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Abstract

Many of the services available on the internet are centralized. To improve scala-
bility and availability, complex distributed architectures have to be designed and
implemented.

Starting right away with a decentralized design on the other hand can scale better
and increase availability with a growing network.

WebRTC uses a peer-to-peer connection between browsers. The developer has to
provide a communication channel for signaling between the two browsers, before
the WebRTC connection can be established. In most cases this is achieved using
a centralized server.

DWRTC extends WebRTC with a decentralized connection setup. Users connect
to different nodes on the Internet. These nodes are connected via a P2P network
which stores the routing information. The connection setup messages are routed
through this network. The WebRTC connection can then be used to send data,
audio and video directly from web browser to web browser.

This term project implements this idea. As a proof of concept, it also includes a
video call application using DWRTC to establish calls to a partner.

i



Management Summary

Motivation

In today’s Internet, many of the available services are centralized. Different solu-
tions are introduced to allow those services to scale as they do not have this ability
built-in. However, decentralized applications allow for easier scalability.

WebRTC uses peer to peer connections out of the box. This requires a connection
setup which is predominantly centralized. A fully decentralized WebRTC, on the
other hand, enables anyone with a current web browser to use and benefit from
its architecture.

Idea

The main idea is to decentralize WebRTC by using a distributed hash table (DHT)
for storing routing data to exchange connection information.

As a proof of concept, an implementation of a video call application using DWRTC
was developed, allowing users to establish video calls.

Result

The architecture consists of two layers supporting an independent usage of the
underlying layers:

1. Decentralized backend layer for WebRTC connection setup (Kotlin).

2. Frontend layer for WebRTC (JavaScript).
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In addition a video call application has been built. By using the frontend layer
it allows users to establish a peer-to-peer video call via the backend layer to a
partner.

Outlook

There are multiple possible improvements that can be made to the application.
The most important improvements would be providing client side encryption or
signing of messages routed through the backend layer.
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Chapter 1

Introduction

1.1 Current State

In today’s Internet, most of the available services are centralized. Different solu-
tions are introduced to allow those services to scale as they do not have this ability
built-in. Decentralized applications allow for easier scalability.

WebRTC uses peer to peer connections out of the box. This requires a connection
setup (also known as signaling or bootstrapping) which is predominantly central-
ized. We propose fully decentralizing WebRTC by distributing the bootstrapping
process.

Boldt et. al propose using DNS and Master Peers for this idea,[1] while Knoll et
al. suggest Internet Relay Chat (IRC) among other concepts. [2]

1.2 Goal

This term projects implements WebRTC signaling using a P2P network employing
a distributed hash table (DHT) which stores routing information. User agents
connect to one of the servers in this network. These servers relay the bootstrapping
information between their clients.

To proof this concept, a video calling app is also implemented.
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1.3 Motivation

Peer to peer applications are explicitly harder to manage than centralized appli-
cations as they follow the principle of eventual consistency instead of the ACID
principle [3].

1.4 Overview

Chapter 2 includes the design of the implementation of DWRTC. Chapter 3 adds
information about what was achieved and how it can be extended. Chapter 4
concludes with detailing the organization and requirements of this term project.
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Chapter 2

Design

WebRTC enables AV and chat communication without using additional plugins
[4]. All major browsers support the basic functionality of WebRTC. [5]

WebRTC allows web developers to integrate AV and data sending capabilities
into their own websites. The developer only needs to implement the exchange of
signaling messages [6]. Once all information has been relayed, the browsers will
connect either via a P2P connection, or various levels of relays.[7] WebRTC reduces
the minimal requirements to use the application. Only a web browser supporting
WebRTC is required.

We use TomP2P to implement the signaling channel which enables WebRTC to
be completely distributed.
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Architectural Idea Both users use a supported web browser to connect to a
website which will communicate with the server and later initiate the WebRTC
connection. In this example, User A connects to Server X and User B to Server
Y.

User A starts a new session. An ID to identify the session is displayed. User A
passes the ID to User B via an external channel (e.g. an Instant Messenger).

User B sends signaling information to User A. To achieve this, Server Y will lookup
the responsible node (Server Y) and initiate the connection.

It is irrelevant which server User B contacts, provided that the server is connected
to the distributed network.

Server X Server Y

Peer A Peer B

Websocket Websocket

DHT

Figure 2.1: Architecture (Simplified)
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2.1 Technical Description

Server 2

Server 1 Server 3

Server n

Peer A Peer B

Websocket Websocket

DHT

P2P DHT Network. 
Direct connections are
assumed possible. Not all
connections are drawn 

Web page that user connects to.
Includes (Websocket) addresses
of some servers

Figure 2.2: Architecture (Big Picture)

Web Application The application’s architecture allows developers to build
their own app using DWRTC. As a part of this project, we built a video call-
ing demo app.

WebSocket Connection When a user starts a new session, the web page will
open a WebSocket connection to one of the servers. This WebSocket connection
is used to exchange signaling information between the web page and the server.

Session ID The session ID is a unique, generated ID (by the web framework),
that is used for this specific session. The user passes the ID via an external channel
to their partner.

The partner enters the ID to initiate the connection.

Server Application The server application has two interfaces:
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• a WebSocket interface enabling communication with the browser

• an interface to the P2P layer

The server application is running permanently. If another TomP2P peer is known
on startup, it will bootstrap to this peer’s DHT.

DHT The DHT is established permanently. DWRTC uses the DHT for mapping
Session IDs to their responsible server.

Each server registers itself in the DHT under all its users’ keys.

Connecting and Sending a Message to Another Server Alice (Peer A)
and Bob (Peer B) are trying to communicate with each other using DWRTC. The
connection setup is best explained by the text below and Figure 2.3 Sequence
Diagram of a DWRTC session.

Alice’s server receives a signaling message for Bob. To establish the connection
Alice’s server will obtain the address of Bob’s server from the DHT. Alice’s server
opens a direct connection to Bob’s server and sends the message.

Relaying Messages Received from Another Server Bob’s server receives a
message addressed to Bob. Bob’s server relays the message to Bob’s browser via
the WebSocket connection. Bob’s web browser processes the message accordingly.

Message Types The following message types exist:

• Client messages (e.g. signaling).

• ID messages: Used to announce the session ID to the client (e.g. video call
application).

• Error: Used for errors by the backend.
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2.1.1 Complete Sequence Diagram of a DWRTC session

Client_Alice Server_1 DHT Server_2 Client_Bob

Hello

Your ID is "Alice"

PUT Alice @ Server_1

Hello

Your ID is "Bob"

PUT Bob @ Server_2

Message for Bob

GET Where is Bob?

Bob is at Server_2

Message from Alice to Bob (sendDirect)

Message from Alice

Message for Alice

GET Where is Alice?

Alice is at Server_1

Message from Bob to Alice (sendDirect)

Message from Bob

loop [ MessageExchange ]

Direct WebRTC connection

Close

OK

REMOVE Alice

Close

OK

REMOVE Bob

Client_Alice Server_1 DHT Server_2 Client_Bob

Figure 2.3: Sequence Diagram of a DWRTC session

The DHT is maintained by TomP2P. It is formed when servers bootstrap to each
other. TomP2P manages servers joining and leaving the DHT.
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2.2 Architecture

2.2.1 Layers

We decided to split DWRTC into two layers.

• websocket API layer

• signaling P2P layer

They are based upon the third-party tomp2p DHT layer. The layers can be com-
pared to the OSI model’s TCP/IP model, since lower ones are not concerned with
the details of upper ones.

Server 2Server 1

signaling

TomP2P 
Traffic 

tomp2p

signaling

tomp2p

Web Page 1 Web Page 2

Network connection Method Call

websocketwebsocket

Figure 2.4: Flow through the layers

The layers are placed on top of TomP2P.

A request goes from the web browser to the high-level websocket layer through
the low-level signaling layer.

TomP2P’s routing abilities are used to route the messages to the other peer.
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2.2.2 Libraries

• The base layer is TomP2P (https://tomp2p.net/).

• The websocket layer uses the Javalin web framework (https://javalin.
io). Jackson is used for JSON serialization (https://github.com/FasterXML/
jackson).

• Configuration is read via Konfig (https://github.com/npryce/konfig).

• Log messages use kotlin-logging (https://github.com/MicroUtils/kotlin-logging).

• Tests are run via kotlintest (https://github.com/kotlintest/kotlintest).

• http4k’s WebSocket module is used for E2E tests (https://www.http4k.
org/) since Javalin offers no WebSocket client.
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2.3 Design Decisions

2.3.1 Signaling Layer

sendDirect instead of DHT

DWRTC uses sendDirect messages instead of using the DHT. This adds complex-
ity, since messages need to be sent to the correct address (see below)

Using the DHT would therefore be easier. However, it is not possible for new
DHT data to cause a trigger to run. Therefore, polling would need to be used and
performance would decrease.

Finding addresses

The DHT is a map of Session ID to server network address. Especially in complex
setups, there are many network addresses.

When a session is started, the server discovers its external addresses by querying
well-known peers with which address they can see this peer (the bootstrapping
peers are reused as well-known peers). The first of these addresses is added into
the DHT and is used for sending messages later.

When a message needs to be routed to this server, only this first discovered address
is used. Initially, it was planned to add all discovered addresses into the DHT.
When sending, all addresses would be tried until one would signal a successful
response. However, this proved difficult due to deadlock issues on the network in
Jetty, that we were not able to pinpoint exactly.

Therefore, the approach above was chosen. With this method, there is at least one
confirmed address in the DHT.

User Input

DWRTC is not focused on security (see section 4.2.2.1 Security).

The ClientMessage.senderSessionId ID is overwritten before a message is sent
to the TomP2P layer. This disallows a user from deceiving their sender ID.

ClientService.removeClient only accepts an InternalClient (that was cre-
ated using ClientService.addClient), so one cannot disconnect another user
via the Kotlin API.

12



Message Format

The Message class uses a type as its discriminator. The availability of other fields
depends on the type. This allows for a very flexible format that also ensures
type-safe casting.

Developers using DWRTC can define their own message types with the payload
residing in the message body (see API documentation at https://docs.dwrtc.
net).

Bootstrapping

Bootstrapping is the act of joining an established P2P network.

The ClientService class supports two bootstrapping mechanisms:

1. Bootstrapping with a given TomP2P PeerAddress.
The PeerAddress bootstrap mechanism is meant for tests, where the peer’s
address is already available in the correct, technical format.

2. Bootstrapping using a normal IP/port pair (using PeerConnectionDetails).
The IP/port pair bootstrap mechanism is meant for user input.

ClientService

The ClientService class is the one-stop starting point for all P2P/DHT oper-
ations. It is a service object that creates and bootstraps the TomP2P peer. All
objects are created through methods of this object and the TomP2P peer is shared
with these objects.

Futures

A Future is a proxy object allowing for asynchronous completion of an operation.
Operations that run on completion (callback functions) can be added.

The signaling layer contains its own Futures. These are meant to abstract the
TomP2P Futures.

Extension classes for TomP2P are available in the util layer. They are mostly
used by these Futures to allow the usage of Kotlin specific lambda expressions or
anonymous functions [8].

13
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InternalClient/ExternalClient

An InternalClient is created when a new WebSocket session is started. It is
possible to send and receive messages.

An ExternalClient is created when an InternalClient wants to send messages
to it. An ExternalClient can only receive messages. On the other peer, the
messages are then routed to a corresponding InternalClient.

Note: an ExternalClient can be on the same server.

Message Routing

When an InternalClient is created, the ClientService registers its session ID
in a message dispatcher table. The dispatcher then sends all the received messages
to the correct InternalClient

2.3.2 WebSocket Layer

Message Format

The Message format is reused for WebSocket specific messages (WebSocketErrorMessage,
WebSocketIdMessage) and application-specific messages (ClientMessage)

WebSocket Handler

The WebSocketHandler consists of four main components:

• WebSocketHandler.clients is a map of session ID to InternalClients.

• WebSocketHandler.sessions is a map of session ID to WebSocket sessions.

• WebSocketHandler.onReceiveMessageFromWebSocket uses the session ID
to get the InternalClient. This is then used to send a message through
the P2P layer.

• WebSocketHandler.onReceiveMessageFromSignaling uses the session ID
to get the WebSocket session. This is then used to send the message to the
specific WebSocket.

14



IDs

The WebSocket session IDs are reused for the user’s session ID in the DHT. The
ID is assumed to be unique.
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2.4 Deployment

2.4.1 Docker

For simple deployments, DWRTC production builds are created as Docker images.
The built image is available on Docker Hub (https://hub.docker.com/r/dwrtc/
dwrtc/) and the Dockerfile is included in the source code repository.

A developer building an application using DWRTC can test it using Docker Com-
pose. The provided Docker Compose file deploys two containers that are boot-
strapped to each other. The two containers both expose their web servers, con-
sisting of the WebSocket and the demo app. They also expose the TomP2P port,
allowing a developer to bootstrap their extensions to DWRTC to a working net-
work.

2.4.2 Internet

DWRTC is also publicly available on the Internet. This is intended for users to
try out the demo app and for developers to experiment with the API.

The Internet deployment consists of multiple nodes. All nodes run DWRTC and
a coturn instance (TURN server). The web server is accessed through traefik
(https://traefik.io/) as a reverse proxy, which also provides automatic TLS
certificate deployment using Let’s Encrypt (https://letsencrypt.org/)

The installation is automated using Terraform and Ansible with the following
advantages:

• easy deployment (two commands)

• scaling: more nodes require only a few changes

• consistency: all nodes are set up exactly the same way

• recoverability: the setup can be recreated should it fail

Terraform Terraform (www.terraform.io) enables infrastructure to be expressed
as code.[9] For DWRTC, this consists of two servers on an IaaS service with the
author’s SSH keys deployed.
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Ansible Ansible (www.ansible.com) is a software that automates software pro-
visioning, configuration management, and application deployment. [10] It is used
to install and start the necessary software and to maintain the base system.

17
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2.5 Further evaluation: NAT workaround tech-
niques

To achieve fully decentralized WebRTC the following parts have to be imple-
mented:

• Signaling

• TURN

The next section describes ICE (STUN/TURN) in the context of WebRTC.

2.5.1 ICE

The Interactive Connectivity Establishment (ICE) framework allows a web browser
to connect to other web browsers. If possible it uses a direct P2P connection. It
employs STUN to determine what types of NAT are employed. If direct connec-
tions are impossible, the connection is relayed over TURN servers. [7]

ICE candidates are sent alongside the SDP Offers/Answers. The candidates are
established by the ICE protocol. One of the peers acts as a controlling agent and
is responsible for choosing the preferred ICE candidate pair. [11]

STUN Session Traversal Utilities for NAT (STUN) determine what connection
restrictions are present between two peers. STUN sends a request to a known
STUN server residing on the Internet. The STUN server responds with the client’s
public IP address. The client announces this address to the partner’s peer. [7]

The client may request further information from the STUN server to determine
the type of NAT. [7]
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Figure 2.5: STUN and TURN servers. [12]

TURN The TURN protocol is used to exchange messages behind a Symmetric
NAT. [11]

1. If the STUN protocol discovers that the client is behind a Symmetric NAT,
the Traversal using Relays around NAT (TURN) protocol is initiated. The
TURN protocol uses its own TURN server.[7]

2. To a firewall, a connection to a TURN server looks like a normal client/server
connection. The TURN server acts as a relay. It receives a message from
Alice, determines that it is for Bob and sends it to Bob (and vice-versa).[7]

2.5.2 Decentralized TURN

The idea is to distribute TURN servers on the Internet. Alice wants to connect to
Bob. Alice connects to TURN server 1, Bob to TURN server 2. TURN server 1
determines via the DHT that Bob is connected to TURN server 2. TURN server
1 sends all streaming messages to TURN server 2.

Performance This approach leads to a decline in performance. Stream messages
require an unnecessary round trip between TURN servers before they are sent to
the user.

19



In the case of DWRTC, signaling messages are delayed too, but delays in the
signaling process are not obvious to the user since signaling occurs before a call
has started. The exchanged data consists of a few small text messages, whereas
relaying streaming information entails continuously sending large pieces of data.

Delays in streaming messages are more pronounced. If the latency is higher than
250ms RTT, users would start to notice[13].

Decentralized TURN is therefore not feasible, the main argument being the added
latency of two hops.

2.5.3 Distributing TURN Servers

It was decided to distribute an existing TURN server implementation alongside
the deployed DWRTC nodes on the Internet (see section 2.4 Deployment). The
TURN servers are not part of a normal DWRTC installation but specific to our
deployment.

The decision had been made to use coturn as a STUN/TURN server (https://
github.com/coturn/coturn). coturn evolved from the original RFC 5766 project.[14]
Judging from the README, it implements the most RFCs and features.

The video call app is configured to use these TURN servers. A developer may use
these TURN servers or can configure their own.

The TURN servers are secured by static (so-called long-term) credentials. This
is because browsers do not accept unauthenticated TURN.[15]. It also protects
against DDoS attacks where attackers find these servers by scanning the Internet,
since they would not know the credentials. However, if an attacker finds the
DWRTC credentials through examining the source code, they would be able to
attack these servers.

This ensures that users of the video call app can communicate even if they reside
behind symmetric NATs.

2.5.4 Improving Latency to TURN Servers

Our supervisor, T. Bocek asked, if it is possible to favor overall latency when a
browser chooses a TURN server. Overall latency is defined as the total latency of
all peers to a TURN server.
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If multiple TURN servers are specified, the browser must choose a priority for each
server. It is not specified how this priority is chosen, but it is recommended to use
factors such as latency or packet loss. [16] However, there are no APIs to influence
the browser’s priority decision. A circumvention of this limitation is to offer only
one server to the ICE layer.

Choosing Lowest Overall Latency We propose an algorithm that allows
choosing one server with the lowest overall latency.

1. The controlling agent sends a message to all peers containing the TURN
servers that need a latency evaluation.

2. All peers measure the latency to each TURN server.

3. All peers send their latency measures to the controlling agent.

4. The controlling agent totals the received latencies for one TURN server.

5. The server with the overall lowest latency is chosen.

6. This server is submitted to the ICE layer.

7. The ICE layer includes this as its only TURN server in its candidate list.

The latency measures may use trickling, i.e. results are sent back to the controlling
agent as they become available [17]. The controlling agent may enforce timeouts.

This improves the user experience in certain scenarios. For example, Alice (con-
trolling agent) resides in the USA and Bob is located in the UK. By measuring only
her latency, Alice may choose a TURN server in Canada, even though a TURN
server in Iceland is available. The Icelandic TURN server would yield better over-
all latency to Alice and Bob than the Canadian TURN server, as it resides on the
geographical route between the two peers.

Implementation To measure latency to a server in JavaScript, a recommended
approach [18] is to measure the load time of an image element. This method
requires a valid picture residing on the server (e.g. 1x1 pixel) and can therefore
not be used on arbitrary servers. To ensure the skipping of any caches, a query
string with a random value is added.
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Chapter 3

Conclusion

A working example of a distributed WebRTC signaling channel was implemented.
A video call client written in JavaScript, using the Kotlin backend was built.

Kotlin was an excellent choice to write clear and expressive code despite the fact
that the authors had not worked with it a lot before starting the project. Im-
plementing our solution was not an easy task, especially due to the amount of
asynchronicity, difficulty in debugging and our lack of experience with TomP2P.

It was not possible to implement all of the ideas. Nevertheless, the implemented
result is a working video call application on a basis which could be easily used for
other purposes such as P2P file sharing over WebRTC.

3.1 Outlook

Message Authenticity

Messages on the P2P or the WebSocket layer are not checked for authenticity. The
messages could be signed on the TomP2P layer using public key cryptography [19]
[20] or on the WebSocket layer using the Web Crypto API [21]. Using public
key cryptography, the messages could be signed. This would require an initial
untampered connection to exchange trusted public keys. The authenticity of a
message could then be proven.

The supposed attack is as follows: Alice and Bob are communicating with each
other. They are joined by Mallory, who wants to send malicious messages to Alice,
posing as Bob. Currently, Mallory could join the P2P network, find Alice’s server
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and send signaling messages as Bob. She could also connect to the WebSocket of
any participating node and send a message posing as Bob.

This was not implemented since security is not a requirement for DWRTC (see
section 4.2.2.1 Security)

Cache in ClientService.findClient

In the current state, each new message triggers a new findClient call. As there are
several messages in close succession, a time-based cache could be added. Currently,
the DHT is queried each time.

This could not be implemented because findClient needs to return a Future. The
current implementation of Future does not allow for returning immediate values.

Dashboard for Server Operator

This dashboard would be accessible over the webserver. It would present statistics
about the current node, e.g. connected user sessions or bootstrapped peers, along
with system statistics such as CPU or RAM usage.

The dashboard idea was disregarded since it would not add much value.

Refactoring Web Layer

Javalin is the currently used web framework. Since http4k’s WebSocket module is
already used in tests, switching the websocket layer to http4k would remove the
dependency on Javalin.

Changing the web framework would not add value and it would require time to
become familiar with the new product. Therefore we decided to not replace the
framework.
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Refactorings of Video Call Application

The demo app currently has no tests. This idea would entail adding unit tests and
E2E tests.

Testing of the WebSocket layer and downwards is already done in Kotlin. Adding
tests for the JS part would not add a much of a benefit compared to the required
time to implement it.

Basic Messaging JavaScript Client

DWRTC could be used as a distributed messaging app.

This would also help with debugging, since one is not dependent on a correct
WebRTC implementation.

This idea was omitted since debugging was possible using the browser’s log console
and it would not add much value.

P2P File Sharing

WebRTC allows sending arbitrary data via the data channel. [22] This would allow
for a P2P File Sharing application.

A P2P File Sharing application was not developed since it can be done by any
other developer using DWRTC. It would not add much value to the core project,
since video calling is available.

Testing

The base layer of DWRTC is TomP2P. Therefore, it is tricky to create unit tests
without mocking TomP2P, which in itself is a tough task.

Most of the tests can be considered integration tests or even E2E tests. It is
difficult to set these up properly, and it has proven to be challenging to debug test
failures.

Therefore, DWRTC is not as properly tested as it could be and future work could
add additional and more thorough tests.
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Chapter 4

Appendix
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4.1 Organization

4.1.1 People

• Prof. Dr. Thomas Bocek, supervisor

• Demian Thoma, student

• Lukas Röllin, student

4.1.2 Meetings

Meetings are held in T. Bocek’s office every Wednesday at 13:00h. The main goal
of these meetings is to address open question, discuss what has been done within
the last week and to define goals for the coming weeks. These discussions include
the state and direction of the project.

4.1.3 Code Repository

The code is tracked using Git. DWRTC is open source and the code is accessible
on Github (https://github.com/dwrtc/dwrtc).

4.1.4 Code Documentation

The code documentation is available on https://docs.dwrtc.net/dwrtc/.

4.1.5 Task Handling

GitHub is used for issue/task tracking. The issues are available at

• https://github.com/dwrtc/sa/issues for high-level issues

• https://github.com/dwrtc/dwrtc/issues for code-level issues

All issues can be viewed in the project dashboard: https://github.com/orgs/
dwrtc/projects/1

This led to 56 high-level issues and 56 code-level issues.
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4.1.6 Time Tracking

Each student is expected to spend a maximum of 240 hours on this project. This
results in a weekly workload of up to 17 hours.

The students are required to track their working hours. We decided to use Clockify
(clockify.me).

The work is categorized into the following sections:

• Implementation

• Meetings

• Project Management

• Research

• Writing

This resulted in a total work time of 422 hours, which is 88% of the total maximum
of 480h.

The time was spent as follows (numbers are rounded)

Implementation (188h)

45%Meetings (17h)
4%

Project Management (41h)
10%

Research (36h)

8%

Writing (140h)

33%

Figure 4.1: Time spent by category (total of 422)
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4.1.7 Methodology

For this project, an agile approach without sprints is practiced.

Each week is assigned to one or more project phases. Tasks are assigned to these
phases.

The master branch represents the current working state. A CI service ensures a
clean, running state.

4.1.8 Quality measures

Testing Unit Testing and Integration Testing is employed. Before a pull request
is merged, it is required that all tests succeed.

Code Style The code adheres to the following code styles:

• Kotlin: Google Android Style Guide https://developer.android.com/
kotlin/style-guide

• JavaScript: Prettier https://prettier.io/

• HTML/CSS: Prettier

CI The CI is used to build the application, run tests and run code analysis tools.

Linting SonarCloud’s Continuous Inspection product SonarQube is applied on
each CI run to ensure an idiomatic code base. SonarQube comments on the ap-
plicable code parts and suggests improvements.

Reviews A pull request is required to change the code base. Direct modifications
of the master branch are forbidden.

A pull request requires a review by another contributor to be merged. This should
promote an understandable code base (see section 4.5 R1: the students do not
understand parts another student wrote) and clear assumptions (e.g. nullability).
This resulted in 73 pull requests.

The text of this term project was treated in the same way, resulting in 38 pull
requests.
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Open Source Projects The following bugs were found and reported:

• simple-peer: .on("signal") fires even though initiator: false (version
9.1.0 and higher) https://github.com/feross/simple-peer/issues/366

• Javalin: Sending to WebSocket from multiple threads crashes Jetty. Maybe
synchronize? https://github.com/tipsy/javalin/issues/423

The following improvements to projects were made:

• traefik: Allow usersFile comments https://github.com/containous/traefik/
pull/4159

4.1.9 Tools

The following development tools are used:

• JetBrains IntelliJ IDEA for Kotlin development (https://www.jetbrains.
com/idea/).

• Microsoft Visual Studio Code for web development (https://code.visualstudio.
com/).

• Docker as a runtime environment (https://www.docker.com/).

• Gradle as a build tool and for dependency management (https://gradle.
org/).

• Dokka for the code documentation (https://github.com/Kotlin/dokka).

• Prettier for code formatting (web) (https://prettier.io/).
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4.2 Requirements

4.2.1 Use Cases

DWRTC:

Send signaling
messages 

Receive signaling
messages

Web App Developer Server Operator

Start Server

Stop Server

Update Server

Figure 4.2: Use Case Diagramm of DWRTC

Demo App:

Start a new call 

Answer a call

Leave a call

User

Figure 4.3: Use Case Diagramm of Demo App
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4.2.2 Non-Functional Requirements

Based on [23], [24], [25] & [26].

4.2.2.1 Functionality

Accuracy The system does not forward calls to the wrong party.

Interoperabilityy The system works with web browsers that support Web-
Socket. The P2P layer can only communicate with other peers running DWRTC.

Security This research project is not focused on security.

4.2.2.2 Reliability

Maturity This research project sets no hard requirements on stability. However,
measures to maintain the stability are put in place (see subsection 4.1.8 Quality
measures).

Fault Tolerance Already established calls are not disconnected by a faulting
server.

4.2.2.3 Usability

Understandability The UI is understandable without any expertise. Any user
who once made a video call from his computer understands the process.

Learnability A user who has already set up audio/video is able to use the
product after 5 minutes without further instructions.

Operability The system logs information about its state.

The user is always informed about what is currently going on and what options
are available.
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4.2.2.4 Efficiency

Time behavior Once a call is started, it is answerable (WebRTC starts con-
necting directly) within 30 seconds.

4.2.2.5 Maintainability

Analysability The software keeps a log file on each server on what it is currently
doing.

Changeability The software allows changes without unforeseen side effects.

Stability The software employs automated testing. This ensures that unin-
tended changes are discovered in an early stage.

Testability The software architecture allows automated testing.

4.2.2.6 Portability

Adaptability The software runs on any platform supporting the Java Virtual
Machine (JVM).

Installability The software is installable in less than 30 minutes.

Replaceability The software does not need to be easily replaceable.

4.2.3 Result

Most requirements were fulfilled. An exception are the usability requirements since
no usability tests were executed. Another exception is the testability, the reasons
are discussed in section 3.1 Testing
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4.3 Design Diagrams

4.3.1 Package Diagram

dwrtc

websocket

signaling

tomp2p

PeerConnectionDetails

ipAddress: InetAddress

port: Int

Message

ClientMessageClientService

peerPort: Int

constructor(bootstrapPeer: PeerAddress)

constructor(bootstrapPeers: List<PeerConnectionDetails>)

addClient(sessionId: String) : InternalClient

removeClient(client: InternalClient)

findClient(sessionId: String) : ExternalClient

addDirectMessageListener(sessionId: String, emitter)

InternalClient

sessionId: String

sendMessage(type: String,
messageBody: String,
recipient: ExternalClient)

onReceiveMessage(emitter)

ExternalClient

sessionId: String

sendMessage(type: String,
messageBody: String,
senderSessionId: String)

WebSocketHandler

app: Javalin

service: ClientService

connect(session: WsSession)

close(session: WsSession, reason: String)

onReceiveMessageFromWebSocket(session: WsSession, message: String)

onReceiveMessageFromSignaling(message: ClientMessage)

WebSocketIdMessage

WebSocketErrorMessage

util

Config JSON

jsonTo<T>(jsonString: String)

toJson(message: Any)

Net

findFreePort()

Future

TomP2P
Extension Classes

Peer

buildNewPeer(id: String, port: Int)

Figure 4.4: Complete Package Diagram
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4.3.2 Class Diagrams

Message

signaling

Message

type: String

websocket

WebSocketErrorMessage

type = "WebSocketErrorMessage"

error: String

WebSocketIdMessage

type = "WebSocketIdMessage"

id: String

ClientMessage

type: String

senderSessionId: String?

recipientSessionId: String?

messageBody: String

Figure 4.5: Class Diagram for Message class
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4.4 Project Plan

Term Week Start Date Phase(s)
1 17.09 Kickoff
2 24.09 Elaboration
3 1.10 Elaboration
4 8.10 Elaboration, Implementation
5 15.10 Elaboration, Implementation
6 22.10 Implementation
7 29.10 Implementation
8 5.11 Implementation
9 12.11 Implementation
10 19.11 Implementation
11 26.11 Implementation, QA
12 3.12 Implementation, QA
13 10.12 QA
14 17.12 QA

Table 4.1: Project Plan

The Project Plan was followed very closely and there have been no alterations
during the term project.
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4.5 Risks

The following section lists the identified risks and their corresponding countermea-
sures.

R1: the students do not understand parts another student wrote

• code reviews

• explain ideas and tasks

• consider multiple ways of an implementation

• challenge decisions

R2: too much work, effort was underestimated

• review time estimation of tasks with supervisor

• revise uncertain tasks

R3: misunderstanding of requirements

• document requirements

• review by supervisor

R4: problems with frameworks or tools

• familiarize with frameworks and tools

• use maintained frameworks and libraries

R5: wrong prioritization of tasks

• be aware of unknown dependencies

• keep an eye on the project plan
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``````````````̀Likelihood
Consequence Low Medium High

Rare R1 R2
Possible R4 R3, R5
Almost certain

Table 4.2: Risk Table
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Glossary

API Application Programming Interface. Surface of an application that enables
information exchange..

AV Audio/Video.

CI Continuous Integration. Building and testing each change to a project contin-
uously to ensure an on-going quality and stability..

DDoS Distributed Denial of Service. Attack with the goal of overloading and
ultimately shutting down a service..

DHT Distributed Hash Table. Hash table that is distributed over many peers.

DWRTC Distributed WebRTC. This project..

E2E Test End to End test. Test using the complete system..

ICE Interactive Connectivity Establishment. See subsection 2.5.1 ICE.

JSON JavaScript Object Notation. Text format for exchanging data..

NAT Network Address Translation: Mapping layer between two IP networks..

P2P Peer 2 Peer. Connection between two equal clients, contrary to a client/server
architecture..

SDP Session Description Protocol. Used in WebRTC to communicate media
characteristics..

STUN Session Traversal Utilities for NAT. See section 2.5.1 STUN.
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TURN Traversal Relay using NAT. See section 2.5.1 TURN.

UI User interface.

WebRTC Web Real-Time Communication.
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