the
following paragraph we give an overview about the framework and its ecosystem and describe why
Hadoop is important in this topic.

Hadoop allows to split an amount of work into many pieces and enables to send this pieces of work
to worker units. Those worker units could be very primitive computation engines based on cheap
commodity hardware. In an ideal situation they have some direct-attached storage to minimize the
network bottleneck.

Usually there exists one jobtracker and one namenode. The jobtracker receives the job as a big
amount of work and split it to many tasks. On the same node, there should be also a namenode
installed. The namenode holds a list of all available datanodes, and which file is located where,
which also includes replication of files. In summary, they know which worker has which computation

3. System and Methods

resources and which files are located on that specific worker. Computation resources are measured
in map and reduce capacity. With that information, the task could be sent to the node with the
local data, which avoids unnecessary network traffic and valuable task setup time.

The following figure 3.3 illustrates the architecture of Hadoop and its ecosystem.

Client

/\

— Big SQL Presto —

] v

Master Node M Slave Nodes
10.110.20.101 10.110.20.10x
—— oamm—— ~.
Job f Task Worker
MapReduce > > <«
P Tracker 'L Tracker Node
— > e — J
L 3 v A 4
) Name) \
ame
HDFS Data Node
Node)
—

Figure 3.3.: Hadoop Ecosystem

A client software can access directly to Hive, queries are compiled and are executed by running
Map-Reduce jobs. Information about the tables are stored in Hive metastore. IBM BigSQL and
Presto take benefit of Hive metastore to compile the query. IBM BigSQL is using the Map-Reduce
framework and HDFS of the Hadoop system for executing queries. While Presto is only using the
HDFS. A client application can connect to Hive, IBM BigSQL, Presto or directly to the Hadoop
system interface.

3.2.1. Hadoop Ecosystem

Hadoop has a wide ecosystem, which contains many products. There are commercial and non-
commercial products for different purposes. For this work, we use only a small part of the Hadoop-
related projects. Components of the Hadoop ecosystems are:

— NoSQL databases like Apache Hive [18], Apache HBase [16] or Cloudera Impala [2].
— Metastores like Apache HCatalog [17] which acts like a system catalog of relational databases.

— Workflow scheduler like Apache Oozie [20].

3. System and Methods

— Machine learning libraries like Apache Mahout [19].

— Tools for loading and collecting data into the Hadoop system like Apache Sqoop [22] and
Apache Flume [15].

— High-level language like Apache HiveQL [25], Apache Pig [21], IBM Biglnsights Jaql [4] and
Twitter Scalding [37] for writing analytical programs.

— Software for managing distributed servers such as Apache ZooKeeper [23].

3.2.2. IBM Biglnsights

IBM Biglnsights contributes an easy to use webconsole, web-installer and many analytic and
developer-related tools. It contains Apache Hadoop with associated products for a ready-to-use
environment. Furthermore, it bundles a specific version of Hadoop and its components such as
Hive, Flume, Oozie, Hbase and others within one package. The components can be selected during
the installation. The following list shows the benefits [3] of using IBM Biglnsights:

— Easy to use installer
— Realtime-view of cluster status and fine graded perspective on tasks and jobs
— Distribution of configuration-files over all nodes

— Scripts for cluster-management (adding nodes, cluster healthcheck, start and stop of individual
components)

— Enhanced security with LDAP-access
— Flexible job scheduling mechanism

— Developer related functions such as eclipse plugin for linking references and automatic upload
of code fragments

— Simple deployment and distribution of custom Java applications on all nodes
— Already pre-deployed sample applications, such as wordcount
— Application lifecycle management for data processing applications

IBM has packaged the Hadoop ecosystem in one product, called IBM Biglnsights. The most recent
is released in version 2.1 which contains following version of Hadoop and its ecosystem:

10

3. System and Methods

component version

Avro 1.7.2
Flume 1.3.0
Hadoop 1.1.1
HBase 0.94.3
HCatalog 0.4.0
Hive 0.9.0
Oozie 3.2.0
Pig 0.10.0
Sqoop 1.4.2

ZooKeeper 3.4.5

Table 3.1.: Biglnsights 2.1 components version

There are other vendors which also built packages based on Hadoop. IBM has added various
additional features to their package. One, which is important for us, is IBM BigSQL. But also their
General Parallel File System (GPFS) [7] and namenode high availability are notable.

3.2.3. HDFS

HDFS is the Hadoop Distributed File System [35]. HDFS plays an important role in the entire
Hadoop cluster, for this reason it holds all the data of the whole cluster. It scales well, provides
fault tolerance through inter-node replication and handles filesystem errors transparent. The HDFS
saves the files into blocks of a predefined size. It is common to set this size around 64 or 128
megabytes. For a cluster environment with many terabytes this size could be a poor configuration,
it generates a remarkable amount of blocks, which have to be managed by the namenode. In
addition, for an optimal data locality on the workernodes, the jobtracker generates one map task
per block. A map task is a valuable unit, because it requires an expensive setup of the task on
the workernode. With that in mind, setting an optimal blocksize is an important configuration.
It is also an important size for a non-splittable compression algorithm. The coordinator of the
HDFS is the namenode, which lacks in fault-tolerance. If the node with the namenode-image (the
meta-information of the HDFS) fails, the complete HDFS is unavailable. Because of this, there are
other filesystem, like the IBM GPF'S which could also be used with IBM Biglnsights. HDFS works
best with read access, which means it is optimal for data warehouses.

3.2.4. Apache Hive

Hive [18] is an important part of the Hadoop ecosystem. Primary built from Facebook, Hive has been
further developed by developers from the Apache foundation. Hive fills-in between two universes.
On one side there is the already well-known relational part of the databases, on the other side there
is the new Big Data approach. Hive closes the gap. It supports SQL-like queries, written in a
separate language which can be compiled into Map-Reduce jobs [14]. For a better performance,

11

3. System and Methods

the meta-data will be saved into the Hive metastore, for faster access. At Facebook, Hive contains
several hundred terabytes of data for reporting and ad-hoc analysis [36]. Hive is mostly designed
for offline OLAP queries, as used in common data warehouses. The data are saved as files and
folders in HDFS. Hive gives the user the possibilities to write own de/serialization methods, which
for example can be used for enabling compression.

3.2.5. HiveQL

HiveQL[25] is a high level query language for Map-Reduce provided by Hive to define and manipulate
data stored in Hive. The ANSI SQL-92 standard is not fully implemented, but the language is similar
to well known SQL language. The language supports the most primitive data types, collections like
arrays and maps and user-defined types. Data Definition Language(DDL) is provided by creating
tables statements. Further indexes could be defined and data could be loaded in tables by LOAD
and INSERT statements. There is no UPDATE oder DELETE statement. The SELECT statement
implements almost all SQL features:

— Group by, Order by and built-in functions
— Joins

Union all

— Sub queries
— Lateral Views and User-Defined functions (UDF)

— Windowing and analytics functions

12

3. System and Methods

There is also an explain tool which shows how the query will be divided into different stages that
includes map and reduce jobs.

Below, based on an example of query 5, we illustrate the differences between SQL and the HiveQL
syntax:

Listing 3.1: SQL Query 5

select n_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue
from customer, orders, lineitem, supplier, nation, region
where c_custkey = o_custkey

and 1l_orderkey = o_orderkey

and 1l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’ASIA’

and o_orderdate >= date(’1994-01-01’)
and o_orderdate < date(’1995-01-01’)
group by n_name

order by revenue desc;

Listing 3.2: HiveQL Query 5

select
n_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue
from
customer c join
(select n_name, l_extendedprice, 1l_discount, s_nationkey, o_custkey from
orders o join
(select n_name, 1l_extendedprice, 1l_discount, l_orderkey, s_nationkey from
lineitem 1 join
(select n_name, s_suppkey, s_nationkey from supplier s join
(select n_name, n_nationkey
from nation n join region r
on n.n_regionkey = r.r_regionkey and r.r_name = ’ASIA’
) nl on s.s_nationkey = nl.n_nationkey
) s1 on 1.1l_suppkey = sl.s_suppkey
) 11 on 11.1_orderkey = o.o_orderkey and o.o_orderdate >= ’1994-01-01"
and o.o_orderdate < ’1995-01-01"
) ol
on c.c_nationkey = ol.s_nationkey and c.c_custkey = ol.o_custkey
group by n_name
order by revenue desc;

In HiveQL joins between tables can only be written in the form:

tablel join table2 on keyl=key2.

That is the main difference between the SQL query statement and results in a different query
structure:

¢ The innermost join is first a projection of table Region with the filter predicate r_name =
"ASTA’, and then a join to table Nation

o Now table after table is joined for the end result which is a join between tables Region, Nation,
Supplier, Lineitem, Orders and Customer.

¢ Filter predicates are used at the time of the join.

13

3. System and Methods

3.2.6. IBM BigSQL

As mentioned before, writing Map-Reduce jobs to get results of every short query is time-consuming
and complex. All existing SQL queries of your existing system have to be rewritten to be executed
on a Hadoop system. With IBM BigSQL a new layer is build on top of the Hadoop framework. So
that using SQL queries is provided for Hbase and Hive databases.

3.2.7. Presto

During our work, Facebook released a successor of Hive. They presented it with the announcement,
that it should be 10 times faster then Hive, which is a big promise. In background, it uses Apache
Hive as the data metastore. The metastore contains information of the location of the filesystem
blocks. It uses the HDFS, but does not generate Map-Reduce jobs. The building process of the Map-
Reduce jobs requires a lot of time. As a result, Presto has its own workers and uses the data from
HDEFS directly, as illustrated by figure 3.3 Hadoop on page 9. It has also its own directory service,
which distribute the work to the workers. The directory service connects to the Hive metastore to
get the HDF'S block location. With that information, an optimal placement of work and data can
be made which results in fewest network traffic as possible.

3.3. TPC-H Benchmark

To simulate a data warehouse system environment, we decided to execute the TPC-H benchmark [9].
The benchmark provides us a typical database schema and some predefined BI concerned queries,
as well as tools for generating data for load and DDL-statements. Transaction Processing Perfor-
mance Council (TPC) benchmarks are well known, established and supported by all the important
database vendors [10].

The schema of the database and the ad-hoc queries were designed to get support the following
characteristics: having a high degree of complexity, use a variety of access, process large amount of
the stored data and differing from each other.

We use the eight tables in the given schema and the defined 22 queries with scale factor 1000 to
create a data warehouse system in a Big Data use case. We run this scenario to measure the per-
formance of our cluster. Extracted data of an operational database had been initially loaded into
our system. We operate on this snapshot of the business data and do not update or refresh any of
the gathered information.

It was not our ambition to best tune our environment to get the best results for benchmarking. But
rather simulate a real world business problem in different database architectures. We were focusing
on tuning some database parameters and on query execution optimization. This includes index
creation, data partitioning, table replication and table data compression.

Figure 3.4 shows the relationship between the tables, their table specifications and cardinalities.
Detailed DDL-statements are found in Appendix A.1 (page 46)

14

3. System and Methods

PART (P_) PARTSUPP (PS_) LINEITEM (L_) ORDERS (0_)
SF*200,000 SF*B00,000 SF*6,000,000 SF*1,500,000
PARTKEY PARTKEY DRDERKEY ORDERKEY
NAME SUPPKEY PARTKEY CUSTKEY
MFGR AVAILQTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT QUANTITY ORDERDATE
SIZE EXTENDEDFPRICE ORDER-
CUSTOMER (C_) PRIORITY
CONTAINER SF150,000 DISCOUNT er
CUSTKEY
RETAILPRICE TAX —
NAME
COMMENT RETURNFLAG PRIORITY
ADDRESS
LINESTATUS COMMENT
SUPPLIER (S_) MATIONKEY
SF*10,000 SHIPDATE
PHOME
SUPPKEY COMMITDATE
ACCTBAL
NAME RECEIPTDATE
MKTSEGMENT
ADDRESS SHIPINSTRUCT
COMMENT
NATIONKEY SHIPMODE
PHONE NATION (N_) COMMENT
25
ACCTBAL
NATIONKEY REGION (R_)
COMMENT 5
NAME
REGIONKEY
REGIONKEY
NAME
COMMENT
COMMENT

Figure 3.4.: TPC-H - Database Schema [11]

Legend [11]:

— The parentheses following each table name contain the prefix of the column names for that
table;

— The arrows point in the direction of the one-to-many relationships between tables;

— The number/formula below each table name represents the cardinality (number of rows) of
the table. Some are factored by SF, the scale-factor, to obtain the chosen database size. The
cardinality for the Lineitem table is approximate;

15

3. System and Methods

TPC provides the dbgen tool to generate load data for the tables. The tool implements several
scale-factors (for example: 300,1000,3000) for sizing table data. We took the Scale-Factor 1000, this
brings us up to 8.66 billion (8'659'989’739) records in the Lineitem table.

Table Name Number of Rows

Customer 150,000,000
Lineitem 5,999,989,709
Nation 25
Orders 1,500,000,000
Part 200,000,000
Partsupp 800,000,000
Region 5
Supplier 10,000,000

Table 3.2.: Cardinality of Tables

The SQL query statements are provided by the TPC-H Benchmark tool suite [12], also HiveQL query
statements can be copied from the Hive Jira Issue 600 [24], which contains the TPC-H Benchmark
for Hive. Each of the 22 queries deals with questions relating to business facts about pricing
and promotions, supply and demand management, profit, customer satisfaction, market share and
shipping management. Depending on the needed information, the queries contain multiple joins,
aggregate functions, group by clauses and sub-select statements. The detailed SQL statements are
listed in Appendix C (page 60)

The table 3.3 on page 17 summarize the characteristics of each query.

16

LI

Table 3.3.: TPC-H query characteristics

No. Tables No. of results rows Aggregation Function Group by Sub-select
Q1 Lineltem 5 sum-avg yes

Q2 Nation, Part, Partsupp, Region, Supplier 100 yes
Q3 Customer, Lineitem, Order 10 yes

Q4 Lineitem, Orders 5 yes yes
Q5 Customer, Lineitem, Nation, Orders, Region, Supplier 5 yes

Q6 Lineitem 1 sum

Q7 Customer, Lineitem, Nation, Orders, Supplier 4 yes

Q8 Customer, Lineitem, Nation, Orders, Part, Region, Supplier 2 sum yes yes
Q9 Lineitem, Nation, Orders, Part, Partsupp, Supplier 175 sum yes yes
Q10 Customer, Lineitem, Nation, Orders 20 sum yes

Q11 Nation, Partsupp, Supplier 1048 sum yes yes
Q12 Lineitem, Orders 2 sum yes

Q13 Customer, Orders 42 count yes yes
Q14 Lineitem, Part 1 sum

Q15 Supplier, View_revenue 1

Q16 Part, Partsupp 18314 yes yes
Q17 Lineitem, Part 1 sum+avg yes
Q18 Customer, Lineitem, Orders 57 sum yes yes
Q19 Lineitem, Part 1 sum

Q20 Lineitem, Nation, Partsupp, Supplier 204 sum yes
Q21 Lineitem, Nation, Orders, Supplier 100 yes yes
Q22 Customer, Orders 7 sum yes

SpOYI9J put WoIsAg g

4. Experiments

4. Experiments

In this chapter we first list which hardware we used for our experiments in the environment section.
Followed by a section for our settings and configuration of the relational platform and finally a
section with explanation of Big Data cluster setup.

4.1. Environment

Thanks to IBM Switzerland we executed our experiments on an IBM bladecenter hardware cluster.

Figure 4.1.: Test Environment: Hardware cluster located at IBM Switzerland

4.1.1. Cluster Hardware Information

For the performance measurements, we used blade-servers inside the bladecenter. The ten worker-
nodes offer following resources:

18

4. Experiments

Server model IBM eServer BladeCenter HS21 -[8853L4G]-

CPU Intel(R) 2x Xeon(R) CPU 5140 - total 4 Cores

Memory 12 GB

Network NetXtreme IT BCM5708S Gigabit Ethernet

Disk 1x 900 GB SAS IBM-ESXS ST9900805SS - Logical block size: 512 bytes
OS RHEL 6.4 X86-64, GNU/Linux 2.6.32

Table 4.1.: Hardware Information

4.2. IBM DB2 Cluster

We used all 10 nodes of the bladecenter for our calculations. IBM DB2 DPF works best on a
homogeneous clustered system. It is the reason, why we only selected 10 nodes.

4.2.1. Configurations

A IBM DB2 DPF cluster build up from a normal IBM DB2 system. There are a few additional tasks
which have to be done. For simplicity, the IBM DB2 home directory is shared with Network File
System (NFS) to the other cluster-nodes. It contains the needed information about the database
instance. In a IBM DB2 DPF cluster, a partition is the smallest unit of computational power. It is
possible to map one cpu-core to one logical partition. That removes the data copying effort from one
core to another core during computation. But for our scenario, one partition is one worker-node,
and has one logical node. It means that every hardware system represents one node, with one logical
node on it. Our db2nodes.cfg lists the 10 nodes with each one partition as follow:

partition hostname logical node
sa-biginsights-110-20-101-rh6
sa-biginsights-110-20-102-rh6
sa-biginsights-110-20-103-rh6
sa-biginsights-110-20-104-rh6
sa-biginsights-110-20-105-rh6
sa-biginsights-110-20-106-rh6
sa-biginsights-110-20-107-rh6
sa-biginsights-110-20-108-rh6
sa-biginsights-110-20-109-rh6
sa-biginsights-110-20-110-rh6

© 0 N O Ot s W NN = O
o O O O O O o o o o

Table 4.2.: db2nodes.cfg-file

In addition to this, our cluster has to communicate from node to node. While we use an own subnet

19

4. Experiments

we could neglect security perspectives and focus our cluster for performance. We use the well known
rsh-toolkit for remote shell-commands. An other option would be ssh, which uses more cpu-power
for encryption.

4.2.2. Database Organization

We decided to organize our database with the following settings:

— 2 Partition Groups: one large group over all nodes for the big tables and one group for the

— Every partition group has its own tablespace and bufferpool

two small tables Nation and Region which are stored only on one node and will be replicated
over the other nodes.

The following figure 4.2 shows the organization of our TPC-H database on the IBM DB2 DPF
System.

DPF Cluster setup — TPC-H Database

Node 1 |l — Wode 2 Node 3 Node & ———] Node 5
10.116-207101 10.110.20.102 10.110.20.103 10.110.20.104 10.T16:20,105
Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

Catalog Partition
.| PartitionGroup PG_SMALL
Table Space TBS_SMALL /
Region_ 1 ul
arg
Nation_
org Partition Group PG_LARGE
TableSpace TBS LARGE
PartSupp Orders
Part
Lineitem
Customer
Supplier
Node 6 Node 7 Node 8 Node 9 Node 10
10.716- 06 10.110.20.107 10.110.20.108 10.110.20.109 10 20.110
Partition 5 [[|———Lartition 6 Partition 7 __Partition 8 — Partition 9
Figure 4.2.: DPF Cluster Organization

20

4. Experiments

The main focus of our database design was to determinate the distribution keys of all the large
six tables of the TPC-H benchmark. Rows of the table are partitioned by a hash function of the
specified distribution key column. Data skew is an important factor at partitioning data across
multiple nodes. Data skew means that distribution of data should be equally with the same amount
of data on each node. To avoid data skew on the nodes the used columns have to provide many
distinct values which leads to the primary key columns of a table. On the other side similar values of
data should reside on the same node for joining queries. Typically the queries which will be executed
over the database are using different selections and functions over columns of all the tables, which
denies the satisfaction of both before mentioned requirements in a DPF cluster setting.

We chose the primary keys of the tables Supplier, Part, Partsupp and Customer as distribution
key and we consider co-location of same values for tables Lineitem and Orders with setting of
distribution key LLORDERKEY and O_ORDERKEY.

We discussed this configuration with Jiirgen Gtz !, in a meeting about the table schema, of TPC-
H benchmark. He confirmed our thoughts about replicate the small tables and divide the entire
database into two partition groups.

4.2.3. Query Execution

In a DPF system the execution of the whole query is split over all the nodes which participate in
the cluster. Via the hash value of the distribution key of the row, the system knows which rows are
stored on which node. The system coordinates the parallel processing of the query by sending the
work to nodes which store the desired row. Each node processes the step on his own, based on his
own result sets and stores it in a temporary table. These temporary results are then sent to the
next node which executes the next step of the query. For fast query processing, sending data from
node to node has to be minimal. That means in the query plan, Directed Table Queue (DTQ) and
Broadcast Table Queue (BTQ), should occur very limited.

BTQ will occur, if a node sends all data to the other nodes. In worst case, this broadcast could be
done from all nodes simultaneously, which is called a Merge Broadcast Table Queue (MBTQ). At
the other side, a DTQ is the most efficient way to transfer data inside the IBM DB2 DPF cluster.
It sends the data from one node direct to an other node.

Data is not broadcasted over network, when same values of the table keys reside on the same
node. With our TPC-H use case we could not avoid data skew and look for same values of keys
on same node at the same time. Here we have made our compromise by storing rows with values
of LLORDERKEY of tables Lineitem and Orders on the same node, but distribute all other table
rows equally on all available nodes.

We want to point out the compromise which has to be done in a DPF environment by provid-
ing some detailed information about the query access plan for query number 5.

! Jiirgen Gotz, IBM DB2 specialist, IBM Germany

21

4. Experiments

Listing 4.1: the SQL Statement for Query 5

select n_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue
from customer, orders, lineitem, supplier, nation, region

where c_custkey = o_custkey
and 1l_orderkey = o_orderkey
and 1l_suppkey = s_suppkey
and c_nationkey = s_nationkey

and s_nationkey n_nationkey

and n_regionkey r_regionkey

and r_name = ’ASIA’

and o_orderdate >= date(’1994-01-01’)
and o_orderdate < date(’1995-01-01’)
group by n_name

order by revenue desc;

Listing 4.2: DB2 Query Optimizer Plan of Query 5

DTQ
(10)
|

RETURN
(1)
|
TBSCAN
(2)
|
SORT
¢ 3)
|
GRPBY
(4)
|
TBSCAN
(5)
|
SORT
(6)
|
BTQ
7
|
GRPBY
(8)
|
NLJOIN
9

HSJOIN

(11)

TBSCAN
(12)
|
Table:
LINEITEM

DTQ
(15)
|
IXSCAN
(16)
|

Index:

(14)

IXSCAN

IDX1311111743350 (19)

ORDERS

Index:

Index:
IDX1311111743040
SUPPLIER

NLJOIN
an

NLJOIN *
(18) |
/ \==-==-- \ Index:
* IDX1311111743470
| CUSTOMER
Index:
IDX1311111743520

IDX1311111742470 NATION

22

4. Experiments

REGION

The Query Plan is separated in 19 different Steps:

o Step 19: An index scan (IXSCAN) through table Region via index (R_-NAME,R_REGIONKEY)

is shown.

o Step 18: Nested Loop Join (NLJOIN) between Region and Nation is done via indexes
IDX1311111742470 (R_.NAME,R_ REGIONKEY) and IDX1311111743520 (N_REGIONKEY,
N_NAME N_NATIONKEY)

¢ Step 17: Result of previous operation is joined via NLJOIN with table Customer. Instead of
tablescan, the index IDX1311111743470 (C_NATIONKEY, C_CUSTKEY) of table customer
is used.

o Step 16: Access on Order table is performed by IXSCAN.

¢ Step 15: Because same values of O_ORDERKEY from table Orders and Customer not reside
on the same node, the required values of O_ORDERKEY in table Orders are sent via DTQ
to the node which calculates step 14.

o Step 14: Values of table Orders and the previous calculated temp result of joining Region,
Nation and Customer are joined by a Hash Table Join (HSJOIN).

¢ Step 13: The result of step 14 is sent via DTQ to the next node which processes step 11.
¢ Step 12: In this step a full table scan (TBSCAN) over Lineitem table is executed.
¢ Step 11: Then the earlier temp result is joined by HSJOIN with table Lineitem.

¢ Step 10: For joining the calculated temp result with the table Supplier, this result is sent by
DTQ to the node which serve the next join.

¢ Step 9: The result of the join on step 11 is now joined with table Supplier via IDX1311111743040
(S-NATIONKEY, S_.SUPPKEY)

o Steps 8-1: Now the result is first grouped by (GRPBY) the column N_Name and the result
is broadcasted over all nodes (BTQ) for sorting. Data is sorted (SORT) by the column
”"Revenue” and finally the result is returned back to the node, on which the SQL query was
issued.

4.2.4. Performance Settings

Except the ones listed in Appendix A.1 (page 46), we left all database configuration parameters on
default values.

Hardware performance improvements were done by enabling parallel I\O on disk access level and
aligning filesystem blocksize to 4kb pagesize. The alignment is very important, because the filesys-
tem has to match the pagesize. A harddisk is divided into sections, with a fixed level. Newer disks
are using 4 kbytes, while older disks are still using a size of 512 bytes. The pagesize has to be the
same or a multiple of the underlying filesystem blocksize, while the filesystem blocksize has to be

23

4. Experiments

the same or a multiple of the underlying harddisk sectorsize. Without a correct alignment, IBM
DB2 has to read multiple blocks, while it only needs one block. This results in double I\O requests,
which would generate a massive performance impact.

Second we build up some indexes which allows IBM DB2 a more direct access to the informa-
tion of the used columns. This means not the whole row has to be read while query execution.
Although indexes are a good implementation for tuning performance, the index are only based on
certain queries. There is no way to generally decrease reads for whole rows dynamically from query
to query. The ”DB2 Create Indexes” section in Appendix A.2 (page 50) shows detailed information
about the indexes we set.

Third aspect of tuning was enabling compression. Because our workload was very I\O intensive we
had to compress our rows. Classic row compression in IBM DB2 is implemented by using a sort
of Lempel-Ziv algorithm which works with dictionary codes. IBM DB2 provides easy activation of
compression by altering the tables.

Listing 4.3: DB2 Alter Table For Compression
DB2 ALTER TABLE nation COMPRESS YES STATIC

The use of compression on our tables did not only decreased storage usage on the node, but also
the query execution did profit of compression because more rows could be stored in the bufferpool
and fewer I\O operations were needed.

4.3. IBM Biglnsights Cluster

The following table is showing the underlying hardware we used for our masternode, which includes
the namenode and the jobtracker.

Server model IBM eServer BladeCenter HS21 -[7995HVG]-

CPU Intel(R) Xeon(R) CPU E5450 - quadcore

Memory 24 GB

Network NetXtreme IT BCM5708S Gigabit Ethernet

Disk 1x 900 GB SAS IBM-ESXS ST9900805SS - Logical block size: 512 bytes
oS RHEL 6.4 X86-64, GNU/Linux 2.6.32

Table 4.3.: Hadoop master/namenode/jobtracker

4.3.1. Hadoop Configurations

Hadoop has its own configuration-files inside the installation directory: ” /opt/ibm/biginsights/” in
our case. We did configuration-changes on the following files:

core-site.xml lets you change core Hadoop settings, like the available compression algorithm.

hdfs-site.xml allows to change the HDFS blocksize and replication factor inside HDF'S.

24

4. Experiments

mapred-site.xml allows to set some Java Virtual Machine (JVM) settings, like Java heap size.
ibm-hadoop.properties defines the available map and reduce-capacity of a node.

During our work, we had to increase the Java heap size and we used temporary settings in Hive, to
obtain the better results.

4.3.2. Hive Database Organization

Select *
From nation;

J

— T

Metastore

Derby
database

HDFS

RCFile Tables
/biginsights/hive/warehouse/
EXteI"na| Tables e_-‘ customer/
,a‘o\ 000000_0
‘(\\o\ 000001-0 Internal Result Tables

Juser/biadmin/tpch/ 66 \ Lineitem/
customer/ \O 000000_0

customer.tbl 000001_0
Lineitem/ 000002_0 /biginsights/hive/warehouse/

lineitem.tbl Q17_small_quantity_order_revenue
Nation/ Nation/

nation.tbl 000000_0 Q18_large_volume_customer
Orders/ Orders/

orders.tbl Q19_discounted_revenue
Part/ Part/

part.tbl Q1_pricig_summary_report
Partsupp/ Partsupp/

partsupp.tbl Q20_potential_part_promotion
Region/ Region/

region.tbl 000000_0
Supplier/ Supplier Q20_temp1

supplier.tbl

Figure 4.3.: Hive Database Organization

As seen on figure 4.3 we are using three different types of tables in Hive.

External Stage Tables

External tables are tables that are defined over a certain directory in the HDFS. A table structure
will be lying above the directory. Advantage of this type of table is, that files can be placed
into the specified directory and no action in Hive has to be done in order to populate data. It is

25

4. Experiments

unproblematic loading a table by simply add additional files to the directory. We load the generated
table data from local filesystem into HDFS path /user/biadmin/tpch/ Each table has its separate
directory.

Internal Result Tables

Internal Tables are mostly used for storing intermediate results of executed queries. After a select
statement was processed, we put the results of that query into a Hive table. Results of the query
could be displayed by executing a select * from ”result table”. All Hive tables are stored in the
Hive home-directory /biginsights/hive/warehouse/. A table is realized as directory and the result
data is stored in files under this directory.

RCFile Tables

As we enabled the compression with RCFile, we built new internal Hive tables with the condition
"STORED AS RCFile”. For each of the eight tables a new directory in the Hive home-directory was
applied and with issuing the load statement, data of the staging tables were loaded with compression
into the new Hive internal table directories. In this configuration is is possible to run query against
the uncompressed data at the stage tables or against the compressed data at the internal tables.

4.3.3. Selected Compression Algorithm

SQL queries on a Hadoop clustered system generate a lot of I\O requests. Every map-task has to
read the complete HDFS block. As described in the HDFS section, we changed the default block
size to a bigger value (1280 megabytes space), to reduce the amount of map-tasks during one job.
At the other side, the map-tasks have to read more information from disk and generates more I\O
during this setup of a task. While the block is read, the cpu is mostly idle. We monitor the system
with nmon during query execution. The following picture 4.4 is an example of the disk-load during
an execution of a query:

26

4. Experiments

Disk %Busy sa-biginsights-110-20-105-rh6 25.11.2013

——sda ——sdag ——sdad ——sda2 ——sdaf ——sdal sda®

B L S| A LRI e Rt R

17:15
17:25
1735

Figure 4.4.: Disk load during a query

IBM Biglnsights supports the following compression algorithms:
org.apache.hadoop.io.compress.DefaultCodec

org.apache.hadoop.io.compress.GzipCodec
Not splittable compression algorithm

org.apache.hadoop.io.compress.BZip2Codec
Not splittable compression algorithm

com.ibm.biginsights.compress.CmxCodec
Unknown compression algorithm, further measurements would be necessary to recommend
this codec.

org.apache.hadoop.io.compress.SnappyCodec
Only available in the IBM Biglnsights package since version 2.1.0.1

com.hadoop.compression.lzo.LzopCodec
Additional effort needed in the Hadoop environment

Choosing a compression-algorithm is a trade-off between cpu-load and resulting compression effi-
ciency. With more available cpu-power, a better compression factor could be achieved, at a pre-
defined time-window. For the use in the Hadoop environment, the reading of a HDFS block from
a specific line-number with a predefined offset is very important. That enables the jobtracker to
generate more fine-grained tasks. It is extremely important for tasks which operates on a small
input, like on one line, as the default input-reader of Hadoop basically works. In such use cases, the
optimal codec from our perspective would the snappy codec [26], developed by Google. It generates
a respective file size, at the time of reasonable cpu load. In addition, it is splittable, which means
that a mapper can read from a specified offset and decompress it. A non splittable compression
requires the read of the whole file. An offset can not be used to jump to a specific line, because to
read one line, the header before had to be read.

In our use case, we are accessing a full range of data by one map task. A map-task has to read

27

4. Experiments

HDEF'S block and scan this. During the read phase, we could use a lot of cpu power. The processing
of a line (tablescan phase), for a specific filter condition, requires very less cpu power. With that
in mind we choose the gzip-codec [13]. It is not splittable, but with the following Hive performance
settings 4.3.7 in mind, that does not matter. We do not recommend this compression codec in other
use cases. The not-splittable and cpu intensive characteristics could results in immense drawbacks.

4.3.4. Bottleneck

We are using cheap commodity disks, with 900 GB. In a reliable productive server environment more
expensive disks with higher I\ O-rates are used, also with raid-strategies on the disk-controller. But
Hadoop has the aim to use commodity hardware. The HDFS throughput could theoretically be
calculated by a aggregation of all underlying disks [30].

While we are using Hadoop and HDFS for SQL queries, we had to adapt the strategy from the
query compiler. Especially join-operations within Hive or IBM BigSQL can only be done on the
full available dataset. Some special exceptions (like small tables) could be done within the map-job,
but usual join-operations are done in the reduce-job.

The reduce-jobs are depending on the map-jobs and could only be fully completed, when the map-
jobs are completed. We need a high transfer rate within the map-tasks for reading the data, and a
high transfer rate while writing the data in internal tables from reduce-jobs.

Also queries which are very selective needs a full table scan, which means the full table have to be
read. Our experience shows generating many thousands map-tasks for reading data in small parts
is less efficient with our workload. We decided to use a large HDF'S blocksize, which causes less map
task during query execution and we used compression for gathering more data values at reading
one block.

4.3.5. Record Columnar File (RCFile)

With the growth of NoSQL databases, the solution of using columnar stores shines as they show
better performance for analytical workloads. Disadvantage is, that building the entire row costs
more than in a row format orientated database. Facebook did a trade off between storing data
in rows and storing data in columns and introduced a structure called RCFile [27]. An important
difference is, that the compressed data is not decompressed at every read access.

The following figure 4.5 shows the structure of RCFiles:

28

4. Experiments

RCFile
Relation
AlBJc]D %
T Row Group
B HDFS
101 111 121 131 Block —_— 16 Bytes Metadata
102 112 122 132 Sync Header
103 113 123 133 >-:> Row Group 1
104 114 124 134 101, 102, 103, 104, 105
105 115 105 135 111, 112, 113, 114, 115
_____________ L i B 121,122, 123, 124, 125
...... 131, 132, 133, 134, 135
Row Group n

rrrrrr

Figure 4.5.: Structure of RCFile [27]

A relation is stored in multiple HDF'S blocks. A HDFS block has multiple row groups, that means
the records of a table are spread into certain row groups. Ever row group has e preamble with meta

information and the table data. In the table data the values of a column are stored as a record like

in columnar databases.

By storing meta information about the stored values in the row groups, dynamically for each query
the query compiler can decide which values are needed for the calculation and has not to load the

entire row into memory for executing the query operations.

4.3.6. Query Execution

As mentioned before, the Hive query statement is transformed in multiple Map-Reduce jobs. The
query plan shows different stages and how they depend on each other. As an example we present a

part of the query plan for Query 5, first the HiveQL query statement:
Listing 4.4: HiveQL Query 5

select

n_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue
from
customer c¢ join

(select n_name, l_extendedprice, 1l_discount, s_nationkey, o_custkey from

orders o join

29

4. Experiments

(select n_name, l_extendedprice, 1l_discount, l_orderkey,
lineitem 1 join

s_nationkey

(select n_name, s_suppkey, s_nationkey from supplier s join

(select n_name, n_nationkey
from nation n join region r

on n.n_regionkey = r.r_regionkey and r.r_name = ’ASIA’
) nl on s.s_nationkey = nl.n_nationkey
) s1 on 1.1_suppkey = sl.s_suppkey
) 11 on 11.1_orderkey = o.o_orderkey and o.o_orderdate >= ’1994-01-01"
and o.o_orderdate < ’1995-01-01"
) o1
on c.c_nationkey = ol.s_nationkey and c.c_custkey = ol.o_custkey

group by n_name
order by revenue desc;

and a part of the Q5 query access plan:
Listing 4.5: Hive Query Plan of Query 5

STAGE DEPENDENCIES:

Stage-8 is a root stage

Stage-5 depends on stages: Stage-8
Stage-6 depends on stages: Stage-5
Stage-7 depends on stages: Stage-6
Stage-1 depends on stages: Stage-7
Stage-2 depends on stages: Stage-1
Stage-3 depends on stages: Stage-2
Stage-0 depends on stages: Stage-3
Stage-4 depends on stages: Stage-0

STAGE PLANS:
Stage: Stage-8
Map Reduce
Alias -> Map Operator Tree:
ol:11:s1:nl:n
TableScan
alias: n
Reduce Output Operator
key expressions:
expr: n_regionkey
type: int
sort order: +
Map-reduce partition columns:
expr: n_regionkey
type: int
tag: O
value expressions:
expr: n_nationkey
type: int
expr: n_name
type: string
ol:11:sl:mnl:r
TableScan
alias: r
Filter Operator
predicate:
expr: (r_name = ’ASIA’)
type: boolean
Reduce Output Operator
key expressions:
expr: r_regionkey
type: int
sort order: +
Map-reduce partition columns:
expr: r_regionkey

from

30

4. Experiments

type: int
tag: 1
Reduce Operator Tree:
Join Operator
condition map:
Inner Join O to 1
condition expressions:
0 {VALUE. _col0} {VALUE. _colil}
1
handleSkewJoin: false
outputColumnNames: _col0, _coll
Select 0Operator
expressions:

expr: _coll

type: string

expr: _colO

type: int
outputColumnNames: _colO, _coll

File Output Operator
compressed: false
GlobalTableId: O
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

o A list of all the stages that will be generated is shown in the section STAGE DEPENDENCIES.
This section also illustrate the dependencies among the stages.

¢ Each of the eight given stages contains a simple Map-Reduce-Job. Whereas stage 8 is the root
stage.

¢ Stage 8 builds the following part of the Hive query:
select n_.name , n_nationkey
from nation n join region r
on n.n_regionkey = r.r_regionkey and r.r_.name =’ ASTA ’

in the explain plan we see these operations:

— Stage 8 Map Operator Tree:
On table Nation a reduce output operator selects n_nationkey and n_name field and place them
as value columns under the key of n_regionkey. And on table Region there is a filter operator
on field r name = "ASIA’. That means if the rows contains the value ’ASIA’ in r_name field
the value of r_regionkey is written to an integer field.

— Stage 8 Reduce Operator Tree :
An inner join is executed with the output of a temp file that has 2 fields _col10 as key value
and _coll as value field.

o After all these map and reduce operations, at the end of this stage, a temp file is written
which is structured into key field with value regionkey and value field name. It contains all
rows of table Region which full fit name = ’ASTA’ and value of regionkey is existing in both
tables Nation and Region.

31

4. Experiments

4.3.7. Hive Performance Settings

Hive has a lot of configuration-options. With those, Hive can be optimally adapted to a certain
workload. For a benchmark the optimal settings has to be found. We tried multiple variations,
especially with compression.

The following statements were set in the Hive-shell during the setup of internal tables in Hive.

hive.exec.compress.output=true
Tells the Hive engine to compress the output.

mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec
Used codec-algorithm for the compression inside the RCFile.

mapred.output.compress=true
Compress the output of Map-Reduce job.

hive.merge.mapredfiles=true
Allows Hive to merge the generated files of the internal table.

The following configuration-options are special in our use case. Because we are using a not-splittable
compression (section: Selected Compression Algorithm), we had to use a fix filesize. The blocksize
of HDFS and the compressed blocks had to match best possible.

mapred.min.split.size=1024000000
Set the minimum split size for a Map-Reduce task.

mapred.max.split.size=1024000000
Set the maximum split size for a Map-Reduce task. The parameter before and this is used to
assign a fix value for the split size of the Map-Reduce task.

hive.merge.smallfiles.avgsize=1024000000
Defines the average file-size of the merged files.

hive.merge.size.per.task=1024000000
Set the threshold to the same size as smallfiles.avgsize. Because of the compression, it is very
important to process this file-size per task.

mapred.min.split.size.per.node=1024000000
The minimum per Map-Reduce-task per node, has to be the same size as desired splitsize.

mapred.min.split.size.per.rack=1024000000
The minimum per Map-Reduce-task per rack, has to be the same size as desired splitsize.

The following statements were set in the Hive-shell during the execution of the various queries. All
those options which start with "hive” could also be set in the Hive-config file.
/opt/ibm/biginsights/hive/conf/hive-site.xml

hive.optimize.autoindex=true
Allows Hive to create index, to optimize the table scan strategy.

hive.exec.parallel=true

32

4. Experiments

Enables to execute multiple stages in parallel, which could increase the cluster utilization.

hive.auto.convert.join=true
Allows the Map-task to execute join-operations. Useful for join within multiple tables, when
one of them is smaller.

hive.auto.convert.join.noconditionaltask = true
Enables to execute joins of non conditional tasks in parallel.

hive.auto.convert.join.noconditionaltask.size = 10000
Sets a limit of the size of a table to join inside a map task.

mapred.child.java.opts = -Xmx2048m
Sets the Java heap-size.

4.3.8. IBM BigSQL Performance Settings

IBM BigSQL is designed to support existing queries, with fewest modifications as possible. It sup-
ports all applications with JDBC or ODBC drivers, which is a big benefit for existing applications.
With that in mind, IBM has the aim to reduce the configuration parameters while choosing the best
parameters by itself, which means there are no necessary performance settings for us to configure.

IBM BigSQL divides the execution into multiple parts. Those parts can be executed in parallel on
the Map-Reduce cluster. But its analyzer is clever enough to not split every task, because some
tasks are faster at execution on a single-node, called as local query execution. It uses the Hadoop
cluster, but not as excessive as Hive. In addition, the query optimizer imply much information
of the Hive metastore to determine a efficient data access. If not all information are available for
this process, the user can define some helping hints, like execution strategy, or join method, as an
example.

The following listing shows an overview about the settings which are automatically used during the
query execution:

bigsql.memoryjoin.size=10485760
Enables joins in map-tasks for input smaller than 10 MB.

bigsql.reducers.max=999
Sets the maximum reducers.

bigsql.reducers.autocalculate=true
Calculates the optimal amount of reducers for a job.

bigsqgl.reducers.bytes.per.reducer=1073741824
This value represent the size of the input of a reducer. It calculates implicit the amount of
reduce-tasks

bigsql.localmode.size=209715200
Sets a threshold for generating a local job. A local job is done inside the IBM BigSQL server.
Beyond this size a Map-Reduce job is generated.

33

4. Experiments

4.4. Presto

Since Presto is only used with the Cloudera Distribution for Hadoop, we run against problem while
we are trying to connect to an IBM Biglnsights test-cluster. We get response with no content
from the presto-server. With the same installation, a query was possible to the virtual image of
Cloudera server. We fetched the newest source from github (0.55-snapshot) which was available
at this time and compiled it by ourselves. For that reason, we could not measure any comparable
query execution times on our physical IBM Biglnsights cluster.

34

5. Results

5. Results

5.1. Comparison of Query Execution Time

We executed the TPC-H queries in sequential mode at experiments over all three products. The
following table 5.1 shows an overview of the query execution measurements:

Table 5.1.: 10 Nodes Query Execution Times
Query IBM DB2 Apache Hive IBM BigSQL

Q1 829.54 1382.78 2219.58
Q2 355.29 1196.42 4697.85
Q3 1301.77 15349.96 2628.39
Q4 489.06 1351.50 1766.90
Q5 754.92 10261.20 4106.66
Q6 389.71 420.66 510.61

Q7 11260.57 14038.21 4075.17

Q8 971.15 24606.98 3998.29
Q9 5496.56 23727.50 6247.77

Q10 886.39 7654.54 3536.00
Q11 80.10 1363.17 3029.58
Q12 508.64 4551.25 1328.54
Q13 470.81 1579.21 4405.03
Q14 426.14 931.16 1700.88
Q15 426.14 974.31 222.76
Q16 165.37 2098.35 0.00*
Q17 728.10 7591.87 10484.52
Q18 1193.20 30807.01 9517.80
Q19 399.07 5711.35 979.12
Q20 52500.54 2523.51 4193.19
Q21 29075.22 33513.27 12066.05
Q22 2602.27 1670.95 2543.30

*refer to section 5.3 Limitations for further details

35

seconds

60000

50000

40000

30000

20000

10000

5. Results

Figrue 5.1 illustrates the query execution times of all three used products:

IBM DB2
Apache Hive s
IBM BigSQL

Q1 Qo Q3 Q4 Q5 Qs Q7 Os Qo Qip Q17 Q1o Q13 Q14 915 Qi Q1 Q1 Q19 Q2 02
TPC-H Query

Figure 5.1.: Overview of 10 Nodes Measurements

In summary the IBM DB2 cluster delivers the highest throughput. Q20 is identifiable as a distinc-
tive outlier value of the entire measurements series.

The Q20 contains a lot of subqueries, which results broadcasting temp-tables from every node to
every node. Totally 10° tables queues are sent over the network. This generates a lot of traffic
inside the cluster. This has a massive impact to the query execution time. We recognize the same
behavior during testing on our separate virtual machine cluster.

At least 3/4 of queries on IBM DB2 were executed in a substantial shorter time in comparison to
Hive and IBM BigSQL.

Altough Hive is designed for scaling out to hundreds of nodes, in our case - with using only 10
nodes - query execution times are admissible for this workload. We expect, that Hive is mostly used
in asynchronous tasks.

The figure shows that IBM BigSQL has no immense outliers in our measurement series. IBM
is experienced in compiling SQL queries and has a deep knowledge of executing query plans in

36

02>

5. Results

parallel. With IBM BigSQL, IBM shows the possible capabilities of the Hadoop platform and its
components like Hive.

After gathering results of Hive measurements it is surprising to see, that queries with IBM BigSQL
are notable fast in comparison to Hive.

5.2. Scale-out Measurements

We describe the scale out characteristics for each of the particular systems. In database environ-
ments linear scale out behavior for query execution is extremely uncommen. Because indexes are im-
plemented as B-Trees it is known that an index scan goes with the complexity of O(log(n)).Accessing
data through index is the fastest method at query execution. Also the running times of common
join algorithms are known:

Nested Loop Join (NLJoin): O(n log m)
Merge Join (MSJoin): O(n+m)
Hash Join (HSJoin): O(N* hc +m *hm+J)

Summarized executing a query with double cluster size can not benefit of the entire additional
resources with linear scale out. A linear scale out would result in running times with O(n log n)
complexity. We estimate that our queries are running with more than O(n log n) complexity.

37

5. Results

IBM DB2

The following measurements show the results of IBM DB2 DPF:

! T T T 120000

T
Snodes
10nodes

100000 -
100000

80000 -
80000

60000 -
60000

seconds

40000 40000

20000 -~ 20000

P e] 0
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 QII QI2 QI3 Q14 Q15 Q16 Q17 QI8 Q19 Q20 Q21 Q22
TPC-H Query

Figure 5.2.: IBM DB2 Measurements

A good scale out behavior for queries Q5, Q17, Q20 and Q21 is obtained. With using 10 nodes each
node has half of the data stored on it as with 5 nodes. As a result all query operations on the nodes
are issued over half of the data than with 5 nodes. Disadvantage is that within a broadcast over all
nodes, there are more messages sent across the network. Query Q5, Q17 and Q20 benefit the most
of the available additional resources with 10 nodes. A deeper look to their query access plans shows
that they contain lot of sorting and HSJoin operations. As their complexity goes with faster times
than O(n log n), we assume that the used sorting algorithm of IBM DB2 is an incremental sorting
algorithm which runs on average with O(n?). This means that the sorting algorithm is more than
two times faster on 10 nodes than on 5 nodes, because each node has half the amount of rows to
sort during query execution.

38

5. Results

Performance increase is illustrated by the following figure 5.3:

300 %

082 DPF Scale o ‘ ‘ ! ‘ ‘ Nodes total time percent
5 137165.52 100%

150 % [/ 7]_0 6984666 19638%

50%

250 %

percent

0%

nodes

Figure 5.3.: IBM DB2 scale-out

We identified Q17 and Q20 as outlier values, because their performance gain is more than two times
better with 10 nodes than with 5. As a result of this we did not involve the execution times in
the calculation of performance gain. While the measurements with 5 nodes represent 100 percent
performance, the measurements with 10 nodes shows the performance gain, in percent. 200 percent
would represent a linear scale out. A value below this 200 percent would represent a non-linear
scaling. A value above this 200 percent represents a performance gain. We achieve a performance
gain of 196 percent.

39

5. Results

Hive

The following values are the measurement times during the query execution in Hive:

50000

50000

T
Snodes
10nodes

40000 i -| 40000

RN -1 30000

30000 -

seconds

20000 [| 20000

10000

/ \ |
/ f |4 10000
/ f \
/ | \

0
QL Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QL0 Q11 Q12 Q13 Ql4 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Query

Figure 5.4.: Hive Measurements

Queries in our Hive experiments have not take much advantage of using more nodes for query
execution. The scale out is not as good as expected. In addition the following figure shows the
performance increase:

300 %

Hive Scale —e'— Nodes total time percent
| 5 231449.50 100 %

K Fmm___________________________—4mu%] 10 17716860 13063‘%

250 %

200 %

percent
=
&
S
®
T

nodes

Figure 5.5.: Hive scale-out

With 130 percent performance on 10 nodes, in comparison to 5 nodes, which represent 100 percent,
we did not achieve a good-looking result. The Hive compiler generates multiple stages per query,
which depend on each other. A following stage has to wait, until the previous ends. While all results
of map tasks have to be merged, we observe many periods where only a handful reduce-tasks are
merging the data. During this time, the cluster was no completely in use. The result of 130 percent
gain could be better with an optimal tuning.

40

5. Results

IBM BigSQL
We get following measurements from IBM BigSQL:
25000 ‘ . . 25000
Snodes
10nodes
20000 |- N [} 1 20000
\\ ‘\‘
\\ ‘I\‘
\\ “‘
\ |
15000 |- “ / - 15000
:
S | [
IS |
10000 | | 4 10000
oA
5000 | \ / H{ 5000
\/
4
1 1 0
Q@ Q7 Q8 Q9 Q0 QI Q12 QI3 Q4 QI5 QI6 QI7 QI8 Q19 Q20 Q21 Q22
TPC-H Query

Figure 5.6.: BigSQL Measurements

In comparison to Hive, we see a much better resource usage while scaling out in IBM BigSQL. The
query compiler is able to provide a better scale-out behavior. Long running queries scale great,
while short running queries do not have much potential to scale. In addition the following figure

shows the performance increase:
% [Caosasca Tom ‘ ‘ ‘ Nodes total time percent
200% | 1 5 127757.19 100 %
n 150% 1 Mmm 10 80182.82 159.33 %

4

Figure 5.7.: IBM BigSQL scale-out
Other than the figure 5.6 looks like, the performance scale-out is not that conspicuous. With around

160 percent, we do not reach a linear scale-out.

41

5. Results

5.3. Limitations

Experiments were limited by time because this thesis lasts 14 weeks.

Numerous query tuning options exists for IBM DB2 database, we selected only a few of them to
get better performance on query execution time. Despite the fact we spent a lot of time for index
creation, for Q7 on IBM DB2 cluster with 5 nodes we did not get a result in a feasible time. The
created indexes did not speed up query execution time for Q7 on 5 nodes. The IBM DB2 advise
tool suggested another index with a different sort order than existing indexes on the tables. As
we had already finished measurements with 10 nodes, we could not enable an additional index for
executions on the 5 node cluster. As a result we did not involve Q7 in our measurement experiments,
although IBM DB2 on 10 nodes could process the result of the query.

By executing the queries on IBM BigSQL we could not obtain results for Q16. In the short time left
we did not find a suitable solution to solve the problems of using too much Java heap size during
map or reduce task execution. Therefore we did not include values for executing Q16 on all three
systems. As Q17 execution time was remarkable longer than execution in Hive, we analyzed the
SQL statement and did a rewrite for this query. As the Hive implementation was faster, we tried to
adapt the structure of the HiveQL statement in SQL. We had additional help from query files of the
benchmark testing of Simon Harris 2. Through rewrite of the query, we achieve a faster execution
time of Q17.

Measurements were only done by cluster size, we could not increase the dataset size for the table
data. Next higher scale-factor value of TPC-H benchmark is 3000. This value generate too much
data for storing on our physical disks. In IBM DB2 environment the load of data sample with this
factor will take too long, reorganization of table Lineitem could not be possible, because the reorg
command usually is not done in-place (table data is copied during reorg command). As we store
the table data in Hive into different types of tables, size of data could increase to more than two
times, which is certainly too high for our physical disks. Next smaller value of scale factor is 300
which results in too small dataset sizes especially on the Hadoop system.

2Simon Harris, IBM Australia

42

6. Discussion

6. Discussion

6.1. IBM DB2

Strengths

IBM DB2 is a well known product and lot of best practices are available. During setting up and
executing queries we got lot of assistance and support from the community. IBM DB2 also brings
along a lot of administration tools. Partitioning tables simply result in better performance.

Cautions

As already mentioned, IBM DB2 DPF can only perform best with co-located joins, design of
database, selecting distribution keys and generating indexes could only be done with a known
workload. There is no way of dynamic adjustment or tuning possibilities for unknown queries. DPF
is also not fault tolerant. The IBM DB2 environment is more expensive and has to be installed on
a fault-tolerant hardware environment. We also disregard the fact that IBM shows too less insights
about the implementation of DB2.

6.2. Apache Hive

Strengths

The Hive solution benefits from using different file-structures, which can be defined for the records
of a table. With RCFile, it provides an approach for handle reads on files dynamic according to
the used values for the query execution. Another import element of Hive is the collection of meta
information in the Hive metastore. Hive writes the data into files and directories into the HDF'S,
which provides a clear view of where data is stored.

Cautions

Tuning Hive queries is not as simple as one is used with RDBMS. Although Hive provides flexibility
for diverse workloads, one first has to be familiar with the tuning opportunities. The reference
and also community lack of best practices information about setting values of amount of map or
reduce tasks. Hive generates Map-Reduce jobs with depending stages, which causes Hive to wait
on completion of previous tasks.

43

6. Discussion

6.3. IBM BigSQL

Strengths

IBM BigSQL shines at fast executing point queries and fully implementation of the SQL Select
statement. At measurement BigSQL, queries had no remarkable outliers and processing was really
fast without use of additional tuning options. With the IBM Biglnsights platform, IBM has released
an entire package for extending the existing date warehouse solution for processing Big Data.

Cautions

As disadvantage we criticize that IBM BigSQL is only available within the IBM Biglnsights distri-
bution. At the moment it is not possible to take IBM BigSQL and configure it in another Hadoop
distribution. Also the dependencies of underlying components can be a problem, because when new
releases of the components appear, IBM take some time to integrate them into their platform.

6.4. Presto

Presto is developed by Facebook, and is only tested against the Cloudera Hadoop Distribution
(CDH). For that reason Presto was not working on our IBM Biglnsights cluster in version 0.55-
snapshot and we could only test it on the free available and fully configured virtual machine from
Cloudera, CDH4. That results in measurements which are not comparable to our hardware cluster.

Strengths

With Presto, Facebook avoids using the Map-Reduce-part of Hadoop. The setup of a Map-Reduce-
job, mostly starting the JVM, needs a lot of time which is not necessary. Presto uses parts of the
Hadoop ecosystem, but beware of generating Map-Reduce jobs. Other vendors, like Cloudera, are
also working on products which beware the Map-Reduce jobs, called Impala at Cloudera. Presto
has their own query execution engine (formerly known as worker) which is located on the HDFS
datanodes, to avoid network bottlenecks. It is the essential way to be faster with query execution
time.

6.5. Conclusion

We started with IBM DB2, because it was unknown for us, but we knew there would be a great
community, with deep know-how. IBM DB2 provides a lot of tuning options, for various of use
cases. IBM DB2 could be adjusted on a specific use case perfectly, but it has negative impacts in a
diverse use case environment. That is the environment where IBM BigSQL scores.

Hive made the basic steps to enable SQL-selects on the Hadoop system and provides the metastore,
which is used by the other systems. With all the possible tuning options, Hive demonstrates
the ability of the Hadoop environment to adapt a workload. It provides support for additional

44

6. Discussion

ideas around compression and file structure. As the negative part of Hive shows, it generates
too much overhead while working off, the self defined dependent query-stages. At this point, we
see an improvement, which is used by Presto, by using its own workers apart of the Map-Reduce
environment. Also tuning the queries at Hive is time consuming and asks for deeper knowledge of
adjusting amount of map and reduce tasks and also of setting correct HDF'S block size.

IBM BigSQL has an impressive query compiler, and could create a good strategy for executing
the work on query execution time. This forces a better overall executing time of diverse workload,
other than in IBM DB2 environments where designing of database and tuning option depend on
the known workload.

With that background, we think it is worth build a data warehouse based on the Hadoop platform as
an extension to an existing DWH. Data for realtime queries performs best on traditional RDBMS,
while a Hadoop based DWH could be used as a secondary store with maximum ability to scale and
with an enormous flexibility because of schema on read strategy.

45

A. DB2 Database Configuration

A. DB2 Database Configuration

A.1. DB2 Registry Settings

DB2_PARRALEL_IO=x
LOFGILSIZ=16384
LOGPRIMARY=20
LOGSECOND=20

A.2. DB2 Database Creation Script

Listing A.1: DB2 Create Tables

-- Thts CLP file was created using DB2LO0OK Version "10.5"
-- Timestamp: Fri 15 Nov 2013 11:03:07 AM CET

-- Database Name: TPCH

-- Database Manager Version: DB2/LINUXX8664 Version 10.5.1
-- Database Codepage: 1208

-- Database Collating Sequence is: IDENTITY

CONNECT TO TPCH;

-- Running the DDL below will explicitly create a schema in the
-- new database that corresponds to an implicitly created schema
-- in the original database.

CREATE SCHEMA "DB2INST1";

-- DDL Statements for Table "DB2INST1"."NATION_ORG"

CREATE TABLE "DB2INST1"."NATION_ORG" (
"N_NATIONKEY" INTEGER NOT NULL ,
"N_NAME" CHAR (25 OCTETS) ,
"N_REGIONKEY" INTEGER NOT NULL ,
"N_COMMENT" VARCHAR (152 OCTETS))

IN "TBS_SMALL" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

-- DDL Statements for Primary Key on Table "DB2INST1"."NATION_ORG"

ALTER TABLE "DB2INST1"."NATION_ORG"

46

A. DB2 Database Configuration

ADD PRIMARY KEY
("N_NATIONKEY");

-- DDL Statements for Table "DB2INST1"."REGION_ORG"

CREATE TABLE "DB2INST1"."REGION_ORG" (
"R_REGIONKEY" INTEGER NOT NULL ,
"R_NAME" CHAR (25 OCTETS) ,
"R_COMMENT" VARCHAR (152 OCTETS))

IN "TBS_SMALL" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

-- DDL Statements for Primary Key on Table "DB2INST1"."REGION_ORG"

ALTER TABLE "DB2INST1"."REGION_ORG"
ADD PRIMARY KEY
("R_REGIONKEY");

-- DDL Statements for Table "DB2INST1"."NATION"

SET CURRENT SCHEMA = "DB2INST1";
SET CURRENT PATH = "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","DB2INST1";

CREATE TABLE NATION AS (SELECT * FROM NATION_org) DATA INITIALLY DEFERRED
DEFERRED ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM DISTRIBUTE BY
REPLICATION IN "TBS_LARGE" ORGANIZE BY ROW;

ALTER TABLE "DB2INST1"."NATION" DEACTIVATE ROW ACCESS CONTROL;

REFRESH TABLE "DB2INST1"."NATION";

-- DDL Statements for Table "DB2INST1"."REGION"

SET CURRENT SCHEMA = "DB2INST1";
SET CURRENT PATH = "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","DB2INST1";

REFRESH

CREATE TABLE REGION AS (SELECT * FROM REGION_org) DATA INITIALLY DEFERRED REFRESH

DEFERRED ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM DISTRIBUTE BY
REPLICATION IN "TBS_LARGE" ORGANIZE BY ROW;

ALTER TABLE "DB2INST1"."REGION" DEACTIVATE ROW ACCESS CONTROL;

REFRESH TABLE "DB2INST1"."REGION";

-- DDL Statements for Table "DB2INST1"."PART"

CREATE TABLE "DB2INST1"."PART" (
"P_PARTKEY" BIGINT NOT NULL ,
"P_NAME" VARCHAR (55 OCTETS) ,

47

A. DB2 Database Configuration

"P_MFGR" CHAR (25 OCTETS) |,

"P_BRAND" CHAR (10 OCTETS) ,

"P_TYPE" VARCHAR (25 OCTETS) ,

"P_SIZE" INTEGER ,

"P_CONTAINER" CHAR(10 OCTETS) ,

"P_RETAILPRICE" DECIMAL(13,2) ,

"P_COMMENT" VARCHAR (23 OCTETS))
DISTRIBUTE BY HASH("P_PARTKEY")

IN "TBS_LARGE" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

-- DDL Statements for Table "DB2INST1"."SUPPLIER"

CREATE TABLE "DB2INST1"."SUPPLIER" (
"S_SUPPKEY" BIGINT NOT NULL ,
"S_NAME" CHAR (25 OCTETS) ,
"S_ADDRESS" VARCHAR (40 OCTETS) ,
"S_NATIONKEY" BIGINT NOT NULL ,
"S_PHONE" CHAR(15 OCTETS) ,
"S_ACCTBAL" DECIMAL(13,2) ,
"S_COMMENT" VARCHAR (101 OCTETS))

DISTRIBUTE BY HASH("S_SUPPKEY")
IN "TBS_LARGE" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

-- DDL Statements for Table "DB2INST1"."CUSTOMER"

CREATE TABLE "DB2INST1"."CUSTOMER" (
"C_CUSTKEY" BIGINT NOT NULL ,
"C_NAME" VARCHAR (25 OCTETS) ,
"C_ADDRESS" VARCHAR (40 OCTETS) ,
"C_NATIONKEY" BIGINT NOT NULL ,
"C_PHONE" CHAR (15 OCTETS) ,
"C_ACCTBAL" DECIMAL(13,2) ,
"C_MKTSEGMENT" CHAR(10 OCTETS) ,
"C_COMMENT" VARCHAR (117 OCTETS))

DISTRIBUTE BY HASH("C_CUSTKEY")
IN "TBS_LARGE" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

-- DDL Statements for Table "DB2INST1'"."ORDERS"

CREATE TABLE "DB2INST1"."ORDERS" (
"O_ORDERKEY" BIGINT NOT NULL ,
"O_CUSTKEY" BIGINT NOT NULL ,
"O_ORDERSTATUS" CHAR(1 OCTETS) ,
"O_TOTALPRICE" DECIMAL (13,2) ,
"O_ORDERDATE" DATE ,
"O_ORDERPRIORITY" CHAR(15 OCTETS) ,
"O_CLERK" CHAR(15 OCTETS) ,
"O_SHIPPRIORITY" INTEGER ,

A. DB2 Database Configuration

"O_COMMENT" VARCHAR (79 OCTETS))
DISTRIBUTE BY HASH("O_ORDERKEY")

IN "TBS_LARGE" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

-- DDL Statements for Table "DB2INST1"."LINEITEM"

CREATE TABLE "DB2INST1"."LINEITEM" (
"L_ORDERKEY" BIGINT NOT NULL |,
"L_PARTKEY" BIGINT NOT NULL ,
"L_SUPPKEY" BIGINT NOT NULL ,
"L_LINENUMBER" INTEGER NOT NULL ,
"L_QUANTITY" DECIMAL (13,2) ,
"L_EXTENDEDPRICE" DECIMAL (13,2) ,
"L_DISCOUNT" DECIMAL (13,2) ,
"L_TAX" DECIMAL (13,2) ,
"L_RETURNFLAG" CHAR(1 OCTETS) ,
"L_LINESTATUS" CHAR(1 OCTETS) ,
"L_SHIPDATE" DATE ,

"L_COMMITDATE" DATE |,

"L_RECEIPTDATE" DATE ,

"L_SHIPINSTRUCT" CHAR (25 OCTETS) ,

"L_SHIPMODE" CHAR(10 OCTETS) |,

"L_COMMENT" VARCHAR (44 OCTETS))
DISTRIBUTE BY HASH("L_ORDERKEY")

IN "TBS_LARGE" NOT LOGGED INITIALLY
ORGANIZE BY ROW;

ALTER TABLE "DB2INST1"."NATION_ORG"

ADD CONSTRAINT "NATION_FK1" FOREIGN KEY
("N_REGIONKEY")

REFERENCES "DB2INST1"."REGION_ORG"
("R_REGIONKEY")

ON DELETE NO ACTION

ON UPDATE NO ACTION

ENFORCED

ENABLE QUERY OPTIMIZATION;

SET CURRENT SCHEMA = "DB2INST1";

SET CURRENT PATH = "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","DB2INST1";

create view c_orders(c_custkey,c_count) as select c_custkey, count(o_orderkey)
from customer left outer join orders on c_custkey = o_custkey and o_comment
not like ’Yspeciallrequests)’ group by c_custkey;

SET CURRENT SCHEMA = "DB2INST1";

SET CURRENT PATH = "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","DB2INST1";
create view revenue as select 1l_suppkey as supplier_no, sum(l_extendedprice
(1 - 1l_discount)) as total_revenue from lineitem where 1l_shipdate >=

date (21996-01-01’) and 1l_shipdate < date (’1996-04-01’) group by l_suppkey;

A. DB2 Database Configuration

ALTER TABLE NATION_ORG COMPRESS YES STATIC;
ALTER TABLE REGION_ORG COMPRESS YES STATIC;
ALTER TABLE PART COMPRESS YES STATIC;

ALTER TABLE SUPPLIER COMPRESS YES STATIC;
ALTER TABLE PARTSUPP COMPRESS YES STATIC;
ALTER TABLE CUSTOMER COMPRESS YES STATIC;
ALTER TABLE ORDERS COMPRESS YES STATIC;
ALTER TABLE LINEITEM COMPRESS YES STATIC;

COMMIT WORK;
CONNECT RESET;

TERMINATE;

A.3. DB2 Database Index Script

Listing A.2: DB2 Create Indexes
-- DDL Statements for Indexes on Table "DB2INST1"."NATION"

CREATE INDEX "DB2INST1"."IDX1310281446341" ON "DB2INST1"."NATION"
("N_NAME" ASC, "N_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."NATION"

CREATE INDEX "DB2INST1"."IDX1311111743520" ON "DB2INST1"."NATION"
("N_REGIONKEY" ASC, "N_NAME" ASC, "N_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."NATION"

CREATE INDEX "DB2INST1"."N_NATIONKEY_INDX" ON "DB2INST1"."NATION"
("N_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."NATION"

CREATE INDEX "DB2INST1"."N_REGIONKEY_INDX" ON "DB2INST1"."NATION"
("N_REGIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."REGION"

CREATE INDEX "DB2INST1"."IDX1311111742470" ON "DB2INST1"."REGION"
("R_NAME" ASC, "R_REGIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."REGION"
CREATE INDEX "DB2INST1"."R_REGIONKEY_INDX" ON "DB2INST1"."REGION"

("R_REGIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS

50

A. DB2 Database Configuration

COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."PART"

CREATE INDEX "DB2INST1"."IDX1311081125300" ON "DB2INST1"."PART"
("P_NAME" ASC, "P_PARTKEY" DESC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."PART"

CREATE INDEX "DB2INST1"."PARTKEY_INDX" ON "DB2INST1"."PART"
("P_PARTKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."SUPPLIER"

CREATE INDEX "DB2INST1"."IDX1311081126360" ON "DB2INST1"."SUPPLIER"
("S_SUPPKEY" ASC, "S_NAME" ASC, "S_ADDRESS" ASC, "S_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."SUPPLIER"

CREATE INDEX "DB2INST1"."IDX1311081249170" ON "DB2INST1"."SUPPLIER"
("S_SUPPKEY" ASC, "S_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."SUPPLIER"

CREATE INDEX "DB2INST1"."IDX1311111743040" ON "DB2INST1"."SUPPLIER"
("S_NATIONKEY" ASC, "S_SUPPKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS YES INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."SUPPLIER"

CREATE INDEX "DB2INST1"."IDX1311111903070" ON "DB2INST1"."SUPPLIER"
("S_NATIONKEY" ASC, "S_SUPPKEY" DESC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS YES INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."SUPPLIER"

CREATE INDEX "DB2INST1"."S_NATIONKEY_INDX" ON "DB2INST1"."SUPPLIER"
("S_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."SUPPLIER"

CREATE INDEX "DB2INST1"."S_SUPPKEY_INDX" ON "DB2INST1"."SUPPLIER"
("S_SUPPKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

51

A. DB2 Database Configuration

-- DDL Statements for Indexes on Table "DB2INST1"."PARTSUPP"

CREATE INDEX "DB2INST1"."IDX1311081125110" ON "DB2INST1"."PARTSUPP"
("PS_PARTKEY" ASC, "PS_SUPPKEY" ASC, "PS_AVAILQTY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."PARTSUPP"

CREATE INDEX "DB2INST1"."PS_PARTKEY_INDX" ON "DB2INST1"."PARTSUPP"
("PS_PARTKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."PARTSUPP"

CREATE INDEX "DB2INST1"."PS_SUPPKEY_INDX" ON "DB2INST1"."PARTSUPP"
("PS_SUPPKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."CUSTOMER"

CREATE INDEX "DB2INST1"."C_CUSTKEY_INDX" ON "DB2INST1"."CUSTOMER"
("C_CUSTKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-—- DDL Statements for Indexes on Table "DB2INST1"."CUSTOMER"

CREATE INDEX "DB2INST1"."C_NATIONKEY_INDX" ON "DB2INST1"."CUSTOMER"
("C_NATIONKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."CUSTOMER"

CREATE INDEX "DB2INST1"."IDX1311111743470" ON "DB2INST1"."CUSTOMER"
("C_NATIONKEY" ASC, "C_CUSTKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS YES INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."ORDERS"

CREATE INDEX "DB2INST1"."IDX1311081250400" ON "DB2INST1"."ORDERS"
("O_ORDERKEY" ASC, "O_ORDERDATE" DESC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."ORDERS"

CREATE INDEX "DB2INST1"."IDX1311111743350" ON "DB2INST1"."ORDERS"
("O_ORDERDATE" ASC, "O_ORDERKEY" ASC, "O_CUSTKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS YES INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."ORDERS"

CREATE INDEX "DB2INST1"."O_CUSTKEY_INDX" ON "DB2INST1"."ORDERS"
("O_CUSTKEY" ASC)

52

A. DB2 Database Configuration

COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."ORDERS"

CREATE INDEX "DB2INST1"."O_ORDERKEY_INDX" ON "DB2INST1"."ORDERS"
("O_ORDERKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."LINEITEM"

CREATE INDEX "DB2INST1"."IDX1311081125330" ON "DB2INST1"."LINEITEM"
("L_PARTKEY" ASC, "L_SUPPKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."LINEITEM"

CREATE INDEX "DB2INST1"."L_ORDERKEY_INDX" ON "DB2INST1"."LINEITEM"
("L_ORDERKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-- DDL Statements for Indexes on Table "DB2INST1"."LINEITEM"

CREATE INDEX "DB2INST1"."L_PARTKEY_INDX" ON "DB2INST1"."LINEITEM"
("L_PARTKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

-—- DDL Statements for Indexes on Table "DB2INST1"."LINEITEM"

CREATE INDEX "DB2INST1"."L_SUPPKEY_INDX" ON "DB2INST1"."LINEITEM"
("L_SUPPKEY" ASC)
COLLECT SAMPLED DETAILED STATISTICS
COMPRESS NO INCLUDE NULL KEYS ALLOW REVERSE SCANS;

53

B. Hive Database Configuration

B. Hive Database Configuration

B.1. Database Creation Script

Listing B.1: internal Hive Tables for Query results

CREATE TABLE IF NOT EXISTS ql_pricing_summary_report

(L_RETURNFLAG STRING, L_LINESTATUS STRING, SUM_QTY DOUBLE,
SUM_BASE_PRICE DOUBLE, SUM_DISC_PRICE DOUBLE, SUM_CHARGE DOUBLE,
AVE_QTY DOUBLE, AVE_PRICE DOUBLE, AVE_DISC DOUBLE, COUNT_ORDER INT);

CREATE TABLE IF NOT EXISTS q92_minimum_cost_supplier_tmpl
(s_acctbal double, s_name string, n_name string, p_partkey int,
ps_supplycost double, p_mfgr string, s_address string,

s_phone string, s_comment string);

CREATE TABLE IF NOT EXISTS q92_minimum_cost_supplier_tmp2
(p_partkey int, ps_min_supplycost double);

CREATE TABLE IF NOT EXISTS q92_minimum_cost_supplier
(s_acctbal double, s_name string, n_name string, p_partkey int,
p_mfgr string, s_address string, s_phone string, s_comment string);

CREATE TABLE IF NOT EXISTS q3_shipping_priority
(l_orderkey int, revenue double, o_orderdate string, o_shippriority int);

CREATE TABLE IF NOT EXISTS q4_order_priority_tmp
(O_ORDERKEY INT);

CREATE TABLE IF NOT EXISTS q4_order_priority
(O_ORDERPRIORITY STRING, ORDER_COUNT INT);

CREATE TABLE IF NOT EXISTS gb5_local_supplier_volume
(N_NAME STRING, REVENUE DOUBLE);

CREATE TABLE IF NOT EXISTS qg6_forecast_revenue_change
(revenue double);

CREATE TABLE IF NOT EXISTS q7_volume_shipping
(supp_nation string, cust_nation string, l_year int, revenue double);

CREATE TABLE IF NOT EXISTS q7_volume_shipping_tmp
(supp_nation string, cust_nation string, s_nationkey int, c_nationkey int);

CREATE TABLE IF NOT EXISTS g8_national_market_share
(o_year string, mkt_share double);

CREATE TABLE IF NOT EXISTS q9_product_type_profit
(nation string, o_year string, sum_profit double);

CREATE TABLE IF NOT EXISTS qlO_returned_item

54

B. Hive Database Configuration

(c_custkey int, c_name string, revenue double, c_acctbal string,
n_name string, c_address string, c_phone string, c_comment string);

CREATE TABLE IF NOT EXISTS qll_important_stock
(ps_partkey INT, value DOUBLE);

CREATE TABLE IF NOT EXISTS qll_part_tmp
(ps_partkey int, part_value double);

CREATE TABLE IF NOT EXISTS ql1_sum_tmp
(total_value double);

CREATE TABLE IF NOT EXISTS ql12_shipping
(1_shipmode string, high_line_count double, low_line_count double);

CREATE TABLE IF NOT EXISTS ql3_customer_distribution
(c_count int, custdist int);

CREATE TABLE IF NOT EXISTS ql4_promotion_effect
(promo_revenue double);

CREATE TABLE IF NOT EXISTS revenue
(supplier_no int, total_revenue double);

CREATE TABLE IF NOT EXISTS max_revenue
(max_revenue double);

CREATE TABLE IF NOT EXISTS ql15_top_supplier
(s_suppkey int, s_name string, s_address string,
s_phone string, total_revenue double);

CREATE TABLE IF NOT EXISTS ql6_parts_supplier_relationship
(p_brand string, p_type string, p_size int, supplier_cnt int);

CREATE TABLE IF NOT EXISTS ql6_tmp
(p_brand string, p_type string, p_size int, ps_suppkey int);

CREATE TABLE IF NOT EXISTS supplier_tmp
(s_suppkey int);

CREATE TABLE IF NOT EXISTS ql17_small_quantity_order_revenue
(avg_yearly double);

CREATE TABLE IF NOT EXISTS lineitem_tmp
(t_partkey int, t_avg_quantity double);

CREATE TABLE IF NOT EXISTS ql18_tmp
(l_orderkey int, t_sum_quantity double);

CREATE TABLE IF NOT EXISTS ql18_large_volume_customer
(c_name string, c_custkey int, o_orderkey int,

o_orderdate string, o_totalprice double, sum_quantity double);

CREATE TABLE IF NOT EXISTS ql9_discounted_revenue
(revenue double);

CREATE TABLE IF NOT EXISTS q20_tmpil
(p_partkey int);

CREATE TABLE IF NOT EXISTS q20_tmp2

55

B. Hive Database Configuration

(l_partkey int, 1l_suppkey int, sum_quantity double);

CREATE TABLE IF NOT EXISTS q20_tmp3
(ps_suppkey int, ps_availqty int, sum_quantity double);

CREATE TABLE IF NOT EXISTS q20_tmp4
(ps_suppkey int);

CREATE TABLE IF NOT EXISTS q20_potential_part_promotion
(s_name string, s_address string);

CREATE TABLE IF NOT EXISTS q21_tmpl
(l_orderkey int, count_suppkey int, max_suppkey int);

CREATE TABLE IF NOT EXISTS q21_tmp2
(l_orderkey int, count_suppkey int, max_suppkey int);

CREATE TABLE IF NOT EXISTS q21_suppliers_who_kept_orders_waiting
(s_name string, numwait int);

CREATE TABLE IF NOT EXISTS q22_customer_tmp
(c_acctbal double, c_custkey int, cntrycode string);

CREATE TABLE IF NOT EXISTS q22_customer_tmpl
(avg_acctbal double);

CREATE TABLE IF NOT EXISTS qg22_orders_tmp
(o_custkey int);

CREATE TABLE IF NOT EXISTS qg22_global_sales_opportunity
(cntrycode string, numcust int, totacctbal double);

Listing B.2: External Stage Hive Tables

CREATE EXTERNAL TABLE IF NOT EXISTS stage_lineitem

(L_ORDERKEY INT, L_PARTKEY INT, L_SUPPKEY INT, L_LINENUMBER INT,

L_QUANTITY DOUBLE, L_EXTENDEDPRICE DOUBLE, L_DISCOUNT DOUBLE, L_TAX DOUBLE,
L_RETURNFLAG STRING, L_LINESTATUS STRING, L_SHIPDATE STRING, L_COMMITDATE STRING,
L_RECEIPTDATE STRING, L_SHIPINSTRUCT STRING, L_SHIPMODE STRING, L_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY |’

STORED AS TEXTFILE LOCATION ’/user/biadmin/tpch/lineitem’;

CREATE EXTERNAL TABLE IF NOT EXISTS stage_part

(P_PARTKEY INT, P_NAME STRING, P_MFGR STRING, P_BRAND STRING, P_TYPE STRING,
P_SIZE INT, P_CONTAINER STRING, P_RETAILPRICE DOUBLE, P_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY |’

STORED AS TEXTFILE LOCATION °’/user/biadmin/tpch/part’;

CREATE EXTERNAL TABLE IF NOT EXISTS stage_customer

(C_CUSTKEY INT, C_NAME STRING, C_ADDRESS STRING, C_NATIONKEY INT, C_PHONE STRING,
C_ACCTBAL DOUBLE, C_MKTSEGMENT STRING, C_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY |’

STORED AS TEXTFILE LOCATION ’/user/biadmin/tpch/customer’;

CREATE EXTERNAL TABLE IF NOT EXISTS stage_orders

(O_ORDERKEY INT, O_CUSTKEY INT, O_ORDERSTATUS STRING, O_TOTALPRICE DOUBLE,
O_ORDERDATE STRING, O_ORDERPRIORITY STRING, O_CLERK STRING, O_SHIPPRIORITY INT,
0_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY °’|°

STORED AS TEXTFILE LOCATION °’/user/biadmin/tpch/orders’;

B. Hive Database Configuration

CREATE EXTERNAL TABLE IF NOT EXISTS stage_supplier

(S_SUPPKEY INT, S_NAME STRING, S_ADDRESS STRING, S_NATIONKEY INT, S_PHONE STRING,
S_ACCTBAL DOUBLE, S_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY |’

STORED AS TEXTFILE LOCATION ’/user/biadmin/tpch/supplier’;

CREATE EXTERNAL TABLE IF NOT EXISTS stage_nation

(N_NATIONKEY INT, N_NAME STRING, N_REGIONKEY INT, N_COMMENT STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|°

STORED AS TEXTFILE LOCATION °’/user/biadmin/tpch/nation’;

CREATE EXTERNAL TABLE IF NOT EXISTS stage_region
(R_REGIONKEY INT, R_NAME STRING, R_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY |’

STORED AS TEXTFILE LOCATION °’/user/biadmin/tpch/region’;

CREATE EXTERNAL TABLE IF NOT EXISTS stage_partsupp
(PS_PARTKEY INT, PS_SUPPKEY INT, PS_AVAILQTY INT,
PS_SUPPLYCOST DOUBLE, PS_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY °’|°

STORED AS TEXTFILE LOCATION °’/user/biadmin/tpch/partsupp’;

Listing B.3: RCFile Hive Tables

CREATE TABLE IF NOT EXISTS lineitem

(L_ORDERKEY INT, L_PARTKEY INT, L_SUPPKEY INT,

L_LINENUMBER INT, L_QUANTITY DOUBLE,

L_EXTENDEDPRICE DOUBLE, L_DISCOUNT DOUBLE, L_TAX DOUBLE,
L_RETURNFLAG STRING, L_LINESTATUS STRING, L_SHIPDATE STRING,
L_COMMITDATE STRING, L_RECEIPTDATE STRING, L_SHIPINSTRUCT STRING,
L_SHIPMODE STRING, L_COMMENT STRING) STORED AS RCFile;

CREATE TABLE IF NOT EXISTS part

(P_PARTKEY INT, P_NAME STRING, P_MFGR STRING, P_BRAND STRING,

P_TYPE STRING, P_SIZE INT, P_CONTAINER STRING, P_RETAILPRICE DOUBLE,
P_COMMENT STRING) STORED AS RCFile;

CREATE TABLE IF NOT EXISTS customer

(C_CUSTKEY INT, C_NAME STRING, C_ADDRESS STRING, C_NATIONKEY INT,
C_PHONE STRING, C_ACCTBAL DOUBLE, C_MKTSEGMENT STRING,

C_COMMENT STRING) STORED AS RCFile;

CREATE TABLE IF NOT EXISTS orders

(O_ORDERKEY INT, O_CUSTKEY INT, O_ORDERSTATUS STRING, O_TOTALPRICE DOUBLE,
O_ORDERDATE STRING, O_ORDERPRIORITY STRING, O_CLERK STRING,
O_SHIPPRIORITY INT, O_COMMENT STRING) STORED AS RCFile;

CREATE TABLE IF NOT EXISTS supplier
(S_SUPPKEY INT, S_NAME STRING, S_ADDRESS STRING, S_NATIONKEY INT,
S_PHONE STRING, S_ACCTBAL DOUBLE, S_COMMENT STRING) STORED AS RCFile;

CREATE TABLE IF NOT EXISTS nation
(N_NATIONKEY INT, N_NAME STRING,
N_REGIONKEY INT, N_COMMENT STRING) STORED AS RCFile;

CREATE TABLE IF NOT EXISTS region
(R_REGIONKEY INT, R_NAME STRING,
R_COMMENT STRING) STORED AS RCFile;

57

B. Hive Database Configuration

CREATE TABLE IF NOT EXISTS partsupp

PS_PARTKEY INT,
PS_SUPPLYCOST DOUBLE,

--Part
hive.exec.compress.output=true;
mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
mapred.output.compress=true;

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

mapred.min

mapred.max.
hive.merge.
hive.merge.
hive.merge.
mapred.min.
mapred.min.

PS_SUPPKEY INT, PS_AVAILQTY INT,
PS_COMMENT STRING) STORED AS RCfile;

Listing B.4: Load RCFile Hive Tables

.split.size=1024000000;
split.size=1024000000;
mapredfiles=true;
smallfiles.avgsize=1024000000;
size.per.task=1024000000;
split.size.per.node=1024000000;
split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE part SELECT * FROM stage_part;

--Partsupp
SET hive.exec.compress.output=true;

SET
SET
SET
SET
SET
SET
SET
SET
SET

mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
mapred.output.compress=true;

mapred.min

mapred.max.

hive.merge

hive.merge.
hive.merge.
mapred.min.
mapred.min.

.split.size=1024000000;
split.size=1024000000;
.mapredfiles=true;
smallfiles.avgsize=1024000000;
size.per.task=1024000000;
split.size.per.node=1024000000;
split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE partsupp SELECT * FROM stage_partsupp;

--linettem

SET hive.exec.compress.output=true;

SET
SET
SET
SET
SET
SET
SET
SET
SET

mapred .
mapred.
mapred.
mapred .

min

max.
hive.merge.
hive.merge.
hive.merge.
mapred.min.
mapred.min.

output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
output.compress=true;

.split.size=1024000000;
split.size=1024000000;
mapredfiles=true;
smallfiles.avgsize=1024000000;
size.per.task=1024000000;
split.size.per.node=1024000000;
split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE lineitem SELECT * FROM stage_lineitem;

--orders
hive.exec.compress.output=true;
mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
mapred.output.compress=true;

SET
SET
SET
SET
SET
SET
SET
SET
SET

mapred.min

mapred.max.
hive.merge.
hive.merge.
hive.merge.

mapred.min

.split.size=1024000000;
split.size=1024000000;
mapredfiles=true;
smallfiles.avgsize=1024000000;
size.per.task=1024000000;
.split.size.per.node=1024000000;

58

B. Hive Database Configuration

SET mapred.min.split.size.per.rack=1024000000;
INSERT OVERWRITE TABLE orders SELECT * FROM stage_orders;

--supplier

SET hive.exec.compress.output=true;

SET mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
SET mapred.output.compress=true;

SET mapred.min.split.size=1024000000;

SET mapred.max.split.size=1024000000;

SET hive.merge.mapredfiles=true;

SET hive.merge.smallfiles.avgsize=1024000000;
SET hive.merge.size.per.task=1024000000;

SET mapred.min.split.size.per.node=1024000000;
SET mapred.min.split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE supplier SELECT * FROM stage_supplier;

--customer

SET hive.exec.compress.output=true;

SET mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
SET mapred.output.compress=true;

SET mapred.min.split.size=1024000000;

SET mapred.max.split.size=1024000000;

SET hive.merge.mapredfiles=true;

SET hive.merge.smallfiles.avgsize=1024000000;
SET hive.merge.size.per.task=1024000000;

SET mapred.min.split.size.per.node=1024000000;
SET mapred.min.split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE customer SELECT * FROM stage_customer;

--nation

SET hive.exec.compress.output=true;

SET mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
SET mapred.output.compress=true;

SET mapred.min.split.size=1024000000;

SET mapred.max.split.size=1024000000;

SET hive.merge.mapredfiles=true;

SET hive.merge.smallfiles.avgsize=1024000000;
SET hive.merge.size.per.task=1024000000;

SET mapred.min.split.size.per.node=1024000000;
SET mapred.min.split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE nation SELECT * FROM stage_nation;

--region

SET hive.exec.compress.output=true;

SET mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
SET mapred.output.compress=true;

SET mapred.min.split.size=1024000000;

SET mapred.max.split.size=1024000000;

SET hive.merge.mapredfiles=true;

SET hive.merge.smallfiles.avgsize=1024000000;
SET hive.merge.size.per.task=1024000000;

SET mapred.min.split.size.per.node=1024000000;
SET mapred.min.split.size.per.rack=1024000000;

INSERT OVERWRITE TABLE region SELECT * FROM stage_region;

C. TPC-H Queries

C. TPC-H Queries

Pricing Summary Report Query (Q1)

This query reports the amount of business that was billed, shipped, and returned.

The pricing summary report query provides a summary pricing report for all lineitems shipped as

of a given date.

SQL Statement

select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty,

sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-1_discount)) as sum_disc_price,

sum(l_extendedprice* (1-1_discount) *(1+1l_tax)) as sum_charge,

avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count (*) as count_order
from lineitem
where 1l_shipdate <= date(’1998-09-02’)
group by 1l_returnflag, l_linestatus
order by l_returnflag, l_linestatus;

Hive Statement

INSERT OVERWRITE TABLE ql_pricing_summary_report

SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_QUANTITY), SUM(L_EXTENDEDPRICE),

SUM(L_EXTENDEDPRICE=*(1-L_DISCOUNT)),
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)),

AVG(L_QUANTITY), AVG(L_EXTENDEDPRICE), AVG(L_DISCOUNT), COUNT(1)
FROM lineitem
WHERE L_SHIPDATE<=’1998-09-02"
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS;
BigSQL Statement
select 1l_returnflag , 1l_linestatus , sum (l_quantity) as sum_qty ,
sum (l_extendedprice) as sum_base_price ,
sum (l_extendedprice *(1 - 1l_discount)) as sum_disc_price ,
sum (l_extendedprice * (1 - 1_discount) *(1+ 1l_tax)) as sum_charge

avg (l_quantity) as avg_qty ,
avg (l_extendedprice) as avg_price ,
avg (l_discount) as avg_disc ,
count (*) as count_order
from lineitem

5

60

C. TPC-H Queries

where 1l_shipdate <= ’1998-09-02’
group by l_returnflag , 1l_linestatus
order by l_returnflag , l_linestatus;

Minimum Cost Supplier Query (Q2)

This query finds which supplier should be selected to place an order for a given part in a given
region.

The minimum cost supplier query finds, in a given region, for each part of a certain type and size,
the supplier who can supply it at minimum cost. If several suppliers in that region offer the desired
part type and size at the same (minimum) cost, the query lists the parts from suppliers with the
100 highest account balances.

SQL Statement

select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
from part, supplier, partsupp, nation, region
where p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and p_size = 15

and p_type like °’%BRASS’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’

and ps_supplycost = (

select min(ps_supplycost)

from partsupp, supplier, nation, region
where p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = °’EUROPE’)

order by s_acctbal desc, n_name, s_name, p_partkey
fetch first 100 rows only;

Hive Statement

insert overwrite table q2_minimum_cost_supplier_tmpl

select s.s_acctbal, s.s_name, n.n_name, p.p_partkey, ps.ps_supplycost,
p.p_mfgr, s.s_address, s.s_phone, s.s_comment

from nation n join region r

on n.n_regionkey = r.r_regionkey and r.r_name = ’EUROPE’
join supplier s
on s.s_nationkey = n.n_nationkey

join partsupp ps
on s.s_suppkey = ps.ps_suppkey
join part p
on p.p_partkey = ps.ps_partkey
and p.p_size = 15 and p.p_type like ’%BRASS’ ;

insert overwrite table q2_minimum_cost_supplier_tmp2
select p_partkey, min(ps_supplycost)

from g2_minimum_cost_supplier_tmpl

group by p_partkey;

61

C. TPC-H Queries

insert overwrite table q2_minimum_cost_supplier

select tl.s_acctbal, tl.s_name, tl.n_name, tl.p_partkey,

tl.p_mfgr, tl.s_address, tl.s_phone, tl.s_comment
from g2_minimum_cost_supplier_tmpl t1

join Q2_minimum_cost_supplier_tmp2 t2

on tl.p_partkey = t2.p_partkey and tl.ps_supplycost = t2.ps_min_supplycost

order by s_acctbal desc, n_name, s_name, p_partkey

limit 100;

BigSQL Statement

select s_acctbal , s_name , n_name , p_partkey , p_mfgr , s_address , s_phone ,
s_comment
from part , supplier , partsupp , nation , region

where p_partkey = ps_partkey
and s_suppkey = ps_suppkey

and p_size = 15

and p_type like ’%_BRASS’

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’

and ps_supplycost = (
select min (ps_supplycost)
from partsupp , supplier , nation , region
where p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’)
order by s_acctbal desc , n_name , s_name , p_partkey
fetch first 100 rows only ;

Shipping Priority Query (Q3)

This query retrieves the 10 unshipped orders with the highest value.

The shipping priority query retrieves the shipping priority and potential revenue of the orders having
the largest revenue among those that had not been shipped as of a given date. Only the 10 orders
with the largest revenue are listed

SQL Statement

select 1l_orderkey, sum(l_extendedpricex(l1-1_discount)) as revenue,
o_orderdate, o_shippriority
from customer, orders, lineitem
where c_mktsegment = ’BUILDING’

and c_custkey = o_custkey

and 1l_orderkey = o_orderkey

and o_orderdate < date(’1995-03-157)

and 1l_shipdate > date(’1995-03-157)
group by 1l_orderkey, o_orderdate, o_shippriority
order by revenue desc, o_orderdate

fetch first 10 rows only;

62

C. TPC-H Queries

Hive Statement

Insert overwrite table q3_shipping_priority

select 1l_orderkey, sum(l_extendedprice*(1-1_discount)) as revenue,
o_orderdate, o_shippriority

from customer c

join orders o

on c.c_mktsegment = ’BUILDING’ and c.c_custkey = o.o_custkey
join lineitem 1
on 1.1 _orderkey = o.o_orderkey

where o_orderdate < ’1995-03-15"
and 1l_shipdate > ’1995-03-15"
group by l_orderkey, o_orderdate, o_shippriority
order by revenue desc, o_orderdate
limit 10;

BigSQL Statement

select 1l_orderkey , sum (l_extendedprice *(1 - 1l_discount)) as revenue ,
o_orderdate , o_shippriority
from customer , orders , lineitem
where c_mktsegment = ’BUILDING’
and c_custkey = o_custkey
and 1l_orderkey = o_orderkey
and o_orderdate < 21995-03-15"
and 1l_shipdate > ’1995-03-15"
group by 1l_orderkey , o_orderdate , o_shippriority
order by revenue desc , o_orderdate
fetch first 10 rows only ;

Order Priority Checking Query (Q4)

This query determines how well the order priority system is working and gives an assessment of
customer satisfaction.

The order priority checking query counts the number of orders ordered in a given quarter of a given
year in which at least one lineitem was received by the customer later than its committed date. The
query lists the count of such orders for each order priority.

SQL Statement

select o_orderpriority, count(*) as order_count
from orders
where o_orderdate >= date(’1993-07-01°)
and o_orderdate < date(’1993-10-01’)
and exists (
select *
from lineitem
where 1_orderkey = o_orderkey
and 1l_commitdate < l_receiptdate)
group by o_orderpriority
order by o_orderpriority;

Hive Statement

63

C. TPC-H Queries

INSERT OVERWRITE TABLE q4_order_priority_tmp
select DISTINCT 1_orderkey

from lineitem

where 1_commitdate < l_receiptdate;

INSERT OVERWRITE TABLE q4_order_priority
select o_orderpriority, count(l) as order_count
from orders o
join q4_order_priority_tmp t
on o.o_orderkey = t.o_orderkey
and o.o_orderdate >= ’1993-07-01’ and o.o_orderdate < ’1993-10-01"
group by o_orderpriority
order by o_orderpriority;

BigSQL Statement

select o_orderpriority , count (*) as order_count
from orders
where o_orderdate >= 21993-07-01"
and o_orderdate < 21993-10-01’)
and exists (
select *
from lineitem
where 1_orderkey = o_orderkey
and l_commitdate < l_receiptdate)
group by o_orderpriority
order by o_orderpriority ;

Local Supplier Volume Query (Q5)

This query lists the revenue volume done through local suppliers.

The local supplier volume query lists for each nation in a region the revenue volume that resulted
from lineitem transactions in which the customer ordering parts and the supplier filling them were
both within that nation. The query is run in order to determine whether to institute local distri-
bution centers in a given region. The query considers only parts ordered in a given year.

SQL Statement

select n_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue
from customer, orders, lineitem,

supplier, nation, region
where c_custkey = o_custkey

and 1l_orderkey = o_orderkey

and 1l_suppkey = s_suppkey

and c_nationkey s_nationkey

and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’

and o_orderdate >= date(’1994-01-01’)
and o_orderdate < date(’1995-01-01’)
group by n_name
order by revenue desc;

Hive Statement

64

C. TPC-H Queries

insert overwrite table qb5_local_supplier_volume
select n_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue
from customer c¢ join
(select n_name, 1l_extendedprice, l_discount, s_nationkey, o_custkey from orders o
join
(select n_name, l_extendedprice, 1l_discount, 1l_orderkey, s_nationkey from
lineitem 1 join
(select n_name, s_suppkey, s_nationkey from supplier s join
(select n_name, n_nationkey
from nation n
join region r
on n.n_regionkey = r.r_regionkey and r.r_name = ’ASIA’
) nl on s.s_nationkey = nl.n_nationkey
) sl on 1.1_suppkey = sl.s_suppkey
) 11 on 11.1_orderkey = o.o_orderkey and o.o_orderdate >= ’1994-01-01"’
and o.o_orderdate < ’1995-01-01"
) ol
on c.c_nationkey = ol.s_nationkey and c.c_custkey = ol.o_custkey
group by n_name
order by revenue desc;

BigSQL Statement

select n_name , sum (l_extendedprice * (1 - 1l_discount)) as revenue
from customer , orders , lineitem ,
supplier , nation , region
where c_custkey = o_custkey
and 1l_orderkey = o_orderkey
and 1l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’
and o_orderdate >= 21994-01-01"
and o_orderdate < ’1995-01-01"
group by n_name
order by revenue desc;

Forecasting Revenue Change Query (Q6)

This query quantifies the amount of revenue increase that would have resulted from eliminating
certain company-wide discounts in a given percentage range in a given year. Asking this type of
”what if” query can be used to look for ways to increase revenues.

The forecasting revenue change query considers all the lineitems shipped in a given year with
discounts between 0.05 and 0.07. The query lists the amount by which the total revenue would have
increased if these discounts had been eliminated for lineitems with 1_quantity less than quantity.
Note that the potential revenue increase is equal to the sum of [l_extendedprice * 1_discount] for all
lineitems with discounts and quantities in the qualifying range.

SQL Statement

select sum(l_extendedprice*l_discount) as revenue
from lineitem
where 1_shipdate >= date(’1994-01-01’)

65

C. TPC-H Queries

and 1l_shipdate < date(’1995-01-017)
and 1_discount between 0.05 and 0.07
and l_quantity < 24;

Hive Statement

insert overwrite table q6_forecast_revenue_change
select sum(l_extendedprice*l_discount) as revenue
from lineitem
where 1l_shipdate >= ’1994-01-01"
and 1l_shipdate < ’1995-01-01°
and l_discount >= 0.05 and 1l_discount <= 0.07
and l_quantity < 24;

BigSQL Statement

select sum(l_extendedprice*l_discount) as revenue
from lineitem
where 1l_shipdate >= 21994-01-01"

and 1l_shipdate < ’1995-01-01°’

and 1l_discount between 0.05 and 0.07

and l_quantity < 24;

Volume Shipping Query (Q7)

This query determines the value of goods shipped between certain nations to help in the re-

negotiation of shipping contracts.

The volume shipping query finds, for two given nations, the gross discounted revenues derived from
lineitems in which parts were shipped from a supplier in either nation to a customer in the other
nation during 1995 and 1996. The query lists the supplier nation, the customer nation, the year,

and the revenue from shipments that took place in that year.

SQL Statement

select supp_nation, cust_nation, l_year, sum(volume) as revenue
from (select

nl.n_name as supp_nation,

n2.n_name as cust_nation,

extract (year from 1_shipdate) as l_year, l_extendedprice * (1 - 1l_discount) as

volume
from supplier, lineitem, orders,
customer , nation nl, nation n2
where s_suppkey = 1l_suppkey

and o_orderkey = 1l_orderkey
and c_custkey = o_custkey
and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (
(nl1.n_name = ’FRANCE’ and n2.n_name = °’GERMANY’)
or (nl.n_name = ’GERMANY’ and n2.n_name = °’FRANCE’))

and 1l_shipdate between date(’1995-01-01’) and date(’1996-12-317)
) as shipping
group by supp_nation, cust_nation, 1l_year
order by supp_nation, cust_nation, 1l_year;

66

C. TPC-H Queries

Hive Statement

insert overwrite table q7_volume_shipping_tmp
select *
from (
select nl.n_name as supp_nation, n2.n_name as cust_nation,
nl.n_nationkey as s_nationkey, n2.n_nationkey as c_nationkey
from nation nl join nation n2
on nl.n_name = ’FRANCE’ and n2.n_name = ’GERMANY’
UNION ALL
select nl.n_name as supp_nation, n2.n_name as cust_nation,
nl.n_nationkey as s_nationkey, n2.n_nationkey as c_nationkey
from nation nl join nation n2
on n2.n_name = ’FRANCE’ and nl.n_name = ’GERMANY’
) aj;

insert overwrite table q7_volume_shipping

select supp_nation, cust_nation, l_year, sum(volume) as revenue

from (

select supp_nation, cust_nation, year(l_shipdate) as 1l_year,
l_extendedprice * (1 - 1l_discount) as volume

from q7_volume_shipping_tmp t join
(select l_shipdate, 1l_extendedprice, 1l_discount, c_nationkey,

from supplier s join

s_nationkey

(select 1l_shipdate, l_extendedprice, l_discount, l_suppkey, c_nationkey

from customer c join

(select 1l_shipdate, 1l_extendedprice, l_discount, 1l_suppkey, o_custkey

from orders o join lineitem 1
on o.o_orderkey = 1.1_orderkey
and 1.1_shipdate >= ’1995-01-01"
and 1.1_shipdate <= ’1996-12-31"
) 11 on c.c_custkey = 1l1l.o_custkey
) 12 on s.s_suppkey = 12.1_suppkey

) 13 on 13.c_nationkey = t.c_nationkey and 13.s_nationkey = t.s_nationkey

) shipping
group by supp_nation, cust_nation, 1l_year
order by supp_nation, cust_nation, 1l_year;

BigSQL Statement

select supp_nation, cust_nation, l_year, sum(volume) as revenue
from (select

nl.n_name as supp_nation,

n2.n_name as cust_nation,

substr (1_shipdate ,1,4) as 1l_year,

l_extendedprice * (1 - 1l_discount) as volume

from supplier, lineitem, orders,

customer , nation nl, nation n2
where s_suppkey = 1l_suppkey

and o_orderkey = 1l_orderkey
and c_custkey = o_custkey
and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey
and (
(nl.n_name = ’FRANCE’ and n2.n_name = °’GERMANY?’)

or (nl.n_name >GERMANY’ and n2.n_name = ’FRANCE’))

and 1l_shipdate between ’1995-01-01’ and ’1996-12-31’) as shipping

group by supp_nation, cust_nation, 1l_year
order by supp_nation, cust_nation, 1l_year;

67

C. TPC-H Queries

National Market Share Query (Q8)

This query determines how the market share of a given nation within a given region has changed
over two years for a given part type.

The market share for a given nation within a given region is defined as the fraction of the revenue,
the sum of [l_extendedprice * (1-1_discount)], from the products of a specified type in that region
that was supplied by suppliers from the given nation. The query determines this for the years 1995
and 1996 presented in this order.

SQL Statement

select o_year, sum(case
when nation = ’BRAZIL’
then volume
else 0 end) / sum(volume) as mkt_share
from (select year(o_orderdate) as o_year,
l_extendedprice * (1-1l_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer , nation nl, nation n2, region
where p_partkey = 1l_partkey
and s_suppkey = 1l_suppkey
and 1l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between date(’1995-01-01’) and date(’1996-12-31°)
and p_type = ’ECONOMY_ANODIZED,STEEL’) as all_nations
group by o_year
order by o_year;

Hive Statement

insert overwrite table gq8_national_market_share
select o_year, sum(case
when nation = ’BRAZIL’
then volume
else 0.0 end) / sum(volume) as mkt_share

from (select year(o_orderdate) as o_year,

l_extendedprice * (1-1_discount) as volume,

n2.n_name as nation

from nation n2 join

(select o_orderdate, 1l_discount, l_extendedprice, s_nationkey

from supplier s join
(select o_orderdate, 1l_discount, l_extendedprice, 1_suppkey
from part p join
(select o_orderdate, 1l_partkey, l_discount, l_extendedprice, 1l_suppkey
from lineitem 1 join
(select o_orderdate, o_orderkey
from orders o join
(select c.c_custkey
from customer c join
(select nl.n_nationkey

68

C. TPC-H Queries

from nation nl join region r

on nl.n_regionkey = r.r_regionkey and r.r_name = ’AMERICA’
) ni1l on c.c_nationkey = nll.n_nationkey
) cl on cl.c_custkey = o.o_custkey

) ol on 1.1 _orderkey = ol.o_orderkey
and ol.o_orderdate >= ’21995-01-01"
and ol.o_orderdate < ’1996-12-31"
) 11 on p.p_partkey = 1l1.1_partkey

and p.p_type = ’ECONOMY_,ANODIZED,STEEL’
) pl on s.s_suppkey = pl.l_suppkey
) sl on sl.s_nationkey = n2.n_nationkey

) all_nation
group by o_year
order by o_year;

BigSQL Statement

select o_year, sum(case
when nation = ’BRAZIL’
then volume
else 0 end) / sum(volume) as mkt_share
from (select substr(o_orderdate,1,4) as o_year,
l_extendedprice * (1-1_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer, nation nl, nation n2, region
where p_partkey = l_partkey
and s_suppkey = 1l_suppkey
and 1l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and o_orderdate between ’21995-01-01’ and ’1996-12-31"
and p_type = ’ECONOMY_ANODIZED,STEEL’) as all_nations
group by o_year
order by o_year;

Product Type Profit Measure Query (Q9)

This query determines how much profit is made on a given line of parts, broken out by supplier
nation and year.

The product type profit measure query finds, for each nation and each year, the profit for all parts
ordered in that year that contain a specified substring in their names and that were filled by a
supplier in that nation.

SQL Statement

select nation, o_year, sum (amount) as sum_profit
from (select n_name as nation,
year (o_orderdate) as o_year,
l_extendedprice * (1 - 1l_discount) - ps_supplycost * l_quantity as amount
from part, supplier, lineitem,

69

C. TPC-H Queries

partsupp,

orders,

nation

where s_suppkey = 1l_suppkey
and ps_suppkey = 1l_suppkey
and ps_partkey = 1l_partkey

and p_partkey =

1_partkey

and o_orderkey = 1l_orderkey

and s_nationkey

and p_name like
group by nation, o_year
order by nation, o_year

Hive Statement

= n_nationkey
>}green’’) as profit

desc;

insert overwrite table q9_product_type_profit

select nation,
from (

o_year,

select n_name as nation,
l_extendedprice * (1 - 1l_discount) -

from orders o join
(select l_extendedpric
ps_supplycost
from part p join

(select l_extendedprice,
ps_supplycost

n_name ,

sum (amount) as sum_profit

year (o_orderdate) as o_year,
ps_supplycost * 1l_quantity as amount

e, l_discount, l_quantity, l_orderkey, n_name,

l_discount, l_quantity, l_partkey, 1l_orderkey,

from partsupp ps join

(select 1_suppkey, l_extendedprice, l_discount, 1l_quantity, 1l_partkey,
1l_orderkey, n_name
from (select s_suppkey, n_name
from nation n join supplier s on n.n_nationkey = s.s_nationkey

) s1 join lineitem 1 on sl.s_suppkey = 1l.1l_suppkey
) 11 on ps.ps_suppkey = 11.1_suppkey and ps.ps_partkey = 11.1_partkey

) 12 on p.p_name like

and p.p_partkey

) 13 on o.o_orderkey =

)profit
group by mnation, o_year
order by nation, o_year

BigSQL Statement

select nation,
from (

o_year, s
select n_name as

>%greend,’
= 12.1_partkey
13.1_orderkey

desc;

um (amount) as sum_profit
nation,

substr (o_orderdate ,1,4) as o_year,

l_extendedprice
from part,
partsupp,
where s_suppkey =
and ps_suppkey
and ps_partkey =
and p_partkey =
and o_orderkey =

orders

and s_nationkey

and p_name like
group by nation, o_year
order by nation, o_year

supplier,

* (1 - 1l_discount)
lineitem,
, nation
1_suppkey
1_suppkey
1_partkey
1_partkey
1_orderkey
= n_nationkey
’%green’,”) as profit

desc;

- ps_supplycost * 1l_quantity as amount

70

C. TPC-H Queries

Returned Item Reporting Query (Q10)

The query identifies customers who might be having problems with the parts that are shipped to
them.

The returned item reporting query finds the top 20 customers, in terms of their effect on lost revenue
for a given quarter, who have returned parts. The query considers only parts that were ordered in
the specified quarter. The query lists the customer’s name, address, nation, phone number, account
balance, comment information and revenue lost. Revenue lost is defined as sum(l_extendedprice®(1-
l_discount)) for all qualifying lineitems.

SQL Statement

select c_custkey, c_name, sum(l_extendedprice * (1 - 1_discount)) as revenue,
c_acctbal, n_name, c_address, c_phone, c_comment
from customer, orders,

lineitem, nation
where c_custkey = o_custkey

and 1l_orderkey = o_orderkey

and o_orderdate >= date(’1993-10-01’)

and o_orderdate < date(’1994-01-01’)

and l_returnflag = ’R’

and c_nationkey = n_nationkey
group by c_custkey, c_name, c_acctbal,

c_phone, n_name, c_address, c_comment
order by revenue desc
fetch first 20 rows only;

Hive Statement

insert overwrite table qlO_returned_item
select c_custkey, c_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue,
c_acctbal, n_name, c_address, c_phone, c_comment
from customer c join orders o
on c.c_custkey = o.o_custkey
and o.o_orderdate >= ’21993-10-01’ and o.o_orderdate < ’21994-01-01"’
join nation n

on c.c_nationkey = n.n_nationkey
join lineitem 1
on 1.1 _orderkey = o.o_orderkey and 1.1l_returnflag = °’R’

group by c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment
order by revenue desc
limit 20;

BigSQL Statement

select c_custkey, c_name, sum(l_extendedprice * (1 - 1l_discount)) as revenue,
c_acctbal, n_name, c_address, c_phone, c_comment
from customer, orders,

lineitem, nation
where c_custkey o_custkey

and 1l_orderkey = o_orderkey

and o_orderdate >= ’1993-10-01"

and o_orderdate < ’1994-01-01"

and 1l_returnflag = ’R’

71

C. TPC-H Queries

and c_nationkey = n_nationkey
group by c_custkey, c_name, c_acctbal,
c_phone, n_name, c_address, c_comment
order by revenue desc
fetch first 20 rows only;

Important Stock Identification Query (Q11)

This query finds the most important subset of suppliers’ stock in a given nation.

The important stock identification query finds, from scanning the available stock of suppliers in a
given nation, all the parts that represent a significant percentage of the total value of all available
parts.

SQL Statement

select ps_partkey, sum(ps_supplycost * ps_availqty) as value
from partsupp, supplier, nation
where ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = °’GERMANY’
group by ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select sum(ps_supplycost * ps_availqty) * 0.0000001
from partsupp, supplier, nation
where ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = ’GERMANY’)
order by value desc;

Hive Statement

insert overwrite table qll_part_tmp
select ps_partkey, sum(ps_supplycost * ps_availqty) as part_value
from nation n join supplier s
on s.s_nationkey = n.n_nationkey
and n.n_name = ’GERMANY’
join partsupp ps
on ps.ps_suppkey = s.s_suppkey
group by ps_partkey;

insert overwrite table qll_sum_tmp
select sum(part_value) as total_value
from qll_part_tmp;

insert overwrite table qll_important_stock
select ps_partkey, part_value as value
from (
select ps_partkey, part_value, total_value
from qll_part_tmp join qll_sum_tmp
) a
where part_value > total_value * 0.0000001
order by value desc;

BigSQL Statement

72

C. TPC-H Queries

select ps_partkey, sum(ps_supplycost * ps_availqty) as val
from partsupp, supplier, nation
where ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = ’GERMANY’
group by ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select sum(ps_supplycost * ps_availqty) * 0.0000001
from partsupp, supplier, nation
where ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = ’GERMANY’)
order by val desc;

Shipping Modes and Order Priority Query (Q12)

This query determines whether selecting less expensive modes of shipping is negatively affecting the
critical-priority orders by causing more parts to be received by customers after the committed date.

The shipping modes and order priority query counts, by ship mode, for lineitems actually received
by customers in a given year, the number of lineitems belonging to orders for which the 1_receiptdate
exceeds the l_commitdate for two different specified ship modes. Only lineitems that were actually
shipped before the I_commitdate are considered. The late lineitems are partitioned into two groups,
those with priority URGENT or HIGH, and those with a priority other than URGENT or HIGH.

SQL Statement

select 1l_shipmode,
sum(case
when o_orderpriority =’1-URGENT’
or o_orderpriority =’2-HIGH’
then 1
else O
end) as high_line_count,
sum(case
when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1
else O
end) as low_line_count
from orders, lineitem
where o_orderkey = 1_orderkey
and 1l_shipmode in (’MAIL’, °’SHIP’)
and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate
and 1l_receiptdate >= date(’1994-01-01’)
and 1l_receiptdate < date (’1995-01-01’)
group by l_shipmode
order by 1l_shipmode;

Hive Statement

insert overwrite table ql2_shipping
select 1l_shipmode,

73

C. TPC-H Queries

sum (case
when o_orderpriority =’1-URGENT’
or o_orderpriority =’2-HIGH’
then 1
else 0 end) as high_line_count,
sum (case
when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1
else 0 end) as low_line_count
from
orders o join lineitem 1
on o.o_orderkey = 1.1_orderkey
and 1.1_commitdate < 1.l _receiptdate
and 1.1_shipdate < 1l.1l_commitdate
and 1.1l_receiptdate >= ’1994-01-01"
and 1.1l _receiptdate < ’1995-01-01"
where 1.1_shipmode = ’MAIL’ or 1.1l_shipmode = ’SHIP’
group by l_shipmode
order by 1_shipmode;

BigSQL Statement

select 1l_shipmode,
sum (case
when o_orderpriority =’1-URGENT’
or o_orderpriority =’2-HIGH’
then 1
else 0 end) as high_line_count,
sum (case
when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1
else 0 end) as low_line_count
from orders, lineitem
where o_orderkey = 1_orderkey
and 1l_shipmode in (’MAIL’, °’SHIP’)
and l_commitdate < l_receiptdate
and l_shipdate < 1l_commitdate
and l_receiptdate >= 21994-01-01"
and 1l_receiptdate < ’1995-01-01°
group by l_shipmode
order by 1l_shipmode;

Customer Distribution Query (Q13)

This query seeks relationships between customers and the size of their orders.

This query determines the distribution of customers by the number of orders they have made,
including customers who have no record of orders, past or present. It counts and reports how many
customers have no orders, how many have 1, 2, 3, etc. A check is made to ensure that the orders
counted do not fall into one of several special categories of orders. Special categories are identified
in the order comment column by looking for a particular pattern.

SQL Statement

74

C. TPC-H Queries

select c_count, count(*) as custdist
from (
select c_custkey, count(o_orderkey)
from customer left outer join orders on
customer.c_custkey = orders.o_custkey
and o_comment not like ’Y%speciallrequestsy’
group by c_custkey) as c_orders (c_custkey, c_count)
group by c_count
order by custdist desc, c_count desc

Hive Statement

insert overwrite table ql3_customer_distribution
select c_count, count(l) as custdist
from (
select c_custkey, count(o_orderkey) as c_count
from customer c¢ left outer join orders o
on c.c_custkey = o.o_custkey
and not o.o_comment like ’Y%specialirequests?’
group by c_custkey
) c_orders
group by c_count
order by custdist desc, c_count desc;

BigSQL Statement

select c_count, count(*) as custdist
from (
select c_custkey, count(o_orderkey)
from customer left outer join orders on
c_custkey = o_custkey
and o_comment not like ’Y%speciallrequests?’
group by c_custkey) as c_orders (c_custkey, c_count)
group by c_count
order by custdist desc, c_count desc;

Promotion Effect Query (Q14)

This query monitors the market response to a promotion such as TV advertisements or a special
campaign.

The promotion effect query determines what percentage of the revenue in a given year and month
was derived from promotional parts. The query considers only parts actually shipped in that month
and gives the percentage.

SQL Statement

select 100.00 =
sum (case
when p_type like ’PROMOY%’
then 1_extendedpricex(1-1_discount)
else O
end) / sum(l_extendedprice * (1 - 1l_discount)) as promo_revenue
from lineitem, part

75

C. TPC-H Queries

where 1_partkey = p_partkey
and 1l_shipdate >= date(’1995-09-01’)
and 1l_shipdate < date (’1995-10-01’);

Hive Statement

insert overwrite table ql4_promotion_effect
select 100.00 * sum(case
when p_type like ’PROMOY%’
then 1l_extendedprice*(1-1_discount)
else 0.0 end) / sum(l_extendedprice * (1 - 1l_discount)) as
promo_revenue
from part p join lineitem 1
on l.1l_partkey = p.p_partkey
and 1.1_shipdate >= ’21995-09-01’ and 1.1l_shipdate < ’1995-10-01’;

BigSQL Statement

select 100.00 =

sum (case

when p_type like °’PROMOY’

then 1l_extendedprice*(1-1_discount)

else 0 end) / sum(l_extendedprice * (1 - 1l_discount)) as promo_revenue
from lineitem, part
where 1l_partkey = p_partkey
and 1_shipdate >= ’1995-09-01"
and 1l_shipdate < ’1995-10-01";

Top Supplier Query (Q15)

This query determines the top supplier so it can be rewarded, given more business, or identified for
special recognition.

The top supplier query finds the supplier who contributed the most to the overall revenue for parts
shipped during a given quarter of a given year. In case of a tie, the query lists all suppliers whose
contribution was equal to the maximum, presented in supplier number order.

SQL Statement

create view revenue as
select 1l_suppkey as supplier_no, sum(l_extendedprice * (1 - 1l_discount)) as
total_revenue
from lineitem
where 1_shipdate >= date (’1996-01-01’)
and 1l_shipdate < date (’1996-04-01’)
group by 1l_suppkey;

select s_suppkey, s_name, s_address, s_phone, total_revenue
from supplier, revenue
where s_suppkey = supplier_no
and total_revenue = (
select max(total_revenue)
from revenue)
order by s_suppkey;
drop view revenue;

76

C. TPC-H Queries

Hive Statement

insert overwrite table revenue

select 1l_suppkey as supplier_no, sum(l_extendedprice * (1 - 1l_discount)) as
total_revenue

from lineitem

where 1l_shipdate >= ’1996-01-01’ and 1l_shipdate < ’1996-04-01"

group by 1l_suppkey;

insert overwrite table max_revenue
select max(total_revenue)
from revenue;

insert overwrite table ql5_top_supplier
select s_suppkey, s_name, s_address, s_phone, total_revenue
from supplier s join revenue r

on s.s_suppkey = r.supplier_mno
join max_revenue m
on r.total_revenue = m.max_revenue

order by s_suppkey;

BigSQL Statement

create view revenue as
select 1l_suppkey as supplier_no, sum(l_extendedprice * (1 - 1l_discount)) as
total_revenue
from lineitem
where 1l_shipdate >= date ’1996-01-01"
and 1l_shipdate < date ’1996-04-01"
group by 1l_suppkey;

select s_suppkey, s_name, s_address, s_phone, total_revenue
from supplier, revenue
where s_suppkey = supplier_no

and total_revenue = (

select max(total_revenue)

from revenue)

order by s_suppkey;
drop view revenue;

Parts/Supplier Relationship Query (Q16)

This query finds out how many suppliers can supply parts with given attributes. It might be used,
for example, to determine whether there is a sufficient number of suppliers for heavily ordered parts.

The Parts/Supplier relationship query counts the number of suppliers who can supply parts that
satisfy a particular customer’s requirements. The customer is interested in parts of eight different
sizes as long as they are not of a given type, not of a given brand, and not from a supplier who has
had complaints registered at the Better Business Bureau.

SQL Statement

select p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt
from partsupp, part

77

C. TPC-H Queries

where p_partkey = ps_partkey

and p_brand <> ’Brand#45’

and p_type not like ’MEDIUM_POLISHEDY’

and p_size in (49, 14, 23,45,19,3,36,9)

and ps_suppkey not in (

select s_suppkey

from supplier

where s_comment like ’%Customer’Complaints’’)
group by p_brand,p_type,p_size
order by supplier_cnt desc,p_brand,p_type,p_size;

Hive Statement

insert overwrite table supplier_tmp

select s_suppkey

from supplier

where not s_comment like ’%Customer’Complaints’%’;

insert overwrite table ql6_tmp
select p_brand, p_type, p_size, ps_suppkey
from partsupp ps join part p
on p.p_partkey = ps.ps_partkey
and p.p_brand <> ’Brand#45’
and not p.p_type like ’MEDIUM_,POLISHEDY’
join supplier_tmp s
on ps.ps_suppkey = s.s_suppkey;

insert overwrite table ql6_parts_supplier_relationship
select p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt
from (

select =*
from ql6_tmp
where p_size = 49 or p_size = 14 or p_size = 23 or
p_size = 45 or p_size = 19 or p_size = 3 or
p_size = 36 or p_size = 9
) ql6_all

group by p_brand, p_type, p_size
order by supplier_cnt desc, p_brand, p_type, p_size;

BigSQL Statement

select p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt
from partsupp, part
where p_partkey = ps_partkey
and p_brand <> ’Brand#45’
and p_type not like ’MEDIUM_ POLISHEDY’
and p_size in (49, 14, 23,45,19,3,36,9)
and ps_suppkey not in (
select s_suppkey
from supplier
where s_comment like ’%Customer’Complaints?%’)
group by p_brand,p_type,p_size
order by supplier_cnt desc,p_brand,p_type,p_size;

78

C. TPC-H Queries

Small-Quantity-Order Revenue Query (Q17)

This query determines how much average yearly revenue would be lost if orders were no longer filled
for small quantities of certain parts. This may reduce overhead expenses by concentrating sales on
larger shipments.

The small-quantity-order revenue query considers parts of a given brand and with a given container
type and determines the average lineitem quantity of such parts ordered for all orders (past and
pending) in the 7-year database. What would be the average yearly gross (undiscounted) loss in
revenue if orders for these parts with a quantity of less than 20% of this average were no longer
taken?

SQL Statement

select sum(l_extendedprice) / 7.0 as avg_yearly
from lineitem, part
where p_partkey = 1l_partkey

and p_brand = ’Brand#23’

and p_container = ’MED,BOX’

and 1l_quantity < (

select 0.2 * avg(l_quantity)
from lineitem
where 1_partkey = p_partkey);

Hive Statement

insert overwrite table lineitem_tmp

select 1l_partkey as t_partkey, 0.2 * avg(l_quantity) as t_avg_quantity
from lineitem

group by 1l_partkey;

insert overwrite table ql17_small_quantity_order_revenue
select sum(l_extendedprice) / 7.0 as avg_yearly
from (
select 1l_quantity, l_extendedprice, t_avg_quantity
from lineitem_tmp t join
(select l_quantity, l_partkey, l_extendedprice
from part p join lineitem 1
on p.p_partkey = 1.1_partkey

and p.p_brand = ’Brand#23’
and p.p_container = ’MED,BOX’
) 11 on 11.1_partkey = t.t_partkey

) a
where 1l_quantity < t_avg_quantity;

BigSQL Statement

select sum(l_extendedprice) / 7.0 as avg_yearly
from lineitem, part
where p_partkey = 1l_partkey

and p_brand = ’Brand#23’

and p_container = ’MED_,BOX’

and 1l_quantity < (

select 0.2 * avg(l_quantity)
from lineitem

79

C. TPC-H Queries

where 1l_partkey = p_partkey);
Large Volume Customer Query (Q18)

The query ranks customers based on their having placed a large quantity order. Large quantity
orders are defined as those orders whose total quantity is above a certain level.

The large volume customer query finds a list of the top 100 customers who have ever placed large
quantity orders.

SQL Statement

select c_name,c _custkey, o_orderkey, o_orderdate, o_totalprice, sum(l_quantity)
from customer, orders, lineitem
where o_orderkey in (
select 1_orderkey
from lineitem group by 1l_orderkey having sum(l_quantity) > 300)
and c_custkey = o_custkey
and o_orderkey = 1l_orderkey
group by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
order by o_totalprice desc, o_orderdate
fetch first 100 rows only

Hive Statement

insert overwrite table ql8_tmp

select 1l_orderkey, sum(l_quantity) as t_sum_quantity
from lineitem

group by l_orderkey;

insert overwrite table ql8_large_volume_customer

select c_name,c_custkey,o_orderkey,o_orderdate,o_totalprice,sum(l_quantity)
from customer c¢ join orders o

on c.c_custkey = o.o_custkey join ql8_tmp t

on o.o_orderkey = t.l_orderkey
and t.t_sum_quantity > 300 join lineitem 1
on o.o_orderkey = 1.1_orderkey

group by c_name,c_custkey,o_orderkey,o_orderdate,o_totalprice
order by o_totalprice desc,o_orderdate
limit 100;

BigSQL Statement

select c_name,c_custkey,o_orderkey,o_orderdate,o_totalprice,sum(l_quantity)
from customer, orders, lineitem
where o_orderkey in (
select 1l_orderkey
from lineitem group by 1l_orderkey having sum(l_quantity) > 300)
and c_custkey = o_custkey
and o_orderkey = 1l_orderkey
group by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
order by o_totalprice desc, o_orderdate
fetch first 100 rows only;

80

C. TPC-H Queries

Discounted Revenue Query (Q19)

The discounted revenue query reports the gross discounted revenue attributed to the sale of selected
parts handled in a particular manner. This query is an example of code such as might be produced
programmatic by a data mining tool.

Q19 finds the gross discounted revenue for all orders for three different types of parts that were
shipped by air or delivered in person . Parts are selected based on the combination of specific
brands, a list of containers, and a range of sizes.

SQL Statement

select sum(l_extendedprice * (1 - 1l_discount)) as revenue
from lineitem, part
where (p_partkey = 1l_partkey
and p_brand = ’Brand#12°’
and p_container in (’SM_,CASE’, ’SM_,BOX’, ’SM_,PACK’, ’SM_,PKG’)
and 1l_quantity >= 1 and l_quantity <= 11
and p_size between 1 and 5
and 1l_shipmode in (’AIR’, ’AIR,REG’)
and 1_shipinstruct = ’DELIVER_IN_,PERSON’)
or (p_partkey = l_partkey
and p_brand = ’Brand#23’
and p_container in (’MED_BAG’, °’MED,BOX’, ’MED_,PKG’, ’MED_ PACK’)
and 1l_quantity >= 10 and l_quantity <= 20
and p_size between 1 and 10
and 1l_shipmode in (’AIR’, ’AIR_REG?’)
and 1l_shipinstruct = ’DELIVER,IN_ PERSON’)
or (p_partkey = 1l_partkey
and p_brand = ’Brand#34’
and p_container in (’LG,CASE’, ’LG,BOX’, ’LG_,PACK’, ’LG,PKG’)
and 1l_quantity >= 20 and l_quantity <= 30
and p_size between 1 and 15
and 1_shipmode in (’AIR’, ’AIR,REG’)
and 1l_shipinstruct = ’DELIVER,IN_,PERSON’)

Hive Statement

insert overwrite table ql9_discounted_revenue

select sum(l_extendedprice * (1 - 1l_discount)) as revenue
from lineitem 1 join part p

on p.p_partkey = 1l.1_partkey

where (

p_brand = ’Brand#12’

and p_container REGEXP ’SM,CASE||SM_,BOX||SM_ PACK||SM_ PKG’
and l_quantity >= 1 and 1l_quantity <= 11

and p_size >= 1 and p_size <=5

and 1_shipmode REGEXP °’AIR||AIR,REG’

and 1_shipinstruct = ’DELIVER,IN_PERSON’)
or (
p_brand = ’Brand#23’

and p_container REGEXP °’MED_BAG||MED_BOX||MED,PKG||MED_ PACK”’
and l_quantity >= 10 and 1l_quantity <= 20

and p_size >= 1 and p_size <= 10

and 1l_shipmode REGEXP ’AIR||AIR,REG’

and 1l_shipinstruct = ’DELIVER,IN_ PERSON’)

81

C. TPC-H Queries

or (
p_brand = ’Brand#34’
and p_container REGEXP °’LG_,CASE||LG_BOX||LG_,PACK||LG,PKG’
and l_quantity >= 20 and l_quantity <= 30
and p_size >= 1 and p_size <= 15
and 1_shipmode REGEXP ’AIR||AIR,REG’
and 1l_shipinstruct = ’DELIVER,IN_PERSON’)
BigSQL Statement
select sum(l_extendedprice * (1 - 1l_discount)) as revenue
from lineitem, part
where (p_partkey = l_partkey
and p_brand = ’Brand#12’
and p_container in (’SM_,CASE’, ’SM_BOX’, °’SM_,PACK’, ’SM_,PKG’)
and 1l_quantity >= 1 and l_quantity <= 11
and p_size between 1 and 5
and 1l_shipmode in (’AIR’, ’AIR,REG?’)
and 1_shipinstruct = ’DELIVER,IN_ PERSON’)
or (p_partkey = 1l_partkey
and p_brand = ’Brand#23’
and p_container in (’MED_BAG’, °’MED,BOX’, ’MED_,PKG’, °’MED_ PACK’)
and l_quantity >= 10 and 1l_quantity <= 20
and p_size between 1 and 10
and 1l_shipmode in (’AIR’, ’AIR_,REG?’)
and 1_shipinstruct = ’DELIVER,IN_PERSON’)
or (p_partkey = 1l_partkey
and p_brand = ’Brand#34’
and p_container in (’LG_,CASE’, ’LG_,BOX’, ’LG,PACK’, ’LG,PKG’)
and l_quantity >= 20 and 1l_quantity <= 30
and p_size between 1 and 15
and 1l_shipmode in (’AIR’, ’AIRLREG’)
and 1l_shipinstruct = ’DELIVER_,IN_ PERSON’);

Potential Part Promotion Query (Q20)

The potential part promotion query identifies suppliers who have an excess of a given part available;
an excess is defined to be more than 50% of the parts like the given part that the supplier shipped
in a given year for a given nation. Only parts whose names share a certain naming convention are
considered.

SQL

sele
from

Statement

ct s_name, s_address

supplier , nation

where s_suppkey in (

se
fr
wh

lect ps_suppkey

om partsupp

ere ps_partkey in (
select p_partkey
from part

where p_name like ’forest?’%’)

and ps_availqty > (

select 0.5 * sum(l_quantity)
from lineitem

82

C. TPC-H Queries

where 1_partkey = ps_partkey
and 1l_suppkey = ps_suppkey
and 1_shipdate >= date (’1994-01-01’)
and 1l_shipdate < date(’1995-01-01°)))
and s_nationkey = n_nationkey
and n_name = ’CANADA’
order by s_name

Hive Statement

insert overwrite table q20_tmpl
select distinct p_partkey

from part

where p_name 1like ‘forest%’;

insert overwrite table q20_tmp2
select 1l_partkey, l_suppkey, 0.5 * sum(l_quantity)
from lineitem
where 1_shipdate >= 21994-01-01"
and 1l_shipdate < ’1995-01-01"
group by 1l_partkey, 1l_suppkey;

insert overwrite table q20_tmp3
select ps_suppkey, ps_availqty, sum_quantity
from partsupp ps join q20_tmpl t1
on ps.ps_partkey = tl.p_partkey
join q20_tmp2 t2
on ps.ps_partkey = t2.1l_partkey and ps.ps_suppkey = t2.1l_suppkey;

insert overwrite table q20_tmp4
select ps_suppkey

from q20_tmp3

where ps_availqty > sum_quantity
group by ps_suppkey;

insert overwrite table q20_potential_part_promotion
select s_name, s_address
from supplier s join nation n

on s.s_nationkey = n.n_nationkey

and n.n_name = ’CANADA’

join q20_tmp4 t4

on s.s_suppkey = t4.ps_suppkey
order by s_name;

BigSQL Statement

select s_name,s_address
from supplier, nation
where s_suppkey in (
select ps_suppkey
from partsupp
where ps_partkey in (
select p_partkey
from part
where p_name like ’forest?%’)
and ps_availqty > (
select 0.5 * sum(l_quantity)
from lineitem

C. TPC-H Queries

where 1_partkey = ps_partkey
and 1l_suppkey = ps_suppkey
and 1l_shipdate >= ’1994-01-01°
and 1_shipdate < ’1995-01-01’)))
and s_nationkey = n_nationkey
and n_name = ’CANADA’
order by s_name;

Suppliers Who Kept Orders Waiting Query (Q21)

This query identifies certain suppliers who were not able to ship required parts in a timely manner.

The suppliers who kept orders waiting query identifies suppliers, for a given nation, whose product
was part of a multisupplier order (with current status of 'F’) where they were the only supplier who

failed to meet the committed delivery date.

SQL Statement

select s_name, count(*) as numwait
from supplier, lineitem 11, orders, nation
where s_suppkey = 11.1_suppkey
and o_orderkey = 11.1_orderkey
and o_orderstatus = ’F’
and 11.1_receiptdate > 11.1_commitdate
and exists (
select *
from lineitem 12
where 12.1_orderkey = 1l1.1_orderkey
and 12.1_suppkey <> 11.1_suppkey)
and not exists (
select *
from lineitem 13
where 13.1_orderkey = 1l1.1_orderkey
and 13.1_suppkey <> 1l1.1_suppkey
and 13.1_receiptdate > 13.1l_commitdate)
and s_nationkey = n_nationkey
and n_name = ’SAUDI_ ARABIA’
group by s_name
order by numwait desc, s_name
fetch first 100 rows only

Hive Statement

insert overwrite table q21_tmpl

select 1l_orderkey, count(distinct 1_suppkey), max(l_suppkey) as max_suppkey

from lineitem
group by 1l_orderkey;

insert overwrite table q21_tmp2

select 1l_orderkey, count(distinct 1l_suppkey), max(l_suppkey) as max_suppkey

from lineitem
where 1_receiptdate > 1l_commitdate
group by 1l_orderkey;

84

C. TPC-H Queries

insert overwrite table q21_suppliers_who_kept_orders_waiting
select s_name, count(l) as numwait
from (
select s_name
from
(select s_name, t2.l_orderkey, 1l_suppkey, count_suppkey, max_suppkey
from q21_tmp2 t2 right outer join
(select s_name, l_orderkey, l_suppkey
from
(select s_name, tl.l_orderkey, 1l_suppkey, count_suppkey, max_suppkey
from g21_tmpl t1 join
(select s_name, 1l_orderkey, 1l_suppkey
from orders o join
(select s_name, l_orderkey, 1l_suppkey
from nation n join supplier s
on s.s_nationkey = n.n_nationkey
and n.n_name = ’SAUDI_ ARABIA’
join lineitem 1
on s.s_suppkey = 1.1l_suppkey
where 1.1_receiptdate > 1l.1l_commitdate)
11 on o.o_orderkey = 1l1.1_orderkey and o.o_orderstatus = ’F’
) 12 on 12.1_orderkey = tl.1l_orderkey
) a
where (count_suppkey > 1)
or ((count_suppkey = 1) and (l_suppkey <> max_suppkey))
) 13 on 13.1_orderkey = t2.1l_orderkey
) b
where (count_suppkey is null)
or ((count_suppkey = 1) and (l_suppkey = max_suppkey))
)c
group by s_name
order by numwait desc, s_name
limit 100;

BigSQL Statement

select s_name, count(*) as numwait
from supplier, lineitem 11, orders, nation
where s_suppkey = 11.1_suppkey
and o_orderkey = 11.1_orderkey
and o_orderstatus = ’F?
and 11.1_receiptdate > 11.1_commitdate
and exists (
select x*
from lineitem 12
where 12.1_orderkey = 11.1_orderkey
and 12.1_suppkey <> 11.1_suppkey)
and not exists (
select *
from lineitem 13
where 13.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> 1l1.1_suppkey
and 13.1_receiptdate > 13.1l_commitdate)
and s_nationkey = n_nationkey
and n_name = ’SAUDI_ ARABIA’
group by s_name
order by numwait desc, s_name
fetch first 100 rows only;

C. TPC-H Queries

Global Sales Opportunity Query (Q22)

The global sales opportunity query identifies geographies where there are customers who may be
likely to make a purchase.

This query counts how many customers within a specific range of country codes have not placed
orders for 7 years but who have a greater than average “positive” account balance. It also reflects
the magnitude of that balance. Country code is defined as the first two characters of c_phone.

SQL Statement

select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal
from (
select substr(c_phone,1,2) as cntrycode, c_acctbal
from customer
where substr (c_phone,1,2) in (’13°,°31°,°12°,°29°,°30°,°18°,°177)
and c_acctbal > (
select avg(c_acctbal)
from customer
where c_acctbal > 0.00
and substr(c_phone,1,2) in (’13°,°31°,°12’,°29°,°307,°18°,717°))
and not exists (
select *
from orders
where o_custkey = c_custkey)) as custsale
group by cntrycode
order by cntrycode

Hive Statement

insert overwrite table q22_customer_tmp

select c_acctbal, c_custkey, substr(c_phone, 1, 2) as cntrycode
from customer

where

substr (c_phone, 1, 2) = ’13° or
substr (c_phone, 1, 2) = ’31’ or
substr (c_phone, 1, 2) = ’23’ or
substr (c_phone, 1, 2) = ’29° or
substr (c_phone, 1, 2) = 230’ or
substr (c_phone, 1, 2) = ’18’ or
substr (c_phone, 1, 2) = ’17°;

insert overwrite table q22_customer_tmpl
select avg(c_acctbal)

from g22_customer_tmp

where c_acctbal > 0.00;

insert overwrite table q22_orders_tmp
select o_custkey

from orders

group by o_custkey;

insert overwrite table q22_global_sales_opportunity

select cntrycode, count (1) as numcust, sum(c_acctbal) as totacctbal
from (

select cntrycode, c_acctbal, avg_acctbal

86

C. TPC-H Queries

from q22_customer_tmpl ctl join
(select cntrycode, c_acctbal
from q22_orders_tmp ot
right outer join q22_customer_tmp ct

on ct.c_custkey = ot.o_custkey
where o_custkey is null
) ct2

) a

where c_acctbal > avg_acctbal
group by cntrycode

order by cntrycode;

BigSQL Statement

select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal
from (
select substr(c_phone,1,2) as cntrycode, c_acctbal
from customer
where substr(c_phone,1,2) in (’13°,°31’,°12°,°297,°30’,°18°,°177)
and c_acctbal > (
select avg(c_acctbal)
from customer
where c_acctbal > 0.00
and substr (c_phone,1,2) in (’13°,°31°,°12°,°29°,°30°,°18°,°17?))
and not exists (
select *
from orders
where o_custkey = c_custkey)) as custsale
group by cntrycode
order by cntrycode;

87

D. Project Documentation

D. Project Documentation

D.1. Project Management

D.1.1. Milestones

At the start of this thesis we defined the following time schedule for this project:

w0l 16.09. — 22.09. research

w02 23.09. — 29.09. use case preparation

w03 30.09. — 06.10. cluster setup

w04 07.10. — 13.10. testing Hive and IBM BigSQL
w05 14.10. — 20.10. setting up IBM DB2 DPF

w06 21.10. — 27.10. IBM DB2 performance tests
w07 28.10. — 03.11. IBM DB2 performance tests
w08 04.11. — 10.11. Hive performance tests

w09 11.11. — 17.11. Hive performance tests

wl0 18.11. — 24.11. IBM BigSQL performance tests
wll 25.11. — 01.12. IBM BigSQL performance tests
wl2 02.12. - 08.12. analyzing and interpreting measurement results
wl3 08.12. — 15.12. reserve

wld 16.12. — 22.12 reserve

Table D.1.: project planning

We had a close schedule during our bachelor thesis which last only 14 weeks. The problem of
scheduling tasks and measurements was that we had only one physical cluster that we could work
on, but there were three different products that we had to test and configure to a production level
for the experiments within 14 weeks.

D.1.2. Project Monitoring

For this bachelor thesis we earn 12 ETCS points, each credit stands for 30 hours of work, which
result a total effort of 360 hours per student. We planed to work 2,5 days per week at the school for
our thesis. At the end of this work we both have invested a small amount more time as demanded:

88

D. Project Documentation

Christof Biichi 396h
Susanne Mathys 384h

Table D.2.: amount of work

D.1.3. Course of the Project

We started with the IBM DB2 cluster, as this was the more unknown system for us. At the begin-
ning of our work we were aware, that we had to focus on IBM DB2 as long as the measurements on
the cluster lasts. As we both were unexperienced in setting up a IBM DB2 DPF cluster, we made
a few mistakes. First we selected a scale-factor of 3000 for the TPC-H benchmark files. The data
that was stored on the cluster was simply to large for our disks. As we had to reorganize the DB2
tables, we run out of storage-space because normally the reorg-process is not working in-place. So
we choose to decrement the scale-factor to 1000.

We used a lot of time for enabling compression and reorg the database. We spent also a lot of time
for setting indexes on the tables, although we could take advantage of the IBM DB2 Advis tool.
We started IBM DB2 performance measurement at 11. november and all 5 nodes were used until
15. november

Then we decided to work parallel on two clusters with 5 nodes. We then start the preparation of
Hive and run the DB2 measurements on the same time.

Hive was a new technology for us and we had to invest a lot of time for tuning Hive for our
queries as mentioned in Chapter Experiments. With a few executions for testing purpose on the
Hadoop cluster, we realized that compression is a key factor for the query execution time. Testing
different compression algorithms, configure and install them on our cluster was a time consuming
task. Finally we built the internal Hive tables with RCFile and Gzip compression. Hive measure-
ments took place from 27. november until 12. november.

At the time the IBM DB2 measurements were finished we did some investigation about Presto.
During our thesis we wanted to react to the actual announcement of Presto, as we were free to
lead our study in different directions. Unfortunately with our version of IBM Biglnsights it was not
possible to install the Presto components on our cluster.

We also analyzed the tuning possibilities of IBM BigSQL in parallel to the 5 nodes Hive execu-
tions. At this time it was a benefit for us, that with IBM BigSQL we could use the database and its
setting from Hive and query statements in SQL were present from the DB2 executions. Last task
was to run the 10 node experiments and prepare the results for the documentation.

89

06

Name
Kick Off
Research
Preperation of TPC-H Benchmark and testing
IBM DB2 cluster setup
Testing TPC-H Queries
10 nodes DB2 uncompressed measurement
10 nodes DB2 compressed measurement
5 nodes DB2 uncompressed measurement
Biginsights 5 nodes cluster setup
Testing TPC-H Queries
5 nodes DB2 compressed measurement
Results DB2 measurement
S nodes Hive uncompressed measurement
Biginsights 5 nodes cluster setup
5 nodes Hive compressed measurement
5 nodes BigsOL compressed measurement
10 nodes Hive compressed measurement
10 nodes BigSQL compressed measurement
Results Hive measurement
Results BigSQL measurement
Documentation
Thesis submission

Begin date| End date

9/17/13
91713
9/30/13
10/14/13
11/4/13
11/11/13
11/13/13
11/15/13
11/15/13
11/19/13
11/26/13
11/29/13
11/27/13
11/29/13
11/30/13
12/5/13
12/9/13
12/12/13
12/12/13
12/16/13
9173
12/20/13

9/17/13

9129113

10M13/13
11/313

111013
111213
11/14/13
11/25/13
11/18/13
11/26/13
11/28/13
11/29/13
11/29/13
12/4/13

121713

12/10/13
121113
1211513
12/12/13
12/16/13
12/19/13
12/20/13

T I I I
Week 40 Week 41 Week 42 Week 43 Week 4

T I
Week 47 Week 48 Week 49

I
Week 51

zek 33 Week 39 Week 45 Week 46
21515 AZEE AZH1E 100613 10013013 10020013 10027[13 114518 1171003 1117013 1124013 1201013 121513
[, 4
13 |l kL
14 L Il
21 [kL
7 [h
2 [
2 =
11 Il 1
4 [b
8 [
3 o —
0 i
E] =
[]
2 =
]
3
4 —
0 4
5 ¥

4]

B e

Figure D.1.: Project Gant Chart

uoneIuamWNIO(] 39901 (I

D. Project Documentation

D.2. Scope of Work

Bachelor-Thesis: Relational Data Access on BigData

Students: Christof Biichi, Susanne Mathys

Mentor University: Prof. Dr. Josef Joller, Hochschule Rapperswil
Co-Mentor: Romeo Kienzler, IBM Innovation Center Zurich

Problem Definition

In this thesis we want to point out the semantic differences between processing Big Data with tradi-
tional RDBMS and Hadoop based NoSQL datastores. On one side we will build a distributed IBM
DB2 cluster on the other side we will use a Hadoop cluster based on IBM Big SQL and the Apache
Hive database. Predefined analytical queries will be executed on both systems to measure and com-
pare the performance and scale factor of these two different architecture systems. We want to take
a look at the Big SQL solution and if its suits the actual business requirements in data-warehouse
questions.

Solution Proposal

The traditional relational part of our comparison will be a distributed DB2 cluster. Based on the
preconditions we have to choose which product/technology best matches our requirements. we de-
cide between building a DPF (database partitioning feature) or IBM Pure Scale cluster. The NoSQL
part of our work is covered by Apache Hive and IBM Big SQL on an IBM Biglnsights Cluster.

Sample Use-case

Either input data for benchmark has to be selected from available TPC benchmark or a given sam-
ple use-case will be executed with Cognos BI software. Our problem domain will be analytics of
data for Business Intelligence purposes.

Experiments

The experimental measurements will be done in two dimensions: dataset size and cluster size. Based
on the given use-case both clusters have to be adjusted for best performance. Performance will be
evaluated by processing time and scale out factor.

Future Work

During our study for this work we gain insights and experience in relational data access for Big-
Data systems. We will be able to make a proposal about the optimal clustered database system
for our specific use case. Future work could be investigate other scenarios and give advises which
architecture will be the best solution.

Rapperswil, December 16, 2013

/.:‘;(é«/‘g?//é/,)
A

—F—

Prof. Josef M. Joller

E. Personal Reports

E. Personal Reports

Christof Buchi

From the first time, I heard about this topic i was really fascinated and motivated. We had
the possibility to write about a very up-to-date topic. Big Data is nowadays more and more an
important subject in information science. The topic was very less framed, which means we had a lot
of flexibility to create an intersting thesis, but on the other hand we had a lot of factors to involve.
For me, it was very important to create a business related use case because big data is mostly used
for big business decisions. The TPC-H benchmark is focused on this, and has a real world data
structure. As an additional benefit, it includes some generated but realistic data - with possibility
to scale up.

First, we chose this scale-factor too big, which was costs us too much time. As second, we gave
us the requirement to build a production-ready IBM DB2 cluster. Both of us had less experience
in distributed database cluster. We already know the Hadoop cluster and its difficulties, but IBM
DB2 DPF was completely new for both of us.

While Susanne has a some knowledge in database systems, I was mostly focusing on the cluster and
its setup. With that in mind, we spread the work into multiple work units. During the work, we
also had a lot of new things to learn and to read from other papers. We invested lot of time together
to discuss those new aspects and new possibilities to get the best results. I am remembering in
discussions for RCFile and other file structures inside the hive-tables, which was really interesting. It
was a big benefit to discuss such questions, because I could learn many things from those discussions,
and I am sure I could also integrate my thoughts and ideas. I am very thankful to Susanne for all
those discussions, which maybe costs a few nerves.

As already written, we had a open scope for this thesis, which I am also very thankful to our adviser,
Prof. Josef M. Dr. Joller and also to our external co-examiner Romeo Kienzler. That enabled us
to focus on the essential parts of this work.

In the beginning of the work we were really optimistic to get scaling up characteristics of the used
systems. During the work we had to reduce our aim, which was very pity, but necessary to finish
it in 14 weeks. It was a very short time with much intent, which results also in a few hours in the
evening in the serverroom while resetting the cluster and preparation of the new environment. This
thesis also helps me at organizing my time in such open scoped projects.

Susanne Mathys

Thanks to Prof. Dr. Joller which gave us a free hand, we could focus on actual subjects and also
include or excludes topics during our study. The support of Romeo Kienzler was also a benefit for
this work. Especially at the beginning he gave us lots of ideas and hints for our measurements.
Later he was valuable because we did proofreading of our texts.

Teamwork with Christof was pleasing and we could distribute lot of the work in different tasks and

92

E. Personal Reports

assign them to the one of us which has more knowledge in that filed. On the other side we often
worked together to discuss and solve the problems which approved during the study.

During this work I did not only improve my knowledge and experience with the Hadoop plat-
form as well as raised up my DB2 skills. Before I had only worked with DB2 as a software engineer
and did not care about administrating a DB2 database system. It was interesting to analyze the
workload of the TPC-H queries and suggesting which queries will be long or short running on our
clusters. Further interpreting the results of measurements and find out why a certain query will be
performed faster on the Big Data platform was also a compelling task.

The fact that the DB2 cluster with 10 nodes worked straight forward for this workload was impres-
sive to me. It is remarkable that a system that was developed decades ago still can be optimized
and adjusted to fit the requirements of today for processing Big Data.

The Hadoop ecosystem provides several possibilities for business intelligence approach over Big
Data. In this work we saw that in some circumstances processing an analytical query on a Big Data
platform could be faster and maybe taking this route could bring future advantages.

At the moment the market of Big Data analytics is fast changing and growing and often new ver-
sion of improved products are released. This results in improvement but also in a need of a good
overview on the market and one has to be stay informed about the changes which are going through
the Big Data topic, which can be really challenging.

93

List of Figures

List of Figures

3.1.
3.2.
3.3.
3.4.

4.1.
4.2.
4.3.
4.4.

4.5.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

D.1.

IBM DB2 DPF 7
IBM DB2 pureScale 8
Hadoop Ecosystem o L 9
TPC-H - Database Schema 15
Test Environment: Hardware cluster located at IBM Switzerland 18
DPF Cluster Organization i 20
Hive Database Organization 25
Disk load during a query e e e 27
Structure of RCFile 29
Overview of 10 Nodes Measurements 36
IBM DB2 Measurements v v v i e e e e e e e 38
IBM DB2 scale-out e 39
Hive Measurements e e e 40
Hive scale-out e 40
BigSQL Measurements 41
IBM BigSQL scale-out e 41
Project Gant Chart e 90

94

List of Tables

List of Tables

3.1.
3.2.
3.3.

4.1.
4.2.
4.3.

5.1.

D.1.
D.2.

Biglnsights 2.1 components versiono 11
Cardinality of Tables 16
TPC-H query characteristics e 17
Hardware Information 19
db2nodes.cfe-file 19
Hadoop master/namenode/jobtracker 0oL 24
10 Nodes Query Execution Times oo 35
project planning L e 88
amount of work L L L 89

95

Bibliography

Bibliography

1]
2]

[3]

[4]

[5]

[6]

[7]

8]

[11]

[12]

[13]

SAP AG. SAP HANA. http://www.saphana.com/. [Online; accessed 5-Dec-2013].

Cloudera. Cloudera Impala.
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html.
[Online; accessed 8-Dec-2013].

IBM Cooperation.
http://www-01.ibm.com/software/data/infosphere /biginsights/features.html. [Online;
accessed 8-December-2013].

IBM Cooperation. Biginsights JAQL.
http://publib.boulder.ibm.com/infocenter /bigins/v1rl /index.jsp/. [Online; accessed
8-Dec-2013].

IBM Cooperation. Ibm db2 10.5 information center for linux, unix, and windows - mdc.
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.
admin.partition.doc%2Fdoc%2Fc0007201.html. [Online; accessed 5-December-2013].

IBM Cooperation. Ibm db2 purescale.
http://www-01.ibm.com/software/data/db2/linux-unix-windows/purescale/. [Online;
accessed 5-December-2013].

IBM Cooperation. Ibm gpfs. http://www-03.ibm.com/systems/software/gpfs/. [Online;
accessed 5-December-2013].

IBM Cooperation. Ibm nosql-support.
http://www-01.ibm.com/software/data/db2/linux-unix-windows /nosql-support.html.
[Online; accessed 5-December-2013].

Transaction Processing Performance Council. Tpc benchmarks. http://www.tpc.org/.
[Online; accessed 1-December-2013].

Transaction Processing Performance Council. Tpc-h - ten most recently published results.
http://www.tpc.org/tpch/results/tpch_last_ten_results.asp. [Online; accessed
1-December-2013].

Transaction Processing Performance Council. Tpc-h benchmark documentation.
http://www.tpc.org/tpch/spec/tpch2.16.0.pdf. [Online; accessed 1-December-2013].

Transaction Processing Performance Council. Tpc-h benchmark specification.
http://www.tpc.org/tpch/spec/tpch 2_16_0.zip. [Online; accessed 1-December-2013].

A. Crume, J. Buck, C. Maltzahn, and S. Brandt. Compressing intermediate keys between

96

http://www.saphana.com/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www-01.ibm.com/software/data/infosphere/biginsights/features.html
http://publib.boulder.ibm.com/infocenter/bigins/v1r1/index.jsp/
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.partition.doc%2Fdoc%2Fc0007201.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.partition.doc%2Fdoc%2Fc0007201.html
http://www-01.ibm.com/software/data/db2/linux-unix-windows/purescale/
http://www-03.ibm.com/systems/software/gpfs/
http://www-01.ibm.com/software/data/db2/linux-unix-windows/nosql-support.html
http://www.tpc.org/
http://www.tpc.org/tpch/results/tpch_last_ten_results.asp
http://www.tpc.org/tpch/spec/tpch2.16.0.pdf
http://www.tpc.org/tpch/spec/tpch_2_16_0.zip

Bibliography

23]

[24]

[25]

28]

mappers and reducers in scihadoop. In High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:, pages 7-12, 2012.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
51(1):107-113, 2008.

The Apache Software Foundation. Apache Flume. http://flume.apache.org/. [Online;
accessed 8-Dec-2013].

The Apache Software Foundation. Apache HBase. http://hbase.apache.org/. [Online;
accessed 8-Dec-2013].

The Apache Software Foundation. Apache HCatalog. http://hive.apache.org/hcatalog/.
[Online; accessed 8-Dec-2013].

The Apache Software Foundation. Apache Hive. http://hive.apache.org/. [Online; accessed
8-Dec-2013].

The Apache Software Foundation. Apache Mahout. http://mahout.apache.org/. [Online;
accessed 8-Dec-2013].

The Apache Software Foundation. Apache Oozie. http://oozie.apache.org/. [Online; accessed
8-Dec-2013].

The Apache Software Foundation. Apache Pig. http://pig.apache.org/. [Online; accessed
8-Dec-2013].

The Apache Software Foundation. Apache Sqoop. http://sqoop.apache.org/. [Online;
accessed 8-Dec-2013].

The Apache Software Foundation. Apache Zookeeper. http://zookeeper.apache.org/. [Online;
accessed 8-Dec-2013].

The Apache Software Foundation. Hive TPC-H Benchmark.
https://issues.apache.org/jira/browse/HIVE-600. [Online; accessed 5-Dec-2013].

The Apache Software Foundation. HiveQL.
https://cwiki.apache.org/confluence/display /Hive /LanguageManual. [Online; accessed
5-Dec-2013].

Google. A hadoop library of snappy compression.
https://code.google.com/p/hadoop-snappy/. [Online; accessed 5-December-2013].

Yongqgiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and Zhiwei
Xu. Recfile: A fast and space-efficient data placement structure in mapreduce-based
warehouse systems. In Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 1199-1208, Washington, DC, USA, 2011. IEEE Computer
Society.

http://www.capgemini.com/. The Principles of the Business Data Lake.
http://www.capgemini.com/resources/the-principles-of-the-business-data-lake. [Online;
accessed 18-Dec-2013].

97

http://flume.apache.org/
http://hbase.apache.org/
http://hive.apache.org/hcatalog/
http://hive.apache.org/
http://mahout.apache.org/
http://oozie.apache.org/
http://pig.apache.org/
http://sqoop.apache.org/
http://zookeeper.apache.org/
https://issues.apache.org/jira/browse/HIVE-600
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://code.google.com/p/hadoop-snappy/
http://www.capgemini.com/resources/the-principles-of-the-business-data-lake

Bibliography

[29]

[30]

[36]

[37]
[38]

The McKinsey Global Institute. Competing through data. http://www.mckinsey.com/
insights/marketing_sales/competing_through_data_three_experts_offer_their_game plans.
[Online; accessed 5-December-2013].

Xuhui Liu, Jizhong Han, Yunqgin Zhong, Chengde Han, and Xubin He. Implementing webgis
on hadoop: A case study of improving small file i/o performance on hdfs. In Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEFE International Conference on, pages
1-8, 2009.

Microsoft. Sql server partitioned tables.
http://technet.microsoft.com/en-us/library /ms190787.aspx. [Online; accessed
5-December-2013].

MySQL.com. Mysql cluster cge. http://oracle.com/rac. [Online; accessed 5-December-2013].

Raghunath Nambiar, Meikel Poess, Andrew Masland, H Reza Taheri, Matthew Emmerton,
Forrest Carman, and Michael Majdalany. Tpc benchmark roadmap 2012. In Selected Topics
in Performance Fvaluation and Benchmarking, pages 1-20. Springer, 2013.

Oracle. Oracle real application clusters. http://oracle.com/rac. [Online; accessed
5-December-2013].

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1-10. IEEE, 2010.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A warehousing solution over
a map-reduce framework. Proc. VLDB Endow., 2(2):1626-1629, August 2009.

Twitter. Scalding. https://twitter.com/scalding/. [Online; accessed 8-Dec-2013].

Tom White. Hadoop—the definite guide, 2009.

98

http://www.mckinsey.com/insights/marketing_sales/competing_through_data_three_experts_offer_their_game_plans
http://www.mckinsey.com/insights/marketing_sales/competing_through_data_three_experts_offer_their_game_plans
http://technet.microsoft.com/en-us/library/ms190787.aspx
http://oracle.com/rac
http://oracle.com/rac
https://twitter.com/scalding/

	Contents
	Management Summary
	Problem Definition
	Solution Proposal
	Sample Use case
	Experiments
	Results
	Future Work

	Introduction
	System and Methods
	Term Definition
	IBM DB2
	IBM DB2 DPF
	IBM DB2 MDC
	IBM DB2 PureScale

	Hadoop
	Hadoop Ecosystem
	IBM BigInsights
	HDFS
	Apache Hive
	HiveQL
	IBM BigSQL
	Presto

	TPC-H Benchmark

	Experiments
	Environment
	Cluster Hardware Information

	IBM DB2 Cluster
	Configurations
	Database Organization
	Query Execution
	Performance Settings

	IBM BigInsights Cluster
	Hadoop Configurations
	Hive Database Organization
	Selected Compression Algorithm
	Bottleneck
	Record Columnar File (RCFile)
	Query Execution
	Hive Performance Settings
	IBM BigSQL Performance Settings

	Presto

	Results
	Comparison of Query Execution Time
	Scale-out Measurements
	Limitations

	Discussion
	IBM DB2
	Apache Hive
	IBM BigSQL
	Presto
	Conclusion

	DB2 Database Configuration
	DB2 Registry Settings
	DB2 Database Creation Script
	DB2 Database Index Script

	Hive Database Configuration
	Database Creation Script

	TPC-H Queries
	Project Documentation
	Project Management
	Milestones
	Project Monitoring
	Course of the Project

	Scope of Work

	Personal Reports

