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“It typechecks! Ship it!”
– Edwin Brady, designer of Idris [Bra]

Dependent types make types into first-class lan-
guage constructs and ensure type safety depending
on values and not only types. They help to get rid
of all unit tests because dependent types require a
proof that a function behaves as expected. This proof
needs to be written by the developer himself and ver-
ifies that the function works correctly for all possi-
ble inputs. So a type, in the end, is a proof for the
compiler and no unit tests are needed. Type check-
ing may become undecidable since these types can
depend on any value or expression.

This paper gives an overview what problem de-
pendent types solve, kinding, dependent type theory
and then a fairly big part about the differences to
other systems. It then shows some current ongoing
research and finally explains why dependent types
may play a bigger role in the far future.

1 Introduction
The initial quote “It typechecks! Ship it!” from

Edwin Brady [Bra]—designer of the dependently
typed language Idris—may be exaggerating, but it
highlights one of the main reasons of type check-
ing. A developer wants to rule out as many errors
as possible by automatically type checking his pro-
gram. This is where dependent types come into
play. They help a developer find even more errors
during compile-time rather than only at run-time
with run-time checks. Consider the Java method

first in Listing 1 that returns the first element
of a vector.

1 public static Integer
first(Vector<Integer> vec) {

2 if(!vec.isEmpty()) {
3 return vec.get(0);
4 }
5 return null;
6 }

Listing 1. A check for the existence of an element is needed in a

non-dependently typed language like Java

The check for null is omitted for read-
ability. One crucial thing for the correct-
ness is the check on line 2 that the vector
vec is not empty. Otherwise, a call like
first(new Vector<Integer>()); results in
a run-time error and in the case of Java throws
an ArrayIndexOutOfBoundsException. No-
tice also that the non-emptiness check has to be
done at run-time which takes a little bit of time
every time the method is called. The last burden is
on the caller that has to check if the result is null
and if so handle it. Another implementation could
also throw and catch the above-mentioned excep-
tion or the caller could check for non-emptiness
before calling. However, there is always at least
one run-time check required and it has to be spec-
ified and clear whether the caller or callee does
this check. Here is where dependent types step in
and resolve this issue.
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With a dependent type of vectors we can en-
code the requirement for non-emptiness into the
type.

f irst : Πn : Nat.Vector(n+1)→ Int (1)

The preceding lambda expression (1) is taken
from [Pie04] and explained in Section 3 in greater
detail. It represents a function signature for a
function that also returns the first element but
with a dependent type. Passing an empty vec-
tor to first results in a compile-time error. List-
ing 2 shows an implementation in the depen-
dently typed programming language Idris [idr].
The realization is exactly the same; just the type
is named Vect in Idris.

1 import Data.Vect
2
3 -- Natural numbers definition
4 -- for better understanding
5 data Nat = Z | Suc Nat --zero | successor
6
7 first : Vect (Suc len) elem -> elem
8 first (x::xs) = x
9

10 firstNat : Nat
11 firstNat = first Vect 0 Nat

Listing 2. Typesafe function first to get the first element of a

non-empty Vect in Idris

A Vect is created with the length and type
it holds and Vect 0 Nat yields actually a dif-
ferent type than Vect 1 Nat since the length
is different. first expects a vector that has
been created with the Suc Nat data constructor
which means it is bigger than 0. The compiler
checks the correctness of the code by looking at
the function signature and the specified types
there. If they do not match, for example for
the application first Vect 0 Nat on line
11, the compiler throws an error about a type
mismatch: (input):1:7:When checking an
application of function first: Type
mismatch between 0 and Suc len.

Another example of what can be done with
dependent types is the function isSingleton in

Listing 3. It computes a type that depends on the
passed value. This can then be used in another
function sum that calculates the sum of a single
value or a list, depending on the passed type.

1 isSingleton : Bool -> Type
2 isSingleton True = Nat
3 isSingleton False = List Nat
4
5 sum : (single : Bool) -> isSingleton

single -> Nat
6 sum True x = x
7 sum False [] = 0
8 sum False (x :: xs) = x + sum False xs

Listing 3. Function isSingleton in Idris that computes a type

and returns it. The returned type is then used in sum .

The compiler checks for every possible input—
which is really easy for just True and False—if a
type is returned.

Type systems should help build safer pro-
grams, have more expressive APIs, help a devel-
oper with hints and also the other direction, that
type information should help the compiler to be
more efficient. The following parts of the paper
introduce a more formal definition of dependent
types, explain the necessary knowledge to under-
stand the expression in λ-Expression (1) and then
some parts of Idris to better understand code ex-
amples as the ones shown above. Further, de-
pendent types are compared to the more auto-
mated but less expressive refinement types and
to C++ template programming which can achieve
the same but has different goals. It will be ex-
plained that it is expected that dependent types
will play a bigger role in the future as there is a
lot of research and development currently, espe-
cially for Haskell. However, they will not play a
more important role in everyday programming as
long as such a type system cannot be merged with
an existing one that does not require a developer
to write his own proofs for every small property.
The last section sums this up again.

2 Kinds
Types become first-class citizens in a depen-

dent type system. However, we can start writing
meaningless type expressions with the introduc-
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tion of types as first class citizens and the abstrac-
tion and application rules for them. This section
explains how this can be prevented with some-
thing called kinds. Just as we use the arrow type
→ for functions to denote the arity, we use kinds
to denote the arity of a type. Nat → Nat has a dif-
ferent arity than Nat → Nat → Nat . We need that
also for types. Readers not familiar with type sys-
tems and their formal notation are advised to gain
a quick overview by first reading [Syf15, Chapter
2 Definitions].

The rules are not relevant for the understand-
ing, but they can be found in [Pie02, Figure 29-
1]. (Bool Nat) is a legal expression following
these rules but meaningless. Applying Nat to
Bool should not be possible. We achieve this by
defining a system of kinds that restrict such ex-
pressions which will now be explained.

This system should classify type expressions
by their arity so a proper type cannot be applied
to a proper type anymore. The following listing is
taken from [Pie02, Chapter 29] and shortened for
simplification.

∗ Kind of proper types that take no arguments for
instantiations like Bool and Bool → Bool

∗⇒ ∗ Kind of type operators. They are one arity
higher. This means unary type constructors
for constructing a list of a proper type for ex-
ample.

∗⇒ (∗⇒ ∗) Kind of functions from proper types
to type operators. For example, binary type
constructors for two-argument operators.

We can now build rules with this kind sys-
tem. It is only important to know that they ex-
ist but not how they look; they can also be found
in [Pie02, Figure 29-1]. Having the kinding sys-
tem and knowing that type expressions have dif-
ferent arities is enough to prevent meaningless ex-
pressions like (Bool Nat). In the end, we have
a new syntax to write Γ ⊢ T :: ∗ to indicate that
T must have exactly kind ∗ which means it must
be a proper type. On the other side, these checks
are used in the rules for building the type system.
To summarize, kinds help to prevent one to build
meaningless type expressions.

The whole effort was so we can writeVector ::
Nat → ∗ and the rules check the correctness of

this expression. A kind is the type of a type con-
structor and in this case we state thatVector maps
k : Nat to a type [Pie04]. This is the crucial part:
Vector is a type family and a parameter k :Nat can
be applied to it to yield a type. Normal types and
functions have a single definition. Type families,
on the other hand, have an interface that declares
its kind and arity. We can now start building de-
pendent types with this knowledge. The next sec-
tion explains dependent types formally so we can
then build practical examples in Idris in the sec-
tion after.

3 Dependent Types
As said before, types become first class citi-

zens in a dependent type system. Readers famil-
iar with functional languages, where functions
are first-class citizens, can draw the similarities.
Types can be used everywhere other expressions
can be used: a function can compute and return
a type, types can be passed to a function, they
can be computed, manipulated and assigned to a
variable. An important distinction is, that int is a
type and for example 1 is a value of type int . Non-
dependently typed languages can already pass 1
as an argument and return it but not int itself. The
conclusion for the compiler is that it does not mat-
ter if 0 or 1 is passed since they are both of type
int and are equal at the level of types [Xi10]. They
are interchangeable as far as type checking is con-
cerned. Writing a function that expects a divisor
must check for 0 to prevent division by zero er-
rors. With languages supporting dependent types,
we can create a type that depends on a value, that
must not be zero, and then use this type in the
function to permit only non-zero numbers. As we
have seen before in Listing 2, we can achieve this
by having type constructors for the type Nat. A
type constructor is simply a constructor for creat-
ing new types based on existing ones. For exam-
ple, constructing a list of a proper type. Listing 4
shows the two type constructors Z and Suc.

1 data Nat = Z | Suc Nat --zero | successor

Listing 4. Declaration of the type Nat . Excerpt from Listing 2

Upon application, they create a new type and
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in the case of Suc this constructor depends on a
value.

The other example we have already seen was
the formal definition of first in λ-Expression (1).
This expression first showed the Pi type (Π-type),
also called dependent product type, without an ex-
planation. This is now done in the following sec-
tion.

3.1 Pi Type (Dependent Functions)
We can express this behavior of functions hav-

ing a return type depending on the argument for-
mally with the Pi type. We pick the type fam-
ily Vector up again. The following examples are
taken from [Pie04]. With the kinding assertion

Vector :: Nat →∗ (K-Vector)

we introduce this type family and on applica-
tion, Vector n yields a type dependent on n. For
this subsection we just use a vector that holds Ints
for simplicity. Otherwise, we would have another
type argument. The compiler can access the value
of n to check various things whenever this Vector
is used. We now need a way to instantiate vectors
to be able to use them. So we build a function init
for that as seen in λ-Expression (init).

init : Πn : Nat.Int →Vector n (init)

With init 5 1we get a vector of typeVector 5—
a type in the type family Vector—with 5 elements
set to the value 1. Notice that the 5 belongs to the
type, like int[5] in Java or C++. But the value
is actually used and checked at compile-time and
not only at run-time. As a consequence, init’s re-
turn type depends on the input and to express that
we used the Pi type. Πx : S.T means that we bind
the function’s argument x so that we can replace
all free occurrences of x in T . This is in contrast to
the simply-typed λ calculus where the right hand
side cannot be a type and here the result type with
a Pi type can vary with different arguments. We
now have the type T that depends on the value of

x respectivelyVector that depends on the value of
n.

The final example is the one from the Introduc-
tion section that is repeated here:

f irst : Πn : Nat.Vector(n+1)→ Int (first)

The application f irst 0 (init 0 1) results in an
error. (init 0 1) yields type Vector 0 which does
not match the expected type Vector(0+1). And
since n is of type N the value zero is the lowest
value, thus n+1 is always greater than zero and a
non-empty vector is not possible to pass.

The Pi type is similar to ∀X .T in System F
that is explained in [Amr16], but the abstraction
is with a term rather than a type. We now go over
to build real programs with the Pi type in Idris.

4 Idris
Idris is a functional programming language

with dependent types. It is a fairly recent lan-
guage. The development started in 2011 and the
language is still actively developed. It is com-
piled to C but also has backends in JavaScript,
Java, LLVM or even PHP. The language’s syntax
is close to Haskell’s, thus the basic syntax is not
explained here and Haskell knowledge is prefer-
able. [Gri15, Haskell Prerequisites] gives a good
quick overview. The main difference is that Idris
only uses a single colon : while Haskell uses a
double colon :: for type declarations.

4.1 Example of Vector Addition
Idris allows us to write a function that ap-

pends two vectors and checks at the same time
the length of the resulting vectors. The following
code is taken from the data type Vect from the
Idris library [BCAS]. We first show the definition
of a vector.

1 data Vect : Nat -> Type -> Type where
2 Nil : Vect Z a
3 (::) : a -> Vect k a -> Vect (S k) a

Listing 5. Idris’s Data.Vect definition from [BCAS]
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Listing 5 shows the definition of the Vect type
family. Nil is used to create empty vectors and ::
to create non-empty vectors. With line 3 we ex-
plicitly state that, when appending an element to
another Vectwith ::, the resulting Vect’s length
is exactly one longer. The input is a vector of
length k (from Vect k a) and the resulting vec-
tor has length S k which is the successor of k.
This is the verification a developer gets from Idris.
It must hold for all possible values of k, so all nat-
ural numbers.

We can then go on by defining the before men-
tioned function ++ for vectors where we not only
append one element but all elements from another
vector. This is shown in Listing 6. On line 2 we
say the function’s return type is Vect (m + n)
a where m and n are the lengths of the input vec-
tors.

1 ||| Append two vectors
2 (++) : (xs : Vect m a) -> (ys : Vect n

a) -> Vect (m + n) a
3 (++) [] ys = ys
4 (++) (x::xs) ys = x :: xs ++ ys

Listing 6. Idris’s Data.Vect.++ definition from [BCAS]

Idris checks if we actually return a vector of
length m + n in every case for every input. List-
ing 7 shows a counter example that does not com-
pile because of an error in the definition of myapp.

1 myapp : (xs : Vect m a) -> (ys : Vect n
a) -> Vect (m + n) a

2 myapp Nil ys = ys
3 myapp (x :: xs) ys = x :: myapp xs xs --

error

Listing 7. Own implementation of vector append with a type error

on line 3

Idris’ type checker will complain that there is
a type mismatch since we do not actually return a
vector that has always length (m+n). It might in
some cases, but Idris requires it for all of them.

Type mismatch between
Vect (k + k) a (Type of myapp xs xs)

and
Vect (plus k m) a (Expected type)

Specifically:
Type mismatch between

plus k k
and

plus k m

Notice that we did not write an explicit proof
for this function. Proofs are just mentioned
shortly and shown in an example. Listing 8 shows
two proofs for a Vect. That an element is found
in a vector and that an empty Vect does not con-
tain anything. A big part of the Data.Vect file
[BCAS] are actually just proofs so the compiler
can ensure the correctness of a program.

1 ||| A proof that some element is found
in a vector

2 data Elem : a -> Vect k a -> Type where
3 Here : Elem x (x::xs)
4 There : (later : Elem x xs) -> Elem

x (y::xs)
5
6 ||| Nothing can be in an empty Vect
7 noEmptyElem : {x : a} -> Elem x [] ->

Void
8 noEmptyElem Here impossible
9

10 Uninhabited (Elem x []) where
11 uninhabited = noEmptyElem

Listing 8. Proofs in Idris about Vect taken from the standard library

[BCAS]. Proofs are like normal program code.

4.2 Totality
Type checking becomes undecidable when ar-

bitrary values or expressions can be used for types
to depend on. It would require checking if two
types are equal which is as hard as checking if
two programs return the same result. Hence, Idris
allows non-total (partial) functions. A total func-
tion is one that terminates for all possible inputs
or guarantees to produce some output before mak-
ing a recursive call [Com].

Idris aims to be a general purpose program-
ming language and not only a theorem prover.
This is the second reason why partial functions
are allowed. A developer should not always be
bothered by the compiler and many programs are
in an unfinished state and the developer knows
that there are errors. This means, Idris does not
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require a proof for every function like dependent
types do. The example in Listing 9 shows a total
function where a call results in a compile-time er-
ror.

1 total
2 safeHead : (l : List a) -> {auto ok :

NonEmpty l} -> a
3 safeHead [] {ok=IsNonEmpty} impossible
4 safeHead (x::xs) {ok=p} = x
5
6 main : IO ()
7 main = do
8 -- compile error, can't find
9 -- value of type NonEmpty[]

10 let x : Integer = safeHead []
11 print x

Listing 9. Complete function in Idris that results in a compile-time

error when called with an empty list. The total keyword indicates

a total function.

Listing 10 shows the partial function that
will only produce an error at run-time. Mark-
ing it with the total keyword would result in
a compile-time error as the compiler notices the
missing case for an empty list.

1 unsafeHead : List a -> a
2 unsafeHead (x::xs) = x
3
4 main : IO ()
5 main = do
6 let x : Integer = unsafeHead []
7 print x -- runtime error

Listing 10. Partial function in Idris that is not reduced when type

checking because it is not well defined for all inputs and the function

is not labeled with total

The difference and allowance of such func-
tions may help developers have an easier begin-
ning when starting with Idris. It may also help
the popularity of the language since a proof is not
necessary for each function. One, however, loses
an important property, namely that the program
will never fail.

5 Differences
Readers familiar with other programming lan-

guages might have had thought about similar con-

cepts while reading this paper. C++ offers all men-
tioned features here also in the form of templates
that we can also use during compile-time. Refine-
ment types also allow developers to catch errors
for empty vectors or null valueswith refined types
as one can with dependent types. Also, some type
dependent calculations can be donewith polymor-
phism. This section discusses all these three top-
ics and for each shows what can be achieved and
where they differ.

5.1 C++ Templates
C++’s template language is Turing complete.

This means you can do a lot of stuff during compi-
lation like the calculation of π or checking passed
arguments that they meet a requirement. To take
it away, one can do everything with C++ that Idris
with dependent types can with static knowledge
at compile-time. Idris can additionally measure
things at run-time and guarantee that this mea-
surement is correct. We first show an example
that can also be achieved with templates and then
we show why C++ is not a dependently typed lan-
guage. Some of the statements in this subsection
are taken from [red], a discussion the author of
this paper started.

5.1.1 Achieving the Same
For example, we can use C++’s built-in tem-

plates like std::integral_constant to repre-
sent a value of a specific type at compile time.
With its help and std::array—which has a fixed
length—we can rebuild the dependent function
init shown in λ-Expression (init).

1 template <typename T, T V>
2 using i_con =

std::integral_constant<T, V>;
3
4 template<size_t n, int i>
5 constexpr std::array<int, n>

init(i_con<size_t, n>,
i_con<int, i>) {

6 return std::array<int,n> {/*
fill array with i */};

7 }
8
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9 int main() {
10 std::array<int,3> foo =

init(i_con<size_t,3>{},
i_con<int, 42>{});

11 }

Listing 11. Create an std::array with a length based on a value

at compile-time in C++

Listing 11 shows this init function in C++
that creates an std::array with a size de-
pending on the passed value. Everything is
done at compile-time and assigning it instead to
std::array<int,4> on line 10 would result in
a compile error. Passing it to a function that ex-
pects an array of length 4 would also result in a
compile error. We could even compute types and
return them conveniently with the Boost.Hana li-
brary [Dio].

C++ templates have a lot of static computa-
tional power. Its type system, however, is rela-
tively weak. A type is less expressive and less
powerful than a dependent type.

5.1.2 What Is Actually the Difference Now?
So, where is the difference? Does this mean

that C++ is dependently typed? No, it does not.
Even though we can achieve the same at compile-
time as with a language with a dependent type
system like Idris, C++ is different. The before
mentioned point about run-time behavior is some-
thing C++ does not have. A C++ compiler just
checks all explicitly passed values to a function
while Idris checks for all possible inputs and that
the implementation is correct for all those pos-
sibilities. Even those that will just arise at run-
time since a dependent type captures a concept of
what should hold. Every function belonging to a
type will then amount to proving that it meets the
type’s specifications. We have a proof that it holds
and not just a check for passed values as with C++.
A first-class type embodies this proof and all prop-
erties with it and we can pass it around without
manually checking it. The Idris compiler does this
for us and if a property does not hold, the program
does not compile.

So what can you not do with C++ because
of that? Implementing an insertion sort that is
proven to be correct on all possible inputs at

compile-time. This is possible in Idris as shown
in [Fos]. We could verify it for all checked val-
ues. Well, one could write a proof assistant with
templates, but that would be an overhead. This
highlights the difference the best. C++ could
do a lot that dependent types do, but the depen-
dent type system is specifically built for provid-
ing proof that an implementation is correct while
C++’s type system is not. But one could help him-
self by writing a lot of template code. Depen-
dent types are like a new programming paradigm
that brings convenience and simplicity. Like non-
functional languages that can do and simulate the
same things as functional languages, but a func-
tional language might be easier to use and better
suited for a specific task.

To summarize, C++ can do a lot of static check-
ing and constructing but the value needs to be
known at compile-time. This boundary does not
exist with a dependently typed language. A de-
pendent type system knows limitations and prop-
erties a type holds and can check it implicitly with-
out the necessity of explicit checks as they are nec-
essary in C++. This makes dependent types more
convenient to program with for some problems.
C++ just allows building something with the tem-
plate system that simulates some dependent type
features but it is not built into the language. Types
as first-class citizens is an unknown concept in
C++.

5.2 Refinement Types
In short, dependent types are more power-

ful than refinement types. Refinement types al-
low to—as the name says—refine existing types.
A type consists of all the values of a given type
which satisfies a given predicate.

{v : B | p} (Refinement)

In (Refinement) , v has a base type B—like
Int or Bool—and p is a predicate that must hold
true for all values of the type [Rei16]. For exam-
ple, {n : int|n> 42} inhabits all integer values that
are bigger than 42. One can achieve the same re-
sult for trivial cases as with dependent types, but
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there are two big differences between these two
systems.

First, refinement types are limited to decidable
logics that is why they can offer much more au-
tomation and type inference [Jha]. Refinement
type systems only allow verification conditions
that can be efficiently validated by a Satisfiabil-
ity modulo theories (SMT) Solver [VSJ+14]. This
automates the solving of the constraints to check
whether a program is well- or ill-formed. Depen-
dent types, on the other hand, need proof terms as
can be seen in an insertion-sort implementation
in Idris [Fos]. This implementation contains a lot
of these proof terms, that actually look like pro-
gram code, to verify that the insertion sort actu-
ally gives back a sorted list and contains the same
elements that were passed as inputs. The imple-
mentation in LiquidHaskell with refinement types
is much shorter [Jha].

Second, refinement types just have their pred-
icate they depend upon. For {n : int | n >
42} the type just contains all values that are big-
ger than 42. With dependent types, you can write
anything in a type that you can normally write in
an expression. We can compute a type as we saw
in the introduction with the isSingleton func-
tion that is again shown in Listing 12.

1 isSingleton : Bool -> Type
2 isSingleton True = Nat
3 isSingleton False = List Nat

Listing 12. Function isSingleton in Idris that computes a type

and returns it. This cannot be done with refinement types.

5.3 Polymorphism
Some dependent type features can be modeled

with polymorphism. Polymorphism allows us to
write functions that work for different types—we
write terms that abstract over types. For dependent
types, we write types that depend on terms—types
abstract over terms. This can also be seen in the λ-
cube in Figure 1 by Barendregt [Bar91]. Polymor-
phism is represented by λ2 and dependent types
by λΠ on a different axis of the cube. This means
they have almost nothing in common.

Polymorphism allows a function to behave dif-
ferently on different types. One can use function

overloading so the function behaves differently
for different types and we even get a different re-
turn type depending on the passed type as shown
in Listing 13.

1 public int foo(char c) {
2 return (int) c;
3 }
4
5 public String foo(int i) {
6 return Integer.toString(i);
7 }

Listing 13. Ad hoc polymorphism in Java. We can differentiate

between two types and depending on the type we return a different

type. These are however two completely different functions.

We could also have the implementation be-
have differently for different types by subtying.
This is however everything we can achieve with
polymorphism. We cannot compute types and re-
turn types that depend on a value. Notice that a
function that returns a Vector<int> with a spe-
cific length does not compute a type. Either the
type is passed explicitely or it is static and not de-
pending on any passed argument type and we re-
turn an instance of this type and not the type it-
self.

λω λΠω

λ2 λΠ2

λω λΠω

λ→ λΠ

Figure 1. λ-cube by Barendregt showing different abstractions

which are in the end just features that a programming language can

have [Bar91]
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6 Relevancy
Dependent types are not in any mainstream

language yet. C++ has some features with
non-type template parameters. Scala has path-
dependent types which offer some functionality
but they are more limited than dependent types.
This section shows another more popular lan-
guage that wants to embody dependent types
(Haskell) and shows where dependent types are
otherwise currently used.

6.1 Dependent Types in Haskell
Haskell, as implemented in the GHC has been

adding new type-level programming features for
some time [Eis16]. All of which aim to bring
Haskell to dependent types. The GHC compiler
unified types and kinds with version 8.0.1 [Gam].
The reasoning behind this is explained in [Eis].
The possiblity to use all types as kinds is a step
towards this goal. The following quote is from
[WHE13].

Is Haskell a dependently typed program-
ming language? Many would say no, as
Haskell fundamentally does not allow ex-
pressions to appear in types (a defining char-
acteristic of dependently-typed languages).
However, the type system of the Glasgow
Haskell Compiler (GHC), Haskell’s primary
implementation, supports two essential fea-
tures of dependently typed languages: flow-
sensitive typing through Generalized Alge-
braic Datatypes (GADTs), and rich type-
level computation through type classes, type
families, datatype promotion and kind poly-
morphism. These two features allow clever
Haskellers to encode programs that are typ-
ically reputed to need dependent types.

As the authors said, developers can “fake”
some aspects of dependent types in Haskell.
[McB01] explains how this can be done bymaking
type-level copies of data, type constructors simu-
lating data constructors and type classes simulat-
ing datatypes. It is however painful to do.

6.2 Proof Checking and Other Uses
Dependent type systems are also used for

proof checking. Idris is also used for this but aims

to be more than that. It features system calls,
UIs and concurrency language tools and tries to
bridge the gap. Idris is already used in scientific
computing [IJ13]. There is also a paper discussing
real world questions such as efficiency and con-
currency [BH10].

6.3 Outlook
Developers would have to learn to prove their

functions which is unfamiliar. However, this is ba-
sically just like writing code, but you have to think
different. When dependent types were learned by
new students, they would not find it to be a prob-
lem but people that already can program do not
see the advantage and the need to switch. A care-
fully designed new language could help in raising
popularity. Dependent types would get rid of unit
tests completely. While unit tests are good, they
do not always test each branch, test only extreme
values and are sometimes forgotten and not up-
dated. The type checker in a dependently typed
language would watch out for such pitfalls.

7 Conclusion
Dependent types extend a type system with

types that depend on a value. It is not possible
to “just add this” to an existing language. As the
example of Haskell shows, there are big efforts re-
quired to add them to a language [Eis16]. It shows
however, that it is possible to add them to a lan-
guage while still being backward compatible.

The motivation is there and reasonable. It is
easy to write a type checker but hard to write
a performant one with good error messages and
support for modern IDEs. Agda and Idris (de-
pendently typed languages) mode for Emacs are
more promiment examples that deliver some IDE
like features for dependent types. Does this mean
that dependently typed languages could ever be a
popular choice for everyday programming? Ben-
jamin Pierce [Pie02] said the following in 2002:

They [mathematicians] spend a significant
effort writing proof scripts and tactics to
guide the tool in constructing and verify-
ing a proof. […] programmers should ex-
pect to expend similar amounts of effort
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annotating programs with hints and expla-
nations to guide the typechecker. For cer-
tain critical programming tasks, this de-
gree of effort may be justified, but for day-
to-day programming it is almost certainly
too costly. […] The trend in those lan-
guages is toward restricting the power of
dependent types in various ways, obtain-
ing more tractable systems for which type
checking can be better automated.

The current answer is also probably no, they
cannot be a popular choice for everyday program-
ming. At least not if they only offer dependent
types but not much more. Such languages are and
will most likely be used for theorem proving. If
they are coupled with other paradigms and not
every little obvious detail has to be proven then
there is a good chance that dependent types will
be used for everyday and business programming
in the future. On the other side, we lose the most
important property when not everything needs to
be proven as this is the case with Idris and pos-
sible partial functions. A good way would be to
have STM solvers for carrying easy proofs that are
repetitive.

The strong desire for Haskell for dependent
types and the upcoming of new dependently
typed languages such as Idris [idr] and ATS [Xi]
shows the interest in it. Functional programming
languages are slowly on the rise in smaller com-
panies after they have been around for decades.
Maybe dependently typed languages will also be-
come more popular in 20 or more years after they
have been better researched and used for many
years outside the industry.
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