
USTER Mobile Alerts
(Feasibility Study to the Development
and Application of Mobile Apps in a

Yarn Spinning Mill)

Bachelor Thesis
Computer Science Department

University of Applied Sciences Rapperswil

Spring Term 2015

Author: Philipp Gayko

Advisor: Prof. Hansjörg Huser

External Co-Examiner: Stefan Zettel, Ascentive Zürich

Internal Co-Examiner: Prof. Beat Stettler

Project Partner: Flavio Carraro, Uster Technologies AG

Date: June 12, 2015

Bachelor Thesis: Uster Mobile Alerts FS 2015

Contents

1. Abstract 1

2. Introduction 2
2.1. Use of Documents . 2

3. Xamarin 3
3.1. Introduction . 3
3.2. Xamarin.Forms . 3
3.3. Software Development with Xamarin . 4

3.3.1. Installation of the required Tools . 4
3.3.2. Development Environment Setup . 4

3.4. Pitfalls and useful Hints . 6
3.4.1. Xamarin Update Channel Settings . 6
3.4.2. Run Apps on Devices . 6
3.4.3. Debugging on Devices . 6
3.4.4. Xamarin.Forms . 7
3.4.5. Windows Phone Mobile . 7
3.4.6. Xamarin on TFS . 7

4. USTER Mobile Alerts System 8
4.1. Introduction . 8
4.2. Screen Shots . 9
4.3. User Notifications . 10

4.3.1. Local Notifications . 10
4.3.2. Remote Notifications . 10

4.4. Communication . 12

5. Implementation Details of the Experimental USTER Mobile Alerts System 13
5.1. Visual Studio Solution . 13
5.2. First Approach for the USTER Mobile Alerts System developed with Classic

Xamarin . 14
5.2.1. Portable Library . 15
5.2.2. Monotouch.Dialog (iOS) . 15
5.2.3. Xamarin.Android . 16

5.3. Final Approach for the Experimental USTER Mobile Alerts System developed
with Xamarin.Forms . 18
5.3.1. Xamarin.Forms UI . 19
5.3.2. Custom Renderers to realize the USTER Logo 19
5.3.3. Dependency Service for User Notifications 21
5.3.4. Communication with ASP.NET SignalR 22

A. Appendix Project 24
A.1. Persönliche Reflexion . 24
A.2. Project Schedule . 25

Philipp Gayko I | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

A.3. Milestones . 26
A.4. Time Exposure . 27

Listing of sources and literature 28

Glossary 29

Philipp Gayko 1 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

1. Abstract

In all modern yarn spinning mills there is a need for sophisticated production information man-
agement and decision support tools. Uster Technologies AG is a global technology company
that develops and sells software products targeting Quality management throughout the entire
yarn manufacturing process. Software currently under development has the goal of changing
the classic principle of the “user going to the PC”, to a more modern principle of the “data
going to the user”.

A convenient and contemporary approach to provide users with relevant information in real-
time is to display it on their smartphone or tablet computer. Until now, Uster Technologies
AG has not developed any software for mobile devices, nor has the company experiences with
the currently available technologies for Mobile Cross-platform Development. The aim of this
study is to assess whether it is worthwhile for Uster Technologies AG to develop competencies
in Mobile App Development. In doing so, answers to the following questions will be sought:
“What is a good way for start?”, “What are the risks?” and “What are the decision criterions?”

The feasibility study (UsterMobileAlerts_FeasibilityStudy.docx) answers the above questions
and serves an important element of the decision for a potential entry into Mobile App Devel-
opment at Uster Technologies AG. Furthermore, it provides developers at USTER with useful
information on getting started. A suitable technology for Mobile Cross-platform Development
at Uster Technologies AG is Xamarin.Forms. The developed USTER Mobile Alerts System is
a demonstration and proof of feasibility of this technology. Specially developed simulation soft-
ware generates Quality Alarms, and an App running on a mobile device receives these alarms
and alerts the user. The USTER Mobile Alerts App can run on all common Mobile Platforms
including Android, iOS and Windows Phone. The App features a minimal user-friendly UI
design that complies with Uster Technologies own Style Guide.

Philipp Gayko 1 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

2. Introduction

This feasibility study has the aim to assess whether it is worthwhile for Uster Technologies to
develop competencies in Mobile App Development. The created report provides software devel-
opers with useful information on getting started with the Mobile Cross-platform Development
Software Xamarin. The documentation of this study is divided into two documents (Consider
chapter 2.1)

To examine if Xamarin.Forms is a suitable Mobile Cross-platform Development Tool for get-
ting started with Mobile App Development at Uster Technologies AG, an experimental USTER
Mobile Alerts App that can run on all common Mobile Platforms including Android, iOS and
Windows Phone was developed.

2.1. Use of Documents
To comply with the secrecy directives of Uster Technologies AG and the agreed commitments
in chapter ?? the following terms have to be considered:

• The document UsterMobileAlerts_FeasibilityStudy.pdf with all its results and conclusions
serves as an element of the decision for the management of Uster Technologies AG. It contains
details of software under development that are confidential knowledge of Uster Technologies
AG and must not be published.

• The document UsterMobileAlerts_BachelorThesis.pdf contains the administrative parts of
this Bachelor Thesis plus a subset of the insights gained with this study. This document can
be published and serves as a source of information for software developers they want to start
Mobile Cross-platform Development with Xamarin.

• The management summary and further chapters which discuss the business topics of this fea-
sibility study in details can be found in the document UsterMobileAlerts_FeasibilityStudy.pdf.

Philipp Gayko 2 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

3. Xamarin

3.1. Introduction
Classic Xamarin and Xamarin.Forms are Mobile Cross-platform Development Tools that enable
developers to use .NET C# as the programming language. Source code deployed with Xamarin
is shared across iOS, Android and Windows Phone Mobile. Contrary to the approach write
apps in native programming languages, the source code of a Portable Library is written once
and automatically parsed and compiled against the native platform. Built apps can be installed
on mobile phones and tablet computers.

3.2. Xamarin.Forms
The more recent technology Xamarin.Forms has the advantage that the UI source code (XAML
is supported) must be written once, whereby the default platform specific UI elements are
rendered (Consider chapter 4.2 for screen shots). If it’s needed to design a specific look or
behavior a custom renderer for the UI elements can be implemented. Using Xamarin.Forms is
a very efficient and time-saving way to build simple but stable and good responsive apps with
a few limitations to the diversity of UI elements. Xamarin.Forms is relatively new. The first
release was in May of 2014. Ongoing development by a dedicated group of Xamarin Engineers
ensure the continuing extension of the Xamarin.Forms API.

Philipp Gayko 3 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

3.3. Software Development with Xamarin
Xamarin Development requires certain additional hardware and software. Amongst three mo-
bile phones that support the latest versions of iOS, Android and Windows Phone Mobile, a
Mac computer as the iOS Build Host is needed. Xamarin licenses for iOS and Android as well
as an Apple Developer License have to be purchased before starting Mobile App Development
with Xamarin. In order to develop Windows Phone Mobile 8.1 a PC that runs Windows 8.1
has to be used for development.

3.3.1. Installation of the required Tools
It is recommended to use Visual Studio 2015 for Xamarin Development. A preview version
of Visual Studio 2015 Ultimate was used for the development of the Experimental USTER
Mobile Alerts System. It comes with several Cross-platform Tools and a fast booting Android
Emulator that enables to run Android Apps compiled for version 4.4 KitKat or later. In order
to develop Windows Phone Mobile 8.1 Apps it is required that Windows Phone SDK 8 is
installed (there is an option to check in the Visual Studio Install Wizard when installing on
Windows 8.x systems). To getting started with Xamarin Development the following tools have
to be installed (keep order!):

1. Visual Studio 2015 on a Windows 8.1 PC or Notebook.

2. Xamarin for Visual Studio.

3. Xcode on the Mac (Register as an Apple Developer and download Xcode).

4. Xamarin for OS X.

Further instructions can be found on the Xamarin webpage.

3.3.2. Development Environment Setup
Android and Windows Phone App Development require only Visual Studio with Xamarin and
the required Windows Phone SDK as mentioned in chapter 3.3.1. Development for iOS requires
that the PC that runs Visual Studio and the Mac that is used as the iOS Build Host must
be connected to the same network. Instructions to connect Visual Studio with the Mac Build
Host can be found on the Xamarin webpage. After one of the platform projects was executed
in Visual Studio the Emulator Application Window Appears - Android and Windows Phone
Emulators on the Windows PC Desktop and iPhone or iPad Emulators on the Mac Desktop.
It is recommended that emulators are used to test and debug small changes in the source
code. Emulators often behave different from devices and the UI appears different as on devices.
Therefore, it is recommended to debug apps directly on the mobile devices for a time-saving
and efficient development. In order to debug on Android and Windows Phones devices have
to be connected to the Windows PC through the supplied USB data cable. iPhones and iPads
have to be connected via the USB data cable to the Mac (Figure 3.1). Consider chapter 3.4.3
for more information about debugging apps on devices.

Philipp Gayko 4 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

Figure 3.1.: Setup for Development with Xamarin on three Mobile Platforms

Philipp Gayko 5 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

3.4. Pitfalls and useful Hints
A typical PC-software developer at USTER has a broad knowledge of the .NET Framework
and the Microsoft development tools like Visual Studio. He is an expert in writing source code
in C# .NET and uses Frameworks like WCF and WPF frequently. When starting with Mobile
App Development with Xamarin he will be probably struggling if he hasn’t any experiences.
As an extension to the comprehensive documentation with lots of tutorials and sample apps on
the Xamarin webpage several some useful hints are provided in the following sub-chapters.

3.4.1. Xamarin Update Channel Settings
To connect Visual Studio with the Xamarin Build Host on the Mac it is necessary that both
running the same minor version of Xamarin.iOS. Xamarin Update Channel settings in Visual
Studio have to be equal to those in Xamarin Studio on the Mac when updating Xamarin.

3.4.2. Run Apps on Devices
To run apps on devices the following preliminary work for each platform is required:

• Android phones needs an USB driver for debugging (ADB) installed and in the Android
menu under “Settings” – “Develop Options” “USB Debugging” has to be enabled.

• Windows Phones have to be registered before apps can be deployed on it.

• iPhones and iPads need a device provisioning before apps can be installed on devices. This
is somehow complicated but well explained on the Xamarin webpage provide help.

3.4.3. Debugging on Devices
The following points are good to know, before starting debugging on mobile devices:

• Debugging on devices is a useful feature that works great with Xamarin. If the Portable
Library source code has to be debugged then it’s good to know that Windows Phone has the
fastest app start. It is recommended to debug on Windows Phone whenever possible since
all platforms running the same Portable Library source code.

• Normally, the debugger stops by a click on the “stop debugging”-button in Visual Studio.
But sometimes the iOS debugger stuck. Therefore, it is suggested, to stop iOS apps that
are running in debug mode by the common iOS method which will also stop the process on
Visual Studio (double-click on the device home button and wipe the app window up).

• Android debug log output on the Visual Studio console is very useful. It provides developers
with information such as resource consumption of the app or warnings are provided like “The
main thread is used too many times...”

Philipp Gayko 6 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

3.4.4. Xamarin.Forms
Xamarin.Forms is a very efficient way to develop apps for the three different platforms. To
avoid mistakes, the following points have to be considered:

• It is necessary that third party libraries are referenced in the Portable Library. If a third
party library is referenced in the native platform project assembly, it may happened that
version errors occur.

• If a third party library doesn’t support the .NETPortable Framework the source code can
be compiled against the .NETPortable Framework.

Xamarin.Forms will support the Windows 10 Universal App platform soon. It enables develop-
ers that build apps for Windows platforms to share even more code. Currently, Xamarin.Forms
Windows 10 UAP is in private beta.

3.4.5. Windows Phone Mobile
Windows Phone Mobile is less well developed compared with iOS and Android therefore the
following points might be good to know for developers:

• Windows Phone 8.1 must be developed on a Windows 8.1 PC and requires the installation
of Windows Phone 8.1 Development Tools.

• It requires the installation of Windows Phone 8 SDK (Important: It must be installed through
the Visual Studio installer!).

• Some functionality that comes for free with iOS and Android has to be implemented in
Windows Phone Mobile. Stackable Message Dialogs aren’t available for example. It is
recommended to test functionality provided by the Xamarin API on Windows Phone Mobile
first.

3.4.6. Xamarin on TFS
TFS Continuous Integration (CI) can be used to build a Xamarin Solution but wasn’t tested for
this feasibility study. A Xamarin tutorial that shows how to create a Continuous Integration
Workflow can be found on the Xamarin webpage.

Philipp Gayko 7 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

4. USTER Mobile Alerts System

This chapter gives an impression of the developed Experimental USTER Mobile Alerts System.
Furthermore, it provides developers with a closer look at the implementation details and the
architecture of this Xamarin Cross-platform Solution developed with Visual Studio.

4.1. Introduction
The USTER Mobile Alerts System is a demonstration and proof of feasibility of the Mobile
Cross-platform Development Tool Xamarin. Specially developed simulation software generates
Quality Alarms, and an app running on a mobile device receives these alarms and alerts the user.
The USTER Mobile Alerts App can run on all common Mobile Platforms including Android,
iOS and Windows Phone Mobile. The App features a minimal user-friendly UI design that
complies with Uster Technologies own Style Guide (Consider Figure 4.1).

Figure 4.1.: An overview of the Experimental USTER Mobile Alerts System

Philipp Gayko 8 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

4.2. Screen Shots
The below screen shots (Figure 4.2) of the App shows the start screen of the Windows Phone
App (left outer picture) and the page with the list of received Quality Alarms of the iOS App
(picture in the middle). The right outer picture shows the detail page that appears if one of
the Quality Alarms was selected.

Figure 4.2.: Screen Shots of the USTER Mobile Alerts App of all Platforms

Philipp Gayko 9 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

4.3. User Notifications
A great benefit from the use of mobile apps for an alerting system like USTER Mobile Alerts
is User Notification. Users are notified about received Quality Alarm messages by ringtones or
vibration and are directly linked to the appropriate Quality Alarm when they select the received
notification . There are two approaches for User Notifications supported by the API of mobile
platforms and Xamarin, Local Notifications and Remote Notifications (Push Notifications).

4.3.1. Local Notifications
Local Notifications are scheduled locally from the app if an event of interest has occurred. If a
Quality Alarm was received, the notification method is invoked. Figure 4.3 shows screenshots
of the implementation of Local Notification proposals in the experimental USTER Mobile
Alerts App. A badge number that displays the number of received Quality Alarms in iOS
(1), an Android Task Bar Icon that indicates that Quality Alarms have been received (2) and
a notification text element that displays the number of received Alarms (3). This has to be
considered as a proposal for User Notification.

Figure 4.3.: Screen Shots of User Notification in the iOS and Android implementation of the USTER Mobile
Alerts App

4.3.2. Remote Notifications
Remote Notifications (Push Notifications) are lightweight messages that are sent from a server
to the Messaging Cloud Services from platform providers. These services identify devices that
are to receive the Push Notification and delivers them to the recipient (Consider Figure 4.4).

Philipp Gayko 10 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

Each mobile operating system has its own infrastructure and API’s for Remote Notification.
Apple uses the Apple Notification Push Service to support Remote Notifications on iOS de-
vices, while Google provides Google Cloud Messaging to enable messaging on Android devices
(httt11). Detailed information about this technology can be found on the Xamarin webpage.

Figure 4.4.: Remote Notification Proposal for USTER Mobile Alerts using Cloud Message Services ANPS,
GCM and AZURE

Philipp Gayko 11 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

4.4. Communication
The ASP.NET SignalR HTML5 WebSocket library realizes the communication between clients
and the Alarm Simulator and enables a stable and reliable bidirectional connection. Clients
establish a web connection over Wireless LAN to an ASP.NET SignalR Web Application that is
running as a web service on an IIS Web Server and acts as a hub. Using a hub means incoming
messages are broadcasted to all connected clients (Consider Figure 4.5). It is conceivable to
run the SignalR Hub for USTER Mobile Alerts in another mode than the Broadcast Mode.
The Multicast Mode can be used to address only a certain group of users in order to reduce
network traffic.

Figure 4.5.: Communication between Clients and the Hub that is running as Web Service

Philipp Gayko 12 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5. Implementation Details of the Experimental
USTER Mobile Alerts System

For this feasibility study an experimental USTER Mobile Alerts System was developed. There-
fore two approaches were proved. The first approach was Classic Xamarin solution with the
development of an iOS and an Android App. A Windows Phone App wasn’t developed at
this time due to technical problems. The final, more complete system is developed with the
Xamarin.Forms technology that enables to build apps for all three platforms with one source
code base.

5.1. Visual Studio Solution
The Visual Studio integration of Xamarin allows creating one Visual Studio Solution that
contains all needed mobile platform projects (Xamarin.iOS, Xamarin.Android and Windows
Phone Mobile). Furthermore, other project types such as ASP.NET Web Applications and the
Portable Library project that contains the shared code are also integrated into the same Visual
Studio Solution. This enables source control via TFS or Git, Code Completion with the help
of the ReSharper Extension, etc.

Philipp Gayko 13 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5.2. First Approach for the USTER Mobile Alerts System
developed with Classic Xamarin

For the first approach of the development of the USTER Mobile Alerts App a solution with
Classic Xamarin was created. With this technology the domain logic and the model classes are
shared through the Portable Library. The code of that library is compiled against the .NET-
Portable Framework and referenced in the native platform Classic Xamarin Projects (Consider
Figure 5.1). Whereby, the Windows Phone 8.1 (WP 8.1) project isn’t a part of Xamarin it
references the same Portable Library. The UI source code is a part of the native Xamarin.iOS
and Xamarin.Android projects. UI source code is written in C# but uses a wrapping API that
adapts the native UI source code. WP 8.1 UI code can be written in XAML or normal C#
source code (the WinPhone API differs from the WPF API for desktop applications).

Figure 5.1.: Classic Xamarin Approach. UI and Controller Source Code remain in the native project

Philipp Gayko 14 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5.2.1. Portable Library
The Portable Library Project for this solution contains the code that is shared across the mobile
platform projects and also for the Simulator Software (Consider Figure 5.1).

5.2.2. Monotouch.Dialog (iOS)
A simple and easy to understand way to build native iOS UI with Xamarin.iOS is the Mono-
touch.Dialog Framework. The structure of the UI is organized with nested elements. A RootEle-
ment contains a Section Element that can contain another Section Element etc. (Consider
Listing 7.1). UI Elements are rendered in their default Look and Feel unless they haven’t been
modified by Custom Renderers. The below code example taken from the USTER Mobile Alerts
Classic Xamarin Solution shows the code for a Quality Alarm element and the resulting UI on
a screenshot (Consider Figure 5.2). More information about Monotouch UI Development can
be found on the Xamarin webpage.

Figure 5.2.: Screenshot of the USTER Mobile Alerts App Start screen implemented with Xamarin.iOS Mono-
touch.Dialog

Philipp Gayko 15 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

. .
p u b l i c MessageElementViewControl ler (Dia logViewContro l l e r rootView , MessageDTO messageDto)
{
MessageElement = new Sty ledMult i l ineElement (S t r i n g U t i l i t y . Bui ldEntryStr ing (messageDto) +
"\n" + messageDto . Timestamp ,
() =>
{
var imageView = new UIImageView (new RectangleF (0 , 0 , 400 , 60))
{
ContentMode = UIViewContentMode . Center ,
Image = UIImage . FromFile (messageDto . P r o c e s s I c o n F i l e) . Sca l e (new CGSize (120 , 60)) ,
} ;
var np = new Dia logViewContro l l e r (
new RootElement (" D e t a i l s ") {
new Sect i on () {
new UIViewElement (" Process Step : " , imageView , t rue) ,
new Sty ledMult i l ineElement (S t r i n g U t i l i t y . B u i l d D e t a i l S t r i n g (messageDto))
{
Font = UIFont . SystemFontOfSize (15 f)
}
}
} , t rue) ;
rootView . A c t i v a t e C o n t r o l l e r (np) ;
})
{
Image = UIImage . FromFile (messageDto . S t a t u s I c o n F i l e) ,
Font = UIFont . SystemFontOfSize (15 f) ,
Subt i t l eFont = UIFont . SystemFontOfSize (12 f) ,
} ;
}
. .

Listing 5.1: UI code for USTER Mobile Alerts App for one Message Element implemented with Xamarin.iOS
Monotouch.Dialog

5.2.3. Xamarin.Android
Xamarin Android uses a declarative approach for UI design. UI Code is organized in Android
XML files (.axml) (Listing 7.2 shows the .axml code for the start screen of the App). Visual
Studio provides an Android Designer tool similar to the XAML Designer (Figure 5.3 shows
the Start Screen UI in the Android Designer). The Controller Code is organized in so called
Activities. Each Activity represents one page in the App that belongs to a view (.axml-file).
Navigation between pages requires that data is passed by value. Android allows no exchange
of references. This approach requires a few more coding and isn’t simple to understand. But
it is obviously an advantage of Android regarding the Memory Management. Listing 7.3 shows
the Handler for Click-events of messages and how is the above mentioned reassignment of data
between the Message Page and the Details Page (Figure 17) realized in the source code.

Philipp Gayko 16 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

Figure 5.3.: Android Designer, Message Page, Details Page

<?xml v e r s i o n ="1.0" encoding="utf −8"?>
<LinearLayout xmlns : android="http :// schemas . android . com/apk/ r e s / android "
android : o r i e n t a t i o n =" v e r t i c a l "
android : layout_width=" f i l l _ p a r e n t "
android : layout_height=" f i l l _ p a r e n t "
android : minWidth="25px "
android : minHeight="25px">
<Button
android : t ex t ="Say h e l l o ! "
android : layout_width="match_parent "
android : layout_height="wrap_content "
android : id ="@+id / he l loButton " />
<Button
android : t ex t =""
android : layout_width="match_parent "
android : layout_height="wrap_content "
android : id ="@+id / ro l e sButton " />
<Button
android : t ex t ="Messages "
android : layout_width="match_parent "
android : layout_height="wrap_content "
android : id ="@+id / messagesButton " />
</LinearLayout>

Listing 5.2: Start screen UI code in declarative AXML code

. .
void OnListItemClick (o b j e c t sender , AdapterView . ItemClickEventArgs e)
{
var messageDto = MessageBuffer . Messages . ToArray () [e . P o s i t i o n] ;
var i n t e n t = new Intent (th i s , typeo f (D e t a i l s A c t i v i t y)) ;
i n t e n t . PutExtra (" Message " , S t r i n g U t i l i t y . B u i l d D e t a i l S t r i n g (messageDto)) ;
var imageId = Resources . G e t I d e n t i f i e r (
Process IconFi lenameConverter . LookupDictionary [messageDto . P r o c e s s I c o n F i l e] ,
" drawable " ,
PackageName
) ;
i n t e n t . PutExtra (" ImageId " , imageId) ;
S t a r t A c t i v i t y (i n t e n t) ;
}
. .

Listing 5.3: Code of the Click Handler in the Messages Activity

Philipp Gayko 17 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5.3. Final Approach for the Experimental USTER Mobile Alerts
System developed with Xamarin.Forms

The second approach was to test if the first prototype of USTER Mobile Alerts developed with
Classic Xamarin can be ported to a Xamarin.Forms Project with the great benefit of getting
rid of the burden to modify UI code for each platform separately. Same as Classic Xamarin
Xamarin.Forms uses Portable Libraries to share code and also share the UI code (Consider
Figure 5.4). Another plus is that the Windows Phone Project is unlike the Classic Xamarin
Solution a part of Xamarin and references the same Xamarin.Forms Libraries as Xamarin.iOS
and Xamarin.Android which helps to avoid Assembly Errors.

Figure 5.4.: Xamarin.Forms Solution. UI code written in XAML is deployed through the Xamarin.Forms
Portable Library

Philipp Gayko 18 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5.3.1. Xamarin.Forms UI
The Xamarin.Forms UI is defined in XAML that is not the same XAML as provided through the
WPF Framework. Some classes have different names and properties. The amount of provided
UI elements in Xamarin.Forms is limited. But some features like navigation between pages
comes for free and have not to be implemented by developers.

5.3.2. Custom Renderers to realize the USTER Logo
The declaration of a Path element in Xamarin.Forms is not supported and requires different
implementations on the native platform projects. Whereas, the background color and the red
bars can be defined in the XAML code of the Portable Library, Custom Renderers for the
USTER Logo and Mobile Alerts Product Logo have to be exported as Path Custom Renderers
from the native platform project (Figure 5.5 shows screenshots of the Start Screen with the
USTER Logo of the iOS and the Windows Phone app). This is solved through a definition
of an empty Class in the Portable Library project that extends a Xamarin.Forms UI Basis
Element (Consider Listing 7.4). This Class is visible and can be instantiated in the XAML
code (Consider Listing 7.5). The export declaration of the native Path element that contains
the name of the empty Class is located before the class declaration as an annotation (Consider
Listing 7.6).

Figure 5.5.: Screenshots of the Start Page of the iOS and the Windows Phone App with the USTER Logo

Philipp Gayko 19 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

. .
namespace Mobi l eAler t s . Forms
{
p u b l i c c l a s s UsterLogo : Xamarin . Forms . View
{
}
}
. .

Listing 5.4: Empty Class in the Portable Library Projects

<Grid Grid .Row="3"
Grid . ColumnSpan="2"
x : Name="BottomBar "
WidthRequest ="2000"
HeightRequest ="400"
BackgroundColor="#FF9F0000">
<l o c a l : UsterLogo/>
</Grid>

Listing 5.5: XAML code of the red Bottom Bar UI Element with the imported Customer Renderer “UsterLogo”

. .
[assembly : ExportRenderer (typeo f (UsterLogo) , typeo f (BottomBarPathRenderer))]

namespace Mobi l eAler t s . Forms . iOS
{
p u b l i c c l a s s BottomBarPathRenderer : VisualElementRenderer<UsterLogo>
{
protec ted o v e r r i d e void OnElementPropertyChanged (o b j e c t sender , PropertyChangedEventArgs e)
{
. .

p u b l i c o v e r r i d e void Draw(CGRect r e c t)
{
us ing (var context = UIGraphics . GetCurrentContext ())
{
UIColor . White . S e t F i l l () ;
. .
var path = new CGPath () ;
path . AddLines (new CGPoint [] {
new CGPoint (3 2 5 . 8 4 3 , 9 8 . 5 0 3 2) ,
. .

Listing 5.6: Incomplete Custom Renderer Source Code in the iOS Project with the first GCPoint Path Object

Declaration of Path Elements in Android differs from iOS and Windows Phone. Thus, the so-
lution would be to create the USTER Logo and the Product Logo (“Mobile Alerts”) in Adobe
Illustrator and export it in the SVG format. The image can then be imported through the
svg-android library
(A Xamarin sample can be found here: https://developer.xamarin.com/samples/monodroid/SvgAndro)

Philipp Gayko 20 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5.3.3. Dependency Service for User Notifications
Xamarin.Forms includes a DependencyService to let shared source code to easily resolve In-
terfaces to platform-specific implementations, allowing to access features of the iOS, Android
and Windows Phone SDKs from the Portable Library. This is used for the realization of User
Notifications in the USTER Mobile Alerts App. In order to schedule a Local Notification if
a Quality Alarm has been received, the Xamarin.Forms App (Portable Library) needs access
to the Notification API of the native platforms. This requires an implementation of an inter-
face (Consider Listing 7.7), a registration of the service realized as an implementation of the
interface in the native source code (Consider Listing 7.8) and the location of the service in the
handler code (Consider Listing 7.9).
namespace Mobi l eAler t s . Forms
{
p u b l i c i n t e r f a c e I N o t i f y
{
void Not i fy (i n t num) ;
}
}

Listing 5.7: DependencyService Interface

. .
[assembly : Xamarin . Forms . Dependency (typeo f (MainActivity))]
namespace Mobi l eAler t s . Forms . Droid
{
. .
p u b l i c void Not i fy (i n t num)
{
var context = Xamarin . Forms . Forms . Context as A c t i v i t y ;
i f (context == n u l l)
{
re turn ;
}
. .

Listing 5.8: Implementation of the Interface in the native project code

. .
p u b l i c void MessageReceived (o b j e c t sender , MessageDTO messageDto)
{
//Task . Run (() => { }) ;
i f (F i l t e r A p p l i c a t o r . PassQualityMessage (
_ f i l t e r , messageDto , SettingsViewModel . Se l e c t edRo l e))
{
MessageViewModel . I n s e r t (messageDto) ;

Device . BeginInvokeOnMainThread (() =>
{
DependencyService . Get<INot i fy >() . Not i fy (MessageViewModel . Messages . Count) ;
}) ;
}
}
. .

Listing 5.9: Location of the DependencyService and Invocation of the Interface Method

Philipp Gayko 21 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

5.3.4. Communication with ASP.NET SignalR
For communication between the Alarm Simuator and the Mobile Clients a reliable and portable
technology had to be found. The sample Xamarin app that has been implemented for a first
try uses WCF and is able to send messages only in one direction. A sample application that
features bidirectional communication via a TCP-Binding and WCF couldn’t been found. WCF
isn’t entirely supported by iOS and Android. A more suitable approach is the use of the HTML5
WebSocket library ASP.NET SignalR. It provides a stable and reliable connection between the
SignalR Hub and Clients on all platforms. SignalR also provides a very simple, high-level API
for doing server to client RPC (call JavaScript functions in your clients’ browsers from server-
side .NET code) in your ASP.NET application, as well as adding useful hooks for connection
management, e.g. connect/disconnect events, grouping connections, authorization. A detailed
description of SignalR can be found here: http://www.asp.net/signalr. Listing 7.10 shows that
just some lines of source code are needed to establish a connection between clients and the
SignalR Hub that broadcasts all incoming messages.

. .
[assembly : OwinStartup (typeo f (Startup))]

namespace Uster . Mobi l eAler t s . Server . Core
{
p u b l i c c l a s s Startup
{
p u b l i c void Conf igurat ion (IAppBuilder app)
{
app . MapSignalR () ;
}
}
}

. .
namespace Uster . Mobi l eAler t s . Server . Core
{
p u b l i c c l a s s AlertHub : Hub
{
p u b l i c void Send (MessageDTO messageDto)
{
C l i e n t s . Al l . messageReceived (messageDto) ;
}
}
}

Listing 5.10: This is the only source code that is needed to establish a SignalR Broadcast Hub

Philipp Gayko 22 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

The implementation of a client that uses the SignalR HubConnection needs only a few line
of source code (Listing 7.11) for a connection with the Hub. The source code of the Con-
nect Method is different for Windows and for Android and iOS. Windows Phone requires the
LongPollingTransport Method, because in a few seconds the WP 8.1 Client connects and dis-
connected several times for any reason.
. .
namespace Mobi l eAler t s . Forms
{
p u b l i c c l a s s C l i e n t
{
p r i v a t e readonly HubConnection _connection ;
p r i v a t e readonly IHubProxy _proxy ;

p u b l i c event EventHandler<MessageDTO> OnMessageReceived ;

p u b l i c C l i e n t ()
{
_connection = new HubConnection (" http : / / 1 9 2 . 1 6 8 . 0 . 1 9 2 : 6 4 4 9 1 ") ;
_proxy = _connection . CreateHubProxy (" AlertHub ") ;
}

p u b l i c async Task Connect ()
{
await _connection . S ta r t () ;

_proxy .On(" messageReceived " , (MessageDTO message) =>
{
OnMessageReceived ? . Invoke (th i s , message) ;
}) ;
}

p u b l i c async Task ConnectLongPoll ing ()
{
await _connection . S ta r t (new LongPol l ingTransport ()) ;

_proxy .On(" messageReceived " , (MessageDTO message) =>
{
OnMessageReceived ? . Invoke (th i s , message) ;
}) ;
}

p u b l i c Task Send (MessageDTO message)
{
re turn _proxy . Invoke (" Send " , message) ;
}
}
}

Listing 5.11: Client source code uses the SignalR HubConnection object

Philipp Gayko 23 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

A. Appendix Project

Philipp Gayko pgayko(at)hsr.ch

A.1. Persönliche Reflexion
Das ich im Rahmen dieser Bachelorarbeit eine wichtige Machbarkeitsstudie im Auftrag meines
Arbeitgebers durchführen konnte, hat mich mit Stolz erfüllt. Die vorliegende Studie wird als
wichtiges Element für den Entscheid dienen, ob Uster Technologies den Einstieg in die En-
twicklung und den Verkauf von Mobile Apps wagen wird. Diese Tatsache hat mich sehr dazu
bewogen einen guten Bericht zu erarbeiten, der möglichst alle offenen Fragen beantworten kann.

Die Entwicklung des experimentellen USTER Mobile Alerts Systems und einer App mit Hilfe
der Cross-Platform Technologie Xamarin hat besondere Freude bereitet, obwohl ich bisher
keine Erfahrung auf dem Gebiet von Mobile App Entwicklung hatte. Anfänglich hatte ich
deshalb auch Schwierigkeiten die richtigen Ansätze zu wählen. Einerseits habe ich mich zuerst
zu lange mit der Suche nach einer Technologie, welche für die Kommunikation zwischen den
Clients verantwortlich sein soll, aufgehalten. Andererseits lies ich mich durch eine irreführende
Beispiel-Applikation davon abhalten, die sehr gut geeignete Xamarin.Forms Technologie von
Anfang an für USTER Mobile Alerts zu verwenden. Schlussendlich muss ich aber sagen, dass
man aus Fehlern lernt und diese Erfahrungen in den Bericht eingeflossen sind. Sie werden an-
deren Xamarin-Entwicklern helfen, einen guten Einstieg in diese Technologie zu finden.

Nicht zuletzt möchte ich auch Professor Huser und Flavio Carraro für die gute Zusamme-
narbeit danken. Die wöchentlichen Sitzungen haben mir einen guten Projektrahmen gegeben
und die nützlichen Inputs und Verbesserungsvorschläge sind Teil dieser Arbeit.

Zum Abschluss des Projekts kann ich sagen, dass ein sehr wichtiges Ziel bestimmt erreicht
wurde, es ist bereits jetzt eine rege Diskussion in der Uster Technologies AG rund um dieses
Thema in Gange.

Philipp Gayko 24 | 29

A.2. Project Schedule

Bachelor Thesis: Uster Mobile Alerts FS 2015

A.3. Milestones

M1: Project Schedule Reviewed artefact:

• Schedule (time line)

M2: Documentation Structure Reviewed artefacts:

• Title page
• Content structure
• Glossary format
• List of sources format
• Agreement (review 17.03)
• Feasibility study content structure (review 17.03)
• Milestones (review 17.03)

Acceptance criteria:

• Title page: Contains all relevant information
• Content structure: Is according student research

project HS2014
• Glossary: In a suitable format (any constraints?)
• List of sources: In a suitable format (any con-

straints?)
• Agreement: All parties agree ready for signing
• Feasibility study: Satisfying the demands of Uster

Technologies AG
• Milestones: Are measurable and acceptance criteria

are defined

M3: Management Summary Acceptance criteria:

• The relevant business questions are raised on CEO
level

• The decisive criterions are defined
• The technical topics are clear

M4: Runnable Prototype Reviewed artefacts:

• Simulator that emits mocked Alarms
• Running Apps on iOS and Android mobile devices

Philipp Gayko 26 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

Acceptance criteria:

• A simulation software sends mocked Alarms
• A server software emits the simulated Alarms over

WLAN
• App prototypes on iOS and Android receive and dis-

play Alarms

M5: Feasibility Study Acceptance criteria:

• One document that contains all relevant information
for Uster Technologies is created

• One document that contains the administrative part
and a subset of the information of the Uster Tech-
nologies document is created

A.4. Time Exposure
Total hours of work for this Bachelor Thesis: 410 (360 hours is the effort that is expected)

Philipp Gayko 27 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

Listing of sources and literature

[1] UsterMobileAlerts_FeasibilityStudy.docx

[2] http://usternet/Pages/Home.aspx

[3] http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/.

[4] http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[5] http://en.wikipedia.org/wiki/.

[6] http://xamarin.com/forms.

[7] http://developer.xamarin.com/.

[8] http://www.s3-us-west-2.amazonaws.com,4.bp.blogspot.com,cdn2.expertreviews.co.uk

[9] www.thephonetown.com,asphostportal.com,www.iwaredesigns.co.uk

[10] www.ayeshacurry.com,www2.pcmag.com,cdn1.knowyourmobile.com,ak1.ostkcdn.com.

[11] https://msdn.microsoft.com/en-us/library/gg597391

[12] https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx.

[13] http://signalr.net/.

[14] http://sharpmobilecode.com.

[15] http://blogs.edwardwilde.com.

[16] http://www.wintellect.com.

[17] http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[18] http://mobiledan.net/2012/03/02/5-options-for-distributing-ios-apps-to-a-limited-
audience-legally/.

[19] http://venturebeat.com/2014/11/20/the-windows-10-store-will-let-businesses-buy-apps-
in-bulk-and-offer-private-sections-for-their-own-apps/.

[20] https://msdn.microsoft.com/en-us/library/windows/apps/jj206943(v=vs.105).aspx.

Philipp Gayko 28 | 29

Bachelor Thesis: Uster Mobile Alerts FS 2015

Glossary

ASP.NET Is an open source server-side Web application framework designed for Web devel-
opment to produce dynamic Web pages. 14

CI Is the practice, in software engineering, of merging all developer working copies with a
shared mainline several times a day. 9

HTML5 Is a core technology markup language of the Internet used for structuring and pre-
senting content for the World Wide Web. 14

Style Guide Red bars with the USTER logo and the product name. 10

UI User Interface. The graphical surface of an application. 10, 16

Uster Uster Technologies AG. World market leader in measure and control the quality of fibers
and yarns in the textile industry. 1, 4, 10

Xamarin.Forms Is a Mobile Cross-platforms Development Tool that allows to build mobile
apps for Android, iOS and Windows Phone Mobile. Source code (even the UI source code)
can be written in C# .NET and shared across the three platforms (http://xamarin.com/forms).
1, 4

XAML Extensible Application Markup Language. Is a declarative XML-based language de-
veloped by Microsoft that is used for initializing structured values and objects. 16

Philipp Gayko 29 | 29

	Titelseite
	Inhaltsverzeichnis
	Abstract
	Introduction
	Use of Documents

	Xamarin
	Introduction
	Xamarin.Forms
	Software Development with Xamarin
	Installation of the required Tools
	Development Environment Setup

	Pitfalls and useful Hints
	Xamarin Update Channel Settings
	Run Apps on Devices
	Debugging on Devices
	Xamarin.Forms
	Windows Phone Mobile
	Xamarin on TFS

	USTER Mobile Alerts System
	Introduction
	Screen Shots
	User Notifications
	Local Notifications
	Remote Notifications

	Communication

	Implementation Details of the Experimental USTER Mobile Alerts System
	Visual Studio Solution
	First Approach for the USTER Mobile Alerts System developed with Classic Xamarin
	Portable Library
	Monotouch.Dialog (iOS)
	Xamarin.Android

	Final Approach for the Experimental USTER Mobile Alerts System developed with Xamarin.Forms
	Xamarin.Forms UI
	Custom Renderers to realize the USTER Logo
	Dependency Service for User Notifications
	Communication with ASP.NET SignalR

	Appendix Project
	Persönliche Reflexion
	Project Schedule
	Milestones
	Time Exposure

	Listing of sources and literature
	Glossary

