
Code Panorama

Bachelor Thesis

Department of Computer Science
University of Applied Sciences Rapperswil

Fall Term 2019

Authors: Patrick Bächli, Marc Etter
Advisor: Prof. Dr. Farhad D. Mehta
Project Partner: IFS (Institute for Software, HSR)
External Co-Examiner: Tom Sydney Kerckhove
Internal Co-Examiner: Prof. Frank Koch

Abstract

Objective
CodePanorama is a tool for software developers, reviewers, and consultants. Its
goal is to assist in identifying points of interest within a code-base to review. A
software developer might join a new project and want to quickly find the most
interesting parts of the code to get started. A supervisor must review the results
of a project but does not have the time to look at the entire code-base. Instead,
they look to CodePanorama to make an educated guess as to where their efforts
should be focused.

Procedure / Result
In contrast to other code metric tools, CodePanorama is designed to provide the
user with a non-reductionist, “zoomed-out” overview of the entire code-base. It
is up to the reviewer to find interesting patterns and curious anomalies based
on indentation, spacing, line lengths, and color overlays, instead of the usual
metrics.

After entering the URL to any git repository, CodePanorama will clone the
repository in the background, and generate the panorama view. The result is
basically a collage of all files in the repository, glued together.

Often, this new perspective on a code-base can find patterns such as duplicated
code, excessive indentation, or any other feature the human eye might recognize.
With the addition of color overlays, a reviewer might find intriguing correlations
between git statistics, such as change frequency, and code layout.

Once such a feature has been identified, CodePanorama offers the functionality
to simply click on a section of the panorama image. This allows the user to
directly dive into the actual code at that location. From there, they can review
the code in place, or just take a peek before switching to their tool of choice.

Figure 0: Code panorama of CodePanorama with change frequency (~9k lines)

i

Management Summary

Problem statement
Determining the quality of software code is hard. Several tools exist to assist
in doing so, by providing mathematical formulas and metrics. This is useful to
get an overall idea of the quality of a project, but provides very limited help in
getting a sense of exactly which parts of the code have problems. CodePanorama
implements a new approach utilizing the human ability of pattern recognition in
images to detect repetitions, correlations and anomalies inside code.

Target audience
CodePanorama is mainly targeted at users tasked with reviewing medium-to-
large amounts of unknown code on a regular basis. Such users include project
supervisors, examiners, and consultants.

Approach
CodePanorama generates a panorama view of any project’s code, by “gluing”
together all files into a single large “poster”. By “zooming out” of the code to a
distance where only the silhouette of each file remains recognizable, new patterns
start to emerge. With a bit of practice and programming experience, a user can
quickly identify unexpected patterns. To further assist the user, color overlays
can be selected, showing for example which parts of the code are being changed
most often.

Results
CodePanorama is publicly accessible1 for anyone to analyze their project of
choice. For more sensitive environments, we provide instructions on how to
run CodePanorama on your own infrastructure for internal usage. Currently,
CodePanorama includes some filters for which files to include in the panorama
view and a selection of color overlays.

Perspectives
We are looking forward to using CodePanorama in business environments and
receive user feedback. There are an almost unlimited number of additional
features, ideas and improvements for further development. Apart from adding
new types of filters and overlays, we would like to further improve the panorama
image to be more comprehensible. Finally, we would like to add a user manage-
ment system. There, users could see all projects they previously analyzed in a
user-specific dashboard view.

1https://codepanorama.io

ii

https://codepanorama.io

Lay Summary
Whenever a piece of software is created, both the developers and the stakeholders
are interested in how “good” (or “bad”) the produced software code is. Naturally,
there has been a lot of research on how to measure the “goodness” or “badness”
of code. The most established methods use mathematical formulas and other
procedures to assign numbers to various aspects being measured. This allows
for easy comparison between different parts of the code, or even with code of
other software products.

CodePanorama suggests a different approach: By generating images from the
program’s code, we create images specific to the inspected software product.
Using patterns and colors in the image, information about the code’s structure
can be gained. More importantly, outliers can easily be identified, as they visually
do not fit in with the rest of the image. Such outliers could point to problems in
the code, or simply to bad discipline by the authors.

We do not intend to replace or obsolete already established methods of analyzing
code. Rather, we aim to provide a new angle on an existing problem, in an
attempt to make a hard task easier.

iii

Contents
Abstract i

Management Summary ii

Lay Summary iii

Contents iv

1 Introduction 1
1.1 Project description . 1
1.2 Goals . 1
1.3 Motivation . 2

2 Related Work 4
2.1 Code-map metaphor . 4
2.2 Code mini-map . 5
2.3 Comparison . 7
2.4 Static code analysis . 8

3 Methods 9
3.1 Technologies . 9
3.2 Filters . 16
3.3 Overlays . 18
3.4 Rendering-performance . 23
3.5 Asynchronous processing . 24
3.6 Concurrency handling . 26
3.7 Git integration . 29
3.8 Single-page application . 30
3.9 Testing . 31

4 Results 33
4.1 Architecture . 33
4.2 Design diagrams . 35
4.3 Artifacts . 37
4.4 Development . 38
4.5 Known issues . 39
4.6 Software metrics . 41

5 User Studies 42
5.1 Method . 42
5.2 Result . 43
5.3 Conclusion . 44

6 Conclusions 45
6.1 Lessons learned . 45
6.2 Encountered problems . 45

7 Perspectives 46

iv

References 47

List of Figures 49

List of Tables 50

Glossary 51

A Project Plan 52
A.1 Phases / Iterations . 52
A.2 Milestones . 52

B Time Reports 54

C Manuals 57
C.1 Developer guide . 58
C.2 Building docker images locally 60
C.3 Deploying CodePanorama with docker 63
C.4 Running your own instance . 65
C.5 Using custom overlays . 67
C.6 Using local repositories . 71

D Specifications 72
D.1 Filters . 72
D.2 Overlays . 72

E User Study Handout 75

F Self Reflection 79
F.1 Report by Marc Etter . 79
F.2 Report by Patrick Bächli . 79

G Meeting Minutes 80
G.1 September 17, 2019 . 81
G.2 October 1, 2019 . 82
G.3 October 15, 2019 . 83
G.4 October 28, 2019 . 85
G.5 November 12, 2019 . 86
G.6 November 26, 2019 . 87
G.7 December 10, 2019 . 88
G.8 December 23, 2019 . 89
G.9 January 7, 2020 . 90

v

Code Panorama 1 Introduction

1 Introduction

1.1 Project description
Several software quality metrics (lines of code per class/method, cyclomatic
complexity, etc.) exist to estimate the quality and volume of large code bases.
All metrics are reductionistic: They compute a number, or a set of numbers from
a much larger amount of code. Although such metrics offer a quick overview of
some aspects of the code, a more thorough code review is often needed in order
to arrive at a more accurate estimation of code quality. For large code bases,
such a code review can only be done on (often random) samples of the code.

As part of a study project in the fall of 2018, a prototype was built to explore
the following idea: In case it was possible to visualize the entire (or a large part
of the) code-base on one large surface (screen, poster, etc.), it could be possible
to identify patterns or areas of the code as candidates for further inspection. In
case version control is used, such a visualization could also provide historical
and programmer-based information that could be relevant to such a further
inspection.

As part of this bachelor thesis, this idea is to be pursued further and the prototype
is to be developed and refined into a full-fledged and mature software tool.

1.2 Goals
The main aim of this project is to build upon the work already done for code
panorama.io. A mature and widely usable software tool is to be designed and
developed. This tool shall visualize the code contained in a git repository in
varous ways in order for a developer to review it more effectively. In particular, the
application must satisfy the initial goals set out for the study project (reproduced
verbatim below) [BE19].

The application must:

1. Be able to filter the files visualised on the basis of file type, path, length,
age, or other yet to be discovered quality relevant properties.

2. Be able to highlight lines of code on the basis of author, number of changes,
age, or other yet to be discovered quality relevant properties.

3. Be easy and intuitive to use for a software developer or reviewer.

4. Have an attractive user interface.

5. Support user and repository management (possibly with encryption) for
working with private or confidential repositories.

6. Suggest an appropriate size such that all the code that is required to
be visualized can be shown, possibly using multiple pages, scrollbars, or
another appropriate mechanism.

1 of 90

codepanorama.io
codepanorama.io

Code Panorama 1 Introduction

7. Offer the possibility to be easily (i.e. installation time < 10 mins) run
locally (for instance using readily downloadable docker containers), or
deployable on a local server.

8. Be maintainable and easily extensible (programatically), in particular for
new types of filters or highlighting.

9. Use a CI/CD pipeline for development and deployment.

10. Use a Haskell-based toolchain as far as possible.

11. Be able to be effectively used for reviewing project code at the HSR.

The following tasks summarize some of the next areas in which the application
should be developed during the bachelor thesis project in order to satisfy the
above goals:

1. Incorporate user-study feedback into its look-and-feel.

2. Implement the most frequently requested features by users.

3. Provide a complete user manual.

4. Scale properly to various desktop display resolutions.

5. Provide a way of handling codebases that cannot fit on one screen.

6. Be able to filter the parts of the code to be included in the panorama in a
more fine-grained manner.

7. Be able to highlight code based on file type, user, number of changes, age,
or other yet to be discovered quality relevant properties.

8. Be maintainable and easily extensible (e.g. new types of filters or highlight-
ing, etc.).

9. Provide thorough technical documentation, so the project could be open-
sourced or transferred to other developers with no prior knowledge.

10. Allow users to save and resume previous analyses with an integrated user
management.

The students are also required to perform a literature review on the work already
done in this area at the beginning of this project in order to determine the most
effective strategies of filtering, highlighting and visualization in this domain, as
well as judging the utility and other possible applications of such a tool.

1.3 Motivation
The original inspiration for this project came from a talk held by Laura Kovás
at an ETH workshop on 13 October 2017.1 There, a partial “panorama” of the
Vampire Theorem Prover [Kov17] was shown. While the image already looked
quite good, the process to generate it was rather tedious. It involved splitting
the source-code into chunks small enough to not crash the LATEX-compiler, which
could only handle 180 pages at a time. Subsequently, all the generated PDFs had

1https://www.sri.inf.ethz.ch/workshop2017

2 of 90

https://www.sri.inf.ethz.ch/workshop2017

Code Panorama 1 Introduction

to be merged together into a single page with yet another script.2 This project
aims to automate these steps as much as possible and provide an easy-to-use
application everyone can run to generate panoramas of their code-base(s).

2F. Mehta (personal communication, 26 September 2018)

3 of 90

Code Panorama 2 Related Work

2 Related Work

2.1 Code-map metaphor
SeeSoft was a pioneering work by Eick et al. from the 1990s [ESS92]. It was
one of the first tools that tried to find a solution to the problem of software
visualization. The original publication has since been cited over 800 times and
remains one of the fundamental works in this area.

Figure 2.1 shows a screenshot of SeeSoft, visualizing several files containing over
five thousand lines of code. The different colors indicate different code age,
where red depicts recently modified code and blue depicts code that has been
left unchanged for some time.

Figure 2.1: SeeSoft — Visualizing program code changes

This kind of visualization has been named “code-map metaphor”, which is defined
as follows: “The mapping of source code to a zoomed out representation, either
by the use of pixels, pixel lines, or a scaled down representation of text, in order
to allow stakeholders to comprehend various statistics collected at the level of
detail of individual lines of code.” [BNK17].

Besides SeeSoft, Bacher et al. reviewed 21 different implementations of this
metaphor and concluded that it is generally a good way of visualizing source

4 of 90

Code Panorama 2 Related Work

code, since the zoomed out representation is a direct mapping to it, which in
turn seems to yield high levels of trust on behalf of the users. However, they also
admit that “[. . .] to date, little to no quantitative data exists in the literature
that supports the claim that the use of the metaphor can faciliate the process
of software development.”. This is partly owed to the fact that previous works
either did not carry out their own evaluations, or did not provide the data on
which the presented findings were based.

One of the more interesting implementations is Augur by J. Froehlich and
P. Dourish [FD04]. Augur explored the idea of combining information about
both artifacts and activities in one visualization. Figure 2.2 shows a concrete
example of this concept. The left side shows multiple displays containing various
information about the structure of the whole system and the individual files as
well as graphs and details about the activities. On the right side is a zoomed-
in view of several files, which are annotated with details about authors, code
structure and check-in dates. This information is made visible by coloring the
individual lines, but also through the use of additional columns next to the files.

Figure 2.2: Augur — Multi-panel interface and detail view

Several case studies had been conducted to assess the usefulness of this visualiza-
tion. While the results were deemed far from conclusive, they were still generally
supportive. Froehlich and Dourish further concluded that using the already
existing spatial structure of the source code and annotating it as seen above, is
an effective way of “stitching together” activity and artifact information in a
single view.

2.2 Code mini-map
The code-map metaphor was originally used for visualizing an entire code-
base [ESS92]. Meanwhile, a related visualization arose around 2009: the “code
mini-map”. Bacher et al. define the code mini-map as follows: “The code mini-
map visualization is based on the code-map metaphor and acts as an overview

5 of 90

Code Panorama 2 Related Work

component mapping source code to a zoomed out representation, either by the
use of pixels, pixel lines, or a scaled down representation of text, presenting
viewers with a zoomed out view of the currently open source code document
showing the layout of the code.” [BMK18].

According to Owen Searls [Sea18] (and other community websites), the code
mini-map was first introduced in Sublime Text1. The earliest version of Sublime
Text we could find available for download is 1.2, released in June 2009 [Ski09].
This version already included the code mini-map on the left side of the window
as a means of navigating through an opened file (see figure 2.3).

Figure 2.3: Sublime Text 1.2 — Code mini-map

However, a paper published in 2006 by Deline et al. [Del+06] already mentions the
idea of a “Code Thumbnail” in Microsoft Visual Studio2. This Code Thumbnail
is precisely what was later named a code mini-map (see figure 2.4).

Not only does the design proposal by Deline et al. include a code mini-map, it
also includes the “Code Thumbnail Desktop”. The Code Thumbnail Desktop
shows thumbnails of all files, allowing the user to easily navigate between files
based on spatial memory and visual cues, rather than cognitive memory (i.e.
remembering file- and symbol-names). This view was heavily inspired by the
original work on SeeSoft [ESS92] and Data Mountain [Rob+98].

Unfortunately, the study could not conclusively prove a meaningful increase in
productivity. However, Deline et al. were able to show “[. . .] that users are

1https://www.sublimetext.com
2https://visualstudio.microsoft.com

6 of 90

https://www.sublimetext.com
https://visualstudio.microsoft.com

Code Panorama 2 Related Work

Figure 2.4: Microsoft Visual Studio 2005 — Code Thumbnail

quickly able to learn to navigate using thumbnail images of the code” and that
“They enjoy this style of navigation both by their navigation choices during
programming and search tasks and by their subjective ratings.” [Del+06].

2.3 Comparison
Both the code-map metaphor and the code mini-map use a “zoomed-out” view
of the code as the primary means of visualization. In both cases, information
about physical proximity, indentation, and spacing are preserved. This provides
the user with a simple overview of the code.

The main difference between the code mini-map and the code-map metaphor
visualizations are the intended use-cases: The code-map metaphor in general
was originally conceived as a tool to help in visualizing a large amount of code
in a well comprehensible manner for reviews and overlaying software [ESS92] or
organizational metrics [FD04].

The code mini-map, on the other hand, is tailored to real-time development
assistance and code navigation from within the text editor. Symbols and colors
are used to annotate lines and sections with information relevant in understanding
the code [BMK18], rather than assessing the code’s quality.

7 of 90

Code Panorama 2 Related Work

Figure 2.5: Microsoft Visual Studio 2005 — Code Thumbnail Desktop

2.4 Static code analysis
Traditionally, code is assessed using code metrics. Such metrics usually parse the
code in question statically (i.e. without executing it) and use tailored algorithms
to compute a single numerical value. The code is then deemed “good” or
“bad”, depending on whether the metric exceeds the configured thresholds.
Examples of such metrics include cyclomatic complexity [McC76], coupling
between objects [CK94], and comment-to-code ratio [OH92].

Popular tools to perform static code analysis include SonarQube3, Microsoft
Visual Studio4, and Codacy5.

These code metrics are (intentionally) inherently reductionistic. They help in
quickly assessing and comparing code, but provide little value in identifying the
origin of the problems. With CodePanorama we want to provide a completely
language-agnostic tool without any reductionistic metrics, which is why we do
not make use of code metrics. If a user desires to visualize their favorite code
metrics, this is still possible through the use of custom overlays, as described
later in subsection Custom overlay of section 3.3.

3https://www.sonarqube.org
4https://docs.microsoft.com/visualstudio/code-quality/code-metrics-values
5https://www.codacy.com

8 of 90

https://www.sonarqube.org
https://docs.microsoft.com/visualstudio/code-quality/code-metrics-values
https://www.codacy.com

Code Panorama 3 Methods

3 Methods
This chapter details the conceptual, organizational, and technological approaches
used in creating the CodePanorama application.

3.1 Technologies
Many of the technologies we used during this project are based on personal
preference. We do not claim that these tools and frameworks are the best at
accomplishing the task, but we found success in using them. Wherever more
detailed evaluations of alternatives were conducted, this will be described in the
corresponding sections.

Development environment
As our IDE of choice, we decided on Visual Studio Code1. It is a lean, but highly
extensible editor with a modern UI. During development, we used the following
extensions, available from the official marketplace2:

• EditorConfig for VS Code

• Elm

• haskell-linter

• Haskero

• hoogle-vscode

• indent-rainbow

• Rainbow Brackets

• stylish-haskell

Git
As is currently the industry standard, we used Git3 as version-control system. On
top of that, we followed the Git Flow4. New features and bug fixes are developed
on specific branches, based on the develop branch. Same as in our precursory
term project, we did not split responsibilities between ourselves, instead opting
for maximum exchange of knowledge.

Following software engineering best practices, any change developed by one of us
had to be reviewed by the other using Gitlab’s merge request feature. Usually, a
merge request would be reviewed and merged into develop within a day. On every
milestone, the current state of the develop branch was integrated into master,
automatically triggering a deployment to production.

Haskell
As requested in the task description set by our supervisor, the server-side part
of the application is written using Haskell5. Haskell is a functional programming
language with a very extensive and safe type-system.

1https://code.visualstudio.com
2https://marketplace.visualstudio.com
3https://git-scm.com/
4https://github.com/nvie/gitflow
5https://www.haskell.org

9 of 90

https://code.visualstudio.com
https://marketplace.visualstudio.com
https://git-scm.com/
https://github.com/nvie/gitflow
https://www.haskell.org

Code Panorama 3 Methods

This project uses the Glasgow Haskell Compiler6 version 8.6.5. For dependency
resolution, Stack7 is employed on the resolver lts-14.6.

CodePanorama makes use of over 30 different Haskell packages. Many of those
only provide simple utilities, while others offer core functionality to Code-
Panorama’s implementation. A listing of notable packages can be found in
table 3.1.

Table 3.1: Notable Haskell packages

Package name Description

aeson JSON serialization and deserialization
cache In-memory key-value store with expiration support
git† Haskell-native implementation of git operations
hslogger Logging framework for Haskell
JuicyPixels Generate images from pixel buffers
juicy-draw† Create images from primitive 2D-shapes
hspec (Unit-)Testing framework
hxt XML serialization and deserialization
parallel-io Sequence IO actions onto a thread pool
prizm† Convert colors between color spaces
process Execute external processes via CLI
QuickCheck Property-based testing framework
regex-tdfa RegEx implementation in Haskell
servant-server Serve REST-APIs
servant-swagger Generate OpenAPI specification from Haskell code
servant-swagger-ui Serve the API specification using Swagger-UI
warp Haskell web server
† Not available from the stackage resolver

Elm
For the client part of the application, we decided to use Elm8. We evaluated a
couple alternatives, but the only satisfactory language turned out to be Elm.

Elm provides a built-in package manager, making dependency management very
simple. Some of the noteworthy packages used by the CodePanorama client can
be found in table 3.2.

6https://www.haskell.org/ghc
7https://docs.haskellstack.org
8https://elm-lang.org

10 of 90

https://www.haskell.org/ghc
https://docs.haskellstack.org
https://elm-lang.org

Code Panorama 3 Methods

Table 3.2: Notable client dependencies

Dependency name Description

pzp1997/assoc-list Extension to dictionaries, allowing arbitrary keys
rundis/elm-bootstrap Type-safe bootstrap styles and widgets for Elm
jxxcarlson/elm-tar Create tar-archives in Elm
dosarf/elm-tree-view Provides the tree-widget to display the directory filter
elm-explorations/test Testing framework for Elm
Bootstrap† Simple and modern style library
FontAwesome† Library of uniform icons for websites
highlight.js‡ Syntax highlighting for displaying code
showdown‡ Convert markdown files to HTML
† A CSS library, rather than an Elm package
‡ A JavaScript library, rather than an Elm package

Alternatives

The following alternatives were evaluated during the term project and not re-
evaluated as part of this bachelor thesis. The results of the evaluation in the
term project are reproduced verbatim below [BE19]:

Miso Although, at first, Miso9 sounded very promising, the installation process
quickly proved to be an immense pain (as we later found out with any GHCjs-
based front end library): Initial installation took between two and four hours per
developer machine, after which it simply decided to exit with a cryptic exception,
requiring downgrades of GHC, another couple hours of installation and the last
of our patience. Additionally, running the build command on a project with no
changes, took the build process about one full minute, until it decided there was
nothing to build, which we found completely unacceptable.

Purescript PureScript10 actually worked pretty well, but relies on more ex-
ternal libraries than Elm and had slightly slower build times, which is why we
decided on Elm.

Fay Again, in theory, Fay11 sounded very good, but after some testing, we
found that (at least the current version, as of October 8th, 2018) did not work
under Windows whatsoever.

Reflex After short evaluation of the Reflex12 library, we again found it doesn’t
work under Windows (would work using the Linux Subsystem), and the initial
build time takes a very long time.

9https://github.com/dmjio/miso
10http://www.purescript.org
11https://github.com/faylang/fay
12https://github.com/reflex-frp/reflex

11 of 90

https://github.com/dmjio/miso
http://www.purescript.org
https://github.com/faylang/fay
https://github.com/reflex-frp/reflex

Code Panorama 3 Methods

GHCjs All the problems we had with Miso, we also encountered with pure
GHCjs13, which wasn’t too surprising, as Miso is built on-top of it.

NPM
As a means of creating shortcut commands for commonly used tasks, we decided
to use the Node Package Manager (NPM)14. Since Elm is already installed
via NPM, there are no additional dependencies required to use NPM as an
orchestration tool, such as make15.

1 "build - client ": "cd CodePanorama - Client && elm make src/Main.elm --
output = public /out/elm.js --debug && lessc less/ style .less
public /out/ style .css && npm run showdown "

Listing 3.1: Example of an NPM shortcut command

Swagger
To specify the REST-API of the CodePanorama server, we decided to use the
popular standard Swagger 2.0 16. By adhering to an established standard, we
could make use of several tools in our development tool-chain: servant has a
module to generate the specification from the Haskell types, and the OpenAPI
Generator17 can use this specification to generate Elm code. This way, code
duplication between the server and the client is minimized.

The current specification of CodePanorama can be found at https://swagger.
codepanorama.io.

Gitlab
As already done during the prototype study, we used Gitlab18 to manage our
code repository. Within Gitlab we were able to configure a CI/CD pipeline to
automatically build, test, lint, and even deploy our source code.

13https://github.com/ghcjs/ghcjs
14https://www.npmjs.com
15https://www.gnu.org/software/make
16https://swagger.io/docs/specification/2-0
17https://github.com/OpenAPITools/openapi-generator
18https://gitlab.com

12 of 90

https://swagger.codepanorama.io
https://swagger.codepanorama.io
https://github.com/ghcjs/ghcjs
https://www.npmjs.com
https://www.gnu.org/software/make
https://swagger.io/docs/specification/2-0
https://github.com/OpenAPITools/openapi-generator
https://gitlab.com

C
ode

Panoram
a

3
M
ethods

Figure 3.1: Gitlab pipeline of CodePanorama (part 1)

13
of90

C
ode

Panoram
a

3
M
ethods

Figure 3.2: Gitlab pipeline of CodePanorama (part 2)

14
of90

Code Panorama 3 Methods

Jira
Different from our precursory work, we decided to use Jira19 as our project
management tool. In our opinion, Jira provides a better organized view of issues,
and easier management of the backlog and releases. However, the most important
point of why we preferred Jira over Gitlab’s built-in issue management, is Jira’s
time tracking ability. Although Gitlab has the ability to log work on issues,
it is very hard to extract meaningful reports. Using the Timetracker20 app,
generating reports of logged work per milestone becomes very easy.

Docker
Docker21 is a virtualization technology integrating deeply with the operating
system’s kernel, providing a leaner footprint than virtual machines. Docker is
extremely useful in encapsulating applications and tools in a controlled environ-
ment. With CodePanorama we made heavy use of docker images for our build
pipeline. Every step in the pipeline runs inside a docker container defined in the
build script. By using custom docker containers, we can use almost any tool we
need, without the need of installing any software on the Gitlab host server.

We also use docker as our deployment platform of choice. More on this can be
found in section 4.3. Artifacts.

19https://www.atlassian.com/software/jira
20https://marketplace.atlassian.com/apps/1211243/timetracker-time-tracking-rep

orting
21https://www.docker.com

15 of 90

https://www.atlassian.com/software/jira
https://marketplace.atlassian.com/apps/1211243/timetracker-time-tracking-reporting
https://marketplace.atlassian.com/apps/1211243/timetracker-time-tracking-reporting
https://www.docker.com

Code Panorama 3 Methods

3.2 Filters
One of the important features of CodePanorama are filters. By allowing the
user to decide what will be included in a code panorama, it is very easy to
create panorama images that only show the parts of a repository a user is really
interested in.

Extensibility
Although we were able to implement all currently existing filters based on the
regular expression filter (see regular expression implementation), it is likely
that some other type of filter will be needed at some point. To simplify future
development, we designed the filter package with extensibility in mind.

For this to be possible, the filters package exposes generic mechanisms, which
allow for great flexibility when implementing a filter.

One of the key parts is the implementation surrounding the ConfigurationMap
type. This type is nothing more than a simple string-based key-value map.

1 type ConfigurationMap = Map.Map String String

However, with the help of the Serializable and MapSerializable types, this map
will be transformed into a record, which is not limited to strings only, but can
contain any type that defines an instance of Serializable. By default, every type
deriving the Read and Show classes can be used.

1 -- Generically makes all (Read , Show) types Serializable
2 instance {-# OVERLAPPABLE # -} (Read a, Show a) => Serializable a
3

4 -- Special case for String not using quotes
5 instance {-# OVERLAPPING # -} Serializable String where
6 serialize = id
7 deserialize = Right

Listing 3.2: Predefined Serializable instances

The ConfiguredFilter type is important, as well. This is a predicate, which decides
for every file in a repository whether it passes a filter or not.

1 type ConfiguredFilter = FilePath -> Bool

Lastly, there is the Registry module. When a user requests filters to be applied
(e.g. by requesting a preview), the names of all the files in a repository along
with the user’s configuration will be passed to the filters registered here.

1 data FilterName
2 = RegularExpression
3

4 filterRegistry :: FilterName -> Filter
5 filterRegistry name = case name of
6 RegularExpression -> regularExpressionFilter

Details on how to implement a new filter module can be found in the documen-
tation of the filters package in the source code.

16 of 90

Code Panorama 3 Methods

Example: Regular expression implementation

To begin with, the regular expression filter defines a Configuration record and
Scope as a supporting type.

1 data Configuration = Configuration
2 { scope :: Scope
3 , regex :: String
4 }
5

6 data Scope
7 = Extension
8 | FileName
9 | FullPath

10 deriving (Read , Show)

As outlined above, an instance of this record will be created based on a key-value
map. This map is based on the user’s configuration and might look like the
following (simplified) example.

1 {
2 "key": " scope ",
3 " value ": " FullPath "
4 },
5 {
6 "key": " regex ",
7 " value ": ".* Test \. java"
8 }

It can be clearly seen that the keys of this map directly correspond to the field
names in the Configuration record above. Furthermore, the parallels between the
maps and the record’s values are easily recognizable. The correct mapping of the
values will be handled by the internal logic of the Serializable and MapSerializable
types.

Now that the configuration is defined, all that is left to do, is implementing the
actual filter. This is done based on the Configuration and ConfiguredFilter types
and will simply return whether a certain file name matches the given regular
expression or not.

1 regularExpressionFilter :: Configuration -> ConfiguredFilter
2 regularExpressionFilter config file =
3 let
4 filePart = case scope config of
5 Extension -> takeExtension file
6 FileName -> takeFileName file
7 FullPath -> file
8 in
9 case regex config of

10 "" -> True
11 r -> filePart =~~ r

17 of 90

Code Panorama 3 Methods

3.3 Overlays
A highly requested feature and a natural extension to plain code panoramas, are
color overlays. By enriching the panorama images with color information, not
only the spatial structures of the code can be learned, but also the correlation of
said structures with whatever metric is chosen for the overlay.

Both SeeSoft [ESS92] and Augur [FD04] have made heavy use of colors to
supplement the basic information provided by the code-map metaphors. In
an attempt to make CodePanorama as user-friendly as possible, we evaluated
multiple strategies on how, where, and how many colors to use.

We are convinced that it does not make much sense to display multiple metrics
encoded as colors simultaneously. Therefore, we have decided to limit the number
of displayed overlays to at most one. Furthermore, since we color the actual lines
of the code, combining overlays would require mixing colors which is exceedingly
hard to encode in a meaningful way and even harder for the human brain to
parse.

Overlay types
CodePanorama tries to encode two fundamental types of data into overlays:
quantitative and nominal. The current implementation can display information
according to table 3.3. A detailed description of each metric can be found
in Appendix D.2 Overlays.

Table 3.3: Categorization of overlay information

Quantitative Nominal

Change frequency File type
Author participation Search

Blame

Since quantitative and nominal data have different relations between data points,
it is only natural to select different visualization techniques.
As we have already decided to only use colors to visualize the additional infor-
mation, the best methods in each category turn out to be color saturation for
quantitative data and color hue for nominal data (see figure 3.3). In practice,
we implemented both visualizations using a color gradient.

For quantitative data, we used a scale between white and red, where the saturation
is calculated according to equation 3.1.

S(l)l∈L = f(l)
maxi∈L f(i) (3.1)

where L is the set of all lines included in the current code panorama configuration,
and f is a metric assigning a real value to every line. The color red was selected

18 of 90

Code Panorama 3 Methods

Figure 3.3: Ranking of perceptual tasks. [Mac86]

arbitrarily as a familiar color scheme for heatmaps.

Concerning nominal data, the primary objective is to make the different hues
as distinguishable as possible. To accomplish that, we opted to use the entire
color spectrum and evenly space the data points across the available hues. Hues
are commonly defined as degrees on a circle [PF07]. Therefore, it is natural to
calculate the hue to be displayed as in equation 3.2.

H(l)l∈L = iC(f(l))
|C|

× 360 deg (3.2)

where C is the set of all possible classes for the selected metric, f assigns a class
ci from C to every line, and iC maps any class ci to its index i (starting at zero).

Color space
Now that we have formulas for the saturation and hue for quantitative and
nominal data, respectively, the question remains how to map these values to
actual colors. Having calculated values for saturation and hue, it would seem
obvious to use the HSV color space 22.

We want to pay special attention to the perception of the step-distances in
quantitative overlays (heatmaps) and easy distinguishability between hues for
nominal overlays. Therefore, we decided to use a more involved color space:
the CIE 1976 L*u*v* color space (also known as simply CIELUV or LCH
amongst others), where “Numerical values representing approximately the relative
magnitude of colour differences can be described by simple Euclidean distances
in the spaces [. . .]” [ISO11664-5]. In other words, the same numerical change in
hue or saturation is perceived equally, regardless of which color the change is
applied to. A comparison of a color gradient using HSV and CIELUV can be
seen in figure 3.4.

22https://en.wikipedia.org/wiki/HSL_and_HSV

19 of 90

https://en.wikipedia.org/wiki/HSL_and_HSV

Code Panorama 3 Methods

Figure 3.4: Comparison of a CIE 1976 L*u*v* (here LCH) and HSV gradient.

It becomes clear that the perceived brightness of the colors in HSV vary greatly
to the point where some steps around red and green can hardly be distinguished
at all. Meanwhile, the steps on the LCH gradient are much more (perceptually)
equidistant.

Fortunately, we did not have to implement the conversion to and from CIELUV
ourselves. Instead, we were able to make use of the pre-existing Haskell library
prizm23.

Implementation
In terms of technical implementation, we generate a separate PNG image for
every overlay metric. These images follow the same layout as the code panorama,
but contain colored lines where applicable and a transparent background. To
enrich a code panorama with an overlay, the overlay image can literally be
overlaid on top of the base panorama image, superimposing its colors on the
otherwise plain line-rectangles.

For example, the overlay image of a search overlay would only contain colored
rectangles of the lines where the search expression was found. All other lines are
simply transparent.

Custom overlay
To allow for maximum customizability at runtime, we decided to implement a
custom overlay. Using this custom overlay, any user can supply their own metrics
and display them in the CodePanorama application.

To use the custom overlay functionality, the user must provide a JSON file
containing the specification of their desired overlay. This file must then be placed
in the repository to be analyzed. The application will then recognize the custom
overlay, render it, and offer the overlay as a selection in the UI.

In essence, the custom overlay allows to specify a numerical value per line
for whatever metric the user desires and how to map these values to a color.
Additionally, the color can be overridden on a per-line basis.

An example usage of a custom overlay would be test coverage. Since test coverage
can only be calculated language-specifically, it is easier to leave this to the user.
As a proof-of-concept, we developed a CLI tool to generate a custom overlay
specification from a JaCoCo24 coverage report.

23https://hackage.haskell.org/package/prizm
24https://www.jacoco.org

20 of 90

https://hackage.haskell.org/package/prizm
https://www.jacoco.org

Code Panorama 3 Methods

For details on how exactly to create a custom overlay specification, please consult
the corresponding manual in Appendix C.5 Using custom overlays.

Extensibility
Although, in theory, the custom overlay covers all possible future overlays, the
burden of creating such an overlay lies with the user. To simplify future develop-
ment on CodePanorama, we designed the overlay package with extensibility in
mind.

Re-using the generic design of the filter package, overlays can be added in a
modular manner, with commonly used functionality available in helper modules.
When the user requests overlays to be generated, the user’s configuration and
the complete internal representation of the code panorama are passed to every
registered overlay module. An overlay implementation must therefore only specify
how to calculate the relevant metric, and which color to select for the calculated
values. In most cases, the overlay framework and pre-defined generators then
take care of actually rendering the overlay, sending it to the client, and properly
displaying it.

Details on how to implement a new overlay module can be found in the docu-
mentation of the overlays package in the source code.

Example: Change frequency implementation

Firstly, the change frequency implementation defines the ValueSupplier type as a
function which maps any combination of file and line number to maybe a number
of changes this line has been subjected to. The Maybe type handles the case where
a given combination of file name and line number might not actually exist.

1 type ValueSupplier = FilePath -> Int -> Maybe Int

Next, the (simplified) ValueSupplier-implementation for a per-line change fre-
quency looks like this:

1 lineBasedValueSupplier :: IO (ValueSupplier , Int)
2 lineBasedValueSupplier = do
3 (changeNumbers , maxChanges) <- getLineChangeNumbers repoDir
4 return
5 (\file lineNumber ->
6 Map. lookup (file , lineNumber) changeNumbers
7 , maxChanges
8)

This function returns a ValueSupplier and the maximum number of changes across
all files and lines. The getLineChangeNumbers-function encapsulates the logic for
walking the entire directory tree and the various git commands to retrieve the
number of changes per line. The actual ValueSupplier is a lambda, where the
value we want to assign to a line is simply the result of a lookup into the (curried)
map returned by getLineChangeNumbers.

This ValueSupplier is then used with the helper function lineOverlayGenerator,
which generates an overlay image based on providing a color for every panorama
line:

21 of 90

Code Panorama 3 Methods

1 valueSupplier <- lineBasedValueSupplier
2 return $ lineOverlayGenerator (\ file lineNumber ->
3 valueSupplier file lineNumber
4 <&> ((/ maxChanges)
5 .> lerpColorLCH gray red
6)
7)

The code above passes a single lambda to the lineOverlayGenerator, namely a
function which is expected to return a color for a given combination of file name
and line number. We simply pass these values to our ValueSupplier, providing us
with an integer of the absolute number of changes on this line. Dividing this
number by the maximum number of changes across all lines, we get a value
between zero and one. This value can now be used for a Linear Interpolation
(lerp) between gray and red in the CIELUV color space, resulting in the desired
color for this line.

22 of 90

Code Panorama 3 Methods

3.4 Rendering-performance
One of the bigger problems of Code Panorama is that loading the generated
images in a browser can take anything from a few seconds to several minutes, and
it is even possible for a browser to become stuck and eventually crash. This is
due to the fact that in the prototype version the images are saved in SVG-format,
that contains more and more elements the more detailed the Code Panorama
becomes, which in turn increases loading times for the browser, since all elements
have to be loaded individually.

To find alternative solutions, several tests, which explore different ways of
generating images, have been conducted. Common to all approaches is that
what would eventually be displayed by a browser are now PNG-files instead of
SVG-files. Since images in PNG-format use much less space and can be loaded
by a browser as one element, we expected loading times to improve significantly.

Test results
As a point of reference, the average time necessary to generate a single SVG-file
at medium size was measured: 0.6 seconds. This also includes the additional time
needed to read the files from the repository, which is included in the following
measurements as well. Furthermore, the medium-sized panorama SVG is around
2.2MB in size.

The actual tests were run on three different implementations. In the first two,
the PNG is generated from the already existing SVG, which is either read from
the disk or the memory. And in the last implementation the PNG is generated
directly, without pre-generating an SVG-file.

Table 3.4: Image-generation runtimes and file-sizes

SVG PNG (memory) PNG (disk) PNG (directly)

Time (s) 0.6 2.9 0.9 1.0
Size (MB) 2.3 0.185 0.185 0.081

Conclusion
The general observation is that directly generating PNG-files takes a bit more
time than generating SVG-files (1.0 and 0.6 seconds respectively) and is also
slightly slower than generating a PNG-file from the SVG loaded from memory
(0.9 seconds). However, the files generated by the former approach are about
56% smaller than those produced by the latter. This difference becomes smaller
— as low as 27% — the less detailed an image is, but also increases — as high as
80% — the more detailed an image is.

Based on this, we decided that the best way to improve the performance of
image-loading is, to switch to generating PNG-files directly, since this yields
much smaller files at the cost of minimally increased run times for generating
the images.

23 of 90

Code Panorama 3 Methods

3.5 Asynchronous processing
The process of generating a code panorama, including all overlays, requires read-
ing every file in the repository at least once. Additionally, many git commands
must be executed and interpreted to gather all the necessary data and statistics
for the overlays.

Depending on the size of the repository, all of these tasks together can be
very time- and resource-consuming. To provide a satisfying user experience
when waiting for the images to be generated, we implemented an asynchronous
processing model: Whenever a user wants to generate new images, the client
sends a POST request to the server to create a PanoramaJob. The server will
create the job and start executing it, but immediately respond with the job’s ID.
The client may then use this job-ID to query the progress of the requested job
and ultimately retrieve the result, once the job is finished.

Polling
There are many technical approaches to checking the progress on an asynchronous
job [Abr17]. Although Server-Sent Events would fit the task more accurately, we
decided to implement the simplest solution: short polling on a 500ms interval.

Performance
We did not conduct any well-founded benchmarks on the entire panorama
generation process. However, we gathered some experience from working on our
local machines and the production instance provided by HSR. Generating five
code panorama pages on a medium-sized repository (100k–1M lines), usually
takes around 10–15 seconds. Generating a “per-line” statistic, such as when
selected on the change frequency, or when using the blame overlay, can easily
require up to 5 minutes on small-to-medium repositories (10k–50k lines), and
even 15 or more minutes on larger repositories.

Progress reporting
With asynchronous processing in place, the server can now report detailed
progress on its jobs’ executions. To accomplish that, any long-running function
must be able to report its progress back to the caller. By nesting progress-updates,
an entire progress-hierarchy can be built. To avoid unnecessarily flooding the
user with progress information, we decided to limit the level of detail to two
progress indicators: The upper progress bar showing the overall progress of the
job, and the lower bar showing the progress of the currently running top-level
step. Such a multi-level progress bar is well-known from e.g. software installers.

Figure 3.5: CodePanorama UI displaying the progress of a running PanoramaJob.

24 of 90

Code Panorama 3 Methods

To allow functions to report their progress, we opted for a solution inspired by
the progress-reporting25 package. Unfortunately, this package only allows for
reporting progress as numerical values, whereas we needed updates to include
a status message to display to the user. Therefore, we defined the following
callback-type:

1 type ProgressCallback m = String -> Double -> m ()

By passing this callback to long-running functions, the caller can specify what
happens when the called function reports a status update, while the called
function has control over when and what updates are reported.

The (simplified) function for calculating the number of changes per line, looks
as follows:

1 map (\ file -> do
2 -- increment of counter omitted
3 progress (" Calculating ChangeFrequency for " ++ file) $
4 fromIntegral counter / genericLength files
5 (file ,) <$> getFileChangeNumbersForFile file
6) files

Here, we map over all files and report a progress update for every file we process.
The percentage of the progress is simply the index of the current file, divided
by the number of files to process. The function getFileChangeNumbersForFile then
contains the logic for obtaining the actual numbers used in the overlay metric.

Getting the number of changes per line on a long file could be very time-intensive,
as well. However, since the time required to get the number of changes for a
single line is very short, the overhead of reporting progress on the line-level
would significantly degrade the overall performance. As we make heavy use
of multi-threading to speed up this process, the progress reporting must be
synchronized between threads. If every thread was reporting progress on a
line-basis (effectively every couple milliseconds), the additional time required for
keeping the progress updates synchronized would be enormous.

Now that progress is properly reported by long-running functions, we can use
this information in the PanoramaJobServer to update the corresponding job status,
by defining the ProgressCallback passed to its sub-functions:

1 progress_ :: ProgressCallback IO
2 progress_ status value =
3 getJob_ (Data. jobId job) >>= \case
4 Nothing -> throwJobNotFoundException (Data. jobId job)
5 Just j -> do
6 updateJob_ j
7 { Data. statusMessage = status
8 , Data. statusProgress = value
9 , Data. statusDetailMessage = Nothing

10 , Data. statusDetailProgress = Nothing
11 }

These status fields are then displayed in the client as seen in figure 3.5.

25http://hackage.haskell.org/package/progress-reporting

25 of 90

http://hackage.haskell.org/package/progress-reporting

Code Panorama 3 Methods

3.6 Concurrency handling
Another issue we encountered in the development of CodePanorama are concur-
rent users. Although Haskell claims to easily support proper concurrency, the
issue arises from the fact that CodePanorama makes heavy use of the file system
both for storage and as main input. Making sure these directory structures and
storage files are handled in a thread-safe manner is therefore not trivial.

Affected resources
Before attempting to implement proper concurrency handling, the relevant
resources need to be identified, which must be protected from race conditions. In
the case of the initial CodePanorama implementation, these were the following:

Repository store

The repository store is a registry of all cloned repositories in the server’s
workspace. Since server-side repositories are identified through UUIDs, this
registry maps the repository URLs to the corresponding UUIDs. This enables re-
using existing repository clones, whenever a user requests a repository which has
previously been cloned (either by another user, or by the same user). This reg-
istry also stores hashed credentials for private repositories, so a private repository
will only be re-used if the same credentials are supplied again.

Since every clone operation (RepositoryJobRequest) needs to read and poten-
tially write to the repository store, this resource is a potential source of race
conditions.

Repository information

Whenever a repository is analyzed, the CodePanorama server computes metadata
about the given repository, such as total number of lines, proportions of file
extensions, list of contributors, etc. This information can easily be cached to
speed up performance on subsequent requests. On the flip side, such a caching
mechanism introduces potential concurrency risks, which must be addressed.

Panorama and overlay images

The final results of the CodePanorama process are the actual PNG images
generated by the server. Since these images are based upon specific configurations
by the client such as filters, panorama size and image dimensions, they can not
easily be re-used across clients. Therefore, the application must guarantee that
images generated by one user will never be displayed to another user.

Solution
In general, concurrency can be solved by not sharing data across concurrent
access, or by ensuring proper synchronization between concurrent access of
the same resource. Depending on the resource in question, we implemented a
custom-tailored solution for that resouce.

26 of 90

Code Panorama 3 Methods

Repository store

Since the repository store is a global registry for the entire application, the
registry must be shared across all users. The “correct” approach would be
to use an established database, such as sqlite26, which already makes all the
concurrency guarantees we would need.

We had already implemented the repository store with a simple JSON-file, and
accesses to the registry happen rather unfrequently. Therefore, we decided to
simply secure all reads and writes into the repository store with a mutex. This
has the drawback of always only allowing a single thread access to the store,
even if concurrent access would be unproblematic. However, it only required
minimal modification to the existing code.

Repository information

Previously, the repository information was stored in a JSON-file, similarly to the
repository store. However, the repository information never changes once it has
been generated, except for when the checked-out commit is updated. Since this
happens even less frequently than an access to the repository store, we imple-
mented the same solution using a mutex. Although the repository information is
read relatively often, and a mutex does not allow multiple concurrent reads, each
read should be very quick and therefore have minimal impact on performance.

For a “proper” implementation, the locks would have to distinguish between read-
and write-locks. However, every access must first check whether the repository
information exists (read operation) and then generate the file if it does not
exist yet (write operation). Such a sequence of operations would require an
upgradeable read-lock mechanism, which is not trivial to implement correctly.
Considering the added complexity of an upgradeable read-lock, we were satisfied
with the simpler mutex solution.

Panorama and overlay images

In contrast to the previous resources, we have no interest in sharing generated
images across clients, since two clients using the exact same configuration is
highly unlikely. Therefore, we opted for a different approach here and store the
generated images separately in memory for every request. This means there
are no more concurrent accesses to a shared resource, automatically solving the
issue. The drawback, however, comes in a higher memory footprint and the
requirement to somehow clean up no longer used images.

A popular solution for storing data with limited life-time is Redis27. For this
Bachelor thesis, the integration of a Redis service seemed out-of-scope. Hence,
we opted for a simpler solution: the Haskell cache28 library, offering very similar
functionality to Redis, but without the requirement of attaching a separate
process.

26https://www.sqlite.org
27https://redis.io
28https://hackage.haskell.org/package/cache

27 of 90

https://www.sqlite.org
https://redis.io
https://hackage.haskell.org/package/cache

Code Panorama 3 Methods

Using the afore-mentioned cache library, we can now store the images as Base64-
encoded29 strings, indexed by the job-ID generated on the client’s request.
Whenever any client requests to generate new images, a new job-ID is generated
and a new entry in the image-registry is created. Clients can then retrieve
the images using the generated job-ID until the result expires. This expiration
is currently not configurable outside from modifying the source-code and is
hard-coded to a value of one hour after the image has been generated.

29https://tools.ietf.org/html/rfc4648

28 of 90

https://tools.ietf.org/html/rfc4648

Code Panorama 3 Methods

3.7 Git integration
The main backbone of CodePanorama is its integration with git as a version
control system. Not only does CodePanorama use git to clone the repository
to be analyzed, it also extracts important statistics from the git history. To
accomplish this, some sort of binding between the Haskell server application and
the git structure on the file system must be built.

Our first attempt was to use the Haskell package aptly named git. Although
promising at first, the longer we used it, the more features we needed were either
incomplete or missing entirely. Since the git package worked reasonably well
for what we had used it so far, we decided to keep it for functionality where we
could use it and build a new integration for the missing features. We wanted
this new binding to be easy to implement and be guaranteed to provide all the
features we will need. Therefore, we decided on creating a binding with the CLI
version of git.

Using the “process” Haskell package, running CLI commands as an external
binding from Haskell code is not too hard:

1 gitCli :: FilePath -> [String] -> IO (ExitCode , String , String)
2 gitCli repoDir args =
3 readCreateProcessWithExitCode (proc "git" args)
4 { cwd = Just repoDir
5 , std_out = CreatePipe
6 }
7 "" -- stdin

The gitCli function above can simply be called as follows:
1 gitCli repoDir [" fetch ", " origin "]

Our internal git CLI binding API also provides abstractions for e.g. only retrieving
the process’ standard output or forwarding the process’ standard and error
outputs to the CodePanorama loggers.

Using the git CLI as an external binding has the benefit of having access to the
rich command palette available through the executable. On the other hand, this
comes at the cost of requiring the git executable to be installed on the runtime
environment where the CodePanorama server is deployed. Using docker images,
however, we can easily pre-install git alongside the CodePanorama executable,
so users never have to actually worry about the runtime dependencies.

29 of 90

Code Panorama 3 Methods

3.8 Single-page application
Since we wanted to have a client that is both easy to deploy and based on
modern web development practices, we decided to implement it as a Single Page
Application (SPA).

This approach is supported by Elm and a readily available example exists30. We
used this example as a baseline and adapted it to our specific needs.

We did, for example, implement the Shared module, which is used to store data
that is needed by more than one page (e.g. the URL for the API). We also
wanted a stronger separation of the different parts that make up a single page.
In the original example, the update- and view-logic as well as the corresponding
model are always in the same module. While this approach works great for small
pages without much functionality, it quickly leads to code that is hard to read
and maintain. Thus, we decided to split up the code for every page into smaller
modules, each serving a particular purpose. This makes it easy to extend the
existing pages with new features and overall results in better structured code.

30https://github.com/rtfeldman/elm-spa-example

30 of 90

 https://github.com/rtfeldman/elm-spa-example

Code Panorama 3 Methods

3.9 Testing
An integral part of making sure software is correct, is automated testing. Since
CodePanorama consists of two main components (the server and the client), we
have separate tests for each.

All of our tests are executed automatically on every commit by the CI/CD
pipeline in Gitlab.

Server testing
In the server we have three categories of tests: property tests, unit tests, and
integration tests. We use property tests to validate functions with clear properties
that can be verified by generating random test data. Whenever we want to test
a more complicated function, we use unit tests, where the function is only tested
with pre-selected values — preferably edge cases. Lastly, for testing the server’s
REST-API, we have integration tests, where actual REST requests are sent to a
temporarily started web server and the returned response is verified.

Property tests are implemented using the QuickCheck package, unit tests make
use of the hspec package, and integration tests rely on the hspec-wai extension to
hspec.

1 it " deserializes to the String we started with" $
2 property (\(v :: String) ->
3 serialize v |> deserialize |> (== Right v))

Listing 3.3: A property test, verifying that serializing then deserializing a value
returns the original value

1 it " fails on unrenderable files " $
2 assemblePanorama config [unrenderableFile] ‘shouldBe ‘ ([] , [
3 (" Unrenderable .txt"
4 , " Unprintable non - space Character : ’\\NUL ’"
5)])

Listing 3.4: A unit test, checking that an unrenderable file cannot be included
in a panorama

1 bracketTest
2 (encodeFile testRepoInfoFile testRepoInfo) -- Set up test
3 (removeFile testRepoInfoFile) -- Clean up after test
4 $ it " Returns the repository info" $
5 get (path <> "/test -repo")
6 ‘shouldRespondWith ‘ json 200 testRepoInfo

Listing 3.5: An integration test, ensuring that the RepositoryInfoServer returns
information from the correct file

Client testing
The client does not contain much business or application logic. Therefore, our
test suites are not as extensive here as for the server. We only have unit tests in
this area, making use of the official elm-explorations/test package.

31 of 90

Code Panorama 3 Methods

1 test " mixed characters " <| _ ->
2 Expect . equal
3 " \\{\\ $a \\.b, c \\(12\\) \\[9\\]\\^\\\\\\} "
4 (RegexUtil . escape "{$a.b, c(12) [9]^\\} ")

Listing 3.6: A unit test, checking proper RegEx-escaping

32 of 90

Code Panorama 4 Results

4 Results

4.1 Architecture
Figure 4.1 shows an overview of the architecture of CodePanorama. The different
layers and modules are briefly described in the following sections.

Layers
The application is divided into two layers. One being the presentation-layer
and the other a combination of an application- and business-layer. So far,
only trivial persistence was necessary, which we implemented with plain JSON
files. Therefore, there is currently no “real” data-layer, rather the persistence
is embedded into the business-layer. Communication between the presentation
and application layers is based on HTTP.

Modules
Client

The Client module contains all the code for the web-based user interface. It
communicates with the server through a REST API. Parts of the client-code are
generated by the OpenAPI-CodeGen module, based on the API specifications.
The client is written in Elm, HTML, JavaScript, and LESS.

OpenAPI-CodeGen

Reads an API-description file as defined by the OpenAPI specification and
generates the necessary data-types and request-functions as Elm-code.

Swagger

Generates an API-description file as defined by the OpenAPI specification based
on endpoint- and data-type-descriptions from the Server module. Can also be
used to run an instance of Swagger-UI based on the API-description file.

Server

Defines and implements the API, and thus handles all the requests made by the
client (or through Swagger-UI) and passes them on to the Core module for further
processing. It has built-in asynchronous functionality and can serve multiple
clients at the same time.

Standalone

Originally used to test various libraries and their viability for the project. Could
still be used as a CLI-tool for very simple tests but has none of the functionality
provided by the client.

33 of 90

Code Panorama 4 Results

Overlays

Contains the generic components and helpers to allow implementing overlays as
outlined in section 3.3. Overlays.

Generator

Contains the functionality and helpers to generate code panoramas.

Filters

Contains the generic components to allow implementing filters as outlined in
section 3.2. Filters.

Core

The actual backend which does all the “heavy-lifting”. Contains sub-modules to
collect repository-data and generate panoramas.

Figure 4.1: Architecture of CodePanorama

34 of 90

Code Panorama 4 Results

4.2 Design diagrams

UI flow diagram
Figure 4.2 shows the (simplified) UI flow of CodePanorama. The Home page
is always the start page. Here, a user will enter a URL to a git repository, and
credentials if necessary, or select a local repository. The user will then press
the Analyze repository button and be redirected to the Filter page. On this
page, the filters can be adjusted and every adjustment will trigger a call to the
Preview endpoint. Once the user is satisfied with their selection, they will press
the Generate panorama button. This will generate all the necessary images and
redirect the user to the Panorama page. Here, different overlays can be selected,
parameterized and regenerated. It is also possible to click on a specific file and
switch to the Drilldown page.

Figure 4.2: UI flow diagram

Sequence diagram (client-server)

Figure 4.3: Sequence diagram — Client-Server communication

The diagram in figure 4.3 gives a quick overview of how the different pages in the
client communicate with the server, and in which situations redirects happen.

35 of 90

Code Panorama 4 Results

The GET repo-job- and GET panorama-job-requests are sent periodically. The server
responds to each request with the current status and progress of the job running
in the background, if available.

The POST preview-request can also be sent multiple times, but will always be sent
at least once when entering the filter-page.

PanoramaJob
The activity diagram in figure 4.4 shows a simplified version of the PanoramaJob.
This job contains most of the logic responsible for generating code panoramas. A
major part of this is the activity Assemble files into panorama. There, a bunch
of files are transformed into an internal representation, which is then used by
the subsequent steps to generate images. In the last step, all that is left to do is
send the images to the client.

Figure 4.4: PanoramaJob

36 of 90

Code Panorama 4 Results

4.3 Artifacts
The main resulting artifact of this bachelor thesis is the CodePanorama applica-
tion. Although the source code is published as open-source1, we also produced
binary artifacts for users.

Docker images
The primary way of running CodePanorama uses docker images. As described in
subsection Docker of section 3.1, using docker greatly simplifies deployments, as
the deployment artifact is almost entirely independent of the host environment.
For CodePanorama, we published two separate docker images: hsrcodepanorama/
code-panorama-client2 and hsrcodepanorama/code-panorama-server3.

Detailed instructions on how to use these docker images can be found in Ap-
pendix C.3 Deploying CodePanorama with docker.

CodePanorama.io
The Institute for Software (IFS) at HSR has offered to host a production
deployment of CodePanorama. This instance provides its API at https://api.
codepanorama.io. Using Gitlab’s Pages feature4, we deploy the client directly
from the CI/CD pipeline, accessible at https://codepanorama.io. This client
is configured to access the backend hosted by IFS. Lastly, the API specification
is available at https://swagger.codepanorama.io (also hosted by IFS).

1https://gitlab.com/CorrectnessLab/codePanorama/issues
2https://hub.docker.com/r/hsrcodepanorama/code-panorama-client
3https://hub.docker.com/r/hsrcodepanorama/code-panorama-server
4https://docs.gitlab.com/ee/user/project/pages/

37 of 90

https://api.codepanorama.io
https://api.codepanorama.io
https://codepanorama.io
https://swagger.codepanorama.io
https://gitlab.com/CorrectnessLab/codePanorama/issues
https://hub.docker.com/r/hsrcodepanorama/code-panorama-client
https://hub.docker.com/r/hsrcodepanorama/code-panorama-server
https://docs.gitlab.com/ee/user/project/pages/

Code Panorama 4 Results

4.4 Development
There are many additional desirable features and improvements left for Code-
Panorama. We — and the Haskell community in general — strongly believe in
open-sourcing software and allowing the public to improve and develop code.
This is one of the main reasons why we designed CodePanorama (especially the
filters and overlays modules) with high extensibility in mind.

Open source repository
All of CodePanorama’s source code is publicly available for inspection and merge
requests at https://gitlab.com/CorrectnessLab/codePanorama. This
repository also includes a public issue tracker intended for reporting bugs and
requesting new features by users.

Developer guide
Instructions on how to get started developing CodePanorama can be found in
the developer guide markdown file in the repository. This developer guide can
also be found in Appendix C.1 Developer guide. In general, it is advisable to
start with the afore-mentioned developer guide and read the README.md files of
the modules to be worked on.

38 of 90

https://gitlab.com/CorrectnessLab/codePanorama

Code Panorama 4 Results

4.5 Known issues
This section lists known issues of the CodePanorama software that could not be
fixed as part of this bachelor thesis. The list is not complete, but includes the
most important and impactful issues.

Critical
There are currently no known critical issues. A critical issue would either prevent
some functionality from being used, have the potential to crash the application,
or be related to a security vulnerability.

Major
An issue is categorized as major, if it either has a well noticeable impact on
usability, or the possibility to break a small part of the application.

Files at end of page are cut off The last file of every code panorama page
usually does not fit entirely onto that page. Currently, we do not handle such
overflowing files very well. Instead, these files are not rendered at all. Possible
strategies would include simply rendering the lines that fit into the page and
discard the rest, or rendering the rest of the file onto the next page. Neither
solution seems very satisfactory, though.

Last page has empty space Related to the issue above, the last page
(especially when there are many pages) has a large empty space at the end.
The source is not completely clear, but it is likely related to the discarding of
overflowing files on each page.

Panorama cuts off partial columns Currently, the filter page allows for
arbitrarily precise customization of the panorama dimensions in pixels. If the
width of the panorama image is not a multiple of the configured column width,
the right-most column is partially cut-off. Not only does this not look aesthetic,
for some reason these partial columns cannot be hovered in the client and
therefore not be drilled-down into.

Fix links in documentation The documentation page in the web UI is
generated automatically from the source markdown files. These markdown files
contain relative links to other markdown files. Those links are not translated
when generating the HTML and therefore do not make sense in the web-context.
Possible solutions include either using absolute URLs in the source markdowns,
or finding a reasonable way to translate relative URLs during conversion.

Minor
Minor issues are either hardly noticeable, or the impact of when the issue arises
is very small.

39 of 90

Code Panorama 4 Results

SVG hover map fails on one-line files If a file containing only a single line
is included in the panorama, it is currently impossible to hover it and therefore
drill-down into it. Likely, there is an off-by-one error in the generation of the
SVG model. For longer files this error is not really noticeable, therefore we
categorized this issue as minor.

Request body is not logged By introducing the hslogger framework as our
logging tool of choice, we had to manually wire the wai middleware to intercept
requests and log them. This did not work easily out-of-the-box. Since this was
not a high priority for us, we did not invest too much time to investigate this
issue. Since this is only noticeable when development mode is active on the
server, this issue is only minor.

40 of 90

Code Panorama 4 Results

4.6 Software metrics
While there are many established software metrics available for other languages,
there are only a few for Haskell [RT05]. Unfortunately, there are hardly any
tools for computing metrics for Haskell to be found. The only tools we could
find are argon5, which is outdated, and homplexity6, which does not produce
easy-to-parse output.

While homplexity could be leveraged to produce more detailed statistics, this
would require some effort. A quick run of the tool, however, gives the information
that CodePanorama has only two functions that exceed a cyclomatic complexity
of 10. Both of these functions are tests, so the measure is not very relevant. The
highest cyclomatic complexity of any non-test function is 6, of which there are
four functions.

Furthermore, 32 functions are deemed too long (based on a threshold of 20 lines
per function). Lastly, 7 functions violate the default threshold of a maximum of
5 arguments, where the highest violation is 9 arguments, but only 6 in all other
cases.

Table 4.1 shows simple line counts generated by Git and PowerShell and do not
include empty lines or generated code.

Table 4.1: Lines by language of CodePanorama

Avg per file Max per file Total

Haskell 60 393 6 990
Elm 90 609 5 417

5https://hackage.haskell.org/package/argon
6https://hackage.haskell.org/package/homplexity

41 of 90

https://hackage.haskell.org/package/argon
https://hackage.haskell.org/package/homplexity

Code Panorama 5 User Studies

5 User Studies
This chapter is a brief description on how we conducted our user studies and what
insights we gained from them. We designed this study to analyze the expectations
and usage patterns of experienced developers interacting with CodePanorama
for the first time.

We conducted these at the beginning of this bachelor thesis. Many of the features
that CodePanorama offers now were not available at that time. Hence, some
of those features, for example overlays, appear as suggestions or ideas in the
sections below.

5.1 Method
The interview is partitioned into three parts: a pre-interview, the practical study
and a post-interview.

The handout in Appendix E. User Study Handout is intended to be printed before
the user study. It contains all the questions that should be asked during the study.
It is also available from the docs directory at the root of the CodePanorama
repository.

Pre-Interview
The pre-interview questions are intended to be asked prior to the subject ever
having seen or interacted with CodePanorama.

Practical Study
During the user study, the subject will be asked to perform a series of tasks
without additional help. Some of the task might not be possible to complete and
we want to observe how the user reacts to an impossible task, or how the user
identifies that a task is not possible.

Additionally, a timer should be used to keep track of how long it takes the subject
to complete each task.

The “Practical Study” page of the handout should be given to the study subjects
for them to follow. The study conductor should not need to assist in any way
during the practical part, but should observe and take notes on the subject’s
actions.

The subject is encouraged to think aloud, or otherwise the conductor should ask
questions to gain insight into the subject’s thought process.

Post-Interview
To finish off the interview, the subject will be asked questions about their
perceived experience with CodePanorama, suggestions, ideas, etc.

42 of 90

Code Panorama 5 User Studies

5.2 Result
While we would have liked to interview more subjects, we only had time to
conduct eight interviews. Therefore, the following results are not necessarily
representative of a larger user-base.

Pre-Interview
The first thing we asked everyone during a study was, what they think when
they hear the expression “Code Panorama”. While some people stated that they
do not really have an idea and would like to look it up on the internet, most
guessed that it must be some kind of “zoomed-out” view, where a lot of code
can be seen at the same time.

When asked how they would approach reviewing a large code base, the answers
were all in the same vein: Look at the documentation and test cases, use an IDE
or generally look at the structure of the source code.

The methods to find code smells (e.g. code duplication) are also similar and
only really differ in the exact tool that is used (e.g. SonarQube, IDE-plugins).
Surprisingly, not everyone was that sure whether their method really is a reliable
way of finding code-smells.

Practical Study
The tasks of the practical part of the study were met with different levels of
success. Some people quickly understood how CodePanorama works and how
they had to use the filters and options to get to the answers. Nevertheless, there
was one person who was quite a bit lost when looking at the panorama images,
since they were not very familiar with the main programming language used in
the test repository and thus had difficulties identifying things such as incorrect
formatting of code or unusual looks of a file.

Regarding the user experience, we heard similar things from everyone: the back
button of the browser is not working correctly, error messages are easy to miss,
there should be some tooltips explaining how certain things work and how they
are supposed to be used, and file-borders should be visible without hovering.

Post-Interview
This is likely the most interesting part of the study. Here we asked people what
they think of CodePanorama in its current state, whether they would consider
using it and what features they think are missing.

Quite a few of the responses for the missing features coincided with what was
already outlined in the goals of this bachelor thesis or with things we discussed
in meetings with our supervisor. An often named thing was, for example, that
the change frequency, authors or file types should be displayed in some way, with
some people already suggesting to use a colored overlay for that.

43 of 90

Code Panorama 5 User Studies

Other ideas include (in no particular order):

• Incorporation of syntax highlighting in the panorama images

• Clearer separation of files

• Single-file view on the panorama page

• Calculation of suggested panorama size

• Language-specific overlays displaying things such as number of assignments
or control structures (e.g. conditions, loops).

• Option to hide comments or imports

Lastly, we asked in which use-cases/scenarios people would consider using Code
Panorama. The answers mostly match with what we had already written in
the abstract before we conducted the user studies: performing code reviews, get
familiar with new code-bases and finding the interesting parts of a code-base.

5.3 Conclusion
Based on the findings presented above, we prioritized existing tasks, and filed
new tasks and bug reports.

Most of the bugs that were reported by our test subjects have been fixed, tooltips
have been added where useful and sensible, and error messages are now harder
to miss and more clearly formulated.

Feature-wise, we implemented overlays for change frequency, authors and file
types. We decided against implementing the suggested language-specific features.
While those would be an interesting addition to CodePanorama — similar
features were also implemented in SeeSoft [ESS92] —, they are not easy to
implement and require additional knowledge about the respective language. This
is, in our opinion, out-of-scope for this bachelor thesis. However, it is not out of
question that such additions will be implemented in the future.

44 of 90

Code Panorama 6 Conclusions

6 Conclusions
Multiple studies have been conducted on the topic of code visualization in the
form of the code-map metaphor. Popularized in text editors and IDEs, the code
mini-map is a well established spin-off. With CodePanorama we created a web
application with a modern UI to analyze any git repository, based on the insights
of previous studies and products.

In our opinion, CodePanorama does indeed provide a new angle for code reviews,
with helpful color overlays. Which overlays and configurations turn out to be
most practical and lead to useful results, remains to be seen.

6.1 Lessons learned
Working on a software product providing innovative functionality, we learned
the importance of flexible and agile planning. In a context, where specifications
and user preferences are very unclear (to both the developers and the users),
it is imperative to quickly adapt to new requests and ideas. One must not be
scared to try out wild ideas, even if most of them are scrapped later.

As for working on a modern web application, the impact of UI design cannot be
understated. Even only a couple days of effort into making the application look
and feel nicer feels equally impactful for the user like months’ worth of features.

6.2 Encountered problems
Relying on established software design principles at the beginning greatly simpli-
fies future refactorings. The impact is so large that in some cases we decided to
live with the current (subpar) implementation, only because the technical debt
of re-writing that part of the application was not feasible.

An example of this is the implementation of how the lines in a repository are
arranged in the panorama image: Being deeply intertwined with our initial
inceptions of how a code panorama should look, it became way too costly to add
well-recognizable file borders to the image itself.

Finally, we knew for quite a while that our server-side implementation could not
handle concurrent users on the same repository well. However, we decided to
ignore this issue, in favor of hoping such a use-case would never arise.

Unfortunately, such a use-case could occur pretty often in the academic setting:
The speaker demonstrates CodePanorama and multiple students follow along.
In light of this, we had to spend a lot of time and effort into retrospectively
making the server thread-safe. Again, this would have been much easier, if we
had acknowledged this issue from the start.

45 of 90

Code Panorama 7 Perspectives

7 Perspectives
There is an almost unlimited number of extensions, new features, UI improve-
ments and other ideas available for CodePanorama. To allow anyone to extend
CodePanorama with either features already conceived or with ideas of their own,
we open-sourced the code.

Some of the highest impact features that have not yet made it into CodePanorama
are listed below (in no particular order):

• Implement some sort of caching to improve panorama generation perfor-
mance

• Allow exporting and importing of filter (and overlay) configurations

• Automatically suggest an optimal panorama size to the user

• Contributor heatmap, showing how many different contributors have
worked on each file

• Rework / improve the directory filter tree

• Add visible file borders to the panorama image

• User-management where a user can see all their analyzed repositories and
configurations

• Administration view to clear caches / clean up job results, etc.

We are looking forward to using CodePanorama in real-world use cases in the
near future. We plan to further maintain CodePanorama as a side-project.
Furthermore, we are looking for potential business partners and opportunities in
the consulting area, where CodePanorama could prove a valuable asset.

46 of 90

Code Panorama References

References
[Abr17] Alexis Abril. A comparison between WebSockets, server-sent

events, and polling. Sept. 2017. url: https://aquil.io/artic
les/a-comparison-between-websockets-server-sent-even
ts-and-polling (visited on 01/04/2020).

[BE19] Patrick Bächli and Marc Etter. “Code Panorama”. Term Project.
University of Applied Sciences Rapperswil, Mar. 2019. url:
http://eprints.hsr.ch/id/eprint/742.

[BMK18] Ivan Bacher, Brian Mac Namee, and John Kelleher. “The Code
Mini-Map Visualisation: Encoding Conceptual Structures Within
Source Code”. In: Sept. 2018, pp. 127–131. doi: 10.1109/VISS
OFT.2018.00023.

[BNK17] Ivan Bacher., Brian Mac Namee., and John Kelleher. “The Code-
Map Metaphor - A Review of Its Use Within Software Visualisa-
tions”. In: Proceedings of the 12th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 3: IVAPP, (VISIGRAPP 2017). IN-
STICC. SciTePress, 2017, pp. 17–28. isbn: 978-989-758-228-8.
doi: 10.5220/0006072300170028.

[CK94] S. R. Chidamber and C. F. Kemerer. “A metrics suite for
object oriented design”. In: IEEE Transactions on Software
Engineering 20.6 (June 1994), pp. 476–493. issn: 2326-3881. doi:
10.1109/32.295895.

[Del+06] Robert Deline et al. “Code Thumbnails: Using Spatial Memory
to Navigate Source Code”. In: Jan. 2006, pp. 11–18. doi:
10.1109/VLHCC.2006.14.

[ESS92] S. C. Eick, J. L. Steffen, and E. E. Sumner. “Seesoft-a tool for
visualizing line oriented software statistics”. In: IEEE Transac-
tions on Software Engineering 18.11 (Nov. 1992), pp. 957–968.
doi: 10.1109/32.177365.

[FD04] J. Froehlich and Paul Dourish. “Unifying artifacts and activities
in a visual tool for distributed software development teams”. In:
vol. 26. June 2004, pp. 387–396. isbn: 0-7695-2163-0. doi:
10.1109/ICSE.2004.1317461.

[ISO11664-5] CIE International Commission on Illumination. Colorimetry
— Part 5: CIE 1976 L*u*v* colour space and u’, v’ uniform
chromaticity scale diagram. Standard. Geneva, CH: International
Organization for Standardization, Sept. 2016.

[Kov17] Laura Kovács. “Symbol Elimination for Program Analysis”. In:
Oct. 2017. url: https://files.sri.inf.ethz.ch/website/
events/workshop2017/kovacs.pdf (visited on 01/03/2020).

[Mac86] Jock Mackinlay. “Automating the Design of Graphical Presen-
tations of Relational Information”. In: ACM Trans. Graph. 5
(Apr. 1986), pp. 110–141. doi: 10.1145/22949.22950.

47 of 90

https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling
https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling
https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling
http://eprints.hsr.ch/id/eprint/742
https://doi.org/10.1109/VISSOFT.2018.00023
https://doi.org/10.1109/VISSOFT.2018.00023
https://doi.org/10.5220/0006072300170028
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/VLHCC.2006.14
https://doi.org/10.1109/32.177365
https://doi.org/10.1109/ICSE.2004.1317461
https://files.sri.inf.ethz.ch/website/events/workshop2017/kovacs.pdf
https://files.sri.inf.ethz.ch/website/events/workshop2017/kovacs.pdf
https://doi.org/10.1145/22949.22950

[McC76] T. J. McCabe. “A Complexity Measure”. In: IEEE Transactions
on Software Engineering SE-2.4 (Dec. 1976), pp. 308–320. issn:
2326-3881. doi: 10.1109/TSE.1976.233837.

[OH92] P. Oman and J. Hagemeister. “Metrics for assessing a soft-
ware system’s maintainability”. In: Proceedings Conference
on Software Maintenance 1992. Nov. 1992, pp. 337–344. doi:
10.1109/ICSM.1992.242525.

[PF07] Charles Parkhurst and Robert Feller. “Who invented the color
wheel?” In: Color Research & Application 7 (Mar. 2007), pp. 217–
230. doi: 10.1002/col.5080070302.

[Rob+98] George Robertson et al. “Data Mountain: Using Spatial Mem-
ory for Document Management”. In: Proceedings of the 11th
Annual ACM Symposium on User Interface Software and Tech-
nology. UIST ’98. San Francisco, California, USA: Associ-
ation for Computing Machinery, 1998, pp. 153–162. isbn:
1581130341. doi: 10.1145/288392.288596. url: https:
//doi.org/10.1145/288392.288596.

[RT05] Chris Ryder and Simon Thompson. “Software Metrics: Measuring
Haskell”. In: Trends in Functional Programming. Ed. by Marko
van Eekelen. Trends in Functional Programming. Bristol, UK:
Intellect Books, Sept. 2005. url: https://kar.kent.ac.uk/1
4265/.

[Sea18] Owen Searls. The Power of the Source Code Minimap. Apr. 2018.
url: https://sites.tufts.edu/owenhumanfactors/2018/04
/05/the-power-of-the-source-code-minimap/ (visited on
01/01/2020).

[Ski09] Jon Skinner. Sublime Text 1.2 Now Available. June 2009. url:
https://www.sublimetext.com/blog/articles/2009/06
(visited on 01/01/2020).

48

https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ICSM.1992.242525
https://doi.org/10.1002/col.5080070302
https://doi.org/10.1145/288392.288596
https://doi.org/10.1145/288392.288596
https://doi.org/10.1145/288392.288596
https://kar.kent.ac.uk/14265/
https://kar.kent.ac.uk/14265/
https://sites.tufts.edu/owenhumanfactors/2018/04/05/the-power-of-the-source-code-minimap/
https://sites.tufts.edu/owenhumanfactors/2018/04/05/the-power-of-the-source-code-minimap/
https://www.sublimetext.com/blog/articles/2009/06

Code Panorama List of Figures

List of Figures
0 Code panorama of CodePanorama with change frequency (~9k

lines) . i

2.1 SeeSoft — Visualizing program code changes 4
2.2 Augur — Multi-panel interface and detail view 5
2.3 Sublime Text 1.2 — Code mini-map 6
2.4 Microsoft Visual Studio 2005 — Code Thumbnail 7
2.5 Microsoft Visual Studio 2005 — Code Thumbnail Desktop 8

3.1 Gitlab pipeline of CodePanorama (part 1) 13
3.2 Gitlab pipeline of CodePanorama (part 2) 14
3.3 Ranking of perceptual tasks. [Mac86] 19
3.4 Comparison of a CIE 1976 L*u*v* (here LCH) and HSV gradient. 20
3.5 CodePanorama UI displaying the progress of a running PanoramaJob. 24

4.1 Architecture of CodePanorama 34
4.2 UI flow diagram . 35
4.3 Sequence diagram — Client-Server communication 35
4.4 PanoramaJob . 36

B.1 Accumulated work logged by milestone 54
B.2 Work logged by milestone . 55
B.3 Work logged by task priority . 55
B.4 Work logged by task type . 56
B.5 Cumulative flow diagram of Jira issues 56

49 of 90

Code Panorama List of Tables

List of Tables
3.1 Notable Haskell packages . 10
3.2 Notable client dependencies . 11
3.3 Categorization of overlay information 18
3.4 Image-generation runtimes and file-sizes 23

4.1 Lines by language of CodePanorama 41

A.1 Phases / iterations of project plan 52

50 of 90

Code Panorama Glossary

Glossary

API Application Programming Interface.

CD Continuous Delivery.
CI Continuous Integration.
CIELUV CIE 1976 L*u*v*.
CLI Command-line Interface.
CSS Cascading Style Sheets.

GHC Glasgow Haskell Compiler.

HSR Hochschule für Technik Rapperswil.
HSV Hue-Saturation-Value.
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.
IFS Institute for Software.

JSON JavaScript Object Notation.

lerp Linear Interpolation.
LESS Leaner Style Sheets.

NPM Node Package Manager.

PNG Portable Network Graphics.

RegEx Regular Expression.
REST Representational State Transfer.

SPA Single Page Application.
SSE Server-Sent Events.
SVG Scalabe Vector Graphics.

UI User Interface.
URL Uniform Resource Locator.
UUID Universally Unique Identifier.

XML Extended Markup Language.

51 of 90

Code Panorama A Project Plan

A Project Plan

A.1 Phases / Iterations

Table A.1: Phases / iterations of project plan

Phase Timespan
1 Inception 19.08.2019–15.09.2019

Brainstorming and definition of problem statement.
2 Elaboration 16.09.2019–15.10.2019

Creation of project plan, priorisation of features, research of scientific
material.

3 Construction 16.10.2019–10.12.2019
Implementation of features and improvements. Conduct user studies and
surveys.

4 Transition 11.12.2019–10.01.2020
Completion of started features. Clean-up of source-code, UI and documen-
tation. Bugfixing. Creation of final report.

A.2 Milestones
The milestones continue the numbering from the precursory study project, where
the final milestone (Hand-In) was M5.

M6 — Project Plan
Project plan is created, milestones are defined, and the most important tasks
are described. The problem statement has been created, refined, and accepted
by all parties.

Planned: Completed by September 24.
Actual: Completed by September 23.

M7 — Research
Existing tools have been analyzed. Previous research on this topic has been
studied. Initial documentation is created. User studies have started.

Planned: Completed by October 15.
Actual: Completed by October 15.

M8 — Improved Filtering
Filter page is overhauled both feature- and design-wise.

Planned: Completed by October 29.
Actual: Completed by October 29.

52 of 90

Code Panorama A Project Plan

M9 — Overlays
The Code Panorama offers options to colorize the image based on user selection
and pre-defined metrics.

Planned: Completed by November 19.
Actual: Completed by November 12.

M10 — Deployment Optimizations
Code Panorama can effortlessly be deployed in configurable variations, both on
a hosted server and locally on a developer machine.

Planned: Completed by November 26.
Actual: Completed by November 26.

M11 — UX Improvements
General overhaul of Code Panorama’s UI, based on user surveys, studies, and
overall backlog.

Planned: Completed by December 24.
Actual: Completed by December 30.

M12 — Hand-In
Application is deployed to https://codepanorama.io. Code-base and this
report have been handed-in according to all requirements.

Planned: Completed by January 10.

53 of 90

https://codepanorama.io

Code Panorama B Time Reports

B Time Reports
The following time reports show work logged in Jira. The target values are
calculated according to the official ECTS formula of 1 ECTS = 30h 1. Dividing
the total amount of work required by the number of weeks available results in
12 ECTS× 30h

16 weeks = 22.5 hours per week per student.

The time reports shown below do not contain the efforts of handing in the report,
preparing and conducting the final presentation, and the oral examination. We
estimate the discrepancy to amount to around 4–5 hours per student.

Figure B.1: Accumulated work logged by milestone

M6 M7 M8 M9 M10 M11 M12
0h

200h

400h

600h

800h

25
75

180.75

275.25
350.5

603.25

719

45

180

270

360

450

630

720Actual
Target

1https://swisseducation.educa.ch/en/european-credit-transfer-and-accumulation
-system-ects

54 of 90

https://swisseducation.educa.ch/en/european-credit-transfer-and-accumulation-system-ects
https://swisseducation.educa.ch/en/european-credit-transfer-and-accumulation-system-ects

Code Panorama B Time Reports

Figure B.2: Work logged by milestone

M6 M7 M8 M9 M10 M11 M12
0h

100h

200h

300h

25
50

105.75 94.5
75.25

252.75

115.75

45

135

90 90 90

180

90

Actual
Target

Figure B.3: Work logged by task priority

Trivial Minor Medium Major Blocker
0h

100h

200h

300h

400h

500h

600h

3 16

530

125

45

55 of 90

Code Panorama B Time Reports

Figure B.4: Work logged by task type

Tasks

620.25h

Bugs

64.75h
Administrative

34h

Figure B.5: Cumulative flow diagram of Jira issues

56 of 90

Code Panorama C Manuals

C Manuals
The contents of the sections below are generated automatically from the contents
of the docs directory at the root of the CodePanorama repository. They are also
available online at https://codepanorama.io/#/documentation.

57 of 90

https://codepanorama.io/#/documentation

Developer Guide
This guide contains instructions, recommendations, and best-practices we gath-
ered during the course of this project for working on CodePanorama and with
Haskell/Elm in general.

Although it is possible to work with basically any IDE, we found Visual Studio
Code to work well. This section describes our recommended setup, which we
used ourselves.

Prerequisites
The following software is required to be pre-installed on your machine:
All versions are the ones used at the time of writing - no guarantees are made
for newer or older versions

• Windows 10 1909 (Building should be possible on other operating systems,
but hasn’t been tested outside of the docker build)

• Java JRE 11+28
• NPM 6.13.4
• stack 2.1.3 (GHC is not necessary, as stack will install it’s own GHC

anyway)

Installation of stack might take an hour or longer, depending on your machine
and internet connection!

Visual Studio Code Extensions
The following Visual Studio Code extensions worked well for us:

• Elm 0.7.4
• Haskell Syntax Highlighting 2.7.0
• haskell-linter 0.0.6
• Haskero 1.3.1
• hoogle-vscode 0.0.7
• indent-rainbow 7.4.0
• Rainbow Brackets 0.0.6
• stylish-haskell 0.0.10

Additionally, some of these extensions require external software:
stack install hlint
stack install intero
stack install stylish-haskell

Workspace Setup
For the code extensions to work properly, we found it best to use two Visual Studio
Code windows, where the CodePanorama-Server and CodePanorama-Client are

Code Panorama C Manuals

C.1 Developer guide

58 of 90

used as root workspaces, respectively.

Working with the project
For convenience, we have setup npm shortcuts for all commonly used tasks during
development. Take a look at package.json to see a list of all commands, but
the most commonly used ones are:

npm run build - builds server, generates client code and builds client
npm run test - tests server and client
npm run swagger - generates swagger.json specification and client code
npm run build-server - only builds the server
npm run build-client - only builds the client
npm run server - starts CodePanorama-Server
npm run client - starts CodePanorama-Client (hot-reloading live-server) and
opens a browser window with the home page
npm run swagger-ui - starts Swagger-UI
npm run all - builds and starts everything

Code Panorama C Manuals

59 of 90

Building docker images locally
This guide describes all steps necessary from cloning the source code to having
a (local) instance up and running, by compiling and building all images locally
using Docker.

Prerequisites
• You have the CodePanorama repository cloned locally.
• You have the node package manager (NPM) installed locally.

– tested with npm 6.11.3 (nodejs 12.11.0)
• Docker is installed on your system

– tested with Docker for Windows 18.06.1-ce
• Your docker daemon is configured with at least 4GB of memory

– Linux: no configuration necessary, as long as your system has enough
memory

– Mac: https://docs.docker.com/docker-for-mac/#resources
– Windows: https://docs.docker.com/docker-for-windows/#advanced

Setup
A couple of local NPM dependencies are required for the build steps to succeed.
These are simply installed as follows:
npm install

Now you are setup to create all the docker images!

Create build images
Note: This step might take 10-20 minutes, as many dependencies will have to be
downloaded.

In this step, the docker images required to build the application will be built.
npm run docker-build

Or if you only want to build the server/client:
npm run docker-server-build
npm run docker-client-build

Create deploy images
Now that the images required for building the application are ready, the deploy-
ment images can be built:

Code Panorama C Manuals

C.2 Building docker images locally

60 of 90

npm run docker-deploy

Or, again, building the server/client separately:
npm run docker-server-deploy
npm run docker-client-deploy

Run images locally
Finally, the deployment images can be run locally:
npm run docker-local

This deploys the application as follows:

Component URL
Client (UI) http://localhost:8080
Server (API) http://localhost:6868
Swagger-UI http://localhost:6869

See the compose file and the server README for details and configuration
options, e.g. if you need to modify the port bindings.

You can shutdown the local images by issuing the following command:
npm run docker-local-stop

Persisting the workspace

If you want to keep the server’s workspace (i.e. repo clones, panorama
PNGs, and repository infos) persistent, you can add the following to the
docker-compose file at the end of the code-panorama-server section (replacing
C:/dev/CodePanorama/ws with any path on your machine where you would like
to save the server’s workspace):
volumes:

- "C:/dev/CodePanorama/ws:/opt/ws/workspace"

Run image on a server
If you wish to deploy CodePanorama to your own server using the above built
docker images, follow these steps (after building the deploy images as above):
npm run docker-prd

Code Panorama C Manuals

61 of 90

This command will tag the previously built deploy-images as latest. Make
any desired configuration changes (e.g. your server’s domain name) to the
docker-compose-prd.yml. Now, you should be able to deploy the application
to your server using this compose file:
docker-compose --file docker-compose-prd.yml up -d

The command above needs to be run on the server you wish to deploy to. Addi-
tionally, the locally built images need to be pushed to the server.

Code Panorama C Manuals

62 of 90

Deploying CodePanorama with Docker
This guide describes all steps necessary to run CodePanorama locally (or on
your own server) by using the pre-built Docker images.

Prerequisites
• Docker is installed on your system

– tested with Docker for Windows 18.06.1-ce

Using Docker-Compose
If you have docker-compose installed, the most straight-forward way to deploy
CodePanorama locally, is as follows:

Create a docker-compose.yml file on your system with the following contents
(or download it here):
version: "3.7"

services:
code-panorama-server:

image: hsrcodepanorama/code-panorama-server:${TAG:-latest}
command: "/opt/ws/CodePanorama-Server-exe"
environment:

CP_LOCAL_REPOS_ENABLED: "true"
CP_PRIVATE_REPOS_ENABLED: "true"

ports:
- "6868:6868"

Use the volume mapping below to persist the workspace
#volumes:
- "C:/dev/CodePanorama/ws:/opt/ws/workspace"

code-panorama-swagger-ui:
image: hsrcodepanorama/code-panorama-server:${TAG:-latest}
command: "/opt/ws/CodePanorama-SwaggerUI-exe"
environment:

CP_API_HOST: localhost:6868
ports:

- "6869:6869"

code-panorama-client:
image: hsrcodepanorama/code-panorama-client:${TAG:-latest}
environment:

API_BASE_PATH: http://localhost:6868
ports:

- "8080:80"

Code Panorama C Manuals

C.3 Deploying CodePanorama with docker

63 of 90

Then start the services as follows:
docker-compose -f path/to/your/docker-compose.yml up -d

The application should now be deployed according to the following table:

Component URL
Client (UI) http://localhost:8080
Server (API) http://localhost:6868
Swagger-UI http://localhost:6869

You can shutdown the services with the following command:
docker-compose -f path/to/your/docker-compose.yml down

Using plain Docker
The following commands replicate the behavior of the compose file above:

Running the Server

docker run -d --name code-panorama-server -e
CP_PRIVATE_REPOS_ENABLED="true" -p "6868:6868"
hsrcodepanorama/code-panorama-server
/opt/ws/CodePanorama-Server-exe

↪→

↪→

↪→

Running the Client

docker run -d --name code-panorama-client -e
API_BASE_PATH="http://localhost:6868" -p "8080:80"
hsrcodepanorama/code-panorama-client

↪→

↪→

Running the Swagger UI

docker run -d --name code-panorama-swagger-ui -e
CP_API_HOST="localhost:6868" -p "6869:6869"
hsrcodepanorama/code-panorama-server
/opt/ws/CodePanorama-SwaggerUI-exe

↪→

↪→

↪→

Code Panorama C Manuals

64 of 90

Running your own instance of CodePanorama
This manual describes how to run a local instance of CodePanorama, e.g. if
you want to keep your private repositories truly private (which we can totally
understand).

If you intend to make changes to the code, we recommend using the Local
approach described below. If you simply want to run your own instance on your
local machine or on your own server, we recommend using the Docker approach.

Prerequisites
The following software is required to be pre-installed on your machine:
All versions are the ones used at the time of writing - no guarantees are made
for newer or older versions

• Windows 10 1909 (Building should be possible on other operating systems,
but hasn’t been tested outside of the docker build)

• Java JRE 11+28
• NPM 6.13.4
• stack 2.1.3 (GHC is not necessary, as stack will install it’s own GHC

anyway)

Installation of stack might take an hour or longer, depending on your machine
and internet connection!

Build
The simplest way to build CodePanorama is to use the following commands
from the root of the cloned project:

Warning: The first build might take multiple minutes, as all dependencies are
downloaded!
npm install
npm run build

Deploy
The easiest way to start the locally built instance is:
npm run all

This will start multiple processes to run the CodePanorama-Server, Swagger-UI,
elm-live server for the CodePanorama-Client, as well as less-file-watch. This
enables hot-reloading any changes to files in CodePanorama-Client and manual
testing of the API through Swagger-UI.

Code Panorama C Manuals

C.4 Running your own instance

65 of 90

A browser window/tab should open automatically, with CodePanorama run-
ning. If not, open http://localhost:8000. Swagger-UI will be running at
http://localhost:6869 and CodePanorama-Server at http://localhost:6868.

If you do not wish to use any development features (such as extended logging,
hot-reloading, etc.), use the following to start the server:
cd CodePanorama-Server
stack exec CodePanorama-Server-exe

Then, open CodePanorama-Client/public/index.html in your browser of
choice.

Deploying to your own server
If you wish to deploy CodePanorama to your own server (i.e. not on localhost),
the following change needs to be made, so that the client will find your backend:

1. Edit the apiBasePath in CodePanorama-Client/env/prd.js to point to
your own server/domain, where CodePanorama-Server will be running.

2. Build the client code (npm run build-client-ci).
3. Apply the prd configuration (npm run env-prd).

Alternatively, you can edit the apiBasePath in CodePanorama-Client/public/out/env.js
instead, but this will be overwritten, if you build the client code anew - but
may be quicker, if you simply want to change the apiBasePath in a pre-built
distribution.

No changes are necessary to deploy CodePanorama-Server to your own server.

Code Panorama C Manuals

66 of 90

Using custom overlays
This guide describes how custom overlays can be created and used with Code-
Panorama.

Usage
A custom overlay can be created by creating a json file according to the spec-
ification below. Once such a file has been created it has to be saved as
custom.overlay.json, where custom can be replaced with a name of your
choosing. Move this file into the root directory of your repository and it will
then be parsed automatically and sent to the client as a possible option for the
Custom overlay-selection.

Custom overlay generators

It is also possible to implement custom overlay generators. For one such generator,
please see the JaCoCo-generator and its description here.

Example

{
"description": "This is a description of this overlay.",
"lineSpecifications": [

{
"lineStart": 1,
"lineEnd": null,
"file": "src/main/java/org/example/Main.java",
"schemeValue": 0,
"colorOverride": null

},
{

"lineStart": 2,
"lineEnd": null,
"file": "src/main/java/org/example/Main.java",
"schemeValue": 1,
"colorOverride": null

}
{

"lineStart": 3,
"lineEnd": null,
"file": "src/main/java/org/example/Main.java",
"schemeValue": null,
"colorOverride": {

"red": 0,
"green": 0,

Code Panorama C Manuals

C.5 Using custom overlays

67 of 90

"blue": 255,
"alpha": 1

}
}

],
"colorScheme": {

"solid": {
"colors": [

{
"red": 255,
"green": 0,
"blue": 0,
"alpha": 1
}

]
},
"gradient": {

"start": {
"red": 67,

"alpha": 1,
"green": 198,
"blue": 172

},
"end": {

"red": 25,
"alpha": 1,
"green": 22,
"blue": 84

},
"midPoints": [

{
"percentage": 0.5,
"color": {

"red": 198,
"alpha": 1,
"green": 67,
"blue": 129

}
}

]
}

}
}

Code Panorama C Manuals

68 of 90

Specification
Below you find descriptions for the properties used in the example above.

It is to be noted that it is not possible to use a gradient- and a solid-scheme at
the same time. Also, some of the features are already defined and represented in
the data-types but haven’t been implemented yet (marked below).

Top-level

Property
Data
type Description

description string Text describing this overlay (e.g. meaning of
colors used).

lineSpecifications array Array of line specifications.
colorScheme object Color scheme.

Line specification

Property
Data
type Description

lineStart integer First line this specification will be applied to.
Lines are counted starting at 1.

lineEnd integer Last line this specification will be applied to.
(currently not implemented)

file string File this specification will be applied to.
schemeValue float Gradient-scheme: Point on the gradient in the

range [0,1]. Will be between the start- and
end-color and possible mid-points. Solid-scheme:
0-based index of the color to be used.

colorOverride object Color to override the scheme color. (currently not
implemented)

Color scheme

Property
Data
type Description

solid object Definition of a solid scheme.
gradient object Definition of a gradient scheme. (currently not

implemented)

Solid scheme

Code Panorama C Manuals

69 of 90

Property Data type Description
colors array Array of colors.

Gradient scheme

Property Data type Description
start color First color of the gradient.
end color Last color of the gradient.
midPoints array Array of mid-points for the gradient.

Mid-point

Property
Data
type Description

percentage float Point on the gradient at which this color is located
in the range [0,1].

color color Color of this mid-point.

Color

Property Data type Description
red integer Red component in the range [0,255].
green integer Green component in the range [0,255].
blue integer Blue component in the range [0,255].
alpha float Alpha value in the range [0,1].

Code Panorama C Manuals

70 of 90

Using local repositories
This guide describe all steps necessary to run CodePanorama with local reposi-
tories.

This features provides users with the possibility to locally analyze repositories
that cannot be cloned over a network (e.g. due to security restrictions). It also
offers running analyses on directories that are not git repositories (i.e. contain no
.git-folder) with the limitation that only the non-git parts of CodePanorama
can be used.

Prerequisites
This feature is the easiest to use if you run CodePanorama itself locally. Please
refer to Run with Docker or Run with Stack to read up on how to do that.

Using Docker
If you are running CodePanorama using Docker, you have to mount a
host-directory into the local-repos-directory in the container. You can do
this by adding the following to the docker-compose file at the end of the
code-panorama-server section (replacing C:/dev/CodePanorama/local-repos
with the path on your machine where your local repositories are stored):
volumes:

- "C:/dev/CodePanorama/local-repos:/opt/ws/local-repos"

If you are working with Docker for Windows, you also need to enable drive-sharing
for the host-drive you would like to use.

Using Stack
If you are running CodePanorama using Stack, you can simply copy or link a
directory into CodePanorama-Server/local-repos.

Configuration
To actually be able to use local repositories, you have to turn that feature on by
setting the environment variable CP_LOCAL_REPOS_ENABLED to true.

You can also configure where exactly CodePanorama will look for the local repos-
itories by changing the value of the environment variable CP_LOCAL_REPOS_DIR
(defaults to local-repos).

Code Panorama C Manuals

C.6 Using local repositories

71 of 90

Code Panorama D Specifications

D Specifications
This section specifies various features to be integrated into Code Panorama. Not
all of these features are planned to be integrated and this section does not list
the specifications in any particular order (specifically not in priority).

D.1 Filters
A filter is a configuration available to the user. This configuration specifies which
files will be included in or excluded from the code panorama. Multiple filters
can be combined, where only files passing all selected filters will be included.

Filetype
This filter allows the user to include or exclude all files of the same file type.
Only the file extension (e.g. “.txt”) is considered for this filter, not the content.

Directory
The user can limit the code panorama to only include files from certain directories.
Only directories, but not individual files can be filtered using the directory tree.

Line number
The user can specify the minimum and maximum number of lines a file must
contain. Otherwise, the file is excluded.

Commit number
The user can specify the minimum and maximum number of git commits a file
must have been part of. Otherwise, the file is excluded.

Git branch / tag
The user is presented with a dropdown list of branches and tags automatically
populated from the repository data. Upon selection of a different branch or tag
and confirming the selection, all displayed data is updated to the state on the
selected branch or tag.

Regular expression
The user can specify regular expressions to either include or exclude files based
on the file name.

D.2 Overlays
An overlay adds color information on top of a code panorama. An overlay might
either color individual lines separately, or entire files uniformly. Overlays are

72 of 90

Code Panorama D Specifications

sorted by category:

General
This category contains overlays where the color itself does not necessarily contain
information. Instead, the colors are simply used to group or differentiate files
based on some criterion.

File type

The file type overlay groups all files by file extension.

Heatmap
Heatmaps are overlays using colors in a specific range, where the hue or saturation
represents a high or low value according to the selected metric.

Change frequency

This heatmap shows how often files have been changed according to the Git
history. The user can enter a start date. The heatmap then shows the number of
commits a file has been part of since that date. If the user selects the “normalize
by age” option, the heatmap value is calculated as follows:

value = number of commits× seconds since start date
min(seconds since file creation, seconds since start date)

Due to technical limitations of Git, the change frequency can only reasonably be
retrieved on the file-level and not on the line-level. E.g. how should a line be
tracked if the line number changes due to insertions/deletions of other lines?

Number of contributors

This heatmap shows how many different authors have contributed to a given file
according to the Git history.

Latest change

This heatmap shows how recently a file has been changed.

Age

This heatmap shows how long a file has existed.

73 of 90

Code Panorama D Specifications

Highlight
Highlights are overlays where only a subset of files or lines are emphasized.

Custom

Users can deposit custom overlay specifications either directly in the repository,
or upload them through the UI.This user-defined overlay is then displayed as
specified.

For example, a code coverage report could be converted to a custom overlay by
the user and then displayed over the code panorama.

Author

The user is presented with a dropdown list of all contributors of this repository.
This overlay can then be displayed in one of two different ways: By frequency,
or by latest change.

By frequency. This variant highlights all files where the selected author(s)
has/have contributed at least one commit. The highlight is colored similar to a
heatmap showing how many commits the selected author(s) has/have contributed
to each file. The number of commits per file are summed over all selected authors
to determine the color.

By latest change. This variant assigns a unique color to every selected author.
Then, every line is highlighted with the author’s color where the author has
contributed the latest change. Due to usability limitations with color contrasts,
this variant limits the maximum number of selected authors.

Regular expression

The user can enter a regular expression in a text input. All files with a file name
matching the regular expression are then highlighted.

74 of 90

Code Panorama E User Study Handout

E User Study Handout

Code Panorama — Pre-Interview
These questions should be asked and documented by the study conductor.

What do you think of when you hear the expression “Code
Panorama”?

How would you approach reviewing a large code base?
Which tools would you use to help you?

What are, in your opinion, the most significant code smells?
(i.e. strong indicators of very bad code)

How would you identify code duplication?

Which, if any, are — in your opinion — language-agnostic
code smells?

Do you think your reviewing approach reliably finds the
above mentioned code smells?

75 of 90

Code Panorama E User Study Handout

Code Panorama — Practical User Study

Name (optional): Date:

Please complete the following tasks using only the website https://codepano
rama.io.
Note: If you think a task is impossible, please mark the task as such and move
on to the next task.

How many lines does the longest Java file in the repository
https://github.com/teiler/api.teiler.io have?

On the same repository — without looking at the source
code — find a code section with. . .
(please note the files / sections with an explanation)
. . . duplicated or boilerplate code

. . . a very high complexity

. . . incorrect / inconsistent formatting

. . . a (in your opinion) too long function

. . . an unusual / unexpected look (for its file type)

Does looking at the source code validate your suspicions?

Create the largest possible code panorama of
https://gitlab.com/Elewyth/session-summary-generator
containing only
(but all) JavaScript files. Document the settings used:

Create a code panorama of the same repo on the branch
‘redux’. Document the settings used:

How many Haskell source files (.hs) does the repository
http://gitlab.com/Elewyth/gitlab-discord-middleware
contain?
Use the following credentials:
Username: CodePanorama
Password: codepanoramaHS19

76 of 90

https://codepanorama.io
https://codepanorama.io
https://github.com/teiler/api.teiler.io
https://gitlab.com/Elewyth/session-summary-generator
http://gitlab.com/Elewyth/gitlab-discord-middleware

Code Panorama E User Study Handout

Code Panorama — Notes on Practical Study

Longest Java file:

Duplicated / boilerplate code:

High complexity:

Incorrect formatting:

Too long function:

Unusual look:

Suspicions validated?

Large JavaScript panorama:

Impossible branch panorama:

Private repository:

77 of 90

Code Panorama E User Study Handout

Code Panorama — Post-Interview
These questions should be asked and documented by the study conductor.

Which code smells do you think are more easily identified
using Code
Panorama (as opposed to other review approaches)?

Which tasks did you find intuitive and useful, which less
so?

Which visual information / indicators would you find useful
in the Code Panorama?

What features do you think Code Panorama would need
additionally?

In which use-cases / scenarios would you consider using
Code Panorama?

Other Notes:

78 of 90

Code Panorama F Self Reflection

F Self Reflection

F.1 Report by Marc Etter
Ever since the completion of the term project and the CodePanorama prototype,
I had been looking forward to this bachelor thesis. It felt satisfying to devote
a large amount of time to this software product and conduct real user studies.
Diving into the research topic revealed highly interesting work done previously
in the same field.

Although I have worked on multiple enterprise software projects, this bachelor
thesis was the largest project where I was (partly) responsible for the entire
project planning and organization. Repeatedly having to plan, assess, and re-
prioritize the product backlog proved a challenge, but an important experience.

As for the technologies used, after this bachelor thesis I feel competent enough in
both Haskell and Elm that I can confidently add these languages to my résumé.
I would not be afraid to apply for a job using either of these languages.

I am looking forward to receive feedback on CodePanorama from our advisor.
Furthermore, I will look out for business opportunities to employ CodePanorama
in my consultant jobs.

F.2 Report by Patrick Bächli
From the moment we generated our first code panorama as it looks like today, I
thought to myself, “This is something I want to continue working on”. Under-
standably, I was excited when our supervisor asked us, if we would like to pick
up where we left off and work on CodePanorama as our bachelor thesis, and
even more so when we finally started.

I have worked on some software projects in the past. However, none of those
really required any kind of literary research or well thought out user studies.
Searching on the internet for similar software, and digging through various papers
was highly interesting to me and I was surprised at the amount of research that
had already gone into topics like the code-map metaphor. Conducting the user
studies and evaluating the results reassured me that we are working on something
that people would like to use for their daily work.

Working with Haskell and Elm has also given me some exercise and I feel more
confident in using both of these languages. Nevertheless, I think there is still
quite some room for improvement and I will try to further hone my skills in
these areas.

Now that we are on the home straight of this bachelor thesis, I am looking forward
to hear what our supervisor and external examiner think of CodePanorama.
Moreover, I would like to continue working on CodePanorama in the future and
also try to incorporate it into the workflows used at my current job.

79 of 90

Code Panorama G Meeting Minutes

G Meeting Minutes
The meeting minutes are stored in a private wiki and have thus been exported
to make them available in the following sections.

80 of 90

� Finalisation of the formal task description (should be done by
then)

– What are possible additions that could be implemented in the future?
E.g. colourized filters.

– Focus on finalising UI and workflow, “polishing” of the application.

� Questions regarding role MeF and project information page
https://wiki.hsr.ch/FarhadMehta/wiki.cgi?ProjectInformation

� General availability for meetings

– Generally and preferably on tuesdays from 0815 to 0900

� Date and time for next meeting

– 01.10.2019, 1315-1400

• Issue-management and time-tracking

– JIRA for issue-management and time-tracking

– JIRA guest-login for MeF

• Repository

– IFS-Gitlab for WIP

– gitlab.com for “releases” (currently every push on master is synchro-
nised)

• Docker-images don’t work “out-of-the-box” on Mac

Code Panorama G Meeting Minutes

G.1 September 17, 2019

81 of 90

� Wann ist der Abgabetermin? -> 06.01. Erfassung des Abstracts,
10.01. 17:00 Abgabe Bericht + Dokumente (siehe Skript-Server: Bachelor-
Arbeit_Informatik/BAI14/Termine)

� CI-Integration -> Erst wenn alles andere sauber läuft (auf allen Plat-
tformen)

• Christian Spielmann => MacOS-Testsystem

• Benutzbare Cmd-Applikation wäre gut (aber ohne das vollständige Fea-
tureset der Website)

• Einfärbung von Sonderzeichen eher nicht, wenn dann eher eine sprachspez-
ifische Einfärbung von Sonderzeichen und Keywords

• Evt. User-Management nicht einbauen, dafür mehr Fokus auf Bedienbarkeit
der Web-App sowie Lauffähigkeit der Docker-Images auf allen Plattformen

Code Panorama G Meeting Minutes

G.2 October 1, 2019

82 of 90

� Aufgabenstellung unterschreiben? (Steht so in der Anleitung
für Dokumentation)

• Gedruckte Version zum Unterschreiben nächstes Mal mitnehmen

� Welches Lizenzierungsmodell soll für abschliessendes Publishing
gewählt werden? (Open-Source MIT? Report CC-BY?)

• Formular von MeF-Wiki für Vereinbarung

• Das Wie zu OpenSource gegen Ende des Projekts nochmals anschauen

• Grundsätzlich sollen alle die Applikation weiterentwickeln können

� Abbildungs- und Tabellenverzeichnis vor dem Inhalt? Oder nach
dem Inhalt / vor dem Quellenverzeichnis?

• Am Schluss nochmals schauen, grundsätzlich beides in Ordnung

� Priorisierung von Filter festlegen

• Directory, Git branch / tag, Regular expression, Filetype

• Branch / Tag auswählen als neuen Schritt zwischen Repository-Auswahl
und Filter-Seite

� User Study Questionnaire besprechen

� Evtl. Priorisierung von Overlays festlegen

• Overlays direkt auf Zeilenebene statt Dateiebene

• Möglichkeit, die Overlays per Konfigurationsdatei auszuwählen /
einzustellen

• Berechnung für Heatmapwerte einfach erweiterbar / überschreibbar machen

� Paging bei grossen Panoramas?

• Grundsätzlich mit Auflösung des Clients arbeiten, damit die “ideale” Menge
von Zeilen angezeigt wird

• Dem Benutzer vorausrechnen, wie viele Seiten bei der gewählten Panoram-
agrösse entstehen würden

• Evt. auf dem Server die ideale Panoramagrösse berechnen, damit alles auf
eine Seite passt

• In Projektplan aufnehmen

• Erweiterungen von Code Panorama sollen im Code vorgenommen werden;
eine Erweiterung zur Laufzeit (z.B. mit zusätzlichen Executables) ist nicht
vorgesehen

• Keine CLI-Applikaiton, Fokus auf einfachem lokalem Deployment

Code Panorama G Meeting Minutes

G.3 October 15, 2019

83 of 90

• Deployments

– Hosted docker (keine privaten Repositories möglich)

– Local docker (mit Einbindung von Host-Filesystem)

– Local executable

• Research

– Für Seesoft evaluieren, wie weit verbreitet dass es ist und ob es gute
Bewertung / Reviews hat

– Evt. Entwicklungsumgebungen wie VSCode referenzieren, da dort
häufig auch eine Art Code Panorama angezeigt wird

– SE-Vorlesungen nochmals anschauen

Code Panorama G Meeting Minutes

84 of 90

� Aufgabenstellung unterschreiben

– Farhad’s Unterschrift genügt

� Filter-Demo

– Commit Hash zum Branch/Tag hinzufügen, damit man weiss, ob der
Branch aktuell ist

– Auswahl von Directory sollte alle Sub-Directories auswählen und dann
muss man ungewünschte Sub-Directories wieder abwählen

– Export Filter (als RegEx für “Include” field, maybe as JSON to
restore checkbox state) button

– Idee: Panorama-Preview als fixed Sidebar

– “Progress” bar / gauge für “Vollheit” des Panoramas

� Overlay Priorisierung

– Priorisierung gut wie im JIRA -> wichtig: 1 heatmap und 1 highlight

-> Custom Import: Code Coverage (e.g. lcov) anschauen, Format ähnlich auf-
bauen und evtl. Konvertierungstool für 1 Format -> Möglichst 1 einheitliches,
abstraktes Format für intermediate overlay Format (keine technische Unterschei-
dung zwischen Highlight und Heatmap)

Code Panorama G Meeting Minutes

G.4 October 28, 2019

85 of 90

� Look at time tracking so far

� Paging Demo

� Overlay Demo

Feedback Usability: * Show file-borders * Re-think file-ordering (e.g. (root) files
before directories, BFS instead of DFS) * Allow multiple custom overlays (with
names) * Allow adding color hint to overlay.json that can be displayed as info
in overlay-selection * Customize Panorama Size (in pixels) in Client (e.g. input
explicit height/width) * Add button to download all generated PNGs as a ZIP *
Make maximum number of pages configurable (via UI, but maybe bounded by
deployment configuration)

• Farhad provides repo access to Mr. Kerckhove on gitlab.com

• Deployment test subjects:

– Mario Meili (Mac)

– Fabian Hauser (Windows/Linux)

Code Panorama G Meeting Minutes

G.5 November 12, 2019

86 of 90

Meeting

• Push Docker-images into DockerHub

Mid-term presentation

Overlays:

• Syntax highlighting

• Project-wide grep to search for specific pieces of text within source-code

• How many people have worked on a file (one contributer: red, more
contributors: green)

• Colour-blind-friendly colouring / Maybe use patterns (triangles, stripes
etc.)

• Hover on colour-legend highlights corresponding files in the Panorama

• Change frequency on a per-line basis (git blame, look at how GitHub does
it)

Other things:

• Use local-directory instead of repository-url

• Nix-build

• Store repository-data in-memory instead of JSON-files

• Timeout on really large repository

• Shallow clone on large repository

• Increase maintainability so other people could add things

For final presentation:

• How did we do testing?

Code Panorama G Meeting Minutes

G.6 November 26, 2019

87 of 90

� Demo of current state

� Discuss priorities for last development weeks

– Git blame overlay

– Overlay documentation

� Re-design panorama with “grid” borders? (look at design
mockup)

– Priority on maintainability and documentation

� Any last important formalities for hand-in?

Code Panorama G Meeting Minutes

G.7 December 10, 2019

88 of 90

� Demo current state

– Add hint to download button on how the pictures are structured

– Move API Link from footer to development documentation

– Custom Overlay: At least add documentation for color scheme to
JSON - actually displaying it in UI is secondary

– Concurrency must be fixed

� Any last-minute requests?

– Add (very brief) Quick-Start guide to UI

� Further proceedings

– Only digital report necessary, no print or CD

– Review abstract directly with Farhad before uploading to ABT

Code Panorama G Meeting Minutes

G.8 December 23, 2019

89 of 90

� Look at report outline => looks good
� Look at time sheets: how detailed in report? => re-use gitlab.com

as if it were public, but we actually make it public at a later date
� OpenSource: New repo, or make existing gitlab.com repo pub-

lic? => Just want to see what we did concerning project management

• If possible, add simple color selection (at least for inversion of base image)
• Hide local repos tab, if not enables (e.g. on HSR)

Code Panorama G Meeting Minutes

G.9 January 7, 2020

90 of 90

	Abstract
	Management Summary
	Lay Summary
	Contents
	Introduction
	Project description
	Goals
	Motivation

	Related Work
	Code-map metaphor
	Code mini-map
	Comparison
	Static code analysis

	Methods
	Technologies
	Filters
	Overlays
	Rendering-performance
	Asynchronous processing
	Concurrency handling
	Git integration
	Single-page application
	Testing

	Results
	Architecture
	Design diagrams
	Artifacts
	Development
	Known issues
	Software metrics

	User Studies
	Method
	Result
	Conclusion

	Conclusions
	Lessons learned
	Encountered problems

	Perspectives
	References
	List of Figures
	List of Tables
	Glossary
	Project Plan
	Phases / Iterations
	Milestones

	Time Reports
	Manuals
	Developer guide
	Building docker images locally
	Deploying CodePanorama with docker
	Running your own instance
	Using custom overlays
	Using local repositories

	Specifications
	Filters
	Overlays

	User Study Handout
	Self Reflection
	Report by Marc Etter
	Report by Patrick Bächli

	Meeting Minutes
	September 17, 2019
	October 1, 2019
	October 15, 2019
	October 28, 2019
	November 12, 2019
	November 26, 2019
	December 10, 2019
	December 23, 2019
	January 7, 2020

