
Supporting Swift 4 Generics in Tifig

Master Thesis

University of Applied Sciences Rapperswil

Fall Semester 2017/18

Author: Mario Meili
Advisor: Prof. Dr. Farhad D. Mehta
Industry Partner: Institute for Software (IFS) HSR

Abstract

Tifig is a Swift Integrated Development Environment (IDE) based on Eclipse. Since
Swift has been open-sourced, a compiler for Linux systems became part of the Swift
project, allowing the development of Swift applications on platforms other than
macOS. Because Xcode is only available on macOS, Tifig aims to be the preferred
alternative. With its newest release, many language features and syntax changes
were introduced to Swift. This resulted in inconsistencies between the behaviour of
the Swift compiler and Tifig. The aim of this thesis was to improve the existing
Tifig IDE by:

• Supporting the new enhancements in Swift’s generics system.

• Consolidating the existing documentation in a form that promotes continual
development.

To achieve this, Tifig’s parser and indexer were extended to support the newly in-
troduced syntax and to ensure correct indexing order and index correctness. Tifig’s
type checker was modified to enable correct type resolution. To improve the current
documentation, a study of multiple large and successful open source projects was
conducted.

The results of this thesis encompass:

• The newest alpha release of Tifig

• An extensive documentation for Tifig contributors

• Introductory tutorials for first-time Tifig users

• A short theoretical study on how to improve the performance and resolve
current issues of the Swift type checker

Acknowledgements

Firstly, I would like to thank my thesis advisor Prof. Dr. Farhad D. Mehta, who
was always willing to lend a helping hand when I ran into problems.

Secondly, I would like to thank my colleague and friend Toni Suter, who laid
the groundwork for this thesis by developing Tifig from scratch. In addition, he
took over the role of a technical advisor, providing me with all the necessary
knowledge about his plug-in infrastructure and the Swift programming language in
general.

In addition, I would like to thank the users of the Swift users group mailing
list for helping me to verify my findings regarding Swift compiler bugs in record
time.

Finally, I would like to express my gratitude to my girlfriend for providing me with
unfailing support and continuous encouragement.

Contents

1. Introduction 1
1.1. Problems . 1
1.2. Goals . 2
1.3. Document Structure . 2

2. Background & Related Work 3
2.1. Tifig Overview . 3

2.1.1. Plug-ins . 3
2.1.2. Components . 4
2.1.3. Lexer . 6
2.1.4. Parser . 7
2.1.5. Indexer . 9
2.1.6. A Practical Example . 12

2.2. Representation of Generic Type Bindings 18
2.2.1. Archetypes . 18
2.2.2. Associated Type Binding References 20

2.3. Related Work . 20

3. Enhancing Tifig’s Generics System 23
3.1. Generic Subscripts . 23

3.1.1. Introduction . 23
3.1.2. Making Subscripts Generic 26
3.1.3. Implementation . 28
3.1.4. Summary . 36

3.2. Class & Subtype Existentials . 36
3.2.1. Introduction . 37
3.2.2. Adding Class & Subtype Existentials 39
3.2.3. Implementation . 42
3.2.4. Summary . 50

3.3. Where Clauses on Associated Types 51
3.3.1. Introduction . 51
3.3.2. Constraining Associated Types with Where Clauses 52
3.3.3. Implementation . 55
3.3.4. Summary . 62

i

3.4. Testing . 62
3.4.1. Parser Tests . 63
3.4.2. Indexer Tests . 63

3.5. Known Limitations . 63
3.5.1. Multiple Same Type Requirements 64
3.5.2. Multiple Paths to the Same Associated Type 65
3.5.3. Summary . 66

4. Study of the Swift Type Checker 67
4.1. Swift’s Type System . 67
4.2. Type Checker Overview . 68
4.3. Performance Improvements . 70

4.3.1. Existing Optimizations . 70
4.3.2. Associated Type Graphs . 72
4.3.3. Preliminary Constraint Simplification 78

4.4. Summary . 79

5. Improving the Documentation 81
5.1. Study of Open-Source Projects . 81

5.1.1. Project Selection . 81
5.1.2. Defining the Criteria . 82
5.1.3. Evaluation . 82

5.2. Developer Documentation . 85
5.2.1. Implementation . 86

5.3. User Tutorials . 88
5.3.1. Implementation . 88
5.3.2. RSS Feed . 90

5.4. Continuous Integration . 91

6. Results 93
6.1. Implementation of Proposals in Tifig 93
6.2. Consolidation of the Documentation 94
6.3. Study of Swift’s Type Checker . 95

7. Conclusion & Future Work 97
7.1. Future Work . 97

A. Developer Documentation Content 103

B. User Tutorials Content 125

C. Agreement for Master Thesis 140

ii

List of Abbreviations

HSR Hochschule für Technik Rapperswil

IDE Integrated Development Environment

IFS Institute for Software

AST Abstract Syntax Tree

CI Continuous Integration

iii

iv

1. Introduction

Swift is a multi-paradigm programming language developed by Apple Inc. It
was released in 2014. Only one year later, Swift became an open-source project.
This opened up the possibility for the community to actively influence the further
development of the language. That is the reason why Swift still experiences many
changes between major releases. In Swift 4, which was released during the period
of this thesis, namely in September 2017, around 30 proposals from the community
were implemented [27].
Swift is not the first open-source project of Apple Inc. In 2007, the clang compiler
for C, C++ and Objective-C (and other languages) was open-sourced as well
[2]. However, the contributors had no influence on the programming languages
clang compiles. Open-sourcing Swift can therefore be seen as a first, in that the
community can actively influence the development of the language itself. Another
first was the release of a Swift compiler for Linux systems. This opened the door for
developers of language tooling to even cross the boundaries of operating systems.
One such attempt to allow Swift application development cross-platform is Tifig.
Tifig is a Swift IDE based on Eclipse [5]. Its development was started as a master
project thesis by Toni Suter [30].

1.1. Problems

Tifig currently supports Swift version 3.1. The changes introduced to the language
make Tifig unusable for the development of Swift 4 applications. This in turn
makes Tifig incapable of competing with other products. Therefore, Tifig needs to
be developed further.
So far, Tifig has been a single person project. This changed with the beginning
of this thesis. It is possible, that even more contributors will work on Tifig in
the future. The documentation of the project is currently almost completely done
in [30]. This is a problem, because a thesis report is not a suitable format of
documentation for promoting continual development.

1

1.2. Goals

The aim of this thesis is to develop the Tifig IDE further, in order to support
Swift 4 generics. Additionally, tasks that promote the practical use and further
development of Tifig will be undertaken as per the resources available. This shall
be achieved by

• modifying Tifig’s parser to support the newly introduced syntax,

• adapting Tifig’s indexer to guarantee a correct indexing order and indexing
correctness,

• extending Tifig’s type checker by the necessary constraints to enable correct
type resolution for Swift 4 and

• consolidating existing documentation and documentation relevant to the
tasks executed as part of this project in a form that promotes continual
development of Tifig.

The following proposals shall be implemented in order to support Swift 4 generics
in Tifig:

1. SE-0142: Permit where clauses to constrain associated types [26]

2. SE-0148: Generic Subscripts [22]

3. SE-0156: Class and Subtype existentials [25]

1.3. Document Structure

The remainder of this document is organized as follows. Chapter 2 summarizes
the architecture and functionality of Tifig as described in [30]. A short section
describes an important change in Tifig’s infrastructure, that was implemented after
the original master thesis. In addition, a brief overview of related work is given. The
analysis of Tifig’s infrastructure and the implementation of the above proposals
is documented in Chapter 3. In Chapter 4, the Swift type checker is studied
more closely and improvements concerning performance are proposed. Chapter 5
describes the process of finding the best possible documentation format for the
Tifig project. The results of this thesis are gathered and discussed in Chapter 6
and finally, Chapter 7 provides a conclusion and proposes future work to further
improve the Tifig IDE.

2

2. Background & Related Work

As already mentioned in Chapter 1, the work conducted during the period of this
thesis builds on the already existing Tifig project. Because the architecture and
especially the functionality of Tifig are not trivial, but necessary to understand the
proceedings in this report, a minimal overview of the most important components
and processes is given in Section 2.1. Section 2.2 describes an important change
that occured between the end of the original master thesis and the start of this
thesis. Related projects are listed and briefly discussed in Section 2.3.

2.1. Tifig Overview

Tifig is a collection of plug-ins that are built on top of the Eclipse IDE infrastructure.
It makes use of the Eclipse Plug-in Development Environment [7] to bring the
plug-ins together. How this works is not easily explained and would go beyond the
scope of this thesis. Interested readers can consult [6], which is a short tutorial
about extending Eclipse. Further, it is worth mentioning that the entire source
code of Tifig is written in Java.
In this overview section, the components of Tifig are discussed briefly, pointing out
the ones relevant for this thesis. These are then looked at separately in more detail.
A closing example demonstrates the mechanisms described.

2.1.1. Plug-ins

The following are the plug-ins Tifig is built of:

• ch.hsr.ifs.tifig.branding

• ch.hsr.ifs.tifig.branding.feature

• ch.hsr.ifs.tifig.core

• ch.hsr.ifs.tifig.feature

• ch.hsr.ifs.tifig.product

• ch.hsr.ifs.tifig.target

3

• ch.hsr.ifs.tifig.ui

• ch.hsr.ifs.tifig.updatesite

The plug-ins branding, branding.feature, feature, product, target and also
updatesite are all important for a functioning plug-in environment. They are
needed for building the final product Tifig. However, the business logic of the Tifig
IDE is not part of these plug-ins and therefore, only the plug-ins core and ui are
relevant for this thesis. The two additional plug-ins shown below have the sole
purpose of testing their functionality:

• ch.hsr.ifs.tifig.core.tests

• ch.hsr.ifs.tifig.ui.tests

Everything related to implementations in Tifig will relate to one of the plug-ins
above highlighted in bold.

2.1.2. Components

Figure 2.1 shows an overview of the components relevant for writing and maintaining
source code. As can be seen, all components are either affiliated with the core

plug-in or the ui plug-in. The original figure has been taken from [30] and was
adjusted to highlight the remarks of this section.
Note, that not all the processes shown in the figure are relevant in the scope
of this thesis. For example, building an executable out of the source code and
also launching said executable are not of interest, because this is done using the
Swift compiler from Apple Inc. That is why the Builder and Launcher/Debugger
component are shown in a faded manner.
Of interest is what happens when a User enters or changes source code. As is shown,
the Editor component notifies the Reconciler about such changes, which in turn
triggers reconciliation. In other words, the Reconciler component notifies Tifig’s
core components, that the changed source code has to be processed. The Lexer
component takes the source code as its input and generates tokens. These tokens
are then processed by the Parser component, resulting in an Abstract Syntax
Tree (AST) representation of the source code. The AST is used by the Indexer
component for semantic analysis. Both the Parser and Indexer components can
generate and set markers for the Editor. This closes the circle.
Why are the Editor and Reconciler faded? The reason behind this is simple. The
mechanisms provided by these components are not affected by changes to the
syntax and semantics of Swift. The Reconciler solely needs to know the locations
and corresponding offsets of changes that occurred. It does not even need to know

4

what kind of file has been edited. The Editor ’s responsibility is to trigger the
Reconciler and to display the markers generated by the Parser and the Indexer.
These markers in turn are nothing else than source code locations, corresponding
offsets and a message. Again, the editor does not need to know the underlying file
format.

Figure 2.1.: Tifig components

Concluding the component overview, the plug-ins relevant for this thesis are reduced
to the following:

• ch.hsr.ifs.tifig.core

• ch.hsr.ifs.tifig.core.tests

The Lexer, Parser and Indexer components will be described more closely in the
following sections.

5

2.1.3. Lexer

The Lexer takes a stream of characters and generates tokens for the Parser. The
core plug-in of Tifig provides a package lexer, which contains all the necessary
functionality to achieve that. The contents of the package are shown in Figure 2.2.

ch.hsr.ifs.core.lexer

Kind.java

Lexer.java

Token.java

Figure 2.2.: Lexer package

The class Kind is an enum that contains all the different kinds a token can represent.
An instance of class Token has such a Kind property, an offset, a length and a
property text, that contains the String of the source code it represents. The main
functionality is implemented in the Lexer class, as can be seen in Listing 2.1.

1 public class Lexer {

2
3 // ...

4
5 public Lexer(char[] source , String filePath) {

6 this.source = source;

7 this.filePath = filePath;

8 // ...

9 }

10
11 // ...

12
13 public Token nextToken () {

14 lastToken = lex();

15 return lastToken;

16 }

17
18 public List <Token > allTokensExceptComments () {

19 final List <Token > allTokens = new ArrayList <>();

20 Token nextToken = null;

21 do {

22 nextToken = nextToken ();

23 if(nextToken.is(Kind.COMMENT)) {

24 continue;

25 }

26 allTokens.add(nextToken);

27 } while(nextToken.isNot(Kind.EOF));

28 return Collections.unmodifiableList(allTokens);

29 }

30
31 // ...

32
33 }

Listing 2.1: Lexer

6

It is possible to either request the next token not consumed so far, or alternatively,
to request the entire list of tokens using the method allTokensExceptComments().
Note, that this is preexisting code and not part of the implementations done during
this thesis.

2.1.4. Parser

As was the case for the Lexer, the Parser code is located in a separate parser

package within the core plug-in. The contents of the package are shown in Figure
2.3.

ch.hsr.ifs.core.parser

AttributeParser.java

DeclParser.java

ExprParser.java

MismatchedTokenException.java

NoViableAltException.java

Parser.java

ParserModule.java

PatternParser.java

RecognitionException.java

StmtParser.java

TypeParser.java

Figure 2.3.: Parser package

The classes shown above can be grouped into three categories:

1. There are three classes for specific exceptions that can occur during the parse
process. Because they are not relevant for the implementations later in this
document, they will not be further discussed.

2. Parser modules all extend the ParserModule class. They can be identified
by their names conforming to *Parser.java. Each of these modules is
responsible for parsing specific Swift language constructs. For example, the
DeclParser module is responsible for parsing declarations and so on.

3. The Parser class represents the entry point of the parse logic. Listing 2.2
shows the relevant methods.

7

1 public class Parser {

2 private final DeclParser declParser = new DeclParser(this);

3 private final StmtParser stmtParser = new StmtParser(this);

4 // the same for all other parser modules

5
6 // ...

7
8 public Parser(String filePath , List <Token > tokens , int tokenIndex) {

9 this.filePath = filePath;

10 this.tokens = tokens;

11 this.tokenIndex = tokenIndex;

12 declParser.setParserModules(declParser , stmtParser , exprParser ,

13 typeParser , patternParser , attributeParser);

14 stmtParser.setParserModules(declParser , stmtParser , exprParser ,

15 typeParser , patternParser , attributeParser);

16 // the same for all other parser modules

17 }

18
19 public Parser(Lexer source) {

20 this(source.getFilePath (), source.allTokensExceptComments (), 0);

21 }

22
23 public static SourceFile parse(String source , String filePath) {

24 final Lexer lexer = new Lexer(source.toCharArray (), filePath);

25 final Parser parser = new Parser(lexer);

26 return parser.parse ();

27 }

28
29 public SourceFile parse() {

30 // ...

31 final List <IDecl > decls = new ArrayList <>();

32 // ...

33 while(la(1). isNot(Kind.EOF)) {

34 // ...

35 try {

36 IDecl decl = null;

37 if(declParser.isStartOfDecl (1)) {

38 decl = parse(declParser ::decl);

39 } else if(StmtParser.isStartOfStmt(la(1)) ||

40 ExprParser.isStartOfExpr(la (1))) {

41 final IStmt stmt = parse(stmtParser ::stmt);

42 decl = new TopLevelStmtDecl(stmt);

43 } // ...

44 decls.add(addTokens(decl));

45 } // ...

46 }

47
48 // link all nodes to their parent

49 final SourceFile ast = addTokens(new SourceFile(decls.toArray(

50 new IDecl[decls.size ()]), filePath));

51 ast.accept(new ASTGenericVisitor () {

52 // ...

53 });

54 return ast;

55 }

56
57 // ...

58
59 }

Listing 2.2: Parser

8

The Parser class has a property for each of the parser modules. In the constructor,
each of these properties has the other modules set as their own parser modules
(lines 12 to 16). The static parse() method (lines 23 to 27) instantiates a new
Lexer and then instantiates a new Parser, providing the Lexer instance as the
argument of the constructor. Finally, it calls the parse() method (lines 29 to
55) on the newly created parser, returning the AST represented by an instance of
class SourceFile. In this top-level parse method, it is checked whether the first
token consumed is the start of a declaration or a statement. This must be the
case when starting to parse a new file. Depending on the result of this check, the
corresponding module calls its own parse method (here decl() or stmt()).
This describes a recursive descent parser. The tokens are dispatched to the
appropriate modules, where they are parsed. After that, the so created ASTNode

instances are linked to their parents (lines 49 to 53), which completes the AST.
The SourceFile class representing the AST and the classes for all specializations
of ASTNode are not part of the parser package. Instead, they can be found in the
ast package and the nested packages thereof. Figure 2.4 shows the nested package
structure, leaving out the Java files.

ch.hsr.ifs.core.ast

ch.hsr.ifs.core.ast.attribute

ch.hsr.ifs.core.ast.decl

ch.hsr.ifs.core.ast.expr

ch.hsr.ifs.core.ast.pattern

ch.hsr.ifs.core.ast.stmt

ch.hsr.ifs.core.ast.type

Figure 2.4.: AST package

Again, the code presented in this section was already part of Tifig’s implementation
and therefore not part of the implementations undertaken for this thesis.

2.1.5. Indexer

The Indexer is the largest and most complex component of Tifig. Because of that,
the implementation of the Indexer ranges over multiple packages. Figure 2.5 shows
the indexer package, which has several nested packages. Because of the large
amount of code involved in the indexing process, only the most important classes
are briefly discussed in this section. These classes are contained in the parent
package indexer and are listed in the figure below. Next to the Indexer class, the
classes DefinitionPassVisitor, TypeAnnotationPassVisitor and not to forget

9

the TypeCheckPassVisitor best describe what is going on during the indexing
process.

ch.hsr.ifs.core.indexer

// ...

DefinitionPassVisitor.java

Indexer.java

TypeAnnotationPassVisitor.java

TypeCheckPassVisitor.java

// ...

ch.hsr.ifs.core.indexer.bindings

// contains classes for the various kinds of bindings

ch.hsr.ifs.core.indexer.cs

// contains everything necessary for constraint generation

and resolution

ch.hsr.ifs.core.indexer.scope

// contains classes for the different scopes

ch.hsr.ifs.core.indexer.swiftmodel

// contains everything related to the Swift model

ch.hsr.ifs.core.indexer.types

// contains classes for various index types

Figure 2.5.: Indexer package

In order to perform the semantic analysis of the Swift source code, the Indexer
makes extensive use of the visitor pattern [24]. In fact, performing the indexing
process requires multiple traversals of the AST generated by the Parser. Figure
2.6 shows the inner architecture of the Indexer. This figure is taken from [30] in its
original form.

Figure 2.6.: Indexer components

Listing 2.3 shows the corresponding implementation of the Indexer class. The static
method indexFiles() takes a list of SwiftFile objects and a StdlibModule as its
arguments. The method then calls definitionPass() on all the files provided (line
6). What definitionPass() does is creating a new DefinitionPasssVisitor

and calling accept() with it on the AST of the current file (lines 16 to 24). Lines

10

7 to 11 encompass preparations for the call of typeAnnotationPass() (line 12),
again executed for each of the given files. Finally, the same structure is followed to
visit the AST of each file with a TypeCheckPassVisitor (line 13).

1 public class Indexer {

2 // ...

3
4 public static void indexFiles(List <SwiftFile > files ,

5 StdlibModule stdlibModule) {

6 files.forEach(file -> definitionPass(file , stdlibModule));

7 files.forEach(file -> {

8 file.addImports ();

9 file.connectExtensions ();

10 });

11 files.forEach(SwiftFile :: prepareForTypeAnnotationPass);

12 files.forEach(Indexer :: typeAnnotationPass);

13 files.forEach(Indexer :: typeCheckPass);

14 }

15
16 private static void definitionPass(SwiftFile file ,

17 SwiftModule stdlibModule) {

18 final DefinitionPassVisitor definitionPassVisitor =

19 new DefinitionPassVisitor(file);

20 file.getAST (). accept(definitionPassVisitor);

21 if(stdlibModule != null) {

22 file.addImportedBinding(stdlibModule);

23 }

24 }

25
26 private static void typeAnnotationPass(SwiftFile file) {

27 final TypeAnnotationPassVisitor typeAnnotationPassVisitor =

28 new TypeAnnotationPassVisitor ();

29 file.getAST (). accept(typeAnnotationPassVisitor);

30 }

31
32 private static void typeCheckPass(SwiftFile file) {

33 final TypeCheckPassVisitor typeCheckPassVisitor =

34 new TypeCheckPassVisitor(file);

35 file.getAST (). accept(typeCheckPassVisitor);

36 }

37
38 // ...

39 }

Listing 2.3: Indexer

In the following, each of the three passes is shortly explained. Note, that the bare
description is possibly not enough to fully understand all the mechanics of the
indexer. The intention is to give a rough idea of the processes. As usual, a more
detailed explanation can be found in [30], the original documentation of Tifig.

11

Definition Pass

The DefinitionPassVisitor traverses the AST of each given file. For each
declaration of a name it visits, a binding for that name and kind is created. In
addition, the binding is stored in the proper lexical scope. Because each scope can
have multiple child scopes, but can only have one parent, a so called scope tree
emerges as the result of this pass. Note, that the name of each binding is set after
this pass. However, the binding has no type assigned so far.

Type-Annotation Pass

The type-annotation pass looks for ASTNode occurrences that stand for explicit
type annotations. It then transforms the AST types into index types. Finally, the
type of the bindings that have such an explicit type annotation can be set. The
result is the same scope tree from the definition pass enriched with some type
information.

Type-Check Pass

During the type-check pass, the TypeCheckPassVisitor traverses all expressions
of the AST. While doing so, the expressions are type-checked. To do this, Tifig
uses a constraint-based type checker. If all types check out, each subexpression
is assigned a type. Also, each binding that has no type set so far is assigned the
inferred type. The type inference happens in a bi-directional manner, because Swift
allows type information to flow from the bottom of the AST to the top and also
from the root of the expression tree down to the leaves [30]. If all expressions are
successfully type-checked, the scope tree is filled completely. Every binding has
assigned a type.

2.1.6. A Practical Example

To visualize the processes described so far, a practical example shall be given in
this section. The example encompasses a selection of all the steps undertaken by
the core components described above, so that all mechanics are shown at least once
and at least on an excerpt of the example code.
Listing 2.4 shows the code on which the steps will be demonstrated. The generic
function min() is declared, taking two arguments of the generic type T (lines
1 to 3). The generic parameter clause shows that type T must conform to the
Comparable protocol. Comparable is part of the Swift standard library and will
not be examined closer. The min() function simply returns the smaller of the two
arguments provided. The function is then called and the result is assigned to the
constant x (line 5). Finally, x is printed to the console (line 6).

12

1 func _min <T: Comparable >(_ a: T, _ b: T) -> T {

2 return a < b ? a : b

3 }

4
5 let x = _min (5,10)

6 print(x)

Listing 2.4: Generic function call

Assuming that the last key stroke was made, finishing the print() statement
on line 6 of the example code, the Editor notices this change and triggers the
Reconciler. The Reconciler in turn triggers the Lexer. This is where this example
starts. Figure 2.7 shows how the Lexer component transforms the character stream
let x = min(5,10) into tokens. Each of the tokens contains the original text,
the offset and the length of the text. Of course, all the other lines of the example
code are transformed as well.

Figure 2.7.: Tokens generated by the Lexer

The Parser takes the list of tokens generated by the Lexer as its input. Figure 2.8
shows the AST output generated for the tokens of the statement under inspection
before. Note, that this is only an excerpt of the AST.
Of special interest is the subtree starting with the FunctionCallExpr node. This
expression is composed of an IdentifierExpr and a ParenthesizedExpr. The
identifier holds the function’s name min. The parenthesized expression holds the
two literal expressions 5 and 10. Later in this section, the type-checking process
will be demonstrated on this exact function call expression.

13

Figure 2.8.: AST generated by the Parser

The Parser has finished its job and the Indexer takes over. As discussed earlier,
three steps have to be performed.
The first of these steps is the definition pass. The DefinitionPassVisitor tra-
verses the AST and generates the scope tree shown in Figure 2.9. This time, the
figure shows the result for the entire example code. Note, that each binding is
enclosed by a scope and that none of the bindings have a type so far. One special
binding is the ArchetypeType binding in the generic parameter scope. It represents
the generic type parameter T. It has special fields worth discussing a little more:

(*) The same type field is set, if a constraint demands that T has to be equal to
another type. This can be specified in a generic where clause.

(**) The fields for adopted protocols and the conformance class are pretty much

14

self-explanatory. If T has to conform to one or more protocols, the protocol
binding is added to the list of adopted protocols. If T must be a subclass of
another class, this class binding is set as the conformance class.

Figure 2.9.: Scope tree generated during definition pass

The second step is the type annotation pass. Again, the AST is traversed and
wherever nodes are passed that represent a type annotation, an index type is
created and assigned to the corresponding binding.
The updated scope tree can be seen in Figure 2.10. The changes are highlighted in
bold. A first observation is that the types for the parameter bindings of a and b

have been set to T. Since the type of the function parameters is now known and
the return type of the function is annotated, the TypeAnnotationPassVisitor

correctly set the type of the function binding to (T, T) -> T. It is also noteworthy,
that the list of adopted protocols of the archetype binding T has been updated.
It now contains the protocol binding for the protocol Comparable, that is defined
in Swift’s standard library. The final and most important observation is that
the variable binding of the variable x has still no type assigned. This makes

15

perfect sense, because no type annotations are provided in the statement where x

is declared.

Figure 2.10.: Scope tree updated after type definition pass

To complete the entries of the scope tree, a third and last step is necessary. The
TypeCheckPassVisitor traverses the AST and type-checks every expression it
encounters. In this example, the type-checking of the function call expression
min(5,10) shall be demonstrated.

First, the so called constraint generator traverses the part of the AST representing
the expression. While doing so, each subexpression is assigned a type. Figure
2.11 shows this excerpt of the AST with the assigned types. So far, no concrete
types have emerged. Instead, the constraint generator used type variables $T0 to
$T4 as an intermediate placeholder. But $T0 does not occur in the AST. This is
because it is immediately replaced with the type ($T1, $T1) -> $T1, since $T1 is
the type variable for the generic type parameter T. $T4 does not occur either. This
is because it is the type variable for variable x.
This is not everything the constraint generator has done. It also created a set of
constraints on the type variables. The constraints either constrain a single type
variable or describe a relation between two of them.

16

Figure 2.11.: AST after constraint generation

In the following, the constraints are listed:

• $T1 ConformsTo Comparable

• $T2 LiteralConformsTo ExpressibleByIntegerLiteral

• $T3 LiteralConformsTo ExpressibleByIntegerLiteral

• $T2 ArgumentConversion $T1

• $T3 ArgumentConversion $T1

• $T1 Conversion $T4

The constraint solver tries to solve this system of constraints by setting $T2 and
$T3 to type Int, because this is the default type for variables constrained with
ExpressibleByIntegerLiteral. Luckily, this also fulfils all the other constraints,
by setting all of the other type variables to Int as well.
As mentioned above, the type variable $T4 represents the type of variable x. Because
it is now known that $T4 is of type Int, the type of the variable binding for variable
x is also Int.
Figure 2.12 shows the final scope tree. All the bindings have been assigned their
type. This concludes the process of indexing the source code. In the editor, the
index is used to jump to the definition of a name or to show the type of a name
while hovering over it.

17

Figure 2.12.: Scope tree updated after type check pass

This concludes the short practical example. For a more detailed description of
Tifig’s infrastructure, the reader is once again advised to consult [30].

2.2. Representation of Generic Type Bindings

In the time between the hand-in of the original thesis and the start of this thesis,
Tifig was further developed. The report of the original thesis was therefore already
outdated. Important changes in the infrastructure regarding generic type variables
and associated types were introduced, that have an important impact on the work
conducted during this thesis. This section’s intent is to close this gap and to provide
the reader with the additional knowledge necessary to follow the documentation in
the remainder of this document.

2.2.1. Archetypes

An archetype is a special kind of a type binding. It is used to represent bindings
for generic type variables and associated types. Because Swift allows the developer

18

to constrain generic type variables and associated types, it is necessary for the
indexer to collect these constraints. For that, the archetype binding is used. It has
the properties sameType, defaultType and protocolCompositionType, the latter
of which has the properties adoptedProtocols and conformanceClass. When a
constraint on a generic type variable or associated type is encountered, it can be
stored on the archetype representing it. This is best shown with an example.

1 protocol P {}

2
3 func f<T>(x: T) -> T where T: P {

4 return x

5 }

Listing 2.5: Archetype example

Listing 2.5 shows the declaration of the generic function f(). In the generic where
clause of the function, the generic type parameter T is constrained to be comforming
to protocol P (line 3). During the type definition pass, an archetype binding is
created for the generic type parameter T. After the type annotation pass, the
constraint T: P is stored on that archetype binding, in that the binding of protocol
P is added to the list of adopted protocols. Other constraints are handled in a
similar manner.
Archetype bindings can be virtual. This is the case, when an associated type
is further constrained in a generic context, for example, in a generic function
declaration. The constraint is then not stored on the archetype binding of the
associated type itself, but a virtual copy is created that shadows the original
archetype binding for this context. An example is given in Listing 2.6.

1 protocol P1 {

2 associatedtype A: P2

3 }

4
5 protocol P2 {

6 associatedtype B

7 }

8
9 func f<T: P1 >(x: T) -> T where T.A.B == Int {

10 return x

11 }

Listing 2.6: Virtual archetype example

The generic type parameter T must conform to protocol P1. Therefore, it inherits
the associated type A. The associated type A in turn inherits associated type B via
the conformance to protocol P2. In the scope of the generic function, the type of

19

T.A.B is set to be equal to Int. It is intuitively clear, that this constraint should
not influence code that is outside of the function’s scope. So, a virtual copy of the
archetype bindings representing associated types A and B are created. In addition,
the sameType property of the virtual archetype binding of B is set to Int.

2.2.2. Associated Type Binding References

In Swift, the same nested associated type can be reached through different paths.
Listing 2.7 shows an example, where both associated types A and B of protocol P1
have an associated type themselves, namely C of protocol P2.

1 protocol P1 {

2 associatedtype A: P2

3 associatedtype B: P2

4 }

5
6 protocol P2 {

7 associatedtype C

8 }

9
10 func f<T: P1 >(x: T) where T.A.C == Int {

11 let y: T.A.C

12 let z: T.B.C

13 }

Listing 2.7: Associated type binding references example

In the generic where clause of the function declaration for function f(), T.A.C is
constrained to have type Int. Of course, the type of constant y is determined to
be Int after resolution. However, the constant z is resolved to have type T.B.C.
The conclusion to be drawn is that the constraint is only valid when the associated
type C is addressed via T.A.C. Therefore, Tifig needed a construct that allowed to
represent the paths to associated types. For that purpose, associated type binding
references were introduced. They are bindings that hold all the names included in
the path, ordered from left to right.

2.3. Related Work

Currently, there are only a handful of IDEs that allow the development of Swift
applications. These alternatives to Tifig are Xcode [21], AppCode [1] and CLion
[3]. Xcode is a proprietary IDE developed by Apple Inc., that allows to write
applications in Objective-C, C++ and Swift. AppCode and CLion are both
developed by JetBrains. While AppCode is intended for the development of iOS

20

and macOS applications, CLion is a cross-platform IDE for developing applications
in C and C++. A plug-in allows the development of Swift code in CLion.
In the following, the above IDEs are compared by the criteria cost, operating
system compatibilities and iOS and macOS development. An overview is given in
Table 2.1.

Criteria Tifig Xcode AppCode CLion

Cost free free paid paid
Compatible to macOS X X X X
Compatible to Linux X X
Compatible to Windows (X) (X)
iOS/macOS development X X

Table 2.1.: Swift IDE comparison

The goal of Tifig is to allow cross-platform development of Swift applications.
Therefore, CLion with its Swift plug-in is the closest competitor. The compatibility
to Windows is put in parentheses, because the IDEs can be run on Windows, but
there is no Swift compiler implementation for Windows yet. The advantage of
Tifig compared to CLion is that it is freely available, whereas CLion has to be paid
via a subscription. In contrast to Xcode and AppCode, both Tifig and CLion are
not capable of building iOS and macOS applications. This is probably the biggest
disadvantage of Tifig.

21

22

3. Enhancing Tifig’s Generics
System

With the release of Swift version 4, Apple Inc. introduced several changes to Swift’s
generics system. These changes allow developers of Swift applications to be even
more expressive than before. For developers of language tooling like the Tifig IDE,
the need for integrating the changes into the existing infrastructure arises. But also,
the developers and contributors working on the Swift compiler, the standard and
core libraries and the Swift package manager need to update their infrastructure,
in order to remain compatible with the newest language version.
The realization of the changes introduced by the accepted proposals mentioned
in section 1.2 are documented in this chapter. For each of the proposals, a brief
introduction is given, pointing out the syntactic changes in Swift’s grammar. Then,
with the new grammar in mind, the given lexer and parser infrastructure of Tifig
is analyzed. The analysis then is continued on the indexer infrastructure, along
with the included type checker mechanisms. Having completed the analysis, the
implementation specifics are documented. How the implementation is tested is
discussed in section 3.4. To round off the chapter, the flaws still present in the
current implementation of Tifig are described in section 3.5.
Note, that this chapter requires previous knowledge of the Swift programming
language and the Tifig plug-in architecture. The reader is advised to at least study
the short overview section 2.1. Furthermore, it is strongly recommended to read
through [30] before going ahead.

3.1. Generic Subscripts

The use of subscripts allows Swift developers to define an access mechanism for the
members of their custom types in a manner that is commonly known for arrays or
collections in other programming languages.

3.1.1. Introduction

Subscripts can be declared in the scope of classes, structures, enumerations, exten-
sions and protocols. It is possible to define an arbitrary number of subscripts for

23

each type, as long as they differ in the types, argument labels and number of their
arguments or their return type. Listing 3.1 shows how a subscript can be called. In
this example, getting an element of an array by using an index in square brackets
right after the name of the constant holding the array (line 3), is illustrated.

1 let arr = [1,2,3,4,5] // assigning an Array <Int > to the constant arr

2
3 let thirdElem = arr[2] // accessing element at index 2 with subscript

Listing 3.1: Subscript call example

To better understand how subscripts can be declared for custom types, a short
example is provided in Listing 3.2. As can be seen, the use cases for the subscript
notation are not limited to using indices in the form of integer values. Here, a
house is described by the kind and the number of each kind of rooms it has. The
subscript is then declared to take a String describing a room and returning the
count of the given room kind. The declaration of the subscript ranges from lines
10 to 15 and an additional example of a subscript call is visible on line 21.

1 struct House {

2 let rooms = [

3 (name: "bedroom", count: 2),

4 (name: "bathroom", count: 2),

5 (name: "kitchen", count: 1),

6 (name: "livingroom", count: 1)

7]

8
9 // subscript declaration

10 subscript(roomName: String) -> Int {

11 guard let room = rooms.first(where: { $0.name == roomName }) else {

12 return 0

13 }

14 return room.count

15 }

16
17 }

18
19 let myHouse = House ()

20
21 print("My house has \(myHouse["bedroom"]) bedrooms.")

22 // prints: My house has 2 bedrooms.

Listing 3.2: Subscript declaration example

The general syntax of a subscript definition is shown in Listing 3.3. The definition
and formatting is taken from the official Swift programming language reference [16]
to avoid ambiguity. The subscript declaration starts with the keyword subscript,
followed by the subscript’s parameters in parentheses. Finally, the signature of

24

the subscript is completed by providing the subscript’s return type. The body of
the subscript declaration contains a getter and setter introduced by the keywords
get and set. These can be omitted, if the subscript is not intended to change the
type it operates on. The body then simply contains statements (as was the case in
Listing 3.2). However, this has no impact on the implementation coming up.

1 subscript (parameters) -> return type {

2 get {

3 statements

4 }

5 set(setter name) {

6 statements

7 }

8 }

Listing 3.3: Subscript declaration syntax

To complete the introduction of subscripts, the grammar of subscript declarations
is shown in Figure 3.1. Note, that this excerpt shows the grammar for Swift 3.1,
before subscripts were extended to make use of generics. Again this overview is
taken from [16].

subscript-declaration → subscript-head subscript-result code-block
subscript-declaration → subscript-head subscript-result getter-setter-block
subscript-declaration → subscript-head subscript-result getter-setter-keyword-block
subscript-head → attributesopt declaration-modifiersopt subscript parameter-clause
subscript-result → -> attributesopt type

Figure 3.1.: Subscript declaration grammar Swift 3.1

As was mentioned above, subscripts can also be declared within protocol decla-
rations. In that case, the declaration is referred to as a subscript requirement
(only the subscript signature can be declared). The syntax and grammar for these
declarations differ from what was shown before. Listing 3.4 presents the special
syntax for protocol subscript requirements.

1 subscript (parameters) -> return type { get set }

Listing 3.4: Protocol subscript requirement syntax

In Figure 3.2, the grammar for protocol subscript requirements is given. Note, that
the grammar directly references the two last grammar entries shown in Figure 3.1.

25

protocol-subscript-declaration → subscript-head subscript-result getter-setter-keyword-block

Figure 3.2.: Protocol subscript requirement grammar Swift 3.1

The following section points out the changes introduced to subscripts with the
release of Swift 4.

3.1.2. Making Subscripts Generic

In his proposal [22], Eidhof suggested to extend subscripts with generics. The
motivation behind this change was to reduce the number of specific subscripts
with essentially the same behaviour and to translate some generic methods into
subscripts to make their usage feel more natural. The extension does not only affect
the developers writing Swift applications, but also benefits the implementation of
the standard library.

1 extension Collection {

2
3 // subscript declaration

4 subscript <Indices: Sequence >(indices indices: Indices) -> [Iterator.Element]

5 where Indices.Iterator.Element == Index {

6 var result: [Iterator.Element] = []

7 for index in indices {

8 result.append(self[index])

9 }

10 return result

11 }

12
13 }

14
15 let arr = [1,2,3,4,5,6]

16 print(arr[indices: [0 ,2 ,4]]) // prints: [1, 3, 5]

17 print(arr[indices: 1...4]) // prints: [2, 3, 4, 5]

Listing 3.5: Generic subscript example

In Listing 3.5, a simple example of a generic subscript is shown. It is declared in an
extension of the Collection protocol (lines 4 to 11), which is part of the standard
library. Right after the subscript keyword, the generic parameter clause <Indices:
Sequence> is provided. The generic type parameter Indices, which has to conform
to Sequence, is then used as the type of the subscript’s parameter. Another new
syntactic element is the generic where clause, that optionally follows the return
type (line 5). After the keyword where, an arbitrary number of constraints for the
generic parameter and its associated types can be formulated. In this example, the
constraint makes sure, that the elements of the sequence parameter match the type
of the collections index type. Both the generic parameter clause and the generic

26

where clause are syntactically equivalent to the corresponding syntactic elements
in function declarations.
The updated Swift 4 grammar for subscript declarations shown in Figure 3.3
contains no surprises. At the expected positions, the generic parameter clause
and the generic where clause were inserted and marked as optional. The bold
highlighting has no special meaning other than to make clear where the changes
occurred.

subscript-declaration → subscript-head subscript-result generic-where-clauseopt code-block
subscript-declaration → subscript-head subscript-result generic-where-clauseopt

getter-setter-block
subscript-declaration → subscript-head subscript-result generic-where-clauseopt

getter-setter-keyword-block
subscript-head → attributesopt declaration-modifiersopt subscript

generic-parameter-clauseopt parameter-clause
subscript-result → -> attributesopt type

Figure 3.3.: Subscript declaration grammar Swift 4

At this point, an interesting observation can be made. The syntax for subscript
declarations looks remarkably similar to the syntax of function declarations. A quick
look at the function declaration grammar in Listing 3.4 underlines the observation.
The differences are the following:

• Subscript declarations have no name. The sequence of symbols func (identifier
| operator) of the function declaration can therefore be mapped to the
terminal symbol subscript of the subscript declaration.

• Subscripts are not (yet) capable of throwing or rethrowing. Therefore, the
two production rules for function-signature can be combined into one, leaving
out the terminal symbols throw and rethrow. To further close the gap
between functions and subscripts, a proposal has already been formulated
and is currently available as a draft [29].

• The non-terminal symbol subscript-result is not optional. The corresponding
non-terminal symbol function-result is, however.

function-declaration → function-head function-name generic-parameter-clauseopt
function-signature generic-where-clauseopt function-bodyopt

function-head → attributesopt declaration-modifiersopt func

function-name → identifier | operator
function-signature → parameter-clause throwsopt function-resultopt
function-signature → parameter-clause rethrowsopt function-resultopt
function-result → -> attributesopt type

Figure 3.4.: Function declaration grammar Swift 4

27

The similarities between subscripts and functions have an important impact on how
generics can be introduced to the Tifig infrastructure. This is further elaborated in
section 3.1.3.
For the sake of completeness, the grammar for protocol subscript requirements is
illustrated in Figure 3.5.

protocol-subscript-declaration → subscript-head subscript-result generic-where-clauseopt
getter-setter-keyword-block

Figure 3.5.: Protocol subscript requirements grammar Swift 4

In this section, a brief (and incomplete) introduction to subscripts and the cor-
responding changes with the release of Swift 4 has been provided. For a more
detailed documentation, the reader is advised to consult [16].

3.1.3. Implementation

When changing the infrastructure of Tifig, it is advisable to follow a certain process.
First, the lexer generating the tokens of the Swift source code is updated, if
necessary. Then, the parser is extended to be able to consume the newly created or
reused tokens. This results in necessary changes to the AST. Finally, the indexer
implementation is revisited. This also includes the integrated type checker.

Changes to the Lexer

In section 3.1.2, the similarities between generic subscript declarations and function
declarations were discussed. For the lexer, the conclusion to be drawn was that the
introduction of new tokens was not necessary. The additions to subscripts were
built using the same tokens as have been used in function declarations all along.

Changes to the Parser and the AST

In order to build a correct AST, the recursive descent parser had to be ad-
justed to the new language syntax. However, the changes were straightfor-
ward. The parser package, which is part of the ch.hsr.ifs.tifig.core plugin,
contains the DeclParser class. This class is responsible for the correct pars-
ing of the various declarations of Swift. To support generic parameter clauses
and generic where clauses, the already existing methods subscriptDecl() and
protocolSubscriptDecl() needed to be extended. Fortunately, Tifig’s infrastruc-
ture already provided classes GenericParameterClause and GenericWhereClause,
as well as the method parseIf of class ParserModule, which parses the before

28

mentioned constructs, if present. Listing 3.6 shows the complete implementation
of the changed subscriptDecl() method.

1 private SubscriptDecl subscriptDecl () throws RecognitionException {

2 final Name subscriptName = parseKeywordName(Kind.KW_SUBSCRIPT);

3
4 final GenericParameterClause genericParameterClause =

5 parseIf(Kind.LANGLEBRACKET , this:: genericParameterClause);

6 final ParameterClause parameterClause = parse(this:: parameterClause);

7 match(Kind.ARROW);

8 final IASTType returnType = parse(typeParser ::type);

9 final GenericWhereClause genericWhereClause =

10 parseIf(Kind.KW_WHERE , this:: genericWhereClause);

11
12 CodeBlock getterBlock = null;

13 VarDeclClauseList clauseList = null;

14 if(speculate(this:: varDeclClauseList)) {

15 clauseList = parse(this:: varDeclClauseList);

16 if(! isValidVarDeclClauseList(clauseList)) {

17 throw new RecognitionException("unknown variable declaration clause");

18 }

19 } else {

20 getterBlock = parse(stmtParser :: codeBlock);

21 }

22 return new SubscriptDecl(subscriptName , genericParameterClause ,

23 parameterClause , returnType , genericWhereClause , getterBlock ,

24 clauseList);

25 }

Listing 3.6: Parsing subscript declarations

Lines 4 to 5 are responsible for the parsing of the generic parameter clause, whereas
lines 9 to 10 parse the generic where clause, if present. As the result of the
method call, a new instance of SubscriptDecl is returned. The constructor on
lines 22 to 24 takes two new arguments, namely genericParameterClause and
genericWhereClause. Note that this required changes to the SubscriptDecl class,
which will be explained later in this section.
Listing 3.7 shows the corresponding implementation for parsing generic subscript
requirements in protocols.

1 private ProtocolSubscriptDecl protocolSubscriptDecl ()

2 throws RecognitionException {

3 final Name subscriptName = parseKeywordName(Kind.KW_SUBSCRIPT);

4 final GenericParameterClause genericParameterClause =

5 parseIf(Kind.LANGLEBRACKET , this:: genericParameterClause);

6 final ParameterClause parameterClause = parse(this:: parameterClause);

7 match(Kind.ARROW);

8 final IASTType returnType = parse(typeParser ::type);

9 final GenericWhereClause genericWhereClause =

10 parseIf(Kind.KW_WHERE , this:: genericWhereClause);

11 final VarDeclClauseList clauseList = parse(this:: varDeclClauseList);

12 if(! isValidVarDeclClauseList(clauseList , ClauseType.get , ClauseType.set)) {

13 throw new RecognitionException("unknown var decl clause");

29

14 }

15 return new ProtocolSubscriptDecl(subscriptName , genericParameterClause ,

16 parameterClause , returnType , genericWhereClause , clauseList);

17 }

Listing 3.7: Parsing protocol subscript requirements

Parsing the generic parameter clause is done on lines 4 to 5. Parsing the generic
where clause takes place on lines 9 to 10. Again, the constructor of the return type,
here, an instance of ProtocolSubscriptDecl, was extended to take the additional
arguments genericParameterClause and genericWhereClause. This completes
the necessary changes introduced to the parser infrastructure.
The modifications explained so far were not compatible with the AST implementa-
tion of Tifig.
The classes SubscriptDecl and ProtocolSubscriptDecl both inherit from class
Decl, which in turn inherits from ASTNode. The modifications to class SubscriptDecl
are shown in Listing 3.8.

1 public class SubscriptDecl extends Decl implements IFunctionLikeDecl ,

2 IGeneralizable {

3 private final Name subscriptName;

4 private final GenericParameterClause genericParameterClause;

5 // ...

6 private final GenericWhereClause genericWhereClause;

7 // ...

8
9 public SubscriptDecl(Name subscriptName ,

10 GenericParameterClause genericParameterClause ,

11 ParameterClause parameterClause , IASTType returnType ,

12 GenericWhereClause genericWhereClause , CodeBlock getterBlock ,

13 VarDeclClauseList clauseList) {

14 this.subscriptName = subscriptName;

15 this.genericParameterClause = genericParameterClause;

16 this.parameterClause = parameterClause;

17 this.returnType = returnType;

18 this.genericWhereClause = genericWhereClause;

19 this.getterBlock = getterBlock;

20 this.clauseList = clauseList;

21 }

22
23 @Override

24 public GenericParameterClause getGenericParameterClause () {

25 return genericParameterClause;

26 }

27
28 @Override

29 public GenericWhereClause getGenericWhereClause () {

30 return genericWhereClause;

31 }

32
33 // ...

34
35 @Override

30

36 public boolean accept(ASTVisitor visitor) {

37 return acceptVisitor(visitor , getAttributes (), subscriptName ,

38 genericParameterClause , parameterClause , returnType ,

39 genericWhereClause , getterBlock , clauseList);

40 }

41
42 }

Listing 3.8: Subscript declaration node

Essentially, the properties genericParameterClause and genericWhereClause

on lines 4 and 6 complete the AST node for subscript declarations. The con-
structor was extended to take the new arguments genericParameterClause and
genericWhereClause and upon instantiation, to assign the arguments to the
corresponding properties. Lines 23 to 31 show the implementation of getter meth-
ods for the new properties. These methods were overridden in order to make
SubscriptDecl implement the IGeneralizable interface. Finally, every AST
node has to override an accept() method, taking an argument of type ASTVistor,
to make the node traversable. Here, the child nodes genericParameterClause

and genericWhereClause were added on line 38 and 39, respectively. Listing 3.9
shows the corresponding implementation for the protocol subscript requirement
node.

1 public class ProtocolSubscriptDecl extends Decl implements

2 IProtocolMemberDecl , IFunctionLikeDecl , IGeneralizable {

3 private final Name subscriptName;

4 private final GenericParameterClause genericParameterClause;

5 // ...

6 private final GenericWhereClause genericWhereClause;

7 // ...

8
9 public ProtocolSubscriptDecl(Name subscriptName ,

10 GenericParameterClause genericParameterClause ,

11 ParameterClause parameterClause ,

12 IASTType returnType , GenericWhereClause genericWhereClause ,

13 VarDeclClauseList clauseList) {

14 this.subscriptName = subscriptName;

15 this.genericParameterClause = genericParameterClause;

16 this.parameterClause = parameterClause;

17 this.returnType = returnType;

18 this.genericWhereClause = genericWhereClause;

19 this.clauseList = clauseList;

20 }

21
22 @Override

23 public GenericParameterClause getGenericParameterClause () {

24 return genericParameterClause;

25 }

26
27 @Override

28 public GenericWhereClause getGenericWhereClause () {

29 return genericWhereClause;

31

30 }

31
32 // ...

33
34 @Override

35 public boolean accept(ASTVisitor visitor) {

36 return acceptVisitor(visitor , getAttributes (), subscriptName ,

37 genericParameterClause , parameterClause , returnType ,

38 genericWhereClause , clauseList);

39 }

40
41 // ...

42 }

Listing 3.9: Protocol subscript requirement node

Having introduced the above changes, Tifig’s parser is now capable of building
and traversing the AST for generic subscripts. To round off this section, a brief
example shall be given. Figure 3.6 shows the AST generated for the example in
Listing 3.5.

Figure 3.6.: AST for generic subscript declaration

The SubscriptDecl is a child node to the DeclBody of the extension declaration.
Highlighted with thick borders are, next to the SubscriptDecl node, the newly
available child nodes GenericParameterClause and GenericWhereClause.

32

Changes to the Indexer and the Type Checker

As with the AST nodes in the previous section, the bindings for subscripts already
existed in the ch.hsr.ifs.tifig.core.indexer.bindings package. The goal
was therefore to extend the infrastructure by the necessary functionality. First
of all, the ISubscriptBinding interface needed to be enriched. This is shown in
Listing 3.10.

1 public interface ISubscriptBinding extends IMemberBinding , IStorageBinding {

2 void setParameterScope(ParameterScope parameterScope);

3
4 void setGenericParameterScope(GenericParameterScope genericParameterScope);

5
6 GenericParameterScope getGenericParameterScope ();

7
8 List <IParameterBinding > getParameters ();

9
10 boolean isGeneric ();

11
12 List <IArchetypeType > getGenericTypeParameters ();

13 }

Listing 3.10: Subscript binding interface

In addition to the scope for subscript parameters, a generic parameter scope was
needed. The getter and setter signatures were defined on lines 4 and 6. A helper
method to get the generic type parameters of the subscript was declared on line 12.
Finally, it is helpful to be able to determine, whether a subscript is in fact generic
or not. Therefore, all implementations of ISubscriptBinding need to implement
the isGeneric() method (line 10).
Because SubscriptBinding inherits from ISubscriptBinding, the above men-
tioned methods had to be implemented. The implementation was straightforward.
However, a few interesting changes occurred that are worth discussing. The source
code containing these changes is shown in Listing 3.11.

1 public class SubscriptBinding extends AbstractBaseBinding implements

2 ISubscriptBinding , IDeclaredBinding {

3 // ...

4
5 @Override

6 public void _validate () {

7 final SubscriptDecl subscriptDecl =

8 (SubscriptDecl)getDeclarationName (). getParent ();

9 TypeUtils.resolveOwner(this);

10 TypeUtils.resolveGenericParameters(this ,

11 subscriptDecl.getGenericParameterClause (),

12 subscriptDecl.getGenericWhereClause (), true);

13 final FunctionType type = TypeUtils.getFunctionType(getParameters (),

14 ThrowingBehaviour.None , subscriptDecl.getReturnType ());

15 setType(type);

33

16 TypeUtils.inferAdditionalTypeParameterRequirements(type ,

17 getGenericTypeParameters ());

18 if(subscriptDecl.getGetterBlock () != null) {

19 resolveGetterBlock(subscriptDecl.getGetterBlock ());

20 } else {

21 for(final VarDeclClause clause : subscriptDecl.getClauses ()) {

22 resolveVarDeclClause(clause);

23 }

24 }

25 }

26
27 // ...

28 }

Listing 3.11: Subscript binding

Every binding extends the AbstractBaseBinding class. This in turn means that
every binding must provide an implementation of the validate() method. Es-
sentially, this method attempts to resolve all possibly unknown members of the
binding it is called on. Note, that this happens as a side effect and no new bind-
ing is returned. To support the resolution of the newly introduced generic type
parameters, the static call to resolveGenericParameterClause() was added on
lines 11 to 13. This method was already defined in the utils class TypeUtils,
because it is not only needed for subscripts, but also for functions. A call to
inferAdditionalTypeParameterRequirements() was added on line 17, to infer
additional requirements for the individual type parameters from their use in the
rest of the subscript signature. Luckily, the implementations of these methods were
already existing in TypeUtils and usable without additional changes.

1 public class ProtocolSubscriptBinding extends SubscriptBinding {

2 // ...

3
4 @Override

5 public void _validate () {

6 final ProtocolSubscriptDecl protocolSubscriptDecl =

7 (ProtocolSubscriptDecl)getDeclarationName (). getParent ();

8 TypeUtils.resolveOwner(this);

9 TypeUtils.resolveGenericParameters(this ,

10 protocolSubscriptDecl.getGenericParameterClause (),

11 protocolSubscriptDecl.getGenericWhereClause (), true);

12 final FunctionType type = TypeUtils.getFunctionType(getParameters (),

13 ThrowingBehaviour.None , protocolSubscriptDecl.getReturnType ());

14 setType(type);

15 TypeUtils.inferAdditionalTypeParameterRequirements(type ,

16 getGenericTypeParameters ());

17 }

18 }

Listing 3.12: Protocol subscript binding

34

For class ProtocolSubscriptBinding, the adjustment was much simpler, because
it does not directly inherit from ISubscriptBinding, but extends SubscriptBinding.
The final implementation of its validate() method is shown in Listing 3.12.
So far, it is possible to parse generic subscripts. Also, the corresponding bindings
have been adjusted. What was left to do was to update the resolution logic in the
type checker.

1 public class DefinitionPassVisitor extends ASTVisitor {

2 // ...

3
4 private void createProtocolSubscriptBinding(

5 ProtocolSubscriptDecl protocolSubscriptDecl) {

6 final Name subscriptName = protocolSubscriptDecl.getDeclaredName ();

7 final boolean isSettable = protocolSubscriptDecl.hasSetter ();

8 final ProtocolSubscriptBinding protocolSubscriptBinding =

9 new ProtocolSubscriptBinding(subscriptName , isSettable);

10 currentScope.define(protocolSubscriptBinding);

11 if(protocolSubscriptDecl.getGenericParameterClause () != null) {

12 genericParameterScope = new GenericParameterScope ();

13 protocolSubscriptBinding.setGenericParameterScope(

14 genericParameterScope);

15 }

16 parameterScope = new ParameterScope(null);

17 protocolSubscriptBinding.setParameterScope(parameterScope);

18 }

19
20 // ...

21
22 private void createSubscriptBinding(SubscriptDecl subscriptDecl) {

23 final Name subscriptName = subscriptDecl.getDeclaredName ();

24 final AccessLevel accessLevel =

25 getAccessLevelFromDeclAndCurrentScope(subscriptDecl);

26 final boolean isOverride =

27 subscriptDecl.hasDeclModifier(DeclModifier.Override);

28 final boolean isSettable = subscriptDecl.hasSetter ();

29 final ISubscriptBinding subscriptBinding = new SubscriptBinding(

30 accessLevel , subscriptName , isOverride , isSettable);

31 currentScope.define(subscriptBinding);

32 if(subscriptDecl.getGenericParameterClause () != null) {

33 genericParameterScope = new GenericParameterScope ();

34 subscriptBinding.setGenericParameterScope(genericParameterScope);

35 }

36 parameterScope = new ParameterScope(null);

37 subscriptBinding.setParameterScope(parameterScope);

38 }

39
40 // ...

41 }

Listing 3.13: Definition Pass Visitor

Listing 3.13 shows an excerpt of the DefinitionPassVisitor class. Its purpose
is to visit AST nodes and, while doing so, to create bindings for all names oc-
curring in the AST. This also happens for subscript declarations and protocol

35

subscript requirements. The two methods in the listing create new bindings for
SubscriptDecl and ProtocolSubscriptDecl nodes. New are the lines 11 to 15
and 32 to 35, respectively. Basically, it is now necessary to check for a generic
parameter clause and if present, a new generic parameter scope has to be created
and assigned to the binding.
Finally, a minimal change to the constraint system was necessary. The change
occured in the getGenericTypeParametersForBinding method, as can be seen in
Listing 3.14.

1 public class ConstraintSystem {

2 // ...

3
4 private List <IArchetypeType > getGenericTypeParametersForBinding(

5 IBinding binding) {

6 if(binding instanceof IFunctionBinding) {

7 final IFunctionBinding functionBinding = (IFunctionBinding)binding;

8 if(functionBinding.isGeneric ()) {

9 return functionBinding.getGenericTypeParameters ();

10 }

11 } else if(binding instanceof ISubscriptBinding) {

12 final ISubscriptBinding subscriptBinding = (ISubscriptBinding)binding;

13 if(subscriptBinding.isGeneric ()) {

14 return subscriptBinding.getGenericTypeParameters ();

15 }

16 }

17 return new ArrayList <>();

18 }

19
20 // ...

21 }

Listing 3.14: Constraint System

This helper method is used by the constraint system to get the type of member
references. So far, the method had to deal with function bindings only. The
handling of the generic type parameters of subscripts was added on lines 11 to 16.

3.1.4. Summary

In this section, Tifig’s infrastructure was extended to support generic subscripts.
It was shown in detail how such an extension can be achieved following the path of
the compiler.

3.2. Class & Subtype Existentials

Existential types appear in many popular programming languages. In Scala,
existential types can be defined using the forSome keyword. This is demonstrated

36

in Listing 3.15. Without going into much detail, it can be observed that the
existential type Existential is defined (line 8) and later used as argument type
in the printAll method (line 10).

1 class MyClass[T](val value: T) {

2 def print (): Unit = {

3 println(value)

4 }

5 }

6
7 object Main {

8 type Existential = MyClass[A] forSome { type A }

9
10 def printAll(list: List[Existential]): Unit = {

11 list.foreach(x => x.print)

12 }

13
14 def main(args: Array[String]): Unit = {

15 val x = new MyClass("Scala")

16 val y = new MyClass (1: Int)

17 val z = new MyClass (0.1: Double)

18 printAll(List(x,y,z))

19 }

20 }

21 // prints:

22 // Scala

23 // 1

24 // 0.1

Listing 3.15: Existential types in Scala

In Java, bounded existential types can be expressed as a parameterized type and
instantiated by a wildcard ? together with an upper or lower bound. For example,
List<? extends Animal> or List<? super Animal> [4].
In this section, the introduction of class and subtype existentials to Swift is
discussed.

3.2.1. Introduction

As of Swift 3.1, the only existentials representable were conformances to a set of
protocols. This also includes the set containing a single protocol or zero protocols.
The latter is represented by the Any type [14]. To express conformances to two or
more protocols, Swift comes with a special syntax for so called protocol composition
types. Protocol composition types can be used when specifying a type in type
annotations, in generic parameter clauses, and in generic where clauses [16]. Listing
3.16 shows an example of how protocol composition types are used in a generic
parameter clause.

37

1 protocol Runner {

2 func run()

3 }

4
5 protocol Bicyclist {

6 func ride()

7 }

8
9 protocol Swimmer {

10 func swim()

11 }

12
13 class Triathlete: Runner , Bicyclist , Swimmer {

14 func run() { print("I’m running!") }

15 func ride() { print("I’m riding my bicycle!") }

16 func swim() { print("I’m swimming!") }

17 }

18
19 func participate <T: Runner & Bicyclist & Swimmer >(_ participant: T) {

20 participant.run()

21 participant.ride()

22 participant.swim()

23 }

24
25 let participant = Triathlete ()

26 participate(participant)

27 // prints:

28 // I’m running!

29 // I’m riding my bicycle!

30 // I’m swimming!

Listing 3.16: Protocol composition type example

In the example, three protocols are declared, each of which contains a method
requirement (lines 1 to 11). To conform to protocol Runner, a type must implement
the run() method. The same goes for Bicyclist and Swimmer, where a conforming
type must implement the method ride() or swim(), respectively. After that, the
class Triathlete is declared (lines 13 to 17). The class must conform to all of
the above protocols, which is stated in the class’s type inheritance clause (line
13). Going on, a generic function participate() is declared (lines 19 to 23).
The generic parameter T is constrained by the protocol composition type Runner

& Bicyclist & Swimmer (line 19). Because it is known that T conforms to all
the three protocols, all three methods declared in the protocols can be called on
participant, the parameter of the function with type T. Finally, participate()
is called with an instance of class Triathlete (line 26).
The example already reveals the syntax of protocol composition types. For the
sake of completeness, the syntax is shown again in Listing 3.17. As was the case in
section 3.1.1, the definition and formatting is taken from [16].

38

1 Protocol 1 & Protocol 2

Listing 3.17: Protocol composition syntax

To make the developers’ lives a bit easier, it is allowed to chain multiple protocols
in one protocol composition type. This can be better observed in Figure 3.7, which
shows the grammar for protocol composition types.

protocol-composition-type → type-identifier & protocol-composition-continuation
protocol-composition-continuation → type-identifier | protocol-composition-type

Figure 3.7.: Protocol composition type grammar

The non-terminal symbol protocol-composition-type is defined recursively via protocol-
composition-continuation. This way, it is ensured that the composition is composed
of at least two type-identifer symbols. Note, that the grammar does not specify
the kind of type identifiers that can be part of the protocol composition type. This
is defined in text form in [16].
The following section points out the changes introduced to protocol composition
types with the release of Swift 4.

3.2.2. Adding Class & Subtype Existentials

Hart and Zheng wrote a proposal to enrich Swift with class and subtype existentials
that conform to protocols, to bring more expressive power to Swift’s type system
[25]. The main motivation behind the proposal was to bring Swift closer to the
expressiveness of Objective-C. This is not a matter of taste, but because Swift
must be capable of bridging types from Objective-C.
Listing 3.18 shows an example of how the new feature can be used. For that, the
example of Listing 3.16 was extended with class TriathlonWinner, which inherits
from Triathlete (lines 13 to 15). The class also conforms to the newly introduced
protocol Winner (lines 3 to 5). It therefore has to implement the win() method.
A generic function win() was also added, taking an argument of type T (lines 23
to 26). This time, the generic type parameter T is not only constrained by protocol
Winner, but must also be a subclass of Triathlete. Note, that the syntax of the
protocol composition type remains the same, but contains a class type (line 23).
This was not possible in Swift 3.1.

1 // ...

2
3 protocol Winner {

4 func win()

39

5 }

6
7 class Triathlete: Runner , Bicyclist , Swimmer {

8 func run() { print("I’m running!") }

9 func ride() { print("I’m riding my bicycle!") }

10 func swim() { print("I’m swimming!") }

11 }

12
13 class TriathlonWinner: Triathlete , Winner {

14 func win() { print("I won!") }

15 }

16
17 func participate <T: Runner & Bicyclist & Swimmer >(_ participant: T) {

18 participant.run()

19 participant.ride()

20 participant.swim()

21 }

22
23 func win <T: Triathlete & Winner >(_ winner: T) {

24 participate(winner)

25 winner.win()

26 }

27
28 let winner = TriathlonWinner ()

29 win(winner)

30 // prints:

31 // I’m running!

32 // I’m riding my bicycle!

33 // I’m swimming!

34 // I won!

Listing 3.18: Subtype existential example

The syntax and grammar for protocol composition types remains the same, although
a wider variety of non-terminal symbols type-identifier is allowed. Because this is a
semantic constraint, it is written down in text form, accompanying the grammar
definition.
Each item in a protocol composition list is either the name of a class, the name of
a protocol or a type alias whose underlying type is a protocol composition type,
a protocol, or a class. When a protocol composition type contains type aliases,
it’s possible for the same protocol to appear more than once. Duplicates are then
ignored. Further, the list of items can contain at most one class [16].
Before heading into implementation details, it is important to point out discrep-
ancies between the proposal text [25], the official specification [16] and the actual
implementation of the Swift compiler:

• The proposal stipulated, that multiple class types can occur in a protocol
composition type, as long as they come from the same type hierarchy. The
idea was, that in this case, the most specialized type would remain part of
the protocol composition type, while the others are discarded as duplicates.

40

Although the proposal is marked as implemented in Swift 4, testing the code
in Listing 3.19 results in a compile error.

1 protocol P {}

2 class C {}

3 class D : C { }

4 class F : D, P { }

5 let t: C & D & P = F() // Should compile according to proposal.

6 // Compile error line 5: protocol - constrained type cannot contain class

7 // ’D’ because it already contains class ’C’

Listing 3.19: Feature not implemented in Swift 4

The code provided in the listing is taken directly from the proposal text.
After a brief exchange over the Swift users mailing list [10], it became clear
that only a partial implementation of the proposal found its way into Swift 4.
The discrepancy was then reported on the Swift bug tracker by the author
[11].

• The specification described above states, that duplicates of protocols are
allowed in protocol composition types. The Swift compiler allows the same
for class types. Although the number of class types in the composition is
specified to be one, it is possible to list the same class type multiple times. In
addition, the duplicates can be hidden behind type aliases. The code shown
in Listing 3.20 therefore compiles.

1 protocol P {}

2 protocol Q {}

3 protocol R {}

4 class C {}

5
6 typealias PQC = P & Q & C

7 typealias PQRC = C & PQC & Q & R & C

8
9 let x: PQC & PQRC & R

10 // Type of x: C & P & Q & R

Listing 3.20: Duplicates of class types

To prevent confusion of Tifig users, it was decided to implement class and subtype
existentials according to the implementation of the Swift compiler.

41

3.2.3. Implementation

In this section, the implementation details for class and subtype existentials are
documented. The arrangement of Section 3.1.3 is maintained, meaning that the
introduced changes are listed incrementally from the lexer via the parser to the
indexer.

Changes to the Lexer

The introduction of class and subtype existentials did not require new keywords or
other lexical complements. Therefore, changes to the lexer were not necessary.

Changes to the Parser and the AST

In Section 3.2.2, it was already mentioned that the grammar for protocol compo-
sition types did not undergo any changes between the Swift versions 3.1 and 4.
Although it is now allowed to have class types within protocol composition types,
the AST remains the same. Listing 3.21 shows the declaration of a constant x,
annotated with a protocol composition type (line 5). It can be seen that class C is
part of the protocol composition type.

1 protocol P {}

2 protocol Q {}

3 class C {}

4
5 let x: C & P & Q

Listing 3.21: Subtype existential in protocol composition

An excerpt of the AST generated from this code example is shown in Figure 3.8.
The ASTTypeAnnotation node is part of a TypedPattern with the name x. Its
child node is an ASTProtocolCompositionType node, which represents C & P &

Q. As can be seen, the three children of the ASTProtocolCompositionType are
all ASTTypeIdentifier nodes. Each is parent to one ASTTypeIdentiferElement,
which in turn are parents to the Name nodes C, P and Q.
Obviously, the AST does not differentiate between classes and protocols. On
this level of abstraction, where only the syntactical correctness matters, all type
identifiers are considered the same.

42

Figure 3.8.: AST for subtype existential in protocol composition

Not needing to change the AST means not needing to change the parser, because
the parser’s purpose is to build the AST. Tifig’s parser infrastructure therefore
remained untouched.

Changes to the Indexer and the Type Checker

The previous section showed, that the AST node for protocol composition types
did not change. This is not true for ProtocolCompositionType, the corresponding
index type. Listing 3.22 shows the changed bits of class ProtocolCompositionType.

1 public class ProtocolCompositionType implements IMemberOwner ,

2 IProtocolAdopter {

3 private Set <ProtocolTypeBinding > adoptedProtocols = new LinkedHashSet <>();

4 private ITypeBinding conformanceClass = null;

5
6 // ...

7
8 public void removeAnyObjectConformance () {

9 adoptedProtocols = new LinkedHashSet <>(adoptedProtocols.stream ()

10 .filter(p -> !(p.getDeclarationName (). getIdentifier ()

11 .equals("AnyObject")))

12 .collect(Collectors.toList ()));

13 }

14
15 // ...

16
17 public void setConformanceClass(ITypeBinding conformance) {

43

18 assert(TypeUtils.isClassType(conformance));

19 conformanceClass = conformance;

20 }

21
22 public ITypeBinding getConformanceClass () {

23 return conformanceClass;

24 }

25
26 // ...

27
28 private OverloadSet getOverloadSetFromProtocolExtensions(Name name) {

29 final OverloadSet set = new OverloadSet ();

30 if(conformanceClass instanceof ClassTypeBinding) {

31 final ClassTypeBinding classType =

32 (ClassTypeBinding)conformanceClass;

33 set.merge(classType.getMemberScope (). getLocalOverloadSet(name));

34 } else if(conformanceClass instanceof GenericTypeInstance) {

35 final GenericTypeInstance genericTypeInstance =

36 (GenericTypeInstance)conformanceClass;

37 set.merge (((ClassTypeBinding)genericTypeInstance

38 .getGenericType ())

39 .getMemberScope ()

40 .getLocalOverloadSet(name));

41 }

42
43 // ...

44 return set;

45 }

46
47 // ...

48
49 @Override

50 public IType transform(Function <IType , IType > fn) {

51 final IType transformed = fn.apply(this);

52 if(transformed == null || transformed != this) {

53 return transformed;

54 }

55
56 final ProtocolCompositionType protocolCompositionType =

57 new ProtocolCompositionType ();

58 // ...

59 if(conformanceClass != null) {

60 protocolCompositionType.setConformanceClass(

61 (ITypeBinding)conformanceClass.transform(fn));

62 }

63 return protocolCompositionType;

64 }

65
66 // ...

67
68 @Override

69 public ITypeBinding getExistentialTypeConformanceClass () {

70 return conformanceClass;

71 }

72
73 // ...

74 }

Listing 3.22: Protocol composition type

44

Next to the set adoptedProtocols, a new property conformanceClass of type
ITypeBinding was added (line 4). The corresponding getter and setter methods
were defined on lines 17 to 24. The remaining methods are listed below:

• AnyObject is a protocol, that all classes implicitly conform to. If AnyObject
occurs in a protocol composition type, the annotated variable must be assigned
a class type. This is what is called a class existential. If a class is also part
of the same protocol composition type, the AnyObject protocol becomes
irrelevant. The method removeAnyObjectConformance() was implemented
to remove all occurrences of AnyObject from a protocol composition type
(lines 8 to 13).

• The getOverloadSetFromProtocolExtensions() method is used to gather
all members of adopted protocols listed in the protocol composition type (lines
28 to 45). It was updated to also collect the members of the conformanceClass.
Note, that conformanceClass can be a ClassTypeBinding, but can also be
a GenericTypeInstace.

• transform() is a method that takes a function as its argument, and applies
this function to adopted protocols. Because the protocol composition type has
a new property conformanceClass, transform() with the given function
has to be called on this as well (lines 59 to 62). One can think of transform()
as a map() function on trees. It can for example be used to simplify types or
to remove sugar, depending on the function provided.

• Finally, the method getExistentialTypeConformanceClass() was added,
returning the property conformanceClass. Note the @Override annotation.
A default implementation of this newly introduced method was added to the
IType interface, which is inherited by the ProtocolCompositionType class.

Section 2.2 already gave a quick introduction into archetypes. Archetypes are used
to represent generic parameters. It is therefore not surprising, that archetypes
are affected by the changes to the protocol composition type, because generic
parameters can have a type annotation.

1 public abstract class AbstractBaseArchetypeType extends AbstractBaseBinding

2 implements IArchetypeType {

3 // ...

4 private final ProtocolCompositionType protocolCompositionType =

5 new ProtocolCompositionType ();

6 // ...

7
8 @Override

9 public void setConformanceClass(ITypeBinding conformance) {

10 protocolCompositionType.setConformanceClass(conformance);

45

11 }

12
13 @Override

14 public ITypeBinding getConformanceClass () {

15 validate ();

16 return protocolCompositionType.getConformanceClass ();

17 }

18
19 // ...

20 }

Listing 3.23: Abstract base archetype type

Listing 3.23 shows an excerpt of class AbstractBaseArchetypeType. The class
already has a property of type ProtocolCompositionType (line 3). A getter and
a setter method for the conformanceClass had to be added (lines 9 to 17), that
reroute to the original methods defined on the protocol composition type itself.
Again, both methods are overridden. The original declaration was added in the
IArchetypeType interface. This concludes the changes on the bindings.
The indexer has to perform the transformation of AST types into index types. The
TypeUtils class holds the necessary methods. It is shown in Listing 3.24.

1 final public class TypeUtils {

2 // ...

3
4 private static ProtocolCompositionType transformProtocolCompositionType(

5 ASTProtocolCompositionType astProtocolCompositionType) {

6 final ProtocolCompositionType protocolCompositionType =

7 new ProtocolCompositionType ();

8 boolean isCompositionInvalid = false;

9
10 for(final ASTTypeIdentifier astType : astProtocolCompositionType

11 .getProtocolIdentifiers ()) {

12 IType type = getIndexType(astType);

13 type = removeSugar(type);

14
15 if(type instanceof ProtocolCompositionType) {

16 final ProtocolCompositionType protocolComposition =

17 (ProtocolCompositionType)type;

18 for(final ProtocolTypeBinding protocol : protocolComposition

19 .getAdoptedProtocols ()) {

20 protocolCompositionType.addAdoptedProtocol(protocol);

21 }

22 if(protocolComposition.getConformanceClass () != null) {

23 if(protocolCompositionType.getConformanceClass () == null) {

24 protocolCompositionType.setConformanceClass(

25 protocolComposition.getConformanceClass ());

26 } else if(! protocolCompositionType.getConformanceClass ()

27 .equals(protocolComposition.getConformanceClass ())) {

28 isCompositionInvalid = true;

29 }

30 }

31 } else if(type instanceof ProtocolTypeBinding) {

32 final ProtocolTypeBinding protocol = (ProtocolTypeBinding)type;

46

33 protocolCompositionType.addAdoptedProtocol(protocol);

34 } else if(TypeUtils.isClassType(type)) {

35 final ITypeBinding conformanceClass = (ITypeBinding)type;

36 if(protocolCompositionType.getConformanceClass () == null) {

37 protocolCompositionType.setConformanceClass(conformanceClass);

38 } else if(! protocolCompositionType.getConformanceClass ()

39 .equals(conformanceClass)) {

40 isCompositionInvalid = true;

41 }

42 } else {

43 isCompositionInvalid = true;

44 }

45 }

46
47 if(protocolCompositionType.getConformanceClass () != null) {

48 protocolCompositionType.removeAnyObjectConformance ();

49 }

50
51 if(isCompositionInvalid) {

52 return null;

53 }

54
55 return protocolCompositionType;

56 }

57
58 // ...

59
60 public static void addAdoptedProtocolsToArchetype(IArchetypeType archetype ,

61 IASTType astType) {

62 final IType type = resolveAndCleanType(astType);

63 if(type instanceof ProtocolTypeBinding) {

64 final ProtocolTypeBinding protocol = (ProtocolTypeBinding)type;

65 archetype.addAdoptedProtocol(protocol);

66 } else if(type instanceof ProtocolCompositionType) {

67 final ProtocolCompositionType protocolCompositionType =

68 (ProtocolCompositionType)type;

69 for(final ProtocolTypeBinding protocol : protocolCompositionType

70 .getAdoptedProtocols ()) {

71 archetype.addAdoptedProtocol(protocol);

72 }

73 if(protocolCompositionType.getConformanceClass () != null) {

74 archetype.setConformanceClass(protocolCompositionType

75 .getConformanceClass ());

76 }

77 } else if(TypeUtils.isClassType(type)) {

78 final ITypeBinding classType = (ITypeBinding)type;

79 archetype.setConformanceClass(classType);

80 }

81 }

82
83 // ...

84 }

Listing 3.24: Type utils

• The static method transformProtocolCompositionType() (lines 4 to 56)
takes an AST type ASTProtocolCompositionType as its argument. The

47

method is responsible for the transformation of this AST type into a corre-
sponding index type ProtocolCompositionType. In addition, the method
checks, if the protocol composition type is semantically valid. In the previous
version of Tifig, as soon as a non-protocol type identifier occurred, null was
returned, signaling an invalid transformation. This was no longer a possible
approach. Instead, a distinct behavior was implemented depending on whether
the type identifier is an instance of ProtocolCompositionType (lines 15 to
30), a ProtocolTypeBinding (lines 31 to 33) or a class type (lines 34 to 41).
Finally, if the property conformanceClass of ProtocolCompositionType is
set, all occurrences of the AnyObject protocol can be removed (lines 47 to
49). If the semantic check failed at some point, the isCompositionInvalid

flag is set to true. In that case, null is returned. Otherwise, the index type
of the protocol composition type is returned as the result.

• After a new archetype is created, the protocols it adopts must be added to
it. The method addAdoptedProtocols() is used to achieve this. Here, the
lines 73 to 80 were added, for the case where the protocol composition of the
archetype is constrained by a class conformance.

1 public class ConstraintSystem {

2 // ...

3
4 private void addConstraintsForArchetype(IArchetypeType archetype ,

5 IType baseType , Map <IArchetypeType , IType > replacements) {

6 // ...

7
8 if(archetype.getConformanceClass () != null) {

9 simplifier (). addConstraint(ConstraintKind.Subtype , baseType ,

10 archetype.getConformanceClass ());

11 }

12
13 // ...

14 }

15
16 // ...

17 }

Listing 3.25: Constraint system

A class conformance constraint on a type must be checked by the type checker.
In Section 2.1.6, it was shown how the type checker builds a constraint system
for every expression where type-checking is necessary. Listing 3.25 shows part
of the addConstraintsForArchetype() method of class ConstraintSystem. The
method was extended to generate an additional constraint for archetypes, namely
a subtype constraint on the base type to the conformanceClass of the underlying
protocol composition type.

48

1 public class CSSimplify {

2 // ...

3 private SolutionKind matchConcreteTypes(IType type1 , IType type2 ,

4 IType desugar1 , IType desugar2 , ConstraintKind kind ,

5 int flags , List <ConversionRestrictionKind > conversions) {

6 // ...

7
8 if(kind.ordinal () >= ConstraintKind.Subtype.ordinal ()) {

9 // ...

10
11 if(type1.getExistentialTypeConformanceClass () != null &&

12 TypeUtils.isClassType(type2)) {

13 conversions.add(ConversionRestrictionKind.Superclass);

14 }

15
16 // ...

17 }

18
19 // ...

20 }

21
22 // ...

23
24 private SolutionKind matchSuperclassTypes(IType type1 , IType type2 ,

25 int flags) {

26 final int subflags = getDefaultDecompositionOptions(flags);

27 final IType classType1 = type1;

28 final IType classType2 = type2;

29
30 for(ITypeBinding super1 = TypeUtils.getSuperClass(classType1);

31 super1 != null; super1 = TypeUtils.getSuperClass(super1)) {

32 if(matchTypes(super1 , classType2 , ConstraintKind.Equal ,

33 subflags) == SolutionKind.Solved) {

34 return SolutionKind.Solved;

35 }

36 }

37
38 return SolutionKind.Error;

39 }

40
41 private SolutionKind matchExistentialTypes(IType type1 , IType type2 ,

42 ConstraintKind kind , int flags) {

43 // ...

44
45 if(type2.getExistentialTypeConformanceClass () != null) {

46
47 if(type1.isExistentialType ()) {

48 if(type1.getExistentialTypeConformanceClass () != null) {

49 return matchSuperclassTypes(

50 type1.getExistentialTypeConformanceClass (),

51 type2.getExistentialTypeConformanceClass (),

52 subflags);

53 }

54 } else if(TypeUtils.isClassType(type1)) {

55 return matchSuperclassTypes(type1 ,

56 type2.getExistentialTypeConformanceClass (),

57 subflags);

58 }

59
60 return SolutionKind.Error;

61
62 }

49

63
64 // ...

65 }

66
67 // ...

68 }

Listing 3.26: Constraint system simplifier

The final adjustment that was undertaken took place in the simplifier that is part
of the constraint system. Listing 3.26 shows an excerpt of the methods of class
CSSimplify described below:

• The method matchConcreteTypes() checks whether two types provided as
arguments fulfil a given constraint. While doing so, it often happens that
new constraints have to be generated. The method had to be adjusted in
order to create a new subtype conversion restriction, whenever an existential
type with a class conformance encounters a class type (lines 11 to 13).

• matchExistentialTypes() (lines 41 to 65) is triggered by adding the su-
perclass conversion restriction. The method assumes that the argument
type2 is an existential type and then tries to verify the constraint repre-
sented by the argument kind between type1 and type2. If type1 too is
an existential type, the matchSuperClassTypes() method is called with the
conformanceClass properties of type1 and type2. If type1 is already a class
type, matchSuperClassTypes() is called with type1 and the conformance
class of type2.

• matchSuperClassTypes() checks, if the argument type2 is a super class of
type1. The method had to be adjusted to work for all kinds of types and
not only ITypeBinding instances (lines 24 to 39).

If the types provided match, SolutionKind.Solved is returned, indicating that
the constraint under inspection is fulfilled and must no longer be kept active in the
constraint system.

3.2.4. Summary

This section explained how class and subtype existentials were implemented in
Tifig. It was highlighted, that semantic changes can have a large influence on
the implementation of the indexer, while the underlying syntax does not change.
Finally, it was shown that a thorough study of specifications, proposals and existing
implementations is necessary to avoid unintended behavior of the IDE.

50

3.3. Where Clauses on Associated Types

Associated types are used in Swift as a way to define placeholder types in protocol
definitions.

3.3.1. Introduction

The associated type stands for a type, that can be used to define members in the
protocol. When the protocol is adopted, the associated type must be replaced with
an actual type. This is best shown with an example. Listing 3.27 illustrates the
use of associated types in a protocol declaration.

1 protocol Container {

2 associatedtype Element

3 mutating func append(_ element: Element)

4 var count: Int { get }

5 subscript(i: Int) -> Element { get }

6 }

7
8 extension Container {

9 func fold <Result >(_ initialValue: Result , _ binaryOperation:

10 (Result , Element) -> Result) -> Result {

11 guard count != 0 else { return initialValue }

12 var intermediate = initialValue

13 for index in 0..< count {

14 intermediate = binaryOperation(intermediate , self[index])

15 }

16 return intermediate

17 }

18 }

19
20 struct NumberContainer: Container {

21 private var elements = [Int]()

22 typealias Element = Int

23 mutating func append(_ element: Element) {

24 elements.append(element)

25 }

26 var count: Int { return elements.count }

27 subscript(i: Int) -> Element { return elements[i] }

28 }

29
30 var nc = NumberContainer ()

31 nc.append (1); nc.append (2); nc.append (3)

32 print(nc.fold(0, +)) // prints: 6

Listing 3.27: Associated type example

The example shows the definition of a protocol Container. It has an associated
type Element, that is a placeholder for the type of elements the container has
(line 2). The associated type can then be used to declare the type signatures of
methods within the protocol. Here, append() is declared, taking one argument of

51

type Element (line 3). Also, a subscript is declared taking an Int as its argument
and returning an Element (line 5). An extension is then used to define the method
fold() (lines 8 to 19). The associated type Element is still only a placeholder.
Note, that the extension makes use of Element without redeclaring it as associated
type. Extensions can make use of all associated types of the original protocol.
The struct NumberContainer conforms to the protocol Container. It implements
the getter for the count property (line 27), the method append() (lines 24 to
26) and the subscript (line 28). It does so by defining an underlying property
elements of type Array<Int> (line 22) on which the corresponding methods are
performed. But most importantly, a type alias Element is defined for type Int

(line 23). This replaces the associated type Element with Int for all instances of
NumberContainer.
Finally, a new NumberContainer is instantiated and assigned to variable nc (line
31). The container is then filled with the numbers 1, 2 and 3 (line 32). Then, the
fold method is called on nc, and the result is printed to the console (line 33).
Figure 3.9 shows the grammar for associated type declarations in Swift 3.1. Once
again, it is taken from [16].

protocol-associated-type-declaration → attributesopt access-level-modifieropt associatedtype

typealias-name type-inheritance-clauseopt
typealias-assignmentopt

Figure 3.9.: Associated type declaration grammar Swift 3.1

The name of the non-terminal symbol for associated type declarations already gives
away, that associated types can only be declared within protocols. The terminal
symbol associatedtype is followed by a mandatory non-terminal symbol typealias-
name. The symbol type-inheritance-clause represents the types the associated
type inherits from. associatedtype A: SomeClass, Equatable is an example
for an associated type declaration with a type inheritance clause. The typealias-
assignment symbol represents the assignment of a (default) type to the associated
type declared, for example associatedtype A = Int.

3.3.2. Constraining Associated Types with Where Clauses

Protocols cannot make use of generic type paramjeters. To implement generic
behavior in protocols, associated types have to be used. However, because associated
types could only be constrained with inheritance constraints, associated types did
not have the same expressive power as generic types parameters [26]. To change
this, Bandes-Storch, Gregor and Hart wrote [26], a proposal for allowing where
clauses in associated type declarations. The idea was to make associated types as

52

expressive as generic type parameters and in addition, to improve some designs in
the standard library. Listing 3.28 reveals the core issue.

1 extension MutableCollection where Indices.Iterator.Element == Index {

2 mutating func mapInPlace(_ transform: (Iterator.Element) throws ->

3 Iterator.Element) rethrows {

4 for index in indices {

5 self[index] = try transform(self[index])

6 }

7 }

8 }

9
10 var arr = [1,2,3]

11 arr.mapInPlace ({ x in x * 2 })

12 print(arr) // prints: [2, 4, 6]

Listing 3.28: Limitations of associated types in Swift 3.1

The Swift standard library defines some functionality of its types in extensions.
The example shows such an extension of the protocol MutableCollection. In
the extension, the function mapInPlace() is defined, that transforms all elements
of the mutable collection with the provided function transform(). The generic
where clause of the protocol extension states, that Indices.Iterator.Element

== Index. This condition has to be fulfilled, or else mapInPlace() would not
work. In Swift 3.1, this requirement had to be stated in this and every other
extension of MutableCollection, because the constraints could not be defined on
the associated types of protocol MutableCollection itself. Listing 3.29 shows the
same example including the improvements possible with Swift 4.

1 extension MutableCollection {

2 mutating func mapInPlace(_ transform: (Element) throws ->

3 Element) rethrows {

4 for index in indices {

5 self[index] = try transform(self[index])

6 }

7 }

8 }

9
10 var arr = [1,2,3]

11 arr.mapInPlace ({ x in x * 2 })

12 print(arr) // prints: [2, 4, 6]

Listing 3.29: Where clause on associated type

The generic where clause of the previous example is gone. It was moved to the
generic where clause of the associated type declaration of Indices in protocol
Collection, which is inherited by MutableCollection. The excerpt of the stan-
dard library containing this declaration is shown in Listing 3.30 (lines 5 to 8).

53

1 /* Collection .swift */

2 public protocol Collection: Sequence where SubSequence: Collection {

3 // ...

4
5 associatedtype Indices : Collection = DefaultIndices <Self >

6 where Indices.Element == Index ,

7 Indices.Index == Index ,

8 Indices.SubSequence == Indices

9
10 // ...

11 }

12
13 /* Sequence.swift */

14 public protocol Sequence {

15 // ...

16 associatedtype Element

17
18 // ...

19 associatedtype Iterator : IteratorProtocol

20 where Iterator.Element == Element

21
22 // ...

23 }

Listing 3.30: Container and sequence protocol

The listing contains a second excerpt of file Sequence.swift. In the Sequence

protocol declaration, an associated type Iterator is declared. In its generic
where clause the requirement Iterator.Element == Element is stated (line 20).
The introduction of this where clause has the effect, that the type annotations
Iterator.Element could be replaced by Element, which was done in the second
code example above (Listing 3.29, lines 2 and 3).
The introduction of generic where clauses on associated types removed a lot of
duplicate code from the Swift standard library. Associated types can now be
generally constrained in the protocol they are declared. If an extension wants to
introduce new constraints on the inherited associated types, this is still possible,
using the where clause of the extension or redeclaring (shadowing) the associated
type with new constraints. Note, that not only protocol extensions were affected
by the aforementioned issue. Also, every other generic context, for example generic
functions, had to provide the constraints on associated types they made use of.
Because where clauses on associated types did not exist in Swift 3.1, the grammar
for associated type declarations needed to be updated for Swift 4. The updated
grammar is shown in Figure 3.10.

protocol-associated-type-declaration → attributesopt access-level-modifieropt associatedtype

typealias-name type-inheritance-clauseopt
typealias-assignmentopt generic-where-clauseopt

Figure 3.10.: Associated type declaration grammar Swift 4

54

The optional non-terminal symbol generic-where-clause was introduced at the end
of the protocol-associated-type-declaration. The change is highlighted in bold in the
figure above.

3.3.3. Implementation

In this section, the implementation details for where clauses on associated types
are documented. Again, the section is arranged following the usual structure.

Changes to the Lexer

The introduction of where clauses on associated types did not require new keywords
or other lexical complements. The syntax of the generic where clause is the same
as is used in class declarations, generic function declarations and so on. Therefore,
the lexer did not need to be changed.

Changes to the Parser and the AST

The new syntax required to change the way of parsing associated type declarations.
As was the case in Section 3.1.3, the class DeclParser needed to be extended.
Listing 3.31 shows the updated method associatedTypeDecl().

1 private AssociatedTypeDecl associatedTypeDecl () throws RecognitionException {

2 match(Kind.KW_ASSOCIATEDTYPE);

3 final Name name = parse(this::name);

4 final TypeInheritanceClause typeInheritanceClause =

5 parseIf(Kind.COLON , this:: typeInheritanceClause);

6 IASTType type = null;

7 if(la(1).is(Kind.EQUAL)) {

8 match(Kind.EQUAL);

9 type = parse(typeParser ::type);

10 }

11 final GenericWhereClause genericWhereClause = parseIf(Kind.KW_WHERE ,

12 this:: genericWhereClause);

13 return new AssociatedTypeDecl(name , typeInheritanceClause , type ,

14 genericWhereClause);

15 }

Listing 3.31: Parsing associated type declarations

Lines 11 to 12 were added, in order to parse a generic where clause, if present. The
method returns a new instance of class AssociatedTypeDecl. The constructor
call was extended to take an additional argument of type GenericWhereClause

(lines 13 to 14). Of course, this required to change the implementation of class
AssociatedTypeDecl. The changed parts of this class are shown in Listing 3.32.

55

1 public class AssociatedTypeDecl extends Decl implements IProtocolMemberDecl ,

2 ITypeInheritanceClauseOwner {

3 // ...

4 private final GenericWhereClause genericWhereClause;

5
6 public AssociatedTypeDecl(Name name ,

7 TypeInheritanceClause typeInheritanceClause , IASTType type ,

8 GenericWhereClause genericWhereClause) {

9 this.name = name;

10 this.typeInheritanceClause = typeInheritanceClause;

11 this.type = type;

12 this.genericWhereClause = genericWhereClause;

13 }

14
15 // ...

16
17 public GenericWhereClause getGenericWhereClause () {

18 return genericWhereClause;

19 }

20
21 // ...

22
23 @Override

24 public boolean accept(ASTVisitor visitor) {

25 return acceptVisitor(visitor , getAttributes (), name ,

26 typeInheritanceClause , type , genericWhereClause);

27 }

28 }

Listing 3.32: Associated type declaration

First, a new property genericWhereClause of type GenericWhereClause was
added (line 3), along with a corresponding getter method (lines 17 to 19). The con-
structor was extended to take an additional argument of the same class, and assign-
ing it to the property (lines 6 to 13). Finally, the overridden accept() method had
to be adjusted, so that the call to acceptVisitor() takes the genericWhereClause
property as its final argument (lines 22 to 27). This completes the changes to the
parser and AST infrastructure of Tifig.
To round off the section, the AST generated for the associated type declara-
tion in Listing 3.29 is given in Figure 3.11. As usual, the important AST
nodes are highlighted with a thick border. The AssociatedTypeDecl node has
a GenericWhereClause node as its second child. A SameTypeRequirement node
has the GenericWhereClause node as its parent. The requirement always has two
ASTTypeIdentifier nodes as its children. Note, that the left ASTTypeIdentifier
is parent to two ASTTypeIdentifierElement nodes. This represents the code
PartialSequence.Element.

56

Figure 3.11.: AST for associated type declaration

Changes to the Indexer and the Type Checker

Associated types are closely related to generic type parameters. The main difference
is, that protocols inheriting associated types of protocols they themselves conform
to do not show this in their declarations. Instead, the inherited associated types
can be used in the protocols body and can even be shadowed if the same identifier
is redeclared. In addition, inherited associated types can be further constrained in
the current scope.
When looking at the proposal text, the changes necessary to introduce where
clauses on associated types seem to be straightforward and bound to a specific
location in the code, namely to associated type declarations. However, this is not
the case. In order to achieve the correct resolution of associated types, the general
processing of generic where clauses (no matter the declaration they are attached
to) had to be adjusted. This is best shown with an example. Listing 3.33 shows
the example code.

1 protocol P {

2 associatedtype P1

3 associatedtype P2

4 }

5 protocol Q: P where P1: R {

6 associatedtype P2 where P2 == P1.R1

7 }

8 protocol R {

9 associatedtype R1

10 }

57

11 func f<T: Q>(x: T) -> T where T.P2: Equatable {

12 return x

13 }

Listing 3.33: Associated type mechanics

The listing shows some of the mechanisms regarding associated types. The protocol
P has two associated types P1 and P2 (lines 1 to 4). Protocol Q conforms to P and
therefore inherits its associated types. Already in the where clause of the protocol
declaration, the associated type P1 is constrained further, in that it has to conform
to protocol R (line 5). Note, that this constraint is only concerning the inherited
associated type in the context of Q and has no influence on P1 of P. Line 6 shows
another way to shadow an inherited associated type. In the where clause of the
associated type declaration, P2 is constrained to have the same type as P1.R1.
Finally, a generic function f() takes an argument of the generic type parameter T,
which has to conform to Q. In the generic where clause of the function, the nested
associated type P2 is constrained to conform to the protocol Equatable (line 11).
Summarizing the example, it can be stated, that requirements on associated types
can come from various locations in the code and can be constrained even more in
every generic context they are used in.
Listing 3.34 shows an excerpt of the class TypeUtils, where the logic for resolving
generic parameters is located.

1 final public class TypeUtils {

2 // ...

3
4 private static IRequirement [] sortRequirementsOfGenericWhereClause(

5 IRequirement [] requirements) { /* ... */ }

6
7 // ...

8
9 public static void resolveGenericParameters(IBinding binding ,

10 GenericParameterClause genericParameterClause ,

11 GenericWhereClause genericWhereClause ,

12 boolean topLevelArchetypesShouldBeVirtual) {

13
14 if(genericParameterClause != null) {

15 validateGenericParameterClause(genericParameterClause);

16 }

17
18 if(genericWhereClause != null) {

19 processWhereClauseRequirements(binding , genericParameterClause ,

20 genericWhereClause , topLevelArchetypesShouldBeVirtual);

21 }

22
23 }

24
25 // ...

26
27 private static void processWhereClauseRequirements(

58

28 IBinding binding , GenericParameterClause genericParameterClause ,

29 GenericWhereClause genericWhereClause ,

30 boolean topLevelArchetypesShouldBeVirtual) { /* ... */ }

31
32 // ...

33
34 private static void processRequirement(IArchetypeType archetype ,

35 TypeIdentifierElement [] elements , boolean isConformanceRequirement ,

36 IASTType otherType) { /* ... */ }

37
38 // ...

39 }

Listing 3.34: Type utils overview

The listing shows the signatures of the most important methods that have been
adjusted for better processing of associated types. The public and static method
resolveGenericParameters() is shown completely (lines 9 to 23), because it is
the entry point for validating declaration bindings that have a generic context.
Of special importance regarding associated types is line 19, where the private
method processWhereClauseRequirements() is called, if a generic where clause
is present.
Parts of the implementation of processWhereClauseRequirements() are given in
Listing 3.35.

1 private static void processWhereClauseRequirements(IBinding binding ,

2 GenericParameterClause genericParameterClause ,

3 GenericWhereClause genericWhereClause ,

4 boolean topLevelArchetypesShouldBeVirtual) {

5
6 final IRequirement [] requirements =

7 sortRequirementsOfGenericWhereClause(

8 genericWhereClause.getRequirements ());

9 final ITypeBinding enclosingSelfType =

10 getSelfTypeBinding(genericWhereClause);

11 final ITypeBinding selfType;

12
13 // Reset the enclosingSelfType and the selfType depending on the kind

14 // of binding provided.

15
16 for(final IRequirement requirement : newRequirements) {

17 final ASTTypeIdentifier lhs = requirement.getTypeIdentifier ();

18 final IASTType rhs = requirement.getType ();

19 ASTTypeIdentifier constrainedType = null;

20 IASTType otherType = null;

21
22 // Generate virtual archetypes if necessary and determine , if lhs

23 // or rhs is the constrained type of the requirement .

24
25 if(constrainedType != null && otherType != null) {

26 final TypeIdentifierElement [] elements =

27 getTypeIdentifierElements(constrainedType);

28 final IArchetypeType archetype =

29 (IArchetypeType)elements [0]. getName (). getBinding ();

59

30 final boolean isConformanceRequirement =

31 requirement instanceof ConformanceRequirement;

32 processRequirement(archetype , elements ,

33 isConformanceRequirement , otherType);

34 }

35
36 }

37
38 }

Listing 3.35: Process where clause requirements

The complete implementation ranges over a hundred lines of code handling different
types of bindings that are presented as the method’s first argument. In the listing,
these binding specific details are replaced by comments, describing the process in
general (lines 13 to 14 and 22 to 23). Essentially, what the method does is to solve
three problems. These problems are listed in the following:

• Order of Requirements: All requirements of the provided where clause
are iterated to be processed. Analyzing the previous implementation of the
processing revealed, that the order in which requirements are processed has
an impact on the resolution. To see that, an example is given in Listing 3.36.

1 protocol P {

2 associatedtype P1

3 }

4 protocol Q {

5 associatedtype Q1

6 func f() -> Q1

7 }

8 func g<T>(x: T) where T.P1 == Int , T.P1 == T.Q1, T: P, T: Q {

9 let z = x.f()

10 }

Listing 3.36: Requirement order example

The requirements in the function’s generic where clause are iterated from
left to right. Without reordering the requirements, Tifig would not be
able to resolve the requirements. To resolve T.P1 == T.Q1, it must be
known first that T has inherited associated types P1 and Q1. The sorting
of requirements makes sure, that conformance requirements are evaluated
first. The new iteration order is T: P, T: Q, T.P1 == Int, T.P1 == T.Q1.
In addition, the deeper an associated type is nested, the later its confor-
mances have to be evaluated, for example T.P1: Equatable has to be
evaluated after T: P. The sorting of the requirements is implemented in
method sortRequirementsOfGenericWhereClause(), which is called in the

60

method processWhereClauseRequirements() above (Listing 3.35, lines 6
to 8).

• Virtual Archetypes: Associated types are represented by archetypes, as is
the case with generic type parameters. While iterating over the requirements,
a lot of validation is done on demand. Virtual archetypes have to be created,
if an inherited associated type is shadowed and more constrained. This
virtual archetype does not replace previous archetypes representing the same
associated type. It is created in addition and is valid in the context where it
was created. A simple example is shown in Listing 3.37.

1 protocol P {

2 associatedtype A

3 }

4 extension P where A == Int {}

Listing 3.37: Virtual archetype example

An extension of protocol P is declared, constraining associated type A to be
type Int. This constraint is only valid in the scope of the extension. To map
this into bindings usable by the indexer, an archetype is created for associated
type A. For the extension, an additional archetype that is marked virtual
is created for A. On this virtual archetype, the sameType property is set to
Int. The method processWhereClauseRequirements() is responsible for
creating virtual archetypes for the requirements, if necessary.

• lhs vs. rhs: For each requirement, it must be determined, which of the
types in the requirement is the constrained type. This is important, because
Swift does not define on which side of the requirement the constrained type
must occur. For example, one could write A == Int or Int == A. Note, that
Int is defined as a struct in the Swift standard library. Therefore, a semantic
analysis is always necessary for this determination. The distinction between
the constrained and the other type is necessary, because it must be known to
which binding the requirement shall be attached.

Once all of the above problems are solved and the constrained type is identified,
the method processRequirement() is called (lines 32 to 33). The implementation
of processRequirement() is shown in Listing 3.38.

1 private static void processRequirement(IArchetypeType archetype ,

2 TypeIdentifierElement [] elements , boolean isConformanceRequirement ,

3 IASTType otherType) {

4 final IArchetypeType nestedArchetype = archetype.getNestedArchetype(

61

5 Arrays.copyOfRange(elements , 1, elements.length));

6 if(nestedArchetype == null) {

7 return;

8 }

9
10 if(isConformanceRequirement) {

11 addAdoptedProtocolsToArchetype(nestedArchetype , otherType);

12 } else {

13 nestedArchetype.setSameType(resolveAndCleanType(otherType));

14 }

15 }

Listing 3.38: Process requirements

As can be seen, the requirement is not directly translated into a constraint for
the constraint system, but added as either an adopted protocol or a same type
to the nested archetype, depending on the type of requirement. The type checker
builds the constraints for the requirements on archetypes when it encounters an
expression where the type represented by the archetype is used.

3.3.4. Summary

The documentation provided in this section shows only the most essential changes
made in the process of adding where clauses for associated types. Overall, a
multitude of 35 class files had to be adjusted to support the adapted infrastruc-
ture, including a large refactoring of existing source code. However, the current
infrastructure is still not able to achieve all resolutions that are supposed to work
in Swift 4. The known limitations are listed in Section 3.5.

3.4. Testing

To make sure that Tifig’s lexer, parser and indexer behave as intended, a large JUnit
test suite of automated tests is maintained. The tests are located in the plug-in
ch.hsr.ifs.tifig.core.tests. During the course of this thesis, the test cases
for the parser and indexer were extended. Whenever possible, the introduction
of new features took place in a test driven manner, meaning that the tests were
written before the implementation started.
In the following sections, a short overview of the files containing the newly intro-
duced tests is given.

62

3.4.1. Parser Tests

Below is the list of parser test files that were extended during the implementation
of all three proposals.

• SubscriptDeclTests.java (2 tests added)

• ProtocolDeclTests.java (5 tests added)

A total of seven new tests were added to test the new parser behavior.

3.4.2. Indexer Tests

Below is the list of indexer test files that were extended during the implementation
of all three proposals.

• GenericSubscriptTests.java (65 tests added, new file)

• AssociatedTypeBindingTests.java (10 tests added)

• ExtensionBindingTests.java (2 tests added)

• GenericFunctionTests.java (10 tests added)

• ProtocolTypeBindingTests.java (2 tests added)

• VirtualArchetypeCreationTests.java (18 tests added, new file)

• ClassSubtypeExistentialTests.java (29 tests added, new file)

A total of 136 new tests were added to test the new indexer behavior.

3.5. Known Limitations

During the course of this thesis, it was discovered that the existing infrastructure
of Tifig is not capable of resolving bindings in all situations where associated types
are involved. Because this discovery was made in a late stage, a refactoring of the
infrastructure was not possible anymore. Instead, the current infrastructure was
adjusted to its limits and made working in most real-world use cases. This means,
that the situations in which resolution is not possible often appear constructed
and seem unlikely to appear in code of business applications. In this section, the
known limitations of Tifig’s infrastructure and their causes are discussed.

63

3.5.1. Multiple Same Type Requirements

In Section 3.3.3, it was shown how requirements can be reordered in order to achieve
a correct resolution of bindings. However, processing conformance requirements
first is not always enough to ensure a complete resolution. Listing 3.39 shows
the same example that was used in Section 3.3.3, extended with an additional
function definition for function g(), where the order of the same type requirements
is reversed.

1 protocol P {

2 associatedtype P1

3 }

4 protocol Q {

5 associatedtype Q1

6 func f() -> Q1

7 }

8 func f<T>(x: T) where T.P1 == Int , T.P1 == T.Q1, T: P, T: Q {

9 let z = x.f()

10 }

11 func g<T>(x: T) where T.P1 == T.Q1, T.P1 == Int , T: P, T: Q {

12 let z = x.f()

13 }

Listing 3.39: Multiple same type requirements

When hovering over the name of constant z in function f(), Tifig shows the
constant’s type as Int as expected. When hovering over the name of constant z

in function g(), however, Tifig shows the constant’s type as T.Q1. Why is the
resolution not working in function g(), when the requirements defined in the where
clauses of both functions are the same.
The answer lies in the implementation of class AbstractBaseArchetypeType. List-
ing 3.40 shows the excerpt of this class, which is responsible for the outcome.

1 public abstract class AbstractBaseArchetypeType extends AbstractBaseBinding

2 implements IArchetypeType {

3 // ...

4 private IType sameType = null;

5 // ...

6
7 @Override

8 public void setSameType(IType sameType) {

9 if(sameType instanceof AssociatedTypeBindingReference) {

10 return;

11 }

12 this.sameType = sameType;

13 }

14
15 // ...

64

16 }

Listing 3.40: Same type property of base archetype

Archetypes described by this class have a property called sameType (line 4). Once a
same type requirement is encountered and the constrained type has been determined,
the method processRequirement() of class TypeUtils is called, which in turn calls
setSameType(). The implementation of this method states, that if the argument
sameType is not an instance of AssociatedTypeBindingReference, the sameType

property shall be assigned the argument sameType (lines 8 to 13).
In the above example, the requirement T.P1 == T.Q1 is the first same type re-
quirement encountered. Both the types in this requirement are represented as an
AssociatedTypeBindingReference. Because both bindings are determined to be
constrained, and both binding’s base type is part of the function’s generic parameter
clause, an educated guess is made and the left side is chosen to be the constrained
type (this is not correct in all cases, but usually, people tend to write constraints
this way). This means, that setSameType() is called on the archetype representing
P1 with argument T.Q1. But because T.Q1 cannot be further evaluated and is still
an instance of AssociatedTypeBindingReference, the sameType property on P1

is not set.
Because each archetype can have at most one same type, this makes some sense.
If a specific type was already assigned to the sameType property, it would be
overwritten by a less specific one. This as well is an educated guess which works in
most cases. In this example however, the same type requirement T.P1 == T.Q1

has no effect at all in the resolution in function g(). This problem could not be
solved so far.

3.5.2. Multiple Paths to the Same Associated Type

In Swift, it is possible to address an associated type via different paths. In this
section, a limitation is discussed that results from exactly this. Listing 3.41 shows
an example that cannot be properly resolved.

1 protocol Package {

2 associatedtype Content

3 associatedtype InternalPackage

4 }

5
6 protocol GiftBox: Package {

7 associatedtype InternalPackage: Package

8 where InternalPackage.InternalPackage == InternalPackage ,

9 Content == InternalPackage.Content

10 }

11

65

12 func f<T: GiftBox >(_ c: T) where T.InternalPackage.Content == Int {

13 let x: T.InternalPackage.Content

14 let y: T.Content

15 }

Listing 3.41: Same type requirement on associated type via different paths

The goal in this example is to find the most specific type for the constants x and y

in the function declaration of function f(). When looking at the code closer, it
becomes clear quickly that x and y should both be of type Int. This is true for
the constant x. Tifig is able to resolve the type of x to be Int. However, the type
of y was resolved to be T.Content. What happened here?
The problem is, that Content == InternalPackage.Content, the same type re-
quirement on the associated type InternalPackage (line 9), leads to the con-
clusion, that the associated type Content declared in protocol GitfBox is repre-
sented by the same archetype as the associated type Content that is accessed via
InternalPackage. But this is not true in the context of function f().
Because of the same type requirement in the where clause of function f(), a
virtual copy was created for the associated type Content referenced via path
T.InternalPackage.Content. This has to be done, because the requirement of
this associated type to be Int is only valid in the generic scope of the function.
Outside the function, the requirement has no influence.
When the type for T.Content is resolved, no same type requirement for Int is
defined on the corresponding archetype. Tifig is currently not capable of collecting
and merging together same types of such distributed archetypes.

3.5.3. Summary

To solve the limitations described in this section, a large scale refactoring of Tifig’s
infrastructure is necessary. Because the limitations were discovered too late and
the Swift generics will be changed even more in the near future, it was decided
not to attempt the refactoring. A potential solution to the problem described in
Section 3.5.2 is presented in a theoretical manner in Section 4.3.2.

66

4. Study of the Swift Type Checker

Swift is a modern multi-paradigm language, incorporating object-oriented, protocol-
oriented, functional and imperative characteristics. It does not come as a surprise,
that the semantic analysis of Swift code is a difficult task. During the course of
this thesis, the Swift type system and the according type inference mechanisms
implemented in the Swift type checker were analyzed and discussed frequently.
This chapter’s intent is to provide insight into the type-checking process of Swift,
to ease the access for future developers of Tifig. First, the characteristics of Swift’s
type system are described in Section 4.1. Then, an overview of the type checker is
given in Section 4.2. Section 4.3 then describes the bottlenecks of the type checker’s
performance and existing optimization strategies and proposes two additional
optimization mechanics.

4.1. Swift’s Type System

In this section, Swift’s type system is described by means of its characteristics.
The goal is to categorize it, so that it can be better compared to other known type
systems. An initial set of the most general characteristics is listed in the following:

• Nominal: Swift has a nominal or nominative type system. In nominal type
systems, compatibility and equivalence of data types is determined by explicit
declarations and the name of its types. The necessity of having a nominal
type system arises, when types have to be checked for equivalence and also
subtype relations [12].

• Statically typed: Being statically typed means that all types of variables,
constants and functions must be set at compile-time. If types are not explicitly
declared, the Swift compiler must be able to infer them, or else the compilation
will fail, yielding a type error [28].

• Strongly typed: When a variable or constant is used in expressions, the
Swift compiler checks if its type is fitting. For example, an argument provided
in a function call expression must be of the type that is declared in the
function’s declaration or a type that is convertible to that type.

67

Although Swift’s type system is nominal, it is often described as ML-like (ML’s
type system is structural). This comes from the fact, that type information flows in
two directions during type inference. Listing 4.1 shows an example that illustrates
this. The example is taken from [20].

1 func round(_ x: Double) -> Int { /* ... */ }

2 var pi: Double = 3.14159

3 var three = round(pi) // variable three has type Int

4
5 func identity <T>(_ x: T) -> T { return x }

6 var eFloat: Float = -identity (2.71828) // numeric literal gets type Float

Listing 4.1: Bi-directional type inference

The variable three has type Int, after type inference is completed. The type
information came from the subexpression pi (line 3). On the other hand, the
numeric literal 2.71828 is inferred to have type Float. This information came
from the type of the variable eFloat (line 6). The bi-directional type inference is
achieved with a constraint-based type checker, that is explained in Section 4.2.
Because a formal definition of Swift’s type system does not exist or is at least not
publicly available, this section shall be concluded by listing the features of Swift
that heavily influence the type system:

• Protocol-oriented programming

• Object-oriented programming via classes

• Function overloading

• Operator overloading

• Subtyping

• Constrained parametric polymorphism

Note, that Swift’s type system does not support rank-2 polymorphism. Instead,
generic function types are reserved for the types of named declarations only, which
is analogous to the let polymorphism restriction in ML [20].

4.2. Type Checker Overview

Because type inference has to be done bi-directionally, it makes sense to use
a type checker that follows the nature of Algorithm W, the classical Hindley-
Milner type inference algorithm. However, constrained polymorphic types and

68

function overloading are features that are not part of the Hindley-Milner (ML)
type system, but surely are part of Swift [20]. That this has a significant impact
on the performance of the type checker is shown in Section 4.3.
As was mentioned in Section 4.1, Swift uses a constrained-based type checker.
What this means becomes more clear when looking at the steps performed by the
type checker:

• Constraint generation: Type checking starts with generating constraints
for the expression under inspection. A type is assigned to each subexpres-
sion. If the type of a subexpression is unknown, a type variable is created.
Programmatically, the constraint generator component walks an expression
from the leaves up to the root of the expression’s AST [20]. In addition to
assigning types, the constraint generator defines constraints based on the
restrictions given for the types and type variables. The result is a closed
constraint system per expression.

• Constraint solving: The constraint solver component is responsible for
finding all possible solutions of the before generated constraint system. It
starts by assigning a fixed type to one of the type variables [30]. All constraints
that describe a relation on this type variable are then simplified. This process
goes on until a fixed type for each type variable is found or if the path leads
to no valid solution. The solver can make use of backtracking if a dead end is
encountered. But, in the end, all possible assignments of fixed types have to
be explored. If the constraints are not solvable, the expression is ill-typed and
the type-checking ends with an error. If one solution is found, the expression
is well-typed and the type checker can move on to the solution application
step. If multiple solutions are found, a ranking of the solutions has to take
place. The ranking criteria can be found in [20]. If one solution is better than
the others, the type checker goes to the next step. If not, the compilation
stops because the expression is ambiguous.

• Solution application: In this final step, the type variables defined by the
constraint generator component are replaced by the fixed types that were
found in the solution step. This produces a fully type-checked expression
that makes all implicit conversions and resolved overloads explicit [20].

The resemblance to the Hindley-Milner type inference algorithm is quite obvious.
The naming of the steps changed slightly from constraint generation, unification
and annotation to the ones described above. This completes the short overview of
the type checker’s components. A more detailed documentation can be found in
[20].

69

4.3. Performance Improvements

The type checker’s performance is of course dependent on the implementation of
each of its components. However, the main problem is the size of the solution
spaces of each constraint system. Because it is not enough to find one suitable
solution, the complete solution space has to be explored. In the worst case, this
solution space is exponential. In [20], Apple Inc. writes:

Solving the constraint systems generated by the Swift language can,
in the worst case, require exponential time. Even the classic Hindley-
Milner type inference algorithm requires exponential time, and the Swift
type system introduces additional complications, especially overload
resolution.

To antagonize the impact of this on the type checker’s performance, the scope of
the type inference is limited to single expressions at a time. Solving the constraint
systems locally helps to reduce the algorithmic complexity of the problem [28].

4.3.1. Existing Optimizations

Optimizing the performance of the type checker can roughly be translated to
optimizing the techniques used to explore the solution space. In the documentation
of the type checker [20], Apple Inc. describes their optimization techniques. In this
section, these techniques are listed and explained superficially.

Constraint Graph

For each constraint system generated, the Swift type checker builds a constraint
graph that illustrates the relations between type variables. Vertices represent the
type variables, whereas edges represent the constraints of the constraint system.
Because a non-simplified constraint can concern more than two type variables,
an edge can connect more than two vertices, which makes the constraint graph a
hypergraph. The use of the constraint graph can be demonstrated on an example.
Listing 4.2 shows the code, for which the expression (1, 2) has to be type-checked.

1 let tuple: (Int , Double) = (1, 2)

Listing 4.2: Constraint graph example code

The generated constraints for expression (1, 2) are listed in following. Note,
that $T0 is the type variable for subexpression 1 and $T1 for subexpression 2,
respectively.

70

• $T0 LiteralConformsTo ExpressibleByIntegerLiteral

• $T1 LiteralConformsTo ExpressibleByIntegerLiteral

• $T0 Conversion Int

• $T1 Conversion Double

Figure 4.1 shows the corresponding constraint graph that is generated along with
the constraints. The notation and formatting is taken from [30].

Figure 4.1.: Constraint graph

The important observation to be made in this example is that the constraint graph
is not necessarily a connected graph. For the type checker, this means that each
connected component of the graph can be processed separately. This makes the
solution space smaller and divides it into separate solution spaces.

Simplification Worklist

After making an assumption on the fixed type of a type variable, the type checker
tries to simplify the remaining constraints of the system based on that assumption.
To prevent attempted simplifications on constraints unrelated to the type variable,
the type checker keeps a worklist of constraints to be checked. To keep the
worklist up to date, the constraint graph can be used to find related constraints.
The simplification process is finished, when no more constraints are listed in the
worklist.

Solver Scopes

Whenever the type checker makes an assumption, a new solver scope is created
which captures the results of said assumption [20]. The solver scopes build a stack

71

that contains all assumptions made so far. If a solution is found, the solution can
be built by popping all solver scopes from the stack and on the way, gathering
the assumptions that led to the solution. If a solver scope leads to no solution, it
can be popped from the stack and a new assumption can be made. This makes
backtracking very easy.

Online Scoring

Solving constraints can lead to multiple valid solutions. As was mentioned in
Section 4.2, the solutions must then be ranked in order to determine the best one.
For that, a scoring system is part of the type checker’s implementation that can
determine a score for each (partial) solution. This score can be updated for each
partial solution and with every assumption that is made. If the partial solution
under inspection has a score that is worse than the best score of an already existing
solution, the type checker does not need to go on. Instead, it can backtrack to the
point, where the score of the partial solution was better. This mechanism is called
online scoring.

Conclusion

The type checker documentation was last updated in October of 2016. It is possible,
that the described optimizations were improved or that new optimization measures
were added to the type checker’s implementation. However, for some expressions,
the type-checking can still take up to a few seconds. This means, that there is still
room for improvement. This will be shown in Sections 4.3.2 and 4.3.3, respectively.

4.3.2. Associated Type Graphs

The optimization in this section is discussed using an example that makes use
of existing code of the Swift standard library. The approach solves one of the
hardest resolution challenges faced during the course of the thesis. Listing 4.3
shows combined excerpts of standard library implementations, along with a generic
function that was defined in a custom Swift project.

1 /* Excerpts of different standard library files */

2
3 protocol Sequence {

4 associatedtype Element

5 associatedtype Iterator: IteratorProtocol

6 where Iterator.Element == Element

7 associatedtype SubSequence

8 func filter(_ isIncluded: (Element) throws -> Bool) rethrows -> [Element]

9 }

10 protocol _IndexableBase {

11 associatedtype Element

72

12 associatedtype SubSequence

13 }

14 protocol _Indexable: _IndexableBase {}

15 protocol Collection: _Indexable , Sequence {

16 associatedtype Iterator

17 associatedtype SubSequence: _IndexableBase , Sequence

18 where SubSequence.SubSequence == SubSequence ,

19 Element == SubSequence.Element

20 }

21 protocol _IteratorProtocol {

22 associatedtype Element

23 }

24
25 /* Custom generic function */

26
27 func f<T: Collection >(_ c: T) where T.Iterator.Element == Int {

28 let x = c.filter { a in true }

29 let y: T.SubSequence.Element

30 let z: T.Iterator.Element

31 let v: T.Element

32 }

Listing 4.3: Same type requirements on distributed associated types

The underlying problem is the same as was described in Section 3.5.2. The goal is
to find the most specific type for the constants x, y, z and v. When looking at the
code closer, it becomes clear quickly that x is of type Array<Int> and all the other
constants have type Int. However, with the exception of constant z (where the
same type requirement is directly defined in the function’s generic where clause),
all other constants cannot be completely resolved by Tifig. Constant x is of type
Array<T.Element>, y of type T.SubSequence.Element and v of type T.Element.
The problem is the existence of multiple virtual archetypes for associated types
Element, which are considered the same due to the same type constraints.
The idea is to solve this problem by building a graph that models the relations of
associated types (declared and inherited) for each protocol. Because the generic
function’s generic type parameter T must conform to protocol Collection, the
creation and usage of the associated type graph of Collection shall be demon-
strated.

Graph Generation Procedure

The associated type graph can be built following the steps described below:

1. Create self type node: Create a node that represents the protocol’s self
type.

2. Connect declared associated types: Create a node for each of the pro-
tocols associated types. Provide an edge from the self type node to the
associated types.

73

3. Collect inherited associated types: For each of the inherited protocols,
go to step 1. Connect the self type node of the recursively generated graph
with the current protocol’s self type node with an edge that represents
conformance. Connect the associated types that are required to be the same
(by same type requirements) with an edge representing type equality.

4. Resolve inheritance on associated types: Step 3 collects the associated
types of protocols. In this step, the same procedure has to be done for
protocols inherited on associated types themselves, with the associated type
acting as self type node.

5. Normalize the graph: Merge conformances into the self type node. Merge
nodes connected by same type edges, if they have the same name.

Building the Graph for Collection

The line number references in this section correspond to the line numbers of Listing
4.3. The Collection protocol is declared having the two associated types Iterator
and SubSequence (lines 15 to 20). Figure 4.2 shows the associated type graph after
the first two steps of the generation procedure are done.

Figure 4.2.: Graph for collection protocol after steps 1 and 2

In step 3, the procedure starts recursively for the inherited protocol Indexable.
A self type node is created. Because Indexable declares no associated types,
the procedure skips step 2 and starts processing the only inherited protocol
IndexableBase. Figure 4.3 shows the associated type graph of protocol Indexable

after step 3 is complete.

74

Figure 4.3.: Graph for indexable protocol after steps 1 to 3

Step 4 can be skipped for this graph, because the associated types of IndexableBase

do not inherit from other protocols directly. The graph is then normalized in step 5.
The procedure resumes the processing of the associated type graph for Collection
in step 3. The newly created graph of Indexable is attached to the self type node
of the current graph. Step 3 then continues with the processing of the inherited
protocol Sequence.

Figure 4.4.: Graph for collection protocol after step 3

Figure 4.4 shows, how the associated type graph of Collection looks after step
3. The graph components that existed after steps 1 and 2 are faded, to better

75

highlight the changes introduced in step 3. Figure 4.5 shows how the graph looks
like after step 4 of the procedure is completed.

Figure 4.5.: Graph for collection protocol after step 4

Finally, the graph is normalized. The same type relation edges are removed and
the nodes that they connected are merged. Conformances are integrated in the
corresponding self type nodes. The normalized associated type graph for the
protocol Collection is shown in Figure 4.6.

76

Figure 4.6.: Normalized associated type graph

Usage of the Associated Type Graph

Looking back to the declaration of the generic function f(), the goal is still to find
the most specific type for the constants x, y, z and v. Because it is known that the
generic type parameter T conforms to Collection, T can be set as the self type in
this generic context. This means, that in the associated type graph of protocol, T
can be set in the self type node. In addition, type Int can be set as the same type
on the node Element, via the path T.Iterator.Element. The updated graph is
shown in Figure 4.7.

Figure 4.7.: Associated type graph in function context

77

To resolve the types of the variables of the example code, one must only follow
the paths in the graph described in the variables’ type annotation. For example,
variable y is annotated with type T.SubSequence.Element. Following the path in
the associated type graph leads to node Element and reveals the same type Int.
The other variables can be resolved analogously.

Benefits

The example given above showed the ease of using an associated type graph. In
addition, the associated type graph could be constructed during the type annotation
pass of the indexer. Once a graph is completed, it has to be adjusted only when
the described protocol or a protocol inherited by the described protocol changes or
when Tifig is closed, which results in the discarding of the index. If Tifig should be
able to persist the index in the future, this approach would be especially useful
for protocols defined in the Swift standard library, because they change only with
releases of Swift itself.

4.3.3. Preliminary Constraint Simplification

A problem that is sometimes encountered when writing large functional-style
expressions or mathematical expressions using many operators, is the following
compiler error:

Error: expression was too complex to be solved in reasonable time;

consider breaking up the expression into distinct sub-expressions

Listing 4.4 shows a code example that results in the above error message. The
example is taken from [23].

1 let a: Double = -(1 + 2) + -(3 + 4) + -(5)

Listing 4.4: Error-generating code example

On the first glance, this expression does not seem to be complicated to resolve.
The problem is, that all the operators used in this example have a large amount
of overloads. The unary minus operator has 15 overloads, while the binary plus
operator has 45. For the example in the expression, this means that there are a
combined 15 ∗ 45 ∗ 45 ∗ 15 ∗ 45 ∗ 45 ∗ 15 = 922′640′640 possible overload choices. In
this calculation, all constraints other than the disjunctions were neglected. The
solution space would therefore be even larger.
The simplification mechanics in the Swift type checker are implemented to simplify
constraints after each assumption made for a type variable. In his blog post [23],

78

Gallagher proposes an improvement of the type checker implementation that starts
even earlier with the simplification of constraints, namely before any assumptions
are made. Because type information can flow in two directions in Swift, propagating
information through constraints must be done in two directions as well. Gallagher
writes:

Since Swift constraints are bidirectional, the constraint path for each
node starts at all of the leaves of the expression, traverses via the trunk
and then traverses back along a linear path to the node. [23]

By propagating information of other constraints, it is possible that certain overloads
can be discarded. To demonstrate the effect, Gallagher gives and example, where
he solves the constraint system of the code let a: Double = 1 + -(2) without
making any assumptions. The propagation of information was enough to solve the
constraint system in linear time.

Benefits

At this point, it is important to mention that Gallagher does not claim his solution
to improve the type checker’s performance. The approach is not proved formally
or otherwise. However, his reasoning indicates potential in this optimization.
There would still be cases, where the propagated information would not better the
exponential time factor. However, in some cases, the approach should reduce the
problem to logarithmic or even linear complexity. The detailed reasoning can be
found in [23].

4.4. Summary

This chapter gave a brief insight into the characteristics of Swift’s type system and
the type checker. The type checker’s performance was then briefly discussed, fol-
lowed by an overview of currently implemented optimizations. Finally, two possible
optimization mechanisms were presented, that could potentially be beneficial to
the performance of the type checker.

79

80

5. Improving the Documentation

Starting out as a project thesis, Tifig was built from the ground up. The project
was then continued as part of a master thesis. It grew rapidly, because the goal was
to support all features of Swift 3.1. But because Tifig was a single person project,
the documentation of the project was somewhat neglected. The technical report of
the master thesis [30] was the only reference to the implementation. That is the
reason why one of the goals of this thesis was to consolidate existing documentation
and documentation relevant to the tasks executed as part of this project in a form
that promotes continual development of Tifig, as was stated in Section 1.2.
This chapter describes the approach taken to better the overall documentation
of the Tifig project. In Section 5.1, the selection process and study of large and
successful open-source projects is documented. Sections 5.2 and 5.3 describe the
implementation of the documentation improvements. Finally, Section 5.4 describes
the continuous integration of the documentation in the development process.

5.1. Study of Open-Source Projects

Having a good documentation is a must in large projects, especially, if more than one
person is involved. For open-source projects, providing the necessary documentation
is substantial, because everyone can contribute, no matter their background and
previous knowledge of the project. That is why large and successful open-source
projects were regarded as fitting candidates for studying documentation practices.

5.1.1. Project Selection

The goal of the project selection was to find recent and successful open-source
projects. For that, a series of blog posts, which list a ranking of best open-source
projects over the course of a year, was consulted. In [18], the top ten projects of
2016 are credited. Projects of the year 2017 are ranked and listed in [18], [17] and
[19]. Finally, [15] presents a ranking of best open-source software in 2018.
Adding up all the projects listed in the above posts, a total number of 37 open-
source projects were selected for the study. In Section 5.1.3, the projects are listed
by name.

81

5.1.2. Defining the Criteria

The projects under inspection were not rated. Also, the contents of the documen-
tations were not read or reviewed. Instead, several ways for documentation and
interaction with contributors were previously defined. Then, it was investigated,
which of the predefined ways each open-source project makes use of. The forms of
documentation used by the most projects would so be identified as promising. In
the following, these forms of documentation are listed:

• Website

• Source Documentation

• Installation Guide

• Tutorial(s)

• Blog

• Forum

• Link to Source

• Wiki

• FAQ

Note, that source documentation means either some kind of source code reference,
a description of how contributions can be done (developer tutorials) or both. Under
the term tutorials falls everything that is related to instructions on how to use the
end product, excluding installation guides, which are a criterion themselves.

5.1.3. Evaluation

Tables 5.1 and 5.2 show the findings for each of the 37 open-source projects. The
bottom row of both tables shows the total number of occurences of each form of
documentation over all projects.
Table 5.1 shows, that 35 out of 37 projects have a corresponding website. The only
exceptions are the Create React App and DSSTNE projects, whose presence is
limited to their GitHub repositories. Surprising to the author, only twelve projects
provided documentation of their source code. The only documentation technique
used by all 37 projects was the installation guide. User tutorials were part of 32
projects and can therefore be seen as important as well. The final result shown

82

in this first table is the amount of blogs. About two thirds of the projects have
integrated a blog with news postings on their website.

Project Website Source Doc. Install Guide Tutorial Blog

Atom X X X X X
Eclipse Che X X X X
FreeCAD X X X
GnuCash X X X X
Kodi X X X X
MyCollab X X X X
OpenAPS X X X X
OpenHAB X X X
OpenToonz X X X
Roundcube X X X X
Yarn X X X X
Create React App X X
Hyper X X X
Parse X X X X X
Bulma X X X X
anime.js X X X
Weex X X X X X
Sawtooth’s Ledger X X X X X
CarbonData X X X
DSSTNE X X
Chord X X X X
Poseidon X X
Trireme X X X X
Ansible X X X X
Kolibri X X X X
TensorFlow X X X X X
React Native X X X X X
Kubernetes X X X X X
Vault X X X X
LibreOffice X X X
Gimp X X X X X
VLC X X X X X
Shotcut X X X X
Audacity X X X
Firefox X X X
Thunderbird X X X
KeePass X X X

Total 35 12 37 32 24

Table 5.1.: Open-source project overview part 1

Table 5.2 reveals, that twelve projects make use of a forum. 30 out of 37 projects

83

have a link on their project website that navigates to the source code repository.
13 projects use a wiki for documentation and 16 projects answer frequently asked
questions.

Project Forum Link to Source Wiki FAQ

Atom X X X
Eclipse Che X
FreeCAD X X
GnuCash X X X
Kodi X X X
MyCollab X X X
OpenAPS X X
OpenHAB X X
OpenToonz X X X
Roundcube X X
Yarn X
Create React App
Hyper X
Parse X X
Bulma X
anime.js X
Weex X X X
Sawtooth’s Ledger X X
CarbonData X X
DSSTNE X
Chord X X
Poseidon X
Trireme X
Ansible X
Kolibri X X
TensorFlow X
React Native X
Kubernetes X X
Vault X
LibreOffice X X X
Gimp X X X
VLC X X X X
Shotcut X X
Audacity X X X
Firefox X X
Thunderbird X X
KeePass X X

Total 12 30 13 16

Table 5.2.: Open-source project overview part 2

84

According to the study, the three most common practices for documentation are
websites, installation guides and user tutorials. Again, the one outcome that was
not expected by the author was the scarce use of source code documentation
throughout all the projects.
The Tifig project already has a website including an installation guide, a blog
and frequently asked questions. Therefore, it was decided to improve the current
documentation with the following components:

• Source Documentation

• Tutorial(s)

The remainder of this chapter provides a more detailed reasoning for each component
and documents their implementation.

5.2. Developer Documentation

According to the study conducted and described in Section 5.1, providing source
code documentation or tutorials for developers is not common. Only a third of the
open-source projects under inspection made use of one or both approaches.
Despite this outcome, it was decided that a reference guide and developer tutorials
shall be implemented for the Tifig project. The reasons for this decision are listed
in the following:

• Project complexity: Excluding tests, the Tifig IDE project consists of over
30’000 lines of code. Without a proper documentation, getting an initial
overview as a new project member is therefore very time consuming.

• Development environment setup: Tifig is developed under the roof of
the Institute for Software (IFS). The further development of Tifig in the
form of future theses is not only likely, but already happened twice since the
original master thesis was finished. The correct setup of the development
environment is important, in order for contributions to be possible. The
setup not only includes the installation of the Swift compiler and Eclipse,
but also requires the uniform configuration of the code formatter settings.

• Previous learnings: During the course of this thesis, previous learnings
were passed on to the author. A developer documentation lends itself as
a platform where previous learnings can be documented for future project
members.

85

It was further decided that the reference guide of Tifig’s source code shall be part
of a developer tutorial website that is hosted separately from the Tifig.net website.
Tifig users should not be confused with information about Tifig’s internals, which
makes a physical separation of the developer documentation and user tutorials
inevitable.

5.2.1. Implementation

During the evaluation of possible technologies, the focus was laid on the automatic
generation of a reference guide using Javadoc annotations in the source code. A
widely used and easy to use tool to achieve this is Sphinx [13]. Originally intended
for the generation of reference guides for Python, extensions for other languages
have been implemented. For Java, the Javasphinx extension [8] can be used. Sphinx
also allows to extend the reference guide by custom documentation in the form of
reStructuredText (a markup language) files.
After the initial setup, the documentation can be built using the make html

command in the terminal. An excerpt of the contents of the Makefile is shown in
Listing 5.1.

1 # Minimal makefile for Sphinx documentation

2 #

3
4 # You can set these variables from the command line.

5 SPHINXOPTS =

6 SPHINXBUILD = python -msphinx

7 SPHINXPROJ = tifig_developer_doc

8 SOURCEDIR = source

9 BUILDDIR = build

10
11 # ...

12
13 source/javadoc:

14 @echo Javadoc

15 @javasphinx -apidoc -u -o source/javadoc/branding --title=’Branding Plugin ’

16 ../ch.hsr.ifs.tifig.branding/src/

17 @javasphinx -apidoc -u -o source/javadoc/core --title=’Core Plugin ’

18 ../ch.hsr.ifs.tifig.core/src/

19 # ...

20 @javasphinx -apidoc -u -o source/javadoc/ui --title=’UI Plugin ’

21 ../ch.hsr.ifs.tifig.ui/src/

22
23 clean:

24 rm -rf source/javadoc

25 @$(SPHINXBUILD) -M clean "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

26
27 # ...

Listing 5.1: Makefile of developer documentation

86

Usually, to build the reference guide from the Javadoc annotations in the source code,
the javasphinx-apidoc command needs to be called for every project directory.
To prevent this, the calls were integrated into the Makefile (lines 15 to 21). Using
the make html command now triggers the rebuild of the reference guide for all listed
plug-in projects. In addition, a build goal for cleaning up previously generated
documentation was defined (lines 23 to 25).
The customization of the page content can be done in the index.rst file, which is
also generated during the initial setup. Listing 5.2 shows a part of the file.

1 Tifig Developer Documentation

2 *****************************

3
4
5 This documentation page contains various tutorials that help you as a

6 developer working on the Tifig Swift IDE , the tifig.net website

7 (‘link <https:// www.tifig.net/>‘_) or even this developer documentation .

8
9 |

10
11 .. toctree ::

12 :maxdepth: 2

13 :caption: Developer Tutorials

14
15 tutorials/tifig

16 tutorials/swift

17 tutorials/tifig_net

18 tutorials/developer_documentation

19
20 |

21
22 .. toctree ::

23 :maxdepth: 1

24 :caption: Reference Guide

25
26 javadoc/branding/packages

27 javadoc/core/packages

28 javadoc/pasta_core/packages

29 javadoc/pasta_tree/packages

30 javadoc/ui/packages

Listing 5.2: Index file of developer documentation

The file defines two tables of content. The first represents the custom developer
tutorials written in the form of .rst files in the subdirectory tutorials/ (lines
11 to 18). The second links the previously generated source code documentation
(lines 22 to 30).
Because the documentation needs to be adjusted along with the source code of
Tifig, the complete resources were added to the Tifig IDE project. The content of
the developer tutorials can be found in Appendix A.

87

5.3. User Tutorials

Most of the studied projects support first-time users with short tutorials on how
to get started using their software. This was not the case for the Tifig project.
To embed the tutorials directly on the projects’ websites, next to the installation
guide, was the most common approach. Therefore, it was decided to extend the
content of Tifig’s website.
The tutorials should provide the user with information on how to start working
with Tifig. For that, the topics shown below were selected to become part of a
newly introduced Getting Started tab:

• Initial configuration of Tifig

• Setting up a first Swift project

• Managing dependencies using the Swift package manager

5.3.1. Implementation

The Tifig.net website is built using Jekyll, a static website generator for blogs
[9]. Unfortunately, Jekyll is not built to generate multiple blogs for the same site.
However, the blog like structure seemed fitting for user tutorials, because as with
posts, it should be easy to introduce new tutorials and reorder them at will. Also,
the blog posts for a Jekyll generated site are written in Markdown (a markup
language) and simply put into the posts/ folder, a subdirectory of the website’s
root directory.
After a closer study of the Jekyll documentation it became clear, that hosting a
second blog was not possible. However, one can define own collections of content,
that can then be iterated over and rendered one by one. Listing 5.3 shows part of
the config.yml file, which contains the configuration of the Jekyll site.

1 # ...

2
3 # Build settings

4 markdown: kramdown

5 permalink: pretty

6 # ...

7 plugins_dir:

8 - octopress -autoprefixer

9
10 # ...

11
12 collections:

13 tutorials:

14 output: true

Listing 5.3: Jekyll configuration

88

The new collection was defined with the name tutorials (lines 12 to 14). The
option output: true makes sure that for each item of the collection a static
HTML file is created, so that it can later be linked to.
Each page follows the layout default.html, which includes footer.html, head.html
and header.html. The latter of the three needed to be updated, because it contains
the navigation element of the website. The final version of the header file is shown
in Listing 5.4.

1 <header class="site -header">

2
3 <div class="wrapper">

4
5

6 {{ site.title }}

7

8
9 <nav class="site -nav">

10 <div class="trigger">

11 <a class="page -link{% if page.nr == 0 %}

12 active {% endif %}" href="/">Blog

13 <a class="rss -link" href="{{ "/feed.xml" | prepend: site.baseurl

14 | prepend: site.url }}"><i class="fa fa-rss -square fa-lg"

15 aria -hidden="true"></i>

16 <a class="page -link{% if page.nr == 1 %} active {% endif %}"

17 href="/download">Download

18 <a class="page -link{% if page.nr == 2 %} active {% endif %}"

19 href="/tutorials">Getting Started

20 <a class="page -link{% if page.nr == 3 %} active {% endif %}"

21 href="/faq">FAQ

22 </div>

23 </nav>

24
25 </div>

26
27 </header >

Listing 5.4: Header layout

As can be observed (lines 18 to 19), a page-link was added to the component nav
with the title Getting Started. This created a permalink to /tutorials/, but so
far, no resources were defined. To change that, a new file tutorials.html was
added to the site project. The content of this file is shown in Listing 5.5.

1 ---

2 layout: default

3 title: Getting Started

4 permalink: /tutorials/

5 nr: 2

6 sidebar: tutorials

7 ---

8
9 <div class="tutorial -nav">

89

10 <h2 class="post -title" itemprop="name headline">

11 Overview

12 </h2>

13

14 {% for item in site.data.navigation.tutorials %}

15 {{ item.title }}

16 {% endfor %}

17

18 </div>

19 {% assign tutorials = site.tutorials | sort: ’tutorial_index ’ %}

20 {% for post in tutorials %}

21 <article class="post" itemscope itemtype="http :// schema.org/BlogPosting">

22 <header class="post -header">

23 <h2 class="post -title" itemprop="name headline">

24 <a class="post -link"

25 href="{{ post.url | prepend: site.baseurl }}">

26 {{ post.title }}

27

28 </h2>

29 </header >

30 <div class="post -content" itemprop="articleBody">

31 {{ post.content }}

32 </div>

33 </article >

34 {% endfor %}

Listing 5.5: Tutorials subsite

Note, that the code shown in the listing is not pure HTML. For example, the
beginning of the file contains a so called front matter (lines 1 to 7), that has to be
valid YAML. If a front matter is present, Jekyll treats the page as a special file. In
the front matter, variables can be defined, which can then be used in the HTML
code. In addition, the Liquid template language is used to loop over collections of
files (here the collection tutorials) and access their contents for rendering (lines 19
to 32). When building the website, Jekyll translates these statements into static
HTML.
The code presented in the above listing iterates over the files in the subdirectory
tutorials/, which contain the Markdown annotated text for the user tutorials.

The content of the user tutorials can be found in Appendix B.

5.3.2. RSS Feed

During the study of Jekyll’s documentation, it became clear that an RSS feed can
be added to any Jekyll website with the insertion of one single line of code. In fact,
Listing 5.4 in Section 5.3.1 already contained the code that adds an RSS feed link
to the navigation of the Tifig.net website (lines 13 to 15). The link references the
file feed.xml, which was automatically created during the site’s setup procedure.
Although the distribution of RSS feeds in open-source projects was not studied, it
was decided to add it to the Tifig.net website.

90

5.4. Continuous Integration

A source code reference is only useful when it is maintained properly. Being
able to automatically generate the reference guide, it made sense to integrate the
generation into the build process of Tifig. For that, the Tifig repositories were
moved to GitLab, which has it’s own Continuous Integration (CI) environment.
To make use of GitLab CI, a YAML file with the name .gitlab-ci.yml had to be
added to the existing repository. Listing 5.6 shows how the build was configured
for the Tifig project.

1 variables:

2 # ...

3
4 stages:

5 - build

6 - test

7 - build -sphinx

8 - build -sphinx -docker -image

9 - deploy -sphinx -docker -image

10
11 build:

12 # ...

13
14 test:

15 # ...

16
17 build -sphinx:

18 image: # ...

19 stage: build -sphinx

20 when: always

21 only:

22 - swift4@tonisuter/tifig

23 script:

24 - apt -get update

25 - apt -get -y upgrade

26 - apt -get install -y python -pip

27 - pip install git+https:// github.com/bronto/ javasphinx .git

28 - pip install git+https:// github.com/rtfd/ sphinx_rtd_theme .git

29 - pip install git+https:// github.com/ djungelorm /sphinx -tabs.git

30 - make -C ./doc html

31 artifacts:

32 paths:

33 - ./doc/build/html

34
35 build -sphinx -docker -image:

36 image: docker:latest

37 stage: build -sphinx -docker -image

38 when: always

39 only:

40 - swift4@tonisuter/tifig

41 script:

42 # ...

43
44 deploy -sphinx -docker -image:

45 image: # ...

46 stage: deploy -sphinx -docker -image

91

47 when: always

48 only:

49 - swift4@tonisuter/tifig

50 script:

51 # ...

52 environment:

53 # ...

Listing 5.6: GitLab CI configuration

The build can be divided into stages, each of which is executed if the previous one
succeeds. The stages are first listed (lines 4 to 9) and then defined one by one. The
build and test stages are used only for the Tifig IDE. The stage build-sphinx

generates a new and updated version of the developer documentation website (lines
17 to 33). The next stage creates a docker image that is then pushed into GitLab’s
own docker image registry (lines 35 to 42). Finally, the docker image is deployed
to the server, where the documentation is hosted and a restart of the container is
triggered (lines 44 to 53). By using this approach, the documentation is not only
up to date at any time, but checking out a previous commit of the project allows
the local build of any state of the documentation.
The deployment of the Tifig.net website was configured for CI in a similar manner,
because the deployment of a new version of the website had to be done manually
prior to this thesis.

92

6. Results

This chapter summarizes and evaluates the results of this thesis according to the
goals stated in Section 1.2. Results regarding the implementation of the proposals
are gathered in Section 6.1. In Section 6.2, the results of the consolidation of
Tifig’s documentation are presented. Finally, the results of the study of Swift’s
type checker are discussed in Section 6.3.

6.1. Implementation of Proposals in Tifig

The implementation of the three proposals listed in Section 1.2 was documented in
Chapter 3. The proposals for generic subscripts and class and subtype existentials
were implemented completely and were thoroughly tested. The proposal for allowing
generic where clauses to constrain associated types was only implemented partly,
because of the limited time period of the thesis. The known limitations of this
implementation were therefore listed in Section 3.5.
The majority of the implementations was integrated in a new alpha release of Tifig.
The remaining changes will be integrated into the following release.

Figure 6.1.: Tifig IDE Alpha Release 0.8.0

93

6.2. Consolidation of the Documentation

The measures taken to improve the documentation of Tifig were described in
Chapter 5. User tutorials for first-time Tifig users were integrated into the existing
website https://www.tifig.net.

Figure 6.2.: User tutorials on Tifig’s website

For contributors of the Tifig project, a separate documentation was created, describ-
ing the development environment and contribution mechanisms. An automatically
generated reference guide for the source code is included. To avoid confusion, this
documentation is hosted separately on https://tifig.dev.ifs.hsr.ch.

Figure 6.3.: Developer tutorials with reference guide

These forms of documentation were selected according to a study of open-source

94

https://www.tifig.net
https://tifig.dev.ifs.hsr.ch

projects described in Section 5.1. Finally, the setup for continuous integration of
Tifig and the accompanying documentations was described in 5.4.

6.3. Study of Swift’s Type Checker

The limitations described in Section 3.5 were intensively discussed during the course
of this thesis and a theoretical solution for the underlying problem was developed.
The approach was documented along with a brief discussion of Swift’s type system
and type checker in Chapter 4. The aim was to preserve the knowledge gained for
the future development of Tifig.

95

96

7. Conclusion & Future Work

The adoption of Tifig’s parser and indexer for supporting generic subscripts, class
and subtype existentials and where clauses on associated types improved the
usability of Tifig for developing Swift 4 projects. The few limitations of the final
result were documented and a theoretical solution approach was presented. A study
of Swift’s type checker was done as an additional task in order to ease the access
of future developers to the project.
The existing documentation of Tifig was consolidated in a form, that was first
evaluated with a study on the documentation of multiple large and successful
open-source projects. User tutorials were designed and implemented for first-time
users of Tifig and integrated into the existing project’s website. Developer tutorials
including a reference guide of the source code were set up, in order to promote the
continual development of Tifig.

7.1. Future Work

The development of an IDE is a continuous task. This is no different for Tifig. In
the following, possible future tasks to extend and improve Tifig are listed:

• The limitations of the type inference of associated types are known. Therefore,
improving the corresponding indexer implementation is the most pressing
future task. This could likely be achieved by implementing associated type
graphs.

• There are still features introduced in Swift 4 that have not been integrated
into Tifig. The implementation of these features is essential for the overall
usability of Tifig.

• Apple Inc. already provides a beta version of the Swift 4.1 compiler. New
features introduced in Swift 4.1 can already be implemented for Tifig be-
fore the official release. The most impactful change will be the support of
recursive constraints on associated types. Integrating this into the current
Tifig infrastructure will require a large scale refactoring of the current indexer
implementation.

97

• The recursive descent parser of Tifig has to make speculations when encoun-
tering certain sequences of tokens. Currently, backtracking results in parsing
the same code multiple times. To improve the performance of the parser,
transforming it into a memoizing parser is necessary.

• Because the semantic analysis of Swift code is still not complete, the im-
plementation of refactorings was postponed so far. The addition of simple
refactorings, such as automatically adding a closing brace when typing an
opening one, would improve to overall user experience of Tifig.

98

Bibliography

[1] AppCode. https://www.jetbrains.com/objc/. Accessed: 2018-02-08.

[2] Clang Wikipedia. https://en.wikipedia.org/wiki/Clang. Accessed: 2018-
01-27.

[3] CLion. https://www.jetbrains.com/clion/. Accessed: 2018-02-08.

[4] Covariance and contravariance Wikipedia. https://en.wikipedia.org/

wiki/Covariance_and_contravariance_(computer_science). Accessed:
2018-01-28.

[5] Eclipse. http://www.eclipse.org/. Accessed: 2018-01-23.

[6] Eclipse IDE Plug-in Development: Plug-ins, Features, Update Sites and
IDE Extensions. http://www.vogella.com/tutorials/EclipsePlugin/

article.html. Accessed: 2018-01-24.

[7] Eclipse PDE. http://www.eclipse.org/pde/. Accessed: 2018-01-24.

[8] Javasphinx. https://github.com/bronto/javasphinx. Accessed: 2018-01-
31.

[9] Jekyll. https://jekyllrb.com/. Accessed: 2018-01-31.

[10] Multiple Class Types in Protocol Composition. https://forums.swift.org/
t/multiple-class-types-in-protocol-composition/7224. Accessed:
2018-01-28.

[11] Multiple Class Types in Protocol Composition Bug Report. https://bugs.

swift.org/browse/SR-6561. Accessed: 2018-01-28.

[12] Nominal type system Wikipedia. https://en.wikipedia.org/wiki/

Nominal_type_system. Accessed: 2018-02-06.

[13] Sphinx Python Documentation Generator. http://www.sphinx-doc.org/

en/stable/. Accessed: 2018-01-31.

99

https://www.jetbrains.com/objc/
https://en.wikipedia.org/wiki/Clang
https://www.jetbrains.com/clion/
https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)
https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)
http://www.eclipse.org/
http://www.vogella.com/tutorials/EclipsePlugin/article.html
http://www.vogella.com/tutorials/EclipsePlugin/article.html
http://www.eclipse.org/pde/
https://github.com/bronto/javasphinx
https://jekyllrb.com/
https://forums.swift.org/t/multiple-class-types-in-protocol-composition/7224
https://forums.swift.org/t/multiple-class-types-in-protocol-composition/7224
https://bugs.swift.org/browse/SR-6561
https://bugs.swift.org/browse/SR-6561
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Nominal_type_system
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/

[14] Swift Lexicon. https://github.com/apple/swift/blob/master/docs/

Lexicon.rst. Accessed: 2018-01-28.

[15] The best open source software 2018. http://www.techradar.com/news/the-
best-open-source-software. Accessed: 2018-01-30.

[16] The Swift Programming Language. https://developer.apple.

com/library/content/documentation/Swift/Conceptual/Swift_

Programming_Language/. Accessed: 2018-01-07.

[17] The top 8 new open source projects. https://www.infoworld.com/

article/3174151/open-source-tools/the-top-8-new-open-source-

projects.html. Accessed: 2018-01-30.

[18] Top 10 open source projects of 2016. https://opensource.com/article/

16/12/yearbook-top-10-open-source-projects. Accessed: 2018-01-30.

[19] Top 6 Open Source Projects In 2017. https://hackernoon.com/top-6-open-
source-projects-in-2017-db34b9d034a2. Accessed: 2018-01-30.

[20] Type Checker Design and Implementation. https://github.com/apple/

swift/blob/master/docs/TypeChecker.rst. Accessed: 2018-02-06.

[21] What’s New in Xcode 9. https://developer.apple.com/xcode/. Accessed:
2018-02-08.

[22] C. Eidhof. Generic Subscripts. https://github.com/apple/swift-

evolution/blob/master/proposals/0148-generic-subscripts.md.

[23] M. Gallagher. Exponential time complexity in the Swift type checker. https://
www.cocoawithlove.com/blog/2016/07/12/type-checker-issues.html.

[24] E. Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[25] D. Hart. Class and Subtype existentials. https://github.com/apple/swift-
evolution/blob/master/proposals/0156-subclass-existentials.md.

[26] D. Hart. Permit where clauses to constrain associated types. https:

//github.com/apple/swift-evolution/blob/master/proposals/0142-

associated-types-constraints.md.

[27] T. Kremenek. Swift 4.0 Released! https://swift.org/blog/swift-4-0-

released/.

100

https://github.com/apple/swift/blob/master/docs/Lexicon.rst
https://github.com/apple/swift/blob/master/docs/Lexicon.rst
http://www.techradar.com/news/the-best-open-source-software
http://www.techradar.com/news/the-best-open-source-software
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/
https://www.infoworld.com/article/3174151/open-source-tools/the-top-8-new-open-source-projects.html
https://www.infoworld.com/article/3174151/open-source-tools/the-top-8-new-open-source-projects.html
https://www.infoworld.com/article/3174151/open-source-tools/the-top-8-new-open-source-projects.html
https://opensource.com/article/16/12/yearbook-top-10-open-source-projects
https://opensource.com/article/16/12/yearbook-top-10-open-source-projects
https://hackernoon.com/top-6-open-source-projects-in-2017-db34b9d034a2
https://hackernoon.com/top-6-open-source-projects-in-2017-db34b9d034a2
https://github.com/apple/swift/blob/master/docs/TypeChecker.rst
https://github.com/apple/swift/blob/master/docs/TypeChecker.rst
https://developer.apple.com/xcode/
https://github.com/apple/swift-evolution/blob/master/proposals/0148-generic-subscripts.md
https://github.com/apple/swift-evolution/blob/master/proposals/0148-generic-subscripts.md
https://www.cocoawithlove.com/blog/2016/07/12/type-checker-issues.html
https://www.cocoawithlove.com/blog/2016/07/12/type-checker-issues.html
https://github.com/apple/swift-evolution/blob/master/proposals/0156-subclass-existentials.md
https://github.com/apple/swift-evolution/blob/master/proposals/0156-subclass-existentials.md
https://github.com/apple/swift-evolution/blob/master/proposals/0142-associated-types-constraints.md
https://github.com/apple/swift-evolution/blob/master/proposals/0142-associated-types-constraints.md
https://github.com/apple/swift-evolution/blob/master/proposals/0142-associated-types-constraints.md
https://swift.org/blog/swift-4-0-released/
https://swift.org/blog/swift-4-0-released/

[28] S. Pestov. The secret life of types in Swift. https://medium.com/

@slavapestov/the-secret-life-of-types-in-swift-ff83c3c000a5.

[29] B. Royal-Gordon. Throwing Properties and Subscripts. https:

//github.com/brentdax/swift-evolution/blob/throwing-properties/

proposals/0000-throwing-properties.md.

[30] T. Suter. Tifig. 2017.

101

https://medium.com/@slavapestov/the-secret-life-of-types-in-swift-ff83c3c000a5
https://medium.com/@slavapestov/the-secret-life-of-types-in-swift-ff83c3c000a5
https://github.com/brentdax/swift-evolution/blob/throwing-properties/proposals/0000-throwing-properties.md
https://github.com/brentdax/swift-evolution/blob/throwing-properties/proposals/0000-throwing-properties.md
https://github.com/brentdax/swift-evolution/blob/throwing-properties/proposals/0000-throwing-properties.md

Appendix

102

A. Developer Documentation
Content

This chapter contains the developer tutorials written for the https://tifig.dev.

ifs.hsr.ch website. The content represents the state of the finished thesis and
may be outdated quickly. Each section in this chapter corresponds to one developer
tutorial. No further comments are provided. Note, that the website is not accessible
outside the Hochschule für Technik Rapperswil (HSR) domain.

Tifig IDE

This section explains the necessary steps to make you ready for working on the
Tifig Swift IDE. It leads you through the installation and configuration of your
Eclipse IDE, which in turn depends on Java. If you have already installed some
of the following software, you can go ahead and skip the installation step.

Software and Dependencies

Java

Java is required to run Eclipse. Also, the Tifig Swift IDE is programmed using
Java. The minimum version required is Java 8.
To get Java for your system, follow the steps below:

• MacOS:

1. Open http://www.oracle.com/technetwork/java/javase/downloads/

index.html.

2. Download the latest JDK installer for your operating system.

3. Install JDK according to the instructions of the page.

• Linux (Ubuntu):

1. Run the following command in your terminal:

103

https://tifig.dev.ifs.hsr.ch
https://tifig.dev.ifs.hsr.ch
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

1 apt -get install default -jdk

2

Listing A.1: Install Java

2. Verify the installed JDK version by running:

1 java -version

2

Listing A.2: Verify Java version

Swift

Although Tifig parses and indexes the Swift code by itself, compilation is done by
using the Apple Swift Compiler. To be able to compile and run code in your
Tifig Swift IDE, you have to install the compiler.

• MacOS: There are two alternative ways to get the Swift Compiler.

1. Either : Install the newest version of Xcode from the App Store. Swift
will be installed along with Xcode.

2. Or : Download and install from https://swift.org/download/. The
installation instructions can be found on the page.

• Linux (Ubuntu):

1. Download and install from https://swift.org/download/. The in-
stallation instructions can be found on the page.

2. Add swift to your PATH variable in your .profile file, to make the
compiler available from every directory.

Maven

The CI Server that builds and tests Tifig does so by using Maven. Therefore it
makes sense to install and use Maven on your local machine before committing
changes. You can install Maven as follows:

• MacOS: Assuming that you already have Homebrew installed on your
system, you can run the following command in your terminal:

104

https://swift.org/download/
https://swift.org/download/

1 brew install maven

2

Listing A.3: Install Maven MacOS

• Linux (Ubuntu): Run the following command in your terminal:

1 apt -get install maven

2

Listing A.4: Install Maven Linux

Install and Configure Eclipse

The Tifig Swift IDE is built as a collection of plug-ins, that build on the Eclipse
IDE.

Installation

To be able to work on Tifig, you need to install the Eclipse IDE for Eclipse
Committers. How this works is described in the following steps:

1. Open http://www.eclipse.org/downloads/eclipse-packages/.

2. Download the latest Eclipse IDE for Eclipse Committers. It already
contains the Eclipse Java Development Tools and the Eclipse Plug-in Devel-
opment Environment necessary for working on Eclipse IDE plugins.

3. Install Eclipse IDE for Eclipse Committers according to the instructions
of the page.

(Alternatively: Use the Eclipse Installer)

Configuration

To prevent different coding styles in the Tifig IDE project, the developers have
agreed on certain save actions for automatic code formatting.

• In your Eclipse IDE preferences, choose Java > Editor > Save Actions and
configure as follows:

105

http://www.eclipse.org/downloads/eclipse-packages/

Figure A.1.: Save actions

Your additional actions window will most likely look different than the one
on this screenshot. To configure the additional actions, press the Configure...
button on the right of the window.

• In the tab Code Organizing, configure the following:

106

Figure A.2.: Code organizing

• In the tab Code Style, configure the following:

Figure A.3.: Code style

• In the tab Member Accesses, configure the following:

107

Figure A.4.: Member accesses

• In the tab Missing Code, configure the following:

Figure A.5.: Missing code

108

• In the tab Unnecessary Code, configure the following:

Figure A.6.: Unnecessary code

• After you have configured everything successfully, press the OK button on
the bottom right to close the additional save actions.

• Back on the save actions window, press the Apply and Close button.

You are now ready to build the Tifig Swift IDE locally.

Build Tifig Locally

To build the Tifig Swift IDE locally, follow the steps below:

1. Fork the Tifig repository https://gitlab.dev.ifs.hsr.ch/tonisuter/

tifig.

2. Clone your forked repository.

3. Launch your Eclipse IDE for Eclipse Committers and create a new
workspace.

4. Go to File > Import > General > Existing Projects into Workspace and set
the root directory to the location of your clone of the Tifig repository.

109

https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig

5. Make sure that all projects are selected and click Finish to import the projects
into your workspace.

6. Open the file ch.hsr.tifig.target/ch.hsr.tifig.target.target and click on Set as
Target Platform. This might take a while, because Eclipse will download the
dependencies specified in the target file.

From here, you have two alternative ways of building Tifig.

Using a Run Cofiguration

1. Create a new Eclipse Application run configuration.

2. Under Program to Run > Run a product: choose ch.hsr.ifs.tifig.branding.product.

3. Press Apply.

4. Run the newly created run configuration to launch your local copy of the
Tifig Swift IDE.

Using the Terminal

1. In the terminal, change your directory to the root of your cloned repository.

2. Run the following command:

1 mvn clean verify

2

Listing A.5: Build with Maven

3. If the build succeeded, the application bundles can be found in the folder
./ch.hsr.tifig.product/target/products.

Debugging

The steps above finish the setup and configuration of your Tifig Swift IDE
development environment.
When debugging, there is one helpful trick, to avoid you a lot of unecessary pain.

• To avoid triggering indexer breakpoints for the manifest file, it is helpful to
define a trigger breakpoint on the following line in Indexer.java:

110

1 final List <SwiftFile > files =

2 pkg.streamFiles (). collect(Collectors.toList ());

3

Listing A.6: Build with Maven

Contributing

• Make your changes.

• Create a merge request on the Tifig repository https://gitlab.dev.ifs.

hsr.ch/tonisuter/tifig.

• When the merge request is completed, Tifig will be built and tested auto-
matically via GitLab CI.

That’s all! Enjoy working on Tifig!

Swift

Some parts of the Tifig Swift IDE are built closely to the Swift parser and type
checker of Apple’s corresponding implementation. This is possible, because Apple
open sourced these implementations.
For debugging purposes, it can therefore sometimes be helpful to debug certain
code snippets using the actual implementations to compare with the behaviour of
Tifig.

Note: Unfortunately, this only works if you are developing on a Mac!

If you do, you can follow the instructions in this section to prepare your Mac for
debugging the original Swift implementations.

Software and Dependencies

CMake

• CMake is needed to build the source code of Swift.

• To install CMake on your system, you can run the following command in
your terminal (Homebrew needed):

111

https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig

1 brew install cmake

2

Listing A.7: Install CMake

Source Preparation

Follow the steps below to prepare the source code of Swift:

1. Go to the Swift repository https://github.com/apple/swift.

2. Scroll to the README.md.

3. Make sure your system fulfils the listed system requirements.

4. Complete the following commands in the terminal:

1 mkdir swift -source

2
3 cd swift -source

4
5 git clone https :// github.com/apple/swift.git

6
7 ./swift/utils/update -checkout --clone

8
9 cd swift

10
11 utils/build -script --release -debuginfo --debug -swift --xcode

12 # Swift frontend built in debug

13

Listing A.8: Install Swift

Install and Configure Xcode

Installation

Install the newest Xcode version from the App Store.

Configuration

To be able to debug Swift in Xcode, follow the steps below:

1. Open Swift.xcodeproj.

2. Choose Automatically Create Schemes.

112

https://github.com/apple/swift

3. Wait until the indexer is done (this takes some time).

4. Choose swift as the build scheme and My Mac as the target.

5. In the Scheme dropdown menu, scroll to the bottom and choose
Edit Scheme.

6. In section Run, switch to the tab Arguments.

7. Add the following argument to Arguments Passed On Launch:
/<somePatch>/<someFile>.swift.

That’s all! Enjoy debugging Swift in Xcode!

Tifig.net

Another essential part of developing the Tifig Swift IDE is to maintain and enrich
the Tifig.net website https://www.tifig.net/. This section describes how you
can run your local copy of the site in order to make contributions.
Before you can start, you will have to install some dependencies.

Software and Dependencies

Ruby

• Ruby is needed to build Tifig.net. More specifically, you need several Ruby
Gems.

• To install Ruby and Gems, follow the instructions below:

• MacOS: Your MacOS comes with Ruby already installed. So you don’t
have to do anything in this step.

• Linux (Ubuntu): Run the following command in your terminal:

1 apt -get install ruby -full

2

Listing A.9: Install Ruby

113

https://www.tifig.net/

JavaScript

• To install JavaScript on your system, do the following:

• MacOS: Run the following command in your terminal (Homebrew needed):

1 brew install node

2

Listing A.10: Install JavaScript Mac

• Linux (Ubuntu): Run the following command in your terminal:

1 apt -get install nodejs

2

Listing A.11: Install JavaScript Linux

Jekyll

• Jekyll is a static site generator used to build the Tifig.net website. Therefore,
it has to be installed on your system to run a local copy thereof.

• To install Jekyll, run the following command in your terminal:

1 gem install jekyll

2

Listing A.12: Install Jekyll

Octopress Autoprefixer

• To automatically add CSS vendor prefixes to the generated Jekyll site,
Tifig.net uses the Octopress Autprefixer gem.

• To install the Octopress Autoprefixer, run the following command in your
terminal:

1 gem install octopress -autoprefixer

114

2

Listing A.13: Install Octopress Autoprefixer

Build Tifig.net Locally

To build and run the website locally on your device, follow the steps below:

1. Fork the Tifig.net repository https://gitlab.dev.ifs.hsr.ch/tonisuter/

tifig.net.

2. Clone your forked repository to your device.

3. To start hosting the site locally, run the following bash command in the
repository’s root directory:

1 jekyll serve

2

Listing A.14: Start hosting site locally

4. Access the now running site under http://localhost:4000/.

5. To stop the server, press Ctrl-C when your terminal is in focus.

Contributing

• Make your changes.

• Create a merge request on the Tifig.net repository https://gitlab.dev.

ifs.hsr.ch/tonisuter/tifig.net.

• When the merge request is completed, the website will automatically be
updated on the production server via GitLab CI.

That’s all! Enjoy working on Tifig.net!

115

https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig.net
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig.net
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig.net
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig.net

Developer Documentation

Over time, it will become necessary to make changes to this very documentation.
This section describes how you can do that. In addition, if you would like to create
a documentation page for your plug-in, you can find a tutorial marked as optional.
As usual, we will start with the installation of the necessary software dependencies.

Software and Dependencies

Python (+pip)

• The documentation is built using scripts written in Python.

• Also, some python packages are needed, which is why you have to install pip.

• Here is how you install Python and pip:

• MacOS: Run the following commands in your terminal (Homebrew needed):

1 brew install python

2
3 easy_install pip

4

Listing A.15: Install Python Mac

• Linux (Ubuntu): Run the following command in your terminal:

1 apt -get install python -pip python -dev build -essential

2

Listing A.16: Install Python Linux

Javasphinx

• To automatically create a reference guide from Java source code, javasphinx
is required.

• To install the newest version of javasphinx, run the following command in
your terminal:

116

1 pip install git+https :// github.com/bronto/javasphinx.git

2

Listing A.17: Install Javasphinx

Read the Docs Theme

• To be able to contribute to this documentation, the Read the Docs Theme
must be installed on your system.

• To install the newest version of the Read the Docs Theme, run the
following command in your terminal:

1 pip install git+https :// github.com/rtfd/sphinx_rtd_theme.git

2

Listing A.18: Install Read the Docs Theme

Sphinx Tabs

• As you can see below, the Tifig Developer Documentation uses beautiful
tabs to separate instructions for different operating systems.

• To install the Sphinx Tabs, run the following command in your terminal:

1 pip install git+https :// github.com/djungelorm/sphinx -tabs.git

2

Listing A.19: Install Sphinx Tabs

CMake

• CMake is needed to build the documentation website.

• To install CMake on your system, do the following:

• MacOS: Run the following command in your terminal (Homebrew needed):

1 brew install cmake

117

2

Listing A.20: Install CMake Mac

• Linux (Ubuntu): Run the following command in your terminal:

1 apt -get install cmake

2

Listing A.21: Install CMake Linux

Build the Documentation Locally

To build the Tifig Developer Documentation locally, follow the steps below:

1. Fork the Tifig repository https://gitlab.dev.ifs.hsr.ch/tonisuter/

tifig.

2. Clone your forked repository.

3. Change directory in the terminal to the doc/ folder in your cloned repository.

4. Run the following command in your terminal:

1 make html

2

Listing A.22: Build the documentation

5. The static doc pages are generated in the build/html/ folder. The root page
is called index.html.

Contributing

• Make your changes.

• Create a merge request on the Tifig repository https://gitlab.dev.ifs.

hsr.ch/tonisuter/tifig.

118

https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig
https://gitlab.dev.ifs.hsr.ch/tonisuter/tifig

• When the merge request is completed, Tifig will be built and tested automat-
ically via GitLab CI. This includes a stage where the documentation is built
and published on the developer doc page https://tifig.dev.ifs.hsr.ch/.

That’s all! Enjoy working on the Tifig Developer Documentation!

(Optional) Create A New Sphinx Documentation

The setup of the documentation took some time because the technology was
never used before by the developer team. Hoping that this form of documenting
the software developed within the institute, it seemed logical to write down how
the initial version of the developer documentation was set up. This assures a
reproducible process.
Before you start with the following steps, make sure you have set up the dependencies
necessary according to section A.

Doc Creation

Here is how you set up and configure a Javasphinx documentation page:

1. Run the following command in the terminal from the directory you want to
create the documentation:

1 sphinx -quickstart

2

Listing A.23: Create empty Sphinx documentation

2. The installation process will start and you will be asked to enter configuration
parameters one by one. Here is a list of the configuration chosen to build
this documentation (<Enter> takes the default value shown in the square
brackets):

119

https://tifig.dev.ifs.hsr.ch/

Parameter Prompt Chosen Option

Root path for the documentation [.] <Enter>
Separate source and build directories (y/N) [n] y
Name prefix for templates and static dir [] <Enter>
Project name ”PROJECT”
Author name(s) ”AUTHOR”
Project version ”X.X”
Project release [0.1] ”X.X.X”
Project language [en] <Enter>
Source file suffix [.rst] <Enter>
Name of your master document (without suffix) [index] <Enter>
Do you want to use the epub builder (y/n) [n] y
autodoc: automatically insert docstrings from modules (y/N)
[n]

y

doctest: automatically test code snippets in doctest blocks
(y/N) [n]

y

intersphinx: link between Sphinx documentation of different
projects (y/N) [n]

<Enter>

todo: write “todo” entries that can be shown or hidden on
build (y/N) [n]

<Enter>

coverage: checks for documentation coverage (y/N) [n] <Enter>
imgmath: include math, rendered as PNG or SVG images
(y/n) [n]

y

mathjax: include math, rendered in the browser by MathJax
(y/n) [n]

y

ifconfig: conditional inclusion of content based on config
values (y/N) [n]

<Enter>

viewcode: include links to the source code of documented
Python objects (y/n) [n]

<Enter>

githubpages: create .nojekyll file to publish the document
on GitHub pages (y/n) [n]

y

Create Makefile? (Y/n) [y] <Enter>
Create Windows command file? (Y/n) [y] n

Table A.1.: Initial configuration

After this initial configuration, a Makefile and two directories (source/ and build/)
have been created. The source/ folder contains the files conf.py and index.rts.

120

Configuration

1. In the file conf.py, add Javasphinx and Sphinx Tabs to the list of extensions.
The result should look like this:

1 extensions = [’sphinx.ext.autodoc ’,

2 ’sphinx.ext.doctest ’,

3 ’sphinx.ext.mathjax ’,

4 ’sphinx.ext.githubpages ’,

5 ’javasphinx ’,

6 ’sphinx_tabs.tabs’]

7

Listing A.24: Adding extensions to the conf.py file

2. If you want references to be created to external docsets, you will have to add
the javadoc url map option in conf.py. Note, that the following is only an
example and has to be extended for every docset you want to have references
to. Here is an example:

1 javadoc_url_map = {

2 ’org.osgi.framework ’ :

3 (’https :// osgi.org/javadoc/r6/core/’, ’javadoc ’),

4 ’org.eclipse.ui.plugin ’ :

5 (’http :// help.eclipse.org/oxygen/topic/org.eclipse.platform.doc

6 .isv/reference/api/’, ’javadoc8 ’),

7 ’org.eclipse.core.runtime ’ :

8 (’http :// help.eclipse.org/oxygen/topic/org.eclipse.platform.doc

9 .isv/reference/api/’, ’javadoc8 ’)

10 }

11

Listing A.25: Adding options to the conf.py file

3. This documentation uses the Read the Docs Sphinx Theme. If you want
to use it as well, you have to adjust your conf.py file by adding the following:

1 import sphinx_rtd_theme

2 html_theme = "sphinx_rtd_theme"

3 html_theme_path = [sphinx_rtd_theme.get_html_theme_path ()]

4
5 html_theme_options = {

6 ’collapse_navigation ’: True ,

7 ’display_version ’: False ,

8 ’navigation_depth ’: 3,

9 }

121

10

Listing A.26: Adding themes to the conf.py file

4. The documentation will not build now. You have to remove the theme related
settings for the (old) alabaster theme.

Automatic Doc Generation

Your documentation is now able to generate .rst files from your source code and
use this to create a reference guide. But to achieve that, you have to run several
commands every time you want to build the documentation. To prevent this
inconvenience, you can adjust the Makefile:

1 # Minimal makefile for Sphinx documentation

2 #

3
4 # You can set these variables from the command line.

5 SPHINXOPTS =

6 SPHINXBUILD = python -msphinx

7 SPHINXPROJ = "PROJECT"

8 SOURCEDIR = source

9 BUILDDIR = build

10
11 # Put it first so that "make" without argument is like "make help".

12 help:

13 @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

14
15 source/javadoc:

16 @echo Javadoc

17 @javasphinx -apidoc -u -o source/javadoc/branding

18 --title=’Branding Plugin ’ <SOURCE_PATH >. branding/src/

19 @javasphinx -apidoc -u -o source/javadoc/core

20 --title=’Core Plugin ’ <SOURCE_PATH >.core/src/

21 @javasphinx -apidoc -u -o source/javadoc/core_tests

22 --title=’Core Tests Plugin ’ <SOURCE_PATH >.core.tests/src/

23 @javasphinx -apidoc -u -o source/javadoc/ui

24 --title=’UI Plugin ’ <SOURCE_PATH >.ui/src/

25 @javasphinx -apidoc -u -o source/javadoc/ui_tests

26 --title=’UI Tests Plugin ’ <SOURCE_PATH >.ui.tests/src/

27
28 clean:

29 rm -rf source/javadoc

30 @$(SPHINXBUILD) -M clean "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

31
32 .PHONY: help Makefile source/javadoc

33
34 # Catch -all target: route all unknown targets to Sphinx using the new

35 # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).

36 %: Makefile source/javadoc

37 @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

Listing A.27: Extending the Makefile

122

You can now build your documentation as is described in section A.

(Optional) Helpful Resources

The following links are helpful regarding the different topics discussed in this
section:

• First Steps with Sphinx (http://www.sphinx-doc.org/en/stable/tutorial.
html)

• Invocation of apidoc (http://www.sphinx-doc.org/en/stable/invocation.
html#invocation-apidoc)

• javasphinx User Guide (http://bronto-javasphinx.readthedocs.io/en/
latest/#javasphinx-apidoc)

• Parsing javadoc with Sphinx (https://stackoverflow.com/questions/
14254527/python-parsing-javadoc-with-python-sphinx)

• Sphinx RTD Theme Repository (https://github.com/rtfd/sphinx_rtd_
theme)

• reStructuredText Primer (http://www.sphinx-doc.org/en/stable/rest.
html#rst-primer)

If you find more helpful links, please feel free to contribute them to this documen-
tation.

(Optional) Known Issues

Method References

The javalang python package (needed to parse the Java sources) cannot handle
certain types of method references, e.g.:

1 @unittest.expectedFailure

2 def test_method_reference_explicit_type_arguments_for_generic_type(self):

3 """ currently there is no support for method references

4 for an explicit type.

5 """

6 self.assert_contains_method_reference_expression_in_m(

7 parse.parse(setup_java_class("List <String >:: size;")))

8
9 @unittest.expectedFailure

10 def test_method_reference_from_array_type(self):

11 """ currently there is no support for method references

12 from a primary type.

123

http://www.sphinx-doc.org/en/stable/tutorial.html
http://www.sphinx-doc.org/en/stable/tutorial.html
http://www.sphinx-doc.org/en/stable/invocation.html#invocation-apidoc
http://www.sphinx-doc.org/en/stable/invocation.html#invocation-apidoc
http://bronto-javasphinx.readthedocs.io/en/latest/#javasphinx-apidoc
http://bronto-javasphinx.readthedocs.io/en/latest/#javasphinx-apidoc
https://stackoverflow.com/questions/14254527/python-parsing-javadoc-with-python-sphinx
https://stackoverflow.com/questions/14254527/python-parsing-javadoc-with-python-sphinx
https://github.com/rtfd/sphinx_rtd_theme
https://github.com/rtfd/sphinx_rtd_theme
http://www.sphinx-doc.org/en/stable/rest.html#rst-primer
http://www.sphinx-doc.org/en/stable/rest.html#rst-primer

13 """

14 self.assert_contains_method_reference_expression_in_m(

15 parse.parse(setup_java_class("int []:: new;")))

Listing A.28: Method reference tests of javalang

See the complete issue on the javalang issue page https://github.com/c2nes/

javalang/blob/master/javalang/test/test_java_8_syntax.py#L198.
There are two possible ways to solve this kind of issue:

1. Update the your installed javalang version using the following command in
your terminal:

1 pip install --ignore -installed git+https :// github.com/c2nes/javalang.git

2

Listing A.29: Update javalang

2. If this does not resolve the issue, change the source code to a Java construct
that is supported by the current javalang version.

Outdated six Package

As with the javalang python package, some errors occur when the six python
package is outdated. To install a newer version of six, run the following command
in your terminal:

1 pip install --ignore -installed six

Listing A.30: Update six

124

https://github.com/c2nes/javalang/blob/master/javalang/test/test_java_8_syntax.py#L198
https://github.com/c2nes/javalang/blob/master/javalang/test/test_java_8_syntax.py#L198

B. User Tutorials Content

This chapter contains the user tutorials written for the https://tifig.net website.
The content represents the state of the finished thesis and may be outdated quickly.
Each section in this chapter corresponds to one user tutorial. No further comments
are provided.

Configure Tifig

Congratulations, you just downloaded and installed Tifig and are now prepared to
configure it for your first Swift project.

Goals

1. Choose a workspace

2. Set the Swift perspective

3. Configure the toolchain

1. Choose a Workspace

The first time you start Tifig, you will be asked to enter a workspace. The wizard
looks as follows:

125

https://tifig.net

Figure B.1.: Workspace selection

You can either type or paste a path directly into the dropdown menu or search for
a directory using the Browse button on the right.
If you don’t want this wizard to show every time you start up Tifig, you can check
the box at the bottom left of the wizard to set your new workspace as the default.
When you are done, click on the Launch button.

2. Set the Swift Perspective

After successfully setting the workspace, the splash screen with the Tifig logo will
show. You can see in the progress bar (below the logo) how the various plug-ins of
the IDE are loaded.
Because it is the first time you started Tifig, you will be greeted by the welcome
screen:

126

Figure B.2.: Welcome screen

From here you can directly create a new Swift project or learn more about Swift
from various resources. In this tutorial, we will first make sure that your IDE
is correctly configured and therefore, we recommend that you close the welcome
screen tab by clicking the close symbol on the top left.
After doing so, the blank view of your newly created workspace will appear:

127

Figure B.3.: Empty workspace

Notice the Swift logo on the top right of the window? Clicking on it enables the
Swift perspective in your IDE. Normally, the Swift perspective is set as the default
and should be enabled already. If this is not the case, click on the logo to switch
to the Swift perspective.

3. Configure the Toolchain

Tifig does not come with a built-in Swift installation. However, if you followed the
installation instructions in the download section, Tifig should have set your Swift
toolchain already. To verify this, open the Preferences.

Note: The Preferences are not located in the same menus on a Mac and on
a Linux system, respectively. On a Mac, the path is Tifig/Preferences.... On
a Linux system, the path is Window/Preferences.

In the Preferences, choose Swift Toolchains. The wizard looks as follows:

128

Figure B.4.: Swift toolchains

If you had a Swift installation before opening Tifig, an initial entry should be
present and selected in the toolchain list. If this is not the case, you can add your
preferred toolchain by using the Add... button on the right of the list. You can
also edit, duplicate and remove existing entries.

Summary

You have successfully prepared Tifig for your first Swift project by choosing the
Swift perspective and setting your Swift toolchain. To find out how to create,
change and run your first Swift project, go to our next tutorial.

Your First Project

In this short tutorial, you will create and run your first Swift project using Tifig.

129

Goals

1. Create a project

2. Make changes

3. Run the project

1. Create a Project

There are several ways to open the New Swift Project wizard. Choose one of the
following:

• Right-click in the Project Explorer window. Select New/Swift Project.

• Choose File/New/Swift Project from the main menu.

• On the welcome screen (see Configure Tifig), click on Create Swift Project.

After doing so, the wizard shown below opens:

130

Figure B.5.: New project wizard

Here, you have to choose a name for your project. We chose Hello Tifig, but you
can choose whatever name you like.
The wizard has checked the box for using the default location, which creates a
folder with your project name in your current workspace. If you want, you can
change this by unchecking the box and providing an alternative location.
Tifig differentiates between three project types:

• Empty

• Executable

• Library

For our example, we will stick with the executable project.
Click Finish to return to the main window, which now looks as follows:

131

Figure B.6.: Initial project

As you can see, the parts that have changed are highlighted in red rectangles and
numbered from 1 to 3. We will discuss each of the changes separately below.

1. Project File Structure

If you have a closer look at the Project Explorer window, you can see that Tifig
has created some files and folders for you.

.

Hello Tifig

Package.swift

Sources

Hello Tifig

main.swift

Figure B.7.: File structure

132

The main folder has the name of your project. In our case, this is Hello Tifig. In it,
a Sources/Hello Tifig folder has been created, containing the main.swift file. This
file will be our main focus in this tutorial.
In addition, your project folder contains a Package.swift file. This file will be
further discussed in the Using the Swift Package Manager tutorial.

2. The main.swift File

The name of this file is not set by accident. The main.swift file is used as the entry
point of your entire application. By default, the newly created file has the following
content:

1 print("hello , world")

Listing B.1: main.swift

As you probably would have guessed, this application prints hello, world to your
console when being executed.

3. Console Output

Having clicked on Finish in the New Swift Project wizard, Tifig has already started
working for you. On the bottom, you can see the output of the Swift compiler. If
you have configured your toolchain correctly, you should get something similar to
the following:

1 Build Mode: auto

2 Command: /Applications/Xcode.app/Contents/Developer/Toolchains/

3 XcodeDefault.xctoolchain/usr/bin/swift build

4 Compile Swift Module ’Hello_Tifig ’ (1 sources)

5 Linking ./. build/x86_64 -apple -macosx10 .10/ debug/Hello_Tifig

6 Exit Value = 0

Listing B.2: Compiler output

If your console does not show this, it is possible that the indexer is still running.
You can check that by looking at the bottom right corner of Tifig. If the indexer
is still running, you will see the word Indexer and a blue progress indicator (see
screenshot above).

133

2. Make Changes

You can make changes to your files by just typing them in the main.swift window.
Saving your changes will trigger the Swift compiler to start a new build, which
you can see in your console output. In our example, we replaced print("hello, world")

with print("Hello Tifig"), matching our project name. Tifig now looks as follows:

Figure B.8.: Changed project

3. Run the Project

To run your project, you can do one of the following:

• Click on the green Run Button in the toolbar on the top.

• Choose Run/Run from the main menu.

If everything works out, the console output should display Hello Tifig, as in the
screenshot below:

134

Figure B.9.: Running project

Summary

Congratulations, you have just created, changed and run your first Swift project
in Tifig. Of course, this example shows the most simple project, having no other
dependencies than the Swift standard library and only consisting of a single file.
To find out how you can manage dependencies using the Swift Package Manager,
go to our next tutorial.

Using the Swift Package Manager

In this tutorial, you will learn how to manage dependencies using the Swift Package
Manager. For this, we will create a small application that uses a predefined package.
If you want to look at a more challenging example, you can visit the swift.org
documentation.

135

Goals

1. Add a dependency to your project

2. Create a small application that uses the dependency

1. Add a Dependency to Your Project

Tifig already prepared your project for the inclusion of packages. Open the
Package.swift file from your existing Hello Tifig project by double-clicking it in
the Project Explorer window. The following was already created for you:

1 // swift -tools -version :4.0

2 // The swift -tools -version declares the minimum version of Swift required to

3 // build this package.

4
5 import PackageDescription

6
7 let package = Package(

8 name: "Hello_Tifig",

9 dependencies: [

10 // Dependencies declare other packages that this package depends on.

11 // .package(url: /* package url */, from: "1.0.0") ,

12],

13 targets: [

14 // Targets are the basic building blocks of a package. A target can

15 // define a module or a test suite.

16 // Targets can depend on other targets in this package , and on

17 // products in packages which this package depends on.

18 .target(

19 name: "Hello_Tifig",

20 dependencies: []

21)

22]

23)

Listing B.3: Package.swift

The library you are going to use is located on GitHub. It defines the following two
public functions:

1 public func sayHello () {

2 print("Hello Tifig")

3 }

4
5 public func sayGoodBye () {

6 print("Goodbye Tifig")

7 }

Listing B.4: Library functions

136

To use these two functions, you have to make some adjustments to your Pack-
age.swift file:

• In the dependencies section, add the following line:

1 .package(url: "https :// github.com/pipeaesac/Hello_Tifig_Library.git",

2 from: "1.0.0"),

Listing B.5: Library dependency

This tells the package manager where the dependency is located and which
versions are allowed to be used with your application.

• In the targets section, add "Hello_Tifig_Library" to the already existing but so
far empty target dependency list.

Your resulting Package.swift file should look as follows:

1 // swift -tools -version :4.0

2 // The swift -tools -version declares the minimum version of Swift

3 // required to build this package.

4
5 import PackageDescription

6
7 let package = Package(

8 name: "Hello_Tifig",

9 dependencies: [

10 // Dependencies declare other packages that this package

11 // depends on.

12 // .package(url: /* package url */, from: "1.0.0") ,

13 .package(url: "https :// github.com/pipeaesac/

14 Hello_Tifig_Library.git", from: "1.0.0"),

15],

16 targets: [

17 // Targets are the basic building blocks of a package.

18 // A target can define a module or a test suite.

19 // Targets can depend on other targets in this package ,

20 // and on products in packages which this package depends on.

21 .target(

22 name: "Hello_Tifig",

23 dependencies: ["Hello_Tifig_Library"]

24)

25]

26)

Listing B.6: Changed Package.swift file

That is all it takes. The Hello Tifig Library is now ready to be used in your
application.

137

2. Create a Small Application That Uses The Dependency

To use the newly included library, replace the existing code in your main.swift file
with the following:

1 import Hello_Tifig_Library

2
3 sayHello ()

4 sayGoodBye ()

Listing B.7: Changed main.swift file

When saving, the dependency will be downloaded and a file called Package.resolved
will be created. It contains a description of your resolved dependency:

1 {

2 "object": {

3 "pins": [

4 {

5 "package": "Hello_Tifig_Library",

6 "repositoryURL":

7 "https :// github.com/pipeaesac/Hello_Tifig_Library.git",

8 "state": {

9 "branch": null ,

10 "revision": "980 d2afceb985a5598d7bc6116557b75469857f2",

11 "version": "1.0.0"

12 }

13 }

14]

15 },

16 "version": 1

17 }

Listing B.8: Package.resolved

Now you can go ahead and run your application. After completing all of the above
steps, Tifig should look like this:

138

Figure B.10.: Finished project

Summary

You have successfully finished all the tutorials and are now ready to start using
Tifig. We hope you will enjoy working on your Swift projects with it.
If you have ideas or wishes for further tutorials, please let us know.

139

C. Agreement for Master Thesis

Student: Mario Meili
Semester: HS 2017/18
Advisor: Prof. Dr. Farhad Mehta
Project Partner: Institute for Software (IFS) HSR
Project Start Date: 18.08.2017
Project End Date: 09.02.2018
ECTS-Credits: 27 ECTS Credits

Project Title

Supporting Swift 4 Generics in Tifig

Goals and Project Description

Swift is a multi-paradigm programming language developed by Apple Inc., released
in 2014 and open-sourced in 2015. Being only three years old, Swift still experi-
ences many changes between major releases. Swift 4, which will be released in
Q3 of 2017, introduces a set of changes regarding generics, which are outlined below.

Tifig is a Swift IDE based on Eclipse. Its development was started as a Mas-
ters project by Toni Suter1. Tifig currently supports Swift version 3.1.

In order to make development using Tifig in Swift 4 possible, the Tifig IDE
needs to be developed further.

Aim:
The main aim of this master thesis is to develop the Tifig IDE further in order
to support Swift 4 Generics. Additionally, tasks that promote the practical use
and further development of the Tifig IDE will be undertaken as per the resources
available.

Task proposed currently:

1https://eprints.hsr.ch/575/1/HS16-EP-MA-ToniSuter-Tifig.pdf

140

https://eprints.hsr.ch/575/1/HS16-EP-MA-ToniSuter-Tifig.pdf

1. To modify the Tifig Swift parser to support the newly introduced syntax.

2. To extend the Tifig type checker by the necessary constraints to enable correct
type resolution for Swift 4.

3. To adapt the Tifig indexer to guarantee a correct indexing order and indexing
correctness.

4. To consolidate existing documentation and documentation relevant to the
tasks executed as part of this project in a form that promotes continual
development of the Tifig IDE.

5. To complete current tasks with high priority according to the issue page of
the Tifig repository2.

The Swift evolution website3 summarises the current changes under review for
upcoming releases. The following proposals shall be implemented in order to
support Swift 4 Generics in Tifig:

1. SE-0142: Permit where clauses to constrain associated types

2. SE-0148: Generic Subscripts

3. SE-0156: Class and Subtype existentials

Deliverables

• A technical report in English, describing the work done as part of this project.

• Consolidated developer source code and documentation in English and in a
form that is easily usable for further development of the Tifig IDE (Replaces
the formal requirement of a scientific paper).

• A poster in A0 format summarising the results of this project.

• A critical personal reflection on the project and a statement of originality.

• A DVD containing all artefacts produced as part of this project, including
source code.

• A final oral presentation of results with discussion.

2https://github.com/tonisuter/tifig/issues
3https://apple.github.io/swift-evolution

141

https://github.com/tonisuter/tifig/issues
https://apple.github.io/swift-evolution

Competencies to Be Gained (Professional, Methodological and
Self-Competence)

• The ability to understand, reflect on, and present scientific results.

• The ability to postulate, develop and evaluate hypotheses systematically,
using the scientific method.

• Contribute to the state of the art in the application of programming language
theory and technology in the industry.

Assessment Criteria

Per the module description SWSY MT:

1. Overall assessment
Criteria: Originality, innovativeness and applicability of the project results.
Achievement of all project goals.

2. Organisation and Execution
Criteria: Formulation of the task description, project planning, planned and
systematic execution of the project, independent thought, dedication and
collaboration skills.

3. Report
Criteria: Content, structure, presentation and language.

4. Presentation
Criteria: Consideration of the target audience, language and content.

5. Content
Criteria: Preliminary study, requirement analysis, design, complexity, and
scope. Quality of the artefacts produced.

142

	Introduction
	Problems
	Goals
	Document Structure

	Background & Related Work
	Tifig Overview
	Plug-ins
	Components
	Lexer
	Parser
	Indexer
	A Practical Example

	Representation of Generic Type Bindings
	Archetypes
	Associated Type Binding References

	Related Work

	Enhancing Tifig's Generics System
	Generic Subscripts
	Introduction
	Making Subscripts Generic
	Implementation
	Summary

	Class & Subtype Existentials
	Introduction
	Adding Class & Subtype Existentials
	Implementation
	Summary

	Where Clauses on Associated Types
	Introduction
	Constraining Associated Types with Where Clauses
	Implementation
	Summary

	Testing
	Parser Tests
	Indexer Tests

	Known Limitations
	Multiple Same Type Requirements
	Multiple Paths to the Same Associated Type
	Summary

	Study of the Swift Type Checker
	Swift's Type System
	Type Checker Overview
	Performance Improvements
	Existing Optimizations
	Associated Type Graphs
	Preliminary Constraint Simplification

	Summary

	Improving the Documentation
	Study of Open-Source Projects
	Project Selection
	Defining the Criteria
	Evaluation

	Developer Documentation
	Implementation

	User Tutorials
	Implementation
	RSS Feed

	Continuous Integration

	Results
	Implementation of Proposals in Tifig
	Consolidation of the Documentation
	Study of Swift's Type Checker

	Conclusion & Future Work
	Future Work

	Developer Documentation Content
	User Tutorials Content
	Agreement for Master Thesis

