
Term Project Thesis

Cisco DNA Center Multi Tenant
Manager

University of Applied Science Rapperswil

Department of Computer Science

16.09.2019 - 20.12.2019

Authors Aaron Meier

Dennis Ligtenberg

Project Partner Cisco Systems (Switzerland) GmbH

Advisor Professor Laurent Metzger

External Co-Examiner Patrick Mosimann

Internal Co-Examiner Jessica Kalberer

Abstract

The Cisco Digital Network Architecture (DNA) offers a modern ap-
proach to campus networking by using an overlay based Software De-
fined Networking (SDN) approach. Thanks to an easy to use web plat-
form tasks like network trouble shooting and edge device port config-
uration are massively simplified. A growing collection of API features
(Intent API) opens the platform up for network automation and build-
ing customized tools additionally to the DNA Center Platform.

A feature often requested by Cisco’s customers is the possibility to
allow for multi tenancy in the host onboarding feature which offers
configuration of edge/host ports. This way simple configurations can
be made by less technically versed staff without having to call a techni-
cal specialist for every port that requires configuration. Adding multi
tenancy can be interesting for organizations like universities that have
multiple academic departments that inhabit and maintain separate spaces
on the campus. To allow simple configuration currently full access to
the DNA Center Platform would have to be granted to staff of each
department.

In the scope of this Thesis a prove of concept has been built that al-
lows access management to specific ports on the edge to user groups
on a custom website using the DNA Center APIs. An administrator
can not only grant read and write access to groups but also limit what
configuration objects, like specific IP pools, can be used by a specific
group.

Multi Tenant Manager with SDN i

Management Summary

Initial situation

The Cisco Digital Network Architecture (DNA) is a new approach to net-
working using Software Defined Networking. After initial setup many op-
erational tasks are simplified thanks to a web interface that allows for con-
figuration on all devices in the network. One example of this is the host
onboarding feature. It allows network administrators to easily configure
interfaces for end host usage. Neither physical access to a network nor com-
mand line knowledge is required to use this feature. This allows IT staff
with less networking knowledge to complete this task.
Additionally to the many tools that can be used out of the box the platform
is open for developers to build custom tools to fit any organizations needs.

A wish of many Cisco customers is to allow for multi tenancy on the host
onboarding feature. This can be very useful for organizations like univer-
sities that have multiple academic departments that inhabit and maintain
separate spaces on the campus. Currently there is no option to grant access
to specific network interfaces to a specific user group. Using the open devel-
opment interfaces DNA Center exposes to developers a third party tool can
be built that allows for access management to settings on network device
interfaces.

Process

The goal of the project was to build a prove of concept to show that using
the open development interfaces allows for building a solution to add multi
tenancy to the host onboarding process. The main focus is not on building
an interface that can be used in production but to show the technical feasi-
bility.
It was decided to use well known and open source tools the developers
have some experience in to speed up development and improve the chance
of delivering a working prototype. Additionally the application is made
to be easily deployable so engineers can install it in lab environments for
customer demos. This can be achieved by using modern containerization
technologies.

Results

A web application was build that fully supports user and group manage-
ment and a host onboarding feature that has the same capabilities as the
feature in DNA Center but allows for multi tenancy. However some re-
quired functionality is not covered by the official development interfaces.

Multi Tenant Manager with SDN ii

Using reverse engineering on the official web platform additional interfaces
where discovered that allow for implementation of all desired features.

Outlook

While the developed application already offers a working platform that
shows the capabilities an extensibility of DNA Center there is a variety of
features that can be added to the existing application. One way to find
useful features would be a design thinking session with Cisco networking
specialists, that have productive experience in using DNA Center.

On top of new features the existing application can still be improved. The
product is still a prove of concept and not yet a full productive applica-
tion. By conducting usability tests to improve the frontend, improving code
quality and testing, the application can be made suited to a productive en-
vironment.

Multi Tenant Manager with SDN iii

Cisco DNA Center Multi-Tenant Manager
Introduction
Software-Defined Access (SD-Access) is the industry’s first intent-based networking solution for the
Enterprise built on the principles of Cisco’s Digital Network Architecture (Cisco DNA). Cisco SD-
Access provides automated end-to-end segmentation to separate user, device and application traffic
without redesigning the network. Cisco SD-Access automates user access policy so that organizations
can make sure the right policies are established for any user or device with any application across
the network.

Idea
The DNA Center platform provides a web interface and multiple Application Programming Interfaces
(APIs) to simplify and automate various network operation tasks. Currently, the platform’s web
interface and APIs do not offer true multi-tenancy. Access rights are only split between read and
read/write authorization levels for all devices inside the DNA fabric. Organizations like universities
might want to grant configuration access to specific network devices to an academic department
(e.g. Computer Science, Electrical Engineering, Landscape Architecture, etc.).

Use Cases
The following Use Cases are going to be developed in the thesis:

 Network device list: A department IT manager views a list that includes an overview of all
network appliances to which he has read access.

 Selection of a specific switch/port: Selection of a specific switch/port: A department IT
manager selects a specific switch/port that needs to be configured.

 Port Configuration: A department IT Manager sets different preconfigured port setting like
port type and authentication method.

 User and groups: A sysadmin creates, updates and deletes users and groups for the
departments.

 View changelog: Any user views the history of changes made on a specific switch to which
he/she has access.

Further Use Cases can be added while working on the thesis subject to prior consultation.

Task
In this thesis, a third-party app for the DNA Center shall be developed in order to give a department
IT manager the possibility to configure defined ports for his own department.

Consumed APIs
Initially, the idea was to exclusively use DNA Center Intent APIs. Since it has been discovered that a
lot of essential tasks cannot be achieved through pure Intent API calls, calls to unofficial endpoints
are permitted in case there is no Intent alternative.

Functionality
The deliverable is a Proof of Concept (PoC) which shows that multi-tenancy can be achieved using
the APIs. The focus should be set on the functionality, and not on the design of the user interface.

Cisco DNA Configuration
It is not part of the solution to add new devices or configure networks, VNs or any other object in
Cisco DNA Center. These settings have to be configured by a professional directly in the DNA Center.

Task description

Multi Tenant Manager with SDN iv

Contents

I Technical report 1

1 Introduction and overview 2
1.1 Problem definition . 2
1.2 Scope and limitations . 4
1.3 State of art . 4

2 Requirements 5
2.1 Use cases . 5

2.1.1 Actors . 5
2.1.2 Use case diagram . 5
2.1.3 Use cases brief . 6

2.2 None functional requirements 8
2.3 Excluded functionality . 9

3 Architecture and design specification 10
3.1 External interfaces . 10

3.1.1 DNA Center Intent API 10
3.2 Domain . 12

3.2.1 Domain Model . 12
3.3 Technologies . 13

3.3.1 Programming languages 13
3.3.2 Frameworks . 13
3.3.3 Libraries overview . 14

3.4 Design overview . 15
3.4.1 Frontend . 15
3.4.2 Translation . 16
3.4.3 Router . 16
3.4.4 API . 16
3.4.5 Backend . 17
3.4.6 Layers . 18

v

Contents

3.4.7 Layer diagram . 18
3.5 Containerization . 19

4 Implementation 20
4.1 Authentication . 20
4.2 Management . 21

4.2.1 User and Groups . 21
4.2.2 Access Control . 21

4.3 DNA Center API endpoints . 22
4.3.1 Official endpoints . 22
4.3.2 Undocumented DNA Center endpoints 22

4.4 DNA Center API clients . 24
4.4.1 DNA Center SDK . 24
4.4.2 Undocumented API client 24

4.5 Workers . 25
4.6 DNA Center Synchronization 26

4.6.1 Getting all edge nodes 26
4.6.2 Sync job . 26
4.6.3 Sync flow . 27

4.7 Host onboarding . 28

5 Results 30
5.1 Achieved results . 30

5.1.1 Screenshots . 31
5.2 Possible improvements . 31
5.3 Possible additional features . 32

II Project documentation 33

6 Deployment 34
6.1 Components . 34
6.2 Diagrams . 35
6.3 Infrastructure . 36

6.3.1 Repositories . 36
6.3.2 Continuous Integration 37

7 Use cases fully dressed 39
7.1 Introduction . 39
7.2 Use cases . 40

8 Data model 46

9 API 48
9.1 Endpoints . 48

Multi Tenant Manager with SDN vi

Contents

9.2 Detailed documentation . 49

List of Figures 50

List of Tables 52

Glossary 53

Bibliography 55

III Appendix 57

A Personal reports 1
A.1 Aaron Meier . 1
A.2 Dennis Ligtenberg . 1

B Testing 3
B.1 Backend . 3

B.1.1 Results . 3
B.2 Frontend . 4
B.3 NFR Validation . 5
B.4 Performance tests . 7

B.4.1 Scenario . 7
B.4.2 Results . 7

B.5 System tests . 9
B.5.1 Scenarios . 9
B.5.2 Test logs . 9

C Metrics 12
C.1 Sonarqube reports . 12

C.1.1 Frontend . 12
C.1.2 Backend . 13

C.2 Code . 14
C.2.1 Backend . 14
C.2.2 Frontend . 14
C.2.3 Total . 15

C.3 Gitlab . 15

D Project planning 16
D.1 Roadmap . 16
D.2 Project management . 18

D.2.1 Phases and estimates . 18
D.2.2 Milestones and artifacts 19
D.2.3 Time evaluation . 20

Multi Tenant Manager with SDN vii

Contents

D.3 Meetings . 21
D.4 Responsibilities . 21
D.5 Infrastructure . 22
D.6 Development concepts . 23

D.6.1 Definition of Done . 23
D.6.2 Review . 23

D.7 Backups . 24
D.8 Risk management . 24
D.9 Quality assurance . 26

D.9.1 Exception Handling . 26

E Wireframes 28
E.1 User Views . 29
E.2 Admin Views . 31

F User interface screenshots 34
F.1 Login view . 34
F.2 Devices view . 34
F.3 History view . 35
F.4 Jobs view . 35
F.5 Network view . 36
F.6 Interface view . 36

G Time tracking 37
G.1 Time tracking by milestone . 37
G.2 Time tracking by category . 38
G.3 Time tracking by project members 38
G.4 Time tracking to actual/planned comparison 39

H Code and installation documentation 40

Multi Tenant Manager with SDN viii

Contents

Part I

Technical report

Multi Tenant Manager with SDN 1

Chapter 1

Introduction and overview

1.1 Problem definition

Cisco Digital Network Architecture (DNA) offers an overlay based Software
defined networking (SDN) solution that can be accessed using the DNA
Center, a platform based management tool[2]. The DNA Center platform
provides a web interface and multiple Application Programming Interface
(API) interfaces to simplify and automate various network operation tasks.

Currently the platforms web interface and APIs do not offer true multi ten-
ancy. Access rights are only split between read and read/write authorization
levels for all devices inside the DNA fabric. Organizations like universities
might want to grant configuration access to specific network devices to a
academic department (e.g. Computer Science, Microelectronics etc.). This
would enable a layman to make simple changes to their devices.

2

1.1. PROBLEM DEFINITION

DNA center overview

Figure 1.1: DNA center overview

DNA Centers virtual topology is based on VXLAN and includes the follow-
ing components:

• Cisco DNA Center: Central component for designing, provisioning
and monitoring/assure SD-Access deployments

• Identity Services Engine: Manages identities and policies. Is used for
authorisation of fabrics enddevices. Possible connection to an Active
Directory.

• Control plane nodes: Tracks the current location of fabrics users and
devices (Based on LISP map). Can be used as single source of truth.

Multi Tenant Manager with SDN 3

1.2. SCOPE AND LIMITATIONS

• Border nodes: One or more nodes, which connect the SD-Access fabric
to the outside world (Uplink). Make sure that the fabric environment
is reachable and translate different fabric types (e.g. virtual networks
to SGTs).

• Edge nodes: Connects end devices (PCs, phones, cameras etc. with
SD-Access fabric (First hop). Also called routing locators (RLOCs) in
LISP

• Fabric Wireless LAN Controller (WLC): Executes all Access Point rel-
evant tasks: Controller for all APs which are connected to the network.
Is responsible for fabric access trough radio frequencies.

• Intermediate nodes: All network devices, which are located between
two fabric nodes (e.g. distributed or core switches)

DNA center has a minimum configuration of 3 devices: One Fabric Control
Plane, one or more edges devices and one or more border devices.

1.2 Scope and limitations

Consumed APIs Initially the idea was to exclusively use DNA Center In-
tent APIs. Since it was discovered that a lot of essential tasks can not be
achieved through pure Intent API calls, calls to unofficial endpoints are per-
mitted if there is no Intent alternative. Further explanation and problems
with the API are described in the project documentation,

Functionality The deliverable is a Proof of Concept (PoC) to show that
multi tenancy can be achieved using the APIs. So the focus should be on
functionality over the user interface and usability.

Cisco DNA Configuration It is not part of the solution to add new devices
or configure networks, VNs or any other object in Cisco DNA Center. These
settings are to be configured by a professional directly in the DNA Center.
Generally speaking, we only support one-way, directional sync (Cisco DNA
Center to Tenant Manager) where any settings on the DNA Center overwrite
those on the Tenant Manager.

1.3 State of art

Currently there are no known software solutions that solve this exact prob-
lem. However there are already many well known user management and
permission systems and the host onboarding is already present in DNA
Center.

Multi Tenant Manager with SDN 4

Chapter 2

Requirements

2.1 Use cases

In the following chapter Actors, Use cases in brief form are described to give
an overview over the projects functionality.

2.1.1 Actors

Sysadmin

Sysadmins have full administrative power on the web interface, they manage
all access permissions and typically have access to the DNA Center web
panel. A sysadmin has advanced networking knowledge.

Department IT manager

Department IT managers belong to a sub organization (e.g. the Electron-
ics department) that has access to basic configuration options for their net-
working infrastructure. To use the tool they only require basic networking
knowledge.

2.1.2 Use case diagram

Since all actions in the use case diagram require authentication it is left out
in this diagram. To make the diagram more compact and readable optional
use cases are left out.

5

2.1. USE CASES

Figure 2.1: Use case diagram

2.1.3 Use cases brief

UC01 - List network devices

A department IT manager views a list with an overview of of all network
appliances they have read access to.

UC02 - Grant and revoke access

A sysadmin grants or revokes a specific group read/write access to a specific
switch/port.

UC03 - CRUD users and groups

A sysadmin creates/updates/deletes users and groups and adds users to
groups.

Multi Tenant Manager with SDN 6

2.1. USE CASES

UC04 - View changelog

Any user views a history of changes made on a specific switch they have
access too.

UC5 - Select specific switch/port

A department IT manager selects a specific switch/port to configure.

UC6 - Configure port

A department IT manager sets different preconfigured port settings like port
type and authentication method.

UC7 - Batch configuration(optional)

A department IT manager applies the same configuration to multiple ports
at a time using a CSV file.

UC8 - Trigger DNA center sync

Any authenticated user manually triggers a sync to update all data of the
application with the current state from the DNA center.

UC9 - Group devices/ports (optional)

A department IT manager creates groups of devices or ports for batch con-
figuration using just the web interface.

UC10 - Configure grouped devices/ports (optional)

A department IT manager applies the same configuration to a group of
devices/ports.

Multi Tenant Manager with SDN 7

2.2. NONE FUNCTIONAL REQUIREMENTS

2.2 None functional requirements

Category Description and acceptance criteria

NFR1 Functionality Only authenticated users should have access to the system.
Is authentication required?

NFR2 Functionality Passwords should be protected trough modern measures.
Are all passwords stored securely by default (Hash + Salt)?

NFR3 Functionality Communication between the user and the system should be
encrypted. Is the latest TLS-encryption supported?

NFR4 Reliability On failed sync the app should use fallback data and indicate
outdated data with an error If sync fails is there an error
message suggesting that outdated data is used?

NFR5 Reliability Failure of configuration changes should be traceable for ad-
ministrators. Are configuration failures obvious in the sys-
tems log?

NFR6 Efficiency The system should respond without a noticeable delay (=to-
tal of 10 seconds between request and response) under full
workload (=100 simultaneous requests) for the login opera-
tion. Was the response time goal tested trough a load test?

NFR7 Maintainability For future maintainability the system should depend on Cis-
cos intent APIs. Are all API calls made to intent based end-
points?

NFR8 Maintainability The system should scale well on a typical campus networks
growth with a maximum of 5,000 devices, a total of 480,000
ports, 256 VNs (based on Cisco DNAs limitation [6]). This
means while the initial fetch of the above amount of infor-
mation from DNA Center is running, response time of the
application does not exceed 10s (time to display a loading
screen/error message or the result). Was there a test made
for the above scenario to validate the applications respon-
siveness?

NFR9 Portability The systems installation should be straight forward and de-
ployable trough Docker containers. Are containers defined
for all software components?

Table 2.1: NFR according to ISO-9126 [10]

Multi Tenant Manager with SDN 8

2.3. EXCLUDED FUNCTIONALITY

2.3 Excluded functionality

The following features are features that are not in the scope of this project
but might want to be kept in mind when making architectural decisions.

External authentication back end A multitude of different authentication
back ends/protocols (e.g. radius) could be implemented to make integration
into existing environments easier.

Legacy switch migration By adding support for legacy switches none DNA
fabric devices could be managed in the tool.

Synchronisation discrepancy handling When changes are made in the
DNA center that are also managed in the Multi Tenant Manager discrep-
ancies can occur. The applications could be expanded to handle those dis-
crepancies in multiple ways.

Multi Tenant Manager with SDN 9

Chapter 3

Architecture and design
specification

3.1 External interfaces

3.1.1 DNA Center Intent API

The main external interface used in this project is the DNA Center North-
bound Intent API. Northbound APIs provide the Interfaces to communicate
between the SDN controller and an application used for network automa-
tion (as opposed to Southbound APIs that offer communication between
the controller and network nodes in the fabric). The Intent API provides
a policy-based abstraction for business intent. It is designed to focus on
defining outcome rather than programming specific steps.[7]

Disclaimer

These findings where made using version 1.3.0.94 of DNA Center and 1.2.0.36
of the DNAC API Platform. DNA Center is a continuously developed and
improved platform. There is no guarantee that the described endpoints have
the same limitations in future releases.

A number of undocumented endpoints where used in this project. These
endpoints are used without warranty and should not be used in commercial
environments. Updating the DNA Center must be done with care. While in-
tent endpoints guarantee stability there’s no guarantee that undocumented
endpoints are not subject to change.

10

3.1. EXTERNAL INTERFACES

Intent API limitations

As the Intent API is still growing in features there are multiple limitations
that need to be taken into account when designing and implementing the
system. This section describes the most important problems and solutions
of those limitations. Specific endpoints used are described in the implemen-
tation section.

API rate limiting The standard rate limit for many API endpoints in DNA
Center is 5 calls per minute (this is not for total API calls to the Intent API
but for one specific REST endpoint). Any batch import will run for at least
|PORTS|

5 minutes.

Get all edge devices Currently there is no way to retrieve a list of all
edge devices in the fabric through the API. One solution would be settings
manual tags on the DNA web interface to select a pre-defined list of edge
devices. This isn’t a very reliable and salable solution as manual work has
to be done on the web interface to tag devices.

Another approach would be using the Fabric Wired Connectivity Intent end-
point to get information about an edge device for all devices in the fabric. If
the device isn’t in the fabric an error is responded. This endpoint is subject
to the 5 calls/min rate limit and thus does not scale well either.

The final approach is using the same endpoint the DNA web interface used
to get a device list. This endpoint is not documented but uses the same
authentication token as official endpoints. All devices with relevant infor-
mation can be requested in a single call. As this is the only properly scalable
option this approach is used.

Port assignment (POST) The official endpoint for port assignment presents
multiple issues. Firstly it has the same rate limitations as the GET endpoint,
secondly only user devices can be configured on a port while there is an
option for access points and servers in the host onboarding feature on the
DNA Center web interface. As the rate limitations would make any batch
configuration beyond 5 ports incredibly slow again the unofficial endpoint
the web interface uses is used.
Beyond these two more unofficial endpoints are used in this project. As they
are less vital they are described in the implementation section.

Multi Tenant Manager with SDN 11

3.2. DOMAIN

3.2 Domain

3.2.1 Domain Model

For a better understanding of the abstract behaviour of the application fol-
lowing domain model can be used. It is split into two groups, blue for user
management and orange for configuration of network devices. The data
classes and actual implementation may differ from the domain model. The
basis for most of the domain model are the requirements. Only the Job/-
Task process was added later, as its necessity was only found by the end of
elaboration.

Figure 3.1: Domain model

Multi Tenant Manager with SDN 12

3.3. TECHNOLOGIES

3.3 Technologies

Additional to the external interfaces there are technologies that are given
as a requirement, while some that have been assessed. This chapter gives
an overview over the different technologies such as programming language
and frameworks used.

3.3.1 Programming languages

The use of Python for the back end is required, or strongly recommended
by the examiners since there’s a good amount of preexisting knowledge in
this language at the institute. As this is a language both project authors
have some experience in, there is no need for further evaluation. The same
applies to JavaScript/Typescript with the React framework for frontend de-
velopment.

3.3.2 Frameworks

The frontend is based on the latest stable React release (16.12). The backend
uses the latest Django LTS release (2.2) and the according Django REST (3.10)
release.

Multi Tenant Manager with SDN 13

3.3. TECHNOLOGIES

3.3.3 Libraries overview

Following is a short overview of the most important libraries, which were
used in front- and backend:

Frontend:

• Axios is used in place of polyfills fetch, as frontend boiler plate was
not an issue and Axios improves browser support and adds auto JSON
transformation.[3]

• i18n is used for translations. All translations are lazy loaded when
loading the page. Translations on the frontend makes the app more
responsive once loaded. While initial fetch time is an issue, but API
calls impair responsiveness.[9]

• Material UI is used as main design guideline, as it comes with Type-
script support, has less boiler plate than Bootstrap and is well received
in the first MVP.[12]

• Material Table is used for every table, as it comes with builtin sort,
data fetching capabilities and search.[11]

• React Select is used for drop down menus, based on experience in
previous projects.[13]

Backend:

• Django REST JWT for JWT implementation

• Gunicorn for serving WSGI in production

• Celery as a worker solution

• DNA Center SDK for DNA center interaction

• Dotenv to enable Twelve factor compliant settings

Multi Tenant Manager with SDN 14

3.4. DESIGN OVERVIEW

3.4 Design overview

3.4.1 Frontend

The frontend is separated into multiple React components. By using small
components their re usability is improved. Each component has its own life
cycle and methods. To gain more stability Typescript is used.

Structure

The following overview shows how the components are organized:

Tenant Manager Web

src

index.tsx
api
utils
resources
models
config
components

App.tsx
common
main

Main.tsx
MainStyles.tsx

Table 3.1: Frontend project structure

If a component has more than one file it is encapsulated in its own folder.
Styles are separated from the main component to make the code more read-
able.

State management

The project relies only on native react state management. Additional li-
braries such as zustand, or react-redux are not used as these either showed
no real benefits opposed to React Hooks with contexts or have not adapted
to the new Hooks system yet.

Multi Tenant Manager with SDN 15

3.4. DESIGN OVERVIEW

3.4.2 Translation

Translations are configured on a string-matching basis. This makes devel-
opment faster and messages in code can be used as a fallback (no additional
code). Additionally i18N is wrapped in a suspense component, which shows
a loading screen while updating translations.

Logging

To mitigate log messages in production a wrapper is used, which turns off
messages on production. Logging of used components is set to only be
enabled in the development environment.

3.4.3 Router

The setup of routing in frontend is designed so that configuration can be
kept centrally. This has the advantage of being able to reuse routes between
different views (user, admin). All routes except login are protected routes,
this removes authentication state checks on components.

3.4.4 API

To interact with the backend API a separate layer is used. This improves
re usability (components can reuse API features) and coupling. Backend
messages are mapped and translated at the API layer level.

Models

Models are defined as interfaces (Interfaces over Types [16]) and also sep-
arated. Apart from the base model update models are defined to gain
stronger typing. Mapping of backend data to a model is done directly in
the API layer.

Multi Tenant Manager with SDN 16

3.4. DESIGN OVERVIEW

3.4.5 Backend

The following overview shows how backend components are seperated:

Tenant Manager Api

apps.api

dnac
migrations
templates
types
models
serializers
utils
views
urls.py

manage.py
config
tests
undocummented dnac client

Table 3.2: Backend project structure

Mostly a standard Django structure is used. Serializers and views are sepa-
rated into multiple files and are organized in separate directories.

app.api The main Django app where most of the applications logic lives.
The API is not separated into multiple apps to keep the structure simple.

types Contains custom enum types used by the database.

dnac Contains the core logic for any DNA center related tasks. Currently
it consists of the sync and the host onboarding tasks.

undocumented dnac client A separate package for the custom written API
client.

Multi Tenant Manager with SDN 17

3.4. DESIGN OVERVIEW

3.4.6 Layers

3.4.7 Layer diagram

Since Django REST framework is used the layering is largely given. The app
can be split into 4 main layers:

Controller maps API calls to corresponding views.

Application handles API calls and does basic error handling.

Domain contains the main logic and data classes of the application. Busi-
ness logic is mainly in the serializers while the data is represented in the
models.

Utils contains utilities used by higher layers like communication with API
endpoints.

Following diagram shows a simplified view of the layers and their most
important components. To keep the diagram readable default Django pack-
ages used are excluded.

Multi Tenant Manager with SDN 18

3.5. CONTAINERIZATION

Figure 3.2: Backend layers

3.5 Containerization

The architecture and design specification is influenced on the configuration
side by the NFR to use docker containers. The applications are designed to
use environment variables for all configuration. The application is designed
to be considered Twelve-Factor[15] compliant.

Multi Tenant Manager with SDN 19

Chapter 4

Implementation

4.1 Authentication

In order to differentiate between different user roles (authorization), authen-
tication is required. Django and Django Rest Framework already provide a
solution for simple token- and session-based authentication. As the front-
and backend are separated the HTTP-Token-based approach seemed useful,
however this method is only appropriate for smaller apps and is not able to
store additional user information.

Considering previous experience with JWT and the fact that front- and back-
end communication is based on JSON, JWT authentication was used based
on the djangorestframework-jwt library. To get all user relevant information
at once the JWT implementation was extended with a custom serializer.

20

4.2. MANAGEMENT

4.2 Management

4.2.1 User and Groups

Djangos user and group management is one of the main reasons the frame-
work has been considered very useful for this project. Unsolved were only
permission related features that resulted in a customized user management:
A role (network- or system administrator) and network objects (Ports, VNs,
etc.) should be assignable to a user.

There are two methods to consider for assigning a role to a user:

• Use groups for roles and assign the user to the group

• Use an attribute for the role in the user model

The first approach is more dynamic, but adds more complexity. The second
approach better aligns with the domain model, therefore attributes were
used. As it is generally considered good practice, the Django User model
was mapped to a custom Profile model referencing the User.

To assign a user to a network object, it has already been decided in the do-
main model to use groups (Departments in the domain model) to categorize
permissions. As a benefit multiple users per Department are supported.s An
assignment is defined trough simple group to network objects references.

4.2.2 Access Control

In order to fulfill the access control use case, an endpoint has been setup
to assign access rights to groups. As a result, each group can be assigned
to a device port either readonly or as an owner. Committing new values
replaces existing assignments. This benefits the administrator in being able
to mass-assign network objects.

Finally, to reduce frontend logic when mass-assigning device ports to groups,
another endpoint has been created to reset port assignments for devices.

Multi Tenant Manager with SDN 21

4.3. DNA CENTER API ENDPOINTS

4.3 DNA Center API endpoints

Where possible official endpoints where used. The official documentation
for those can be found on Cisco Devnet[5] or on the DNA Center web inter-
face.

4.3.1 Official endpoints

The descriptions are taken from the official API documentation.

GET /dna/intent/api/v1/task/taskId Returns a task by specified id.

This endpoint is used to monitor tasks startet on the Platform. It returns
information about the task including completion and failure info.

GET /dna/intent/api/v1/interface/network-device/deviceId/startIndex/recordsToReturn
Returns the list of interfaces for the device for the specified range.

This endpoint returns basic information about all interfaces of a device.
It does not include any information about host onboarding, for which an
undocumented endpoint is used.

4.3.2 Undocumented DNA Center endpoints

As a result of rate limits and other issues a number of unofficial endpoints
were used in the project. Following a list of those endpoints with short
descriptions of what they do and why they where used:

GET /api/v2/data/customer-facing-service/DeviceInfo If used without pa-
rameters this endpoint returns all devices on the fabric including a "roles"
field that marks edge devices.

If a URL parameter with the name id is given the configuration of a specific
device including configured interfaces through the host onboarding feature
can be queried by using the devices UUID.

PUT /api/v2/data/customer-facing-service/DeviceInfo Update all relevant
host onboarding settings of a device in the fabric. The main drawback of this
endpoint is that it requires all settings to be present. So all ports with all
settings must be included in every call to this endpoint. It is recommended
to use this specific endpoint with caution as wrong parameters have bro-
ken edge devices to a point where a reset was necessary while developing.
It is best to use all data from the GET request and only replace the port
configurations.

Multi Tenant Manager with SDN 22

4.3. DNA CENTER API ENDPOINTS

GET /api/v2/data/customer-facing-service/VirtualNetwork Lists all con-
figured virtual networks with basic information. Currently there is no way
to get a list of VNs through the official intent API so this endpoint has to be
used.

GET /api/v2/data/customer-facing-service/virtualnetworkcontext Lists all
configured virtual networks with less information about the VN itself but
includes a list of all scalable groups associated with it.

GET /api/v2/data/customer-facing-service/scalablegroup/access Lists all scal-
able groups configured with all necessary information. Like before there is
no official endpoint to achieve this.

GET /api/v2/data/customer-facing-service/Segment Lists all segments (IP
Pools) configured. In the intent API only new segments can be created but
not listed.

GET /api/v1/siteprofile?namespace=authentication Lists all authentication
profiles configurable on the fabric. In the intent API they can again only be
created and not listed.

Multi Tenant Manager with SDN 23

4.4. DNA CENTER API CLIENTS

4.4 DNA Center API clients

For interacting with the DNA Center APIs there are two clients required.
For official endpoints an existing client can be used while for undocumented
endpoints a new custom client is required.

4.4.1 DNA Center SDK

No official Python SDK for the API is released alonside DNA Center. How-
ever there are multiple community made clients available for the official
API. Many of them are outdated and seem to have been inactive for a long
time. The DNA Center SDK (dnacentersdk)[8] is the most frequently up-
dated option. It is owned and maintained by the Enterprise Networking
Business team at Cisco and gets updated as soon as there is an update on
the platform.

4.4.2 Undocumented API client

For undocumented endpoints there is no existing client, so a simple client
was developed to be used in this project. To make it reusable for other
projects it is separated in a standalone package. It was decided to make the
client as simple as possible, since the undocumented API can change at any
time. For that reason no extensive test where written for it and relies mainly
on system tests.

Multi Tenant Manager with SDN 24

4.5. WORKERS

4.5 Workers

Interactions with the DNA Center API often take a long time. Not only
because many requests are made and rate limiting might apply but also be-
cause POST/PUT requests to the API start tasks in the DNA Center itself.
The same task API is used for documented and undocumented APIs. If this
is done synchronously responses to the frontend can take a long time or
even time out. This would effectively block user interaction. To solve this
long tasks are processed using workers. For this Celery[4] is used as worker
and Redis[14] for the message queue. Both are popular open source projects
and default choices when implementing workers in a Python project. It is
also the main recommendation in Two Scoops of Django for larger projects
[1].

Due to the worker system a task endpoint and database entries are added
to the API so the frontend can display and monitor ongoing tasks similar to
the DNA Center web interface.

Multi Tenant Manager with SDN 25

4.6. DNA CENTER SYNCHRONIZATION

4.6 DNA Center Synchronization

One of the main architectural challenges is defining how the application
synchronizes and updates topology changes on the fabric. As defined in
the requirements changes made in DNA Center or on the devices directly
overwrite any defined configuration in the app itself. This section explores
possible solutions/approaches to this problem.

4.6.1 Getting all edge nodes

The first problem encountered was trying to get all edge nodes. There is
no official endpoint that contains information about edge nodes. Possible
solutions:

• Use two API calls (One to get the device and one to check, whether if
its an edge device)
This results in a slow sync for more than 5 devices because of rate
limiting.

• Use tags in DNA Center (predefined by the DNA center administrator)
This is as reliable as the DNA center admin is.

• Use defined roles in DNA Center (predefined by the DNA center ad-
ministrator)
This is as reliable as the DNA center admin is.

• Use the same undocumented API endpoint as the web interface.
The main drawback of this approach is that no stability is guaranteed.
The endpoint might change on a platform update.

Decision: It was decided with the examiner that the best method is using
unofficial APIs as it is the most automated approach. In fact this approach
is used for most data gathering as the Intent API does not offer options to
list VNs, Scalable Groups, IP Pools and Authentication profiles.

4.6.2 Sync job

The synchronisation can be triggered by any user and is limited to the net-
working objects the user has permissions to. The site administrator can
trigger a full sync of all objects. Any group can only run one sync job at a
time, this way the risk of concurrency problems is minimized. The sync job
takes a while and makes many calls to the DNA Center API, if a user could
trigger multiple syncs at the same time this could lead to significant traffic
and load of the appliance.

Multi Tenant Manager with SDN 26

4.6. DNA CENTER SYNCHRONIZATION

4.6.3 Sync flow

When a sync is triggered on the web portal the sync request is added to the
message queue, and a running job object is returned. The worker will, when
ready, start the synchronization job and write all updates to the database
directly. When finished it also updates the job object in the database as
finished or failed. There currently is no polling done by the fronted to check
for job completion but a list of jobs a specific group has access to can be
displayed. If a user tries to run a job while one is still active in their group
an error message is shown.

Figure 4.1: Sequence diagram of sync

Multi Tenant Manager with SDN 27

4.7. HOST ONBOARDING

4.7 Host onboarding

The task management for the host onboarding feature works in the same
way as for the sync. Before a task is started multiple validations are done
to ensure that the user who triggered the job has access permissions to all
interfaces, VNs and Scalable groups used in the request. If the validation
fails an error is returned and no job is started.

If the request is valid the job is started and handed to the message bro-
ker. The worker first sets each interfaces status to pending in the database,
and a completion status when it is done. This ensures that the same inter-
face can’t be configured by two processes at the same time.

Before any configuration can be pushed old device configuration must be
gotten. This must be done for every PUT to the device as multiple IDs
change after every request.
There are multiple issues that can arise when directly updating interface
configuration. For example an interface type (e.g. from user device to
server) cant be changed, it must first be cleared and then changed. The
web interface of DNA Center just displays an error message when trying to
overwrite the type. Additionally when a port is already configured it has 2
additional ids that have to be added to the request. To make the configura-
tion easier and more user friendly the port assignments are first cleared and
only written to the device afterwards, because of this the worker first has
to wait for completion of the interface clearing task before posting any new
configuration.

Multi Tenant Manager with SDN 28

4.7. HOST ONBOARDING

Figure 4.2: Sequence diagram of host onboarding

Multi Tenant Manager with SDN 29

Chapter 5

Results

5.1 Achieved results

A web platform was created to allow for multi tenancy in the host on-
boarding feature. System administrators can create users, groups and grant
groups permission not only for configuring interfaces but also assign specific
IP pools to groups. All required features where implemented in sufficient
quality for a prove of concept.

A client for interacting with undocumented endpoints on the DNA Center
was built. Because most interactions with the DNA Center are time consum-
ing a job system was build that uses workers to interact with DNA Center
asynchronously. This system allows any user to monitor the status of any
jobs they created.

The optional features interface grouping and CSV batch import of interface
configurations could not be implemented because of time constraints.

30

5.2. POSSIBLE IMPROVEMENTS

5.1.1 Screenshots

Figure 5.1: Screenshot of the port configuration view

Figure 5.2: Screenshot of the user management view

5.2 Possible improvements

There are several improvements that can be made to get the application
from a prove of concept state to a productive tool that can be used in a live
environment.

Backend On the backend testing could certainly be improved by separat-
ing different layers with dependency injection and using more mocks in unit
tests and generally writing more tests. Additionally the unofficial API client
currently relies on system tests to ensure that endpoints have not changed
after updating DNA Center. By creating automated tests to check for API
stability the overall maintainability of the backend can be improved.

Multi Tenant Manager with SDN 31

5.3. POSSIBLE ADDITIONAL FEATURES

Frontend On the frontend no usability tests have been made because the
focus was on delivering a working prove of concept and not an application
for productive use. By conducting usability tests and getting feedback by
users the overall quality of the frontend can be improved. Small possible UI
changes like making lists scrollable have already been noted. Also there are
multiple code quality changes that can be done to reduce code redundancy
with type-mapping.

DNA Center API Many undocumented endpoints where used to achieved
all required functionality. The DNA Center API should be monitored in case
endpoints are changed or added so that undocumented endpoints can be
replaced with official ones.

High loads During load testing it was discovered that the backend system
does not scale well. When updating 500 entries the backend stops respond-
ing within an acceptable time. This could be solved by implementing a
pagination mechanism.

5.3 Possible additional features

RADIUS support Currently an internal system is used for user and group
management. For use in a productive system integration into third party
authentication systems would be crucial. One possible specific system to
support would be RADIUS.

Legacy switches An interesting feature to add would be support of host
onboarding on legacy switches. With this feature switches that are not in
the fabric could be configured which would be a significant advantage to
the native DNA Center host onboarding.

Creation of virtual networks, IP pools and scalable groups In this version
of the tool all relevant objects for host onboarding must be configured on the
DNA Center frontend as a pre-requisite. If the creation of those objects could
be done on the Multi Tenant Manager itself the system administrator would
not need to switch between multiple tools.

Multi Tenant Manager with SDN 32

5.3. POSSIBLE ADDITIONAL FEATURES

Part II

Project documentation

Multi Tenant Manager with SDN 33

Chapter 6

Deployment

6.1 Components

There are multiple physical and virtual components working together. Fol-
lowing is a small overview of all components:

• Client/Browser: The client loads frontend (React app) from server and
communicates encrypted with the server

• Server: The server is a virtual machine, which currently runs on the
infrastructure of the INS. Ubuntu 18.04 is used as an operating system
and deployed trough Ansible roles (fully automated deployment).

• Reverse Proxy: Responsible for communication against the outside
world. Acts as MITM/proxy for the docker containers. Two virtual-
hosts are configured, which forward requests to the right containers.
The reverse proxy is configured for TLS encryption and also forces
redirection to encrypted communication.

• Docker: Docker runs on the server for Container services

• Containers

– Web: Runs Reacts development web server

– Api: Runs Django development/built-in web server and Celeries
worker process

– Db: Runs latest Postgres database server

– Redis: Runs latest Redis broker server

34

6.2. DIAGRAMS

Production Deployment has additional and some changed components:

• Containers

– Proxy: Runs a production ready (sane config values for production-
use) Reverse proxy for other containers.

– Web: Runs an Nginx webserver for serving the production build
of React App.

– Api: Runs Django with Gunicorn and production config. Uses
Whitenoise for serving static files.

• Optional: Web Application Firewall (WAF): In production environ-
ments its best practice to use a WAF for filtering web traffic between
the internet and application servers.

6.2 Diagrams

Figure 6.1: Deployment Diagram in Development

Multi Tenant Manager with SDN 35

6.3. INFRASTRUCTURE

Figure 6.2: Deployment Diagram in Production

6.3 Infrastructure

6.3.1 Repositories

The project is hosted at Gitlab1 and split into the following repositories:

• web: Frontend code

• api: Backend code

• thesis: Mirror of current documentation hosted at Overleaf

• docs: Repository for additional documentation such as drawing, pro-
jectplan, domain model etc.

• setup: Installation manual, Docker Compose config for development
and production

• infrastructure: Ansible roles for VM setup and Dockerfiles for ci builder
images

• load-test: Python scripts for load testing

1https://gitlab.com/cisco-dna-center-multi-tenant-manager

Multi Tenant Manager with SDN 36

6.3. INFRASTRUCTURE

6.3.2 Continuous Integration

As previously mentioned, projects deployment is based on multiple repos-
itories. By using Ansible, the server development server, can be deployed
automatically. Built images are stored in Gitlab’s Container registry.

The following list briefly describes a usual code deployment cycle:

1. Run Tests (Linter, Unit, Integration, Sonar Gate) for API/Web

2. Build docker images for API/Web and push them to Gitlab’s container
registry and Sync images to the setup project

3. Deploy images to the VM trough docker-compose
Two compose files are provided: One for development and one for
production-use.
Development uses a special debugging configuration and no reverse
proxy.
The production version is provided for future installation trough cus-
tomers and to fullfill NFRs.

Multi Tenant Manager with SDN 37

6.3.
IN

FR
A

STR
U

C
TU

R
EFigure 6.3: CI/CD

M
ultiTenant

M
anager

w
ith

SD
N

38

Chapter 7

Use cases fully dressed

7.1 Introduction

The fully dressed use cases are used for system tests and as a basis for
the tickets in the project planning. The previously defined use cases in brief
descriptions and actors are the basis for the fully dressed use cases. As many
features changed during the initial planning stage the fully dressed use cases
where rewritten after the elaboration stage for implemented features only.

39

7.2. USE CASES

7.2 Use cases

Name UC01: List network devices

Description A department IT manager views a list with an overview of
of all network appliances they have read access to.

Actors Department IT manager

Precondition
• User must be logged in

• Devices must be synced

• User has ownership of at least one port

Postcondition
• All devices the user has ownership of is displayed

Success Story
1. Navigate to the devices tab

Extensions -

Table 7.1: UC01: List network devices

Multi Tenant Manager with SDN 40

7.2. USE CASES

Name UC02: Grant and revoke access

Description A sysadmin grants or revokes a specific group read/write
access to a specific switch/port

Actors System admin

Precondition
• User must be logged in

• User must be admin

Postcondition
• Users in group can view/edit specific interfaces

• After refreshing assignment is displayed on interface
overview

Success Story
1. Select multiple ports

2. Open assignment popup

3. Select group to assign

4. Save assignment

Extensions
• Remove assignment

• Edit assignment

Table 7.2: UC02: Grant and revoke access

Multi Tenant Manager with SDN 41

7.2. USE CASES

Name UC03: CRUD users and groups

Description A sysadmin creates/updates/deletes users and groups and
adds users to groups.

Actors System admin

Precondition
• User must be logged in

• User must be admin

Postcondition
• Users are assigned a group

• User account is created/removed

Success Story
1. Create an account

2. Create a group

3. Assign a group to account

Extensions
• Edit user group

• Edit group

• Delete user

• Delete group

Table 7.3: UC03: CRUD users and groups

Multi Tenant Manager with SDN 42

7.2. USE CASES

Name UC04: View changelog

Description Any user views a history of changes made on a specific
switch they have access too.

Actors System admin, Department IT manager

Precondition
• User must be logged in

Postcondition
• An interface configuration has been made in the users

group

Success Story
1. History of own group is displayed, if logged in as ad-

min all history is shown

Extensions
• Filter by group as admin

Table 7.4: UC04: View changelog

Multi Tenant Manager with SDN 43

7.2. USE CASES

Name UC05: Configure port

Description A department IT manager sets different preconfigured port
settings like port type and authentication method.

Actors Department IT manager

Precondition
• User must be logged in

• User must have ownership of multiple interfaces

Postcondition
• The interface configuration is saved

• A job to deploy the settings on DNA Center is created

Success Story
1. Select multiple interfaces in the device overview

2. Set port type, IP Pool, scalable group and authentica-
tion method

Extensions

Table 7.5: UC05: Configure port

Multi Tenant Manager with SDN 44

7.2. USE CASES

Name UC06: Trigger DNA center sync

Description Any authenticated user manually triggers a sync to update
all data of the application with the current state from the
DNA center.

Actors System admin, Department IT manager

Precondition
• User must be logged in

Postcondition
• A sync job is created

• The user is forwarded to the job overview page

• All objects from the DNA Center are updated to the
DNA Centers current state after the job is finished

Success Story
1. Trigger a sync using the sync button

Extensions

Table 7.6: UC06: Trigger DNA center sync

Multi Tenant Manager with SDN 45

Chapter 8

Data model

The database was defined using an application first strategy, meaning that
the database is created using the defined Django models. Upgrades/migra-
tions to the database are done using Djangos migration mechanism. Follow-
ing class was automatically generated using the Django extensions library.

46

Figure 8.1: Class diagram

M
ultiTenant

M
anager

w
ith

SD
N

47

Chapter 9

API

9.1 Endpoints

Following is a short overview of the most important endpoints at root level:

• /users User management (CRUD) for admins

• /user Change of user preferences for each user himself

• /groups Group management (CRUD) and access right management for
admins

• /authentication Authentication, refresh and verify of JWT

• /scalable-groups Retrieval of available scalable groups

• /virtual-networks Retrieval of available virtual networks,

• /authentication-types Retrieval of available authentication-types

• /devices Retrieval of available devices and reset of access rights

• /jobs Retrieval of jobs

• /sync Trigger of sync jobs

• /port-configuration Configure assigned ports

• /history Retrieval of history

• /admin Administration of the Database (useful for development pur-
poses)

All API functions are filtered by the users permission.

48

9.2. DETAILED DOCUMENTATION

9.2 Detailed documentation

A detailed API documentation is created using ReDoc and OpenAPI. This
documentation includes schemas for requests and replies for all available
endpoints. The latest API documentation can be retrieved from the backend
application under http://BASE-URL/api-docs.

Figure 9.1: API documentation

Multi Tenant Manager with SDN 49

List of Figures

1.1 DNA center overview . 3

2.1 Use case diagram . 6

3.1 Domain model . 12
3.2 Backend layers . 19

4.1 Sequence diagram of sync . 27
4.2 Sequence diagram of host onboarding 29

5.1 Screenshot of the port configuration view 31
5.2 Screenshot of the user management view 31

6.1 Deployment Diagram in Development 35
6.2 Deployment Diagram in Production 36
6.3 CI/CD . 38

8.1 Class diagram . 47

9.1 API documentation . 49

B.1 Load test results . 8
B.2 Load test results without Django limits 8

C.1 Sonarqube web . 12
C.2 Sonarqube api . 13

D.1 Project Roadmap . 17

F.1 Login view . 34
F.2 Devices view . 34
F.3 History view . 35
F.4 History view . 35

50

List of Figures

F.5 Network view . 36
F.6 Interfaces view . 36

G.1 Time by milestone . 37
G.2 Time by category . 38
G.3 Time by project members . 38
G.4 Time comparison . 39

Multi Tenant Manager with SDN 51

List of Tables

2.1 NFR according to ISO-9126 [10] . 8

3.1 Frontend project structure . 15
3.2 Backend project structure . 17

7.1 UC01: List network devices . 40
7.2 UC02: Grant and revoke access . 41
7.3 UC03: CRUD users and groups . 42
7.4 UC04: View changelog . 43
7.5 UC05: Configure port . 44
7.6 UC06: Trigger DNA center sync 45

B.1 NFR Checklist . 6
B.2 System test scenarios . 9
B.3 System test scenarios . 10

D.1 Changelog Project planning . 16
D.2 Responsibilities . 21
D.3 Risk list . 25
D.4 Quality Assurance . 26

52

Glossary

API Application Programming Interface. 2, 4, 5, 8, 10, 16, 53, see Application
Programming Interface

Application Programming Interface Programming interface in software. Us-
able and extendable by other software components. 2

CI Continuous Integration. 22, 53, see Continuous Integration

Cisco Digital Network Architecture An overlay based SDN solution by Cisco
Systems. 2

Continuous Integration Automated build environment. 22

DNA Cisco Digital Network Architecture. 2–4, 53, see Cisco Digital Net-
work Architecture

HSR University of Applied Science Rapperswil. 21

Mixed Scrum Project management process based on Scrum mixed with the
Unified Process model. 18

NFR None-functional Requirements. 5, 6, 8, 52, 53, see None-functional
Requirements

PoC Proof of Concept. 3, 4, 18, 24, 53, see Proof of Concept

Proof of Concept Minimal product to proof a theory/concept. 4

SDN Software defined networking. 2, 10, 53, see Software defined network-
ing

53

Glossary

Software defined networking Technology that enables network automation
through programming. 2

VCS Version Control System. 22, 54, see Version Control System

Version Control System System for versioning source files. 22

Multi Tenant Manager with SDN 54

Bibliography

[1] Audrey Roy Greenfeld Daniel Roy Greenfeld. Two Scoops of Django
1.11. Best Practices for the Django Web Framework. Two Scoops Press,
2017.

[2] Prof. Laurent Metzger. “CN2 Lecture 9 - Software Defined Access
v1.0”. 2019.

[3] Axios. url: https://github.com/axios/axios.

[4] Celery Worker. url: https://docs.celeryproject.org/en/latest/
userguide/workers.html (visited on 12/12/2019).

[5] Cisco Devnet Intent API Documentation. url: https : / / developer .
cisco.com/docs/dna-center/api/1-3-1-x/ (visited on 12/12/2019).

[6] Cisco DNA Center Datasheet. url: https://www.cisco.com/c/en/us/
products/collateral/cloud-systems-management/dna-center/nb-
06-dna-center-data-sheet-cte-en.html#CiscoDNACenter1310appliancescaleandhardwarespecifications
(visited on 03/10/2019).

[7] Cisco DNA Center overview. url: https://developer.cisco.com/
docs/dna-center/ (visited on 03/10/2019).

[8] DNA Center SDK. url: https://github.com/cisco-en-programmability/
dnacentersdk (visited on 12/12/2019).

[9] i18n. url: https://www.npmjs.com/package/i18n.

[10] ISO/IEC 9126. url: https://en.wikipedia.org/wiki/ISO/IEC_9126
(visited on 03/10/2019).

[11] Material Table. url: https://material-table.com/#/.

[12] Material UI. url: https://material-ui.com/.

[13] React Select. url: https://react-select.com/home.

[14] Redis. url: https://redis.io/ (visited on 12/12/2019).

[15] Twelve-Factor. url: https://12factor.net/ (visited on 12/12/2019).

55

https://github.com/axios/axios
https://docs.celeryproject.org/en/latest/userguide/workers.html
https://docs.celeryproject.org/en/latest/userguide/workers.html
https://developer.cisco.com/docs/dna-center/api/1-3-1-x/
https://developer.cisco.com/docs/dna-center/api/1-3-1-x/
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-dna-center-data-sheet-cte-en.html#CiscoDNACenter1310appliancescaleandhardwarespecifications
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-dna-center-data-sheet-cte-en.html#CiscoDNACenter1310appliancescaleandhardwarespecifications
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-dna-center-data-sheet-cte-en.html#CiscoDNACenter1310appliancescaleandhardwarespecifications
https://developer.cisco.com/docs/dna-center/
https://developer.cisco.com/docs/dna-center/
https://github.com/cisco-en-programmability/dnacentersdk
https://github.com/cisco-en-programmability/dnacentersdk
https://www.npmjs.com/package/i18n
https://en.wikipedia.org/wiki/ISO/IEC_9126
https://material-table.com/#/
https://material-ui.com/
https://react-select.com/home
https://redis.io/
https://12factor.net/

Bibliography

[16] Typescript Interfaces over Types. url: https://www.typescriptlang.
org/docs/handbook/advanced-types.html#interfaces-vs-type-
aliases.

Multi Tenant Manager with SDN 56

https://www.typescriptlang.org/docs/handbook/advanced-types.html#interfaces-vs-type-aliases
https://www.typescriptlang.org/docs/handbook/advanced-types.html#interfaces-vs-type-aliases
https://www.typescriptlang.org/docs/handbook/advanced-types.html#interfaces-vs-type-aliases

Bibliography

Part III

Appendix

Multi Tenant Manager with SDN 57

Appendix A

Personal reports

A.1 Aaron Meier

At the beginning of the project I was not sure if the product is to network
heavy as software development is the discipline I want to focus on in my
studies at the HSR. It was a great surprise that we where able to mainly
focus on software engineering while working with networks as an abstract
concept by using APIs.
Learning about DNA Center was more interesting than expected, I have
already worked with enterprise networks but never worked with an infras-
tructure based on a Software Defined Networking approach.
It was a pleasure working with the INS and Cisco, issues where addressed
quickly and we had the opportunity to adapt our project goals dynamically
when there where unexpected technical limitations. I greatly look forward
to writing the bachelor thesis.

A.2 Dennis Ligtenberg

As someone with a software engineering background this project was inter-
esting for me from the very beginning as it combines the world of software
engineering with modern networking. Instead of just writing some custom
software we had the ability to write software that interacts with a special
technical subject matter. Because of my work at Cisco I have obviously al-
ready heard and looked at the DNA Center before starting this project but
never got to do a deep dive into it and especially its APIs. At first un-
derstanding many of the new concepts like Virtual Networks and scalable
groups was challenging as I have only been taught "old school" networking
at the network related courses I have taken at the HSR. This project was a
great chance to learn a lot of new concepts that I would otherwise not have
encountered.

1

A.2. DENNIS LIGTENBERG

The project naturally wasn’t without its pitfalls. Reverse engineering un-
documented API endpoints that at first glance have seemingly random be-
haviour could get frustrating. But one thing that the problems that arised
taught me is that an agile approach to project management is great for
projects where the subject matter is largely unknown. Thanks to this we
where able to quickly adapt and change our project and planning to handle
problems.
The work with all of the involved parties was one of the highlights of this
project. Most meeting felt positive and productive while problems where
always addressed quickly. No meeting ever left a sour taste in one’s mouth
but always ended on a positive note. Because of this and the interesting
product we are working on I am really looking forward to continuing work-
ing together during the bachelor thesis.

Multi Tenant Manager with SDN 2

Appendix B

Testing

Trough projects development cycle, it has been defined that testing is fo-
cused on the app and no external systems, such as DNA Center.

B.1 Backend

Unit tests are used for general code coverage. For integration Sunny Case
tests are used (test only normal use cases). As the projects scope is con-
sidered more PoC oriented, this scenario allows more development time on
features. Testing heavily relies on PyTest1 and Djangos respective Django
REST TestCases classes. As mentioned in Two Scoops of Django[1, P. 305]
tests should cover everything except parts of the software that already are
covered trough Django core and third-party packages.

B.1.1 Results

There were 38 integration tests and Unit tests defined which results in a 70%
code coverage.

---------- coverage: platform darwin, python 3.7.5-final-0 -----------
Coverage HTML written to dir htmlcov
Coverage XML written to file coverage.xml

38 passed in 59.86s

Listing B.1: PyTest results

1https://pytest.org/

3

B.2. FRONTEND

B.2 Frontend

As initially defined by the project partner, the projects scope relies on func-
tionality over design. Therefore it was agreed to not unit/e2e test the fron-
tend application and solely rely on system tests.

Multi Tenant Manager with SDN 4

B.3. NFR VALIDATION

B.3 NFR Validation

In order to check NFR, following is a checklist for completed NFR:

Description and acceptance criteria State Notes

NFR1 Only authenticated users should have
access to the system. Is authentication
required?

Accepted Satisfied trough Djangos au-
thentication backend, JWT
implementation, permissions
and testing

NFR2 Passwords should be protected
trough modern measures. Are all
passwords stored securely by default
(Hash + Salt)?

Yes Satisfied trough Djangos au-
thentication backend

NFR3 Communication between the user and
the system should be encrypted. Is
the latest TLS-encryption supported?

Yes Satisfied trough the reverse
proxy ssl configuration

NFR4 On failed sync the app should use fall-
back data and indicate outdated data
with an error If sync fails is there
an error message suggesting that out-
dated data is used?

Yes Inplementen on back and
frontend

NFR5 Failure of configuration changes
should be traceable for adminis-
trators. Are configuration failures
obvious in the systems log?

Yes Visible in system logs

NFR6 The system should respond without a
noticeable delay (=total of 10 seconds
between request and response) under
full workload (=100 simultaneous re-
quests) for the login operation. Was
the response time goal tested trough
a load test?

Yes Proven in load testing, returns
an error on large loads

NFR7 For future maintainability the system
should depend on Ciscos intent APIs.
Are all API calls made to intent based
endpoints?

No Because of technical lim-
itations undocumented
endpoints had to be used.
Workaround was accepted by
the examiner.

Multi Tenant Manager with SDN 5

B.3. NFR VALIDATION

NFR8 The system should scale well on a
typical campus networks growth with
a maximum of 5,000 devices, a to-
tal of 480,000 ports, 256 VNs (based
on Cisco DNAs limitation [6]). This
means while the initial fetch of the
above amount of information from
DNA Center is running, response
time of the application does not ex-
ceed 10s (time to display a loading
screen/error message or the result).
Was there a test made for the above
scenario to validate the applications
responsiveness?

Yes Is covered by replying with an
error before timeout

NFR9 The systems installation should be
straight forward and deployable
trough Docker containers. Are
containers defined for all software
components?

Yes All components are in a con-
tainer and deployable with a
few easy steps

Table B.1: NFR Checklist

Multi Tenant Manager with SDN 6

B.4. PERFORMANCE TESTS

B.4 Performance tests

In order to full fill the NFR8 (System should scale well on typical campus
networks), load tests have been created to check whether the application
needs additional changes.

B.4.1 Scenario

As a testing scenario the assignment of device port owner rights to a group
has been chosen, as this is one of the more resource intensive task, that does
not rely on DNA center (external systems) and can be tested with sample
data.

• POST authentication: Authenticate as system administrator

• GET devices: Load all available device ports

• POST group membership: Set group as owner on all device ports

• POST group membership: Remove group as owner on all device ports

The definition of maximum devices/ports, based on DNA centers limita-
tions is 5’000 devices with 480’000 ports. As reasonable load testing values
first a batch of 120’000 ports has been tested (5’000 devices with each 26
ports minus 2 uplinks).

B.4.2 Results

At first there was a bottleneck because SQLite is used in development, this
leads to a I/O speed limitation. With SQLite it was not even possible to
generate and save 5’000 devices in nominal time.
By switching to a Postgres database on the development environment, sam-
ple data could be generated. Unfortunately, loading the amount of devices
information timed out (response time > 60s).
Finally, the amount of sample data was reduced to 500 devices or 12000
device ports and fetching devices was successfully.

Multi Tenant Manager with SDN 7

B.4. PERFORMANCE TESTS

Figure B.1: Load test results

Another issue is that assigning 12000 ports is not allowed by Django (Limit
is 1000), therefore assigning a new port membership fails with the following
message:

exception The number of GET/POST parameters exceeded
settings.DATA_UPLOAD_MAX_NUMBER_FIELDS.

Listing B.2: Load test exception

This was solved by increasing DATA_UPLOAD_MAX_NUMBER_FIELDS to 100’000.

Figure B.2: Load test results without Django limits

This result shows that, membership assignment of 12’000 device ports is in-
deed possible, but fetching the same amount of data exceeds the predefined
maximum response time of 10 seconds. A possible solution would be to in-
troduce pagination2 in the relevant endpoints. However as predefined, the
NFR is still in its acceptance area, as an error message is displayed in the
frontend suggesting an invalid response.

2https://www.django-rest-framework.org/api-guide/pagination/

Multi Tenant Manager with SDN 8

B.5. SYSTEM TESTS

B.5 System tests

B.5.1 Scenarios

The following scenarios

Use case Description

Test 1 List network devices A department IT manager views a list
with an overview of of all network ap-
pliances they have read access to.

Test 2 Grant and revoke access A sysadmin grants or revokes a spe-
cific group read/write access to a spe-
cific switch/port

Test 3 CRUD users and groups A sysadmin creates/updates/deletes
users and groups and adds users to
groups.

Test 4 View changelog Any user views a history of changes
made on a specific switch they have
access too.

Test 5 Configure port A department IT manager sets dif-
ferent preconfigured port settings like
port type and authentication method.

Test 6 Trigger DNA center sync Any authenticated user manually
triggers a sync to update all data of
the application with the current state
from the DNA center.

Table B.2: System test scenarios

B.5.2 Test logs

This is the test log of the most recent system tests. The system tests where
run whenever a feature was finished or improved.

Use case Accepted Notes

Test 1 List network devices Yes None

Test 2 Grant and revoke access Yes None

Test 3 CRUD users and groups Yes None

Test 4 View changelog Yes A bit simple, could contain more in-
formation.

Multi Tenant Manager with SDN 9

B.5. SYSTEM TESTS

Test 5 Configure port Yes None, works with the same limita-
tions as in DNA Center.

Test 6 Trigger DNA center sync Yes None

Table B.3: System test scenarios

Multi Tenant Manager with SDN 10

Appendix C

Metrics

11

C.1. SONARQUBE REPORTS

C.1 Sonarqube reports

C.1.1 Frontend

Figure C.1: Sonarqube web

Multi Tenant Manager with SDN 12

C.1. SONARQUBE REPORTS

C.1.2 Backend

Figure C.2: Sonarqube api

The achieved metrics are within the defined acceptable limits. The single
code smell on the backend is due to cyclic complexity caused by processing
the data passed from the DNA Center API and can not easily be resolved.

Multi Tenant Manager with SDN 13

C.2. CODE

C.2 Code

Following is an overview of Lines of code (calculated with cloc) of the main
code bases.

C.2.1 Backend

Language files blank comment code

Python 31 341 60 1240
HTML 1 0 2 19

SUM: 32 341 62 1259

Listing C.1: App lines of code

Language files blank comment code

Python 11 52 24 200

SUM: 11 52 24 200

Listing C.2: DNAC client lines of code

Language files blank comment code

Python 6 119 3 484

SUM: 6 119 3 484

Listing C.3: Tests lines of code

C.2.2 Frontend

Language files blank comment code

TypeScript 77 380 42 3835

SUM: 77 380 42 3835

Multi Tenant Manager with SDN 14

C.3. GITLAB

Listing C.4: Frontend lines of code

C.2.3 Total

This is the total of all written code (including infrastructure and documen-
tation code):

Language files blank comment code

JSON 7 2 0 16204
TypeScript 77 380 42 3835
TeX 49 549 163 2544
Python 56 581 152 2204
YAML 20 116 17 1142
Dockerfile 8 38 12 180
Markdown 7 56 0 165
reStructuredText 10 114 191 126
Bourne Shell 5 13 3 53
XML 5 0 0 39
HTML 2 0 2 37
INI 2 4 0 28

SUM: 248 1853 582 26557

Listing C.5: Total lines of code

C.3 Gitlab

• Merge requests: 43 MRs (42 successfully merged)

• Issues: 24 Issues

• Commits (Code related): 255 Commits

• Commits (Infrastructure, testing and documentation: 279 Commits

Multi Tenant Manager with SDN 15

Appendix D

Project planning

This chapter explains how the project will be done.

26.09.2019 0.1 Initial definition Aaron Meier

03.10.2019 0.2 Update milestones Aaron Meier

22.10.2019 0.3 Update with infrastructure setup Aaron Meier

Table D.1: Changelog Project planning

D.1 Roadmap

This projects planning is based on typical estimates for milestones/phases
by previous Software Engineering modules which were taught at the HSR.

The following project preconditions were known after the projects Kick-Off:

• Start: 19.09.2019

• Resources: 480h (2Members ∗ 8ECTS ∗ 30h)

• Presentation: 20.12.2019

• End: 20.12.2019 17:00

• Working days: Weekly on Tuesday and Friday

This results in a weekly work amount of 17 hours with a total of 28 working
days.

16

D
.1.

R
O

A
D

M
A

P

Figure D.1: Project Roadmap

M
ultiTenant

M
anager

w
ith

SD
N

17

D.2. PROJECT MANAGEMENT

D.2 Project management

Our project management is based on the method Mixed Scrum. This means
work is split into Inception, Elaboration, Construction, followed by a short
Transition phase. The advantage of this is a thorough analysis of require-
ments without loosing the flexibility in the Construction phase. As the
projects goals are generally more PoC based and very new to us, it is impor-
tant to have this. As can be seen on the projects roadmap

D.2.1 Phases and estimates

This is an general overview of project phases and estimates, which can also
be seen in the projects roadmap.

• Inception (colored green): 1 week (~7%)

• Elaboration (colored orange): 4 weeks (~29%)

• Construction (colored blue): 8 weeks (~57%)

• Transition (colored yellow): 1 week (~7%)

Multi Tenant Manager with SDN 18

D.2. PROJECT MANAGEMENT

D.2.2 Milestones and artifacts

The project is split into the following milestones (in bold) and their artifacts
to measure its progress.

0. Project start

• Task description

1. Requirement engineering and project plan done

• Project plan

• Project management

• Textual project plan

• Requirements (Specification and NFRs)

• Project Scope

• Use Cases

• Use Case Diagram

• Domain model

• Wireframes (UI Mockups)

2. Architecture specification and infrastructure setup done

• Infrastructure setup:

– IDE
– VCS
– CI
– Testing
– Static Code analysis
– Deployment
– Bug tracking

• Plan to minimize risks (Risk management)

• Working units defined as User stories

• Architecture Protoype with general Subsystem, Interfaces

3. MVP Release: Release of MVP (Version 0.0.1, Codename "Spooky")

4. Beta Release: Release of Beta (Version 0.1, Codename "Snowflake")

Multi Tenant Manager with SDN 19

D.2. PROJECT MANAGEMENT

5. Final Release: Release of RTM (Version 1.0, Codename "Snowman")

• Define and run system tests

• Final Release with resolved bugs

6. Documentation done: Full Documentation

7. Project end: Presentation

D.2.3 Time evaluation

Time will be tracked trough toggle based on the defined Milestones and
type of work. Type of work is defined in the following categories:

• Development

• Research

• Documentation

Multi Tenant Manager with SDN 20

D.4. RESPONSIBILITIES

D.3 Meetings

Advisory meetings occur weekly, usually at the University of Applied Sci-
ence Rapperswil (HSR), and take one hour. Contents of the meetings reflect
the current projects state.
Advisory meeting protocols are written in English and sent to all members
as soon as possible.

As both project members work in the same room, additional meetings are
not necessary. If something important comes up, we track that in our bug
tracker by creating an issue.

To assure bug reports quality for code we also use a predefined template for
code related issues.

Every friday afternoon, further project steps are discussed. While in con-
struction phase this also works as a weekly review of the ongoing sprint.

D.4 Responsibilities

Both project members are full stack developers. Trough previous projects
we found out, that assigning responsibilities to detailed results in a more
separated work environment, which is not what we like. Therefore respon-
sibilities for front- and backend development have not been separated.

Member Task

Aaron Meier DevOps, Developer

Dennis Ligtenberg Product Owner, Developer

Table D.2: Responsibilities

Multi Tenant Manager with SDN 21

D.5. INFRASTRUCTURE

D.5 Infrastructure

Test environment (Lab) hardware:

• DNA Center (IP: 10.6.10.10)

• ISE (IP: 10.6.10.20)

• WLC (IP: 10.6.3.30)

• DHCP (IP: 10.6.3.50)

• Access Point (DHCP Range)

• Raspberry PIs (DHCP Range)

Development environment:

• Version Control System (VCS), Continuous Integration (CI), Con-
tainer Registry, Issue and bug tracking: Gitlab

• Documentation: Overleaf

• Code Analysis: Sonarqube

• Live Demo and user testing: VM with Ubuntu by INS

• Communication: Cisco Webex, Mail

• IDE: IntelliJ Pycharm (Backend), IntelliJ Webstorm (Frontend)

• Tool chain: Docker/Docker-Compose (Deployment), VScode/Ansi-
ble (Inftrastructure setup), Plantuml (Planning), Draw.io (Drawing),
StarUML (UML), Postman, Google Chrome Developer Tools, Firefox
Developer Edition (Reverse engineering)

Multi Tenant Manager with SDN 22

D.6. DEVELOPMENT CONCEPTS

D.6 Development concepts

If no other specification the basis concept is Git flow. Initial setup/work
of the project is done together in discussion to make sure every member
knows all the projects dependencies. After that, every team member assigns
the issue/working unit he is planning to working on and starts developing
in their own branch. Branches are devided into feature-/issue- prefixes. The
member then should commit as early and often as possible (track changes in
small parts) into the branch. After successfully implementing a feature and
reaching D.6.1 the branch gets merged with current development-branch.
In this state a new development release gets deployed and can be tested via
the live system. Releasing a new production version is done by tagging and
merging to master branch.

D.6.1 Definition of Done

Feature/Issue is mergeable to development branch if the following condi-
tions are met:

• Tests written/updated (common sense typical cases) and run without
errors

• Code style guide goals are met

• Static code analysis has no errors

• Code has been reviewed by another person

• Quality gate of sonarqube has been reached: 50% coverage, No code
smells, no OWASP errors

D.6.2 Review

We use the code review feature of Gitlab with additional merge request
templates. The following process will be done on each review from another
person:

• Checkout feature/issue branch and test if feature works or issue has
been resolved

• Unit/Integration tests have been defined

• The implementation is architecture/design compliant

• Variable and class names are meaningful and have been well selected

• Other code smells, which cannot easyly be found by static code analy-
sis (e.g. solution sprawl) do not exist in added code

Multi Tenant Manager with SDN 23

D.7. BACKUPS

D.7 Backups

The projects main storage solution is based on Git repositories. These are
decentrally stored and can be easily restored from one or more destinations.
Also the important branches are all protected and minimize risk of acciden-
tal overwrite. Additionaly we mirror the main documentation from Overleaf
to Gitlab and rely mainly on well known public platforms.

D.8 Risk management

As mentioned earlier this project is based more on PoC and therefore the
usual potential risks are rather small. The same applies to the impact of
such a risk. If a risk occurs we have enough time planned to handle it, but
it might decreases the chance to implement additional features.

Multi Tenant Manager with SDN 24

D
.8.

R
ISK

M
A

N
A

G
EM

EN
T

Description E1 S2 Mitigation Action at occurence

1
Lab Infrastructure will not be
available on defined date

2 1
Plan other work units to be flexi-
ble in working capacity

Do other project relevant tasks
first

2
Synchronisation/API can not be
done trough missing API fea-
tures

4 7

As a backup solution parsing
DNA centers web UI can always
being considered. Define project
scope exact and document differ-
ences.

Search for different possible so-
lutions and present to project
partner. Inform project advisor/-
partner and explain differences
in possible solutions

3
Cisco DNA Center API features
do not work

6 9
Plan enough time for API re-
search

Inform Cisco (make a wish),
inform project advisor/-
partner and explain possible
workarounds.

Table D.3: Risk list

1Possibility for Occurance
2Weighted Damage

M
ultiTenant

M
anager

w
ith

SD
N

25

D.9. QUALITY ASSURANCE

D.9 Quality assurance

Assurance Time Goal

Code review for merges into development branch with another person After pull request Higher code
quality

Proofreading of documentation Transition phase Less typos
and content
mistakes

Unit and Integration tests Continuously Less bugs

Use branches (issue/feature) Continously Less merge
conflicts and
better tracking
of changes

Dependency checks On every push Better security

Use of linters On every push Less code
smells and
compliant
code style
guide

Use of quality gates On every merge request

Table D.4: Quality Assurance

D.9.1 Exception Handling

Backend

1. Log error and stack trace

2. Show error message in debug mode in output

3. Disable spreading of error and further processing of higher compo-
nents if possible

4. In API request respond with an error code and message based on the
HTTP standard

As availability is not very important (based on NFRs), we will not add any
error handling code for monitoring (e.g. watchdog, mailing). On the other
hand consistency in sync is important, therefore we use rollbacks if errors
occur.

Frontend The frontends implementation relies on the Backend codes and
doesn’t evaluate Backend messages.

Multi Tenant Manager with SDN 26

D.9. QUALITY ASSURANCE

1. Errors from API requests will be handled directly by its error code.
Then a message gets assigned and the error will be shown trough a
notification alert to the user.

2. In debug mode error messages are logged to the web browsers console.

Multi Tenant Manager with SDN 27

Appendix E

Wireframes

28

E.1. USER VIEWS

E.1 User Views

Multi Tenant Manager with SDN 29

E.2. ADMIN VIEWS

E.2 Admin Views

Multi Tenant Manager with SDN 31

Appendix F

User interface screenshots

F.1 Login view

Figure F.1: Login view

F.2 Devices view

Figure F.2: Devices view

34

F.3. HISTORY VIEW

F.3 History view

Figure F.3: History view

F.4 Jobs view

Figure F.4: History view

Multi Tenant Manager with SDN 35

F.5. NETWORK VIEW

F.5 Network view

Figure F.5: Network view

F.6 Interface view

Figure F.6: Interfaces view

Multi Tenant Manager with SDN 36

Appendix G

Time tracking

G.1 Time tracking by milestone

Figure G.1: Time by milestone

37

G.2. TIME TRACKING BY CATEGORY

G.2 Time tracking by category

Figure G.2: Time by category

G.3 Time tracking by project members

Figure G.3: Time by project members

Multi Tenant Manager with SDN 38

G.4. TIME TRACKING TO ACTUAL/PLANNED COMPARISON

G.4 Time tracking to actual/planned comparison

Figure G.4: Time comparison

Multi Tenant Manager with SDN 39

Appendix H

Code and installation
documentation

The following code and installation documentation is auto generated with
Sphinx and is also available in HTML form within the backend.

40

Multi Tenant Manager - Code and
installation documentation

Release 1.0.0

Aaron Meier, Dennis Ligtenberg

Dec 19, 2019

CONTENTS

1 Installation 1
1.1 Dependencies . 1
1.2 Download images . 1
1.3 Manual build . 1
1.4 Run Development . 1
1.5 Run production . 2

2 Configuration 3
2.1 Reference . 3

2.1.1 Backend settings: . 3
2.1.2 Frontend settings: . 4

3 Code documentation 5
3.1 apps package . 5

3.1.1 Subpackages . 5
3.1.1.1 apps.api package . 5

3.1.2 Module contents . 9
3.2 undocumented_dnac_client package . 9

3.2.1 Subpackages . 9
3.2.1.1 undocumented_dnac_client.api package . 9

3.2.2 Submodules . 11
3.2.3 undocumented_dnac_client.exceptions module . 11
3.2.4 undocumented_dnac_client.response_codes module . 11
3.2.5 undocumented_dnac_client.utils module . 11
3.2.6 Module contents . 11

Python Module Index 13

Index 15

i

ii

CHAPTER

ONE

INSTALLATION

The following documents the installation for the Multi Tenant Manager Project.

1.1 Dependencies

• Docker

• Docker-Compse

• Access to the docker images (hosted on Gitlab)

1.2 Download images

docker login registry.gitlab.com

Image locations
WEB_IMAGE=registry.gitlab.com/cisco-dna-center-multi-tenant-manager/setup/web
API_IMAGE=registry.gitlab.com/cisco-dna-center-multi-tenant-manager/setup/api

Production
docker pull $WEB_IMAGE:latest-production
docker pull $API_IMAGE:latest-production

Development
docker pull $WEB_IMAGE:latest-development
docker pull $API_IMAGE:latest-development

1.3 Manual build

Prebuilt Images are stored in the registry. If you have access to the source code you may also build the images yourself
trough their Dockerfiles. After that you should update .env with the new image locations.

1.4 Run Development

docker-compose up

1

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

1.5 Run production

docker-compose -f docker-compose.production.yml up

2 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

Configuration is supported only trough environment variables. By using the predefined setup repository, access to the
.env file is already given. This file holds all configuration data and can be adjusted to preference.

2.1 Reference

If you want to customize the deployment even more, the following tables lists all available settings.

2.1.1 Backend settings:

Environment variable Default Value Description
SECRET_KEY SECRET_KEY Secret key the backend uses as a seed
PRODUCTION False Enable production mode
CONTEXT_PATH api Set the path were the api is available
LANGUAGE_CODE en-US Set the language
TIME_ZONE UTC Set the time zone
DATABASE_ENGINE sqlite Choose between sqlite or postgres
DATABASE_PATH ./ Path for sqlite
DATABASE_NAME tenantmanager Database name
DATABASE_USER postgres Database user
DATABASE_PASSWORD postgres Database password
DATABASE_HOST 127.0.0.1 Database host
DATABASE_PORT 5432 Database port
EMAIL_HOST localhost Email host
EMAIL_HOST_USER username Email user
EMAIL_HOST_PASSWORD password Email password
EMAIL_PORT 587 SMTP port
EMAIL_USE_TLS True Enable encryption for SMTP
LOG_LEVEL INFO Choose between DEBUG, INFO and WARN
DNA_DEMO_MODE False Enable demo mode, loads sample data
DNA_USERNAME admin DNA center administrator for connections
DNA_PASSWORD password DNA center password for connections
DNA_ADDRESS 10.1.1.1 DNA center address
DNA_TIMEOUT 5 Timeout for DNA center connections
DNA_ALLOW_INSECURE_SSL False Disable SSL verification, useful if self-signed certificates are used
REDIS_URL redis:// URL for redis broker
RESULT_BACKEND django-db Results backend for broker, should not be changed

Continued on next page

3

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

Table 1 – continued from previous page
Environment variable Default Value Description
SUPERUSER_USERNAME admin Root username
SUPERUSER_EMAIL admin@example.com Root email
SUPERUSER_PASSWORD password Root password
LOAD_TEST_ENABLED False Enable load testing

2.1.2 Frontend settings:

Environment variable Default Value Description
NODE_ENV production Set either production or development modus
REACT_APP_API_URL /api Backend location

4 Chapter 2. Configuration

CHAPTER

THREE

CODE DOCUMENTATION

3.1 apps package

3.1.1 Subpackages

3.1.1.1 apps.api package

Subpackages

apps.api.dnac package

Submodules

apps.api.dnac.exceptions module

exception apps.api.dnac.exceptions.DNABaseException
Bases: Exception

Base exception

exception apps.api.dnac.exceptions.DNACConfigException
Bases: apps.api.dnac.exceptions.DNABaseException

Config exception

exception apps.api.dnac.exceptions.DNACSyncException
Bases: apps.api.dnac.exceptions.DNABaseException

Sync exception

apps.api.dnac.helpers module

apps.api.dnac.helpers.wait_for_task_completion(task_id)

apps.api.dnac.port_assignment module

apps.api.dnac.sync module

5

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

Module contents

apps.api.serializers package

Submodules

apps.api.serializers.accounts module

apps.api.serializers.jobs module

apps.api.serializers.networks module

Module contents

apps.api.types package

Submodules

apps.api.types.choices_enum module

class apps.api.types.choices_enum.ChoicesEnum
Bases: enum.Enum

An enumeration.

choices = <bound method ChoicesEnum.choices of <enum 'ChoicesEnum'>>

apps.api.types.configuration_status module

class apps.api.types.configuration_status.ConfigurationStatus
Bases: apps.api.types.choices_enum.ChoicesEnum

An enumeration.

FAILED = 'FAILED'

PENDING = 'PENDING'

READY = 'READY'

apps.api.types.interface_type module

class apps.api.types.interface_type.InterfaceType
Bases: apps.api.types.choices_enum.ChoicesEnum

An enumeration.

ACCESS_POINT = 'ACCESS_POINT'

SERVER = 'SERVER'

USER_DEVICE = 'USER_DEVICE'

6 Chapter 3. Code documentation

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

apps.api.types.job_status module

class apps.api.types.job_status.JobStatus
Bases: apps.api.types.choices_enum.ChoicesEnum

An enumeration.

FAILED = 'FAILED'

FINISHED = 'FINISHED'

PENDING = 'PENDING'

apps.api.types.job_type module

class apps.api.types.job_type.JobType
Bases: apps.api.types.choices_enum.ChoicesEnum

An enumeration.

CONFIGURATION = 'CONFIGURATION'

SYNC = 'SYNC'

apps.api.types.user_roles module

class apps.api.types.user_roles.UserRoles
Bases: enum.IntEnum

An enumeration.

NetworkAdministrator = 2

SystemAdministrator = 1

choices = <bound method UserRoles.choices of <enum 'UserRoles'>>

apps.api.types.virtual_network_type module

class apps.api.types.virtual_network_type.VirtualNetworkType
Bases: apps.api.types.choices_enum.ChoicesEnum

An enumeration.

DEFAULT = 'DEFAULT'

GUEST = 'GUEST'

INFRA = 'INFRA'

ISOLATED = 'ISOLATED'

Module contents

apps.api.views package

3.1. apps package 7

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

Submodules

apps.api.views.accounts module

apps.api.views.jobs module

apps.api.views.misc module

apps.api.views.networks module

Module contents

Submodules

apps.api.admin module

apps.api.apps module

class apps.api.apps.ApiConfig(app_name, app_module)
Bases: django.apps.config.AppConfig

label = 'api'

verbose_name = 'Multi Tenant Manager API'

apps.api.mixins module

class apps.api.mixins.FilterGroupMixin(**kwargs)
Bases: rest_framework.generics.GenericAPIView

filter_queryset_group(queryset)

get_queryset()
Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming
request.

(Eg. return a list of items that is specific to the user)

class apps.api.mixins.UserContextMixin(**kwargs)
Bases: rest_framework.generics.GenericAPIView

get_serializer_context()
Extra context provided to the serializer class.

apps.api.models module

8 Chapter 3. Code documentation

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

apps.api.permissions module

class apps.api.permissions.IsNetworkAdministrator
Bases: rest_framework.permissions.BasePermission

This permission is used as a reference for network administration over Tenant manager It allows the user to
create assign their networks to devices

has_permission(request: rest_framework.request.Request, view: django.views.generic.base.View)
→ bool

Return True if permission is granted, False otherwise.

class apps.api.permissions.IsSystemAdministrator
Bases: rest_framework.permissions.BasePermission

This permission is used as a reference for full control over Tenant manager It allows the user to create user
groups and assign access rights to them

has_permission(request: rest_framework.request.Request, view: django.views.generic.base.View)
→ bool

Return True if permission is granted, False otherwise.

apps.api.tasks module

apps.api.urls module

apps.api.utils module

Module contents

3.1.2 Module contents

3.2 undocumented_dnac_client package

3.2.1 Subpackages

3.2.1.1 undocumented_dnac_client.api package

Submodules

undocumented_dnac_client.api.authentication module

class undocumented_dnac_client.api.authentication.AuthenticationApi(base_url:
str)

Bases: object

list(username: str, password: str)→ Dict[str, str]

3.2. undocumented_dnac_client package 9

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

undocumented_dnac_client.api.authentication_profiles module

class undocumented_dnac_client.api.authentication_profiles.AuthenticationProfilesAPI(base_url:
str,
ac-
cess_token:
str)

Bases: object

list()

undocumented_dnac_client.api.devices module

class undocumented_dnac_client.api.devices.DevicesAPI(base_url: str, access_token:
str)

Bases: object

get_device(device_id: str)

list()

update_ports(device_id: str, ports: List)→ str

undocumented_dnac_client.api.scalable_groups module

class undocumented_dnac_client.api.scalable_groups.ScalableGroupsAPI(base_url:
str, ac-
cess_token:
str)

Bases: object

list()

undocumented_dnac_client.api.segments module

class undocumented_dnac_client.api.segments.SegmentsAPI(base_url: str, ac-
cess_token: str)

Bases: object

list()

undocumented_dnac_client.api.virtual_networks module

class undocumented_dnac_client.api.virtual_networks.VirtualNetworksAPI(base_url:
str,
ac-
cess_token:
str)

Bases: object

list()

list_context()

10 Chapter 3. Code documentation

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

Module contents

class undocumented_dnac_client.api.DNACenterAPI(base_url: str, username: str, pass-
word: str)

Bases: object

DNA Center Undocumented API endpoints client

Creates a client to use undocumented/unofficial DNA center endpoints.

3.2.2 Submodules

3.2.3 undocumented_dnac_client.exceptions module

exception undocumented_dnac_client.exceptions.RateLimitException
Bases: undocumented_dnac_client.exceptions.UndocumentedDNACenterAPIException

Exception for rate limiting.

exception undocumented_dnac_client.exceptions.UndocumentedDNACenterAPIException
Bases: Exception

Base for exceptions.

3.2.4 undocumented_dnac_client.response_codes module

Undocumented DNA Center response codes Copyright (c) 2019 Cisco and/or its affiliates. Permission is hereby
granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Soft-
ware”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

These codes are taken from the community built dna center SDK https://github.com/cisco-en-programmability/
dnacentersdk/blob/master/dnacentersdk/response_codes.py

3.2.5 undocumented_dnac_client.utils module

undocumented_dnac_client.utils.check_response(response, expected)

3.2.6 Module contents

3.2. undocumented_dnac_client package 11

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

12 Chapter 3. Code documentation

PYTHON MODULE INDEX

a
apps, 9
apps.api, 9
apps.api.apps, 8
apps.api.dnac, 6
apps.api.dnac.exceptions, 5
apps.api.dnac.helpers, 5
apps.api.mixins, 8
apps.api.permissions, 9
apps.api.types, 7
apps.api.types.choices_enum, 6
apps.api.types.configuration_status, 6
apps.api.types.interface_type, 6
apps.api.types.job_status, 7
apps.api.types.job_type, 7
apps.api.types.user_roles, 7
apps.api.types.virtual_network_type, 7

u
undocumented_dnac_client, 11
undocumented_dnac_client.api, 11
undocumented_dnac_client.api.authentication,

9
undocumented_dnac_client.api.authentication_profiles,

10
undocumented_dnac_client.api.devices,

10
undocumented_dnac_client.api.scalable_groups,

10
undocumented_dnac_client.api.segments,

10
undocumented_dnac_client.api.virtual_networks,

10
undocumented_dnac_client.exceptions, 11
undocumented_dnac_client.response_codes,

11
undocumented_dnac_client.utils, 11

13

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

14 Python Module Index

INDEX

A
ACCESS_POINT (apps.api.types.interface_type.InterfaceType

attribute), 6
ApiConfig (class in apps.api.apps), 8
apps (module), 9
apps.api (module), 9
apps.api.apps (module), 8
apps.api.dnac (module), 6
apps.api.dnac.exceptions (module), 5
apps.api.dnac.helpers (module), 5
apps.api.mixins (module), 8
apps.api.permissions (module), 9
apps.api.types (module), 7
apps.api.types.choices_enum (module), 6
apps.api.types.configuration_status

(module), 6
apps.api.types.interface_type (module), 6
apps.api.types.job_status (module), 7
apps.api.types.job_type (module), 7
apps.api.types.user_roles (module), 7
apps.api.types.virtual_network_type

(module), 7
AuthenticationApi (class in undocu-

mented_dnac_client.api.authentication),
9

AuthenticationProfilesAPI (class in undocu-
mented_dnac_client.api.authentication_profiles),
10

C
check_response() (in module undocu-

mented_dnac_client.utils), 11
choices (apps.api.types.choices_enum.ChoicesEnum

attribute), 6
choices (apps.api.types.user_roles.UserRoles at-

tribute), 7
ChoicesEnum (class in apps.api.types.choices_enum),

6
CONFIGURATION (apps.api.types.job_type.JobType at-

tribute), 7
ConfigurationStatus (class in

apps.api.types.configuration_status), 6

D
DEFAULT (apps.api.types.virtual_network_type.VirtualNetworkType

attribute), 7
DevicesAPI (class in undocu-

mented_dnac_client.api.devices), 10
DNABaseException, 5
DNACConfigException, 5
DNACenterAPI (class in undocu-

mented_dnac_client.api), 11
DNACSyncException, 5

F
FAILED (apps.api.types.configuration_status.ConfigurationStatus

attribute), 6
FAILED (apps.api.types.job_status.JobStatus attribute),

7
filter_queryset_group()

(apps.api.mixins.FilterGroupMixin method), 8
FilterGroupMixin (class in apps.api.mixins), 8
FINISHED (apps.api.types.job_status.JobStatus at-

tribute), 7

G
get_device() (undocu-

mented_dnac_client.api.devices.DevicesAPI
method), 10

get_queryset() (apps.api.mixins.FilterGroupMixin
method), 8

get_serializer_context()
(apps.api.mixins.UserContextMixin method), 8

GUEST (apps.api.types.virtual_network_type.VirtualNetworkType
attribute), 7

H
has_permission() (apps.api.permissions.IsNetworkAdministrator

method), 9
has_permission() (apps.api.permissions.IsSystemAdministrator

method), 9

I
INFRA (apps.api.types.virtual_network_type.VirtualNetworkType

attribute), 7

15

Multi Tenant Manager - Code and installation documentation, Release 1.0.0

InterfaceType (class in
apps.api.types.interface_type), 6

IsNetworkAdministrator (class in
apps.api.permissions), 9

ISOLATED (apps.api.types.virtual_network_type.VirtualNetworkType
attribute), 7

IsSystemAdministrator (class in
apps.api.permissions), 9

J
JobStatus (class in apps.api.types.job_status), 7
JobType (class in apps.api.types.job_type), 7

L
label (apps.api.apps.ApiConfig attribute), 8
list() (undocumented_dnac_client.api.authentication.AuthenticationApi

method), 9
list() (undocumented_dnac_client.api.authentication_profiles.AuthenticationProfilesAPI

method), 10
list() (undocumented_dnac_client.api.devices.DevicesAPI

method), 10
list() (undocumented_dnac_client.api.scalable_groups.ScalableGroupsAPI

method), 10
list() (undocumented_dnac_client.api.segments.SegmentsAPI

method), 10
list() (undocumented_dnac_client.api.virtual_networks.VirtualNetworksAPI

method), 10
list_context() (undocu-

mented_dnac_client.api.virtual_networks.VirtualNetworksAPI
method), 10

N
NetworkAdministrator

(apps.api.types.user_roles.UserRoles at-
tribute), 7

P
PENDING (apps.api.types.configuration_status.ConfigurationStatus

attribute), 6
PENDING (apps.api.types.job_status.JobStatus at-

tribute), 7

R
RateLimitException, 11
READY (apps.api.types.configuration_status.ConfigurationStatus

attribute), 6

S
ScalableGroupsAPI (class in undocu-

mented_dnac_client.api.scalable_groups),
10

SegmentsAPI (class in undocu-
mented_dnac_client.api.segments), 10

SERVER (apps.api.types.interface_type.InterfaceType at-
tribute), 6

SYNC (apps.api.types.job_type.JobType attribute), 7
SystemAdministrator

(apps.api.types.user_roles.UserRoles at-
tribute), 7

U
undocumented_dnac_client (module), 11
undocumented_dnac_client.api (module), 11
undocumented_dnac_client.api.authentication

(module), 9
undocumented_dnac_client.api.authentication_profiles

(module), 10
undocumented_dnac_client.api.devices

(module), 10
undocumented_dnac_client.api.scalable_groups

(module), 10
undocumented_dnac_client.api.segments

(module), 10
undocumented_dnac_client.api.virtual_networks

(module), 10
undocumented_dnac_client.exceptions

(module), 11
undocumented_dnac_client.response_codes

(module), 11
undocumented_dnac_client.utils (module),

11
UndocumentedDNACenterAPIException, 11
update_ports() (undocu-

mented_dnac_client.api.devices.DevicesAPI
method), 10

USER_DEVICE (apps.api.types.interface_type.InterfaceType
attribute), 6

UserContextMixin (class in apps.api.mixins), 8
UserRoles (class in apps.api.types.user_roles), 7

V
verbose_name (apps.api.apps.ApiConfig attribute), 8
VirtualNetworksAPI (class in undocu-

mented_dnac_client.api.virtual_networks),
10

VirtualNetworkType (class in
apps.api.types.virtual_network_type), 7

W
wait_for_task_completion() (in module

apps.api.dnac.helpers), 5

16 Index

	Technical report
	Introduction and overview
	Problem definition
	Scope and limitations
	State of art

	Requirements
	Use cases
	Actors
	Use case diagram
	Use cases brief

	None functional requirements
	Excluded functionality

	Architecture and design specification
	External interfaces
	DNA Center Intent API

	Domain
	Domain Model

	Technologies
	Programming languages
	Frameworks
	Libraries overview

	Design overview
	Frontend
	Translation
	Router
	API
	Backend
	Layers
	Layer diagram

	Containerization

	Implementation
	Authentication
	Management
	User and Groups
	Access Control

	DNA Center API endpoints
	Official endpoints
	Undocumented DNA Center endpoints

	DNA Center API clients
	DNA Center SDK
	Undocumented API client

	Workers
	DNA Center Synchronization
	Getting all edge nodes
	Sync job
	Sync flow

	Host onboarding

	Results
	Achieved results
	Screenshots

	Possible improvements
	Possible additional features

	Project documentation
	Deployment
	Components
	Diagrams
	Infrastructure
	Repositories
	Continuous Integration

	Use cases fully dressed
	Introduction
	Use cases

	Data model
	API
	Endpoints
	Detailed documentation

	List of Figures
	List of Tables
	Glossary
	Bibliography

	Appendix
	Personal reports
	Aaron Meier
	Dennis Ligtenberg

	Testing
	Backend
	Results

	Frontend
	NFR Validation
	Performance tests
	Scenario
	Results

	System tests
	Scenarios
	Test logs

	Metrics
	Sonarqube reports
	Frontend
	Backend

	Code
	Backend
	Frontend
	Total

	Gitlab

	Project planning
	Roadmap
	Project management
	Phases and estimates
	Milestones and artifacts
	Time evaluation

	Meetings
	Responsibilities
	Infrastructure
	Development concepts
	Definition of Done
	Review

	Backups
	Risk management
	Quality assurance
	Exception Handling

	Wireframes
	User Views
	Admin Views

	User interface screenshots
	Login view
	Devices view
	History view
	Jobs view
	Network view
	Interface view

	Time tracking
	Time tracking by milestone
	Time tracking by category
	Time tracking by project members
	Time tracking to actual/planned comparison

	Code and installation documentation

