
HSR -- University of Applied Sciences Rapperswil

Institute for Software

Crosslanguage Refactoring
between Java and Groovy

Bachelor Thesis: Spring Term 2009

Stefan Reinhard Stefan Sidler

guetux@infosky.ch stefansidler@gmx.ch

Supervised by Prof. Peter Sommerlad

Version: June 12, 2009

guetux@infosky.ch
stefansidler@gmx.ch

Crosslanguage Refactoring

Abstract

The Groovy Plug-in for the Eclipse IDE features a number of automated
refactorings, that were realized in a bachelor thesis at the University
of Applied Sciences Rapperswil. Although Groovy and Java code can
be used mutually in projects, the already implemented refactorings
are limited to Groovy code.

In this subsequent bachelor thesis the Groovy Eclipse Plug-in was
extended by Crosslanguage Refactorings: If either a Groovy or a Java
element is renamed, both languages are respected throughout the
complete refactoring process. Our achieved goal was to support all
possible rename actions, no matter in which language the element to
be refactored was defined.

As a result, the Groovy Eclipse Plug-in offers a higher level of inte-
gration with the Java Development Tools and more productivity for
Groovy developers. Due to automated testing over complete develop-
ment process, our solution is ready for production use and will be
submitted to the official plug-in maintainers.

Page I of 90

Crosslanguage Refactoring

Management Summary

Introduction

The goal for every good software developer should be, to write not only functional code,
it should also be readable. To achieve this, it is required to change and improve the
code a few times during development. It is important, that this task, called refactoring -
changing the structure without changing its functionality - does not need too much time
from the developer. So nowadays most of the Integrated Development Environments (IDEs)
have automated features for the most common refactorings included.

Groovy is a modern, dynamically typed programming language, based on the Java Vir-
tual Machine (JVM). It is closely related to Java and projects can be mixed with both,
Groovy and Java code. Given Java components can be accessed in Groovy and additional
functionality can be added. Or, of course the other way around. For a Java developer,
it’s really easy to start programming Groovy and he can use his already in Java written
classes.

In a former Bachelor thesis, a team from the University of Applied Sciences (HSR)1 in
Rapperswil, Switzerland, added the refactoring functionality to the Groovy plug-in in
Eclipse. Unfortunately this plug-in was just able to alter Groovy code. In a mixed project
this is not really handy for a Groovy developer.

1http://www.hsr.ch

Page II of 90

http://www.hsr.ch

Crosslanguage Refactoring

Approach

We were both Eclipse users since a long time, but none of us ever saw behind the scenes.
So first we both had to dig ourselves into the Eclipse framework and into the already
existing Groovy plug-in. In the Bachelor thesis of our predecessors [KKK08] the new
functionality was theoretically analyzed. Based on this, we split the crosslanguage feature
into four different scenarios.

• Local Java refactoring: refactor a Java element, started from the Java editor

• Remote Java refactoring: refactor a Java element, started from the Groovy editor

• Local Groovy refactoring: refactor a Groovy element, started from the Groovy editor

• Remote Groovy refactoring: refactor a Groovy element, started from the Java editor

For the last two scenarios, there were some unsolved problems on how to detect a Groovy
element in Java, and rename Groovy elements in Java. We started with the other two
scenarios, and tried find a solution to solve these problems in the meantime. This plan
worked quite well, but it took us much more time to understand the framework as ex-
pected.

Results

At the end of this Bachelor thesis, we were able to expand the current plug-in with all
used functions to rename a Groovy or Java element in both languages. Our private goal,
to push the Groovy language is achieved as well, and we look forward to integrate our code
into the official Groovy-Eclipse Plug-in. Hopefully, this will help a lot of Groovy developers,
to improve their code.

During this thesis we came more common with dynamically typed languages, as Groovy.
We learned the power it offers, as well as the threats it opens.

Both of us never worked in such a big Framework, as Eclipse before. It was a good
experience, and showed us once more, how important it is to write easy readable code.

Outlook

At the end of this Bachelor thesis, we reached a level where our code can be integrated into
the official Groovy-Eclipse repository. When this task is done, all Groovy developers can
benefit from our work, and easily rename their elements. But even with this improvement,
there are still a lot of open issues in the plug-in itself which have to be closed.

At the moment, the plug-in is not capable of working with dependencies between different
projects. So as our refactorings. If this will change, the refactorings will have to be
extended too.

Page III of 90

Bachelor Thesis job definition

Students:
. Stefan Reinhard

. Stefan Sidler

Supervisor:
. Prof. Peter Sommerlad

Tutor:
. Michael Klenk

Duration of thesis:
. Start: 16.02.09

. End: 12.06.09

Job Description:

The target ofthis bachelor thesis is to introduce cross-language refactorings between the Java and
Groovy programming language for the Groovy eclipse plug-in.

The Groovy language is direcdy designed for the Java Virtual Machine and does integrate very well with
existing Java solutions. As the Groovy compiler generates native Java bytecode, its no problem to use
both languages in one and the same project. For this reason, Refactorings should work in both languages.
Here's an exa.mple: If a Java method is renamed, which is used in Java and Groovy code, the refactoring
should rename all references in both languages. .

The Groovy refactoring plug-in for Eclipse was developed as bachelor thesis by M. Kempf, R. Kleeb and
M. Klenk at the University of Applied Sciences Rapperswil. Its meanwhile integrated into the offical
Groovy Eclipse plug-in and works very weil, but misses the interaction with Java refactorings. On base
ofthis thesis, the crosslanguage refactoring plug-in has to be implemented and tested. The main goal is
to support all possible situations, in which arefactoring of a Java or Groovy element can be started,
and then refactor all occurences ofthe given element in both languages.

Optional additions to the existing plug-in functionality may be the following:
· Import organization, so that only referenced classes are imported.
· Improved "Hyperlink to Type", ifits possible to get the source ofthe type.
· Search function for all references to a given variable.

The target ofthe bachelor thesis is to integrate the results into the offcial project and to extend the
functionality of the Groovy Eclipse plug-in.

~iA
Supervisor Peter Sommerlad

Vereinbarung

1. Gegenstand der Vereinbarung
Mit dieser Vereinbarung werden die Rechte über die Verwendung und die Weiterentwicklung der
Ergebnisse der Bachelorarbeit "Cross-Language Refactoring for the Groovy Eclipse Plug-in" von
Stefan Reinhard und Stefan Sidler unter der Betreuung von Prof. Peter Sommerlad geregelt.

2. Urheberrecht
Die Urheberrechte stehen den Studenten zu.

3. Venvendung
Die Ergebnisse der Arbeit dürfen sowohl von den Studenten wie von der HSR nach Abschluss der
Arbeit verwendet und weiter entwickelt werden.

Beilageln:
keine

'"

. 440~07Rapperswil, den..... :~......

/, ~/.~ ~/..- - ¡£vÚ6 , . --.........
Stefan Reinhard

Rapperswil, den.-:-l.. 9~:... ~.~ .
r-~~~-:

... ~.. ...~

Stefan Sidler

.. .~.........:..Rapperswil, den.11-. ~ s-;. ~ f... . .
Der Betreuer I die Betreuerin der Bachelorarbeit

Rapperswil, den...1 ~: J: q .:?... J.\N
Der Studiengangleiter I die Studiengangleiterin

Crosslanguage Refactoring

Disclaimer

We ensure with this disclaimer that this thesis was created by ourselves. We did not use
any additional resources then the ones mentioned in the bibliography in the appendix.

The figures we used for this thesis were created by ourselves or are attached with a
reference to the original author. Each copied text phrase has an attached reference to the
original text. This thesis was not given, in this or in any similar form, to an examination
board.

Page VI of 90

Crosslanguage Refactoring Contents

Contents

1 Introduction to the Bachelor Thesis 1
1.1 Refactor . 1
1.2 Groovy . 1
1.3 Eclipse . 2
1.4 Groovy-Eclipse Refactorings . 2
1.5 Crosslanguage Refactorings . 2
1.6 Implemented Refactorings . 2

1.6.1 Rename Field . 3
1.6.2 Rename Class . 3
1.6.3 Rename Method . 4

2 The Groovy Programming Language 5
2.1 Dynamic typing and duck typing . 6
2.2 Starting to groove . 9

2.2.1 Groovy Scripts . 9
2.2.2 Closures . 10
2.2.3 Strings and GStrings . 11
2.2.4 Collections . 11
2.2.5 Metaprogramming . 12
2.2.6 Builder . 13

2.3 Groovy and Java integration . 14

3 Architectural Overview 15
3.1 Refactoring Participants . 15
3.2 Invocation and refactoring direction . 16
3.3 Refactoring scenarios . 17
3.4 Package Structure . 19
3.5 Java Search . 20

3.5.1 SearchPattern . 21
3.5.2 JavaModelSearch . 21

4 Local Java Refactoring 22
4.1 Introductory example . 22
4.2 Use Case . 23
4.3 Eclipse Extension Point . 24
4.4 Participant implementation . 26
4.5 Refactoring Converter . 28
4.6 Ambiguous Candidate Selection . 29
4.7 Implementation Review . 32
4.8 In Action . 33

Page VII of 90

Crosslanguage Refactoring Contents

4.9 Unsolved Problems . 34
4.10Inline editing vs. refactoring wizards . 35
4.11Further Ideas . 35

5 Remote Java Refactoring 36
5.1 Introductory example . 36
5.2 Use Case . 38
5.3 Detecting Java elements within Groovy code 39
5.4 Prototype: Enhanced rename dispatcher . 40

5.4.1 Existing rename dispatcher . 40
5.4.2 Generic extended rename dispatcher 40
5.4.3 Launching a JDT refactoring wizard programmatically 41
5.4.4 Specialized extended rename dispatcher 41
5.4.5 Why both of these solutions didn’t work 42

5.5 Pre-refactoring candidate collection . 43
5.5.1 Description . 43
5.5.2 Implementation . 45
5.5.3 Search patterns . 46

5.6 Element selection dialog . 47
5.7 Implementation Review . 48
5.8 In Action . 49
5.9 Further Ideas . 50

6 Local Groovy Refactoring 51
6.1 Introductory example . 51
6.2 Use Case . 52
6.3 Updating binary references in Java . 53
6.4 Groovy Refactoring Participants . 54
6.5 Java Update Refactorings . 55

6.5.1 AST modification procedure . 55
6.5.2 Implementation . 56

6.6 Implementation Review . 57
6.7 In Action . 58
6.8 Restrictions . 59
6.9 Further Ideas . 59

7 Remote Groovy Refactoring 60
7.1 Introductory example . 60
7.2 Use Case . 62
7.3 New Menu entry . 63

7.3.1 Refactor menu entry . 63
7.3.2 Context menu entry . 64
7.3.3 Adding a key binding . 66

7.4 Restrictions . 67
7.5 In Action . 68
7.6 Further Ideas . 68

8 Automated Testing 69

Page VIII of 90

Crosslanguage Refactoring Contents

8.1 Testing Infrastructure . 69
8.2 Test Suite . 71
8.3 Test Case . 72
8.4 Test Files . 73

8.4.1 Used properties in Test files . 75
8.5 Starting a Java refactoring programmatically 75
8.6 Ambiguous selection mock . 76
8.7 Eclipse Unit Tests . 77
8.8 Buildserver . 77

8.8.1 Problems . 77
8.8.2 Documentation Build . 78

9 Summary 79
9.1 Results . 79
9.2 Outlook . 79
9.3 Known Issues . 80
9.4 Possible Extensions . 80
9.5 Personal Reflections . 81

10 Appendix 83
10.1Environment . 83
10.2Project Planning . 84

10.2.1Time Schedule . 84
10.2.2Working Hours . 85

10.3External Design . 86

Listings 87

List of Figures 88

Bibliography 89

Page IX of 90

Crosslanguage Refactoring 1 Introduction to the Bachelor Thesis

1 Introduction to the Bachelor Thesis

1.1 Refactor

Refactoring is a progressive way for structure changes in program code. Or as Martin
Fowler [Fow99] said:

“Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure.”

The amount of refactorings ranges from complex structure changes to simple renames
of an identifier. During deployment, complex structure changes don’t have to be done
frequently, whereas renaming of some identifiers is quite usual. But also this simple
renaming is not that simple. Manually search for all occurrences of the identifiers name,
and replace it, is really unhandy. If there are two different classes with a field with the
same name, both field get renamed and the whole project does not work anymore.

Automated Refactorings

To avoid the problem above, common IDEs have built-in automated refactorings, which
know the structure of your software project. This refactorings can determine which code
has to be renamed, and which don’t. This is a great convenience for the developer. He
has to rename an element just once, and all references will update automatically.

1.2 Groovy

Groovy is a dynamically typed programming language, such as Phyton or Ruby. As
distinct from the other languages, it is based on the JVM and is almost fully compatible
to Java. Certainly, valid Java code is valid Groovy code too. For a Java developer it’s easy
to learn. It is even possible to mix up a project with Java and Groovy code.

Dynamically Typed Languages

Dynamically typed means, an element can be whatever it wants to be. It’s not chained to
a type during deployment and can even change its kind during runtime. But more about
the advantages of Groovy and dynamically typed languages in chapter 2 on page 5.

Page 1 of 90

Crosslanguage Refactoring 1 Introduction to the Bachelor Thesis

1.3 Eclipse

Eclipse is one of the most widely used IDEs for Java with automated refactoring support.
Thank to its open architecture, its possible to add features through additional plug-ins.
So for the Groovy language.

1.4 Groovy-Eclipse Refactorings

In a former Bachelor thesis [KKK08], our predecessors were able to add a code formatter
and even various automated refactorings to the Groovy-Eclipse Plug-in. These refactorings
work great and were added directly into the official plug-in. But unfortunately they
function just within Groovy code. On a mixed project, it is possible to reference a Java
element from Groovy code, or vice versa.

1.5 Crosslanguage Refactorings

For example: A class, written in Java, has a reference to an element, written in Groovy and
the definition in Groovy gets renamed. When the reference in Java will remain the same,
it points now out into the nonentity. Actually, this is not satisfying for any developer. A
rename refactoring in a mixed project has to handle both languages.

Dynamically typed languages are a tough problem to solve for every automated refactoring.
How can the IDE know to which class a field belongs, when there are no information
about?

For automated crosslanguage refactorings, these and other problems were to solve. It
needs a good and clear architecture inside of the refactoring. We decided to use the given
refactorings, as good as it gets, and don’t reinvent the wheel again. This opened a few
new issues, like how to prevent an infinite loop with Groovy and Java refactorings?

With our solution, we solved all accrued problems and can present a ingenious built and
minutely tested extension for the Groovy-Eclipse plug-in.

1.6 Implemented Refactorings

This section presents the new features for the crosslanguage refactoring, that we have
built for the Groovy-Eclipse plug-in. The following descriptions and examples gives just a
short overview about all implemented refactorings. For a more detailed description about
the challenges, please read the chapters 4 to 7.

Page 2 of 90

Crosslanguage Refactoring 1 Introduction to the Bachelor Thesis

1.6.1 Rename Field

The Rename Field refactoring is used to rename the definition of a given field, and update
all its references.

The example shows a common crosslanguage rename refactoring, where a field gets re-
named to an obviously better name. All other occurrences, in both languages, of the
element gets renamed too. This action can be started from Java or Groovy as well.

Java� �
public class Java {
public static void main(String[] args) {
Building building = new Building();
building.numberOfParts = 3;

}
}� �

Groovy� �
class Building {

public int numberOfParts
public String address

}� �
Java (refactored)� �
public class Java {
public static void main(String[] args) {
Building building = new Building();
building.numberOfFlats = 3;

}
}� �

Groovy (refactored)� �
class Building {

public int numberOfFlats
public String address

}� �
1.6.2 Rename Class

The Rename Class refactoring is used to rename a classname into a more accurate name
into the project.

The following example shows a simple rename class crosslanguage refactoring. All oc-
currences of the classname get renamed, to make sure the functionality remains the
same.

Java� �
public class Java {
public static void main(String[] args) {
Vehicle bobsCar = new Vehicle();

}
}� �

Groovy� �
class Vehicle {
def driver
def guest

}� �
Java (refactored)� �
public class Java {
public static void main(String[] args) {
Car bobsCar = new Car();

}
}� �

Groovy (refactored)� �
class Car {
def driver
def guest

}� �

Page 3 of 90

Crosslanguage Refactoring 1 Introduction to the Bachelor Thesis

1.6.3 Rename Method

The Rename Method refactoring is very similar to the other crosslanguage refactorings. It
renames the name of a method, and update all references.

In the following example, the name of the function walkFast() gets renamed to the more
meaningful name run(). This task is common in agile software developing, as the name
of a method should say what it does.

Java� �
public class Java {
public static void main(String[] args) {
Human paul = new Human();
paul.walkFast();

}
}� �

Groovy� �
class Human {
def walkFast() {
println "running"

}
}� �

Java (refactored)� �
public class Java {
public static void main(String[] args) {
Human paul = new Human();
paul.run();

}
}� �

Groovy (refactored)� �
class Human {
def run() {
println "running"

}
}� �

Page 4 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2 The Groovy Programming Language

According to the TIOBE Programming Community Index [TI], Java is the world’s most
popular programming language. The reason for this is probably that it was the first
technique to offer dynamic website content (Applets) as well as having a flat learning
curve due to its clearly arranged and yet very powerful syntax are considered to be the
reason for this success. Thanks to its big community Java has a lot of valuable support
to offer. This includes thousands of active forums, libraries and books. But Java suffers
from a number of symptoms of old age. Starting with its first release in 1995, it has
gained a lot of syntactical improvements but also kept some legacy issues. Along comes
Groovy! A new, dynamic and agile programming language, exclusively designed for the
JVM.

But what has Groovy got to offer? Upon first contact with a new programming language,
most developers react in the same way: “Why the heck should I care? I can do everything
I want and need with MY own language!”.

This statement is certainly not completely unjustified, but if everyone would resent im-
provement, we would not have seen the rise of the digital age in the last decade (Imagine a
web application written in assembler). The evolution of high-level programming languages
has continued steadily since their first appearance in the mid fifties.

Let’s get back on the subject: Why Groovy? Because it is elegant, expressive and Java
people will love it. Groovy is, to be precise, the second language after Java standardized by
the Java Community Process [JSR241] and is almost fully compatible to Java. Valid Java
code is valid Groovy code. And both languages interact with each other without hardly
any restriction. However, daily tasks are completed much more swiftly and efficiently in
Groovy. Due to its powerful syntax, one is able to do the same thing, needing only half
the amount of code as in Java and has the complete strength and all the abilities of the
Java world at his fingertips.

This chapter will take the reader on a walk trough the magic land of Groovy and it’s
inhabitants. To those who are new to Groovy, get ready for an exciting adventure which
will expand your Java thinking mind. And to all those already familiar with Groovy, a
brief review of the advantages using it as your all-purpose glue in the Java universe is
awaiting you.

Page 5 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.1 Dynamic typing and duck typing

Java is a classic statically typed language with strong type checking. This simply means
that any field, variable, parameter, return value and so on has to be strictly typed. In cases
where type flexibility is needed, polymorphism and generics help along the way. When
incompatible types get mixed up, like String and Integer, there’s either an error shown
at compile time or an unmistakable exception appears during run time. Additionally, in
Java there is a distinction between primitive types like int and real objects. This is all
no big news, but what are the consequences of static typing in the end?

Beginning with the advantages, static typing surely leads to clarity for the developer as
well as for the compiler. The developer always knows what type he’s dealing with and
what it’s capable of. If he uses a modern IDE, auto-completion is probably one of his best
friends. Further the compiler is able to prove if the intention of the developer resulted in
type-valid code. If not, he clearly states in which statement the types do not match. So
static typing does help the developer to write valid code before runtime and makes code
easier to debug.

The downside on the other hand is that types always have to be declared and thus blow
up codesize. Here’s an example in a pseudo Java method:

Listing 2.1: Type declarations needed in Java� �
public SomeLongClassName handle(AnOtherWayToLongName param) {

UsedAsIntermediateResult temp = param.getData();
ResultingValueClass result = createResulting(temp);
result.setSomething("literal");
return result;

}� �
Ok, this example is maybe really a little bit extravagant. However, the equal pseudo
method written in Groovy uses not even half the width:

Listing 2.2: Dynamic typing in Groovy� �
def handle(param) {

def temp = param.data
def result = createResulting(temp)
result.something = "literal"
return result

}� �
Is not the Groovy version easier to skim on the first look?

Page 6 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

The benefit of dynamic typing is not only saving keystrokes for lazy developers. It also
allows more flexibility when code is often changed and reduces the necessity for refactor-
ings. The keyword here is duck typing:

“If a bird walks like a duck, swims like a duck and quacks like a duck, then it
probably is a duck.”

This slightly altered quote from poet James Whitcomb Riley applied to type systems means
the following: Don’t check if it IS a duck, check whether if its ABLE to walk like a duck,
quack like a duck etc. Even more strictly speaking, don’t limit the things you can do with
an object to it’s type, rather to it’s capabilities. Staying on the bird example, a frog can
quack too, but not all animals do. When trying to reflect this with inheritance, you end
up with something like Animals and QuackingAnimals. In Groovy, this is not necessary:

Listing 2.3: Duck typing example� �
class Duck {

def quack() { println "Quack, quack" }
}

class Frog {
def quack() { println "Quaaaaaak" }

}

def pond = [new Duck(), new Frog()]
pond.each { animal -> animal.quack() }� �
The example above creates a pond list, home of a nice duck and a neat frog. We ask each
of them to quack() for us, and that’s exactly what they do, because they’re aware of how
to quack() in their very own way. But attention is required: If we add a Fish to our
pond, we have a new inhabitant who’s only able to bubble() and would call a method
that does not exist. Trying anyway will result in a MissingMethodException, unless we
check if the method is actually there:

Listing 2.4: Duck typing example (continued)� �
// Assuming Duck and Frog exist

class Fish {
def bubble() { println "blubb, blubb" }

}

def pond = [new Duck(), new Frog(), new Fish()]
pond.each { animal ->

if (animal.metaClass.respondsTo(animal, "quack") {
animal.quack()

}
}� �
So we set the implicit requirement that all our pond animals better ought to know how
to quack(). And we as developers are the ones who are responsible for them do so. The
respondsTo() check in the second example is only required if we don’t know what kind
of animals actually live in our pond. When we know there’s only a frog and a duck, we’re
not required to build up a complex class structure only to ask them to quack a little.

Page 7 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

This could be called “design by capability” instead of “design by contract”. We get more
flexibility and need to do less ceremony by the small price of loosing the indication that
we probably do no harm. It’s probably because of this why according to [TI] dynamic
language gained a lot more attention in the last few years:

Figure 2.1: Usage of different type system paradigms over the last few years

The developer has more responsibilities with dynamic languages as there is no all time
complaining compiler to hold his hands. Luckily there’s a way to handle this respon-
sibility: Unit tests. They get an even more essential role when dealing with dynamic
languages. Or as Venkat says in “Programming Groovy”[Ven08]:

“Programming with dynamic typing without having the discipline of unit test-
ing is playing with wildfire.”

Page 8 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.2 Starting to groove

Because the Groovy syntax is pretty similar to Java, it’s quite easy to learn for Java
developers. However, there are some differences and many improvements. In this section
we’ll look at a bunch of those. Some of the most notable differences are:

• One of first thing most Java folks notice are the missing semicolons. They’re indeed
optional as long as one statement is kept on one line of course.

• All return statements are optional, it’s always the value of the last statement that’s
being returned.

• The default modifier for classes and methods in Groovy is public. The protected
modifier is still available though.

• Assertions are activated by default.

• Method brackets can be omitted.

• Everything in Groovy is an object. You still can declare primitive types, but they’re
mapped to objects automatically.

• And, most notably, there’s no need to specify types. Just use the def keyword
instead. Method parameters require no type at all.

Here’s a very basic example to sum this all up. These classes do exactly the same thing.
Also notice the direct access to println in Groovy added for convenience reasons.

Listing 2.5: Simple Java class� �
public class JavaAdd {
public static void main(String[] args) {
Java inst = new JavaAdd();
System.out.println(inst.add(11, 31));

}

public int add(int a, int b) {
return a + b;

}
}� �

Listing 2.6: Simple Groovy class� �
class GroovyAdd {

static void main(args) {
def inst = new GroovyAdd()
println inst.add(11, 31)

}

def add(a, b) {
a + b

}
}� �

2.2.1 Groovy Scripts

Groovy code does not necessarily have to be defined in a class with a main method to
be ran. With so called Groovy scripts it’s possible to write some statements directly
into a .groovy file and execute it. A Groovy script is instantly compiled to bytecode
and run by the JVM. What the compiler actually does is putting all statements into a
GroovyClass and run it. All other classes defined within the same script are loaded too.
If classes not defined within the same Scripts are used, they get dynamically loaded by
the GroovyClassloader. Therefore, the “Hello World” example, as required by the gods
of computer science, looks in Groovy like this:� �
println "Hello World"� �

Page 9 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.2.2 Closures

Code blocks are known in nearly any programming language and represent a pile of
statements and a scope. The interesting part with closures begins with their flexibility of
usage. In Groovy, code blocks are treated as first-class citizens by closures. A closure
could be relaxedly defined as functional object that take any number of parameters,
may return a value and use all variables from their surrounding scope. Because they’re
handled like objects, they can be passed around and called anywhere in the code. The
name closure derives from the fact that they may be bound to variables in the surrounding
scope. For that reason, closures in Groovy are always directly initialized. There’s no way to
“define” a closure and instantiate it later in any way. The concept of closures replaces the
need for anonymous inner types as known from Java an provides much more versatility
at the same time. Enough talking, here are some examples:

Listing 2.7: Closure examples� �
// Define a closure that returns the current time as String
def date = { new Date().toString() }
assert date() == new Date().toString()

// A closure with two parameters
def twoParam = { name, message -> name + " says " + message }
assert twoParam("Groovy", "hi") == "Groovy says hi"

// Without explicit parameters, there’s always one parameter named it
def defaultParam = { "Hi " + it }
assert defaultParam("Groovy!") == "Hi Groovy!"

// A closure passed to a self defined method
def invoke(closure) {

closure(3)
}
assert invoke { it * 2 } == 6

// There are many predefined methods taking closures
// Also notice that this closure does access a variable from the scope
def sum = 0
5.times { sum += 2 }
assert sum == 10� �

Page 10 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.2.3 Strings and GStrings

String handling is enhanced in Groovy with single quoted, slashy and multiline strings as
well as GStrings. The latest can be used for lazy evaluated expressions within a string.

Listing 2.8: GString usage� �
// A GString evaluating a variable and a expression
def name = "Racecar", fast = true
def sentence = "Our $name is ${fast ? ’very fast’ : ’rather slow’}!"
assert sentence == "Our Racecar is very fast!"

// Only double quoted strings are evaluated
assert "$name" == "Racecar"
assert ’$name’ == "\$name"

// Strings also have additional methods
assert name.reverse() == "racecaR"

// A multiline string
def letter = """I made this letter longer than usual
because I lack the time to make it short."""� �

2.2.4 Collections

Groovy features a native syntax for lists and maps including ranges. A lot of other
additional features simplifies daily tasks with collections:

Listing 2.9: Native syntax with lists and maps� �
// Define a list with some numbers
def numbers = [4, 8, 15, 16, 23, 42]

// Array style access
assert numbers[2] == 15

// Negative indexes begin at the end
assert numbers[-2] == 23

// Using ranges to get sublists
assert numbers[(1..3)] == [8, 15, 16]
assert numbers[(1..<3)] == [8, 15] // Exclusive

// Define a map of magical creatures
def creatures = [houseelf:"Dobby", owl:"Hedwig", phoenix:"Fawkes"]

// Property style access
assert creatures.owl == "Hedwig"

// Iterate over a map
creatures.each { key, value -> println "Name:$value, species:$key" }

// Operate on each element of a list with the star-dot operator
assert [5, 6, 6] == creatures.values()*.size()� �

Page 11 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.2.5 Metaprogramming

In Groovy, a class is not a static template, that applies for every instance. Objects can be
extended dynamically at runtime and use comprehensive meta programming paradigms.
Groovy supports also compile time meta-programming since version 1.6 trough so called
AST-Transformations. Here are some examples:

Listing 2.10: Using some meta-programming capabilities of Groovy� �
// Intercepting method dispatch
class AllMethodAcceptor {

def defined() { "This method is defined" }
def methodMissing(String name, args) {

def params = args.collect {
it.class.simpleName

}.join(", ");
return "Method $name($params) is not defined"

}
}

def acceptor = new AllMethodAcceptor();
assert acceptor.defined() == "This method is defined"
assert acceptor.foo() == "Method foo() is not defined"
assert acceptor.bar(42) == "Method bar(Integer) is not defined"

// Using ExpandoMetaClass to expand classes
Integer.metaClass.isTheAnswer = {

delegate==21? "only half" :
delegate==42 ? "yes!" : "not at all"

}

assert 23.isTheAnswer() == "not at all"
assert 21.isTheAnswer() == "only half"
assert 42.isTheAnswer() == "yes!"

// Using AST Transformations to mixin methods
class VerticalStarter {

def start() { "starting vertically" }
}

@Mixin(VerticalStarter)
class Aircraft {

def fly() { "over the clouds..."}
}

def aircraft = new Aircraft();
assert aircraft.start() == "starting vertically"
assert aircraft.fly() == "over the clouds..."� �
There are lots of other possibilities and tricks using metaprogramming, that can’t be
explained in detail here. For more information about the metaprogramming capabilities
refer to the online documentation [Groovy] or one of the many cool books about Groovy,
like [GinA], [Ven08] or [JNS08].

Page 12 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.2.6 Builder

To get a feeling for what metaprogramming can be used, builders are a good example. The
idea behind builders is to use a domain specific language (DSL) to create structured trees.
XML or user interfaces are classical examples of structured trees, but there are also lots
of other scenarios. This example shows the generation of XML using the MarkupBuilder
class:

Listing 2.11: XML Builder usage� �
def writer = new java.io.StringWriter()
def xml = new groovy.xml.MarkupBuilder(writer)
def languages = ["Java", "Groovy", "Scala"]

xml.languages() {
languages.each {

name(it)
}

}

def expected = """<languages>
<name>Java</name>
<name>Groovy</name>
<name>Scala</name>

</languages>"""
assert writer.toString() == expected� �
It’s also possible to self define builders or even create complete domain specific languages
with Groovy.

Page 13 of 90

Crosslanguage Refactoring 2 The Groovy Programming Language

2.3 Groovy and Java integration

One of the prior design goals of Groovy was a close integration with Java code. As a result,
Groovy classes compile to standard Java bytecode that’s in nearly in any situation fully
usable from Java. This is a big difference to other dynamic languages that were ported
onto the JVM. Most of those require some sort of proxies or bridges. Because of this,
Groovy is compatible to Java and vice versa. For example a class defined in Java can
extend a class defined in Groovy or the other way around.

However, there are a few things that require attention. If Groovy code runs in the stan-
dard JVM, groovy.jar always has to be loaded into the classpath. The same thing ap-
plies when Java code depends on Groovy classes. When launching Groovy code directly
with the groovy command, this step is done automatically. GroovyScripts can be called
programmatically from Java, but they have to be loaded with a ScriptEngineManager.
Further, because Groovy has a mightier syntax, there are scenarios that require some
special acrobatic tricks in Java. For instance all dynamic Groovy fields and methods
appear to be or return Object for Java. Here’s an example of calling a Closure from Java:

Java� �
public class Caller {
public static void main(String[] args) {
Object obj = ClosureHolder.getCallMe();
Closure callMe = (Closure)obj;
callMe.call();

}
}� �

Groovy� �
class ClosureHolder {

static def callMe = {
println "Wheee, i’m from Groovy!"

}
}� �

Page 14 of 90

Crosslanguage Refactoring 3 Architectural Overview

3 Architectural Overview

The following chapter provides an overview of the architecture for all Crosslanguage
Refactorings between Groovy and Java.

3.1 Refactoring Participants

Processor-
Based

Refactoring
Refactoring
Processor Participant

Participant

Participant

Figure 3.1: A split refactoring with a processor and 0..n participants

The complete architecture of the Crosslanguage Refactoring Plug-In is inspired by the
processor based refactoring architecture of Eclipse. A refactoring according to this con-
ception is split into one refactoring processor and zero to many refactoring participants.
The refactoring processor holds the main implementation of the refactoring, for example
the renaming of a Java class. It is further responsible to satisfy all refactoring partici-
pants. This involves the following steps for each participant:

1. Load the participant and check if he wants to contribute in the current refactoring.

2. When all user inputs are gathered and the refactoring is ready to be applied, check
the status of each participant.

3. If the status is free of errors, collect all changes made by the participants. These
changes then become an integral part of the whole refactoring.

Page 15 of 90

Crosslanguage Refactoring 3 Architectural Overview

3.2 Invocation and refactoring direction

Through the refactoring participant infrastructure, it’s possible to become informed when-
ever a refactoring is launched and additions can be contributed to the refactoring. This
extensibility matches the needs of our Crosslanguage Refactoring Plug-in perfectly. We
decided to realize all refactoring extensions with refactoring participants. The only alter-
native would have been to make the refactorings themselfs aware of how to update the
related code in the other language. Because we had no direct access to the JDT refactor-
ings, this decision was quite easy. As a result of the participant based architecture, there
are only two base cases we have to consider: A refactoring in Java or Groovy happens
and the other language has to be updated as well. It’s either on of those.

Java refactoring Participant called Groovy update

Groovy refactoring Participant calledJava update

Figure 3.2: Workflow directions of Groovy and Java Refactorings

Page 16 of 90

Crosslanguage Refactoring 3 Architectural Overview

3.3 Refactoring scenarios

Already our predecessors [KKK08], saw the importance of a crosslanguage refactoring
and wanted to implement it. They found a few problems, and time was running, so they
decided to delay this part out of their thesis. They wrote a special chapter about the
problems found, and even some fixing ideas.

A closer look to the Crosslanguage Refactorings shows, there basically are two different
kind of elements (Java and Groovy) to refactor. These two different kinds need two com-
pletely different routines to refactor. But that’s not all. To facilitate refactoring usage, one
should be able not only to start it on a declaration, but from any reference. A reference
can be everywhere, in a Java and in a Groovy file. So every kind of refactorings have to
be able to start from both, Java and Groovy editors. So at the end, we have four different
use cases. The splitting in four scenarios was already defined from our predecessors in
the former bachelor thesis [KKK08]. The name of each use case was derived from the
source of the refactoring to it’s destination. For example “Rename a Groovy element from
Java” and a number. However, these numbers and names proved to be a bit misleading
and confusing during our bachelor thesis. Therefore, we decided to introduce our own
terminology for each use case. We differentiate between local and remote refactorings.

• Local refactorings stay in the same language, like renaming a Java element in the
Java editor.

• Remote refactoring work on references, for example renaming the same Java ele-
ment from a Groovy editor where the specific element is used.

Page 17 of 90

Crosslanguage Refactoring 3 Architectural Overview

The following diagram shows an overview over these four use cases:

Java

Remote Java RefactoringLocal Java Refactoring

Remote Groovy Refactoring Local Groovy Refactoring

Crosslanguage Updates

From Groovy Editor

From Java Editor

Figure 3.3: Use Case diagram of the crosslanguage refactoring

• Chapter 4 (Local Java Refactoring): A normal Java refactoring on a Java element,
started from a Java editor that will also update references in Groovy.

• Chapter 5 (Remote Java Refactoring): Refactor a Java element out of a Groovy
editor

• Chapter 6 (Local Groovy Refactoring): A normal Groovy refactoring on a Groovy
element, started from a Groovy editor that will also update references in Java

• Chapter 7 (Remote Groovy Refactoring): Refactor a Groovy element out of a Java
editor

Page 18 of 90

Crosslanguage Refactoring 3 Architectural Overview

3.4 Package Structure

The main part of our developed solution resides in the sub package of the Groovy refactor-
ing, at org.codehaus.groovy.eclipse.refactoring.core.jdtIntegration. There
was also a lot of existing code that needed to be heavily altered like the Refactoring Dis-
patch, but the core classes are all located here.

org.codehaus.groovy.eclipse.refactoring.core.jdtIntegration

javaRenameParticpants

groovyRefactorings helper javaRefactorings

groovyRenameParticpants

Figure 3.4: The package structure of the participants

The subpackages are segmented according to their responsibilities. Following is an
overview of what each package is in charge of:

• javaRenameParticipants holds the participants to catch a Java rename refactoring
an launch an appropriate refactoring on the Groovy side if necessary. The changes
of the Groovy refactoring will be returned to the superior Java Refactoring

• groovyRefactorings contains the so called Refactoring-converters. Based on a Java
element from the Eclipse Java model, these Converters create a Groovy refactoring
that is able to refactor an element in Groovy code. The package is essentially used
for Local Java Refactorings when groovy sources must be updated and for Remote
Groovy Refactorings launched from a Java editor.

• helper is a shared utility package offering various service classes used by both
Groovy and Java refactoring packages.

• javaRefactorings are simple AST based Refactorings to update a refactored Groovy
element within Java code. For example if a Groovy method is renamed, these
refactorings will look up all invocations of the renamed method an refactor them to
the new name.

• groovyRenameParticipants keep track of all rename refactorings affecting Groovy
code. When a refactoring is executed, the participants will launch the corresponding
Java update refactoring.

Page 19 of 90

Crosslanguage Refactoring 3 Architectural Overview

3.5 Java Search

To search a Java or Groovy element in the source code, the Java Search can be used. It
just needs a few parameters, which are:

• The SearchEngine is the entry point of the JDT search API.

• The SearchPattern will get explained in chapter 3.5.1 SearchPattern.

• The SearchScope defines where the searched element is supposed to be. Mostly
this is an already defined Java element, but can also be the whole workspace.

• The SearchRequestor collects the search results. Everytime an element matches
the pattern and the scope, the acceptSearchMatch(SearchMatch match) function
is called. With the parameter match, the element can be analyzed and if it is usable,
it can be added to the result collection.

Listing 3.1: Example of a search� �
SearchEngine engine = new SearchEngine();

IJavaSearchScope scope = SearchEngine . createWorkspaceScope ();

final List<IField> results = new LinkedList<IField>();

SearchRequestor requestor = new SearchRequestor() {
public void acceptSearchMatch(SearchMatch match) throws CoreException {
Object element = match.getElement();
if (element instanceof IField) {
results.add((IField)element);

}
}

};

SearchParticipant[] participants = new SearchParticipant[] {
SearchEngine.getDefaultSearchParticipant() };

engine.search(pattern, participants, scope, requestor,
new NullProgressMonitor());� �

Page 20 of 90

Crosslanguage Refactoring 3 Architectural Overview

3.5.1 SearchPattern

With a search pattern object, it’s easy to define the element, that is supposed to be found.
It gets created via the static method createPattern from the class SearchPattern().
Obviously the more precise the pattern is, the less elements will be found. The details
about how to initialize a SearchPattern can be found in the JDT documentation.

Listing 3.2: Defines a specific search pattern� �
private List<IType> searchAllJavaFields() throws CoreException {
SearchPattern pattern = SearchPattern.createPattern(

renameClassNode.getName(), // stringPattern to search for
IJavaSearchConstants.TYPE, // searching for a type
IJavaSearchConstants.DECLARATIONS, // search limits, just declarations
SearchPattern.R_EXACT_MATCH); // match rule

JavaModelSearch search = new JavaModelSearch(project, pattern);
return search.searchAll(IType.class);

}� �
3.5.2 JavaModelSearch

The Java Search is used in a lot of situations along all the different Crosslanguage
Refactoring scenarios. So we encapsulated it in a helper class called JavaModelSearch.
It just needs a SearchPattern and a IJavaProject object as the Search Scope to
search.

The JavaModelSearch class has just two public methods.

• searchAll searches for all elements, and returns a list with the result.

• searchFirst returns the first element of the searchAll method.

As arguments for both methods, it is necessary to give a class-object from the type of
elements you’re searching.

Listing 3.3: Search example for a specific search pattern� �
JavaModelSearch search = new JavaModelSearch(project, pattern);
return search.searchAll(IType.class);� �

Page 21 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4 Local Java Refactoring

4.1 Introductory example

This chapter describes the implementation of Local Java Refactorings: When a Java
element gets renamed from the usual Eclipse Java editor and related Groovy code has
to be updated. For example we have a Java class ShiftIncrement which has a value
that can be directly accessed and incremented by one left shift. This class is used from a
small Groovy test script. (Please note that this example is kept simple for the purpose of
clarity.)

Java� �
public class ShiftIncrement {

public int value;

public void increment() {
value = value << 1;

}
}� �

Groovy� �
def counter = new ShiftIncrement()
counter.value = 2
3.times { counter.increment() }
assert counter.value == 16� �

Now if either the ShiftIncrement class, the value field or the increment() method
get’s refactored, the Crosslanguage Refactoring Plug-in will have to take care of the Groovy
script being updated correctly. Let’s assume that the increment() method should be
renamed to inc(). Notice that the counter variable in the Groovy script is dynamically
typed, so we don’t know if the object we’re invoking the method on, is defined in Java or
in Groovy. The result after the refactoring process should be:

Java� �
public class ShiftIncrement {

public int value;

public void inc() {
value = value << 1;

}
}� �

Groovy� �
def counter = new ShiftIncrement()
counter.value = 2
3.times { counter.inc() }
assert counter.value == 16� �

Page 22 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.2 Use Case

The user renames a Java element in a mixed project. If the refactored Java element has
references in Groovy, these references have to be updated as well. In this use case, the
user starts a rename refactoring from the JDT editor.

Preconditions

The Project has to be in a clean state. That means, all sources need to be compilable
without build errors.

Postconditions

All occurrences of the Java element in Java and Groovy files are renamed and the project
is in a clean state again, without build errors.

Basic course of events

1. Start the JDT rename refactoring from a Java editor.

2. After all the Java elements are renamed, a rename participant starts the corre-
sponding Groovy refactoring.

3. The existing Groovy refactoring updates all the Groovy references.

Alternative paths

• If a reference in Groovy is dynamically typed, the refactoring can’t automatically
identify them. In this case, the user can select all the candidates he wants to
rename. It’s the users own responsibility, to take care about which candidates he
want to rename.

Page 23 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.3 Eclipse Extension Point

Eclipse is fundamentally based on the plug-in concept and therefore able to provide a high
level of flexibility and extensibility. The platform itself is actually free of any programming
language specific parts. All supported languages and tools are loaded as independent
sets of modules. For Java this is the JDT Plug-in and to get C++ support, the CDT Plug-In
is the way to go. To provide such a high modularity, a reliable interface to connect these
features is required.

Eclipse Platform
Workbench

JFace

SWT

Workspace

Help

Team

PDE

JDT

Platform Runtime

Groovy

Figure 4.1: Plug-in based architecture of Eclipse, taken from the Eclipse Foundation

In terms of Eclipse, this is solved over the extension point API. By using pre-existing
extension points, plug-ins can be linked with others or the runtime itself. Extension
points really are comparable to sockets, where the plug-ins can, plug themselfs in. A
plug-in can also define it’s own extension points and open itself for extension this way.
This is probably one of the reasons why Eclipse has so many attractive plug-ins to offer
and is one of the most used IDE’s.

Page 24 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

Like most configuration tasks of Eclipse plug-ins, registering at an extension point hap-
pens trough the plugin.xml. For the Crosslanguage Refactoring Plug-in, we mainly used
the rename participant extension point offered by the JDT refactorings. This extension
point is used to register new rename participants for the JDT Refactorings. To differenti-
ate the various kinds of rename refactorings, a type checking enablement can be defined.
This works like a classical instanceof, as the XML tag suggest.

Listing 4.1: Extension point configuration for the field rename participant� �
<extension point="org.eclipse.ltk.core.refactoring.renameParticipants">
<renameParticipant class="org.codehaus.groovy....FieldRenameParticipant"
id="groovy.eclipse.refactoring.FieldRenameParticipant" name="FieldRename">
<enablement>
<with variable="element">
<instanceof value="org.eclipse.jdt.core.IField" />

</with>
</enablement>

</renameParticipant>
</extension>� �

Page 25 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.4 Participant implementation

With the refactoring participants now properly registered to their corresponding extension
points, they’re now able to provide some additional changes for their parent refactorings.
In our case this would be to take care of all necessary updates in Groovy that arise
because of the renamed Java element. Therefor we have to check if the Java element is
used somewhere in Groovy code of the same project. If any references were found, those
will have to be refactored. If no references are around in Groovy, the participant should
stay calm. Our first prototype to do so, was based on the idea to traverse all Groovy files
and look up any references.

For this, we implemented some simple AST Visitors who could detect and collect such
references. When the first referencing node was detected, it was possible a Groovy refac-
toring on that node and declare that the participant would be active for the current
refactoring.

class foundi f

For all Groovy Source Filesseq

RefactoringProcessor ClassRenameParticipant

ASTScanner

RenameClassProvider

initialize(Object element)

scanASTfor(javaField)

matchedNodes

<<create>>

setNewName(newName)

true

false

checkConditions()
checkInitialConditions()

StatusRefactoringStatus

createChange()
createGroovyChange()

Change
Change

Figure 4.2: Participant flow as prototyped

This basically does the job, but there’s one drawback with this solution: To find a ref-
erence, all Groovy files from the same project have to be visited. Then, once the Groovy
refactoring is initialized, they’ll have to be visited again to lookup all required renames. So
we visit each Groovy file in the project twice, which can be very extensive in large projects.
To avoid this situation, we decided to push the decision whether a refactoring is required
or not, down to the refactoring provider itself. The refactoring provider already has the

Page 26 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

necessary information present, everything it needs to do is count all considered renames.
If there is any rename, he has obviously some work to do. Therefore we implemented
a hasCandidates() method for all rename providers and were now closer to the final
design of our rename participants. The remaining tasks of particpants were to initialize
a refactoring provider for the renamed Java element, set the new name passed with the
arguments of the parent refactoring and check if there are any candidates to rename.
That way, the participants are kept lightweight and free of unnecessary complexity.

RefactoringProcessor ClassRenameParticipant ClassRenameConverter

RenameClassProvider
initialize(Object element)

createProvider(type)
<<create>>

setNewName(newNameFromProcessor)

hasCandidates()

checkConditions() checkFinalConditions()

createChange() createGroovyChange()

Figure 4.3: Participant flow as implemented

Page 27 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.5 Refactoring Converter

The remaining complexity consisted in the initialization of a Groovy refactoring for a
IJavaElement. The implementation of all Groovy refactoring providers are intended to
be initialized with either an ASTNode or a pattern class1. We decided to detach this
responsibility to so called refactoring converters, as can be seen in fig 4.3. Given a
specific Java element, i.e. a class, field or method, the job of a converter is to create an
appropriate Groovy refactoring provider to rename all references to that element.

The first challenge was that all present Groovy refactoring providers required a user
selection to be instantiated which we didn’t have. After a closer look at the existing code
we discovered, that the selection wasn’t actually used anywhere. The reason why it still
needed to be passed in was simply overstressed inheritance: The abstract superclass of
all refactoring providers, RefactoringProvider, requested a selection, although it was used
only by Extract Method and Inline Method refactorings . So we made that parameter
optional by adding an additional constructors who left out the user selection.

The next step was to prepare the refactoring element, in other words the element indicating
what should be reanmed. This varied for each element to be refactored and needed the
following steps:

• Class Acquire the fully qualified name from the Java type and create a ClassNode
(Groovy’s AST node to represent all kind of types).

• Field Create a new FieldPattern by determining the declaring class and the name
of the field.

• Method First get a list of all parameters and then create a MethodNode (Groovy’s
AST node to represent method declarations) with the same name, return type, pa-
rameters and modifiers. Then determine the declaring class and with the rebuilt
method node, create a MethodPattern.

A tricky part with fields and methods was, that the declaring class also has to obtain
the same type hierarchy as the Java representative. To achieve this we introduced the
helper class HierarchyBuilder which recursively ascends the supertypes of a class, until
java.lang.Object is reached. With each ascent, the type hierarchy gets extended by
the newly visited superclass. This way the hierarchy gets properly built and the prepared
element fulfills all requirements of the refactoring to be properly renamed in Groovy.

1Either FieldPattern or MethodPattern

Page 28 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.6 Ambiguous Candidate Selection

Dealing with ambiguities

It lies in the nature of dynamic languages such as Groovy and any other dynamic lan-
guage, that there may be situations where a refactoring can’t cleary determine the neces-
sary editing steps without some help.

Whenever types can not be determined, a refactoring may have no clue how to handle
such a statement. Imagine the following situation, where the method JavaClass.bar()
gets renamed:� �
JavaClass foo = new JavaClass();
foo.bar()� �
It’s obvious that the second call has to be updated, as foo is of type JavaClass. But
what if the type can’t be determined?� �
def foo = RandomFactory.createWhatSoEver();
foo.bar()� �
There’s no chance to tell what type foo will actually be of, but it might be JavaClass, so
should we refactor the second statement or not?. There are basically two known options
to address this problem: Type inference or additional user input. Type inference means
to determine the type of a variable trough the inner logic of the code. This technique
is commonly known from functional programming languages. In our example, it still
would be impossible to infer the type of foo if RandomFactory really returns a random
object, thus need some additional user input and that’s exactly what our predecessors
[KKK08] did. They implemented a selection dialog where all ambiguous candidates are
listed and can be previewed. The refactoring operator then decides which elements should
be renamed and selects them.

Figure 4.4: Selection of ambiguous candidates for Groovy refactoring

Page 29 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

Implementation in Crosslanguage Refactorings

This problem is also present in the Crosslanguage Refactoring Plug-in. If a Java element
that is used in a dynamic manner within Groovy gets refactored, the candidate selection
dialog should pop up as well. The point is that the ambiguous candidate selection dialog
is implemented as RefactoringWizardPage and only included in the Groovy refactor-
ings. When a Java element is refactored, a JDT internal refactoring wizard is executed
of course and this wizard does not assume that participants of the underlying refactor-
ing need additional wizard pages to gather any user input. We researched a lot in the
Eclipse documentation and asked the newsgroups for help, but neither of those could give
us a detailed answer. It seemed like dynamically extending refactoring wizards trough
refactoring participants isn’t allowed in the refactoring architecture of Eclipse. This partly
does make sense because it would brake the layer principle: Refactoring implementations
shouldn’t deal with the UI stuff. Still, we needed a solution to fix this problem. There
were basically two options to go:

• When a Java refactoring is activated, launch a separate Groovy refactoring wizard
and handle both steps independently. This would have the additional benefit that
the Groovy refactoring could be canceled. However, the participant would then be
downgraded to a simple refactoring update listener. The preview of a Java refactor-
ing would show only the java refactoring steps and undo would consider only those.
To us, this didn’t feel like the integral flow one would expect while refactoring.

• The alternative would be to pop up the selection dialog as self-contained window if
necessary during a refactoring. Self-contained means on top of the current refac-
toring wizard. This isn’t the best solution either, but at least the Groovy refactoring
then remains a integral part of the java refactoring and contributes changes to it.

We decided to strive for the second way. Now the thrilling question was how to get the
ambiguous selection dialog displayed without being included into a refactoring wizard.
We even struggled with displaying a simple message dialog from a refactoring participant
at all. The problem was that participants always run in separate threads so they can do
no harm to their parent refactorings. But to launch a new window we need the shared
Eclipse workbench shell, and this can not be a accessed outside of a GUI thread.

Listing 4.2: Display a message window outside of a GUI thread� �
PlatformUI.getWorkbench().getDisplay().syncExec(new Runnable() {

public void run() {
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
Shell shell = window.getShell();
MessageDialog.openInformation(shell, "Info",

"Ambiguous candidates detected!");
}

});� �
To be able to access the Eclipse workbench shell, we need to tell SWT to launch a new
GUI-thread as shown in listing 4.2. From this thread, we can now launch the ambiguous
candidate selection dialog. Thanks to J.-P. Pellet from the JDT newsgroup for this hint!

Page 30 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

The remaining question was how to present the dialog. As a RefactoringWizardPage,
the selection dialog is tied pretty closely to a RefactoringWizard. Running the selction in
a normal wizard without the refactoring functionality didn’t work because it requires the
parent wizard to be a refactoring wizard. Extracting the wizard page elements to a single,
self sustainable dialog would have been a possibility, but then we would have ended up
with two different classes basically doing exactly the same thing. This is generally never
a good idea when trying to keep maintainability in mind.

Our solution for this problem is finally quite simple. We decided to use just a usual
RefactoringWizard that doesn’t perform any changes. This way it behaves quite like a
dummy wizard with additional functions such as previewing changes, but doesn’t apply
them to any source files. To prevent it from performing changes, we only needed to
overwrite the performFinish() method. Now why should this help us any further?
What matters is the refactoring provider in the background, that gets configured by the
ambiguous selection dialog. After the dummy wizard is finished, the refactoring provider
knows which ambiguous candidates should be renamed. The rest of the refactoring
participant remains as before. It only has to check if the refactoring provider has any
ambiguous candidates. If this is the case, it launches the dummy refactoring wizard
action and continues after the selection is complete. This behaviour was realized in the
superclass of all Java rename participants, so it’s available for all participants.

isAmbiguous()i f

RefactoringProcessor MethodRenameParticipant MethodRenameConverter

RenameMethodProvider

GroovyDummyRefactoringWizard

initialize(element)
createProvider(method)

<<create>>

setNewName(newNameFromProcessor)

checkConditions()

run(provider)

selectAmbiguousCandidates()

checkFinalConditions()

createChange()
createGroovyChange()

Figure 4.5: Complete workflow of a MethodRenameParticipant

Page 31 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.7 Implementation Review

The following class diagram shows the most important classes discussed in this chapter:

org.codehaus.groovy.eclipse.refactoring

ui

core.jdtIntegration.groovyRefactorings

core.jdtIntegration.javaRenameParticipants

JavaRenamePart icipant

initialize(Object)
initialize(IJavaElement)
checkConditions()
createChange()

ClassRenamePart icipant

initialize(IJavaElement)

FieldRenamePart icipant

initialize(IJavaElement)

MethodRenamePart icipant

initialize(IJavaElement)

AmbiguousSelect ionAct ion

run()

ClassRenameConvert er

createProvider(IType)

FieldRenameConvert er

createProvider(IField)

MethodRenameConvert er

createProvider(IMethod)

GroovyDummyRefactor ingWizard

performFinish()

GroovyRefactor ingWizard

addUserInputPages()

Figure 4.6: Overview of involved classes in local java refactorings

The responsibilities of the classes are as follows:

• JavaRenameParticipant is a general class with shared tasks common to all rename
participants. It hold’s the participants initialize() method to check if the Java
refactoring should update references or not. Then the template method for initial-
izing the participants implementation is called and the refactoring provider is ac-
quired. Further the condition checking and change creation is delegated to the refac-
toring provider. When the refactoring is ambiguous, an AmbiguousSelectionAction
is launched.

• Participant Implementations check the elements to be refactored and call the
specific converter to create a refactoring provider for that element.

• Refactoring Converters process the elements from the Java model to refactor it in
Groovy.

• AmbiguousSelectionAction launches a dummy wizard to present ambiguous can-
didates to the refactoring operator who then selects all those to be renamed.

Page 32 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.8 In Action

In reference to the introductory example from section 4.1, we’re now ready to refactor
the increment() method to inc() in Java. As we remember, in Groovy we have a
dynamically typed variable to our Java class ShiftIncrement calling the increment()
method. Because the variable is dynamically typed, we cannot be sure that this call
should be renamed too. The following figure shows the refactoring as seen by the user:

Figure 4.7: Example screens of a local Java refactoring

If there are other increment() methods without any paremeters used in our Groovy code,
they would appear in the candidate selection dialog too.

It’s further possible to the refactor Java supertypes of Groovy classes and all derived
elements, such as an interface from a method, will be renamed.

Page 33 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.9 Unsolved Problems

One issue we couldn’t solve during our term project is an error message appearing when
refactoring inherited Java methods. If a method in Groovy is derived from a Java interface,
abstract or normal class, there’s an annoying warning message shown, if the method is
refactored. Here’s an example:

Java� �
abstract class Java {

public void foo() {
System.out.print("Hello");

}
}� �

Groovy� �
class Groovy extends Java {

public void foo() {
super.foo()
println " ${getClass().name}!"

}
}� �

If the method foo() is refactored in Java, the overriding method in Groovy should be
renamed too. Our rename participant would be able to do so. The implementation of
the JDT refactoring always looks for any binary class file that overrides the method to
be renamed. The Groovy class is only visible as class file for the Java refactoring, so it
assumes there is no source for it available and shows the following error message:

Figure 4.8: Warning message appearing when refactoring an inherited method

If we continue now, everything works as expected. This warning message was introduced
in Eclipse 3.4 and is hard-coded in the JDT refactorings. Hard-coded means there is no
way to gently disable it in a config file or in a programmatical way. Even though it only
appears when refactoring inherited methods, it’s still very present and disturbing.

Page 34 of 90

Crosslanguage Refactoring 4 Local Java Refactoring

4.10 Inline editing vs. refactoring wizards

Eclipse offers the possibility for Java refactorings to choose, if a developer wants to have
a rename wizard or directly enter the new name inline into the editor. Both of these
choices work great with the Groovy Plug-in, but if there are ambiguous candidates found,
the ambiguous candidate selection window pops up, no matter which option is activated.
This is the desired behaviour, because we need additional user input in this case.

4.11 Further Ideas

Here are some starting points how this use case could be further improved:

• Preference page The Groovy participants of our solution are always active. Maybe
a user wants to deactivate them to temporarily work isolated in the Java domain.

• Interproject compatibility Because of the whole Groovy Plug-In not being capable
of working with dependencies between different projects yet, the refactoring partic-
ipants only consider Groovy code from the same project. This could be extended
when the plug-in gets inter-project compatible.

Page 35 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5 Remote Java Refactoring

5.1 Introductory example

A Remote Java Refactoring means refactoring a Java element such as a type, method or
field from Groovy. There is a strong relation to Local Java Refactorings, except that the
starting point is a different one. However, developers used to rename refactorings, rely on
them to work whenever they operate on a reference to a element from the same project.
Why navigate to the mentioned element, when we can rename it right where we use it?
Well, the biggest challange to do so is to be sure if we deal with something defined in
Groovy or in Java. Imagine the following scenario:

Java� �
public class Dog {

public void yell() {
System.out.println("Wuff!");

}
}� �

Groovy� �
class ComicFox {

def yell() {
println "Chunky bacon!"

}
}

Dog bo = new Dog()
bo.yell()

def presidentsDog = bo
presidentsDog.yell()� �

Here we have class Dog defined in Java and a Groovy script where a class ComicFox is
defined and the Java Dog is used. Both animals can yell() 1 at us, although they aren’t
related in any way. Now if the yell() method of Dog should be renamed to bark() or
something, we have two cases in the Groovy script where methods have to be updated.

The first variable is statically typed to Dog whereas the second one is a dynamically typed
reference to the same Dog. In the first case, we can figure out that we’re operating on a
Java type, but what about the second case? From the compilers point of view, it could
also be the case, that we want to hear a ComicFox yelling, because seeing a dynamically
typed variable there is no telling.

1ComicFoxes actually do yell like that, see http://poignantguide.net

Page 36 of 90

http://poignantguide.net

Crosslanguage Refactoring 5 Remote Java Refactoring

The result of renaming yell() to bark() should look like this:

Java� �
public class Dog {

public void bark() {
System.out.println("Wuff!");

}
}� �

Groovy� �
class ComicFox {

def yell() {
println "Chunky bacon!"

}
}

Dog bo = new Dog()
bo.bark()

def presidentsDog = bo
presidentsDog.bark()� �

Page 37 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.2 Use Case

The user is working in a mixed project, within a Groovy file and renames an element,
defined in Java. The declaration in Java has to be renamed, as well as all references in
Java and Groovy.

Preconditions

The Project has to be in a clean state. That means, all sources need to be compilable
without build errors.

Postconditions

The element and all references are renamed and the project is in a clean state again,
without build errors.

Basic course of events

1. The User starts the rename refactoring from a Groovy editor.

2. The refactoring seaches all possible candidates from the selected reference and
shows a list to the user.

3. If the user choose a Java element out of the list a JDT refactoring on this element
is started.

4. After all the Java elements are renamed, a rename participant starts the corre-
sponding Groovy refactoring.

5. The existing Groovy refactoring updates all references in Groovy.

Alternative paths

• If the user chooses a Groovy element out of the list of possible candidates, the
scenario in chapter 6 (Local Groovy Refactoring) is started.

• If a reference in Groovy is dynamically typed, the refactoring can’t automatically
identify them. In this case, the user can select all the candidates he wants to
rename. It’s the users own responsibility, to take care which candidates he wants
to rename.

Page 38 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.3 Detecting Java elements within Groovy code

As Java and Groovy classes produce nearly equal bytecode, how can a class defined in
Groovy be distinguished from a one that’s defined in Java? Simply by the fact that all
Groovy classes implement the groovy.lang.GroovyObject interface. At runtime, this
can be approved by a simple instanceof check:

Listing 5.1: Identifing Java types within Groovy code� �
def obj = { println it } // A Closure
assert (obj instanceof GroovyObject) == true

obj = "Hello ${this}" // A GString
assert (obj instanceof GroovyObject) == true

obj = "Eat more bananas!" // A normal Java String
assert (obj instanceof GroovyObject) == false

obj = new XmlSlurper() // A Groovy utility class defined in Java
assert (obj instanceof GroovyObject) == false� �
This works for any Groovy object. The main challenge of this use case is to find a reliable
way to detect Java elements within Groovy code. So, does this detection help us to find
Java objects used in Groovy? Or expressed otherwise: How can we predict that when
working on a Groovy project within Eclipse, the selected element is actually defined in a
Java file?

In case of the Groovy refactorings for Eclipse, we can’t perform such checks like in run-
time, because there is no runtime, or at least a simulation. But there is another oppor-
tunity: The Abstract Syntax Tree2.

When implementing refactorings, the first step in the chain of events is mostly to find
the piece of code that should be refactored. In the Groovy Eclipse Plug-in, a refactoring
is currently always launched form the source editor. All rename refactorings of Groovy
expect the selection to point at either a declaration or a reference to a class, method, field
or local variable. After the rename refactoring is launched, the first step is to get the
Abstract Syntax Tree of the edited document and to search the corresponding ASTNode
of the selection. With the ASTNode found, a refactoring dispatcher then decides, which
specific refactoring should be executed. This dispatching process is discussed more
detailed in the next section. The point for now is that each rename refactoring is initialized
with a subkind of ASTNode at a particular time.

The question is now if we can, based on the AST, determine if the selected element is
defined in Java or Groovy. Indeed we can, because interfaces are represented in the AST
as well. A Groovy class is represented as ClassNode in the AST, and this class has even
a direct method isDerivedFromGroovyObject().

2For more information on how Groovy ASTs work, please refer to the thesis report from our predecessors
[KKK08] and the javadoc of the package org.codehaus.groovy.ast

Page 39 of 90

http://groovy.codehaus.org/api/org/codehaus/groovy/ast/package-summary.html

Crosslanguage Refactoring 5 Remote Java Refactoring

5.4 Prototype: Enhanced rename dispatcher

Our first idea on how to implement Remote Java Refactorings was: “If we can find classes
defined in Java within Groovy code, the refactorings can’t be that hard to implement, can
they?”. When the selection is pointing to a ClassNode, we can directly verify whether we
deal with a Groovy class or not. And with fields and methods we would have to grab the
classes where they are declared and check the declaring class if it comes from Groovy or
Java. This section describes the prototypes we created to prove this assumption.

5.4.1 Existing rename dispatcher

When programmers use rename refactorings, they expect that the appropriate refactoring
is executed automatically. More specifically, if we select a method to be refactored, we
don’t want to be asked if we currently try to refactor a local variable or a method or what
so ever. To support this behaviour, we need an automatic dispatch of refactorings. For
this reason, the Groovy Eclipse Refactoring Plug-in features the class RenameDispatcher,
which automatically searches for the applicable refactoring based on a text selection
within a Groovy file, it works as follows:

1. Get the selected ASTNode by parsing the AST using the visitor pattern.

2. Analyze the ASTNode and determine it’s actual type (using instanceof checks). In
case of fields and methods, create a pattern to rename the given element.

3. Initialize and return an accurate refactoring to rename the given element.

This is only a simplified description, for a detailed implementation look at section 2.5.2
in [KKK08].

5.4.2 Generic extended rename dispatcher

As the existing rename dispatcher worked only for Groovy elements, the first plan was to
extend the RenameDispatcher class so that Java refactorings would be created to. The re-
turn value from the dispatcher would then have to be changed from GroovyRefactoring
to the more universal Refactoring type. That way, the action which launches the dis-
patcher and opens the RefactoringWizard would only require minimal extension.

RenameDispatchAction RenameDispatcher

Refactoring

dispatchRename()

<<create>>

Either Java or Groovy Refactoring

openRefactoringWizard()

Figure 5.1: First idea for enhancing the rename dispatcher

Page 40 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

As we began to implement this solution, we realized pretty fast that there were some
drawbacks. A Java refactoring itself can be instantiated without a problem as described
in chapter 8.5. But we also need to gather a new name from the user and this can only
be achieved by launching a refactoring wizard. There are, of course, refactoring wizards
implemented within the JDT, but the access to those is discouraged because they’re
considered as internal implementations. This way, the JDT plug-in tries to preserve the
right to change them whenever needed and declares to potential plug-in vendors that they
should not be used directly.

Further we would need to keep apart the two different kinds of refactorings for Groovy and
Java elements because each refactoring requires it’s individually initialised refactoring
wizard. This would mean that the advantage of generalized refactorings is gone and we
need to dispatch again.

5.4.3 Launching a JDT refactoring wizard programmatically

The previous section has shown that the refactoring wizards from the JDT plug-in should
not be used directly. However, there is an alternative option to launch a Java refactoring
wizard programmatically. The class RenameSupport is an implementation of the facade
pattern according to [GoF95] to offer the refactoring functionality of the JDT-plug-in. A
refactoring can either be directly applied or a refactoring wizard may be launched. Here’s
an example of launching a refactoring wizard for a Java field:� �
IField field = /* The field to be renamed, acquired from the Java model */
Shell shell = /* The parent Eclipse SWT shell */

RenameSupport fieldRename = RenameSupport.create(field, "newFieldName",
RenameSupport.UPDATE_REFERENCES |
RenameSupport.UPDATE_GETTER_METHOD |
RenameSupport.UPDATE_SETTER_METHOD);

fieldRename.openDialog(shell);� �
5.4.4 Specialized extended rename dispatcher

With the RenameSupport class, we found an acceptable way to launch a refactoring of a
Java element used in the Groovy domain. To employ this class in the whole refactoring
process, the dispatching between Groovy and Java refactorings needed to be clearly sep-
arated. The RenameSupport class is not related with refactorings directly, its purpose is
only to encapsulate them. This required the dispatch to be divided into two individual
steps:

1. Check if the selected element is actually defined in Java. If so, launch a Java
refactoring wizard on that element.

2. If the selected element can not be identified as Java origin, assume it’s a Groovy
element and run a Groovy refactoring wizard on it.

The implementation of these steps looks like this:

Page 41 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

RenameDispatchAction RenameDispatcher
RenameSupport

GroovyRefactoring
dispatchJavaRename()

<<create>>

[javaRefactoring != null] : openDialog()

[else] : dispatchGroovyRename()
<<create>>

openGroovyRefactoringWizard()

Figure 5.2: Second idea for the enhanced rename dispatcher

5.4.5 Why both of these solutions didn’t work

Both the general as well as the specialized rename dispatcher solution had one big prob-
lem in common: They didn’t work with dynamically typed variables. As described in
the introduction to this section, when the refactoring was launched on a method in-
vocation or a field access, we checked if the declaring class was defined in Java. Of
course, no declaring class could be found when the corresponding variable was dynam-
ically typed. To get back to the introductory example from section 5.1, the method call
presidentsDog.yell() could never be used to rename the method that was eventually
defined in Java. This was completely inacceptable, because working with dynamically
typed variables and methods in Groovy is the standard and not the exception.

Page 42 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.5 Pre-refactoring candidate collection

5.5.1 Description

During the development of our prototypes we realized that the dynamic nature of Groovy
requires a whole different approach to support crosslanguage refactorings. Even if it’s
possible to detect objects defined in Java at runtime, the same awareness can’t be guar-
anteed when working with sources and abstract syntax trees. Maybe one could argue
that we should have known this before, but we think that getting into a dead end within
a project is not that bad as long as you learn something from your faults.

Therefore, we had to look for a different approach to support remote refactorings of Java
from Groovy code. Because there is no simple way to detect Java elements when used
in a dynamic context, it was relatively clear that we would have to look up all potential
matches of the element to be refactored. More precisely speaking, when a method foo()
called on a dynamic variable should be renamed, we’ll need to search for all Java classes
defining such a method. Only Java classes? No, because the method could also be
defined Groovy. We just don’t know.

The Groovy Refactoring Plug-in currently handles this situation with the already known
ambiguous candidate selection dialog as described in chapter 4.6. The refactoring oper-
ator is then supposed to select the declaration and all occurences he wants to rename
in this dialog. It’s actually even possible to refactor multiple declarations of methods
when they all appear as candidates in the list. Unfortunatley it’s not possible to integrate
Java candidates in this dialog, becuase we need to launch a completly independent Java
refactoring.

Our idea to solve this problem was collect all possible refactoring candidates in Groovy
and Java prior to execute the actual refactoring. If we have multiple candidates, the user
should select which element he wants to rename. The following flowchart visualizes the
required steps:

Page 43 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

is
dynamically
typed?

search for element declaration search for all possible candidates

select candidate to refactor

candidates > 1

refactor element

selected statement

finished

Yes

No

Yes

No

Figure 5.3: Candidate collection from Groovy and Java

For the behaviour of the pre-refactoring candidate , the following requirements should be
fulfilled:

• All possible Groovy and Java elements are considered.

• The search for candidates leads only to valid elements, that can be refactored.

• Multiple candidates are expected to be seen only, when a refactoring is launched on
a statement within a dynamically typed context.

• Refactorings called on statements within a statically typed context or on declarations
should directly refactor the element declaration.

• In a situation where multiple candidates would be possible, but only one direct
declaration is found, the refactoring should directly refactor this declaration.

• If multiple candidates are found, the the refactoring operator can choose the decla-
ration that should be refactored.

To sum this all up, the behaviour of the current refactorings should not be changed in a
major way. We basically just map all unknown refactoring sources to a declaration. If a
refactoring is launched and there’s only one element that makes sense to be refcatored,
the refactoring should be executed directly, no matter whether the element is defined in
Java or Groovy. Hence, if there are multiple possiblities, the Refactoring operator is asked
to specify, which declaration he wants to refactor.

This solution gives us the chance to support all possible remote Java refactorings from
Groovy. There is only some additional user input that has to be gathered. This fact is
acceptable in consideration of the type-information we loose when working with dynamic
languages.

Page 44 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.5.2 Implementation

The implementation of the pre-refactoring candidate collection required a rather large
structural change in the refactoring dispatch action. Previously, only the Groovy dispatch
was engaged and then the refactoring wizard was launched. If refactoring candidates from
two different languages are to be collected and individually dispatched, this requires some
additional logic.

The refactoring dispatch process is now spread into different classes and looks as follows:

Groovyi f

Javai f

RenameDispatchAction CandidateCollector

JavaRefactoringDispatcher

GroovyRefactoringDispatcher

ElementSelectionDialoggetJavaCandidates()

getGroovyCandidates()

[if totalCandidates > 1] : open()

selectedElement

dispatchGroovyRenameRefactoring()

GroovyRefactoring

Collects all possible candidates from Groovy and Java

Shows a selection of multiple possible candidates

openGroovyRefactoringWizard()

dispatchJavaRenameRefactoring()

RenameSupport

openJavaRefactoringWizard()

Figure 5.4: Collecting all refactoring candidates and open individual refactoring

All classes except the RenameDispatchAction are new and have individual responsibilies.
Here’s a description of the involved classes:

1. The CandidateCollector extracts the selected ASTNode from a Groovy file and as-
sembles individual lists of refactoring candidates from Java or Groovy.

2. The ElementSelectionDialog is launched when multiple candidates were found
and shows them separated by language. The refactoring operator then selects one
candidate that is returned to the RenameDispatchAction.

3. The RenameDispatchers are now individual for each language and return either a
GroovyRefactoring or a RenameSupport in case of Java refactorings. Thus Java
refactorings are still initialized the same way as in the prototype.

After we have recieved a definitive candidate to refactor, the appropriate refactoring wizard
is launched and the job of the dispatcher is finished.

Page 45 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.5.3 Search patterns

The only elments that actually can have multiple candidates are methods and fields. The
search of those was realized with AST visitors in terms of Groovy and with a finegrained
search in the Java model. In both cases the search pattern for those elements depends
on whether dynamic typing is involved or not:

• without dynamic typing the pattern does contain the fully qualified class in which
the element to be refactored was declared

• with dynamic typing the pattern looks only for elements with the same name

In case of methods, the pattern further compares the number of parameters. A complete
comparison of method signatures is not reasonable, because in Groovy, parameters can
also be dynamically typed or even rearanged with named parameters.

Page 46 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.6 Element selection dialog

In cases where multiple candidates are considered to be refactored, we need to present
those candidates to the refactoring operator. For this purpose we had to create a simple
element selection dialog that shows all candidates separated by each language.

Our first intention was to self implement an SWT based control. A basic dialog with a
simple list to select the candidates was fastly realized. However, the hassle with GUI
development lies often in the details so it was with this self built frame. Make it look like
a usual Eclipse dialog and resizable was already annoying enough. Further there was no
clean distinction between GUI and data, so we looked for a simpler solution.

Eclipse already has numerous predefined dialogs for selection3, so we decided to use one
of these. Specifically, we extended the ElementTreeSelectionDialog, an expandable
tree based selection. We had make sure the tree is always fully expanded when the
window pops up. Further we had to provide a content provider and a label provider. The
content provider holds the tree structure of all displayed elements and the label provider
serves a textual description and a image for each element. These classes are all relatively
simply structured and thus not further explained here. Here’s an example of the resulting
dialog:

Figure 5.5: Selection window for ambiguous refactoring candidates

This dialog is initialized with an instance of the RenameCandidates class, a generic col-
lection of candidates from Groovy and Java. After the selection is finished, the selected
element can be gathered form the dialog and the refactoring process is started.

3Examples at http://blog.eclipse-tips.com/2008/07/selection-dialogs-in-eclipse.html

Page 47 of 90

http://blog.eclipse-tips.com/2008/07/selection-dialogs-in-eclipse.html

Crosslanguage Refactoring 5 Remote Java Refactoring

5.7 Implementation Review

A complete overview of our implementation for remote Java refactorings can be seen in
the following class diagramm:

org.codehaus.groovy.eclipse.refactoring

core.rename

CandidateCollector

getSelectedASTNode()
getGroovyCandidates()
getJavaCandidates()

JavaRefactor ingDispat cher

dispatchJavaRefactoring()

popup.actions

RenameDispat chAct ion

run()
openSelectionDialog()
openGroovyRefactoringWizard()
openJavaRefactoring()

ui.selection

ElementSelect ionDialog

open()

Select ionElementProvider

LabelDispat cher
JavaLabelProvider

GroovyLabelProvider

RenameCandidates

getAllCandidates()
getGroovyCandidates()
getJavaCandidates()

FieldDef init ionCollector MethodDef init ionCollector

core.jdtIntegration.helper

JavaModelSearch

core

GroovyRefactor ing

core.utils.astScanner

Refactor ingCodeVisit orSupport

GroovyRefactor ingDispat cher

dispatchGroovyRefactoring()

Figure 5.6: Overview of involved classes in remote java refactorings

Page 48 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.8 In Action

The following screenshot show a remote Java refactoring in action:

Figure 5.7: Example of a local java refactoring

We have the same scenario as descriped in chapter 5.1:Introductory example. The class
Dog is defined in Java and the method yell() is called once on the statically typed
variable and once on a dynamically typed one. It invokes a rename refactoring on the first
call, window number 2 is opened directly. Otherwise with the dynamically typed variable,
where we first have to deal with a coexisiting method defined in Groovy. We select the
Java class and the refactoring is launched as if it directly was startet on the declaration.
But note that in this case, because we launched the refactoring from the only ambiguous
call to bark() in Groovy, there’s no other ambiguous selection dialog popping up (the
selected statement is always considered as definitive candidate). If we would have called
the refactoring on the declaration in Java, we would have been forced to select ambigous
candidates later.

Page 49 of 90

Crosslanguage Refactoring 5 Remote Java Refactoring

5.9 Further Ideas

There’s one thing that is not possible with our extension of the Groovy Refactoring Plug-in
any more: Renaming multiple declarations. This may not seem as a big drawback on the
first sight, but in terms of Groovy it actually would be useful. Because of duck typing,
we may have situations where something like inheritance is used without a specifcally
declared relation between classes (See chapter 2.1 on page 6). We can’t refactor such
related methods no longer in one step, because we force the refactoring operator to select
one declaration. To support this feature, the declarations in the candidate selection
dialog should be checkable or something like that. The refactoring should then first
gather the new name and then rename all specified declarations. However, in Groovy
this is possible to do within one single refactoring step. In terms of Java, this means to
launch multiple refactorings and batch process each one. This could result in overlapping
refactoring changes and is therefore dangerous in some situations. For this reason,
we didn’t implement multiple refactorings. Still, they would be quite usefull in some
situations.

Page 50 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6 Local Groovy Refactoring

6.1 Introductory example

Groovy is a mighty tool to simplify the life of a Java developer. It fits simple daily tasks
such as parsing XML as well as big projects. The tight integration with the JVM allows
to use Groovy nearly everywhere where Java is suspected to be the only adequate option.
This includes a huge number of existing Java frameworks and libraries such as Servlets,
Spring, Hibernate and lots of others. For this reason, refactorings in the Groovy domain
should also be reflected in connected Java code as well.

This is exactly what this chapter is about. For example let’s take a simple Groovy bean
that is used within Java code. If we now refactor a field of this bean, wouldn’t it be
pleasant if the generated getter and setter methods in Java are updated as well?

Java� �
public class PersonUsage {
public static void main(String[] args) {
Person stefan = new Person();
stefan.setName("Stefan");
stefan.setTotalYears(23);
System.out.println(stefan);

Person dude = new Person();
dude.setTotalYears(42);
dude.setName("His Dudeness");
System.out.println(dude);

}
}� �

Groovy� �
class Person {
private static int lastId = 0

def final id = lastId++
def name
def totalYears

String toString() {
"${id}: ${name} (${age})"

}
}� �

Java (refactored)� �
public class PersonUsage {
public static void main(String[] args) {
Person stefan = new Person();
stefan.setName("Stefan");
stefan.setAge(23);
System.out.println(stefan);

Person dude = new Person();
dude.setAge(42);
dude.setName("His Dudeness");
System.out.println(dude);

}
}� �

Groovy (refactored)� �
class Person {
private static int lastId = 0

def final id = lastId++
def name
def age

String toString() {
"${id}: ${name} (${age})"

}
}� �

Page 51 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.2 Use Case

The user works on a mixed project and renames a Groovy element from the declaration,
or a reference. If the renamed element is referenced from some Java code, this code has
to be updated too. In this use case, the user starts a rename refactoring from the Groovy
editor.

Preconditions

The Project has to be in a clean state. That means, all sources need to be compilable
without build errors.

Postconditions

The element and all references are renamed and the project is in a clean state again,
without build errors.

Basic course of events

1. The User starts the rename refactoring from a Groovy editor.

2. The refactoring seaches all possible candidates from the selected reference and
shows a list to the user.

3. If the user choose a Groovy element out of the list a usual Groovy refactoring on
this element is started.

4. After all the Groovy elements are renamed, a rename participant starts the corre-
sponding JDT refactoring.

5. The JDT refactoring updates all references in Java.

Alternative paths

• If the user chooses a Java element out of the list with possible candidates, the
scenario in chapter 5 (Remote Java Refactoring) is started.

• If a reference in Groovy is dynamically typed, the refactoring can’t automatically
identify them. In this case, the user can select all the candidates he wants to
rename. It’s the users own responsibility, to take care about which candidates he
wants to rename.

Page 52 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.3 Updating binary references in Java

To support local Groovy refactorings, we need a clean way to update Java source code
referencing to Groovy elements. On the first occasion this sounds pretty simple to realize:
There are numerous Java refactorings available in the JDT and all we need to do, is
to invoke those. Unfortunately it’s not that easy. All JDT refactorings are exclusively
designed for source files in a Java workspace. The restriction to source files makes sense,
because there’s almost nobody expecting a binary class or something in a jar file to be
refactorable. Binary elements are just seen as given and if you need to change something
for your project, you hope to get the sourcecode somewhere.

Now comes the problem: Groovy and Java in Eclipse are only connected trough binary
references. If a Groovy class is written, the compiler generates the bytecode and Java
sees that a “new” binary class file has been added to the project. Now if we try to refactor
something used from a Groovy class from Java, the JDT thinks we want to refactor a
binary element and immediately stops the refactoring. This also applies for programmat-
ically started refactorings as described in chapter 8.5 on page 75. As far a we could find
out, this affects all commonly known refactorings in the JDT and cannot be bypassed or
configured somehow. Also the mailing list couldn’t help us any further.

Because of the mentioned problems, we had to look for a different way to refactor binary
references in Java. We had three main ideas:

• Copy the JDT refactorings: As the JDT source is available, we could import the
complete refactorings into our project and modify them, until binary elements can
be renamed without problems.

• Error-marker search: After a Groovy refactoring has been performed, we could look
for all new error-markers within Java code and correct these if possible. This can
only be done post-refactoring and thus allows no preview.

• AST Modification: We could also implement our own AST-based refactorings and
use those for updating Java code. This may required a complex implementation.

We decided for the third option because the other two didn’t seam to be well-fitting solu-
tions to us: Copying a huge bunch of code to change one simple line is never a good idea.
Further we don’t even need the complete functionality of the JDT refactorings. The second
solution is like playing pyromaniac firefighters: repair something after you intentionally
broke it. An maybe there’s even more broken afterwards. So the third option was the
only reasonable solution.

Page 53 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.4 Groovy Refactoring Participants

Before we could start to implement the additional refactorings we had to solve an other
issue. The existing Groovy refactorings were all realized as standalone refactorings and
offered no support for refactoring participants.

In the language toolkit of Eclipse, there are two similar classes to support refactoring
implementations. These are the pure Refactoring itself without participation support
and the extended version named ProcessorBasedRefactoring. The Groovy refactor-
ings are all based on the first one and thus did not offer native support for refactoring
participants. So the logical solution seemed to be a migration of the Groovy refactor-
ings to processor based refactorings. This was also our first intention, but the internal
structure of ProcessorBasedRefactoring is much more complex compared to simple
refactorings. The Groovy refactorings themselfs also rely on a largely enhanced refac-
toring architecture. As a result, the effort to migrate the Groovy Refactoring Plug-in to
ProcessorBasedRefactorings would require huge architectural changes. The biggest
benefit of this migration would be that Groovy refactorings then could offer extension
points to register refactoring participants. However, we had to abandon this solution be-
cause there were already some delays in our project schedule and it was not a requirement
for us to implement Groovy participants over extension points.

Instead, we extended the existing Groovy refactorings with a simplified support for par-
ticipants. Our so called ProcessorBasedRefactorings light:

..groovy.eclipse.refactoring.core

org.eclipse.ltk.core.refactoringorg.codehaus.groovy.eclipse.refactoring.core.participation

Part icipantManager

+RENAME_LOCAL
+RENAME_CLASS
+RENAME_FIELD
+RENAME_METHOD
+EXTRACT_METHOD
+INLINE_METHOD

+add(Participant, eventID)
+remove(Participant, eventID)
+getActiveParticipants(eventID)
+getDefaultManager()

GroovyRefactor ingPart icipant

+initialize(RefactorinProvider)

Part icipantDispat cher

+checkConditions()
+createChanges()

Refactor ing

*

*

GroovyRefactor ing

Figure 6.1: Participation support for Groovy refactorings

The implementation consists of three simple classes:

• A GroovyRefactoringParticipant is a usual refactoring extended by an initialize
method to declare if the participant is willing to contribute to the current refactoring.

• The ParticipantManager is a registration point for refactoring participants. There
is a binary flag for each implemented refactoring. Using this, a participant can be
registered to one or multiple refactoring events.

• The ParticipantDispatcher is associated with a participant manager and safely
delegates condition-checking and change creation for each registered participant.

Page 54 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.5 Java Update Refactorings

6.5.1 AST modification procedure

With the help of the implemented participant support, it’s possible to add additional
change tasks to Groovy refactorings. So the next step was to implement the refactorings
to update renamed Groovy elements in Java sources. The term refactoring is maybe a little
bit overstressed at this point, because we only need to lookup referencing elements and
rename all found occurrences. We still use the name refactoring because it’s implemented
as one.

The Eclipse JDT Plug-in offers a very powerful abstract syntax tree facility with support
to parse, traverse, edit and rewrite Java source files. A very recommendable introduction
on handling JDT ASTs can be found in [AST06]. The rest of this chapters uses terms and
definitions explained in this article.

So, what’s the job of Java update refactoring when a Groovy refactoring is performed?
Roughly speaking, it has to:

1. Find all java files containing references to the renamed Groovy element.

2. Create an AST for all those files.

3. Traverse the AST and collect all occurrences of the renamed subject.

4. Replace each occurrence with the new name as specified in the parent refactoring.

5. After all occurrences are replaced, collect the required edits and return those changes
to the parent Groovy refactoring.

Surprisingly, this enumeration nearly exactly describes how we implemented the Java
update refactorings. To be specific, here’s a more detailed but still abstract description of
how each task from the list above was realized:

1. Finding all referencing Java files is accomplished by searching the Java model for
a specific pattern. When a search pattern is configured to search only for refer-
ences, the returned values are always types or methods containing a reference to
the searched element. From these elements, we can get the files of definition.

2. We generate the AST including all bindings using the ASTParser.

3. The AST gets traversed by an ASTVisitor and resolves each eligible binding depend-
ing on the element that is going to be refactored . The binding is then compared
with the element. If they match, the AST node is identified as a reference and added
to the collection of all found occurrences.

4. For all found occurrences, the class ASTRewrite generates the necessary textual
edits.

5. These edits then get bundled into a Change object that will be a part of the refactoring
to be applied.

This is still a high level description of the necessary steps to refactor Java code from
AST modifications. But the procedure remains the same for all implemented Java update
refactorings.

Page 55 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.5.2 Implementation

As described in the previous section, there are a lot of shared tasks among all Java update
refactorings. In respect of this fact, most of the functionality is realized in a universally
used abstract refactoring. However, there are ultimately two context sensitive tasks that
differ for each refactoring:

• The search pattern to find references in the Java model.

• The ASTVisitor to identify references and collect them.

It’s the responsibility of each refactoring implementation to create these two elements
and pass them back via template methods getSearchPattern() and getCollector().
The Java search pattern only needs to be correctly adjusted so that all references to the
element to be refactored are found. The collector on the other hand, is an AST visitor that
must be able to retain all found references. For this reason the class SimpleNameCollector
was introduced. A SimpleName is the smallest possible element to be extracted from a
statement in the Java AST. This is also the canonical element that finally represents the
text we need to replace.

org.codehaus.groovy.eclipse.refactoring.core.jdtIntegration.javaRefactorings

collectors

FieldCollector

ASTModif icat ionRefactor ing

setNewName()
getNewNameFor(SimpleName)
getSearchPattern()
getCollector()

ClassUpdateRefactor ing

getSearchPattern()
getCollector()

FieldUpdateRefactor ing

getSearchPattern()
getCollector()

MethodUpdateRefactor ing

getSearchPattern()
getCollector()

MutatorUpdateRefactor ing

getNewNameFor(SimpleName)
getSearchPattern()
getCollector()

ClassCollector

SimpleNameCollector

getOccurences()

MutatorCollect orMethodCollector

Figure 6.2: Simplyfied class diagram of Java update refactoring classes

Each SimpleName returned by the collector will then be replaced during the refactoring
process.

There is also one special case: Groovy fields that generate synthetical getter/setter meth-
ods, also known as mutators. When such a field is renamed, we have to refactor the
mutator methods in Java instead of field access statements. This case is covered by the
MutatorUpdateRefactoring.

Page 56 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.6 Implementation Review

The implemented participant architecture in combination with the Java update refactor-
ings offers a fully fledged solution to support local Groovy refactorings. Anyhow, we’re
still missing the link between those modules. To interconnect both elements, the last
thing to do was to implement the Groovy refactoring participants and call the appropriate
Java refactorings. The following sequence diagram shows the new workflow of a Groovy
refactoring with the added participant:

for each

GroovyRefactoring ParticipantDispatcher

: GroovyRenameParticipant

: ASTModificationRefactoring

ParticipantManagerRefactoringWizard

checkInitialConditions()

checkFinalConditions() checkCondidtions() getActiveParticipants()

initialize() <<create>>

checkAllConditions()
checkInitialConditions()

checkFinalConditions()

createChange() createChange() createChange() createChange()

Figure 6.3: New workflow of Groovy refactorings including participants

To register additional participants, they need to be loaded when the plug-in is activated.
To register a participant for a specific refactoring event, it has to be added to the default
ParticipantManager:

Listing 6.1: Participant registration� �
ParticipantManager pm = ParticipantManager.getDefaultManager();
pm.add(ClassRenameParticipant.class, ParticipantManager.RENAME_CLASS);
pm.add(FieldRenameParticipant.class, ParticipantManager.RENAME_FIELD);
pm.add(MethodRenameParticipant.class, ParticipantManager.RENAME_METHOD);� �
Over all, the design of this solution is pretty similar to the refactoring participants as
seen in chapter 4: Local Java Refactoring. This was our intention and helps to keep the
code maintainable. Further it’s now possible to extend the Groovy refactorings with other
additional refactoring participants.

Page 57 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.7 In Action

The following screenshots shows the Crosslanguage Groovy Refactoring in action. The
code base is the same as in chapter 6.1: Introductory example.

Figure 6.4: A Local Groovy Refactoring in action

Page 58 of 90

Crosslanguage Refactoring 6 Local Groovy Refactoring

6.8 Restrictions

The basic rename scenarios when Groovy code is used from Java are covered with this
refactoring. However, it has to be mentioned that Groovy has a lot more power than
conventional Java. This may lead to situations where the resulting class files are no
longer conveniently usable from Java. Especially everything using meta programming
stuff tricks . For example builders or expanded classes using ExpandoMetaClass are not
accessible without reasonable efforts. This is not very surprisingly as Java was never
ment to do so. Notice that in these situations even the Groovy refactorings mostly fail
because there’s simply now way to detect what should be refactored.

6.9 Further Ideas

• Class name duplicate checks: Currently there’s no warning message when a Java
class is renamed to an already used name by a Groovy class in the same package.
This would lead to unpredictable situations and thus should be avoided.

• Derived method warning: Within the JDT, there’s a warning message shown when
a derived method from a superclass is about to be renamed. If the refactoring
operator still decides to rename it, he accepts that this may result in semantic
changes of the code. In the Groovy Refactoring Plug-in, there’s currently no such
message.

Page 59 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

7 Remote Groovy Refactoring

7.1 Introductory example

As written in the last chapter, Groovy is even useful for Java developers. With the tight
integration into the JVM, a Java developer can souce some parts of his software out into
Groovy, to simplify them. So refactorings in the Groovy domain should also be able to
start from references in Java.

In the following example, we have two bikes in a Java class and want to rename the field
”r” into the more obvious name “rearWheel”. Started from the property harley.getR,
the definition of the field in Groovy and all references get renamed. The second bike, the
Kawasaki isn’t realy interessted in this operation, because it never uses this field or its
getter, so nothing gets renamed here.

� �
public class Java {

public static void main(String[] args) {
Bike harley = new Bike();
harley.getR().spin();
harley.getF().spin();

Bike kawasaki = new Bike();
kawasaki.spinAll();

}
}� �

� �
class Bike {

Wheel r = new Wheel()
Wheel f = new Wheel()
def wheels = [r,f]

void spinAll(){
wheels.each{ it.spin() }

}
}

class Wheel{
def spin(){

println "Spinning wheel"
}

}� �

Page 60 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

After the refactoring, the declaration of the used element r is renamed, so does all refer-
ences.

� �
public class Java {

public static void main(String[] args) {
Bike harley = new Bike();
harley.getRearWheel().spin();
harley.getF().spin();

Bike kawasaki = new Bike();
kawasaki.spinAll();

}
}� �

� �
class Bike {

Wheel rearWheel = new Wheel()
Wheel f = new Wheel()
def wheels = [rearWheel,f]

void spinAll(){
wheels.each{ it.spin() }

}
}

class Wheel{
def spin(){

println "Spinning wheel"
}

}� �

Page 61 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

7.2 Use Case

The user renames a Groovy element starting from a reference in a Java file. The declara-
tion in Groovy has to be renamed, as well as all references in Groovy and Java.

Preconditions

The Project has to be in a clean state. That means, all sources need to be compilable
without build errors.

Postconditions

The element and all references are renamed and the project is in a clean state again,
without build errors.

Basic course of events

1. Start a Groovy refactoring from the special menu entry in the JDT editor.

2. The refactoring searches all possible candidates from the selected reference and
shows a list to the user.

3. If the user choose a Groovy element out of the list a usual Groovy refactoring on
this element is started.

4. After all the Groovy elements are renamed, a rename participant starts the corre-
sponding JDT refactoring.

5. The JDT refactoring updates all references in Java.

Alternative paths

• If the user chooses a Java element out of the list with possible candidates, the
scenario in chapter 4 (Local Java Refactoring) is started.

• If a reference in Groovy is dynamically typed, the refactoring can’t automatically
identify them. In this case, the user can select all the candidates he wants to
rename. It’s the users own responsibility, to take care of which candidates he want
to rename.

Page 62 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

7.3 New Menu entry

The biggest challenge in this use case is the fact, a JDT refactoring does not allow to
rename binary references. Even the menu entry in the context menu is not visible. Our
predecessors [KKK08] also discussed this problem with Dr. Dirk Bäumer 1, and had just
one solution. A new menu entry. Due to the fact, the menu entry is invisible, if a binary
reference is selected, this new menu entry replaces the usual JDT entry. On the users
end, nothing changes if the selected element is defined in Groovy or in Java.

In the Eclipse framework, menu entry’s are based on actions and commands, which both
are defined through various extension points. So that new functionality can be easily
added. For more information about commands and actions please read chapter 6 of the
book eclipse Plug-ins [EPi08]. We defined our actions in the same extension point, as
the Groovy refactoring [KKK08], so when the refactoring plug-in is loaded, all the menu
entries will load at the same time.

For menu entries, the Eclipse framework offers two different APIs. The common action API
and, since Eclipse 3.3, the command API. Inspired by the other menu entries attaching
to this extension point, we used the action API, for our elements. We had to add two new
actions: the refactoring menu in the menu bar, and the context menu.

7.3.1 Refactor menu entry

In the refactoring menu, in the menu bar of the JDT editor, all actions are visible all the
time, no matter what kind of element is selected. So we had to add a completely new
menu entry, to the already existing menu, which is shown all the time too.

To add this menu entry in the refactoring menu, we used a new editorContribution.
For the definition, in which part of the menu the action should be, we had to define the
menu part again, with the same identifier as it is already defined in the JDT menu. This
is the only way to add a new menu entry to an already defined menu. The action is linked
to the RenameInJavaAction action listener, which starts the groovy refactoring .

Listing 7.1: Extension point configuration for the menu entry� �
<editorContribution

id="org.codehaus.groovy.eclipse.refactoring.editorContributionJava"
targetID="org.eclipse.jdt.ui.CompilationUnitEditor">
<menu

label="Refac&tor"
path="edit"
id="org.eclipse.jdt.ui.refactoring.menu">

<separator name="reorgGroup"/>
</menu>
<action

class="org.codehaus.groovy.eclipse.refactoring.popup.actions.RenameInJavaAction"
definitionId="org.codehaus.groovy.eclipse.refactoring.command.renameGroovy"
id="org.codehaus.groovy.eclipse.refactoring.renameGroovy"
label="Rename Groovy Element..."
menubarPath="org.eclipse.jdt.ui.refactoring.menu/reorgGroup">

1At that time, Dirk Bäumer was a member of the Eclipse architecture team

Page 63 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

</action>
</editorContribution>� �

Figure 7.1: Screenshot of the refactoring menu entry

7.3.2 Context menu entry

If a context menu gets visible, it contains just those elements, that can actually interact
with the selected element. If a reference to a Groovy element is selected, the JDT rename
refactoring action isn’t visible. So it should be possible, to replace this action. But the way
it looks, it is impossible to add a new menu entry to the existing Refactoring submenu.
We tried a few ways, but the new menu entry was never shown. So we decided to add a
new menu entry just to the context menu itself. This isn’t really a user-friendly way, but
not even the Eclipse newsgroups contained clues how to solve this problem.

In the Eclipse framework, the context menu is called popup menu. To add a new entry,
we added a new viewerContributon to the extension point. With the targetID, this
contribution is shown in the Java editor. The action is quiet the same as for the 7.3.1
refactor menu entry, just with a different menubarPath.

Listing 7.2: Extension point configuration for the context menu entry� �
<viewerContribution

id="org.codehaus.groovy.eclipse.refactoring.javaContribution"
targetID="#CompilationUnitEditorContext">

<action
class="org.codehaus.groovy.eclipse.refactoring.popup.actions.RenameInJavaAction"
definitionId="org.codehaus.groovy.eclipse.refactoring.command.renameGroovy"
id="org.codehaus.groovy.eclipse.refactoring.renameJavaAction"
label="Rename Groovy Element"
menubarPath="org.eclipse.jdt.ui.refactoring.menu">

</action>
</viewerContribution>� �

Page 64 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

Figure 7.2: Context menu with selection on a Groovy element

The linked action class implements the IEditorActionDelegate interface, with a
selectionChanged method, which is called each time, a selection changes. This method
takes the selected element from the editor and checks, if it is a Groovy element. If this is
the case, the menu entry is enabled, if not it will be disabled. Unfortunately, the Eclipse
framework uses lazy loading for all plug-ins. So until the Groovy Refactoring Plug-in is
called the first time, this new menu entry is enabled all the time. But if someone uses
the menu item, Eclipse loads the plug-in and a message pops up which says, that the
chosen operation isn’t enabled. From then on, the plug-in is loaded and the menu item
is enabled only if it needs to be.

Figure 7.3: Context menu with selection on a Java element

Page 65 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

7.3.3 Adding a key binding

In the Eclipse framework, a key binding belongs to a command. If you want to add a
keybinding to one or more actions, you have to add a new command and link them from
all the actions you want to.

Action

Command

Action handler
ALT + SHIFT + G

Keybinding

Figure 7.4: Overview - from the Action to the Keybindings

A Key binding should consist at least one modifier key, and one other key. In Eclipse,
the modifier keys have an abstract name, a platform-independent way to represent the
keys. For example, the abstract name “M1” is for the COMMAND key on a MacOS X, or
the CTRL key on most other platforms. The other keys are generally specified simply as
the ASCII character, in uppercase.

For the Groovy refactoring out of a Java editor, we implemented the keybinding ALT+SHIFT+G,
or with abstract names M3+M2+G.

Listing 7.3: Extension point configuration for the keybinding� �
<extension point="org.eclipse.ui.commands">
<command

categoryId="org.codehaus.groovy.eclipse.refactoring.commands.refactoring"
id="org.codehaus.groovy.eclipse.refactoring.command.renameGroovy"
name="Rename Groovy...">

</command>
</extension>

<extension point="org.eclipse.ui.bindings">
<key

commandId="org.codehaus.groovy.eclipse.refactoring.command.renameGroovy"
contextId="org.eclipse.jdt.ui.javaEditorScope"
schemeId="org.eclipse.ui.defaultAcceleratorConfiguration"
sequence="M3+M2+G">

</key>
</extension>� �

Page 66 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

7.4 Restrictions

The former language-isolated Refactorings, both have the same key binding (CTRL, Alt, R).
Against some answers in the Eclipse newsgroups, it is possible to overwrite the existing
JDT-given key bindings. But it overwrites the key binding all the time. If the Groovy
refactoring plug-in is loaded, a local Java refactoring (on a Java element) is not possible
any more. So we decided to define a different one, for the Crosslanguage Refactoring. And
because the key “G” is almost next to the “R” key, and implicate the Groovy language, we
took ALT+SHIFT+G.

Page 67 of 90

Crosslanguage Refactoring 7 Remote Groovy Refactoring

7.5 In Action

When the action is executed, the action listener gets notified, and starts the same refac-
toring as in scenario 6: Local Groovy Refactoring, at page 51 for the selected element.

Figure 7.5: Example of a remote Groovy refactoring

7.6 Further Ideas

As written above, the refactoring for this scenario just calls the same refactoring as
the scenario Local Groovy Refactoring in chapter 6. So there are also the same further
ideas, as in the other scenario. Additionally to them we found out that sometimes, the
selectionChanged listener doesn’t update, when it should. These happens just, if some
text is selected, and the user clicks with the right mouse button on a different identifier.
This tends to the result, the menu entry is disabled, even the element is derived from
Groovy.

Page 68 of 90

Crosslanguage Refactoring 8 Automated Testing

8 Automated Testing

Automated testing over the whole deployment time is an important element of a software
project and an essential part of quality management. In our extension, we use a lot of
already existing and tested code. For the most of these code, its not usefull to test it
again. Additionally to this, testing between the two languages does not realy work on the
unit-test level. So we build a test infrastructure, which is based on the Groovy Eclipse
Plug-in testcase. This allowed us to test the whole refactoring in one piece with different
testcases.

8.1 Testing Infrastructure

If not working properly, refactoring can be dangerous and is likely to create a lot of work for
the refactoring operator, if it doesn’t work as intended. So the quality of this automation
is the most important. In order to guarantee quality, a lot of tests for any special kind of
refactoring are needed.

To easily add new tests during development, we built a test framework which is able to
read special testfiles, execute the refactoring and compare the output with the expected
one in the testfiles. This test framework is based on the Eclipse plug-in tests, which
means that the tests start a new instance of Eclipse, with a temporary testproject and
simulate all required user actions.

For every test case execution, the Eclipse instance has to create a new project, and add
all the files to it. Then, the project gets compiled, to check if the code is valid, before the
refactorings can get started. At the end, the file content gets checked against the expected
one, and the whole project has to be deleted. Due to this whole bunch of work, every test
case takes a few seconds, which accumulate over all the tests to a few minutes. But the
tests are that important for the project, this doesnt matter.

To suit our needs, we used the basic features of the already existing framework to add files
and packages. In addition to this, we implemented functions for reading the file content,
and comparing it with the expected one. Of course, we also implemented the additional
features to programmatically start a refactoring.

Our extension of the tests are split in two parts.

• The test suites, which collect all the tests together.

• The test cases, one for each test, containing the testcode.

Page 69 of 90

Crosslanguage Refactoring 8 Automated Testing

The following diagramm shows a schematic overwiev of the test framework

jdtIntegration.ConcreteTests

jdtIntegration

Test
<<interface>>

+run(): void

TestSuit e

+addTest(Test test)
+run(): void

BaseTestSuit e

ConcreteTestSuit e

TestCase

+run(): void

EclipseTestCase

#fullProjectBuild(): void

BaseTestCase

#compareWithExpected(): void
+testRefactoring(): void
#build(): int

RenameTestCase

+setUp(): void
+tearDown(): void
+testRefactoring(): void
#searchVarDeclaration(): IMember
#localJavaRefactoring(IMember): void
#getNewName(): String
#remoteGroovyRefactoring(): void
#localGroovy_remoteJavaRefactoring(): void

ConcreteEclipseTestCase

#getNewName(): String
#localJavaRefactoring(IMember): void
#searchVarDeclaration(): IMember

-parent

-child

1

*

Figure 8.1: Test classes for file-based testing environment

Page 70 of 90

Crosslanguage Refactoring 8 Automated Testing

Found failures in Eclipse plug-in test framework

During the work with this framework we encountered a few smaller issues which we
fixed directly. Right at the beginning, we discovered that on a Windows plattform, the
testproject can’t be deleted after each testcase. So from the second test case, there were
failures because the project already existed.

After a few tries, we figured out, that somewhere in the project there still were some
references to the files, but after manually calling the garbage collector everything gets
deleted as it should.

Later we noticed some errors with the SelectionHelper. Sometimes the selection was
off by a few characters. We identified the testfiles, which worked, and those who had a
wrong selection. After compairing these two groups, we could isolate the problem by the
newline-symbol on different plattforms. When adding a file to an existing project, the
test frameworks automatically adds the package name to the top of the files, followed by
a blank line. The linebreak character used for this was just a “\n”. After replacing this
newline symbol with the System.getProperty("line.separator") everything worked
fine.

Listing 8.1: Function to add a new Java file to the testproject� �
public IType createJavaType(IPackageFragment pack, String cuName,

String source) throws JavaModelException {
String lineSeparator= System.getProperty("line.separator");
StringBuffer buf = new StringBuffer();
buf.append("package " + pack.getElementName() + ";");
buf.append(lineSeparator);
buf.append(lineSeparator);
buf.append(source);
ICompilationUnit cu = pack.createCompilationUnit(cuName,

buf.toString(), false, null);
return cu.getTypes()[0];

}� �
8.2 Test Suite

The main task of a test suite is to collect tests together. Additionally, in JUnit, test suites
implement the composite pattern [GoF95]. This allows to easily add new test suites to
the existing test suites, as a new node to the tree. We built test suites for each kind of
element we wanted to rename. (Classes, Fields, Methods) Our implementations of the test
suites take the different test files, matching them with a naming pattern, and generate
the specific test case object for each one.

Page 71 of 90

Crosslanguage Refactoring 8 Automated Testing

8.3 Test Case

A specific test case starts its work with reading properties and contents out of the test files
and adding the content files to the test project. This works the same way for all the tests,
so it is based on the BaseTestCase class. To implement a new kind of test based on this
framework, it’s only needed to extend RenameTestCase and add the abstract function
testRefactoring().

In Eclipse, the existing Java-refactorings are started from the JDT-own stucture based
on the IElement interface. But the Groovy-refactoring are started with a selection in the
specified file. To ease up the test framework, we handled this difference in the testfiles.

alt

[foundVarDeclaration]

[else] alt

[selectionInJavaFile]

[selectionInGroovyFile]

JunitTestFramework ConcreteTestCase RenameTestCase BaseTestCase EclipseTestCase

1 : setUp() 2 : setUp()
3 : setUp()

4 : readFile()

5 : mockUIs()

6 : addFilesToProject()

7 : testRefactoring() 8 : build() 9 : fullProjectBuild()

10 : searchVarDeclaration()

11 : localJavaRefactoring()

12 : remoteGroovyRefactoring()

13 : localGroovy_remoteJavaRefactoring()

14 : compareWithExpected()

15 : chechUIMocks()

16 : checkSources()

17 : tearDown()
18 : tearDown()

19 : tearDown()

Figure 8.2: Sequence diagram over the whole test framework

The BaseTestCase class holds all additional functions and, as you can see in the di-
agramm above, reads the test files and compares the result of the refactoring with the
expected source. All concrete functions are located in the ConcreteTestCase class. Be-
cause a Groovy-refactoring is called with a text selection, the programmatical start of this
refactoring is found in the RenameTestCase class.

Page 72 of 90

Crosslanguage Refactoring 8 Automated Testing

8.4 Test Files

The testfiles are simple textfiles, with all the information for a specific test. It is di-
vided to three different sections, which are explained below. Every Section starts with a
###[token name] token, and stops when the next section starts, or the ###end token.

Property Section

The first section of the testfiles is the property section, defined by the ###prop token. It is
used to define some overall properties, like where the selection will be for the refactoring,
or the new name of the renamed element. In the test case, these properties are stored in
a map, and can be accessed via the name. ([name]=[value])� �
###prop
selectionInFile=JavaClass.java
startLine=6
startColumn=5
endLine=6
endColumn=8
newFieldName=newNAME� �
Source Section

The property section is closed by the beginning of the source section, defined by the
###src token. This section contain at least one Java and one Groovy file, which are
added to the test project, before the test starts. These files are split by the #NEXT token.
Also every file in this section has two different sections. At the beginning the file property
section, where is the filename and in which package the file belongs. Here are even the
Ambiguous candidates for the UI-mock listed. Split by a line with just three colons the
file properties section is closed, and the source section with Java or Groovy sourcecode
beginns.� �
###src
Package=code
Filename=JavaClass.java
:::
public class JavaClass {
public void method() {
Field field = new Field();
field.myString = "Ciao"; // selection from the properties

// section refer on this line
}

}
#NEXT // a new file begins
Package=code
Filename=GroovyClass.groovy
:::
public class Field{
String myString = "Hello"

}

Page 73 of 90

Crosslanguage Refactoring 8 Automated Testing

public class GroovyClass {
def m(){
Field field = new Field()
field.myString = "Hola"

}
}� �
Expected Section

The expected section has the same layout as the source section, but here, files are stored
the way they are expected after running the tests. This is the last section of the testfiles,
and closes with the ###end token.� �
###exp
Package=code
Filename=JavaClass.java
:::
public class JavaClass {
public void method() {
Field field = new Field();
t.newNAME = "Ciao"; // the refactoring should rename here

}
}
#NEXT
Package=code
Filename=GroovyClass.groovy
:::
public class Field{
String newNAME = "Hello"

}

public class GroovyClass {
def m(){
Field field = new Field()
field.newNAME = "Hola" // and here

}
}
###end� �

Page 74 of 90

Crosslanguage Refactoring 8 Automated Testing

8.4.1 Used properties in Test files

In our tests we used the following properties:

Where What Function Parameter Name Value

test properties

all tests selection

selectionInFile filename with ending
startLine line of selection start
startColumn column of selection start
endLine line of selection end
endColumn column of selection end

local Java className name of the selected class
method test

set new name
new method name new name

field test new field name new name
class test new class name new name

file properties all tests
package package path of the package
filename filename filename of the file
accept ambiguous
element

AcceptLine line number

Table 8.1: Parameter for Test Files

8.5 Starting a Java refactoring programmatically

The JDT refactorings can even get started programmatically. For this, its just needed
to get the refactoring contributor of the refactoring you want to start. Out of
the contributor it is possible to create a refactoring descriptor which you have to
parametrize with the IJavaElement you want to refactor and a boolean, if you want to
update the references too or not. If you want to start a rename refactoring, its also needed
to set the new name in the descriptor. With all this information added to the refactor-
ing descriptor, you can create a refactoring and start to check the initial and the final
conditions. After everything is ok, you can create a change object and apply the changes.

Page 75 of 90

Crosslanguage Refactoring 8 Automated Testing

Listing 8.2: Example of a programmatical refactoring start� �
RefactoringContribution contribution = RefactoringCore

.getRefactoringContribution(IJavaRefactorings.RENAME_FIELD);

RenameJavaElementDescriptor descriptor =
(RenameJavaElementDescriptor) contribution.createDescriptor();

// set the Java element you want to rename
descriptor.setJavaElement(element);

// set the new name for the Java element
descriptor.setNewName(newName);

// refactor the references too
descriptor.setUpdateReferences(true);

RefactoringStatus state = descriptor.validateDescriptor();

try {
Refactoring refactoring = descriptor.createRefactoring(state);
state.merge(refactoring.checkInitialConditions(pm));
state.merge(refactoring.checkFinalConditions(pm));
Change change = refactoring.createChange(pm);
change.perform(pm);

} catch (CoreExceptioin e) {
e.printStackTrace();

}� �
8.6 Ambiguous selection mock

To test every kind of the refactorings, even some tests with ambiguous candidates are
needed. Usually, if a user starts the refactoring, he can select which of them should be
renamed, and which not. When running automatic tests, this doesn’t work. (The test
machine doesn’t even has a graphical user interface.)

There were two different ways to solve this problem. To simulate the user input, or
to mock the selection. Simulating the user input smelled of much work and of be-
ing error-prone, so we decided to mock the selection. To add the usability of chang-
ing the way of the selection, we added a static method setRefactoring to the class
AmbiguousSelectionAction which instantiates the usual refactoring. This method
takes the class object of a class, extended from GroovyRefactoring.

At the instantiation of our mock class, it checks all ambiguous candidates. The ones
which are selected in the test file get moved to the definitive list.

Listing 8.3: Add a refactoring mock� �
public static void setRefactoring(Class<? extends GroovyRefactoring> g) {}� �

Page 76 of 90

Crosslanguage Refactoring 8 Automated Testing

8.7 Eclipse Unit Tests

Testing all the refactorings at once is realy nice, but searching an error in a huge amount
of code (and this is exactly, what a programmatical refactoring is) takes a long time. So
during deployment, it’s good to have some unit-tests too.

For this, we added a new TestSuite to the other suites, especially for the unit tests.
The tests themselves are split on what kind of element (class, method or field) will be
tested. All these classes extend from the class ProgrammaticalRenameTest, which is an
extension of junit.framework.TestCase.

8.8 Buildserver

As written in the intro of this chapter, automated tests are important for a software
project, but just executing the tests manually on the working machine of a developer,
doesn’t ensure all the tests realy run and pass. The build of the plug-in has to work
automaticaly. This improves the quality of the product and safes a lot of time for the
developer.

Building an eclipse plug-in isn’t easy to automate, because there are a lot of depencies
between different plug-ins. For this reason, Markus Barchfeld created his Eclipse plug-
in called “Pluginbuilder”[PluginBuilder]. With this plug-in, it is much easier to collect
all the necessary parts from the SVN repository and generate an ANT buildfile for the
buildserver. Building the Groovy Eclipse Plug-in adds a few additional problems. For
further information about these problems, please refer to the report of our predecessors
[KKK08].

Luckily for us, we had already a running build server from our predecessors and a helping
hand from Michael Klenk 1.

8.8.1 Problems

At the beginning of the project, we struggled for three weeks with a non-working build on
the server. The simple solution of the problem was, that a package form the groovy core
was not exported. This export had to be added to the manifest file of the plug-in, which
we didn’t knew before.

1Michael Klenk is one of the developers of the Groovy Refactoring plug-in [KKK08]

Page 77 of 90

Crosslanguage Refactoring 8 Automated Testing

8.8.2 Documentation Build

The build server does not just the project builds. Even the generation of this project
documentation works on the build server. The setup for this build was simple and did
not cause any problems.

1. CruiseControl calls the cc-build.xml file.

2. The cc-build.xml file pulls the newest LaTEX sources out of the SVN repository.

3. and generates the pdf file.

Page 78 of 90

Crosslanguage Refactoring 9 Summary

9 Summary

9.1 Results

Developing for a huge framework such as the Eclipse platform was a big challange for
both of us. Before our bachelor thesis, we were simply Eclipse users with a fundamental
knowledge of Groovy. In the beginning of our project, we had to quickly familiarize our
self’s with the back-end of Eclipse, the internals of the Groovy language and with the work
of our predecessors. This was a hard time in the beginning, but continuously began to
make more and more fun with the progress of the project.

For this reason, we’re very happy that we reached all our defined goals and could provide
additional values to the Groovy Eclipse Plug-in. Surely we learned a lot trough these
months. We’ve experienced Eclipse, that we both use since a long time, from a deeper view
and as very mature IDE designed for extensibility. The Plug-in Development Environment
offers a lot of aid you don’t necessarily expect, but surely never want to miss once you
know them. We also could further improve our knowledge about Groovy, altough we had
expected to have more touching points with the language itself. The biggest challenge
was to deal with it’s dynamic nature. The testing also required a lot of attention, because
simple unit testing couldn’t fulfill our requirements. As we depended on the eclipse
runtime to be present, we had to build a sophisticated testing architecture to guarantee
the quality of our code.

The result of our thesis is a reliably working plug-in that is ready for Crosslanguage
Refactorings. All directions in which a refactoring between Groovy and Java can be
launched, are supported. Special cases, that need additional user input, are covered as
well. With our solution, refactoring support for Groovy in Eclipse reaches a satisfying
integration level and offers improved support for developers.

9.2 Outlook

With the end of the project, our extension reached a level that is ready for production use.
We look forward to integrate our results into the official Groovy Eclipse Plug-in repository.
This step had to be postponed after the thesis, because we wanted to submit the final
stage of the software in one step. We’re eager for feed-backs from the community and
expansion ideas we didn’t thought off yet. Surely we will follow the further development
of the Groovy Eclipse Plug-in and the Groovy projects itself. As the whole plug-in is still
under heavy development, there are always some itches and glitches to fix. Who knows,
maybe we keep continuing to help improving the plug-in where possible in our free time?

Page 79 of 90

Crosslanguage Refactoring 9 Summary

9.3 Known Issues

Except of the known problems, which were already described in the “Unsolved Problems”
chapters in some of the scenarios, there are two remaining issues we couldn’t solve:

• Uncertain compilation faults: Sometimes, the compilation of Groovy files results
in corrupted class files after saving changes, even if the code itself has no faults.
When this happens, the AST cannot be retrieved anymore, thus preventing the
refactorings to work. If this happens, the edited files have to be changed and saved
again, by adding one whitespace character for example. This bug is a problem with
the Groovy compiler from Eclipse.

• Sub-keyword name changed: When a field for example consist of a name that
is part of a keyword used on the declaration line, the Groovy refactoring tries to
rename the keyword instead of the name. This is a bug in the refactoring plug-in
that has been opened on the JIRA bug tracking system for Groovy.

9.4 Possible Extensions

This list offers some ideas for further extensions of the Groovy Refactoring Plug-in:

• Groovy Language Model: The current plug-in lacks a model that represents the
language and indexes elements like the Java model. This would be really helpful for
the whole plug-ins and also for the refactorings.

• Starting refactorings from outline selection: Currently refactorings are launched
only from text selections. With a language model, the starting points could be
extended to the outline or the type hierarchy.

• Inline rename: Replace the name input wizard page by inline renaming the selected
element, when a refactoring is launched. The Java editor supports this behaviour
and it would be pleasant for the Groovy editor. (Also see chapter 4.10).

• Switch to ProcessBasedRefactoring See chapter 6.4 : Groovy Refactoring Partici-
pants.

• Import organisation: A feature frequently used in the Java editor is the “Organize
imports” function. This doesn’t exist for the Groovy editor yet and would be helpful.

• Improved “Hyperlink to Type”: When the Ctrl key is pressed and the mouse
pointer hovers over a type, a link should appear leading the user to the type defini-
tion.

• Search function: As known from Java, a search function for types or a lookup for
references, even if a bit tricky to realize in Groovy, could improve user assistance.
This function could be realized more effective, if a language model (See first point)
is available.

Page 80 of 90

Crosslanguage Refactoring 9 Summary

9.5 Personal Reflections

We wrote our personal reflections in german, because it’s our mother tongue and we could
express ourselves better.

Stefan Sidler

Da dies für mich die erste Mitarbeit in einem solch grossen Software Projekt ist, hatte ich
am Anfang Mühe, die Lage zu überblicken. Ich wusste gar nicht recht, wo ich mit dem
einarbeiten beginnen sollte. Durch das Studium der Arbeit unserer Vorgänger lichtete
sich einiges, doch es gab immer noch viele unklare Stellen, weshalb der Start des Projektes
etwas schleppend verlief. Als dann aber der Stein einmal ins rollen gekommen war, lief
es zügig und auch die Motivation stieg wieder an.

Ursprünglich haben wir uns vorgenommen jeden Freitag einen Dokumentiertag einzule-
gen. Da wir am Anfang aber lange brauchten, bis wir einen Überblick erreichten, schoben
wir die Dokumentation vor uns her, was sich leider bis kurz vor Schluss nicht mehr än-
derte.

Als nach Ostern Stefan Reinhard mit viel neuem Elan zurück kam, zog er das Projekt
weiter an. Davon beinahe etwas überrannt, bezog ich in Diskussionen um Entscheidun-
gen oftmals eine zu passive Rolle, was gegen Ende des Projektes zu Diskussionen führte.
Dadurch gestärkt gingen wir dann jedoch in den Endspurt über.

Da wir die Dokumentation über lange Zeit vor uns hergeschoben haben, kamen wir gegen
Ende des Projektes ziemlich unter Zeitdruck. Ich hätte nie gedacht, dass eine Doku-
mentation auf englisch so viel mehr Zeit in Anspruch nimmt. Aber das programmieren
machte einfach mehr Spass.

Ich habe in diesem Projekt sehr viel gelernt. Nicht nur was das Programmieren angeht,
auch wie man ein grosses, unbekanntes Framework anpacken, und sich einlesen muss.

Abschliessend möchte ich mich bei Prof. Peter Sommerlad und Michael Klenk für die
gute Unterstützung bedanken. Beide hatten immer gute und konstruktive Ideen, wenn
wir bei einem Problem nicht mehr weiter wussten. Auch wenn es gegen den Schluss
etwas stressig wurde, hat die Arbeit mit ihnen sehr viel Spass gemacht.

Page 81 of 90

Crosslanguage Refactoring 9 Summary

Stefan Reinhard

Mein erster Kontakt mit Groovy kam durch das Grails Framework zu stande, und seither
bin ich ein begeisterter Anhänger der Sprache. Daher entschied ich mich schon früh,
meine Bachelorarbeit nach Möglichkeit an einem Projekt im Groovy Umfeld zu schreiben.
Nachdem eine meiner Ideen jedoch von einem anderen Dozenten verworfen wurde, war ich
sehr glücklich, mit dieser Arbeit dennoch etwas spannendes und sinnvolles im Zusam-
menhang mit Groovy gefunden zu haben.

Eclipse ist im Vergleich mit anderen IDE’s (v.a. IntellJ IDEA und Netbeans) leider nicht
gerade die erste Wahl für Groovy. Da ich während meiner Studienzeit aber hauptsächlich
mit Eclipse zu tun hatte, war ich um so motivierter, mich für eine Verbesserung der
Groovy-Unterstützung einzusetzen.

Die ersten Schritte waren etwas schwerfällig, da ich noch nie an einem Eclipse Plug-
in gearbeitet habe, aber die Architektur doch zahlreiche Schnittstellen und Technologien
bereit hält. Als diese einmal verstanden waren und ich auch die Arbeit unserer Vorgänger
gründlich analysiert hatte, ging es plötzlich sehr produktiv voran. Leider war zu diesem
Zeitpunkt schon ein gewisser Rückstand im Projektplan festzustellen.

Ich empfand es interessant zu sehen, dass ich zwar nicht gerade sehr viele Zeilen Code
pro Tag schrieb, die Funktionalitäten unseres Plug-ins jedoch immer umfangreicher
wurden. Dies lag daran, dass ich die selben Module immerzu wieder verbessern und
erweitern musste, um das gewünschte Endresultat bei jedem Use Case zu erreichen.
Schlussendlich kann ich sagen, dass mir die Entwicklung in einem so umfangreichen
Projekt sehr viel Spass gemacht hat und ich bin davon überzogen, dass wir eine brauch-
bare Erweiterung des Groovy Plug-ins für Eclipse realisieren konnten.

Da dieser Erfahrungsbericht aber auch eine Reflektion der geleisteten Arbeit sein soll,
möchte ich auch noch einige selbstkritische Punkte ansprechen. Es hat sich im Ver-
laufe des Projekts so ergeben, dass ich mich hauptsächlich um die Implementierung des
Plug-ins kümmerte, während mein Mitstreiter vor allem das schreiben der Tests über-
nahm. Diese waren ziemlich umfangreich und komplex und ich gebe offen zu, dass ich
froh war, dass er diese Sache übernahm. Dennoch hielt ich es für eine ungeschickte
Aufteilung der Aufgaben, da so beinahe keine Ideen mehr gemeinsam entwickelt wur-
den. Softwareentwicklung, wie ich sie bisher erlebt habe, lebt jedoch vom gegenseitigen
Gedankenaustausch und dem gemeinsamen Konsens.

Ausserdem haben wir die Zeiteinteilung grob unterschätzt. Die Dokumentation wurde
viel zu spät angegangen und musste ausserdem in Englisch geschrieben werden. Dieser
Umstand verzügerte die Arbeit zusätzlich, da ich mich zwar des Englischen mächtig
fühle, jedoch nur sehr langsam im schreiben vorankomme. Ich hoffe jedoch, dass wir
die wichtigsten Punkte der Entwicklung dennoch einigermassen lesenswert zu Papier
bringen konnten.

Mit dem Abschluss dieser Bachelorarbeit bin ich insgesamt sehr zufrieden und möchte
neben meinem Kollegen Stefan Sidler vorallem unserem Betreuer, Prof. Sommerlad für
die umfangreiche Unterstützung und wertvollen Ratschläge danken.

Page 82 of 90

Crosslanguage Refactoring 10 Appendix

10 Appendix

10.1 Environment

Development

For developing the Crosslanguage Refactoring Plug-in, we both used Eclipse PDE, with
additional plug-ins for SVN (subclipse) and the Groovy-Eclipse plug-in itself. The build
was on a CruiseControl server, and we used the CCTray utility to observe the builds. Our
repository and buildserver was hosted on a virtual debian machine at the Institute for
Software with apache and svn installed.

Documentation

The whole documentation is written in LaTEX. We both wrote in individual editors:TexnicCenter
and Texlipse. All UML diagrams were drawn with StarUML and for nearly all other dia-
grams we used Inkscape and exported them to PDFs.

Project Organisation

All project managment issues were covered by Redmine, a Ruby on Rails software compa-
rable to trac. We used Redmine for project planing including gantt-charts creation, issue
tracking and the wiki for meeting invitations. It’s also features a very nice source browser
with diff view and syntax highlighting.

Page 83 of 90

Crosslanguage Refactoring 10 Appendix

10.2 Project Planning

10.2.1 Time Schedule

C
ro
ss
la
n
g
u
ag
eR
ef
ac
to
ri
n
g
P
lu
g
in

20
09
-2

20
09
-3

20
09
-4

20
09
-5

20
09
-6

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26

P
la
n
in
g
1:
C
I-
In
fr
at
st
ru
ct
u
re

N
ew

0%

P
la
n
in
g
9:
D
o
cu
m
en
ta
ti
o
n

N
ew

0%

P
la
n
in
g
13
:
P
ro
je
ct
p
la
n
in
g

N
ew

0%

P
la
n
in
g
4:
U
C
4:
R
en
am

e
Ja
va
fr
o
m

(.
..)

N
ew

0%

P
la
n
in
g
10
:
C
al
lin
g
a
JD
T
R
ef
ac
to
ri
n
g

N
ew

0%

P
la
n
in
g
26
:
R
es
ea
rc
h
fo
r
in
te
g
ra
ti
o
n
(.
..)

N
ew

0%

P
la
n
in
g
5:
U
C
3:
R
en
am

e
Ja
va
fr
o
m

(.
..)

N
ew

0%

P
la
n
in
g
6:
U
C
2:
R
en
am

e
G
ro
o
vy
fr
o
m

(.
..)

N
ew

0%

P
la
n
in
g
7:
U
C
1:
R
en
am

e
G
ro
o
vy
fr
o
m

(.
..)

N
ew

0%

P
la
n
in
g
8:
A
d
d
it
io
n
al
im
p
ro
vm

en
ts

N
ew

0%

P
la
n
in
g
11
:
P
o
st
er

N
ew

0%

P
la
n
in
g
14
:
P
u
b
lis
h
in
g
re
su
lt
s

N
ew

0%

P
la
n
in
g
12
:
D
o
cu
m
en
ta
ti
o
n
re
vi
ew

N
ew

0%

02
/1
6/
20
09

1/
1

20
09
-2

20
09
-3

20
09
-4

20
09
-5

20
09
-6

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26

P
la

n
in

g
 1

:
C

I-
In

fr
at

st
ru

ct
u

re
N

ew
 1

00
%

P
la

n
in

g
 1

3:
 P

ro
je

ct
 p

la
n

in
g

N
ew

 1
00

%

P
la

n
in

g
 4

:
U

C
4:

 R
en

am
e

Ja
va

 f
ro

m
 (

...
)

A
ss

ig
n

ed
 1

00
%

P
la

n
in

g
 1

0:
 C

al
lin

g
 a

 J
D

T
 R

ef
ac

to
ri

n
g

N
ew

 1
00

%

P
la

n
in

g
 2

6:
 R

es
ea

rc
h

 f
o

r
in

te
g

ra
ti

o
n

 (
...

)
N

ew
 1

00
%

P
la

n
in

g
 5

:
U

C
3:

 R
en

am
e

Ja
va

 f
ro

m
 (

...
)

N
ew

 1
00

%

P
la

n
in

g
 6

:
U

C
2:

 R
en

am
e

G
ro

o
vy

 f
ro

m
 (

...
)

N
ew

 1
00

%

P
la

n
in

g
 7

:
U

C
1:

 R
en

am
e

G
ro

o
vy

 f
ro

m
 (

...
)

N
ew

 1
00

%

P
la

n
in

g
 9

:
D

o
cu

m
en

ta
ti

o
n

N
ew

 1
00

%

P
la

n
in

g
 1

2:
 D

o
cu

m
en

ta
ti

o
n

 r
ev

ie
w

N
ew

 1
00

%

P
la

n
in

g
 1

1:
 P

o
st

er
N

ew
 1

00
%

P
la

n
in

g
 1

4:
 P

u
b

lis
h

in
g

 r
es

u
lt

s
N

ew
 0

%

Page 84 of 90

Crosslanguage Refactoring 10 Appendix

10.2.2 Working Hours

This Bachelor thesis was scheduled over a 17 week time period.

20

30

40

50

60

H
ou
rs

Working hours per week

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

H
ou
rs

Week

Working hours per week

Stefan Reinhard Stefan Sidler

Cumulated working hours
Stefan Reinhard 558
Stefan Sidler 549

Page 85 of 90

Crosslanguage Refactoring 10 Appendix

10.3 External Design

We just needed to add one window for our extension. All others already existed from the
Groovy refactorings.

Page 86 of 90

Crosslanguage Refactoring Listings

Listings

2.1 Type declarations needed in Java . 6
2.2 Dynamic typing in Groovy . 6
2.3 Duck typing example . 7
2.4 Duck typing example (continued) . 7
2.5 Simple Java class . 9
2.6 Simple Groovy class . 9
2.7 Closure examples . 10
2.8 GString usage . 11
2.9 Native syntax with lists and maps . 11
2.10Using some meta-programming capabilities of Groovy 12
2.11XML Builder usage . 13
3.1 Example of a search . 20
3.2 Defines a specific search pattern . 21
3.3 Search example for a specific search pattern 21
4.1 Extension point configuration for the field rename participant 25
4.2 Display a message window outside of a GUI thread 30
5.1 Identifing Java types within Groovy code . 39
6.1 Participant registration . 57
7.1 Extension point configuration for the menu entry 63
7.2 Extension point configuration for the context menu entry 64
7.3 Extension point configuration for the keybinding 66
8.1 Function to add a new Java file to the testproject 71
8.2 Example of a programmatical refactoring start 76
8.3 Add a refactoring mock . 76

Page 87 of 90

Crosslanguage Refactoring List of Figures

List of Figures

2.1 Usage of different type system paradigms over the last few years 8

3.1 A split refactoring with a processor and 0..n participants 15
3.2 Workflow directions of Groovy and Java Refactorings 16
3.3 Use Case diagram of the crosslanguage refactoring 18
3.4 The package structure of the participants 19

4.1 Plug-in based architecture of Eclipse, taken from the Eclipse Foundation . . 24
4.2 Participant flow as prototyped . 26
4.3 Participant flow as implemented . 27
4.4 Selection of ambiguous candidates for Groovy refactoring 29
4.5 Complete workflow of a MethodRenameParticipant 31
4.6 Overview of involved classes in local java refactorings 32
4.7 Example screens of a local Java refactoring 33
4.8 Warning message appearing when refactoring an inherited method 34

5.1 First idea for enhancing the rename dispatcher 40
5.2 Second idea for the enhanced rename dispatcher 42
5.3 Candidate collection from Groovy and Java 44
5.4 Collecting all refactoring candidates and open individual refactoring 45
5.5 Selection window for ambiguous refactoring candidates 47
5.6 Overview of involved classes in remote java refactorings 48
5.7 Example of a local java refactoring . 49

6.1 Participation support for Groovy refactorings 54
6.2 Simplyfied class diagram of Java update refactoring classes 56
6.3 New workflow of Groovy refactorings including participants 57
6.4 A Local Groovy Refactoring in action . 58

7.1 Screenshot of the refactoring menu entry 64
7.2 Context menu with selection on a Groovy element 65
7.3 Context menu with selection on a Java element 65
7.4 Overview - from the Action to the Keybindings 66
7.5 Example of a remote Groovy refactoring . 68

8.1 Test classes for file-based testing environment 70
8.2 Sequence diagram over the whole test framework 72

Page 88 of 90

Crosslanguage Refactoring Bibliography

Bibliography

[GoF95] Design Patterns. Elements of Reusable Object-Oriented Software

Erich Gamma, Richard Helm, Ralph E. Johnson, Addison-Wesley
Longman, 1995

[EPi08] Eclipse Plug-ins 3rd edition, E. Clayberg, D. Rubel, Addison-Wesley,
2008

[GB04] Contributing to Eclipse, Principles, Patterns and Plug-Ins

Erich Gamma, Kent Beck, Addison Wesley, 2004

[Fow99] Refactoring: Improving the Design of Existing Code,

M. Fowler, Addison-Wesley, 1999

[PluginBuilder] Pluginbuilder (Eclipse Plugin),
Official Website: http://www.pluginbuilder.org/, 2007

[Groovy] The Groovy language,

Official Website: http://groovy.codehaus.org, 200

[GinA] Groovy in Action,

D. König, A. Glover, P. King, G. Laforge, Manning, 2007

[Ven08] Programming Groovy,

Venkat Subramaniam, Pragmatic Programmers, 2008

[JNS08] Beginning Groovy and Grails,

Chrisopher M. Judd, Jospeh Faisal Nusairat and James Shingler,
Apress, 2008

[JSE] Using the Java search engine (JDT Developer Guide),

http://tinyurl.com/qp4yn9, 2008

[Wid07] Eclipse Corner Article: Unleashing the Power of Refactoring

Tobias Widmer, 2007

http://tinyurl.com/63qh7c

[Cla04] Pragmatic Project Automation,

Mike Clark, Pragmatic Programmers, 2004

[KKK08] Bachelor Thesis: Refactoring Support for the Groovy-Eclipse Plug-in,
Martin Kempf, Reto Kleeb, Michael Klenk

http://groovy.ifs.hsr.ch, 2008

Page 89 of 90

http://www.pluginbuilder.org/
http://groovy.codehaus.org
http://tinyurl.com/qp4yn9
http://tinyurl.com/63qh7c
http://groovy.ifs.hsr.ch

Crosslanguage Refactoring Bibliography

[JSR241] The original Java Specification Request for the Groovy Programming
Language, James Strachan, Richard Monson-Haefel

http://jcp.org/en/jsr/detail?id=241, 2004

[TI] TIOBE Programming Community Index

http://www.tiobe.com/index.php/tiobe_index

[AST06] Eclipse Corner Article: Abstract Syntax Trees,

Thomas Kuhn, Olivier Thomann, 2006

http://www.eclipse.org/articles/article.php?file=
Article-JavaCodeManipulation_AST/index.html

Page 90 of 90

http://jcp.org/en/jsr/detail?id=241
http://www.tiobe.com/index.php/tiobe_index
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

	Introduction to the Bachelor Thesis
	Refactor
	Groovy
	Eclipse
	Groovy-Eclipse Refactorings
	Crosslanguage Refactorings
	Implemented Refactorings
	Rename Field
	Rename Class
	Rename Method

	The Groovy Programming Language
	Dynamic typing and duck typing
	Starting to groove
	Groovy Scripts
	Closures
	Strings and GStrings
	Collections
	Metaprogramming
	Builder

	Groovy and Java integration

	Architectural Overview
	Refactoring Participants
	Invocation and refactoring direction
	Refactoring scenarios
	Package Structure
	Java Search
	SearchPattern
	JavaModelSearch

	Local Java Refactoring
	Introductory example
	Use Case
	Eclipse Extension Point
	Participant implementation
	Refactoring Converter
	Ambiguous Candidate Selection
	Implementation Review
	In Action
	Unsolved Problems
	Inline editing vs. refactoring wizards
	Further Ideas

	Remote Java Refactoring
	Introductory example
	Use Case
	Detecting Java elements within Groovy code
	Prototype: Enhanced rename dispatcher
	Existing rename dispatcher
	Generic extended rename dispatcher
	Launching a JDT refactoring wizard programmatically
	Specialized extended rename dispatcher
	Why both of these solutions didn't work

	Pre-refactoring candidate collection
	Description
	Implementation
	Search patterns

	Element selection dialog
	Implementation Review
	In Action
	Further Ideas

	Local Groovy Refactoring
	Introductory example
	Use Case
	Updating binary references in Java
	Groovy Refactoring Participants
	Java Update Refactorings
	AST modification procedure
	Implementation

	Implementation Review
	In Action
	Restrictions
	Further Ideas

	Remote Groovy Refactoring
	Introductory example
	Use Case
	New Menu entry
	Refactor menu entry
	Context menu entry
	Adding a key binding

	Restrictions
	In Action
	Further Ideas

	Automated Testing
	Testing Infrastructure
	Test Suite
	Test Case
	Test Files
	Used properties in Test files

	Starting a Java refactoring programmatically
	Ambiguous selection mock
	Eclipse Unit Tests
	Buildserver
	Problems
	Documentation Build

	Summary
	Results
	Outlook
	Known Issues
	Possible Extensions
	Personal Reflections

	Appendix
	Environment
	Project Planning
	Time Schedule
	Working Hours

	External Design

	Listings
	List of Figures
	Bibliography

