B HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
NETWORKED SOLUTIONS

Automatic Refactoring for Parallelization
Master’s Thesis

Department of Computer Science
University of Applied Sciences Rapperswil

Spring Term 2017

Author: Christoph Amrein
Advisor: Prof. Dr. Luc Blaser, HSR
Project Partner: Institute for Networked Solutions

External Examiner: Dr. Felix Friedrich, ETH Ziirich

Abstract

In modern software, adaptions like the paralleliza-
tion are necessary to fully leverage the CPU’s capa-
bilities. However, the parallelization introduces a
new range of possible software faults. Thus, assist-
ing utilities like static code analyzers are desirable.
For instance, ones that inform engineers about the
code fragments that can be safely adapted. This
thesis focuses on loops and introduces a conservative
approach to verify that these can be parallelized.
More specifically, it allows proofing that array ac-
cesses do not conflict between iterations. The pro-
cedure is a data flow analysis, which proofs the
absence of conflicts by employing rules for a selec-
tion of binary expressions. Furthermore, its design
allows it to profit from various code optimizations
automatically. Experimental evaluations show that
both, the prototype and the data flow analysis itself,
do not incorrectly identify loops as parallelizable.
Moreover, it pinpoints that the analysis can cor-
rectly identify most of the parallelizable loops, and
only a negligible amount requires a more mature
approach.

1 Introduction

When it comes to improving the performance of an
application, one possible enhancement is the par-
allelization of computationally intensive code frag-
ments. Loops primarily used for badge processing
data of an array are excellent candidates for paral-
lelization. These loops shelter the opportunity that
each iteration can be executed concurrently which
possibly leads to extraordinary speed-up when doing
computationally intensive work. However, the par-
allel code adds a new range of possible errors such
as race conditions [2] during program execution.
Therefore, the transformation of a loop into its
parallel equivalent requires certain checks, inter alia,
the absence of loop carried dependencies. A loop
carried dependence is present if a statement of an
iteration depends on a statement of another [2]. For
example, if there are two or more iterations that
access the same array element where at least one
is writing. Consider the loop sketched in Listing [I]
This loop calculates the sum of all entries up to the
current entry and stores the result in the current
entry. An array access intersection is present due

1 int[] a = new int[] {

2 1, 2, 3, 4, 5, 6

3 %

4 int m = a.lLength;

5 for(int i = 1; i < m; i++) {
6 int p =1 - 1;

7 alil = alp] + alil;

8 2

Listing 1: Loop that sums-up the array entries with
access intersections

to the read and write accesses to the different array
indices i and p on line [7} However, if only one
of these two indices was used, there would be no
longer an array access intersection. This example
underpins the need for a technique to verify that —
possibly computed — array indices do not intersect
between iterations.

There already exist various approaches to identify
whether an access to an array conflicts with other
iterations or not, each having its advantages. A
mere candidate is the GCD dependence test [6], 37,
45]. This approach allows deciding if array indices
computed with linear expressions may intersect with
other iterations [37].

A more powerful approach is the polyhedral model
(or polytope model) [T, T1]. It allows the transfor-
mation of loops which — in their original form —
are not parallelizable but are in a restructured way.
The detection of intersections is accomplished by
the setup of inequalities and solving for an integer
solution with the help of an ILP solver. However,
as integer linear programming is NP-hard [I5], the
computation of integer solutions may get computa-
tionally intensive.

This thesis introduces a conservative data flow
analysis approach. This approach thereby makes
use of transfer rules to proof that an index will
not intersect between iterations. These rules are
conservative in the way they transfer information.
More specifically, they only transfer information if
it is guaranteed for any situation. With the help of
the analysis results, it is then possible to proof the
absence of array access intersections. For the sake
of simplicity, this thesis concentrates on for loops
only. Thus, the complexity required to identify the
loop index (or loop counter [3]) can be neglected. In

for loops, the loop index is the variable controlling
the iterations of the loop. In the example sketched
in Listing [I} the loop index is the variable i. The
variable p, on the other hand, is only a variable that
depends on the loop index.

Throughout the following pages, Section [2] intro-
duces the conservative analysis by applying it to a
given example code. Section [3] evaluates the useful-
ness of the introduced analysis. Moreover, it gives
a brief overview of the features of the implemented
prototype. In Section [4] a survey of related work
that support the development of parallel code is
given. Ultimately, the results of running the pro-
totype on a collection of open source projects are
summarized. Last but not least, Section [5] gives a
short reflection and provides an outlook on possible
extensions.

2 Analysis

This section introduces an approach which reasons
the absence of array access intersections by the ap-
plication of simple transfer rules in the data flow
analysis. On the one hand, the design of this ap-
proach makes it independent from any other opti-
mization or analysis while on the other hand it still
profits from them. In other words, the analysis is
correct in any situation while various optimizations
can improve the results.

In the upcoming sections, Section [2.1]introduces
an example which is used throughout the sections
to explain the different steps of the analysis, and
Section 2.2 proposes the notation used to encode the
information in the analysis. The rules used to derive
information from expressions are summarized in
Section and Section [2:4] describes how the data
flow analysis is structured. Conclusively, Section
describes how the analysis could be adapted for the
use with SSA and how the results could be improved
further.

2.1 Example

To aid the comprehension of the complete analysis,
the example code illustrated in Listing[2]is processed
throughout the sections. It computes the factorial
of every odd array element. Figure [I] sketches the
control flow graph of the outer loop’s body. Each

1 1long[] f = new long[] {

2 15, 15, 18, 18, 20, 20

3 %

4 int m = f.Length / 2;

5 for(int i = @; i < m; i++) {
6 int o = 1;

7 int p =0+ i % 2;

8 long s = flpl;

9 long ¢ = 1;

10

11 for(int j = 1; j <= s; j++) {
12 c=c* j;

13 }

14

15 flpl = c;

16 3

Listing 2: Loop which computes the factorial of
every odd array index

block is numbered with a unique label, thus it is
label consistent [38].

The illustrated code consists of two nested for
loops. The outer declared on line |5| iterates over
the array entries, and the inner on line [11] computes
the factorial of the entry. As there are neither write
accesses to shared memory nor intersecting accesses
to the array f, the outer loop is parallelizable. The
inner loop is not parallelizable because it would have
read and write accesses to the same local variable ¢
if the loop was parallelized.

The loop index of the outer loop is the variable
i, and the variable j is the loop index of the inner
loop.

2.2 Notation

This section introduces a small set of notations.
These notations express the different kinds of infor-
mation encoded within the analysis to simplify the
rule application examples.

The analysis employs an embedded reaching defi-
nitions analysis [28] B8] to identify possible conflicts
of variables. The reaching definitions information is
expressed as z@/ stating the block with the label ¢
defines the variable . This embedded analysis also
removes the need for an intermediate representation
in the static single assignment [4} [16] [41] form.

Figure 1: Control flow graph of the code that com-
putes the factorials

=

Notation Description
x@Q/ x is defined at block /.
x| x is loop dependent.
x x is not loop dependent.
r=0 x is zero.
x#0 x is not zero.
=1 x is one.
T+ x is positive.
r— Z is negative.
Table 1: Information notation

The most interesting symbol is the loop depen-
dence symbol denoted with a vertical dashE| x |
This property identifies that the variable x is the
loop index or a variable derived from it. Any access
to the same dimension of an array with the variable
x and the same definition having the loop depen-
dence symbol is guaranteed to not intersect with
itself between iterations. The complement of x | is
x t. It states that the variable x does not depend
on the loop index.

The meanings of the remaining symbols are
straightforward and are compactly listed in Table
for reference.

2.3 Rules

This section introduces the rules to apply to the
given integer operation. There is a slight difference
to the notation in Section The rules do not
generate tuples which combine information with a
particular variable. Linking the information with a
variable is the responsibility of the step explained
in Section 2:4.1] This separation allows that the
right-hand side of an assignment, or expressions in
general, can be computed independently.

2.3.1 Loop Index

specifies the set of information attached to the
loop index itself. This set is used as the extremal
values of the data flow analysis.

{l,#0,+} (1)

1The idea for the dash comes from the increasing value of
the loop index. It moves from the lower to the upper bound.

Constant Generated Information
0 {Jf7 = 0}

1 #0=1+)
2,3,4,... {,#0,+}
-1,-2,-3,... {t,#0,-}

Table 2: Information generated by constants

While # 0 is technically not always correct, it simpli-
fies the other rules and does not void the correctness.
The + property denotes that loop index has an in-
creasing value. Hence, it has to be replaced with —
for decreasing indices.

2.3.2 Constants

The information generated by integer constants is
self-explanatory, thus is only listed in Table [2] for
brevity.

2.3.3 Variables

The information a variable provides is retrieved from
the state at the entry of the current block ¢. For
instance, consider the entry Stateﬂ of the block 3
sketched in .

Entry(3) = {iQ?,i |,i # 0,i+, 5

0@2,0#0,0=1,0+,01} @
The special label 7 attached to the loop index 14
depicts that the variable was defined outside the
loop’s body.

A variable’s information is fetched by filtering all
entries by the desired variable. and illustrate
the information for the variables ¢ and o respectively.
The definition property is omitted as it is irrelevant
for the transfers.

Information(i) = {|,# 0,+}
Information(o) = {,#£0,=1,+}

3)
(4)

2.3.4 Binary Expressions

Tables [7] to [1T] of Appendix [A]list the transfer rules
for binary expressions. The columns Left and Right
express the conditions that have to be satisfied when

2More details about the states follow in Section

transferring information. Both columns specify a
set of properties that has to be attached to the re-
spective operand. For example, if the column Right
holds the set {|,+}, it requires that the properties
| and + are attached to the right operand. If this
condition is not satisfied, the information of the
current row may not be transferred. The column
Transferred denotes which information is transferred
when the associated conditions are fulfilled. The
rows captioned with Copy identify opportunities
where information can be copied from the speci-
fied operand safely. To summarize, each row of the
transfer rules has to be checked if the property of
the row can be transferred. Therefore, it is possible
to transfer multiple properties for a single binary
expression.

As a general example how to employ the transfer
of a binary expression, consider the expression de-
picted in which is an extract of the node with
label 2.

()

@ to summarize the information attached to
the operands.

0+ 1%*2

Information(o) = {,#0,=1,+}
Information(i) = {|,# 0,4}
Information(2) = {{,# 0, +}

(6)
(7)
®)

The variable i is the loop index, thus it has the |
information attached. The application of the rules
within nested expressions follows conventional evalu-
ation rules; this means that in this example the mul-
tiplication is evaluated before the addition. In other
words, the corresponding expression tree sketched
in Figure [2]is evaluated bottom-up.

As a consequence of the evaluation order, the
multiplication transfer rules are applied first. The
| property is transferred because the left operand
contains the properties {|,+,# 0}, and the right
contains {+,# 0}. Moreover, + and # 0 are trans-
ferred since both operands contain {+} and {# 0}
respectively. These transfers ultimately lead to the
information as @[) denotes.

Information(i*2) = {|,# 0,+} (9)

Next, the transfer rules for additions have to be
applied. Since the right operand has the information
{|, +} and the left has {+} attached, the | property
is transferred. Moreover, the properties + and # 0

Figure 2: Expression evaluation tree

are transferred because the {+} condition for both
operands is satisfied. depicts the resulting
information after the application of the addition
transfer rule.

Information(o+ix2) ={],#0,+} (10)

2.3.5 Limitations

Expressions without rules do not generate any infor-
mation. Furthermore, these rules are only defined
for integer operations; thus, operations with any
other data type — e.g., decimals — are undefined
and do not generate any information as well. How-
ever, the rule-set can be enriched to extend the
support of binary expressions.

2.4 Data Flow Analysis

The identifiers used to express the states of the
data flow analysis are inspired by the ones used by
Nielson et al. [38]. Entry(f) identifies the set of
information when entering whereas Exit({) identi-
fies the set when exiting the block with label éﬂ
In other words, these two sets represent the states
before and after the execution of the block.

The data flow analysis is a forward analysis [3§]
with similarities to an instance of the monotone
framework [38]. The specialty lies in the merge
function. It is neither an intersection nor a unifi-

3 Another commonly used notation to express these two
states are the identifiers in(¢) and out(¢).

cation. While it does employ a unification, it does
filter conflicting definitions of the same variables.

In the upcoming sections, Section describes
how the transfer from the entry to the exit state
of a block is accomplished, Section [2:4.2] charac-
terizes the merge step, and Section [2.:4.3] how the
data flow analysis can be solved with the help of a
simple iterative worklist algorithm. Last but not
least, Section [2:4.4] describes how to interpret the
analysis results. It should be noted that some parts
of these sections are only in this thesis for the sake
of completeness. Therefore, large parts — especially
Section [2.4.3] — may be skipped by readers familiar
with data flow analysis.

2.4.1 Transfer the Entry to the Exit State

Transferring the data at the entry of a block to
construct the exit state is accomplished with the
help of the transfer rules introduced in Section [2.3
Therefore, the exit state can be expressed in the
form it is illustrated in .

Exit(¢) = Transfere(Entry(f)) (11)

The mutations of the T'rans fer, function depend
on the block. All blocks but the assignments simply
do nothing except copy the data from the entry.
Therefore, the exit state will be equal to the entry
state. For assignments, transfers are only applied if
it is direct to a variable itself. That is why assign-
ments to arrays do not alter the information.

If the block is an assignment of the desired form,
the expression on the right-hand side of the assign-
ment is evaluated with the rules introduced in Sec-
tion [2:3] The resulting information is then linked to
the assigned variable x and enriched with the defini-
tion tuple x@¢ identifying that the last assignment
occurred in the block ¢. However, before unifying
the new information with the entry state, any tuple
containing the written variable x has to be removed.
To summarize, assignments of the form =z = e can
be transferred in a way as it is sketched in .

Exit(¢) = (Entry() \ {(z i) | (z i) € Ezit(¢)})
U{(xz n) | n € Information(e)}
U {z@/¢}
(12)
In , the tuple (x) represents an arbitrary tuple
containing information related to the variable x, for
example, x+.

Reconsider the assignment p = o + i x 2 of the
block 3. The application of the expression rules in
Section resulted in the set {# 0, +, |}. There-
fore, the information that will be unified with the
truncated entry state is as depicts.

{pQ@3,p # 0,p+,p |} (13)
Because the assignment does not overwrite any ex-
isting data, no tuples are removed, and the exit
state is as shows. For readability, the newly
added properties are highlighted.

Exit(3) = {iQ?,i |,i # 0,i+,0Q2,0 # 0,014,
14
o=10+, p@Q3,p# 0.p+,p | })

2.4.2 Merge the Predecessors’ Exit States

The initial step when merging information at the
entry of the block ¢ is unifying the exit values of its
predecessors ¢/. After the unification was applied,
it removes any conflicting information of variables.
This removal is achieved with the help of the em-
bedded reaching definitions analysis. If there is a
variable that has multiple distinct definitions, it is a
conflicting variable that has to be removed. Practi-
cally, the entry of the block ¢ can be constructed in a
way it is demonstrated in whereas Con flicts({)
is the set of conflicting tuples to be removed.

Entry(f) = U Exit(l') | \ Conflicts(f)
'ePred(L)

(15)
However, it is crucial for the data flow analysis to
retain the reaching definitions tuples z@Q¢. For exam-
ple, if there are two nested if statements where each
assigns a different value to a variable. If the merge
operation would remove the reaching definitions tu-
ples as well, the conflict of the variable definitions
may no longer be identified when merging the outer
if statement.

As an example application of the merge logic,
consider the block with the label 7. This block has
two predecessors: 6 and 9, whereas and
depict their exit statesﬂ The relevant properties of

4The exit state of block 9 represents the first iteration
of the solving algorithm. Later iterations will have different
information due to the change of the exit state of block 7.

this example are highlighted.

Exit(6) = {iQ?,i |,i # 0,i+,0Q2,0 # 0,014,
0o=1,0+,pQ3,p # 0,p+,p |,

16
@4, c@5,¢c#0,ct,c=1,c+,)
JQ@6,5 #0,7 1,5 =1,j+}
Bait(9) = {i@?2,4 |,i £ 0,i+,002,0 £ 0,01,
o=1,0+,pQ3,p # 0,p+,p |,
17)

s@4, c@8,c#0,ct,c=1,c+,
JQ9,5 #0,5 1,5 =1,j+}

Obviously, there are distinct definitions of the vari-
able c. One by the block with the label 5 and one by
the block with the label 8. Therefore, it is required
to remove any information—except the reaching
definitions—attached to the variable c¢. This sit-
uation also applies to the variable j. Hence its
information has to be removed too. illustrates
the resulting entry state of the block 7.

Entry(7) = {iQ?,i|,i # 0,i+,0Q2,0 # 0,01,
0o=1,0+,p@3,p #0,p+,p |,

s@Q4, @5, cQ8 , jQ6, j@9}
(18)

Because of the restrictive merge operation, the
analysis allows safe usage of subtractions when calcu-
lating the position of an array index. It is not possi-
ble to encode loop dependence information without
the usage of variables marked as loop dependent.
The same applies when removing loop dependence
information from a variable. Consider the example
illustrated in Listing [3] The variable i is the loop
index and initially assigned to the variable a on
line 2] In practice, the illustrated loop resets the
value of a to 0 with consecutive subtractions. Be-
cause of the merge operation, the loop dependence
information is removed from the variable a since
there are two distinct assignments. Therefore, the
assignment to variable b on line [6] does not provide
any information.

The same applies if a variable may hold distinct
values due to branches. Listing [4] sketches a branch
where the variable a may either hold the value 2
or 3, depending on the current iteration. If the
variable a was used to compute an index for array
access after this branch, there is the possibility of

1 // ’i’ is the loop index

2 var a = ij;

3 for(var j = 0; j < i; ++j) {
4 a =a - 1;

5 3}

6 var b = a;

Listing 3: Removal of the loop dependence

1 // ’i’ is the loop index
2 var a = 3;

3 if(i%2 == 0) {

4 a = 2;

5 3}

Listing 4: Distinct values because of branch

intersections between the iterations. Again, this
case is prevented by the merging rule.

2.4.3 Solve the Data Flow Analysis

The data flow analysis can almost be solved iden-
tically to conventional instances of the monotone
framework, except for the merge operation. Algo-
rithm [I] depicts one possible approach.

The inputs of the iterative worklist algorithm
[28, 37, 38] are the control flow graph Cfg and the
loop index i. The first loop initializes the entry
state of the start node of the control flow graph
with the extremal value’l the information about
the loop index. All other entry states are initialized
with an empty set. After the initialization of the
entry states, all exit states are initialized with an
empty set and the nodes are added to the worklist.

The computation runs until the worklist is empty.
The worklist is not empty as long as there was a
change to an exit state. If a change occurred, all
the successors of the currently processed block £ are
added to the worklist.

The merge step merges the exit states of all pre-
decessors for any but the start node. Therefore, the
entry state of the start node stays untouched. Af-
ter the states were merged, the algorithm discards
variables with conflicting definitions from the set.

51t is possible to enrich the extremal values with informa-
tion about variables declared outside of the loop to improve
the results of the analysis.

Data: Cfg, i
Result: Entry, Exit
worklist «+ 0;
foreach ¢ € blocks(C fg) do
if ¢ = start(Cfg) then

| Entry(0) < {iQ?,4 |,i #0,i+};
else

| Entry(l) < 0;
end
Exit(f) < 0;
worklist < worklist U {{};
end
while worklist # () do
£« head(worklist);
worklist + tail(worklist);
oldExit < Exit(();
if ¢ # start(Cfg) then

Entry(f) < J{Ezit(¢') | ¢’ €
predecessors(f)};

end
Entry(€) < Entry(¢) \ Conflicts(¢);
Exit(¢) < Transfery(Entry(l));
if Exit({) # oldExit then

| worklist <— worklist U successors(l);
end

end

return Entry, Exit
Algorithm 1: Tterative worklist algorithm to solve

the data flow analysis

Finally, Transfer, transfers the entry state to the
exit state.

The result of the algorithm are the computed
entry and exit states of all blocks within the control
flow graph. The final states of the example are
listed in Tables [12] and [I3] of Appendix

2.4.4 Interpret the Results

The use of the analysis results is straightforward.
However, without the utilization of an alias analysis
[37], any array has to be treated as if one single array
was accessed. This conservative simplification is
possible because it implicitly covers all possibilities
of array aliasing.

The first step is the collection of any array access
and the node where this access been identified. In
the initially introduced example, that would be the
reading from f[p] in block 4 and writing to f[p]

1 int m = a.Length - 1;

2 for(int i = 0; i < m; i++) {
3 var x = i;

4 var o = alx + 11;

5 alx + 1] = o + 1;

6 3

Listing 5: Array access with offset

in block 10. For both blocks, the entry state of the
respective block is queried for the array accessor p.
sketches the result of the two state queries that
happens to be the same for both as the variable p
is not written between the blocks 4 and 10.

{p@3,p #0,p+,p [} (19)

With the retrieved information, three checks are
essential. The first one ensures that each accessor
has the loop dependence property | attached. Next,
it is necessary to prove that the accessor is always
targeting the same dimension. The third and last
check is ensuring that all have the same defining
block. It is unnecessary to verify that the same
variable was used because this is implicitly given by
the definition check. If all three checks are successful,
there are no array access intersections between the
loop iterations.

The factorial example has obviously no intersect-
ing accesses to arrays. Furthermore, the loop does
not contain any other kind of write access to shared
memory. Consequently, the loop is parallelizable.

2.5 Opportunities

Adapting the analysis to an implementation for
the use with an intermediate representation that
is in the static single assignment form drastically
simplifies the analysis. First of all, the embedded
reaching definitions analysis becomes obsolete. The
transfers can be executed top-down, definition by
definition. Moreover, the merge function is no longer
necessary as it can be expressed as a ¢-function
which does not produce any information.

As initially mentioned, a variety of optimization
techniques can improve the results of the intro-
duced analysis. For example, consider the situation
sketched in Listing [5] which constructs the array
indices with an offset. The lines M and [B both ac-

1 int m = a.lLength - 1;

2 for(int i = 0; i < m; i++) {
3 var x = i;

4 var t1 = x + 1;

5 var o = al[t1];

6 var t2 = t1;

7 alt1] = o + 1;

8 %

Listing 6: Optimized array access with offset

cess the array at the same position. Nevertheless,
they compute the index in two distinct locations.
Therefore, there is no guarantee that the value of
the variable x did not change in-between. One
possibility would be to check the definitions of all
the accessed variables, and that the expressions are
equal. A more sophisticated approach is the appli-
cation of a common subexpression elimination [37]
and copy propagation [37]. Listing [f] illustrates a
possible result of the utilization of these two opti-
mizations. Both accesses are made with the same
variable having the same definitions. Thus the loop
can safely be parallelized and is also detected by
the prototype introduced in Section [3.1

3 Evaluation

To verify the usefulness of the introduced analysis,
a prototype which makes use of it has been im-
plemented. Section summarizes further details
about said prototype. The results of the experimen-
tal evaluation are outlined in Section

3.1 Prototype

The prototype is a static code analyzer implemented
in C# with the help of the NET Compiler Platform
(Roslyn) [33]. It is a Visual Studio [35] plugin that
automatically scans the for loops within the docu-
ments and reports opportunities for parallelization.
For the sake of simplicity, the interprocedural analy-
sis is only context insensitive. To avoid cases where
methods are overridden with polymorphism, only
non-virtual methods are supported. The prototype
works conservatively with the goal of guaranteed
correctness if a loop is parallelized.

Internally, the prototype transforms the provided

C# code into a three-address intermediate repre-
sentation. During the conversion process, semantic
checks prevent ambiguities of shadowed variables.
Of course, the conversion fails for unsupported lan-
guage features, and the loop is not analyzed further.
Moreover, the prototype applies a copy propagation
and common subexpression elimination to improve
the results of the loop dependence analysis. An
alias analysis is used to support accesses to distinct
arrays.

Besides a small set of white-listed static methods
of the .NET Framework, the prototype supports the
following language features: 1) auto-properties 2) bi-
nary and unary expressions 3) coalesce expressions
4) compound assignments 5) conditional expressions
6) continue and break statements for inner loops
7) for-, while-, and do-statements 8) method in-
vocations 9) multi-dimensional arrays 10) string
interpolation.

3.2 Results

The evaluation was made by analyzing 21 open
source projects available on GitHub [27] with a
total of 33,893 for loops. The selected projects are
listed in Appendix [C] and are considered mature
regarding size, age, and the number of given stars.
The majority of the projects were chosen because
they provide functionality in either data processing,
image processing, or machine learning; expecting a
a better chance for parallelizable loops. Throughout
this section, a loop is considered parallelizable if
it can be transformed without any further code
adjustments except for the Parallel.For [3| [34]
instruction itself.

Table [3] illustrates the summary of seven open
source projects. Each of the 299 present loops in-
side these projects were manually reviewed. About
18.7% of all loops are parallelizable whereas 12.5%
of them have been reported by the prototype. More-
over, Table [3] highlights the reliability of the proto-
type, as it did not report any of the 243 loops that
cannot be executed in parallel.

Further data was collected by adapting the pro-
totype in a way that it also indicates loops that
may have array access intersections. This adap-
tion allows quick identification of loops that are
parallelizable but would require a stronger analysis
than the DFA introduced in this thesis. However,
it should be remembered that it is still limited by

Parallelizable Total Reported %
No 243 0 0.0
Yes 56 7 125

Table 3: Ratio of parallelizable loops

Array Access Kind # %
Direct Access with Loop Index 183 92
Data Flow Analysis Sufficient 10 5
Stronger Analysis Necessary 6 3

Table 4: Identification of array accesses

the prototype’s capabilities. That is why a selec-
tion of projects received the full review previously.
Twenty of the scanned projects account for 5,359
loops whereas the relaxed prototype reported 223 of
them. Twenty-four of these loops have intersecting
array accesses; thus, are not parallelizable. Table []
depicts that 92% of all the identified loops only use
the loop index to access an array element. Only
eight percent compute the position to access a par-
ticular array element. However, only three percent
of the loops would require a stronger analysis than
the introduced one. On the one hand, this observa-
tion shows that the introduced analysis might be
too powerful, but on the other hand, it appears that
the application of more sophisticated techniques
bears an even higher overhead.

To identify the possible gain of the parallelization,
Table[f] categorizes the identified parallelizable loops.
If a body of a loop does not execute more than five
instructions, it is considered as a loop that either
initializes an array or copies the data from another
array. Out of all the identified loops, a third does
more than initializing or copying an array. There-
fore, there is a good possibility to profit from the
parallelization of these loops as long as these loops
work with sufficiently sized arrays. Moreover, it can
be expected that there exist more computational
intensive loops, which are beyond the capabilities
of the prototype.

The last scanned project is the machine learn-
ing framework Accord.NET [2I] which comprises
28,535 for loops. This project is used to evaluate
the reliability of the prototype and the analysis on a

Loop Kind # %
Initialization 77 39
Copy 54 27
Computation 68 34

Table 5: Loop classification

large scale project. The prototype claims that 3,650
(12.8%) loops are parallelizable. However, instead
of a manual review of these loops, the refactoring
was applied. Unfortunately, the refactoring trans-
formed only 800 in total. This limitation is reasoned
to the fact that the other loops are all located in
generated codeﬂ The execution of the 3,000 unit
tests—with a code coverage of roughly 34.2%—on
the refactored code showed that the framework still
functions as expected. This application underpins
the correctness and stability for both the prototype
and the analysis. However, as the unit test exe-
cution required about one and half times as much
time as before, there was no benefit in applying the
refactoring throughout the application.
Nonetheless, a speedup from parallelizing for
loops is possible. To evaluate this statement, a
collection of different problems have been imple-
mented. This collection incorporates the mandel-
brot set [31], various convolution filters [24], and a
genetic algorithm [7] to solve the max-one problem.
The tests were run on an Intel Core i7-4770k CPU
(3.50 GHz, 4 Cores) [I7]. Table[f|summarizes the re-
sults (more details can be found in Tables[14]{and
of Appendix @ It can be seen that the speedup
factor ranges from 1.5 up to 5.6, and thus the paral-
lelization of the loops was beneficial. However, the
prototype was only able to detect the parallelization
opportunity for the mandelbrot and convolution im-
plementations. The implementation of the genetic
algorithm was not reported because it uses language
features which are not supported by the prototype.
To sum up, this section illustrated the reliabil-
ity of the introduced analysis and the implemented
prototype. This reliability raises the question why
it was not used to automate the conversion of for
loops. While this extension is certainly possible, the
benefits are limited. A significant part of the par-

61t appears that the .NET Compiler Platform or Visual
Studio prevent the refactoring of the generated code.

10

Sequential Parallel Speedup
Mandelbrot 30,336.2 5,460.6 5.6
Convolution 4,329.6 1,420.8 3.0
Genetics 7,578.0 5,082.0 1.5

Table 6: Average execution time (in ms) of five runs
and the resulting speedup factor

allelizable loops are not computationally intensive,
and thus the parallelization of these would lead to
reduced performance. The other loops would only
benefit if they do heavy work or process a signifi-
cant amount of data. Therefore, an approach that
estimates the gain is desirable. However, the goal of
the analysis is to proof the absence of array access
intersections and not the profit of the paralleliza-
tion.

4 Related Work

There already exists a variety of utilities aiding
engineers in the development of parallel code. This
section briefly introduces a selection of different
approaches. Unfortunately, none of these projects
actively informs the user about the parallelization
opportunities.

Pluto [8, @, 10, 39] is a C source to source trans-
former that makes use of the polyhedral model.
Although it does its transformations on the source
code, it is more of a pre-compiler because some
restructurings Pluto provides yield loops that can
be very different to the original implementation.
Loops meant for parallelization have to be marked
with a special compiler directive. If the code is par-
allelizable, Pluto may apply loop transformations
and enriches the code with suitable OpenMP [2] [I§]
directives.

Another interesting approach is Hydra [13]. It op-
erates on the intermediate representation of LLVM
[12, 29, [30]. Its underlying idea can be seen as C#’s
async/await 3] B2] [36] principle. However, instead
of manually declaring fragments with async and
await respectively, it does so automatically. To ac-
complish its job, Hydra searches for parallelizable
code fragments and computes the cost of the se-
quential and the parallel code. If the cost of the
parallel code is lower than the original sequential,

the function invocation is offloaded to a thread pool.

Sambamba [43], [44] also tries to automatize the
parallelization process. However, besides the con-
servative static code analysis on LLVM’s bitcode at
compile time, it also incorporates a runtime system.
During the application’s execution, the runtime
system further collects information and exchanges
methods where appropriate. Information that was
collected at runtime is stored in a persistent stor-
age so it can be reused in later program executions.
Moreover, Sambamba involves a software transac-
tional memory system to guard parallelized code
where needed. This STM system allows, different
to the previous two approaches, the parallelization
of code fragments that require synchronization.

Baar [5], 19, 20] is an approach that transpar-
ently offloads computationally intensive program
segments to a server. It provides an environment
to allow the execution of programs in LLVM’s IR.
The goal is the identification of hotspots at runtime.
The identified and suitable hotspots are offloaded
to a server, which applies further processings such
as parallelization and vectorization. The automatic
parallelization is thereby accomplished with the
LLVM subproject Polly [26 [40], which makes use
of the polyhedral model. The Message Passing In-
terface (MPI) [25] is used to automatically use the
most suitable communication channel; reducing the
negative impact of expensive data transfers between
client and server.

Last but not least, Concurrencer [14, 22] is an
Eclipse [23] plugin to refactor Java code. Its most in-
teresting feature is the ability to transform a divide
and conquer based algorithm into a parallel imple-
mentation, wich uses Java’s fork-join pool. This
transformation is accomplished with the algorithm
introduced by Rugina et al. [42]. Unfortunately,
Concurrencer does not guarantee the correctness of
the refactored code.

5 Conclusion

This thesis introduced a conservative data flow anal-
ysis to aid the parallelization of loops. Nonetheless,
there are far more code constellations that can be
parallelized than just loops. The analysis applies
various transfer rules for different expressions. The
resulting information can then be used to proof
the absence of array access intersections. Although

11

it is possible to use this technique for automatic
conversion, a benefit can only be expected when
estimating the possible speedup due to the high
number of non-intensive loops. That is why the
prototype works in a suggestive way with guaran-
teed correctness. This suggestive approach is also
the main difference to related work which tend to
automatize the parallelization or just simplify the
refactoring process. However, the data flow analysis
cannot reasonably handle transfers from branches.
This is lost parallelization potential if all loop itera-
tions take the same execution path. Moreover, the
analysis is incapable of identifying distinct accesses
to arrays where two or more loop indices are used
to compute the index. Nevertheless, the data flow
analysis as well as the prototype can be extended
further. The analysis could be extended with addi-
tional transfer rules, for example, one that handles
array size queries. An extension opportunity for the
prototype would be informing the engineers about
the code fragments that prevent the parallelization
of a loop.

References

(1] Alfred V Aho, Monica S Lam, Ravi Sethi, and
Jeffrey D Ullman. Compilers: principles,
techniques, and tools, 2/e. Addison wesley
Boston, 2003.

Shameen Akhter and Jason Roberts.
Multi-core programming, volume 33. Intel

press Hillsboro, 2006.

Joseph Albahari and Ben Albahari. C# 6.0 in
a Nutshell: The Definitive Reference. O’Reilly
Media, Inc., 2015.

B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs. In
Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’88, pages
1-11, New York, NY, USA, 1988. ACM.

Baar (binary acceleration at runtime).
https://github.com/pc2/baar. Accessed:
2017-05-30.

Uptpal Banerjee. Dependence testing in
ordinary programs. Master’s thesis, University

https://github.com/pc2/baar

[10]

[12]

of Illinois, Department of Computer Science,
1976.

Ulrich Bodenhofer. Genetic Algorithms:
Theory and Applications, 3/e. Lecture notes,
Fuzzy Logic Laboratorium Linz-Hagenberg,
Winter, 2003.

Uday Bondhugula, Muthu Baskaran, Sriram
Krishnamoorthy, Jagannathan Ramanujam,
Atanas Rountev, and Ponnuswamy
Sadayappan. Automatic transformations for
communication-minimized parallelization and
locality optimization in the polyhedral model.
In International Conference on Compiler
Construction, pages 132—-146. Springer, 2008.

Uday Bondhugula, Albert Hartono,
Jagannathan Ramanujam, and Ponnuswamy
Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In ACM
SIGPLAN Notices, volume 43, pages 101-113.
ACM, 2008.

Uday Bondhugula, J. Ramanujam, and

P. Sadayappan. Pluto: A practical and fully
automatic polyhedral parallelizer and locality
optimizer. Technical Report
OSU-CISRC-10/07-TR70, The Ohio State
University, October 2007.

Uday Kumar Bondhugula. Effective automatic
parallelization and locality optimization using
the polyhedral model. PhD thesis, The Ohio
State University, 2008.

Robert Chansler, Russell Bryant, Roy Bryant,
Rosangela Canino-Koening, Francesco
Cesarini, Eric Allman, Keith Bostic, and Titus
Brown. The architecture of open source
applications. 2011.

James Chicken. Hydra: Automatic parallelism
using llvm. 2014. Homerton College.

Concurrencer. http:
//refactoring.info/tools/Concurrencer.
Accessed: 2017-04-25.

Michele Conforti, Gérard Cornuéjols, and
Giacomo Zambelli. Integer programming,
volume 271. Springer, 2014.

12

[16]

[17]

[19]

[20]

[23]

[24]

Keith Cooper and Linda Torczon. Engineering
a compiler. Elsevier, 2011.

Intel Corporation. Intel core i7-4770k
processor. |http://ark.intel.com/products/
75123/Intel-Core-17-4770K-Processor-8M-
Cache-up-to-3_90-GHz. Accessed:
2017-05-30.

Leonardo Dagum and Ramesh Menon.
Openmp: an industry standard api for
shared-memory programming. IEFFE
computational science and engineering,
5(1):46-55, 1998.

Marvin Damschen and Christian Plessl.
Easy-to-use on-the-fly binary program
acceleration on many-cores. arXiv preprint

arXiv:1412.3906, 2014.

Marvin Damschen, Heinrich Riebler, Gavin
Vaz, and Christian Plessl. Transparent
offloading of computational hotspots from
binary code to xeon phi. In Design,
Automation € Test in Europe Conference &
Ezhibition (DATE), 2015, pages 1078-1083.
IEEE, 2015.

César Roberto de Souza. The accord .net
framework. |http://accord-framework.net
2014. Accessed: 2017-05-11.

Danny Dig, John Marrero, and Michael D
Ernst. Refactoring sequential java code for
concurrency via concurrent libraries. In
Proceedings of the 31st International
Conference on Software Engineering, pages
397-407. IEEE Computer Society, 2009.

The Eclipse Foundation. Eclipse.
http://www.eclipse.org. Accessed:
2017-04-26.

Rafael C. Gonzalez and Richard E. Woods.
Digital Image Processing, 3/e. Prentice Hall
International, Jul 2007.

William Gropp, Ewing Lusk, and Anthony
Skjellum. Using MPI: portable parallel
programming with the message-passing
interface, volume 1. MIT press, 1999.

http://refactoring.info/tools/Concurrencer
http://refactoring.info/tools/Concurrencer
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://accord-framework.net
http://www.eclipse.org

[26]

[27]

[29

[35]

[36]

Tobias Grosser, Hongbin Zheng, Raghesh
Aloor, Andreas Simbitrger, Armin Groéflinger,
and Louis-Noél Pouchet. Polly-polyhedral
optimization in llvm. In Proceedings of the
First International Workshop on Polyhedral
Compilation Techniques (IMPACT), volume
2011, 2011.

GitHub Inc. Github. https://github.com.
Accessed: 2017-05-11.

Uday Khedker, Amitabha Sanyal, and
Bageshri Sathe. Data flow analysis: theory
and practice. CRC Press, 2009.

Chris Lattner and Vikram Adve. Llvm: A
compilation framework for lifelong program
analysis & transformation. In Proceedings of
the International Symposium on Code
Generation and Optimization:
Feedback-directed and Runtime Optimization,
CGO 04, pages 75—, Washington, DC, USA,
2004. IEEE Computer Society.

The llvim compiler infrastructure.
http://11vm.org. Accessed: 2017-04-26.

Benoit Mandelbrot. Fractals and chaos: the
Mandelbrot set and beyond. Springer, 2004.

Microsoft. Asynchronous programming with
async and await (c# and visual basic).
https://msdn.microsoft.com/library/
hh191443(vs.110) .aspx. Accessed:
2017-05-23.

Microsoft. .net compiler platform (roslyn).
https://github.com/dotnet/roslyn.
Accessed: 2017-04-21.

Microsoft. Parallel.for method.
https://msdn.microsoft.com/en-us/
library/system. threading. tasks.parallel.
for(v=vs.110).aspx. Accessed: 2017-05-23.

Microsoft. Visual studio.
https://www.visualstudio.com. Accessed:
2017-04-21.

Microsoft. C# language specification version
5.0. https://www.microsoft.com/en-us/
download/details.aspx?id=7029, 2015.
Accessed: 2017-03-06.

13

[37]

[38]

[39]

[40]

[41]

[44]

Steven S Muchnick. Advanced compiler design
implementation. Morgan Kaufmann, 1997.

Flemming Nielson, Hanne R Nielson, and
Chris Hankin. Principles of program analysis.
Springer, 2015.

Pluto: A polyhedral automatic parallelizer
and locality optimizer for multicores.
http://pluto-compiler.sourceforge.net.
Accessed: 2017-04-24.

Polly - llvim framework for high-level loop and
data-locality optimizations.
https://polly.1llvm.org. Accessed:
2017-05-30.

B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Global value numbers and redundant
computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’88, pages
12-27, New York, NY, USA, 1988. ACM.

Radu Rugina and Martin Rinard. Automatic
parallelization of divide and conquer
algorithms. In ACM SIGPLAN Notices,
volume 34, pages 72-83. ACM, 1999.

Kevin Streit, Clemens Hammacher, Andreas
Zeller, and Sebastian Hack. Sambamba -
adaptive optimization and parallelization of
general purpose programs.
http://www.sambamba.org. Accessed:
2017-05-29.

Kevin Streit, Clemens Hammacher, Andreas
Zeller, and Sebastian Hack. Sambamba:
Runtime adaptive parallel execution. In
Proceedings of the 3rd International Workshop
on Adaptive Self-Tuning Computing Systems,
ADAPT ’13, pages 7:1-7:6, New York, NY,
USA, 2013. ACM.

Ross Albert Towle. Control and Data
Dependence for Program Transformations.
PhD thesis, University of Illinois at
Urbana-Champaign, Champaign, IL, USA,
1976. AAI7624191.

https://github.com
http://llvm.org
https://msdn.microsoft.com/library/hh191443(vs.110).aspx
https://msdn.microsoft.com/library/hh191443(vs.110).aspx
https://github.com/dotnet/roslyn
https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.for(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.for(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.for(v=vs.110).aspx
https://www.visualstudio.com
https://www.microsoft.com/en-us/download/details.aspx?id=7029
https://www.microsoft.com/en-us/download/details.aspx?id=7029
http://pluto-compiler.sourceforge.net
https://polly.llvm.org
http://www.sambamba.org

A Transfer Rules

Left Right Transferred
Left Right Transferred (4200 {—20) |
i | {l,=#0} {+#0} |
{4 4+ | ! ! f
1 {lL+} | {+} {+} +
! | -} -} ;
1-) -} | -}) -
-} - | {+) -} -
{r {t 1 {0} {0} #0
{+} {+ + {=0} 0 =0
-} - b =0} =0
{+} {+} #0 Covered by copy rules. =1
= { #0 0 (=1} Copy from left
Covered by copy rules. =0 {=1} 0 Copy from right
Covered by copy rules. =1
0 {=0} Copy from left Table 9: Transfer rules for multiplications
{=0} 0 Copy from right
Table 7: Transfer rules for additions
Left Right Transferred
Left Right Transferred Covered by copy rules. |
{r {# | {1t {t} t
i+ {-} \ Covered by copy rules. =10
{,-} {+} | Covered by copy rules. =1
{1} {1} | 0 {=1} Copy from left
=}y {4} \ {=0} 0 Copy from left
{+ AL} | .
m m } Table 10: Transfer rules for divisions
= {3 +
{=r {+} -
{+} {=} #0
{-} {+} #0 Left Right Transferred
Covered by copy rule. =10
Covered by copy rule. =1 {{ﬂ 0} gf} f 0
0 {=0} Copy from left b =1} —o

Table 8: Transfer rules for subtractions

Table 11: Transfer rules for modulo

14

B State Solutions

~

Entry(¢)

© 00 N O U kW N

==
_= O

(@77 |,i £ 0,i+}

{iQ?,4 |,i # 0,i+}

{iQ7,7 |,i #0,i+,0@2,01,0 # 0,0 = 1, 0+}

{i@?,i |,i # 0,i+,0Q2,01,0# 0,0 = 1,0+,p@3,p |,p # 0, p+}

{i@?,4 |,i # 0,i+,0Q2,04,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, sQ4}

{i@?,i|,i #0,i4,0Q2,0%,0 # 0,0 = 1,04+,pQ@Q3,p |,p # 0,p+, s@Q4,cQ@5,c{,c #0,c = 1,c+}
{1@?,i |,i £ 0,i+,0Q2,04,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, sQ4, cQ5, cQY, jQ6, jQ9}
{i1@?,4 |,i £ 0,i+,0Q2,04,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, sQ4, cQ5, cQ8, jQ6, jQ9}
{i@?,4 |,i # 0,i+,0Q2,04,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, sQ4, cQ8, jQ6, jQI}
{i@?,i|,i #0,i4,0Q2,0%,0 # 0,0 = 1,0+,p@Q3,p |, p # 0, p+, s@4, cQ5, cQ8, jQ6, jQ9}
{i@?,i|,i #0,i4+,0Q2,01,0 # 0,0 = 1,0+,p@Q3,p |, p # 0, p+, s@4, cQ5, cQY, jQE, jQ9}

Table 12: Entry state solution of the data flow analysis

~

Exit(0)

S O s W N

~

10
11

(i@?2,4 |,i £0,i+)

{i@?,4 |,i # 0,i+,0Q2,04,0 # 0,0 = 1,0+}

{i@Q?,4 |,i # 0,i+,0Q@2,0f,0# 0,0 = 1,0+,pQ3,p |, p # 0, p+}

{i@?,i|,i #0,i4+,0Q2,01,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, s@Q4}

{i1@?,4 |,i # 0,i+,0Q2,04,0 # 0,0 = 1,0+,p@Q3,p |,p # 0,p+,5Q4,c@5,ct,c £0,c=1,c+}
{i@?,4 |,i # 0,i+,0Q2,04,0 # 0,0 = 1,0+,pQ@Q3,p |,p # 0, p+, sQ4,c@Q5,ct,c £ 0,c =1, c+,
JQ6,5 1,7 #0,5=1,j+}

{i@?,i|,i #0,i4+,0Q2,0%,0 # 0,0 = 1,04+,p@Q3,p |, p # 0, p+, s@4, cQ5, cQ8, jQE, jQ9}
{i@?,i|,i #0,i4+,0Q2,01,0 # 0,0 = 1,0+,p@Q3,p |, p # 0, p+, s@Q4, cQY, jQ6, Q9 }

{i@?,4 |,i # 0,i+,0@2,01,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, sQ4, cQ8, jQ9}

{i1Q@?,4 |,i £ 0,i+,0Q2,04,0 # 0,0 = 1,0+,p@Q3,p |,p # 0, p+, sQ4, cQ5, cQ8, jQ6, jQ9}
{i@?,i|,i #£0,i4+,0Q2,0%,0# 0,0 = 1,0+,p@Q3,p |, p # 0, p+, s@4, cQ5, cQ8, jQ6, jQ9}

Table 13: Exit state solution of the data flow analysis

15

C Scanned Projects

Projects with a full manual review:

o GeneticSharp
ImageProcessor
LiteDB

Microsoft BotBuilder
Nancy

Popcorn

e SignalR

Projects where primarily the reported loops have
been manually reviewed:

e AForge NET
BrainSimulator
CSCore
C-Sharp-Algorithms
ImageSharp

Inbox2 desktop client
Naiad

NHibernate
RavenDB
SharpBrain

Spring. NET
Structure.Sketching
Veldrid

Scan-only projects with the refactoring application:

e Accord NET

D Speedup Evaluation

The mandelbrot set was run with 10,000 iterations
to generate an image with a resolution of 2560x1440.
A 9x9 motion blur convolution filter was used on a
2560x1440 image. The genetic algorithm used for
the max-one problem was set up for 100 generations,
1000 individuals, 1000 crossovers and 1000 muta-
tions per generation, and 1000 genes per individual.

Runl Run2 Run3 Run4 Runb
M 30,307 30,328 30,365 30,373 30,308
C 4,293 4,346 4,337 4,332 4,340
G 7,355 7,450 7,937 7,622 7,526

Table 14: Results (in ms) of the sequential runs of
mandelbrot (M), convolution (C), and genetics (G)

16

Runl Run2 Run3 Run4 Runb
M 5522 5418 5479 5453 5,431
C 1,487 1,438 1,390 1,393 1,396
G 5,064 5,122 5,090 5,082 5,052

Table 15: Results (in ms) of the parallel runs of
mandelbrot (M), convolution (C), and genetics (G)

	Introduction
	Analysis
	Example
	Notation
	Rules
	Loop Index
	Constants
	Variables
	Binary Expressions
	Limitations

	Data Flow Analysis
	Transfer the Entry to the Exit State
	Merge the Predecessors' Exit States
	Solve the Data Flow Analysis
	Interpret the Results

	Opportunities

	Evaluation
	Prototype
	Results

	Related Work
	Conclusion
	Transfer Rules
	State Solutions
	Scanned Projects
	Speedup Evaluation

