

Dafny Language Server
Redesign

Term Project
Department of Computer Science

University of Applied Science Rapperswil

Fall Term 2019/20

Authors: Marcel Hess

Thomas Kistler

Advisors: Thomas Corbat
 Fabian Hauser

 Software Engineering Fall Semester 2019
Term Project M. Hess / T. Kistler
„Dafny VSCode Server Redesign“

Page

Thomas Corbat Datei: Assignment.docx Ausgabe: 1.0 Letzte Änderung am: 16.09.19

Assignment for Term Project “Dafny VSCode Server Redesign”
Marcel Hess / Thomas Kistler

1. Supervisor and Advisor
This term project will be conducted with the Institute for Software at HSR. It will be supervised by Thomas

Corbat (tcorbat@hsr.ch) and Fabian Hauser (fhauser@hsr.ch), HSR, IFS.

2. Students
This project is conducted in the context of the module “Studienarbeit Informatik” in the department

“Informatik” by

• Marcel Hess (mhess@hsr.ch)

• Thomas Kistler (tkistler@hsr.ch)

3. Introduction

“Dafny is a programming language with built-in specification constructs. The Dafny static program

verifier can be used to verify the functional correctness of programs.

The Dafny programming language is designed to support the static verification of programs. It is

imperative, sequential, supports generic classes, dynamic allocation, and inductive datatypes, and builds

in specification constructs. The specifications include pre- and postconditions, frame specifications (read

and write sets), and termination metrics.” - (Microsoft, 2019)

In a preceding bachelor thesis at HSR a Visual Studio Code plug-in to support Dafny development has been
developed. It facilitates a language server for source code analysis and aids the programming with context
sensitive completion suggestions, automated refactorings and performs formal verification on the fly (Dafny
VSCode Server). This language server is accessed through the language server protocol (LSP). The VSCode
Server relies on the DafnyServer for these analyses, which is accessed through a proprietary API1. For a visual
overview of the architecture see Figure 1.

1 https://github.com/DafnyVSCode/Dafny-VSCode

1/3

mailto:tcorbat@hsr.ch
mailto:fhauser@hsr.ch
mailto:mhess@hsr.ch
mailto:tkistler@hsr.ch
https://github.com/DafnyVSCode/Dafny-VSCode

 Software Engineering Fall Semester 2019
Term Project M. Hess / T. Kistler
„Dafny VSCode Server Redesign“

Page

Thomas Corbat Datei: Assignment.docx Ausgabe: 1.0 Letzte Änderung am: 16.09.19

Figure 1 Dafny VSCode Plug-in Architecture Overview

4. Goals of the Project

The primary goal of this project is the reimplementation of the Dafny VSCode Server in C# featuring a tighter
integration with the DafnyServer, which is implemented in C# as well. This should make the implementation
of further features for the Visual Studio Code plug-in simpler by reducing the complexity of additional API
indirection. Furthermore, this will enable integration of the Dafny language analysis features into other
integrated development environments.

As the previous solution the reimplementation must be functional on Windows, Linux and MacOS.

Beside the current set of language features available in the Dafny VSCode Server, many extensions are
possible as optional goals. For example:

• Debugger (Debug Adapter Protocol)
• Better refactoring support (See thesis)2
• Better contract generation (See thesis) 2
• Configuration of compilation arguments
• Display variable types on hover text

2 https://eprints.hsr.ch/603/

2/3

https://eprints.hsr.ch/603/

 Software Engineering Fall Semester 2019
Term Project M. Hess / T. Kistler
„Dafny VSCode Server Redesign“

Page

Thomas Corbat Datei: Assignment.docx Ausgabe: 1.0 Letzte Änderung am: 16.09.19

5. Documentation

This project must be documented according to the guide lines of the “Informatik” department [4]. This

includes all analysis, design, implementation, project management, etc. sections. All documentation is

expected to be written in English. The project plan also contains the documentation tasks. All results must be

complete in the final upload to the archive server [5]. Two copies of the documentation must be handed-in:

• One in color, two-sided

• One in B/W, single-sided

6. Important Dates

16.09.2019 Start of the semester and the term project

Until 16.12.2019 Hand-in of the abstract to the supervisor for checking (on abstract.hsr.ch)

20.12.2019, 17.00 Final hand-in of the report through archiv-i.hsr.ch

7. Evaluation

A successful term project counts as 8 ECTS point. The estimated effort for 1 ECTS is 30 hours. (See also the

module description 3). The supervisor will be in charge for all the evaluation of the project.

Criterion Weight

1. Organisation, Execution 1/5

2. Report (Abstract, Management Summary, technical and personal reports)
as well as structure, visualization and language of the whole documentation

1/5

3. Content 3/5

Furthermore, the general regulations for term projects of the department “Informatik” apply.

Rapperswil, 16. September 2019

Thomas Corbat

Lecturer

Institut für Software (IFS)

Hochschule für Technik Rapperswil

3 https://studien.hsr.ch/allModules/24386_M_SAI14.html

3/3

https://studien.hsr.ch/allModules/24386_M_SAI14.html

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 1 of 58

Document: Semester Thesis Date: 17.12.2019

Table of Contents
1. Abstract .. 25

2. Management Summary ... 25

2.1 Dafny ... 26

2.2 Initial Solution ... 27

2.3 Motivation... 27

2.4 Goals ... 28

2.5 Results... 29

3. Introduction .. 29

3.1 Problem Domain.. 31

3.2 Relevance .. 32

3.3 Outlook ... 32

4. Analysis ... 33

4.1 Existing Thesis ... 33

 Use Cases of the Existing Plugin .. 35

 Extension Points ... 35

4.2 Visual Studio Code Extensions ... 36

4.3 Existing Code ... 36

 Client .. 36

 Language Server ... 36

 Dafny Server ... 37

4.4 Existing Tests ... 38

 Integration Tests... 39

 End to End Tests ... 39

4.5 Language Server Protocol .. 39

 Message Types ... 40

 Communication Example .. 40

 Message Example ... 41

4.6 OmniSharp .. 42

 Basic OmniSharp Usage .. 43

 Custom LSP Messages with OmniSharp... 44

5. Design ... 44

5.1 Basic Design Decisions ... 44

5.2 Client ... 45

5.3 Server .. 45

 Entrance Point .. 45

 Handlers ... 46

 Services .. 46

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 2 of 58

Document: Semester Thesis Date: 17.12.2019

 Dafny Translation Unit .. 46

 Buffering .. 46

6. Implementation .. 46

6.1 Technologies Overview .. 46

6.2 Architecture Overview ... 47

6.3 Dafny Translation Unit ... 47

6.4 Key Components ... 47

 BufferManager ... 48

 DafnyFile .. 48

 FileHelper ... 48

 General LSP Sequence .. 50

6.5 Features .. 51

 Syntax Highlighting ... 52

 Verification ... 52

 Compile .. 52

 Autocompletion for Identifiers.. 53

 Counter Example .. 54

 Go to Definition .. 55

 CodeLens .. 56

6.6 Testing... 57

 Unit Tests ... 57

 Integration Tests... 57

 System Tests... 58

6.7 Project Automation ... 36

 Environment ... 36

 Prebuild Stage .. 36

 Build ... 36

 Tests ... 37

 Sonar Scanner .. 38

7. Results .. 39

7.1 Syntax Highlighting .. 39

7.2 Verification .. 39

7.3 Compile ... 40

7.4 Counter Example ... 40

7.5 Auto Completion for Identifiers ... 41

7.6 Go to Definition ... 42

7.7 CodeLens ... 43

8. Conclusion .. 44

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 3 of 58

Document: Semester Thesis Date: 17.12.2019

8.1 Reflection per Feature ... 44

 Verification ... 44

 Compile .. 45

 Auto Completion for Identifiers .. 45

 Counter Example .. 45

 Go to Definition .. 46

 CodeLens .. 46

8.2 Extension Points of the Previous Thesis ... 46

8.3 Short-Falling Features of the Previous Thesis ... 46

 Installation, Setup, Marketplace Integration ... 46

 Platform Independence .. 46

 Features ... 47

8.4 CI Reflection .. 47

8.5 Planned Extensions in the Bachelor Thesis ... 47

9. Project Management .. 48

9.1 Meetings ... 48

9.2 Time Management .. 48

 Project Management .. 50

9.3 Scope .. 51

9.4 Code Quality Aspects and Metrics.. 52

 Code Reviews ... 52

 Backend.. 52

 Frontend .. 53

 Test Coverage ... 54

 Commit Activities ... 55

9.5 Infrastructure .. 56

10. Glossary .. 57

10.1 Acronyms .. 57

10.2 Technical Terms ... 57

11. References .. 58

Appendix
• Developer Documentation

• Project Plan

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 4 of 58

Document: Semester Thesis Date: 17.12.2019

1. Abstract
Dafny is a formal programming language to proof a program's correctness with preconditions,
postconditions, loop invariants and loop variants. In a previous bachelor thesis, a plugin for Visual
Studio Code was created to support Dafny. Developers can profit by several features from this plugin.
For example, if Dafny cannot prove a postcondition, the code will be highlighted and a counter
example can be shown. Other features include code compilation, auto completion suggestions and
various refactoring tools. The plugin communicates with a language server. This interface was
realized with the language server protocol. This protocol is a specification which allows an easy
communication between an IDE and a language server. The language server itself was using an
additional JSON-interface to request information from the actual Dafny library.

The goal of this thesis was to rewrite the language server and directly integrate it into the Dafny
library to save one of the communication paths. In order to simplify the development of further
features, the tighter integration was inevitable. Instead of making complex adjustments to the server
API, one can just use the language server protocol to increase functionality. For this, the new
language server had to be rewritten from TypeScript to C#.

The old language server could be completely superseded by our new, rewritten server in C#. Since we
are using the same project solution as the Dafny library, Dafny's methods and classes are directly
accessible. That means, that the interface from the old language server to the Dafny library is now
obsolete. Most features of the previous bachelor thesis are supported with the new language server.
These include code verification, error highlighting, making suggestions for auto completion, code
lens, go to definition, compilation, as well as syntax highlighting. Since the language server is
integrated with the Dafny library, new features can be added in a convenient way. Thus, we will
continue to work on the scope in the subsequent bachelor thesis.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 5 of 58

Document: Semester Thesis Date: 17.12.2019

2. Management Summary
This chapter provides a less technical summary for the thesis. First, the given situation is explained.
Next, the motivation and the goals for the project are listed. Finally, the results are presented.

2.1 Dafny
Dafny is a compiled language that targets C# which can prove formal correctness.[1] Dafny bases on
the language “Boogie”, which uses the Z3 automated theorem prover for discharging proof
obligations.[1] That means, that a programmer can define a precondition - a fact that is just given at
the start of the code. The postcondition on the other hand is a statement that must be true after the
code has been executed. The postcondition is also defined by the programmer. In other words, under
a given premise, the code will manipulate data only thus far, so that also the postcondition will be
satisfied. Dafny will formally proof this. If it is not guaranteed that the postcondition holds, an error is
stated.

The following code snippet shows an example. The value a is given, but we require it to be positive.
This is the precondition. In the code, the variable b is assigned the negative of a. Thus, we ensure,
that b must be negative, which is the postcondition.

method demo(a: int) returns (b: int)
 requires a > 0
 ensures b < 0
{
 b := -a;
}

This example is of course trivial. In a real project, correctness is not that obvious. But with Dafny, a
programmer can be sure if his or her program is correct. Since the proof is done with formal
(mathematical) methods, the correctness is guaranteed and no tests for the code are necessary.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 6 of 58

Document: Semester Thesis Date: 17.12.2019

2.2 Initial Solution
In a previous bachelor thesis by Markus Schaden and Rafael Krucker, a plugin for Visual Studio Code
was created to support Dafny.[2] The plugin was particularly appreciated by the “HSR Correctness
Lab”[3] to make coding in Dafny easier. The disadvantage of their implementation is that there are
three distinctive parts of the software.

First of all, there is the actual Visual Studio Code plugin, named “Dafny Client”. The plugin
communicates with a language server. This interface uses the so-called language server protocol, an
easy way to exchange text document changes or other relevant information.

However, the server has to communicate with Dafny itself, too, to receive the required correctness
proofs. This happens in the Dafny library where Dafny code gets compiled for Boogie and checked
with Z3. As you can see in the figure below, the interface from the language server to the Dafny
library uses yet another communication specification named JSON. Any information transmitted over
this interface had to be parsed from plain text.

This results in several disadvantages, since data can be lost in this parsing process. The situation was
rather messy and complex. Expanding the plugin with additional functionality was very cumbersome
with the initial implementation.

Figure 1 - Old Solution

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 7 of 58

Document: Semester Thesis Date: 17.12.2019

2.3 Motivation
The figure below shows the new organization that should be achieved in this project. It is much more
concise. Thus, there is less room for failures. In software, each communication path is a potential
source of errors. Instead of communicating with JSON, the Dafny library can now be directly accessed
by the new language server. This way, it is very easy to collect the necessary information firsthand
inside the server. There is no longer a loss of information due to parsing.

Figure 2 - New Situation

The old solution did not allow an easy extension of the feature-set. Complex adjustments were
necessary and two communication paths had to be considered. In order to make this easier, the
server integration was inevitable. If one wants to extend the functionality now, a developer can just
extend the server and has all functionality of Dafny available.

2.4 Goals
The client is rather trivial and basically just sends requests to the server. Imagine a programmer
writing Dafny code. The client just sends his code to the server and asks, what should happen next.
The server will then reply and tell for example that line number 5 has to be underlined in red due to a
proof which could not be verified. Because of this simplicity of the client, it could mainly be left
unchanged compared to the previous bachelor thesis. Just some simple adjustments to the displaying
of information had to be done, as well as the connection to the server was subject for
reconfiguration.

Our main goal was to make changes on the server side. Since a language server using the language
server protocol (LSP) can be implemented in most programming languages, including C#, it was a
natural step to rewrite the existing language server in C#. This is to match the language of the Dafny
library. It was then possible to integrate the language server directly into the Dafny library. This
means that one of the components in Figure 1 could be completely omitted and the JSON parsed
communication is no longer necessary.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 8 of 58

Document: Semester Thesis Date: 17.12.2019

2.5 Results
The old language server was completely rewritten in the programming language C#. The old language
server is no longer in use. Our new language server was then integrated into the Dafny library. This
means that Dafny and the language server are within the same software project and they can directly
talk to each other, exchanging information and use each other's functionality.

Aside the rewriting and the integration, we also had to support the features the old server offered.
Features are for example the underlining of postconditions that can't be proven, or making
suggestions for what the programmer may want to type. A basic feature-set could be implemented.
You can see a selection of functions in the following Figure 3.

Figure 3 – Features Postcondition, Counter Example, Auto Completion, Code Lens and Compilation

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 9 of 58

Document: Semester Thesis Date: 17.12.2019

The current solution supports the following features:

Postcondition Violations
Whenever a postcondition statement does not hold, the user will be informed.

Counter Example
When a postcondition is violated, the user can request a counter example. The client will then show
values under which the postcondition does not hold.

Auto Completions
The plugin will check which names for symbols already appeared in the Dafny source code and will
make proper suggestions.

Compilation
The user can create an executable file out of his code. If he wants, he can also select to directly run it
inside the editor.

Code Lens
Whenever the user creates so-called functions and classes, he will be informed how often these are
used.

Go to Definition
The user may make use of methods he programmed earlier. Often, a programmer is not exactly sure
how that method was implemented. To revise it, he can just hit a hotkey and the cursor of the code
editor will jump to the definition.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 10 of 58

Document: Semester Thesis Date: 17.12.2019

3. Introduction
This chapter outlines the problem domain and the relevance of this thesis.

3.1 Problem Domain
The project aims to integrate the language server, given by the previous bachelor thesis by Markus
Schaden and Rafael Krucker [2] into the Dafny library. While there is no direct advantage for the user,
future extensions of the software are easier and it is less error prone. Since the project will be
continued in the next semester with a subsequent bachelor thesis, the plugin does not have to be
released at the end of this thesis. Of more importance is to understand the used technologies, finish
the server integration and set a good base for further development.

3.2 Relevance
Dafny is not a widely used programming language, but has its user base. The language has the
advantage that the correctness of the code can be proven. Tests are no longer necessary. For crucial
applications like used in finance and security, programming languages like Dafny are indispensable.
While the existing plugin is easy to use and offers a basic set of features, it is not yet as versatile as
the support for other programming languages is. It is therefore of major significance to set a good
base, so that the plugin can be extended by more functionality in the future.
To do so, the language server and the Dafny library get united in the new version. This eliminates a
communication channel and simplifies the architecture.

3.3 Outlook
With the integrated server, it is relatively easy to support additional text editors aside Visual Studio
Code and to add more features. Dafny could thus become more accessible and grow in popularity.
This would motivate the usage of formal programming languages.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 11 of 58

Document: Semester Thesis Date: 17.12.2019

4. Analysis
Our thesis started by analyzing the existing plugin by Markus Schaden and Rafael Krucker.[4] This
covered studying the documentation as well as the code. We then had to find proper tools to rewrite
the server in C# and figure out, how we could integrate the new server into the Dafny library.

4.1 Existing Thesis
The main goal of the thesis written by Markus Schaden and Rafael Krucker was to make Dafny more
accessible. Unlike other programming languages, the installation of Dafny was very cumbersome, the
usage not practical at all. Thus, they implemented a plugin for Visual Studio Code that could simply
be installed and updated with the marketplace. The language server and the Dafny library were
installed during this process, too. The user did not have to care about the required software in the
background. Therefore, the user could instantly start to use the provided features in a convenient
way.

The plugin by Markus Schaden and Rafael Krucker communicated with a language server.[2] Both,
the plugin and the server, were written in TypeScript. To connect to the Dafny library, they wrote a
translation unit, which acted as a console based Dafny server. The language server had to parse the
console outputs and return them as JSON to the client. The code is further explained in chapter 4.3

 Use Cases of the Existing Plugin
Aside the easy installation, the previous bachelor thesis provided the following features:

• Code Lens

• Code Completions

• Go to Definition

• Rename Element

• Syntax Highlighting

• Counter Examples

• Null Checks

• Bound Checks

• Increase / Decrease / Invariant Guards

• Flow Graphs
To read more about these use cases, please refer to thesis.[2]

 Extension Points
Mr. Schaden and Mr. Krucker already stated a variety of extension points.[2] Since we continued to
develop the plugin, these possible extensions were also relevant for us. Those included:

• Support of other IDE's, such as Eclipse, Emacs and Monaco

• Debugging

• Widening Scope (improvement of implemented features)

• Contract Generation

4.2 Visual Studio Code Extensions
As we started to analyze the existing code, we noticed that we had a hard time understanding what
is exactly happening inside a Visual Studio Code plugin. Thus, we decided to catch up with creating a
very basic plugin for Visual Studio Code. VSCode offered some very nice tutorials for this matter.
There was a “Your First Extension” tutorial that covers very basic concepts.[5] On the “Extension
Guides” page are several more advanced examples available – including some language extension
samples.[6] By completing these guides, we learned how to use VSCode for plugin development, how
to debug a plugin and how to test it.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 12 of 58

Document: Semester Thesis Date: 17.12.2019

4.3 Existing Code
The analysis of the existing code was relatively complex, since the project contained a lot of
convoluted source code in various languages. There were three main parts: The client in TypeScript,
the language server as well in TypeScript and the Dafny server. The initial architecture is illustrated in
Figure 1.

 Client
The client, in other words the Visual Studio Code plugin, was written in TypeScript. This is required by
the Visual Studio Code Extension API.[7] The main entrance point for the plugin is given by the file
extension.ts. In this file, the client connects to the language server.

const languageServer = new DafnyLanguageClient(extensionContext);

Another important file is commands.ts, where a variety of commands is registered. For example, if
the user wants to compile his file, the proper handler is defined as follows:

public compile(…): void {
 […]
 document.save();
 vscode.window.showInformationMessage(InfoMsg.CompilationStarted);
 this.languageServer.sendRequest<ICompilerResult>(

 LanguageServerRequest.Compile, document.uri)
 .then((result) => {
 vscode.window.showInformationMessage(InfoMsg.CompilationFinished);
 if (run && result.executable) {
 this.runner.run(document.fileName);

 […]
 });
}

Further commands that were of importance to us, i.e. “show and hide counter model”, were
registered in another file by the given code base. We found these commands defined in a different
fashion in dafnyProvider.ts:

 private doCounterModel(textDocument: vscode.TextDocument): void {
 this.sendDocument(textDocument, LanguageServerNotification.CounterExample);
 }

Since no obvious reason was visible for this separation, we decided to define all commands in
commands.ts.

The client contains further classes with mainly responsibilities for the frontend, such as a class to
update the status bar with the amount of errors in the current file.

However, the main job of the client is to register the commands and send them to the language
server. This was done in just a few lines of code, as you can see above.

 Language Server
The language server part was rather complex since the data has to be extracted from the LSP, then
prepared for the API of the Dafny server. Finally, the JSON or plain text responses had to be adapted
again and saved back in an LSP compatible format. The whole process acted not just as an adapter,
but included a wide range of buffering logic and used many regular expressions for parsing.[8]

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 13 of 58

Document: Semester Thesis Date: 17.12.2019

 Dafny Server
Markus Schaden and Rafael Krucker had to write some parts in C# already.[2] They've built a console
server using the Dafny library. This acted as a translation unit between their language server and the
Dafny library. They could parse the console output of the Dafny server and read it back in their
language server. For this purpose, they used a lot of parsing and regular expressions.[4]
Their Dafny console server consisted out of a relatively small main method, which could process a
handful of commands like counterExample, verify or symbols. These commands were then
redirected to the class DafnyHelper, which is the main translation unit to the Dafny pipeline. Aside
the DafnyHelper, there were further supporting service classes, like the
CounterExampleProvider, which collects all counter examples Dafny delivers.

While analyzing the code, we noticed the console centered architecture as shown in the following
code snippet.[4]

public void Symbols() {
 […]
 Console.WriteLine("SYMBOLS_START " + ConvertToJson(symbols) + " SYMBOLS_END");
 […]
}

Notice the Keyword "SYMBOLS_START" and "SYMBOLS_END", that were used as parsing stop
words back in the language server.

4.4 Existing Tests
This chapter describes the existing test infrastructure. The guiding principle is that all tests have to
run automatically within the CI. Manual tests are not carried out at all and are less useful.

 Integration Tests
There are a lot of integration tests. Each test consists out of a Dafny file that is handed to the console
server. The console output is then compared against a text file, which contains the expected console
output. For example, a test result expectation file might look like this: [9]
Char.dfy(48,20): Error: assertion violation
Execution trace:
 (0,0): anon0
 (0,0): anon9_Then
 (0,0): anon10_Then
Char.dfy(52,20): Error: assertion violation
Execution trace:
 (0,0): anon0
 (0,0): anon9_Then
 (0,0): anon11_Else
Char.dfy(63,16): Error: assertion violation
Execution trace:
 (0,0): anon0
 (0,0): anon5_Else
Char.dfy(81,13): Error: char addition might overflow
Execution trace:
 (0,0): anon0
 (0,0): anon6_Else
 (0,0): anon7_Then
Char.dfy(89,7): Error: char subtraction might underflow
Execution trace:
 (0,0): anon0
 (0,0): anon6_Else
 (0,0): anon7_Then

Dafny program verifier finished with 8 verified, 5 errors

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 14 of 58

Document: Semester Thesis Date: 17.12.2019

 End to End Tests
The existing work had a few system tests. Those tests start a Visual Studio Code instance, open a file
and then check if certain conditions are met. For example, it is tested if a dedicated file publishes a
diagnostic instance with two errors and two proof obligations.
Due to the heavy dependencies of these tests, an automated execution of them is not easy. They
require a headless VSCode instance. A better way for end-to-end tests was highly desirable.

4.5 Language Server Protocol
The language server protocol (LSP) is a JSON-RPC based protocol to communicate between an IDE
and a language server.[10] In 2016, Microsoft started collaborating with Red Hat and Codenvy to
standardize the protocol’s specification.[10] The goal of the LSP is to untie the dependency of an IDE
with its programming language. That means, that once a language server is available, the user is free
in the choice of his IDE, as long as it offers a client instance that is able to communicate with the
server. The user can then use a variety of features, as long as the language server offers them. Those
features can for example be auto completions, hover information, or go to definition. Custom
message types, for example compile or counterExample can also be added to the LSP.[10]

Figure 4 - Communication Benefit of LSP

A big advantage of this is that the IDE specific plugin can be kept very simple. The relevant
information is delivered by the language server, which is IDE and language independent. Figure 4
from the VSCode extension guide illustrates the advantages of the LSP. [11]

 Message Types
The LSP supports three types of messages.

• Notification: One-way message, for example for a console log or a window notification.

• Request: A message that expects a response.

• Response: The response to a request.

Each message type can be sent from both sides.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 15 of 58

Document: Semester Thesis Date: 17.12.2019

 Communication Example
The basic idea is that the IDE tells the language server what the user is doing. These messages are
pretty simple, namely "textdocument/didOpen" or "textDocument/didChange". The language
server on the other hand can now verify the opened or changed document and test it for errors. If
errors are found, the server can send a "textDocument/publishDiagnostics" notification back
to the client. The client may now underline the erroneous code range in red. [12]

Figure 5 - Example Communication

 Message Example
The following message is a "textDocument/publishDiagnostics" notification as it appears in
the example above. It states that on line 4, from character 12 to 17, there is an assertion violation.

[12:45:29 DBG] Read response body
{
 "jsonrpc":"2.0",
 "method":"textDocument/publishDiagnostics",
 "params":{
 "uri":"file:///D:/[...]/fail1.dfy",
 "diagnostics":[
 {
 "range":{
 "start":{
 "line":4,
 "character":12
 },
 "end":{
 "line":4,
 "character":17
 }
 },
 "severity":1,
 "code":0,
 "source":"file:///D:/[...]/fail1.dfy",
 "message":"assertion violation"
 }
]
 }
}

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 16 of 58

Document: Semester Thesis Date: 17.12.2019

4.6 OmniSharp
To work with the language server protocol, we had to use a proper LSP implementation. A quick
online research showed that OmniSharp offers support for C#.[13] We could simply install it as a
NuGet package. With OmniSharp, many of the parsing and caching problems of the original language
server described in chapter 4.3 Existing Code are automatically reduced.
OmniSharp also offers a language server client that we could use later on for our tests.

 Basic OmniSharp Usage
Before we started to use OmniSharp in the actual project, we worked our way through a tutorial by
Martin Björkström.[14] This tutorial provided us with all the required knowledge to set up a language
server in C#. Besides the setup of the server, it also illustrated how to create message handlers, for
example for auto completions or document synchronization.
Since OmniSharp is open source, we could find all available interfaces and thus all available handlers
in their git repository.[15] This collection helped us a lot to perceive LSP's possibilities.

 Custom LSP Messages with OmniSharp
The current implementation of the problem domain does not only feature premade LSP messages
like auto completions or diagnostics, but also custom requests such as “counterexample”. Since no
example or documentation could be found on custom messages, we contacted Martin Björkström in
the OmniSharp Slack channel about this.[16] Martin and his team could instantly provide us with the
necessary interfaces that we had to implement.

The server can simply register a handler. The following three items have to be specified:

• Name of the message

• Parameter type

• Response type

The parameter and response types can be custom classes and allow for maximal flexibility. The
following code skeleton demonstrates how a custom request handler can be implemented:

public class Params : IRequest<Results> { […] }
public class Results { […] }

[Serial, Method("messageName")]
public interface IDemoMessage : IJsonRpcRequestHandler<Params, Results> { }

public class MyHandler : IDemoMessage
{
 public async Task<Results> Handle(Params request, CancellationToken c)
 {
 Results r = DoSomething(request);
 return r;
 }
}

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 17 of 58

Document: Semester Thesis Date: 17.12.2019

5. Design
This chapter covers architectural design decision. First, we will have a look at basic decisions that
were made. Next, we talk about the client, which is kept as simple as possible. The last part of the
chapter covers the server side.

5.1 Basic Design Decisions
The goal of the thesis was to eliminate the language server that was written in TypeScript and
integrate it into the Dafny project, which is written in C#. Our aspired component diagram would
look as follows.

Figure 6 - Aspired Component Diagram

The client was already provided by the previous bachelor thesis. However, the server was meant to
change completely. It had to be rewritten in C# and integrated into the Dafny library. A few classes
forming a translation unit between the Dafny library and the Dafny server were already programmed
by the previous bachelor thesis and could be reused as well.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 18 of 58

Document: Semester Thesis Date: 17.12.2019

5.2 Client
The client is supposed to be thin and lightweight. It has basically only four jobs to do:

1. Activate once a .dfy file is opened.
2. Connect to the server.
3. Forward any notifications and requests to the server.
4. Process the responses.

The basic plugin configuration could be left as it was by the previous thesis. However, the connection
process to the server had to be redone.

During the study of the existing code, we noticed that some design decisions of the previous thesis
didn't seem to make much sense. For example, there was a class commands.ts, in which most
commands were registered. However, other commands like counterExample were registered in
another class named dafnyProvider.ts. To clean things up, we decided to merge all commands
into the commands.ts file.

The basic client structure is shown in the figure below. A description of each component follows on
the next page.

Figure 7 - Class Diagram of the Client (Simplified)

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 19 of 58

Document: Semester Thesis Date: 17.12.2019

extension.ts
This is the main entrance point. It starts the language client, registers commands, and instantiates
dafnyProvider.

dafnyLanguageClient.ts
The language protocol client which connects to the server. Messages are sent to the server using an
instance of this class.

dafnyProvider.ts
This class is responsible for features that do not base on a command but are always active. This
includes sending code verification requests, informing the server whenever a document was
changed, opened or closed, as well as keeping track of displayed counter examples.

counterExampleProvider.ts
As the name states, this class is responsible for displaying counter examples. It is a direct member of
the dafnyProvider. Counter example requests are only sent if the user selects the proper
command from the context menu. Thus, the counter example provider is an example of a feature
that is not permanently active in the background.

dafnyStatusbar.ts
This class is responsible for handling any changes that will be made to the status bar. This includes
showing the error count and such. This class is as well a member of the dafnyProvider. It is an
example of a class taking care of supplementary tasks that are not core functionality.

context.ts
A class that keeps track of a few global states, such as which file displays which counter examples.

Aside these files, the reader may find a variety of supporting files, such as string resources or
interfaces that define types of responses that the server delivers.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 20 of 58

Document: Semester Thesis Date: 17.12.2019

5.3 Server
To set up a language server, one needs support for the language server protocol. As stated in chapter
4.6 OmniSharp, we decided to use OmniSharp's implementation. In the main method of our product,
we would simply start the language server and register handlers for it. The following figure gives an
overview how requests are generally handled. Each component is described in the upcoming
subchapters.

Figure 8 - Schematic Overview of Server Dependencies

 Entrance Point
Using the OmniSharp NuGet Package, it is possible to start the server in the Main method of the
program. One can then set options, including the request handlers, which are relevant for the
architecture.

 var server = await LanguageServer.From(options =>
 options
 .WithInput(Console.OpenStandardInput())
 .WithOutput(Console.OpenStandardOutput())
 .WithLoggerFactory(new LoggerFactory())
 .AddDefaultLoggingProvider()
 .WithMinimumLogLevel(LogLevel.Trace)
 .WithServices(ConfigureServices)

 .WithHandler<TextDocumentSyncHandler>()
 .WithHandler<CompletionHandler>()
 .WithHandler<CompileHandler>()
 .WithHandler<CounterExampleHandler>()
 .WithHandler<CodeLensHandler>()
 .WithHandler<DefinitionHandler>()
);

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 21 of 58

Document: Semester Thesis Date: 17.12.2019

 Handlers
Handlers are classes that are called whenever a request needs to be processed. We decided to keep
them simple, provide the necessary skeleton required by OmniSharp, and mainly forward the request
to a service. One may argue that this is a “middle man” code smell, as the handler is literally not
doing much more than starting a service and delegating the task to it. However, some handlers
require a lot of boilerplate code. An example of boilerplate code was already presented in chapter
4.6.2 Custom LSP Messages with OmniSharp. By the partitioning into a handler and a service, we
could separate the core logic into an own class, which would make it easier for testing.

Another reason is that services are sometimes used multiple times. A good example is code
verification. The code has to be verified either if a document was opened, or when it was changed.
The service design decision avoided code duplication a priori.

The following code example shows the usage of a service within the counter example handler.

public async Task<CounterExampleResults> Handle(
CounterExampleParams request, CancellationToken cancellationToken)
{
 var file = _bufferManager.GetFile(request.DafnyFile);
 var dtu = new DafnyTranslationUnit(request.DafnyFile, file.Sourcecode);
 var service = new CounterExampleService(dtu);
 return await service.ProvideCounterExamples();
}

The actual core logic of the code above just forwards the request to the service. However, the whole
handler still contains about 50 lines of code. That is, because the request parameters have to be
defined, the response parameters need to be known, and OmniSharp has to know on what request it
has to listen as shown in chapter 4.6.2

Thus, the separation between handlers and services is well reasoned.

 Services
Services are responsible for handling the actual requests. Most of them will make use of the
DafnyTranslationUnit, which builds the bridge between our language server and the Dafny
library. The services assemble results to the expected format, so that the handler can directly return
the result which the service produces. So to speak, the services act as some kind of adapter between
the handler and the Dafny translation unit.

 Dafny Translation Unit
The DafnyTranslationUnit is responsible to preprocess any requests so that the actual Dafny
runtime can be involved. Most requests will parse the source code, translate it to BoogieProgram
instances, and then use the Boogie execution engine to find for example compilation errors or
counter examples.

 Buffering
The LSP transmits a lot of data. Luckily, it is possible to only transmit changes instead of the whole
file. However, also all services need to look up source code often. For this matter, we decided to use
a buffer. The buffer is a map containing the file URI as key and a DafnyFile as value. DafnyFile
itself is a class containing all relevant data about the file, including the source code and the symbol
table. This would allow us to control access to valid data states, even if the source file is no longer
valid as its being edited.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 22 of 58

Document: Semester Thesis Date: 17.12.2019

6. Implementation
This chapter gives a brief overview what technologies were used. Afterwards, we discuss major
architectural aspects. Then, the feature implementation is described in detail. Next, we talk about
how testing was realized. Then, we talk about continuous integration and continuous deployment,
which was a distinctive issue during the project, as the project has a lot of external interfaces. Finally,
a few metrics are provided.

6.1 Technologies Overview
To manage our project, we used the free tool Redmine. Time tracking, milestone and sprint
management, as well as ticketing were done with it.

The server was implemented in C# using .NET Framework, NuGet and OmniSharp. We used Visual
Studio with ReSharper to develop the software.

The client is coded completely in TypeScript with Visual Studio Code as the IDE.

Continuous integration and continuous delivery were done using GitLab with Docker container.
SonarQube and ReSharper were used to ensure the code quality.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 23 of 58

Document: Semester Thesis Date: 17.12.2019

6.2 Architecture Overview
In the Main method of our program, we simply start the language server. OmniSharp offers a static
method for this. As server options, we need to register our handler components and the
BufferManager.
The handlers itself implement proper LSP interfaces such as ICompletionHandler and forward
requests to services. Both, handlers and services, make use of shared ContentManager
components. This is illustrated in the figure below. The DafnyAccess components on the bottom
act as the library layer and are responsible for Dafny parsing and interpretation.

Figure 9 - Package Diagram

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 24 of 58

Document: Semester Thesis Date: 17.12.2019

6.3 Dafny Translation Unit
As glue code between our Dafny language server and Microsoft Boogie, we created a package
DafnyAccess. Some parts of it could be taken over from the previous project.[2] The central class
in this package is the DafnyTranslationUnit. It provides the caller with information like counter
examples and symbol tables as you can see in the figure below. Please note that only public fields
and methods are shown to keep the general overview clear. In the previous thesis, the name of the
translation unit was DafnyHelper. We decided that DafnyTranslationUnit is a rather fitting
name.

Figure 10 - Package Diagram DafnyAccess

We simply copied the DafnyAccess package from the previous thesis. This way we could make our
adjustments in an isolated environment but still guarantee backwards compatibility. Until the old
project is completely superseded, some duplicated code exists as a trade-off.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 25 of 58

Document: Semester Thesis Date: 17.12.2019

6.4 Key Components
The ContentManager package offers functionality, which is used by many components on higher
layers. Especially the BufferManager is a very important class for many components. In the
following figure, you see a general overview of the ContentManager package. Please note that only
public fields and methods are shown to keep the diagram simple.

Figure 11 - Class Diagram ContentManager

 BufferManager
The BufferManager is a very central component for the whole server side. It caches information
about all Dafny files which are being edited by the user. This includes the source code as well as the
FileSymboltable. The BufferManager is updated every time a user opens or changes a Dafny
document in Visual Studio Code.

 DafnyFile
Instead of buffering just the source code with the BufferManager, we decided to create an own
class to represent a Dafny file. Many information is stored in this component, including the source
code, the symbol table and a reference to the DafnyTranslationUnit.

 FileHelper
The FileHelper is mostly used by components that need positional data from Dafny source code.
To keep this component completely decoupled and to avoid any direct dependencies to the
DafnyFile, the source code has to be handed as an argument. This also means that the
FileHelper can be easily tested. Most methods in this class are static.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 26 of 58

Document: Semester Thesis Date: 17.12.2019

As you can notice in Figure 11, the method ChildIsContainedByParent has question marks as
argument types. That is because this method suffers under the code smell “Long Parameter List”. The
corresponding refactoring is still pending, but we decided to use the short version in the diagram for
clarity.

 General LSP Sequence
As mentioned in the previous chapter, each time a user opens or edits a Dafny file in Visual Studio
Code, an LSP message is sent to the server with the file changes. The BufferManager then updates
its buffer for the specific file.

Whenever any other request is sent, a registered handler will be chosen to process the request. This
may or may not use information from the BufferManager. Once the result is available, the result is
sent back to the client.

The following figure contains a sequence diagram which illustrates this process.

Figure 12 – General LSP Sequence Flow for File Changes and Requests

There are several other events that can be sent from the client to the server and as well from the
server to the client. For a deeper explanation, please read the following chapter, which describes
each feature in more detail.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 27 of 58

Document: Semester Thesis Date: 17.12.2019

6.5 Features
All covered use cases are documented in this chapter. For each feature, we will present how we
implemented it and why.

 Syntax Highlighting
Syntax highlighting is one of the few exceptions that is not implemented through the language
server. It is covered inside the client and worked out of the box from the previous bachelor thesis.[2]

To achieve syntax highlighting for Dafny in Visual Studio Code, one has to configure which keywords
Dafny supports, how to match them in the code and how they are classified.

For every Visual Studio Code plugin, the grammar can be defined in the file package.json. You can
see the relevant part of the file right below:

"languages": [
 {
 "id": "dafny",
 "aliases": ["Dafny", "dafny"],
 "extensions": [".dfy", ".dfyi"],
 "configuration": "./language-configuration.json"
 }
]
, "grammars": [
 {
 "language": "dafny",
 "scopeName": "text.dfy.dafny",
 "path": "./syntaxes/Dafny.tmLanguage"
 }
],

In Dafny.tmLanguage, several regular expressions are defined. Those tell Visual Studio Code how
to match keywords and how to classify them for proper coloration. The following code snippet of
Dafny.tmLanguage is an example how control keywords are identified.

<dict>
 <key>match</key>
 <string>\b(class|trait|datatype|codatatype|type|newtype|function|ghost|var|const|method
|constructor|colemma|abstract|module|import|export|lemma|as|opened|static|protected|twostat
e|refines|witness|extends|returns|break|then|else|if|label|return|while|print|where|new|in|
fresh|allocated|match|case|assert|by|assume|reveal|modify|predicate|inductive|copredicate|f
orall|exists|false|true|null|old|unchanged|calc|iterator|yields|yield)\b</string>
 <key>name</key>
 <string>keyword.control.dafny</string>
</dict>

To read more about defining a grammar in VSCode, please refer to the official guide. [17]

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 28 of 58

Document: Semester Thesis Date: 17.12.2019

 Verification
Diagnostics are language server items, that mark errors and warnings in the code. They contain a
document location, an error message, and an error severity. Underlining faulty code was the first
feature that we implemented. Our starting point for this problem was the method Verify inside the
DafnyTranslationUnit.

The method Verify is of a simple structure. It first sets a bunch of environment variables. Then, the
methods Parse, Resolve and Translate work on the Dafny source code and translate it into a
boogieProgram. The Boogie method finally checks if there are any logical errors in the code, such
as postcondition violations.

public bool Verify()
{
 ServerUtils.ApplyArgs(args, reporter);
 return Parse() && Resolve() && Translate() && Boogie();
}

To capture any errors which are found, a delegate is passed as an argument to Boogie's execution
engine. This delegate adds all errors to a list.

public List<ErrorInformation> Errors { get; } = new List<ErrorInformation>();
[…]
ExecutionEngine.InferAndVerify(boogieProgram, ps, name, e => Errors.Add(e), time);

Out of this ErrorInformation, we could extract all necessary information for the UI, such as the
location and the error message. All that was left to do was to transform the errors from
ErrorInformations to Diagnostics. The diagnostics could then be sent back to the client using
the PublishDiagnostics notification, which is conveniently specified by the LSP.[12]

In addition to that, we are also sending the total sum of errors to the client as a notification. This
allows the client to update the status bar easily. Thus, the status bar always displays the total sum of
errors. The client does not need to keep any information about errors for that.

The verification process is called every time the document changes. This is a lot of work for the
Boogie compiler, but since everything runs asynchronously, no problems arose so far.

Diagnostics contain a property named RelatedInformation. This property was used by Boogie to
specify where the origin of a postcondition violation is. Unfortunately, OmniSharp defined the
location of this related information as a string, instead with the class Location. We therefore
couldn't use the related information firsthand. Instead, we just created an own, new Diagnostics
that marks the related location as a warning. This bug has already been reported to OmniSharp.[18]

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 29 of 58

Document: Semester Thesis Date: 17.12.2019

 Compile
VSCode plugins can offer commands that the user can execute by opening the context menu (right
click), pressing a shortcut or simply by entering them into the command prompt (F1).
The previous bachelor thesis offered a hand full of such commands. Aside server restart options,
there was the compile command. The previous thesis implemented this by sending a compile
notification to the server. The server then started Dafny.exe and handed the opened file as an
argument, aside some other arguments.
In our thesis, we wanted to call all Dafny components directly. Just to launch an exe and read out the
output didn't seem very clever. However, in consultation with our supervisors, we decided to keep it
this way. Thus, only a few lines of code were necessary to implement the compile feature.

string processOut = "";
process.OutputDataReceived += (sender, args) => processOut += args.Data;

As you can see, we collected the console out of Dafny.exe in a simple string. To evaluate the string,
we had to use regex parsing.

After the file has been compiled, a notification is sent back to the client. This is either an error
notification or a confirmation. The client has the option to directly run the compiled file inside Visual
Studio Code, too.

 Autocompletion for Identifiers
The autocompletion has two different precision modes. In general, a valid Dafny file can be parsed
and returns access to a symbol table. This table will be cached in the buffer. Once an autocompletion
request is sent, the whole symbol table will be parsed as autocompletion entries and they are
returned to the client.

In case there is an autocomplete request for a specific symbol (e.g. for a reference of class “A”), the
server filters the symbol table for symbols that have the same parent symbol class (in this case all
symbols that contain the parent symbol class “A”).
As an additional requirement, every symbol must be in range of the parent class.

Figure 13 - Sequence Diagram of Building a Symbol Table

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 30 of 58

Document: Semester Thesis Date: 17.12.2019

As you can see in Figure 13, each time the BufferManager updates a file entry, it tries to generate a
new symbol table for that specific file. If successful, the symbol table will be cached. Once a file is
invalid (e.g. when the user is starting to type), the symbol table can't be generated. To still provide
completion results to the user, the last valid version of a file's symbol table of the buffer can be used.
This is illustrated in the Figure 14 below.

Figure 14 - Sequence Diagram for Autocompletion

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 31 of 58

Document: Semester Thesis Date: 17.12.2019

 Counter Example
The implementation of the counter example feature was not quite as easy, but we still could get
inspiration from the previous project, which also offered this feature. The big challenge was to
extract the counter example from the way Dafny provided it. Assembling the information to a
simpler data structure - in the end just to a string that is displayed, was the main task of this feature.

Similar to chapter 6.5.3 counter example is also initialized by a user command. The client will first off
save the document, and then send a request named counterExample together with the file URI to
the server.

On the other side, the server has a proper handler registered and will forward the request to the
counter example service. The service itself will make use of the DafnyTranslationUnit, which
offers a method CounterExample. This method will parse the document, and then apply a server
argument "/mv". With this argument, the Dafny pipeline will save a model file which contains the
counter examples for each file.
A further class, CounterModelProvider, will then read out the model file and extract the relevant
information. Extracting all counter models requires a lot of string parsing and conversions, which we
could take over from the previous bachelor thesis. Back at the counter example service, the counter
models are assembled into a clean list and then returned to the client.

The client will finally display the counter model as a TextDecoration element. To be able to
dispose and thus hide the counter model, it was necessary to implement a counter model provider at
the client side, which keeps track of all displayed text decorations. It is also responsible to create and
show text decorations which it receives from the server.

Figure 15 - Sequence Diagram of a Counter Example Request

By simply applying the '/mv' argument and running the execution engine, it is necessary to read out
the model file which the '/mv' argument creates. In this thesis, it was actually meant to bypass such
string parsing actions. The reason why we kept the long way around model.bvd is, that this way, no
changes or deep digging were necessary inside Dafny or Boogie itself. By just reading out the model
file, the components can be left as they are, they stay isolated and less coupled, and the counter
examples can still be accessed relatively quickly.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 32 of 58

Document: Semester Thesis Date: 17.12.2019

 Go to Definition
The basic implementation of this feature is kept very simple. It is implemented under the premise
that the first match of a symbol name is its definition. If one desires the location of a provided
symbol name, the server iterates through the cached symbol table and returns the first match as the
definition. The current state of the this feature is still in development. It needs refactoring and test
cases.

 CodeLens
CodeLens is still under development, too. The current state of the feature shows, how many times a
class, function or method is used. However, the user can't click on this information to see previews of
the usages.

The implementation is not done in a very graceful way. Using two nested loops, it is checked if two
symbols are linked. Whenever this is the case, the counter for the number of references is increased.
The current implementation results in a complexity of O(n2). This could cause performance issues
since CodeLens gets triggered on every file change. Thus, the efficiency should be improved by the
usage of proper data structures, for example from graph theory.

There is currently another disadvantage. Since the CodeLens feature uses the buffered symbol table,
the line information can be outdated, whenever the buffer is not up to date. This happens every time
a user is inserting new lines or removes them. The line, on which the reference count should be
displayed, is wrong in this case.

This problem is currently also occurring in other features, but with CodeLens it is very noticeable.

To fix this, we planned to add an additional shift information into our file buffer. Whenever the code
is invalid, it should store any offsets between the actual and the cached file. This would resolve this
issue.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 33 of 58

Document: Semester Thesis Date: 17.12.2019

6.6 Testing
This chapter provides a general overview of the testing. It is split into unit, integration and system
tests. To read how to write tests or why we worked with interfaces for dependency injection, refer to
the development document.

 Unit Tests
Whenever one of our components contains logic, we outsourced the logic into isolated components
as far as possible and used interfaces wherever needed. Thus, we could implement isolated unit tests
with dependency injection.

In general, one can say that handlers and services mostly do simple method forwarding and they do
not contain much logic. More complex logic can be found in “ContentManager” and this code gets
heavily tested by unit tests.

Unit tests were only done for the server, not for the client. As the client is mainly responsible for
forwarding requests and displaying the results, we abstained from unit testing UI tasks.

6.6.1.1 Simple Unit Tests
The server offered a few methods that could be easily unit tested. This includes mainly helper or
library methods, such as creating positional values, for example underlining ranges, or checking if a
symbol is within a range. Since these methods had no dependencies at all, testing them was easy.
They are mainly found in the FileHelper test class.

As usual, we tested not only successful cases but meaningful inputs from different equivalence
classes. Bad cases which are supposed to throw exceptions are tested, too.

6.6.1.2 Unit Tests for Compilation
Since the compilation feature mainly starts Dafny.exe, the first attempt for unit testing was to
check the last-access-timestamp, which is provided by the operating system. While this worked
perfectly fine locally, the tests would not pass during the CI process. Servers, and also many
advanced users on their personal computers, often have the feature of saving the most recent access
time disabled. This way, they can save a lot of disk writing. This feature has a big performance
impact, especially for servers, which handle a lot of disk access.

Compilation was then tested by simply writing a wrapper class for C#'s Process to keep track of the
process state. This way, we could test if the process had been correctly launched.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 34 of 58

Document: Semester Thesis Date: 17.12.2019

6.6.1.3 Unit Tests with Fakes
Many services were not as easy to test, since they depend directly on the DafnyTranslationUnit,
which itself depends on the Dafny library. Our idea was to create an interface for the
DafnyTranslationUnit and inject the dependency wherever it is used.

public interface IDafnyTranslationUnit
{
 bool Verify();
 List<ErrorInformation> GetErrors();
 List<SymbolTable.SymbolInformation> Symbols();
 List<CounterExampleProvider.CounterExample> CounterExample();
 void DotGraph();
}

In our tests, we could simply inject a fake to check if the methods are working correctly. However,
achieving this goal was not always as easy as it may sound. For example, Dafny provides a really
complex data structure for its counter example results. There are multiple lists nested in each other.
Creating a fake result was therefore quite sketchy and not as easy to do. However, with a few
assisting methods in the fake class, usage was finally quite simple as the following code sample
shows.

FakeDafnyTranslationUnitForCounterExamples fake =
 new FakeDafnyTranslationUnitForCounterExamples();

fake.AddCounterExampleToFake(col1, row1, vars1, vals1);
fake.AddCounterExampleToFake(col2, row2, vars2, vals2);

var service = new CounterExampleService(fake);
CounterExampleResults results = service.ProvideCounterExamples().Result;

Assert.AreEqual(2, results.CounterExamples.Count,
 $"Counter Example should only contain 2 counter examples.");

CompareCounterExampleWithExpectation(results.CounterExamples[0], col1, row1, vars1, vals1);
CompareCounterExampleWithExpectation(results.CounterExamples[1], col2, row2, vars2, vals2);

Here, a fake instance for the method counter example is created. The fake allows to add counter
examples by just calling the proper addCounterExampleToFake method. The fake can then be
used to create the counter example service, which normally uses a real translation unit instead of the
fake. The comparison of the final result is again assisted with the extracted method
CompareCounterExampleWithExpectation.

6.6.1.4 Tests for Trivial Methods
Another problem was that tests would quickly become trivial and insignificant, because many classes
just forward requests. In these situations, we found integration tests more meaningful and focused
rather on these instead of strict unit tests.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 35 of 58

Document: Semester Thesis Date: 17.12.2019

 Integration Tests
The project features two types of integration tests. On the one hand, there are tests checking if our
handlers and services work correctly. However, these tests do not inject fake objects but work with
real files, existing on the file system and passing those as arguments. Creating those tests was easy as
there was nothing special to consider.

On the other hand, we tried to implement integration tests by creating a dedicated client instance
with the OmniSharp client interface.[19] The client connects to the server and can then make
enquiries, such as asking for a counterExample.

While we could set up the basic concept of these tests, they could not be completed. Inside the log,
responses are visible, but the proper variables will just stay null. This is possibly due to a bug on
OmniSharps side. We contacted them about this but did not get an answer in time. For example, the
following request

var completions = client.TextDocument.Completions(
 filePath: aDfyFile,
 line: 2,
 column: 5,
 cancellationToken: cancellationSource.Token
).Result;

will actually produce the response as expected

[12:45:29 DBG] Read response body{"jsonrpc":"2.0","id":"2","result":[{"label":"a (Type:
Method) (Parent:
_default)","kind":2,"deprecated":false,"preselect":false,"insertTextFormat":0,"textEdit":{"
range":{"start":{"line":2,"character":5},"end":
{"line":2,"character":6}},"newText":"a"}}]}.

but the variable "completions" just stays null. There would be the option to test according to the
log output, but this would be extremely tedious, and we decided to await OmniSharp's answer on
this issue.[16]

 System Tests
System tests were provided within the previous bachelor thesis. They made use of a headless
instance of VSCode. Basically, the tests will open some Dafny files and check if proof obligations and
errors are reported as expected. Those tests have a huge amount of dependencies. Most notably, a
X-Server [20] has to be started within the CI to be able to launch VSCode later on for the test.
Understandably, not many of those tests were implemented. During development, a further problem
arose - the VSCode instance would require some launch arguments that cannot be set - and we
decided together with our supervisors to skip these tests for now.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 36 of 58

Document: Semester Thesis Date: 17.12.2019

6.7 Project Automation
As a version control system, we used git. CI and CD was realized with GitLab. Whenever a commit
was made, the project was built, tested and evaluated automatically.
Setting up the project automation turned out to be very exhaustive and took over-proportionally
long.

Our GitLab CI/CD has four stages as shown in the figure below. Three of them run each time a git
push has been received. The first stage, Prebuild, does only run when needed as discussed in
chapter 6.7.2 The following subchapters describe what happens in each stage.

Figure 16 - GitLab CI/CD

 Environment
GitLab uses a Docker container in which the build process takes place. Since our project has several
dependencies, setting up this environment was not easy at all and caused a lot of problems. The
Dafny solution references Microsoft Boogie, which is not realized with a NuGet package, but by
given, relative path references. The user must clone Boogie's repository and set up a strict path
structure. Boogie itself uses further dependencies, namely the correctness proofer Z3.exe, which
has to be in a specific folder, too. All these references had to be set up in Docker, which we could
only do thanks to the help of our co-supervisor Fabian Hauser.

 Prebuild Stage
The Prebuild stage contains the build_image pipeline. It is responsible for the initial setup of the
Docker container. This pipe runs only if the Docker or GitLab configuration has changed. You can read
more about this in the developer documentation.
The Prebuild stage is responsible to set up Node, Z3, Go and Boogie. The Docker container also
needs the Sonar scanner for the later sonar_scanner stage.

 Build
The Build stage contains two pipelines. build_server builds the server using msbuild and
nuget restore. In the second stage build_client, which runs in parallel, the client gets
prepared. We use the command npm install to download all needed Node packages. Node
modules are cached for later stages.
After all Node modules are ready, TypeScript files are built into the VSCodePlugin/out folder as
you can see in the .gitlab-ci.yml file.
Because later stages will need those output files, we save them into an artifact.

msbuild and nuget itself were provided by the Docker container and did not cause a lot of trouble.
However, keeping the folder structure correct and providing all requirements like Z3.exe was quite
tricky.

The client on the other side could just be built using npm, which was also provided within the Docker
container. This process caused no trouble at all and was quite straight forward.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 37 of 58

Document: Semester Thesis Date: 17.12.2019

 Tests
The test stages include three parallel pipelines.
The test_dafny pipeline runs the previously written Dafny tests. We included those tests into our
project to be sure we do not change the old Dafny console server by accident.
In test_nunit we run our own unit and integration tests for the language server part.
We also have the pipeline “test_e2e_with_vscode_instance “, that runs a headless Visual
Studio Code instance to run automated end to tend tests. Unfortunately, this is not working yet.

6.7.4.1 Client
To start the client tests, one has to install all Node dependencies using npm install, then build the
typescript code with npm run vscode:compile-typescript, and finally the tests can be run
with npm run tests.
These are exactly the commands the CI pipeline executes. To read more about this, refer to the
developer documentation.

6.7.4.2 End to End
For the available end to end tests, an X-Server had to be started to provide the proper UI
infrastructure, and a headless VSCode instance is used. As mentioned earlier, those tests could not
be run at the end of the project due to a launch argument that could not be set.

6.7.4.3 Server
It seemed quite reasonable to use mstest to write unit and integration tests in Visual Studio.
However, as it turned out, it was not that easy to install mstest, the test runner for default .NET
Framework tests, inside the CI environment. mstest uses quite a lot of dependencies. One has more
or less to install a full instance of Visual Studio to get access to mstest.

As an alternative, nUnit was considered. However, nUnit is only available for .NET Core projects by
default. Referring between .NET Core and .NET Framework is something that does not work, thus we
had to come up with a little hack and manually overwrite the project type of our nUnit test projects
from .NET Core to .NET Framework. Surprisingly, this worked without any issues.

The nUnit test runner was neither available from scratch and had to be installed manually. At first, it
was not clear what the easiest way of doing that is. However, in the end we found the test runner as
a NuGet package. Therefore, we could simply install it by installing the corresponding NuGet
package.

Finally, we had a runner and test projects that were able to refer the other projects without any
issues.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 38 of 58

Document: Semester Thesis Date: 17.12.2019

 Sonar Scanner
Finally yet importantly, we execute the Sonar scanner and publish the information to SonarCloud. At
this point, this is only working for the client part.

According to the community forum, the C# code base can only be analyzed with the scanner for
MSBuild and needs two different projects on SonarCloud. The codebase has to be analyzed twice
(one for the TypeScript codebase, one for C#) in order to get proper analysis results. [21]

For reasons of time, we have not yet made this separation. In order to ensure the code quality
nevertheless, we have taken other measures. More details about this are stated in chapter 9.4 Code
Quality Aspects and Metrics.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 39 of 58

Document: Semester Thesis Date: 17.12.2019

7. Results
This chapter presents all features that were implemented. The chapter is kept less technical and
gives an overview of the achieved scope of the project.

7.1 Syntax Highlighting
As described in chapter 6.5.1 the syntax highlighting is realized through a given Dafny grammar file.
The following screenshot shows how syntax highlighting looks inside Visual Studio Code.

Figure 17 - Syntax Highlighting

As you can see, keywords like method, returns, requires and ensures are marked in purple.
Types like int are printed in blue and comments become green. Symbols, such as classes and
methods, are displayed in a brownish color. Just these simple rules increase the readability
significantly.

7.2 Verification
The verification feature underlines logical errors in the user's code. An example is shown in the
following figure.

Figure 18 - Postcondition Violation

The logical verification is permanently active. The user just has to type Dafny code and it will be
verified. The current version only supports logical errors, not syntax errors.
Whenever an assertion or postcondition violation appears, the code block is underlined in red. The
actual postcondition is underlined in yellow. The user can hover over the error to get additional
information about the problem.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 40 of 58

Document: Semester Thesis Date: 17.12.2019

7.3 Compile
The user has two options to initiate compilation: He can just compile his software or he can
additionally run it on a console. The commands are available as hotkeys, in the context menu or via
the VSCode command bar. The client will save the document, send its URI, and the server will report
back if compilation was successful. If any errors are present in the code, they are reported as a
window notification. This includes syntax errors. If the compiled program can be run, a PowerShell
instance is started directly inside Visual Studio Code. As an example, our code from Figure 18 would
produce the following two notifications:

Figure 19 - User Notification on Compile Errors

7.4 Counter Example
To show a counter example, the user has again the choice between a hotkey, the context menu or
using the command bar. The counter example is then shown as a VSCode design element. If the user
is no longer interested in the counter example, there is another command to hide it. The suppression
of the counter model is completely handled inside the client.

Figure 20 - Demonstration of Counter Examples

The example in Figure 20 demonstrates a counter example. The precondition is commented. Without
this requirement, the postcondition can be violated with y = 0.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 41 of 58

Document: Semester Thesis Date: 17.12.2019

7.5 Auto Completion for Identifiers
Whenever a valid interim result of a Dafny file is sent to the server, the file symbol table is created.
This table is then stored in the buffer as discussed in chapter 6.5.4 Autocompletion for Identifiers. As
an example, if one would have a Dafny code snippet like below, the best and only match would be
method m. This is exactly what is suggested for the user as you can see.

Figure 21 - Auto Completion for Instance of Class C

In addition to the previous plugin, our new version is now also able to provide general completion
suggestions if one is not typing a word. In this case, just all available symbols are proposed. This is
illustrated below. Please also note that every symbol type (i.e. methods, classes and variables) has its
own icon.

Figure 22 - General Suggestions with Symbol Types

Besides the general release build for production, there is also a developer build available. The
behavior is slightly different. Once a debug version of the server is built, additional information like
the type and the parent of the symbol become visible. This can be very helpful for future feature
development.

Figure 23 - Auto Completion with Debug as Server Mode

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 42 of 58

Document: Semester Thesis Date: 17.12.2019

7.6 Go to Definition
The usage of the “Go to Definition” feature is pretty easy. A user can simply use the context menu or
hit F12 to go to the definition of the used symbol. In the following figure, you can see how a user
would like to jump to the definition of the method m.

Figure 24 - Go to Definition via Context Menu

Please note that in the current version, the cursor has to be on the left side of the symbol's keyword.
Once pressed, the cursor jumps instantly to the definition of the desired symbol as it is shown in the
following figure.

Figure 25 - Cursor Position after go to Definition

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 43 of 58

Document: Semester Thesis Date: 17.12.2019

7.7 CodeLens
Once a user opens a Dafny file that includes classes, methods or functions, a greyish line shows the
reference count to that symbol. As an example, the class C has been instantiated twice and the
method m was used once in the following code snippet.

Figure 26 - CodeLens Example

Unfortunately, clicking the grey references is not yet supported. This should open a box in which the
corresponding uses are shown, as it was the case in the original plugin.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 44 of 58

Document: Semester Thesis Date: 17.12.2019

8. Conclusion
In this chapter, our work is reflected. We will have a critical look at the implemented features and
how they can be improved. Features that could not be implemented will also be mentioned. Finally,
we will discuss how the plugin can be extended in the future.

8.1 Reflection per Feature
In this chapter, we will have a critical look at our features. Many of them are not realized in a robust
way or they come with certain flaws. This chapter should make clear that we are well aware of those
flaws and that we may revisit our implementation to improve them.

 Verification
This feature has two rather major flaws. The first one is that Boogies verification is not responding all
possible errors that can occur. It actually only checks for logical correctness, but not for other syntax
errors. If syntax errors exist, Boogie won't even be involved and the parsing process fails. We couldn't
collect these error messages in time, since they require deeper digging into the Dafny pipeline.

Currently, syntax errors, such as a forgotten semicolon or the usage of an undeclared variable won't
cause underlines. However, if you try to compile the code, a proper error message is shown.

Figure 27 - Flaw of the Error Highlighting

As you can see in the figure above, the user forgot to write a semicolon at the end of line 6 (the
compiler reports the error in line 7, because it expected a semicolon before the statement “assert”
in line 7). Although there is an assertion error in line 7 as well as a postcondition violation in line 3,
none of them are reported. Since the document is invalid and cannot be parsed, the verification
service is not involved. Compilation is currently the only way to get notified about the error.

The second flaw of this feature is that Boogie only reports a tiny range of the source code as
erroneous, such as a '==' or a '{'. Since this is very hard to see, we decided to underline not only
these one or two characters, but the whole line wherever an error occurs. However, if a line consists
of a single character, such as a '{', this is obviously hard to see and should be done better.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 45 of 58

Document: Semester Thesis Date: 17.12.2019

 Compile
The compilation feature works actually quite reliable. Due to its simplicity it is quite robust. It starts
Dafny.exe with the opened file as an argument. However, the feature displays quite a lot of
notifications. If the compilation task is not taking very long, the user may get up to three notifications
in a short amount of time. A possible update could limit the notifications in such a way that they are
only displayed if compilation takes long enough.

 Auto Completion for Identifiers
The feature for auto completion already works pretty well in a basic scenario. It could still be
improved to increase the usability even further.

There are two ways how suggestions can be made smarter. A simple and independent addition
would be to check for keywords. For example, if there is a “new” keyword in front of the cursor, only
classes could be suggested to the user.
Another extension would be the adjustment of the syntax tree parsing in deeper Dafny layers. If
more information was available, better suggestions could be made. For example, if each symbol also
contained its scope, the suggestions could be filtered efficiently by only showing symbols which are
available at the cursor's position.

Another approach for more usability would be to improve code insertion. For example, if a method
has been selected for autocompletion, no brackets are included after the method name.
Similarly, a new keyword could automatically be inserted in front of classes if there is none yet. Also,
placeholders for arguments could be generated for constructors and methods. A user would only
have to press TAB to swap between the argument placeholders. This is for example known from
other IDEs like XCode. The following figure illustrates this feature.

Figure 28 - Auto Completion in XCode

 Counter Example
As you can see in Figure 20 - Demonstration of Counter Examples, the counter example provider
reports the counter examples in a little bit a harsh format. There are more brackets than necessary.
Also, in line 5, the variable less is already reported, although its value is not yet known. Displaying
the counter examples could definitely be made more user friendly.

However, a nice feature of the design element that was used to display the counter example is that it
moves dynamically as the user continues to type. That means, if he inserts blank lines on top, the
counter examples will also move downwards and stick to the corresponding code line.

Another flaw of this feature is that as the user corrects his code, the counter example will not
automatically adjust or vanish if the postcondition violation has been resolved. The counter example
is fixed and has either to be generated again or to be hidden explicitly by the user. A simple solution
for this would have been to just hide the counter example whenever the user starts to type again.
However, the user may actually want to keep track of the counter example. This is why we didn’t
implement it this way.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 46 of 58

Document: Semester Thesis Date: 17.12.2019

 Go to Definition
As mentioned in chapter 6.5.6 Go to Definition, this feature is still in an early stage of development.

Since the definition for a symbol is just defined as the first occurrence in a file, the feature will not
work over multiple Dafny files. Support across multiple dependent Dafny files is still a general
problem. Although conceptually the BufferManager was designed for this, there is no specific
implemented support in a feature for this dependency logic.

The way of evaluating the target symbol should be increased in smartness for better usability. The
feature could be made more user friendly if it was less dependent of the cursor position. For
example, if no keyword can be found on the right side of the cursor, the server could also try to find a
keyword on the left side. This would provide more robustness and increase usability.

 CodeLens
The current state of this feature is still in progress as mentioned in chapter 6.5.7 Indeed, there are
still several open construction sites to complete this feature. Please read the mentioned chapter
“CodeLens” for more details about the performance, the buffer issue and the actual CodeLens popup
window, which is missing in the current version.

8.2 Extension Points of the Previous Thesis
In the previous bachelor thesis, a variety of features was named for possible extension points. This
included debugging, various refactorings and contract generation.[2] Unfortunately, we were unable
to spend time on any of these features, because we were busy enough working on existing use cases.
Thus, these features will still be possible extensions for the upcoming bachelor thesis.

8.3 Short-Falling Features of the Previous Thesis
Some features that were implemented in the previous bachelor thesis could not be taken over to the
new plugin. Unfortunately, we spent too much time on CI issues and couldn't implement as many
features as we wanted. This chapter gives a brief overview of those.

 Installation, Setup, Marketplace Integration
After a short consultation with our supervisors, we decided not to spend any time on the installation
process. This is because we will continue to develop the plugin. A release would not make much
sense at this point, because some features still need improvement. Thus, we will focus on an easy
installation towards the end of the upcoming bachelor thesis.

 Platform Independence
Although we tried to keep this requirement in focus, it was really hard to strictly follow this guideline.
The previous bachelor thesis offered some nice concepts, like global variables storing if Mono is to be
used, but we kept our focus on a single platform during development. However, the infrastructure to
make the plugin runnable under Linux and macOS is present and before a release, it is realistic to re-
guarantee platform independence without big effort.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 47 of 58

Document: Semester Thesis Date: 17.12.2019

 Features
Since we were very busy working on the problems which continuous integration caused, we couldn't
implement all features of the previous bachelor thesis. We also focused on refactoring towards the
end instead of implementing additional features in low quality. Thus, we could not implement
renaming, null and bound checks, flow graphs and invariant guards. In the subsequent bachelor
thesis, we plan to implement them.

8.4 CI Reflection
If there is one thing which slowed this thesis down, it was continuous integration. As stated in
chapter 6.7 Project Automation, it caused a lot of trouble and extra work. Since there was no
preconfigured testing environment, just setting up the infrastructure for basic automated unit tests
was quite strenuous. Additionally, each setup had to be done once for the client and once for the
server with completely different prerequisites. This made CI a very hard task for us as this is not our
main strength.

A legit question is, if the choice of GitLab was reasoned well enough. GitLab bases on Linux. This was
welcomed for the client side, but the server could have profited way better from a Windows
environment. The installation of msbuild and mstest would have been much simpler. With GitLab,
we had to bypass a lot of these issues, for example by using the nUnit test runner as a NuGet package
installation, or by relatively complex Docker configurations.

8.5 Planned Extensions in the Bachelor Thesis
Aside the improvement of the current features, there are several ideas for additional use cases. One
of them is debugging. However, debugging is very complex and may be a bit too difficult for the
limited time range in a bachelor thesis. There are also several refactoring options, like rename
variable, extract method, and such. A nice feature would also be the automated generation of
contracts, which constructs pre- and postconditions by itself. We could also implement array
boundary checks and null checks.

Another point of extension is to provide support for more IDEs, not only Visual Studio Code. This
would only require writing a separate client part. The server stays untouched.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 48 of 58

Document: Semester Thesis Date: 17.12.2019

9. Project Management
This chapter reflects organizational aspects. We will compare relevant propositions from the project
plan to the actual state. First, we talk about time management. Then, the scope is analyzed. Finally,
some code aspects will be discussed.

9.1 Meetings
The weekly meetings with our supervisors Thomas Corbat and Fabian Hauser took place each
Wednesday at 1pm. They were moved to Friday afternoon for the last three weeks due to
appointment conflicts. Internal meetings with only Thomas Kistler and Marcel Hess were held on a
regular basis on Friday afternoon.

All meetings were very informative and could be completed in a reasonable time frame. They were
generally very productive. The overall time spent for discussion and information exchange was
relatively small compared to other activities. Therefore, more time was available for production.

9.2 Time Management
The project had a time range of 14 weeks. Each of the two students had to spend about 16.5 hours
per week on the project. Time tracking was done in Redmine. On average, we were able to keep
ourselves within the timeframe as you can see in Figure 29. Both team members worked about 235
hours in total.

Figure 29 - Time Tracking

In the first few weeks, we were struggling getting started and getting the whole project to run. Once
we were settled in, we were able to become more productive and spend more time on feature
development.

0

8

16

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
in

 H
o

u
rs

Week

Should

Marcel

Thomas

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 49 of 58

Document: Semester Thesis Date: 17.12.2019

In the following diagram, you can see the invested time by activity. The largest part was
development, followed by documentation and meetings. We rate this basic time split as well taken.

Figure 30 - Time by Activity

The most time-consuming development activity was CD/CI. We had a lot of trouble getting all tests to
run in our CI and we struggled until the end with dependencies. This took us much more time than
expected. Other major development activities can also be seen in the following figure.

Figure 31 - Most Time-Consuming Development Activities

41%

21%

18%

5%

7%

8%
Development

Documentation

Meetings

Research

General Testing

Infrastructure

11%

24%

18%
13%

13%

11%

10%
General Refactoring

CD/CI

Integrate DafnyServer into our Project

Verification

Counter Model

Auto Completion

Compile

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 50 of 58

Document: Semester Thesis Date: 17.12.2019

 Project Management
As planned in the project plan, we used a mix between unified process and SCRUM. The project was
broadly split into an inception, elaboration, construction and a transition phase. Each of the periods
was split into sprints lasting two weeks. At the end of every sprint, a milestone was defined. At the
start of the project, it was not easy to plan our milestones. We did not know which features are easy
to start with and which are rather difficult to implement. Thus, we kept the milestones very generic
with the naming “First Features” and “Further Features”. The planned milestones are shown in the
following Figure 32.

Figure 32 - Planned Milestones

In general, we were able to stick to this plan pretty well. However, the features which we
implemented varied a lot from the initial plan. CD/CI has kept us busy through almost the very end of
the project as you will see in Figure 33 - Actual Milestones. It should have been completed after the
elaboration phase.

Figure 33 - Actual Milestones

The last milestone “End of Construction” was supposed to be a reserve time slot. We could use it well
for refactoring, since we decided to put quality over quantity. Therefore, the features “Syntax
Highlighting” and “Code Lens” were only implemented in a very basic way. At the end, we had a little
time left to make small enhancements, but the features still need improvement.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 51 of 58

Document: Semester Thesis Date: 17.12.2019

9.3 Scope
In the project plan, we stated that we wanted to implement the same use cases the previous thesis
offered. Those included:

• Easy installation of the plugin

• Syntax highlighting

• Reporting of Dafny best practices violations

• Automatic generation of contracts

• Auto completion for identifiers

During development, these targeted features were changed quite heavily. Figure 33 shows all
deferred features marked in red. In the beginning of the project, we did not know exactly which
features are suited to start with. As we got familiar with the used technologies, we could make more
precise time cost estimates. As stated in chapter 8.3.1 the automated plugin installation was
postponed. Syntax highlighting worked out of the box. Best practice violations and contract
generation have also been postponed to the bachelor thesis. Auto completion could be
implemented. However, we could also implement compilation, code verification, counter examples,
go to definition and a basic version of code lens. These were not even listed in the original project
plan.

For a further description in brief and fully dressed format of these use cases, we refer to the bachelor
thesis of Markus Schaden and Rafael Krucker.[2]

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 52 of 58

Document: Semester Thesis Date: 17.12.2019

9.4 Code Quality Aspects and Metrics
This chapter gives a brief overview of the most important enumerations about the project.

 Code Reviews
To double check the code, we used GitLab's merge requests to do simple code reviews. Usually, one
of the students coded a feature. Once finished, he created a new merge request. The second student
could then study the code and make suggestions for improvements before the merge took place.
There were also several code reviews head to head to improve the code quality in general.

 Backend
This subchapter refers to the backend. In the following figure, one can see the lines of code and some
other metrics, that will be covered in the following sections.

Figure 34 - Server Metrics

9.4.2.1 Lines of Code
The backend consists of about 2000 lines of code (LOC). An additional 1000 lines of code were
written for tests. However, a lot of code from the package DafnyAccess was taken over from the
previous bachelor thesis. Not all of the 1000 LOC in this package were written by ourselves. We guess
that we wrote about 1500 LOC. According to the module “Software Engineering”, Prof. Dr. D. Keller
taught that each developer can deliver about 500 LOC per month. We were two people, worked for
2.5 months at 40%, and thus are well above this rule of thumb.

9.4.2.2 Other Metrics
The maintainability index is a prediction from Visual Studio that states how easy the code is to
remedy. It is generally around 80%. The cyclomatic complexity in the second column is very low for
all packages, except for DafnyAccess. The very large file SymbolTable.cs contains a lot of nested
conditional and loop statements, which causes this high value. One task for the bachelor thesis could
therefore be to refactor this class. The class coupling is rather high in this file, too, but low for most
other classes and packages.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 53 of 58

Document: Semester Thesis Date: 17.12.2019

 Frontend
The client consists of about another 1000 LOC, but most of them were taken over by the previous
thesis. Many of them are also just string constants and such. A bunch of test files and scripts are also
present in the frontend. The summary is shown in the following figure.

Figure 35 - Client LOC

9.4.3.1 SonarQube
The SonarQube report for the frontend in SonarCloud is pretty satisfying.[22] There are some
abnormalities as you can see in Figure 36. They are easy to justify though.

Figure 36 - SonarCloud Report for the Client

There is no longer any test coverage since all unit test cases were removed together with the rest of
the language server part that used to exist in TypeScript.
The discovered bugs, vulnerabilities and code smells result from analyzed Java files that were found
in the Dafny project. As soon as we split the client from the server for SonarQube as mentioned in
chapter 6.7.5 Sonar Scanner, those negative numbers should disappear.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 54 of 58

Document: Semester Thesis Date: 17.12.2019

 Test Coverage
Test coverage varies a lot by package. As stated in chapter 5.3.2 Handlers, we separated handlers and
services. The services could therefore be very well tested as you can see in Figure 37. They come with
a very high test coverage.

Figure 37 - Test Coverage for Package Services

The package ContentManager, which has no dependencies at all, reached even a coverage of
almost 100% as you can see in Figure 38. The tests for this class are also as meaningful as it gets.

Figure 38 - Test Coverage for Package ContentManager

The DafnyAccess package has a lower test coverage as you can see in Figure 39, since we took over
a lot of code from the previous bachelor thesis. Because we are now using this code ourselves, we
would actually have to test it. But the classes have heavy dependencies on Boogie, for which we
couldn't achieve a proper level of decoupling in time.

Figure 39 - Test Coverage for Package DafnyAccess

As reasoned in chapter 6.6.1.4 Tests for Trivial Methods, the handlers, which mainly just forward
requests, were not subject to tests. This also applies for the Main method. They are getting covered
with end to end tests.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 55 of 58

Document: Semester Thesis Date: 17.12.2019

With the Handlers package excluded, we reached a coverage of about 66%. This is a bit lower than
the aspired 80%. But most of this is due to the very large SymbolTable.cs file, which contains
about 200 lines of untested code as you can see in Figure 40.

Figure 40 - Total Coverage (without Handlers)

 Commit Activities
Figure 41 shows the amount of commits per day. There are a few peaks. These are mostly reasoned
by commits to test new CI configurations. They often just contain single changes to the .yaml
configuration file. One could use a local Docker container to reduce the commit count, but it was
often easier to just push changes to GitLab and test it right there.

Figure 41 - Commits to Master, Excluding Merge Commits

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 56 of 58

Document: Semester Thesis Date: 17.12.2019

Mostly, we worked on Mondays, Wednesdays and Fridays for this thesis. This can be well seen in
Figure 42.

Figure 42 - Commits per Weekday

Once our CI ran stable – unfortunately this was only the case for the last month – we endeavored to
push only good code quality to GitLab that would pass the CI process. This is well visible in Figure 43.
Successful pipelines are marked in green, failed ones in grey.

Figure 43 - Pipeline Success Rate

9.5 Infrastructure
Contrary to our original plan, we did not use the provided Windows server at all. Since we switched
from .NET Core to .NET Framework, a Windows VM was used instead of macOS. Other than that, we
were in line with the project plan. We could use the right IDE's, use the planned tools for code quality
and work with GitLab for the CI process.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 57 of 58

Document: Semester Thesis Date: 17.12.2019

10. Glossary

10.1 Acronyms
LSP Language Server Protocol
 A protocol for the communication between an IDE and a language server

VSCode Visual Studio Code
 Text editor

IDE Integrated Developer Environment

A text editor for programmers with a variety of additional features, such as
syntax highlighting or the option to compile the code

AST Abstract Syntax Tree
 Structured internal format for source code

CI Continuous integration

Automatic compilation, execution of tests and quality measurements upon code
changes

CD Continuous deployment
 Automatic distribution of the product

LOC Lines of Code
 Common measure for project size

VM Virtual Machine
 Running a virtual computer inside your computer, for example Windows on macOS

JSON JavaScript Object Notation
 Specification to serialize data in plain text

JSON-RPC JavaScript Object Notation Remote Procedure Call
 Protocol to exchange data using JSON

UI User Interface
 Surface of a program which the user can interact with

URI Uniform Resource Identifier
 String to identify a resource, such as a file or a webserver

10.2 Technical Terms
X-Server Toolkit to create graphical user interfaces and interact with them.
Headless Instance of a program without a user interface.
OmniSharp Organization that programmed the C# implementation of the LSP.
NuGet A library with software-packages for C#.
Unified Process Method for software project management.
SCRUM Method for software project management.
exe Executable program file for Windows.

Student research project fall semester 19/20
Project: Dafny Language Server Redesign

Page 58 of 58

Document: Semester Thesis Date: 17.12.2019

11. References
[1] “Dafny,” Wikipedia, 14-Nov-2019. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Dafny&oldid=926221042. [Accessed: 16-Dec-2019].
[2] Krucker, Rafael and Schaden, Markus, “Visual Studio Code Integration for the Dafny Language and
Program Verifier,” HSR Hochschule für Technik Rapperswil, 2017.
[3] “HSR Correctness Lab.” [Online]. Available: https://www.correctness-lab.ch/. [Accessed: 14-Dec-
2019].
[4] “DafnyVSCode/Dafny-VSCode,” 20-Nov-2019. [Online]. Available:
https://github.com/DafnyVSCode/Dafny-VSCode. [Accessed: 05-Dec-2019].
[5] “Your First Extension.” [Online]. Available: https://code.visualstudio.com/api/get-started/your-
first-extension. [Accessed: 05-Dec-2019].
[6] “Extension Guides.” [Online]. Available: https://code.visualstudio.com/api/extension-
guides/overview. [Accessed: 05-Dec-2019].
[7] “Extension API.” [Online]. Available: https://code.visualstudio.com/api/index. [Accessed: 14-Oct-
2019].
[8] “DafnyVSCode regexRessources.ts,” GitHub. [Online]. Available:
https://github.com/DafnyVSCode/Dafny-VSCode/blob/develop/server/src/strings/regexRessources.ts.
[Accessed: 15-Dec-2019].
[9] “Test/dafny0/Char.dfy.expect,” GitLab. [Online]. Available: https://gitlab.dev.ifs.hsr.ch/dafny-
lang/dafny/blob/master/Test/dafny0/Char.dfy.expect. [Accessed: 15-Dec-2019].
[10] “Language Server Protocol,” Wikipedia, 02-Dec-2019. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Language_Server_Protocol&oldid=928869971. [Accessed: 05-
Dec-2019].
[11] “Language Server Extension Guide.” [Online]. Available:
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide. [Accessed: 15-
Dec-2019].
[12] “LSP Specification.” [Online]. Available: https://microsoft.github.io/language-server-
protocol/specifications/specification-3-14/. [Accessed: 28-Oct-2019].
[13] “Langserver.org.” [Online]. Available: https://langserver.org/. [Accessed: 05-Dec-2019].
[14] “Martin Björkström - Creating a language server using .NET.” [Online]. Available:
http://martinbjorkstrom.com/posts/2018-11-29-creating-a-language-server. [Accessed: 14-Oct-2019].
[15] “OmniSharp/csharp-language-server-protocol,” GitHub. [Online]. Available:
https://github.com/OmniSharp/csharp-language-server-protocol. [Accessed: 05-Dec-2019].
[16] “Omnisharp Slack Channel.” [Online]. Available:
https://app.slack.com/client/T0RE90CRF/C804W8JHE. [Accessed: 05-Dec-2019].
[17] “Syntax Highlight Guide.” [Online]. Available: https://code.visualstudio.com/api/language-
extensions/syntax-highlight-guide. [Accessed: 14-Dec-2019].
[18] “DiagnosticRelatedInformation Location should be an Location object · Issue #175 ·
OmniSharp/csharp-language-server-protocol,” GitHub. [Online]. Available:
https://github.com/OmniSharp/csharp-language-server-protocol/issues/175. [Accessed: 22-Oct-2019].
[19] “OmniSharp.Extensions.LanguageClient 0.14.0.” [Online]. Available:
https://www.nuget.org/packages/OmniSharp.Extensions.LanguageClient/. [Accessed: 14-Dec-2019].
[20] “XSERVER.” [Online]. Available:
https://www.x.org/releases/X11R7.7/doc/man/man1/Xserver.1.xhtml. [Accessed: 14-Dec-2019].
[21] “SonarCloud for C# Framework Project,” SonarSource Community, 27-Nov-2019. [Online].
Available: https://community.sonarsource.com/t/sonarcloud-for-c-framework-project/17132. [Accessed:
11-Dec-2019].
[22] “SonarCloud.” [Online]. Available: https://sonarcloud.io/dashboard?id=dafny-server. [Accessed:
14-Dec-2019].

