

Reverse Shell via Voice

(SIP, Skype)

Project Thesis

Department of Computer Science

University of Applied Science Rapperswil

Fall Term 2019

Author(s): Dominique Illi, Michel Bongard

Advisor: Cyrill Brunschwiler

Project Partner: Cyrill Brunschwiler

Compass Security Network Computing AG

 Werkstrasse 20

 CH-8645 Jona

Project Thesis:

Reverse Shell via Voice (SIP, Skype)

2

Reverse Shell via Voice (SIP, Skype)
A – Content

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis:

Reverse Shell via Voice (SIP, Skype)

3

A – Content ... 2

B – Scope of Thesis ... 4

C – Abstract .. 10

D – Lay-Summary .. 12

E – Management Summary .. 14

F – Technical Report ... 16

G - Attachments .. 130

G-1 – Declaration of Originality .. 131

G-2 – Rights of Use ... 133

G-3 – Requirement Analysis ... 135

G-4 – Project Plan ... 141

G-5 – Software Architecture Document ... 153

G-6 – PJSIP Instructions .. 167

Project Thesis: Reverse Shell via Voice (SIP, Skype)

4

Reverse Shell via Voice (SIP, Skype)
B – Scope of Thesis

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

5

Project Thesis: Reverse Shell via Voice (SIP, Skype)

6

Project Thesis: Reverse Shell via Voice (SIP, Skype)

7

Project Thesis: Reverse Shell via Voice (SIP, Skype)

8

Project Thesis:

Reverse Shell via Voice (SIP, Skype)

9

Project Thesis: Reverse Shell via Voice (SIP, Skype)

10

Reverse Shell via Voice (SIP, Skype)
C – Abstract

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

11

Initial Situation
Nowadays, there are less and less points of entry for a hacker to attack a network. Modern network

infrastructures are specifically designed to deny any attempt of direct access from the internet into

an internal network. To circumvent those restrictions, it is often easier to initiate a data-channel from

within the internal network.

There already exist certain ways to establish such inside out channels such as the TCP reverse shell.

However, most of these attacks are not very difficult to detect by network intrusion detection

systems.

One alternative is the encapsulation of payload inside of VoIP packets. This thesis is a feasibility study

containing a proof of concept to establish the practicality of a reverse shell over VoIP.

Approach / Technology
Due to the popularity of SIP and Skype, this thesis focuses on these two VoIP protocols. First, a

thorough understanding of both protocols had to be acquired. After an initial research phase, the

decision was made to develop the proof of concept for SIP. Because SIP is open source, existing

libraries can be used as a foundation. Skype's proprietary nature would require reverse engineering

the protocol.

In the final proof of concept an open source C-library is used. The attacker encodes a shell command

to audio using a mapping between the ASCII table and different frequencies. The audio is then placed

inside RTP packets and transmitted to the victim. There, the audio gets converted back to text and

the shell command is executed. The shell output is sent back to the attacker the same way.

Result
This thesis proofed that a reverse shell over VoIP is possible.

At the moment it works only when both attacker and victim are in the same network. To make the

solution work over the internet as well, UDP packet loss needs to be handled.

However, when both clients are in the same LAN, a SIP connection can be established between the

victim and the attacker, allowing the attacker to execute shell commands on the victim's client at a

speed of 50 Bytes per second.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

12

Reverse Shell via Voice (SIP, Skype)
D – Lay-Summary

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

13

Initial Situation
Nowadays, there are less and less points of entry for a hacker to attack a company’s infrastructure.
Modern infrastructures are specifically designed to deny any attempt of direct access from the

internet into the company. To circumvent those restrictions, it is often easier to initiate a data-

channel from within the company through malicious software, downloaded by an unsuspecting

employee. This is called an inside out attack.

There already exist certain ways to establish such attacks. However, most of these attacks are not

very difficult to detect by the administrator of the company.

One alternative is to establish the connection as digital phone connection. This thesis is a feasibility

study containing a proof of concept to establish such an inside out attack through a telephone

connection.

Approach / Technology
There are two possible technologies that could be used for an inside out attack over a telephone

connection: Skype, a proprietary protocol used by Microsoft, and SIP, an open source standard

(meaning the programming code is publicly available) that is widely used. Because applications using

SIP are available for free and can be modified, SIP was used to implement the proof of concept. On

the attackers side a software listens for a victim initiating a call. Once the call is set up, the attacker

can send computer commands to the victim through the telephone connection, which are then

executed on the victim’s computer.

Result
This thesis proofed that a reverse shell over VoIP is possible.

At the moment it works only when both attacker and victim are in the same network (i.e. same

building) because over the internet there will be some data loss and currently there is no recovery

mechanism built in.

However, when both clients are in the same location the attacker can fully control the victim’s

computer.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

14

Reverse Shell via Voice (SIP, Skype)
E – Management Summary

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

15

Initial Situation
Due to the growing number of cybercriminals, companies are forced to make more investments into

the IT security. Inside-out attacks, in which a connection is established from the secure network to

the attacker, are a popular form of attack for hackers to penetrate well-protected networks.

Common ways to open such channels are malicious attachments in e-mails. Because modern

network devices can recognize such attacks better and better, hackers may try to hide the channels

within VoIP. This makes it almost impossible to distinguish a normal Internet call from a hacker

attack.

Approach / Technology
This project investigates the feasibility of such an attack channel via an Internet telephony

connection. By using standardized protocols, common Internet telephony software was replicated,

and an attempt was made to establish a malicious transmission over these devices.

Result
The thesis came to the conclusion that it is possible to establish a malicious connection via a

telephone channel. With the proof of concept, it was possible to remote control a company’s
computer. For this reason, it is indispensable to keep the network devices up to date at all times and

to use additional resources to investigate this new type of attack. Otherwise the risk of losing

company data is high and financial loss is to be expected.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

16

Reverse Shell via Voice (SIP, Skype)
F – Technical Report

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

17

1 Content
1 Content ... 17

2 Introduction .. 22

2.1 Overview ... 22

2.2 Starting position and motivation .. 22

2.3 Objective ... 22

2.4 Approach ... 23

3 Research: VoIP with SIP .. 24

3.1 Overview ... 24

3.2 Softphone .. 24

3.3 Introduction of SIP .. 24

3.3.1 Connection between two peering VoIP providers .. 25

3.3.2 Connection between two non-peering VoIP providers .. 25

3.3.3 Connection to a non-VoIP end system .. 26

3.4 VoIP with SIP protocols ... 26

3.5 SIP .. 27

3.5.1 What is SIP? ... 27

3.5.2 SIP entities ... 27

3.5.3 SIP messages ... 28

3.5.4 SIP URI ... 29

3.5.5 SIP connection examples .. 29

3.6 SDP .. 31

3.6.1 What is SDP? ... 31

3.6.2 Media and transport information ... 31

3.7 RTP & RTCP.. 32

3.7.1 What are RTP and RTCP? .. 32

3.7.2 Compression ... 33

3.8 Examining the session establishment of Linphone with Wireshark 33

3.8.1 Setup ... 33

3.8.2 Registration process with WWW-authentication header ... 34

3.9 Conclusion ... 38

4 Tunneling options in VoIP with SIP ... 39

4.1 Overview ... 39

4.2 Reverse shell – general requirements .. 39

4.3 Option 1: Tunneling in RTP ... 39

18

4.3.1 The theory ... 39

4.3.2 Requirements .. 40

4.3.3 Characteristics of desired library .. 41

4.4 Option 2: Tunneling with SIP requests of type MESSAGE ... 41

4.4.1 The theory ... 41

4.4.2 Requirements .. 41

4.4.3 Characteristics of desired library .. 42

4.5 Conclusion ... 42

5 Research: VoIP with Skype .. 43

5.1 Overview ... 43

5.2 Softphone .. 43

5.3 Introduction .. 43

5.4 Protocol ... 43

5.5 Connection establishment .. 44

5.6 Reverse engineering Skype ... 45

5.7 Skype’s command line tool ... 46

5.8 Skype API ... 46

5.8.1 Overview ... 46

5.8.2 Skype URI API .. 46

5.8.3 Skype for Business App SDK (Android) .. 48

5.8.4 UCMA 5.0 .. 49

5.8.5 UCWA 2.0 .. 51

5.9 Skype hardphones ... 51

5.10 Conclusion ... 52

6 Tunneling options in VoIP with Skype ... 53

6.1 Overview ... 53

6.2 Possible approaches .. 53

6.3 Initiating a Skype call... 53

6.4 Conclusion ... 54

7 Text to audio conversion... 55

7.1 Overview ... 55

7.2 SIP trunks / SIP media gateways ... 55

7.3 T.38 fax protocol ... 56

7.4 T.140 text over RTP protocol .. 56

7.5 Text as DTMF tones ... 56

7.6 Conclusion ... 57

19

8 Decision: Skype or SIP ... 58

8.1 Deciding between SIP and Skype .. 58

9 mjSIP ... 59

9.1 Overview ... 59

9.2 What is mjSIP? .. 59

9.3 mjSIP features ... 59

9.4 mjSIP sample applications .. 60

9.5 Downloading and building mjSIP .. 60

9.6 Testing mjSIP UA ... 60

9.6.1 Approach ... 62

9.6.2 Finding the RTP packet .. 62

9.6.3 How to replace the RTP payload ... 65

9.6.4 Replacing RTP payload .. 66

9.6.5 Extracting plain text from RTP payload ... 66

9.7 Implementing the PoC .. 68

9.7.1 Approach ... 68

9.7.2 Client implementation – sending .. 69

9.7.3 Server implementation - receiving .. 70

9.7.4 Server implementation - sending .. 70

9.7.5 Client implementation - receiving ... 71

9.8 Testing mjSIP MA .. 73

9.8.1 Basic communication .. 73

9.8.2 Analyzing SIP MESSAGE ... 74

9.8.3 Transmitting a shell using SIP MESSAGE ... 75

9.9 Conclusion ... 76

10 PJSIP .. 78

10.1 Overview ... 78

10.2 What is PJSIP? ... 78

10.3 PJSIP features .. 78

10.4 PJSIP static libraries ... 78

10.5 Installation guide... 80

10.6 Setting up a SIP call with the UA PJSUA .. 83

10.7 Code analysis ... 84

10.7.1 First attempt at debugging ... 84

10.7.2 Replacing the device’s input and output stream .. 87

10.7.3 Customizing RTP packets .. 89

20

10.7.4 G.711 encoding and packet loss handling ... 91

10.8 PJSIP register ... 92

10.8.1 Overview ... 92

10.8.2 General registration process in PJSIP .. 92

10.8.3 SIP provider 1: Linphone ... 92

10.8.4 SIP provider 2: Voiptalk ... 97

10.9 Conclusion ... 98

11 DTMF encoding/decoding ... 99

11.1 Overview ... 99

11.2 Encoding .. 99

11.3 Decoding ... 101

11.4 Performance ... 104

11.5 Conclusion ... 105

12 Implementation .. 106

12.1 Customizable settings ... 107

12.1.1 Startup parameters ... 107

12.1.2 Adjusting volume .. 108

12.1.3 Automatic call ... 108

12.1.4 Console output .. 109

12.2 shell_io.c ... 109

12.3 audio_encoder.c ... 110

12.4 audio_decoder.c ... 110

12.5 stream.c .. 111

12.5.1 Replacing RTP payload .. 111

12.5.2 Extracting custom payload from RTP packets ... 111

12.5.3 Starting threads ... 112

12.6 shell_process.c .. 112

13 Reverse shell over VoIP – Detection ... 113

13.1 Overview ... 113

13.2 RTP packet size .. 113

13.3 Multiple registrations at the SIP registrar ... 113

13.4 Playing the audio data .. 113

13.5 Conclusion ... 113

14 Findings ... 114

14.1 Overview ... 114

14.2 Results ... 114

21

14.3 Requirements .. 114

14.3.1 Expected results .. 114

14.3.2 Product functionality .. 115

14.3.3 Non-functional requirements ... 115

14.4 UDP packet loss handling .. 116

14.4.1 Sliding window .. 116

14.4.2 Stop-and-wait .. 116

14.4.3 The problem with sequence numbering in VoIPshell ... 116

14.4.4 Improving DTMF mapping .. 116

14.5 Reducing the size of the executable ... 117

14.6 Conclusion ... 117

15 Conclusion ... 118

16 Glossary ... 119

17 Illustration index ... 121

18 Sources .. 124

22

2 Introduction

2.1 Overview

This document contains all research and findings of the thesis “Reverse Shell via Voice (SIP, Skype)”.

The summaries in parts C, D and E can help to get a first impression before continuing reading.

Chapters 14 and 15 contain the results and conclusion of the study.

Other documents, like the project plan, the requirements analysis and the software architecture

document, can be found in the attachments.

2.2 Starting position and motivation

Nowadays, there are less and less points of entry for a hacker to attack a network. Firewalls are

much stronger than they were twenty years ago, especially those of big corporations. Today, much

more creativity is needed to infiltrate another network. But no firewall is impregnable. Not yet

anyway. There are still vulnerabilities that may be exploited, if not easily.

One such possible vulnerability is VoIP (Voice over IP), the Internet telephony. Two very common

VoIP protocols are SIP (Session Initiation Protocol) and Skype.

VoIP has been rising rapidly in the last few years. In the USA for example, 79% of businesses [1] were

already using VoIP phones by 2017. The main reason why it is so popular is because it is much

cheaper that the traditional PSTN (Pulic Switched Telephone Network). Since the voice data moves

through the Internet, the phone call costs the same, regardless of whether you talk to someone in

the same town or on the other side of the world.

This VoIP channel may conceivably be used to get illegal access to the network that uses it. It might

be possible to establish a connection from a company computer to anywhere in the world, where

the data flows through the VoIP channel. Essentially, the connection would be disguised as either SIP

or Skype packages. To the company firewall it would appear like a regular phone call.

2.3 Objective

The goal is to find a PoC (Proof of Concept) for a reverse shell over VoIP. The software written for

this PoC will hereafter be called VoIPshell. “Reverse shell” means, that the VoIPshell software allows

to remotely execute commands on a computer behind a firewall. At this moment it is unclear,

whether SIP or Skype will be used to do this. Initially, the detailed workings of both protocols will be

studied, and it will be looked for possible ways to introduce a covert channel. By milestone two (see

the project plan for further detail) it will be decided which protocol will be used to implement the

PoC.

Despite extensive research, no existing software or documentation could be found that has studied

or described the procedure of establishing a reverse shell over a VoIP channel. It seems that no one

has ever discussed this publicly.

This does not mean that no one has ever accomplished this before, however. Some government

agencies would likely not publish any findings on a security exploit, because they would want to take

advantage of the vulnerability themselves. A hacker with malicious intents may do the same, or else

try to sell it on the black market.

If this thesis results in a successful implementation of a reverse shell over VoIP, then it has likely

been done before by someone who is using it to penetrate networks today. If the concept can be

23

proven, the public can be alerted to the danger and companies can start taking measures to prevent

such an attack.

2.4 Approach

To achieve the goal of a working PoC of a reverse shell over VoIP, this thesis is split into three major

parts.

For the first part (Chapters 3 to 8) a thorough understanding of the workings of SIP and Skype needs

to be obtained and theoretical tunneling options need to be compared.

Also, there needs to be found a way to convert text to audio and back. This is necessary for two

reasons: First, it is unclear at the moment if VoIP traffic ever passes through the POTS (Plain Old

Telephone System) and gets converted to an analog signal. If it did it would require true audio traffic

to work. Second, if VoIPshell works with audio data instead of plain text, it is much more flexible and

more independent of the protocol, such as SIP or Skype.

Finally, it needs to be decided on whether to implement the PoC for SIP or Skype.

In part two (Chapters 9 to 11) different libraries and their functionalities are tested. It must be

determined which library is best suited for this PoC, considering the predefined requirements.

The final part (Chapters 12 to 15) consist of the implementation of VoIPshell and the evaluation of its

feasibility.

24

3 Research: VoIP with SIP

3.1 Overview

This chapter contains the findings of the research of VoIP using SIP. The goal is it to get a thorough

understanding of SIP so possible tunneling options through SIP for a reverse shell can be analyzed

later.

3.2 Softphone

For the research phase softphone (Software implementation of a SIP UA/SA) from

www.linphone.org is chosen for testing purposes. Linphone is an open source project which has over

300’000 users. The setup consists of creating two Linphone accounts and downloading and installing
the software. Version 4.1.1 is used.

Figure 1: Linphone home screen

Source: own creation

3.3 Introduction of SIP1

VoIP with SIP is a P2P (Peer-to-Peer) technology that theoretically does not require a traditional

telephone provider. VoIP with SIP does not require a connection in hardware form. Instead, an

account with phone number and user data is stored within a SIP provider. This account is used to

refer call requests to the actual destination on the Internet. The SIP provider therefore only serves as

an intermediary or directory service to find a subscriber on the Internet. The VoIP call is conducted

directly between the two parties. Since the voice data is transmitted over the Internet, subscribers

pay for their Internet access at a flat rate, but a VoIP call is usually free of charge. Depending on the

1 Summary of elektronik-kompendium.de [4]

25

type of providers and transmission network (Internet or PSTN) the connection diagrams look

different.

3.3.1 Connection between two peering VoIP providers

Pure VoIP Internet calls take place directly between VoIP phones. The SIP servers of the SIP

providers are only responsible for establishing and closing the connection. The SIP servers

synchronize the subscriber data with each other.

This is then called a network interconnection of two providers. Usually the calls between the two

subscribers are free of charge. An example of two peering VoIP providers is shown in Figure 2.

Figure 2: Connection of peering SIP providers

Source: elektronik-kompendium.de [2]

3.3.2 Connection between two non-peering VoIP providers

If two SIP providers have not interconnected their VoIP networks, meaning they do not exchange

user data with each other, then the calls must be transmitted via the telephone network. Voice

transmission is routed from the VoIP adapter via the VoIP gateway of one provider to the PSTN.

From there, it takes the reverse path via the VoIP gateway and the VoIP adapter of the second

provider. Here, too, the SIP server establishes the connection. But only within the provider's own

VoIP network. The VoIP gateways are responsible for the telephone network. An example of two

non-peering VoIP providers is shown in Figure 3.

26

Figure 3: Connection of non-peering SIP providers

Source: elektronik-kompendium.de [2]

3.3.3 Connection to a non-VoIP end system

If there is a call party in the telephone network, the call runs from the VoIP adapter via the VoIP

gateway to the PSTN and from there directly to the landline phone. Conversely, the VoIP gateway

accepts the call and determines the user for the call number via the SIP server. If the subscriber is

found, the call is forwarded to the VoIP adapter. An example of a non-VoIP end system is shown in

Figure 4.

Figure 4: Connection to non-VOIP end system

Source: elektronik-kompendium.de [2]

3.4 VoIP with SIP protocols

VoIP with SIP does not use SIP alone. In a normal VoIP infrastructure multiple protocols are used to

establish and maintain a session and send audio or video traffic.

27

The following three chapters will describe the commonly used protocols for signaling (Chapter 3.5),

description (Chapter 3.6) and exchange (Chapter 3.7).

3.5 SIP

3.5.1 What is SIP?2

SIP is a control protocol (often also named signaling protocol) working on the application layer of the

OSI model (referencemodel for networkprotocols). It is used to establish, modify and terminate

multimedia sessions (such as phone calls). Among a few others, SIP fulfils the following tasks:

• Location of an endpoint

• Signaling the desire to communicate

• Establishment and termination of a session

It is important to note that SIP alone doesn’t provide the capabilities to carry out a phone call, it is
only used to set the phone call up. To negotiate the desired session parameters and transmit the

actual data other protocols are used, mainly SDP (Session Description Protocol) for session

description and RTP (Real-time Transport Protocol) for carrying the payload.

3.5.2 SIP entities3

SIP entities describe logical components found in a SIP network. Often multiple entities are

combined to a single SIP server. Table 1 lists all SIP entities.

Entity Description

UA A user agent represents an end system such as a hard- or softphone. Each UA

(User Agent) consists of a client (UAC – User Agent Client) and server (UAS –

User Agent Server) role for both sending and receiving messages.

Registrar The registrar receives REGISTER messages from SIP UAs. The REGISTER

message contains location information (IP address) of the UA. The SIP registrar

saves the mapping of SIP-URI (Uniform Resource Identifier) and IP address in a

database called location service, thus knowing the location of each registered

UA in the network.

Proxy The proxy routes SIP requests to UA servers and SIP responses to UA clients. A

response will always take the same set of proxies in reverse order traversed by

the request. A proxy can operate in stateful or stateless mode.

A stateless proxy simply forwards all requests to the target and discards the

information about the message once it is forwarded.

A stateful proxy remembers the transaction state about each incoming

request. A request that is forwarded to more than one location must be

stateful.

2 Paraphrasing of RFC 3261 [2], Chapter 2
3 Summary of RFC 3261 [2], chapters 4 – 6

28

Redirect server The redirect server reduces the processing load on the proxy servers that are

responsible for routing requests. Redirections provide routing information of

each end system to a requesting UA.

Table 1: SIP entities

3.5.3 SIP messages4

SIP is a text-based protocol using the UTF-8 charset. A SIP message can either refer to a request from

a UAC to a UAS or a response from a UAS to a UAC. The general structure of a SIP message for both

requests and responses are described in Table 2.

Field Description

Start-line Terminated by a CRLF

Header-fields One or more header-fields allowed

Empty-line Terminated by a CRLF -> signaling end of header fields

Message-body Optional. The message-body can contain data either in SDP or MIME format.

Mostly used is SDP as SIP body. The header-field content-type must define the

type of the message-body.

Table 2: Structure of a SIP message

Requests

In a SIP request, the start-line is called request-line and contains a method name, request-URI, and

the protocol version. The methods are listed in Table 3.

Method Description

REGISTER Register contact information

INVITE Start the session

ACK Acknowledge the session

CANCEL Cancel the session

BYE Terminate the session

OPTIONS Query the server for capabilities

Table 3: SIP request methods

Response

SIP responses have a status-line as start-line. The status-line consists of the protocol version

followed by a numeric status-code. These status-codes are listed in Table 4.

4 Summary of RFC 3261 [2], Chapter 7

29

Status-code Description

1xx Provisional – request received, continuing to process the request

2xx Success – the action was successfully received, understood and accepted

3xx Redirection – further action needs to be taken in order to complete the request

4xx Client Error – the request contains bad syntax or cannot be fulfilled at this server

5xx Server Error – the server failed to fulfill an apparently valid request

6xx Global Failure – the request cannot be fulfilled at any server

Table 4: SIP response status-codes

3.5.4 SIP URI

As described in Chapter 19.1 in the RFC (Request for Comments) 3261 [3], a SIP URI identifies a

communications resource such as an end system. The information contained in a SIP URI is enough

to initiate a communication session with the resource. A full SIP URI has the following format:

sip:user:password@host:port;uri-parameters?headers

3.5.5 SIP connection examples

The following examples show the basic functionality of SIP in different variations. These examples

are taken from Elektronik-Kompendiums website [4].

A SIP transaction can be either directly between two UAs or via a proxy server. If a UAC cannot reach

the UAS directly, they need to register themselves to a SIP registrar. When a call is made to a SIP

client (using its SIP address), the SIP address is resolved, and it is determined where the client can be

reached. The call and all other requests are then forwarded to the client.

SIP uses a SIP proxy when setting up a call. In order to be reachable, each SIP subscriber must log on

to a SIP registry. Usually the SIP proxy and the SIP registrar are the same server. The SIP registrar has

a similar function to the DNS (Domain Name Server) server. The SIP proxy accesses the SIP registry to

find out the location of the subscriber.

Figure 5: Direct connection UAC to UAS

Source: screenshot from elektronik-kompendium.de [2]

30

Figure 5 shows the connection between a UAC and UAS if no other SIP component is used. The UAC

initiates the connection request with an INVITE message. The UAS confirms the request to the UAC

with a TRYING message. Now the UAC knows that the UAS has received its request.

The RINGING message confirms to the UAC that the connection request has been signaled to the

called party. Now the UAC knows that the callee is being informed of the request. If the called party

is busy, the UAS sends a BUSY message back instead.

If the desired call partner accepts the connection request, the UAS sends an OK message to the UAC.

The SDP connection parameters are also sent in this response. The UAC confirms the connection

setup and the connection parameters to the UAS with an ACK message. The call is established.

When one of the two parties ends the call, the initiating UA sends a BYE message and receives an OK

message from the other party.

Figure 6: Connection via proxy server

Source: screenshot from elektronik-kompendium.de [2]

Figure 6 shows the connection establishment via a SIP proxy. The UAC initiates the connection with

an INVITE message to its proxy server. For confirmation the UAC receives a TRYING message.

The proxy server queries its location service for the IP address of the invitee. If there are several IP

addresses for the UAS, then each IP address receives a connection request. It does not matter

whether the UAS is part of the same domain as the proxy server or not.

The UAS sends the proxy server a TRYING message as confirmation. Because each IP address of the

UAS receives the connection request, every endpoint gets signaled the request, meaning all the SIP

telephones with the invitee’s address start ringing. The UAS sends a RINGING message to the proxy

server which is forwarded to the UAC.

If the invitee answers one of the SIP phones of the UAS, an OK message gets sent to the proxy

server, which is also forwarded to the UAC. The OK message contains all SDP connection parameters.

When the UAC confirms the connection setup and the connection parameters to the UAS with an

ACK message, the call is established.

31

When one of the two parties ends the call, the initiating UA sends a BYE message and receives an OK

message from the other party.

Figure 7: Connection via redirect server

Source: screenshot from elektronik-kompendium.de [2]

Figure 7 shows the connection establishment via SIP registrar. The UAC initiates the connection with

an INVITE message to its redirect server. The server queries its location service for the IP address of

the invitee. The redirect server reports the invitee’s address to the UAC. The UAC confirms receipt of

the address with an ACK message.

The UAC then contacts the UAS directly with an INVITE message. Then the connection is established

as a direct connection.

3.6 SDP

3.6.1 What is SDP?5

SDP belongs to the application layer of the OSI-model and is entirely textual using the UTF-8

encoding. SDP was created because in multimedia sessions participants have the need to exchange

metadata, for example media details such as the used codec. SDP provides a standard which

describes the representation of such information but not how it is transported. SIP is the protocol

used to manage a multimedia session and contains information in SDP format describing the session

parameters and allowing participants to agree on a set of compatible media types.

3.6.2 Media and transport information6

The type of media information contained in an SDP message is listed in Table 5.

5 Summary RFC 4566 [5], pages 3 – 7
6 Summary of RFC 4566 [5], pages 6 – 10

32

Information Example

Type of media Video, audio

Used transport protocol RTP, UDP

Media format H.261, H265, MPEG

Unicast and Multicast specific session information

Table 5: Media information in an SDP message

An SDP session description consists of multiple pairs of the type:

<type>=<value>

Of these pairs, some are mandatory and other optional. SDP makes a difference between the

session-level section (information affecting the whole session) and media-level section (information

relevant to a media type). The media-level section is fully optional.

For the session-level the mandatory attributes are listed in Table 6.

Letter Description

v Protocol version

o Originator and session identifier

s Session name

Table 6: Mandatory session-level attributes

If a media-section is used only the attribute in Table 7 is mandatory.

Letter Description

m Media name and transport address

Table 7: Mandatory media-level attributes

A list of all section-level and media-level attributes can be found in the RFC 4566 [5] on page 9.

3.7 RTP & RTCP

3.7.1 What are RTP and RTCP?7

The RTP belongs to the application layer of the OSI-model. It provides unicast and multicast data

transmission for traffic which has real-time characteristics such as voice traffic. Applications mostly

use UDP as transport protocol for RTP traffic, but any other underlay could be used. RTP doesn’t
prevent out-of-order delivery but uses mechanisms to allow applications to reorder packets.

Specifically, these are sequence numbering and timestamping. RTP consists of two closely linked

7 Summary of RFC 3550 [12], abstract and Chapter 1

33

parts: RTP to carry the data and RTCP to monitor QoS (Quality of Service) and convey information

the participants. An RTP session consist of an RTP port number (UDP port), an RTCP port number

(consecutive UDP port) and the participants IP addresses.

3.7.2 Compression

Almost all supported codecs for RTP use lossy compression (full list on Wikipedia [6]). There are only

very few lossless audio and video codecs in general (see Wikipedia [7], [8]).

The codecs listed in Table 8 are both supported by RTP and are either lossless or have the possibility

to be used lossless.

Codec Media type Loss type

ATRAC Advanced Lossless Audio Lossless

H264 Video Lossy, but supports lossless

H265 Video Lossy, but supports lossless

VP9 Video Lossy, but supports lossless

T140 Text Lossless

Table 8: Lossless codecs supported by RTP

3.8 Examining the session establishment of Linphone with Wireshark

In this part the session establishment between two SIP accounts of the SIP provider Linphone will be

captured and analyzed in order to get an idea of how the packets are exchanged between the two

participants and what they look like. Interesting is especially the registration progress of the clients

at the SIP server because the VoIPshell will need to run in the context of the victim’s client. Thus, it
will need to register at the SIP registrar.

3.8.1 Setup

For this process the two Linphone accounts listed in the credentials document of the attachement

are used. The user reverse2 is calling reverse1. The parameters used during the capture are listed in

Table 9.

 reverse1 reverse2

SIP User sip:reverse1@sip.linphone.org sip:reverse2@sip.linphone.org

Private IP address 192.168.1.117 172.20.10.2

Public IP address 37.120.137.171 178.197.225.33

SIP Server 54.37.202.229

Table 9: Parameters of our SIP audio call

34

3.8.2 Registration process with WWW-authentication header

Figure 8 shows the general authentication process where an end system is unauthorized in the

beginning and then gets authorized by a challenge-response procedure. This theoretical procedure

will be verified with Wireshark (Software to analyze network traffic).

Figure 8: SIP registration procedure

Source: own creation

As soon as the call button in the Linphone software is clicked, a REGISTER message sent to the SIP

server from 172.20.10.2 (reverse2) can be seen. The purpose of this REGISTER message is it to

associate the user called “address of record” with one or more locations. The binding of the user to
the location is done in the contact header as highlighted in Figure 9.

35

Figure 9: Wireshark SIP register 1

Source: own creation

Because the SIP server (registrar) expects the softphone to authenticate itself (which it hasn't done

yet) the server responds with a „401 Unauthorized“ message as seen in Figure 10 (SIP status line).

The WWW-authenticate header contains data that must be used to encrypt the user’s
communication password. Specifically, it contains a nonce (temporary word) with the value

"UzQ84QAAAACGC3x5AABdwFmC5mMAAAAA" along with the hash-function the client must use,

which is MD5. It is a simple challenge response behavior.

Figure 10: Wireshark SIP response 1

Source: own creation

36

After the client receives the “401 Unauthorized” message it will calculate the response. The

functions used to calculate the digest authentication response in Table 10 are derived from the IETF

documentation [9].

Hash Calculation

H1 MD5Hash(username:realm:password)

MD5Hash(reverse2:sip.linphone.org:password)

H1 = 166E358DD50160DAED49BCADD0FDDF29

H2 MD5Hash(method:digestURI)

MD5Hash(REGISTER:sip:sip.linphone.org)

H2 = 60FE505B21810EDE1D3F18072083333B

H3 = response MD5Hash(H1:nonce-value:nc-value:qop-value:H2)

H3 = 6313c3981c7b999e4e629534922c7c94

Table 10: SIP authentication digest calculation

There is a freeware tool called “SIP Digest Response Calculator” [10] which was used to verify the

calculations. As shown in Figure 11 the calculated value and the value which sent back to the SIP

registrar in Figure 12 are the same.

Figure 11: SIP Digest Calculator

Source: own creation

After the calculation of the response the client sends the response back in the digest authentication

field. The contact field changes to the public IP address of the user reverse2 (178.197.225.33).

37

Figure 12: Wireshark SIP register 2

Source: own creation

The SIP server validates the response by calculating the same response and checks if the result is the

same. If the responses match, the server sends a “200 OK” message back to the client as shown in

Figure 13.

38

Figure 13: Wireshark SIP response 2

Source: own creation

After this packet has been received, the registration process is over.

3.9 Conclusion

In this chapter fundamental knowledge about SIP, SDP and RTP was gathered. The SIP session

establishment and the registration process are of particular interest. The session establishment will

be used every time the reverse shell connects to the attacker’s server. The registration process will

take place whenever the VoIPshell is started, because the SIP UA needs to register itself to the SIP

registrar in order to use the SIP providers infrastructure. Because the registration process was

analyzed those findings can be used when registering our proof of concept to an external SIP

provider.

A list of codecs supported by RTP was made and can be used when implementing the text to audio

conversion.

All the collected information will be used in chapter 5 to create different options of implementing a

reverse shell over VoIP and to provide the VoIPshell the possibility of registering itself to a SIP

provider.

39

4 Tunneling options in VoIP with SIP

4.1 Overview

This chapter describes theoretical approaches for tunneling data through VoIP using SIP, SDP and

RTP. Other protocols on the transport and network layer were not taken into consideration because

the payload (reverse shell) would then not be tunneled in VoIP. Furthermore, covert channels were

not taken into consideration but only legitimate ways of data transmission (so, no obfuscation

techniques).

4.2 Reverse shell – general requirements

The three requirements for the reverse shell that must be kept in mind when searching for tunneling

options are the following:

1. The connection must mimic legitimate SIP traffic. This means that there should not be any

abnormalities when monitoring the network traffic (e.g. no excessive use of SIP OPTION

requests to send the payload). This requirement excludes the abuse of any message types

that would not be found in regular traffic.

2. No steganography techniques to obfuscate the data transmission are used (such as

described by Wojciech Mazurczyk and Krzysztof Szczypiorski in their paper on a covert

channel in SIP for VoIP signaling [11]). They used special header fields in SIP and SDP to

transmit covert data.

3. It must be possible to transmit the reverse shell not only over packet switched network but

also over the POTS.

More requirements, especially the non-functional requirements, are described in the document

“requirement_analysis”.

4.3 Option 1: Tunneling in RTP

4.3.1 The theory

Because no obfuscation technique is used, the full RTP payload should be able to be used to transmit

the reverse shell traffic. This would mean that there are no bandwidth limitations to worry about.

The idea is it to write a software which acts as a UA and is able to establish a SIP session and send

data over RTP to the control server. The shell commands will then be sent as RTP payload so the

victim’s computer can be controlled remotely. The establishment of this option is shown in Figure

14.

40

Figure 14: Option1 Tunneling in RTP

Sources: own creation

General procedure

• Attacker generates an executable which will be invoked on the victim's client.

• The executable first registers itself at the SIP registrar with the credentials of the current

user.

• The executable than establishes a SIP/SDP connection to a server operated by the attacker.

(Signaling Phase).

• The SDP parameters between the attacker server and victim's client will be negotiated as

usual (Signaling phase)

• After the session is established the shell of the victim will be piped and as RTP payload sent

to the attacker's server (conversation phase) (no covert channel just abusing the RTP

payload)

• Attacker/victim can now communicate over the RTP connection

Presumable difficulties

• Registration at SIP registrar in victim’s LAN

• Setting custom payload inside of RPT packets

4.3.2 Requirements

The necessary requirements for tunneling in RTP are defined in Table 11. The OSI model is used as a

reference to make sure nothing gets forgotten. Layers one to three are excluded because it is

assumed that the client has basic network connectivity.

41

Layer Requirement

4 Because for both SIP and RTP the most common transport protocol is UDP the

VoIPshell must support the sending of UDP datagrams over the Internet.

5-7 After having established basic layer for connectivity, the VoIPshell needs to register to

the local SIP registrar by sending spoofed SIP REGISTER messages using the victim’s
credentials. For this purpose, the IP address of the server needs to be known, as well as

the victim’s credentials in plaintext.
After the registration process is completed, the SIP session can be established with the

client. Thus, SIP INVITE messages need to be sent to the attacker’s server in the
Internet.

When the RTP session is established, the victims shell can be piped through the RTP

payload to the attacker’s computer.
Table 11: Requirements for tunneling option 1

4.3.3 Characteristics of desired library

Because implementing the entire SIP, SDP and RTP stack is exceeds the scope of this work, a library

has to be found which already implements those functionalities. The library should have the

characteristics listed in Table 12.

No. Characteristic

1 Implemented SIP (RFC 3261) [3], SDP (RFC 4566) [5] and RTP (RFC 3550) [12] stack

2 Implemented SIP Digest Authentication (RFC 2617) [13]

3 Is open source

4 Must be runnable on Windows

Table 12: Characteristics of desired library

4.4 Option 2: Tunneling with SIP requests of type MESSAGE

4.4.1 The theory

This option came to mind while testing the mjSIP (Open source media library written in Java)

message agent, which provides functionality to send text messages as SIP requests of type

MESSAGE. What exactly mjSIP is and how it works is described in Chapter 9. In case the text to audio

conversion is not necessary, this could be a very interesting approach. According to Chapter 8 of the

RFC 3428 [14] a SIP request of type MESSAGE may not exceed 1300 bytes which would certainly be

sufficient for a reverse shell.

The idea is to send traffic directly through SIP requests of type MESSAGE, so no SDP or RTP would be

used.

4.4.2 Requirements

The necessary requirements for tunneling with SIP requests of type MESSAGE are defined in Table

13. Once again, we used the OSI model as a reference.

42

Layer Requirement

4 Because for SIP the most common transport protocol is UDP the VoIPshell must

support the sending of UDP datagrams over the Internet.

5-7 Just like for option 1 the software needs to register at the local SIP registrar by sending

spoofed SIP REGISTER messages using the victim’s credentials.
After the registration process is completed, the VoIPshell traffic can be sent as SIP

packets of the type MESSAGE.

Table 13: Requirements for tunneling option 2

4.4.3 Characteristics of desired library

The library chosen to implement this concept with should possess the characteristics listed in

Chapter 4.3.3. In addition, it should have SIP Instant Messaging (RFC 3428) [14] implemented.

4.5 Conclusion

For a VoIP connection using SIP as session establishment and RTP for data transmission, the two

easiest ways to tunnel data are either through the RTP payload or with SIP requests of type

MESSAGE.

Tunneling through RTP would simply require swapping out the RTP payload. Presumably, an open

source library for SIP can be found.

Tunneling with SIP requests of type MESSAGE would be even simpler, because traffic could be sent

as plain text messages, so there would be no need for encoding. However, a connection using this

approach would not mimic legitimate SIP traffic, as discussed in Chapter 4.2. Furthermore, the

option using SIP MESSAGES cannot be used over the PSTN which was taken into account in a later

phase of the project.

For now, the focus will remain on tunneling through RTP payload.

43

5 Research: VoIP with Skype

5.1 Overview

Just like for Chapter 3, this chapter contains a summary of the research, this time of VoIP with Skype,

instead of SIP. Our goal, again, is to get a detailed understanding of Skype so we can later analyze

possible tunneling options through Skype for a reverse shell.

5.2 Softphone

To be able to make Skype calls between two computers during the research phase, two Microsoft

accounts are created, and Skype’s software downloaded and installed. The Skype version used is

8.52.0.138.

Figure 15: Skype home screen

Source: own creation

5.3 Introduction

Skype is, like SIP, a VoIP telephony network. As a matter of fact, according to Wikipedia [15], it is the

first peer-to-peer telephony network that ever existed. Today though, as mentioned on Livewire

[16], they have moved to a cloud-based solution (server-client model).

The big difference to SIP however is, that the Skype software and their protocol belong to Microsoft

and are closed-source and not standardized [15]. This means that even though Skype and SIP

accomplish the same thing, they are not compatible. Skype can only be used with the official Skype

software. Very little is known about Skype’s protocol, which will make the research difficult.

5.4 Protocol

As discussed on the Wireshark Wiki [17], the original “Skype protocol” is deprecated since August of

2014. Today, Skype uses the “Microsoft Notification Protocol 24” (MNP24). Skype uses mainly UDP

44

as its transport protocol.

Skype uses RC4 encryption for its signaling process. Since RC4 is not considered secure anymore it

stands to reason, that this is only meant to obfuscate the signaling (RC4 is a very fast stream cipher).

The voice traffic is encrypted with AES-256 (Paraphrasing Wikipedia, Chapter “Protocol” [15]).

5.5 Connection establishment8

In most cases Skype clients are behind NAT routers which makes it impossible to establish a

connection without crippling the firewall.

Figure 16: Issue with NAT routers

Source: own creation

Figure 16 shows how Alice cannot call Bob, because Bobs firewall rejects the packets.

To circumvent this problem Skype uses a variation of the STUN protocol, UDP hole punching and

three types of entities (this is part of the Wikipedia article, Chapter “Peer-to-peer architecture” [15]).

These entities are listed in Table 14.

Entity Description

Ordinary node Skype client

Supernode Microsoft’s STUN server

Login server Microsoft’s login server

Table 14: Entities of Skype protocol

When Alice has started the Skype client on her computer and is logged in at a Microsoft login server,

the STUN protocol is used to discover her public IP address as well as her NAT type. She is now

8 Summary of heise.de [75]

45

connected to one of Microsoft’s supernodes for as long as her software is running on her computer.

The supernodes know at all time who can be reached and where. Figure 17 shows the process of a

Skype call.

Figure 17: Skype's UDP hole punching

Source: own creation

If Alice wants to call Bob, Alice informs the supernode of her intentions (1). The supernode, having

an open connection to Bob (because Bob is already logged in), tells him (2) to send a packet to Alice.

He gives Bob Alice’s IP address and port number.
When Bob sends the packet to Alice, her firewall drops it (3). But in doing so, Bob has punched a

hole through his own firewall. Bob now informs the supernode that he has sent the packet (4). The

supernode in turn informs Alice that she can call Bob now and gives her Bob’s IP address and port
number (5).

Now Alice calls Bob (6). Because Bob’s router thinks the incoming traffic is a response of Bob’s
previously sent packet, it forwards the traffic to Bob. The connection is now established.

5.6 Reverse engineering Skype

In the past, several attempts have been made to reverse engineer Skype, mostly successful. Most

notable are the projects OpenSkype [18] (discontinued in 2016), SkypeOpenSource2 [19]

(discontinued in 2016), JavaSkype [20] (discontinued in April 2019) and the one published on

oKLabs.net by Ouanilo Medegan [21] (discontinued in 2012). Unfortunately, there does not seem to

exist a solution that is still working today.

46

5.7 Skype’s command line tool

Skype used to have a command line tool which is discussed on Microsoft’s forum [22]. This tool

allowed people to start Skype minimized to the system tray and start a phone call in the background.

Unfortunately, this is no longer possible. A complete list of deprecated CLI arguments can be found

on Winaero website [23].

5.8 Skype API

5.8.1 Overview

The traditional Skype API (Application Programming Interface) is no longer supported (see John

Nakulski’s answer on Quora [24]). But Microsoft still offers ways to initiate Skype calls. The preferred

way is via their URI API (see their documentation for the “Skype Developer Platform” [25]).

Something to keep in mind is, that the user may get prompted before initiating a call and the Skype

app is brought to the foreground. The following four steps describe what happens when a Skype URI

is clicked. It is directly cited from Microsoft’s documentation [26] in Chapter “How Skype URIs work”.

1. Brings the device's Skype client into focus, starting it as necessary.

2. Effects auto-login or prompts your users for their Skype Name and password.

3. Typically opens a confirmation dialog to authorize placing the call.

4. Places the call.

Next to the Skype URI API, Microsoft also offers (among others) a mobile App SDKs, a UCMA (Unified

Communications Managed API) and a UCWA (Unified Communications Web API) which are discussed

in more detail in the following chapters.

5.8.2 Skype URI API

Starting a call or chat with the Skype URI API is very easy. To call a test account with the Skype name

live:.cid.8d765cc61ce34048 the following link has to be entered in a browser:

skype:live:.cid.8d765cc61ce34048?call

The browser will then prompt the user whether it should open Skype or not. Figure 18, Figure 19,

Figure 20 show what the prompt looks like in Google Chrome, Firefox and Microsoft Edge

respectively.

Figure 18: Skype prompt in Google Chrome

Source: own creation

47

Figure 19: Skype prompt in Firefox

Source: own creation

Figure 20: Skype prompt in Microsoft Edge

Source: own creation

Once confirmed, Skype opens with the Window shown in Figure 21. The last step is to click the green

button “Anruf starten”.

Figure 21: Skype Window, ready to start call

Source: own creation

48

The same process is used to start a Skype chat. For that purpose, the following link has to be copied

into a browser:

skype:live:.cid.8d765cc61ce34048?chat

The browser will again prompt the user as shown in Figure 18, Figure 19 and Figure 20, depending

on the browser used. After that, the Skype application starts and typing is immediately possible, as

shown in Figure 22.

Figure 22: Skype Window, ready to start typing

Source: own creation

The Skype URI API is very straight forward and easy to use. However, it requires interaction with the

Skype UI (User Interface), and it is not possible to hide the interference from the victim. While this

would be acceptable for a PoC, this approach will still be abandoned for now to look for an

alternative.

5.8.3 Skype for Business App SDK (Android)

Microsoft offers an SDK for Smartphones, one IOS and Android each, as can be seen on their

documentation website [27]. Only the documentation for the Skype SDK for Android [28] has been

studied for this thesis.

There are many features supported. Among the most interesting for this project are the sending of

messages (Figure 23), getting the text from the message content (Figure 24) and being able to select

the endpoint (Figure 25), allowing control over where the received audio data is sent. It does not

seem to include an option to choose the input (microphone) however.

49

Figure 23: Skype App SDK for Android – ChatService

Source: Screenshot from Skype App SDK documentation for Android [29]

Figure 24: Skype App SDK for Android – MessageActivityItem

Source: Screenshot from Skype App SDK documentation for Android [30]

Figure 25: Skype App SDK for Android – DevicesManager

Source: Screenshot from Skype App SDK documentation for Android [31]

Since this is an SDK for Android, it cannot be used on Windows without an emulator. With an

emulator there would be no access to the Skype application running on Windows itself but rather

the Skype Mobile-App within the emulator, which would not have the victim’s credentials.

Therefore, this library is of no use for this thesis.

5.8.4 UCMA 5.0

Microsoft offers a very extensive C# library for developers through their UCMA SDK. It supports a lot

of very interesting features such as initiating calls, instant messaging and even impersonating a user.

For more information on what UCMA can do, see their list of key features of UCMA 5.0 [32] and their

sample applications [33].

When downloading [34] and trying to run such a sample application, specifically the application

named BasicAudioVideoCall [35], it was discovered, that a UCMA application can only run in

combination with a Skype for Business Server. Figure 26 shows the code from that application that is

needed to place a Skype call. The call only fails, because it has not been provided with a Skype for

Business Server.

50

Figure 26: Code extract from application BasicAudioVideoCall

Source: Screenshot of sample code [35]

Also, as can be gathered from Microsoft’s documentation on typical business scenarios [36], the

UCMA application is not meant to be run on an end users machine but on a separate device. Figure

27 shows a typical setup for a call center that uses a UCMA application (see the Microsoft’s

documentation on typical business scenarios [36] for more examples).

Figure 27: Setup of a call center using UCMA

Source: Microsoft’s documentation on UCMA [37]

51

It was considered install a Skype for Business Server on a virtual machine running Windows Server

2016 or 2019 [38] to be able to test the “BasicAudioVideoCall” application properly. However, the

setup for Skype for Business Server is quite extensive. On the overview page of their “Install Skype
for Business Server” documentation [39] they mention that the installation includes many different

procedures.

In fact, by clicking on “Download PDF” on Microsoft’s documentation on Skype for Business Server

[40] it can be seen that the instructions for installing and configuring the software carry on for

almost 1’500 pages. Unfortunately, this thesis’ timetable prevents from delving further into this

setup process.

In any case, it would be of little use, because when running a UCMA application in a company

network, it would probably not be possible to get around having to use the company’s Skype for

Business Server. This server will surely use authentication [41] and likely only work with trusted

UCMA applications [42].

Mattia Ninivaggi from Compass Security Schweiz AG managed to write some code using UCMA that

allowed him to set up a Skype call from the currently logged in user without the victim noticing,

meaning the whole process took place in the background. Compass Security Schweiz AG have a

Skype for Business Server already setup at their headquarters which he used for this test.

He managed to do this by simply setting the source and destination sip address in the sample code.

While UCMA provides basically all the functionality needed for the VoIPshell, its need for

authentication with the company’s Skype for Business Server means it is most likely not a viable

option after all. It cannot definitely be ruled out however, since the lack the time prevents further

investigation into the subject. A more detailed study of UCMA at a later point in time would be

needed to test the capabilities of UCMA. For this thesis UCMA is excluded as a tunneling option.

5.8.5 UCWA 2.0

Similarly to UCMA, UCWA offers a Skype API for developers. However, it only supports instant

messaging and presence capabilities, so no Skype calls [43]. UCWA is a REST API that allows

development for both Skype for Business Server and Skype for Business Online [44], which removes

the need for a company’s Skype for Business Server.

The UCWA resources [45] describe how Skype messages could be sent using UCWA.

However, just like for UCMA, authentication is still required. UCWA uses Azure AD (Active Directory)

to provide authentication services (see Microsoft’s documentation for more information [46]). This

makes it unsuitable for this thesis.

5.9 Skype hardphones

Skype offers hardphones (Hardware implementation of a SIP UA/SA), like the one shown in Figure

28. Since there are so many different Skype hardphones on the market, it was thought that there

may be an API or library of some sort, so that the many different manufacturers are able to integrate

Skype in their phones. It was hoped that such a library could be found and studied to provide a more

detailed insight into Skype’s protocol.

52

Figure 28: Skype hardphone Yealink SIP-T41S

Source: studerus.ch [47]

Unfortunately, though, no such library seems to exist, or at least not one that is available to the

public. According to Microsoft’s documentation [48], there are only three manufacturers of Skype

hardphones (Polycom, Yealink and AudioCodes) and they work closely together with these

companies. This seems to imply, that Microsoft either shares Skype’s source code with these
companies or at least offers them a special library, after having signed a non-disclosure agreement

of course.

Because Microsoft works closely together with the manufacturers of Skype hardphones, there is no

public access to the library they are using. No information could be found on how the Skype

software is integrated in these hardphones. Therefore, apart from maybe trying to reverse engineer

such a phone, their existence cannot be exploited as had been hoped.

5.10 Conclusion

Because the Skype protocol is proprietary and closed source, there is little to no information to be

found on how exactly the Skype entities communicate.

The most interesting findings were Skype’s APIs. The two libraries UCMA and UCWA provide

capabilities to initiate and manage calls and Skype messages. At a first glance they do not seem to be

viable options for a reverse shell over Skype, though further research is required for a definitive

conclusion.

Skype’s URI API also allows initiating calls and Skype messaging, however UI interaction is required

and the process runs in the foreground, so the user is aware of what is happening.

53

6 Tunneling options in VoIP with Skype

6.1 Overview

This chapter discusses possible options to tunnel data through VoIP with Skype. No libraries will be

tested yet. The goal is merely to describe theoretical approaches for tunneling through Skype.

6.2 Possible approaches

Since Skype works with any microphone and headset configuration the initial idea was that it might

be possible to write a custom driver for each device and feed Skype our own traffic instead of real

audio. Then the call would either be started in the background using an API or else on a virtual

desktop and then navigated through the UI using macros (Macroinstructions).

The issue with this approach is, that Skype encodes and decodes the audio itself using one of several

codecs. As can be gathered from Microsoft’s table “Audio codec bandwidth” [49], commonly used

audio codecs are SILK for peer-to-peer connections and G.711, G.722 or G.729 for conferencing.

Others are used as well, but all the codecs they operate use lossy compression.

Any data handed over to Skype will be encoded using one of these codecs (presumably SILK) and

therefore be lossy compressed. This would necessarily require text to audio conversion before

feeding the data to Skype.

An alternative might be to send the VoIPshell traffic through Skype instant messaging, for there

undoubtedly lossless compression is used to ensure that the entire text message is received.

However, the continuous nature of our desired connection may not perform very well with this form

of communication.

Essentially, either custom drivers can be written for both microphone and speaker to feed and

intercept Skype’s traffic, which has the disadvantage of having to deal with Skype’s lossless codecs,

or Skype’s instant messaging is used.

6.3 Initiating a Skype call

As discussed in Chapter 5.7 there is no way to initiate a Skype call from the CLI (Command Line

Interface), but the Skype API can be used as described in Chapter 5.8.

Unfortunately, no matter in which manner the Skype application is started, it will always come to the

foreground, betraying our intentions to the victim. This is not the case for UCMA and UCWA, for

these applications appear to allow to initiate calls in the background. However, they come with

other issues (see Chapter 5.8).

Furthermore, when testing the idea to simply start the Skype client on a different virtual desktop (on

Windows), it was discovered that Skype does not allow two instances of the application to be run at

the same time, not even on different virtual desktops. This means, that depending on its state, the

program exhibits a different behavior as described in Table 15.

54

State Action Behavior

Skype is running on desktop A

(foreground, background or

minimized)

Switch to desktop B and

open Skype

Windows switches back to

desktop A and brings Skype to

the foreground

Skype is minimized to the

system tray or closed

Switch to desktop B and

open Skype

Skype will open on desktop B

as expected

Table 15: Skype behavior with different virtual desktops

It appears there is no way to initiate a Skype connection without alerting our victim to our intrusion.

6.4 Conclusion

Because Skype is close source, it is not possible to just simply write a custom Skype client. Therefore,

the only option would be to write some sort of adapters (custom drivers for microphone and

speakers) that feed and then read traffic to and from Skype, making Skype think it is just simple

audio traffic. But Skype would then encode our traffic with a lossy codec, which would have to be

worked around.

As an alternative Skype’s instant messaging could be used, which would probably be easier to

implement.

While there are ways to tunnel data through Skype, they require interaction with Skype’s UI and it is

not possible to do so without the victim noticing the intrusion (excluding UCMA and UCWA).

55

7 Text to audio conversion

7.1 Overview

This chapter discusses different approaches for the conversion of plain text to audio and back. There

are two reasons why such a conversion is desired.

The first reason is, that it is theoretically possible for VoIP traffic to pass through the POTS at some

point in time, thus getting converted to an analog signal. This is exactly what happens when the

signal gets played back as audio. For this to not result in errors, the VoIPshell traffic needs to be valid

audio traffic that could be played back without issues. If the VoIPshell traffic does not represent real

audio, the converted analog signal might either contain frequencies that are getting filtered on the

POTS or the conversion could fail outright.

The second reason is, that using audio data instead of plain text for the actual transmission allows

more flexibility for the protocols used. The same VoIPshell could be used for both SIP and Skype and

it would not matter what audio codecs are used or even if the traffic gets reencoded by a SIP trunk

at any point during transmission.

The focus will be on audio which is in the range of 300 – 3400 Hz because that range is supported by

G.711 and nearly all SIP Clients and Server can deal with the G.711 encoding.

Chapter 7.2 describes how a VoIP system can be connected to a PSTN network and lists different

approaches which can be used to transmit text over PSTN. Chapters 7.3 to 7.5 discuss different

approaches on how to encode text to audio.

7.2 SIP trunks / SIP media gateways

In order to connect a VoIP network to a PSTN network a SIP Trunk is used. A SIP Trunk can provide

phone lines for an IP network. There exist a lot of ITSPs (Internet Telephony Service Provider) which

provide termination services from SIP to PSTN lines. A SIP Trunk performs the following services:

1. Provide connectivity to analog lines both from SIP to PSTN and vice versa.

2. Connecting SIP clients to other SIP clients

3. Conversion between voice to media streaming protocols (e.g. RTP) as well as performing

signaling.

Figure 29 shows a usual topology containing a SIP Trunk to terminate the SIP sessions, allowing

communication between a VoIP and a PSTN network.

Figure 29: VoIP to PSTN

Source: own creation

56

A detailed call flow between a SIP UA and an analog telephone can be found here [50].

7.3 T.38 fax protocol

There exist not many protocols which implemented the functionality to send text via audio, and

most of them are fax technologies. However, these protocols do not actually transmit text, but

rather pictures of the text in the form of TIFF images.

FoIP (Fax over IP) uses the T.38 protocol to transmit data rather than a voice codec. However, both

VoIP and FoIP use the session management features provided by SIP/SDP. In order to send the T.38

encoded data the SIP UAs and the SIP Gateways (SIP Trunks) need to understand the protocol. The

PJSIP (Open source media library written in C) library (discussed in length in Chapter 10) does not

support T.38. The protocol would have to be added manually to the PJSIP implementation. A thread

on the PJSIP forum discusses the addition of the T.38 protocol [51].

Also, the support of T.38 from the providers side is not always given. A list of ISPs on Wikipedia [52]

shows that about 40% do not support it.

Because PJSIP and a lot of ISPs do not support T.38, it will not be considered further.

7.4 T.140 text over RTP protocol

The T.140 protocol allows text messaging for real-time applications and is described in an ITU

(Internet Telecommunication Union) recommendation [53]. The data is transmitted inside of RTP

and SDP with the media type m = text RTP/AVP. SIP Gateways, which allow T.140 to be translated for

communication inside of PSTN networks, exist since 2005 but are still not implemented by all

providers. Unfortunately, PJSIP does not support T.140.

Sipsimpleclient.org provides a proposal on how to implement T.140 in PJSIP [54]. Unfortunately, the

implementation of this protocol is out of scope of this thesis. For Java on the other hand there does

exist a library that implements T.140 [55].

7.5 Text as DTMF tones9

Another option is the conversion of text into DTMF (Dual-tone multi-frequency) tones. DTMF tones

have been used in the analog telephony to transmit telephone numbers to switching centers. The

mapping of tones to numbers and letters follows a predefined 4x4 matrix.

DTMF can represent the classic telephone buttons, the numbers from 1 to 9, the letters A – D, the *

symbol and the # symbol. Each of those symbols is mapped to two sinus waves, one low-tone and

one high-tone. Table 16 shows the mapping of the symbols to the two frequencies.

9 Wikipedia on DTMF [80].

57

 1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D

Table 16: DTMF tone to frequency mapping

If a symbol is pressed on the telephone, a tone is generated from the overlap of the corresponding

tone frequencies. For example, if button 1 gets pressed, the overlap of the 697 Hz sinus wave and

1209 Hz sinus wave is generated. The frequencies of the DTMF matrix are in the range between 300

and 3400 Hz so they could be transmitted as G.711 encoded audio. This is important because G.711

is supported by nearly all SIP UA.

However, the VoIPshell is required to transmit any characters, not just the symbols from Table 16.

Due to the fact, that the matrix is of size 4x4, different audio can be generated for 16 different

symbols. Changing the * with an E and the # with an F results in a mapping which represents the

hexadecimal system. With hexadecimal values it is possible to represent any character. The new

mapping is displayed in Table 17.

 1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz E 0 F D

Table 17: DTMF hex mapping

The duration of one tone is recommended to be between 50ms and 100ms with pause signals of

20ms – 50ms length after each tone [56]. Those values need to be tested and verified if the PoC is

implemented in PJSIP.

7.6 Conclusion

In this chapter different approaches of transmitting text as audio over a PSTN network were

investigated. The initial requirements were, that the generated audio needs to be inside the

frequency spectrum used by VoIP audio codecs (e.g. G.711 300Hz – 3400Hz). Otherwise the audio

could be filtered out by the SIP servers.

Between the T.38 protocol, the T.140 protocol and DTMF tones, the DTMF tones seems to best fit

the projects requirements. The DTMF tone matrix was adjusted to represent the hexadecimal

system. With this approach it should be possible to transmit any text encoded as DTMF tones.

58

8 Decision: Skype or SIP

8.1 Deciding between SIP and Skype

Milestone three of this thesis has been reached and a decision needs to be made on whether SIP or

Skype is to be used to implement the PoC.

The short answer is: SIP.

As presented in chapters 5.7 - 5.9, there is no simple way to initiate a Skype connection. There is no

command line tool that would allow us to start a Skype call in the background. The UCMA and UCWA

are of no use due the need for authentication with a Skype for Business Server owned by the victim’s
company or Skype for Business Online, which requires authentication with Azure AD. It may still be

possible to use these libraries, but for this thesis the lack of the time prevents from going through

the entire setup process that is needed to test these APIs.

The most promising path for a PoC for a reverse shell via Skype would likely be using Skype’s URI API.
While this would not hide the attacker’s intentions from the victim this would not necessarily matter

for a PoC. Still, this approach is not a very pretty one, since interaction with the UI controls would be

required.

For SIP on the other hand, there already exist several open source libraries that allow customization

of the RTP payload and sending traffic over SIP Messaging. The open source nature of these libraries

(and there are many more than the two mentioned in this document) give much more control over

the whole process than is possible with Skype.

Because of these reasons it was decided to proceed with SIP for the implementation of the PoC for a

reverse shell over VoIP.

59

9 mjSIP

9.1 Overview

This chapter documents the findings of the testing of the mjSIP library. The goal is not to study the

entire library (roughly 57’000 LOC (Line of Code)), but rather to learn how to modify it to be able to

send custom traffic through the connection. While testing this library, the requirements of sending

data through the PSTN will be ignored. The first goal is to be able to establish a SIP and RTP session

with a remote SIP UA and to be able to transmit any kind of data. Text to audio conversion will be

added in a later step.

9.2 What is mjSIP?

mjSIP is an open source library written in Java providing an implementation of the SIP, SDP and RTP

stack [57]. A documentation of the mjSIP API is written with Javadoc [58]. The current release of the

software is version 1.8.

9.3 mjSIP features

Table 18 compares the feature set needed by a reverse shell implementation with the features

provided by mjSIP. Unfortunately, an article on mjSIP’s full feature set is not available. Therefore, the

API documentation was browsed, to see what kind of classes are implemented.

Required features Feature provided by mjSIP

Open source X

Runnable on Windows X

SIP (RFC 3261) X

SDP (RFC 4566) X*

RTP (RFC 3550) X*

SIP Digest Authentication (RFC 2617) X*

At least one lossless codec

ATRAC Advanced

H264

H265

VP9

T140

Table 18: Table mjSIP feature comparison

* The RFCs 4566, 3550 and 2617 aren't explicitly listed as supported but in the API

documentation. However, multiple classes implementing SDP, RTP and SIP digest

authentication were found, so it is assumed that those features are implemented according to

their respective RFC.

60

None of the lossless codecs listed as requirements in Table 8 is supported. At least there were no

classes found that implement these codecs. However, the website described it is possible to redirect

traffic to or read traffic from a file [59], which could be very useful. There is also an option to

manually add the implementation of a different media codec (one that supports a lossless

connection).

9.4 mjSIP sample applications

mjSIP provides two sample applications called mjSIP UA (UserAgent using the mjSIP library) and

mjSIP MA (MessageAgent using the mjSIP library). The UA can be started with a minimal GUI

(Graphical User Interface) or with command line arguments. A short tutorial of mjSIP describing the

architectural design can be found in their documentation section [60].

Those two sample applications will be used to further test the library.

9.5 Downloading and building mjSIP

The mjSIP library can be downloaded from mjSIP’s download section [61]. After downloading the

library, the software can be built on Windows with the corresponding make_mjsip.bat located in the

parent folder of the download. The batch file simply compiles all java classes (javac) and creates the

following jar files (jar -cf) in the folder /lib. Which classes are compiled into which jar-File is visible

from the file make_mjsip.bat.

• sip.jar

• ua.jar

• server.jar

Other than the mjSIP UA, which only has lossy codecs implemented, the mjSIP MA must provide the

functionality of sending data lossless.

Both sample applications will be tested, though mjSIP MA seems to be the more promising one.

9.6 Testing mjSIP UA

After having successfully built the code, two instances of the mjSIP UA need to be started. For that,

the following command is used:

java -cp lib/sip.jar;lib/ua.jar org.mjsip.ua.UA

This command starts the main method in the class org.mjsip.ua.UA from the libraries provided by

the -cp command line argument. The UA will start with a GUI. This does not matter at the moment,

because only the basic functionality is to be tested.

The sample applications run successfully. To find out the capabilities of the application it can be

started with the -h parameter. This results in the output displayed in Figure 30.

61

Figure 30: mjSIP UA command-line arguments

Source: own creation

The –auth-passwd and –auth-realm option imply an implementation of the SIP authentication

process.

For the mjSIP UA to be used for the transport of a reverse shell, text needs to be sent as RTP

payload. As discussed in Chapter mjSIP features, it is not clear whether mjSIP supports a lossless

codec or not.

To find any possible implementation of such a codec the source code was searched for all

implemented codecs. All codecs are defined in the class org.zoolu.sound.CodecType. This class

defines names, payload types, frame size and sample rates of the different codecs. As expected,

there is no lossless codec in the list. Figure 31 shows an extract of the definitions of some of these

codecs.

62

Figure 31: CodecType definition mjSIP

Source: own creation

To circumvent this problem, the RTP payload that mjSIP generates could be replacing by a byte

stream. This would leave the RTP header and everything else intact. The only thing that would be

changing are the bytes in the payload. This way, traffic would not have to be encoded at all. To see if

this is a viable approach, mjSIP needs to be analyzed further, particularly how RTP packets are

created from an input stream and sent to a remote destination. This is discussed in the next chapter.

So, while discovering that mjSIP does not support a lossless codec, it may be still be possible to

transmit traffic without losing any data by directly modifying the RTP payload. For that purpose,

mjSIP’s RTP packets will be analyzed.

9.6.1 Approach

To start the analysis, the class needs to be found that represents an RTP packet. Then discovering

where it is instantiated and following the call stack of all instantiations and method calls up to the

main method of the class org.mjsip.ua.UA. This should provide a rough overview of how an RTP

packet is created from an input stream and how it is sent over the network, beginning at the main

method of the UA.

9.6.2 Finding the RTP packet

The class representing an RTP packet is found quickly. By searching the whole source code for the

term (description) rtppacket a single class called RtpPacket is found. The class is located in the

package org.mjsip.rtp. Now breakpoints are set at all constructors of the class RtpPacket. Two

instances of the UA are run, and a call is made from the instance getting debugged (Alice) to the

second one (Bob). To start the Alice’s UA with the right command-line parameters, a customized

run/debug configuration inside of IntelliJ (Integrated Development Environment) is used, which

hands the configuration file over to the UA class. The debug settings are shown in Figure 32.

63

Figure 32: mjSIP UA program arguments

Source: own creation

Alice’s UA is started in debug mode along with Bob’s instance of the UA and a call is made from Alice

to Bob. As soon as the phone call is established the breakpoints get triggered as shown in Figure 33.

Figure 33: mjSIP class RtpPacket debugging

Source: own creation

As evident from Figure 33, the RtpPacket gets instantiated by a method called run() inside a class

called RtpStreamSender. The call stack ends there, which probably means that the method run() is

executed inside its own thread. To get the rest of the call stack starting at the main method of the

64

UA, a new breakpoint needs to be set at the constructor of the class RtpStreamSender. Debugging

RtpStreamSender gives the call stack displayed in Figure 34.

Figure 34: Callstack RtpStreamSender

Source: own creation

As discernable form this call stack, there is no other class in the stack related to RTP. It is assumed,

for the moment, that the input stream sent via RTP will be handed over from the class

AudioStreamer to the constructor of RtpStreamSender.

The constructor of RtpStreamSender can be called with the arguments listed in Table 19.

Arguments

InputStream input_stream

boolean do_sync

int payload_type

long sample_rate

int channels

long packet_time

int payload_size

Encoder additional_encoder

UdpSocket src_socket

String dest_addr

int dest_port

RtpStreamSenderListener listener

Table 19: Arguments for the constructor of RtpStreamSender

65

Next, it must be determined where the input_stream variable is passed to the RtpPacket. The other

variables will be analyzed further, once it is proven, that the input_stream can be replaced with a

custom byte stream.

9.6.3 How to replace the RTP payload

When the constructor of RtpStreamSender has been called, its init() method is called in turn. This

method simply sets all instance variables to the values given to the constructor. Additionally, a new

RtpSocket gets created. The next few methods of the class RtpStreamSender are getter and setter

functions which are not relevant to us. Next, the method run() is studied, because this method is

used to create new RTP packets, as shown in Figure 33.

Inside the method run() the first instantiation of RtpPacket creates an empty packet of the size of

1472 bytes. This corresponds to:

1472 bytes = Ethernet MTU (Maximum Transmission Unit) (1500 bytes) – IP header (20 bytes) – UDP

header (8 bytes)

After the instantiation, some header fields like the payload type, the SSRC identifier and the

timestamp are set, as shown in Figure 35.

Figure 35: RtpPacket instantiation in RtpStreamSender

Source: own creation

A little bit further down bytes are read from the input_stream and set in the RtpPacket as payload.

Finally, the packet gets sent by using the RTP socket. These steps are displayed in Figure 36.

Figure 36: Read stream and set payload

Source: own creation

66

Now, that it is clear where the input stream is read and set as payload of the transmitted RTP packet,

it is time to try reading from a custom input stream and sending it over the network.

9.6.4 Replacing RTP payload

To replace the RTP payload with a custom input stream, an if statement was created inside of the

method run() that checks a Boolean value. If it is true, the customized input stream is be used. To

make the Boolean check available to all classes, for reusability, a global variable is declared inside

the main package org.mjsip-media. Then, the method run() was copied and added the custom input

stream as shown in Figure 37, which reads from a string containing a message.

Figure 37: Custom input stream

Source: own creation

Running the code and sniffing Alice’s network traffic with Wireshark allowed to check if the string

provided as input stream is visible in the captured packets.

As can be seen in Figure 38, the customized string got transported inside the RTP payload. This

proves that mjSIP can be used to send a custom input stream to a remote destination.

Figure 38: RTP payload of custom input stream

Source: own creation

9.6.5 Extracting plain text from RTP payload

The next step is to figure out how to read the RTP payload back on Bob’s end.

67

Because the class RtpSocket is used to send RTP packets, a method needs to be found inside that

class that is designed to receive. Once found, a breakpoint is set in that method and the application

is started in debug mode.

This time, a call is made from Bob’s UA to Alice’s UA, because Alice’s UA is being monitored and it is

the receiving of RTP packets that needs to be analyzed now. In Figure 39 the breakpoint and the

corresponding call stack is shown. The method reveive() is called from the method run() inside the

class RtpStreamReceiver.

Figure 39: RtpSocket receive method debugging

Source: own creation

Because the method run() is responsible for calling the method receive(), it was analyze how the

method run() creates an output stream from the payload inside the received RTP packet. Figure 40

shows how the payload is written into a byte array and then used to fill the output stream.

Figure 40: RtpStreamReceiver output stream

Source: own creation

68

In order to display the data sent from one of the UAs, the output stream was changed to a new

ByteArrayOutputStream and then read the string from that stream as shown in Figure 41.

Figure 41: Custom output stream

Source: own creation

With these code changes it was possible to send and receive a custom stream which makes it a

viable option for the PoC of this thesis.

9.7 Implementing the PoC

9.7.1 Approach

To implement a reverse shell (at this stage still without text to audio encoding) a cmd.exe (Command

Prompt) process needs to be created and piped through the RTP connection to the second mjSIP

instance.

From this point forward two different instances of mjSIP UA will be used, one for the client and one

for the server. The client starts the cmd.exe process and sends the output of the process to the

server instance. The server has to be able to send commands to the client which will be executed

there. Figure 42 shows the single steps needed to establish the shell.

Figure 42: ReverseShell Client-Server

Source: own creation

69

9.7.2 Client implementation – sending

The client first needs to start a cmd.exe process. For this the Java class ProcessBuilder was used

which allows a redirection of the process input and output streams. The class implementing the

cmd.exe process is called ReverseShellClient. The class is implemented with the singleton pattern so

that it can be ensured that only one process exists during runtime. The source code is displayed in

Figure 43.

Figure 43: ReverseShellClient

Source: own creation

The class ReverseShellClient is instantiated inside the RTPStreamSender class. The InputStream

which is getting transported as RTP payload (named own_input_streeam) is set to the input stream

provided by the process cmd.exe (via the method getReverseShellInputStream()). In Figure 44 is

shown how the InputStream is set.

70

Figure 44: Process InputStream

Source: own creation

9.7.3 Server implementation - receiving

To be able to see the data the client is sending to the server, the received data is printed on the

server’s RTPStreamReceiver. The method printing the payload was already used earlier. Figure 45

shows how the cmd.exe generates the stream containing the current CMD-version and path of the

user.

Figure 45: Server receiving cmd.exe

Source: own creation

9.7.4 Server implementation - sending

Next a loop is needed on the server which asks the attacker for input (a command that will be sent

back to the client instance). Figure 46 shows how the attacker gets asked for a command with the

Java Scanner class. This code is implemented directly in the class RTPStreamSender. A line break has

to be added after each command because otherwise the cmd.exe process waits for additional

parameters.

71

Figure 46: Command input

Source: own creation

9.7.5 Client implementation - receiving

The last step is it to take the command inside the class RTPStreamReceiver of the client and write it

to the OutputStream of the cmd.exe process. The command gets executed and writes the output to

the InputStream, which then gets transmitted to the server. Figure 47 shows how the command gets

written to the OutputStream via a Java BufferedWriter.

Figure 47: Client: receiving command

Source: own creation

This implementation was successful. An attacker can remote control a victims computer with shell

commands, as long as the two are in the same network. It is possible to start an additional shell, the

calculator or the notepad or list the filesystem as shown in Figure 48.

72

Figure 48: dir command

Source: own creation

A reverse shell over VoIP was successfully implemented in Java with mjSIP. Because it transmits the

data in plain text and not as audio and because UDP packet loss has not been handled yet, it only

works with both attacker and victim in the same local network.

73

9.8 Testing mjSIP MA

9.8.1 Basic communication

In order to run the mjSIP MA the called class is replaced in the Java command with the class MA. This

means the following command is executed:

java -cp lib/sip.jar;lib/ua.jar org.mjsip.ua.MA

The application is started again with the -h option to see all possible parameters which can be

handed over to the MA. The output is shown in Figure 49.

Figure 49: mjSIP MA command-line parameters

Source: own creation

The most interesting of these parameters are the -c and -f options. A sample configuration file is

included in the mjSIP download. The settings defined in this file are listed in Table 20. A few settings

were omitted because they concern audio or video transmission and are probably needed for the

mjSIP UA not the mjSIP MA.

Parameter Value

host_port 5070

transport_protocols udp tcp

display_name alice

user alice

auth_user alice

auth_realm example.com

auth_passwd pippo

Table 20: mjSIP MA configuration settings

Next, two instances of mjSIP MA are started with the sample configuration file, changing only the

values for host_port and display_name. For the testing, the remote user (Bob) calls the local user

(Alice). In the setup, Bob’s MA and Alice’s MA are running on the same machine, which is why they

were addressed with the loopback interface 127.0.0.1 and ports 5080 and 5070 respectively. The

following two commands were run:

java -cp lib\sip.jar;lib\ua.jar org.mjsip.ua.MA -f a.cfg -c 127.0.0.1:5080

java -cp lib\sip.jar;lib\ua.jar org.mjsip.ua.MA -f b.cfg -c 127.0.0.1:5070

74

Both Bob’s MA and Alice’s MA are created and messages can be sent as SIP MESSAGEs between the

two clients. From the left client (Alice) in Figure 50 a "HALLO" is sent which is received on the other

client (Bob).

Figure 50: SIP MESSAGE Alice to Bob

Source: own creation

9.8.2 Analyzing SIP MESSAGE

Now that sending messages between two clients via SIP works, the traffic is analyzed in Wireshark to

see the types of messages that are used. Because traffic is sent to the loopback interface, the

loopback capturing needs to be enabled as described in the Wireshark Wiki [62]. The capture of the

communication results in the following pattern.

Each message is sent as a SIP request with type MESSAGE as defined in the RFC 3428 [14] and shown

in Figure 51. The messages are acknowledged by a SIP status reply with status code 200 as shown in

Figure 52.

Figure 51: mjSIP MA SIP request MESSAGE

Source: own creation

75

Figure 52: mjSIP MA SIP status 200

Source: own creation

Until now, establishing a reverse shell entirely over SIP MESSAGE had not been considered.

Primarily, because the SIP MESSGAE type was not described in the original RFC 3261 [3]. It was

assumed that SIP could only be used for session establishment and not for actual data transfer. This

provides an alternative to tunneling traffic through SIP.

9.8.3 Transmitting a shell using SIP MESSAGE

The next step is to transmit the shell over SIP using SIP MESSAGE. For this, the source code of the

mjSIP MA needs to be analyzed to find the classes and methods which are responsible for sending

and receiving messages. This is accomplished by first doing a manual code analysis starting with the

class which get executed first (class MA). From there, the instantiations of objects and assignments

of variables are followed to find the methods which are responsible for sending and receiving data.

Figure 53 displays the sequence of instantiations from the method main() in the class MA. Table 21

contains a description of the classes and methods shown in the diagram.

Class/Method Description

MA Is the class that is called first.

new Flags() Instantiates a flags object which holds all command-line parameters

as attributes which were given to the program at the start.

SipStack.init() Static methods which initializes the SipStack with the port, transport

protocol and timeout values.

new UserAgentProfile(file) Instantiates a UserAgentProfile object which holds user specific

attributes such as proxy, registrar and authentication digest

parameters.

new MessageAgentCli() Instantiates an object which is able to send and receive data. It calls

new MessageAgent() and registers itself as a listener to receive

messages.

It has the method onMAreceivedMessage() which prints output to

the command line.

new MessageAgent() Instantiates a MessageAgent. The message agent contains the send

and receive methods which generate SIP MESSAGEs.

76

The content of the messages are encoded with the string.getBytes()

method which chooses the default encoding of the operating

system.

Table 21: MA sequence diagram class explanation

Figure 53: MA sequence diagram

Source: own creation

At this point it was realized that an executable in Java would exceed the 2MB file size limitation set

in the requirements analysis, due to the need of the JRE (Java Runtime Environment) that is over

2MB by itself already. Because of this, it was decided to abandon further testing of mjSIP and instead

use the C library PJSIP.

9.9 Conclusion

In this chapter the mjSIP library and the two sample applications mjSIP UA and mjSIP MA were

studied. The mjSIP library supports all capabilities needed by a reverse shell implementation as

77

defined in chapters 5 and 6, except a lossless audio codec. The missing of such a codec could be

bypassed by implementing the DTMF option described in chapter Text as DTMF tone.

A reverse shell over VoIP was successfully implemented in Java using mjSIP. For the moment,

though, it only works without SIP registration and if both victim and attacker are in the same local

network. It was accomplished using the sample application mjSIP UA.

The application mjSIP MA presumably also works, though using text messages of type SIP MESSAGE

instead of RTP.

Something that was not considered previously is the size of the resulting executable file. As

described in the requirements analysis, the executable sent to the victim should not exceed 2MB.

Because the mjSIP uses the language Java, the executable needs to include the JRE which is already

2MB large (Version 8 update 23).

Therefore, mjSIP cannot be used to implement the reverse shell over VoIP. Instead, PJSIP is used,

which is written in the language C.

78

10 PJSIP

10.1 Overview

This chapter documents the findings of the testing of the PJSIP ()library. The goal was not to study

the entire library (roughly 700’000 LOC), but rather to learn how to modify it to be able to send

custom traffic through the connection.

10.2 What is PJSIP?

PJSIP is a free and open source multimedia communication library written in the programming

language C, implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE.

(cited from PFJSIPs official website [63]). PJSIP provides a very rich documentation [64].

10.3 PJSIP features

Table 22 compares the feature set needed with the features provided by PJSIP as listed on PJSIPs

datasheet [65]. All required features are implemented in the PJSIP library.

Required features Feature provided by PJSIP

Open source X

Runnable on Windows X

SIP (RFC 3261) X

SDP (RFC 4566) X

RTP (RFC 3550) X

SIP Digest Authentication (RFC 2617) X

At least one lossless codec X

ATRAC Advanced

H264 X

H265

VP9

T140

Table 22: PJSIP feature comparison

10.4 PJSIP static libraries10

PJSIP consist of several static libraries, illustrated in Figure 54. PJSIP has different layers of

abstraction (APIs) of the core functionality provided by the library PJLIB. To keep the PoC as simple

as possible the right abstraction level which best suits our requirements needs to be determined.

10 Summary of PJSIP documentation [67]

79

Figure 54: PJSIP static libraries

Source: PJSIP documentation [66]

Table 23 describes the individual libraries of Figure 54 as specified in the PJSIP documentation [67].

Library Description

PJLIB PJLIB is the platform abstraction and framework library, on which all other

libraries depend upon.

PJLIB-UTIL PJLIB-UTIL provides auxiliary functions such as text scanning, XML, and STUN.

PJMEDIA PJMEDIA is the multimedia framework.

PJMEDIA-CODEC PJMEDIA-CODEC is the placeholder for media codecs.

PJSIP-CORE PJSIP-CORE is the very core of the PJSIP library, and contains the SIP

Endpoint, which is the owner/manager for all SIP objects in the application,

messaging elements, parsing, transport management, module management,

and stateless operations. It also contains…

… the Transaction Layer module inside PJSIP-CORE which provides stateful

operation, and is the base for higher layer features such as dialogs and…

… the Base User Agent Layer/Common Dialog Layer module inside PJSIP-

CORE which manages dialogs and supports dialog usages.

PJSIP-SIMPLE PJSIP-SIMPLE provides the base SIP event framework (which uses the

common/base dialog framework), implements presence on top of it and is

also used by call transfer functions.

PJSIP-UA PJSIP-UA is the high-level abstraction of INVITE sessions (using the

common/base dialog framework). This library also provides SIP client

registration and call transfer functionality.

PJSUA-LIB PJSUA-LIB is the highest level of abstraction, which wraps all functionality

listed above into a high-level, easy to use API.

Table 23: PJSIP libraries

PJSUA-LIB provides the highest level of abstraction so the first approach of writing the software will

be by using PJSUA-LIB.

80

10.5 Installation guide

To have a first look at the library, the project PJSUA (Sample application using PJSIP) is run. It is part

of PJSIP’s code and implements a UA that uses the PJSIP library.

On the PJSIP documentation [68] it is suggested to use Visual Studio to build and run PJSIP. However,

the last VS (Visual Studio) solution for PJSIP existing is for VS14 (Visual Studio 2014) which is why

some additional installation steps are required, to make it work with the VS19 (Visual Studio 2019).

To run the UA of PJSUA use the following instructions.

1. Download the Visual Studio Installer for Visual Studio 2019 Community Edition at:

https://visualstudio.microsoft.com/de/vs/

2. In the tab Workloads window, select .NET-Desktopentwicklung, Desktopentwicklung mit C++

and Entwicklung für die universelle Windows-Plattform, as shown in Figure 55.

Figure 55: Visual Studio Installer – Workloads

Source: own creation

3. In the right column under Details zur Installation open the dropdown menu for

Desktopentwicklung mit C++ and check the box for MSVC v140 – VS 2015 C++-Buildtools

(v14.00) as depicted in Figure 56.

https://visualstudio.microsoft.com/de/vs/

81

Figure 56: Visual Studio Installer – MSVC v140

Source: own creation

4. Again, in the right column under Details zur Installation open the dropdown menu

Entwicklung für die universelle Windows-Plattform and check the box for UWP-Tools

(Universelle Windows-Plattform) für C++ (v142) as depicted in Figure 57.

Figure 57: Visual Studio Installer - UWP-Tools v142

Source: own creation

82

5. Confirm the installation. When the installation is complete you may get prompted to reboot

your computer.

6. Download and unpack the .zip file from https://www.pjsip.org/download.htm.

7. Navigate to the subdirectory /…/pjproject-2.9/pjlib/include/pj/ and create an empty file

named config_site.h. Why this is necessary is explained in the PJSIP documentation [69].

8. Open the VS14 solution /…/pjproject-2.9/pjproject-vs14.sln. In the Solution Explorer, right

click on the project PJSUA and click Set as StartUp Project. In the toolbar on the top, make

sure to select Win32 as Solution Platform.

9. Now you can build and run the project with the F5 key.

10. In case you get the error depicted in Figure 58 you will have to install the Windows 8.1 SDK

from https://developer.microsoft.com/de-de/windows/downloads/sdk-archive.

Figure 58: Error for missing Windows SDK version 8.1

Source: own creation

Building the project successfully will create an executable located at /…/pjproject-2.9/pjsip-

apps/bin/pjsua-i386-Win32-vc14-Debug.exe. To see the capabilities of the program run it in a

command line with the option --help.

When running the executable, you will be greeted with the CLI shown in Figure 59.

https://www.pjsip.org/download.htm
https://developer.microsoft.com/de-de/windows/downloads/sdk-archive

83

Figure 59: PJSUA interface

Source: own creation

10.6 Setting up a SIP call with the UA PJSUA

To issue a SIP call with the UA PJSUA, do the following:

1. Start the executable you created in Chapter 10.5 so you can see the PJSUA interface

depicted in Figure 59.

2. Type m and hit enter

3. Type the SIP address of the recipient (i.e. sip:152.96.195.224:5070) and hit enter

The called party, also running a PJSUA, will receive the command line output shown in Figure 60.

Figure 60: Incoming call on PJSUA

Source: own creation

Pressing a and enter will let you choose the status code with which you want to answer the call as

shown in Figure 61.

84

Figure 61: Choosing status response on pjsua UA

Source: own creation

After answering with 200 the call setup will be complete, and you can talk with your call partner.

10.7 Code analysis

10.7.1 First attempt at debugging

Many hours were spent debugging and inspecting the code, which was a very painstaking process.

The library is very large, and it was difficult finding out how exactly the RTP payload can be

customized. It did not help that the code is not properly indented. Many nested loops have the same

amount of indentation as their parents, which makes it more difficult to recognize the structure of

the code.

There is no universal code style, so for example depending who wrote a certain piece of code,

opening brackets are on a new line or not. And then there are random comments in the code such as

this one from pjmedia/conference.c.

Figure 62: Random comment in PJSIP

Source: own creation

Finally, the code was understood well enough to create the sequence diagram depicted in Figure 63.

All these classes are part of the project pjmedia, except for the class speex_codec.c which is part of

the project pjmedia_codec. The diagram is greatly simplified and is only meant to give a general

impression of the classes and methods that take part in sending an RTP packet in PJSIP.

85

Figure 63: PJSIP sequence diagram

Source: own creation

The frame that is being passed around (i.e. get_frame() and put_frame() in Figure 63) describes a

media frame. It is essentially an RTP packet, or at least it contains all the information necessary for

an RTP packet. Figure 64 shows a screenshot of the frame, which is declared in the file frame.h in the

project pjmedia.

86

Figure 64: Declaration of media frame

Source: own creation

The frame type is an Enum to distinguish between the following frame types:

• No frame

• Normal audio frame

• Extended audio frame

• Video frame

The field *buf points to the location of the payload as illustrated in Figure 65. The field size contains

the size of the buffer in bytes. This is needed so PJSIP knows for how many more bytes it needs to

keep reading, because *buf only contains the location of the first byte. In the example in Figure 65

the field size would be 5, because that is how many bytes need to be read. The payload here is the

string “Hello”.

Figure 65: Pointer to buffer in media frame

Source: own creation

87

As a result of these findings it was decided that the easiest way to customize the RTP payload would

be to edit the class stream.c and modify the field *buf of the media frame to point to our own

payload.

10.7.2 Replacing the device’s input and output stream

When a call is established a WMME capture and playback thread is started. It contains a while-loop

in the function wmme_dev_thread() of the class wmme_dev.c of project pjmedia_audiodev. This

while-loop runs as long as the phone call persists, and it alternatingly both reads data from the

microphone stream and writes data to the speaker stream.

Because the VoIPshell traffic is encoded as audio, this thread seems to be the obvious place to swap

the voice traffic for VoIPshell data. After studying the code, it was presumed, that PJSIP reads voice

data from a wmme_strm and then writes it to a pjmedia_frame for further processing. The

processed pjmedia_frame gets eventually written to an RTP frame before being transmitted over the

network. On the receiver’s side the opposite would take place for writing a frame containing

transmitted data to a wmme_strm for the speakers. This is illustrated in Figure 66.

Figure 66: Interpretation of PJSIP's code concerning WMME streams

Source: own creation

Figure 67 shows how the WMME stream is accessed within the while-loop mentioned before.

Figure 67: Access of WMME stream in while-loop

88

It was decided to replace the voice data in the WMME stream with VoIPshell data before the

pjmedia frame gets created (Figure 68) and then again read the frame on the receiver before it gets

written to the WMME stream (Figure 69).

Figure 68: Replacing WMME input stream

Figure 69: Reading transmitted frame

Source: own creation

However, this did not yield the expected results. It would appear, that, due to the lack of proper

documentation on PJSIP, this part of the code was not correctly interpreted. Because this project has

a set time frame, it was decided to go another route. This is illustrated in Figure 70 which shows the

PJSIP audio media flow.

The original audio stream would not be meddled with directly after it has been read from the

microphone and before it has been sent to the speaker (Position 1 in Figure 70). Instead, the data

would be replaced in the class stream.c, right before the RTP packet gets created and sent and right

after it has been received from the network (Position 2 in Figure 70).

Figure 70: PJSIP audio media flow

Source: PJSIP documentation [70] (edited from original)

89

10.7.3 Customizing RTP packets

It was decided, that the first thing to do, is to try replacing the RTP payload after it has been encoded

by PJSIP and try reading the payload content back on the second UA. Basically, the goal is to achieve

the same thing already accomplished with mjSIP. However, this proved to be more difficult than

anticipated.

The content of the media frame (field frame_out) is replaced by overwriting its content (see Figure

71) after it has been encoded and before the header is created in the method put_frame_imp() of

the class stream.c.

Figure 71: Overwriting media frame content

Source: own creation

This did not work, however. The message, which is simply an integer of value “1”, was not visible in

the RTP payload of the packets captured with Wireshark. Thinking it might be because the value was

copied instead of the reference at some point (or vice versa) we experimented with different

variations of this approach. But no matter where the media frame was overwritten or whether the

buffer was passed by value or by reference, the RTP payload captured with Wireshark did not

contain the expected value of 00 00 00 01.

It was decided to take a closer look at where the RTP packet is actually created and sent. Still in the

method put_frame_imp() of the class stream.c a few lines after the RTP header has been created,

first the method pj_memcpy() is called to copy the header to the front of the packet and then the

method pjmedia_transport_send_rtp() is used to send the packet.

While these calls had been noticed before, it had not been realized that they no longer work with

the media frame but rather with a pjmedia_channel (see Figure 72) which also has a pointer to a

buffer, here called *out_pkt, which stands for outgoing packet. This buffer points to the beginning of

the RTP header and it is this pointer that is used when the RTP packet is finally sent.

At this point, the RTP payload must follow immediately after the RTP header in the physical storage.

Just like the media frame kept track of its payload shown in Figure 65, the media channel uses the

pointer *out_pkt and the field out_pkt_size to read the entire RTP packet (header and payload) from

storage.

90

Figure 72: Declaration of media channel

Source: own creation

This means, it needed to be made sure that not only the media frame contains a link to the custom

payload but also that the media channel has a pointer to the custom RTP packet. For that, the

payload of frame_out is copied to where the pointer *out_pkt points using pj_memcpy, as

demonstrated in Figure 73. The first 12 bytes must be jumped, because that is where the RTP header

is located.

At the same time the size of the outgoing RTP packet (channel->out_pkt_size) must be set (RTP

payload length plus RTP header length).

Figure 73: Copying the payload to the RTP packet

Source: own creation

The transmission works now. It is possible read a test file into a buffer, transmit it piece by piece

wrapped into RTP packets and then rewrite the file at the receiver’s end. However, there are two

issues with the current approach.

The first issue is, that the traffic never gets encoded with a valid audio codec. This means, if the

VoIPshell traffic passes through the PSTN at any point in time, the transmission will most likely fail.

This is, because through the PSTN the data gets transmitted in the form of analog audio between the

frequencies 300Hz and 3’400Hz. This problem can be solved by first generating valid audio from the

VoIPshell text, by the means of DTMF described in Chapter 7.5 and replacing the RTP payload in

PJSIP before it gets encoded instead of afterwards (Position 3 in Figure 74).

91

Figure 74: PJSIP audio media flow

Source: PJSIP documentation [70] (edited from original)

The second issue is, that in the current testing, packets are intercepted before they go through the

jitter buffer. This means, that the successful transmission of the test file only works if both UAs are

running on the same network. Because RTP is wrapped in UDP, it is not guaranteed that all packets

arrive in the correct order, nor that they arrive at all.

The jitter buffer takes care of the order of the packets. However, because this is audio traffic, where

it does not matter much if some packets are lost, PJSIP does not request a retransmission of these

packets. Handling packet loss is one thing that will need to be implemented for the final PoC.

In conclusion, basic transmission works now. However, the traffic is still sent as plain text and not

encoded as audio and the problem of unreliable UDP traffic is not yet solved. The next step is the

encoding of the sample data to audio before transmission, as shown in Figure 74, so that the traffic

may pass through the PSTN.

10.7.4 G.711 encoding and packet loss handling

As discovered when implementing text to audio conversion (see Chapter 11), the converted byte

stream already represents valid G.711 encoded traffic. The traffic does not need to be encoded

again in PJSIP.

Also, the limited time frame of this thesis does not allow further investigation in to packet loss

handling, meaning the PoC for this reverse shell will work only in a local network, where UDP

packets can be expected to arrive in order and without loss, and not over the internet.

For these reasons the voice traffic will be replaced at position two in Figure 74. The implementation

is described in more detail in the software architecture document.

92

10.8 PJSIP register

10.8.1 Overview

In this section the SIP REGISTER process, performed by the PJSIP UA, is tested with a public and free

SIP provider. The goal is it to prove, that the customized PJSIP UA is able to connect to a SIP provider

and can successfully establish a call to a remote SIP UA.

10.8.2 General registration process in PJSIP

The PJSIP UA sample application provides the possibility to initiate the registration via command line

parameters. After starting the PJSIP UA a new SIP account can be added by sending +a to the

application. A SIP account holds all necessary registration information. The following information

needs to be provided in order to create a new SIP account inside PJSIP:

Parameter Description Example

SIP URL The SIP URL which was created while

registering at a SIP provider.

sip:841319634@voiptalk.org

URL of registrar The SIP URL of the SIP REGISTRAR server. sip:voiptalk.org

Auth Realm Domain for which the credentials are valid. voiptalk.org

Auth Username The username created at a specific SIP

provider.

841319634

Auth Password The password belonging to the username. password

Table 24: SIP account parameters

If all parameters are provided, PJSIP will start the registeration process on start up.

10.8.3 SIP provider 1: Linphone

In this section the connection to the Linphone Registrar server is tested. In the PJSIP test scenario

the PJSIP UA is provided the same credentials as used by the Linphone software. The creation of a

new SIP account inside of PJSIP using Linphone as SIP provider is displayed in Figure 75.

Figure 75: PJSIP SIP account Linphone

Source: own creation

When entering the last line, the SIP registration process is started. PJSIP creates the output shown in

Figure 76. The Figure shows, that the account is successfully created inside of PJSIP (Lines 1 - 3). It is

also visible, that a SIP REGISTER message from the PJSIP UA towards the SIP registrar was sent (Lines

93

4 - 16). The response of type 401 can also be seen inside the output. PJSIP terminates with the error

message (printed in red color) which states that the digest algorithm SHA-256 is not supported. This

error message seems to come from the file sip_auth_client.c.

Figure 76: PJSIP registration process Linphone

Source: own creation

When sniffing the registration process with Wireshark as shown in Figure 77, the two packets which

are shown in Figure 76 are also visible.

Figure 77: PJSIP registration Linphone Wireshark

Source: own creation

The error message of the unsupported digest algorithm seems to stop the registration process.

Usually after the first 401 packet is received from the SIP registrar, the SIP UA calculates the digest

value using a random sequence and a digest algorithm defined inside the 401 packet. The behavior

of PJSIP in this case is very strange, because the SIP response contains two digest algorithms (sha-

256 and MD5), from which MD5 is supported by PJSIP.

The reason for this behavior was found inside the sip_auth_client.c class on line 280 shown in Figure

78. PJSIP makes a string comparison of the algorithm in the SIP response with the two algorithm

which are implemented by PJSIP (MD5 and AKAv1-MD5). If they do not match a

PJSIP_EINVALIDALGORITHM is returned as status message causing the abortion of the registration

process.

94

Figure 78: PJSIP digest algorithm check

Source: own creation

To circumvent this problem a quick fix was implemented. The lines performing the check were

commented out and a second attempt of registering the PJSIP UA to Linphone was started.

Again PJSIP sends the SIP REGISTER and receives the SIP response with status code 401 from the

Linphone registrar. At the end PJSIP prints out an error message. This time complaining about the

server setting the stale flag to false. This output is visible in Figure 79.

Figure 79: PJSIP registration process linphone without digest check

Source: own creation

Wireshark again only shows two packets, meaning that the response from the server does not get

processed correctly, because the digest value is not sent back to the server. The registrartion process

is stopped again after receiving the 401 response from the server. Searching the sip_auth_client.c

file for the string "server rejected with stale=false" lead to line 1076 shown in Figure 80.

There PJSIP performs the stale check. As described in Allen Luker’s website [71] the stale check is

performed to check if a nonce value is the same at a re-registration process. Beacuse the first

registration gets performed and not a renewal of the registration process this check from PJSIP is

also pretty strange. To test if the registration completes without the stale check, the if-clause was

changed to never run.

95

Figure 80: PJSIP registration process stale check

Source: own creation

PJSIP was run a third time with the algorithm check and the stale check disabled. Finally all four

packets were sent and received but the PJSIP UA printed the error message shown in Figure 81.

Figure 81: PJSIP resgistration process 403

Source: own creation

Figure 82 shows the Wireshark capture of the 4 packets sent. The third packet contains the

calculated message digest. The digest displayed in Figure 83 was checked for correctness with the

digest caluclator tool used in Chapter 3.8. For some reason the Linphone registrar does not allow the

PJSIP UA to register itself. To find out the exact reason for the 403 response from the server, a

analysis of the server would be necessary which is not possible due to the lack of control about the

registrar.

Figure 82: PJSIP final registration process wireshark

Source: own creation

Figure 83: PJSIP registration process digest calculation

Source: own creation

96

Because Linphone develops ist own softphone client it is possible, that a registration to the Linphone

registrar can only be made with a Linphone softphone. The type of SIP UA used is defined inside the

field User-Agent of a SIP REGISTER message. This field (shown in Figure 84) could be filtered by the

Linphone server, denying all other types of UA to register themselves.

Figure 84: PJSIP registration process UA type

Source: own creation

It may be possible to fake the User-Agent entry and test the registration process again. Instead, a

different SIP provider is tested.

97

10.8.4 SIP provider 2: Voiptalk

Two new SIP accounts were created on voiptalk.com. All code changes from chapter Linphone are

reverted before continuing. Voiptalk provides free SIP accounts and also a free phone numbers,

which can be used to make calls. The account details are listed inside the credentials document.

The creation of a new SIP account inside of PJSIP using Voiptalk as SIP provider is displayed in Figure

85.

Figure 85: PJSIP registration Voiptalk

Source: own creation

The registration process is started and successfully finished. Figure 86 shows the output of the PJSIP

UA after the successful registration process.

Figure 86: PJSIP registration success

Source: own creation

The successful establishment can also be proven through Wireshark as shown in Figure 87. The SIP

registrar of Voiptalk returns a 100 trying after each SIP REGISTER message from the clients. The

Trying response can be used to inform the client about a further request still being processed. In the

third packet (second REGISTER message) PJSIP sends the calculated digest. The digest is accepted by

the server, so the 200 OK response is sent back, meaning the registration process was successful.

Figure 87: PJSIP registration success capture

Source: own creation

The Voiptalk website also provides the functionality to view the online status of a SIP URI [72]. Figure

88 proves the online status of the PJSIP UA.

98

Figure 88: Voiptalk online status

Source: own creation

To test that the PJSIP UA is not only able to register itself, but can also make calls to a remote UA, a

call was started to a second PJSIP UA, which was also registered to the Voiptalk registrar server.

10.9 Conclusion

Testing PJSUA has shown that a reverse shell can be implemented using PJSIP. Custom traffic has

been sent successfully through the RTP connection allowing a test file to be transferred to a different

computer on the same network. UDP packet loss handling is not implemented yet, however.

The registration process was successful when using the SIP provider Voiptalk, but not when using

Linphone.

99

11 DTMF encoding/decoding

11.1 Overview

This chapter discusses the setup used to encode byte streams as DTMF tones [56]. The source code

used to generate the required sinus-waves is also explained.

11.2 Encoding

The part implemented and tested in this chapter is starting with a byte stream (called plain text

message because it will be a sample text without any encoding) and ends with the DTMF tones

representing the letters from the plain text message. Each byte of the plain text message is read

from a byte stream and split into two nibbles (named ls_nibble and ms_nibble to identify the four

least significant bits and the four most significant bits).

Each nibble needs to be interpreted as a hex symbol because the DTM matrix displayed in Table 17

maps one hex-symbol to one DTMF tone. The hex symbol will be used as input for the function

creating the DTMF tone, consisting of two sinus-waves. The sinus-waves are then added together

and saved as output. The general encoding flow is displayed in Figure 89.

Figure 89: DTMF encoding process

Source: own creation

The output buffer will be used as input for the PJSIP library which sends the encoded text message

as RTP payload to the receiving SIP UA instance.

The AudioConverter is written in C. Figure 90 shows the method main() of the program. The for-loop

reads each byte into a variable called byte. The byte is than split into the two nibbles. The nibbles

are used as input for the generateDtmfTone() function. The tone duration is a constant value and set

to 50ms. The numSamples variable is also handed over to the function as parameter and acts as a

container for the calculated number of samples which is defined as duration * 8 (because the

sampling rate is set to 8000Hz). The generated tones are then written the output file.

100

Figure 90: AudioConverter main methods

Source: own creation

Figure 91 shows the function generateDtmfTone(). The function takes the nibble and generates the

corresponding two sinus waves with the helper function generateSine().

Figure 91: AudioConverter generateDtmfTone function

Source: own creation

101

To test the program a text file containing multiple letters 'H' were written into the input buffer.

Figure 92 shows the frequency analysis of the output-file in audacity.

The letter H consists of the two hex-symbols 4 and 8. From the symbol 4 the sine waves 770Hz and

1209Hz are generated and from symbol 8 the sine waves 852Hz and 1336Hz. Those frequencies (the

four peaks) are exactly drawn by the frequency analysis provided by Audacity.

Figure 92: Frequency analysis in Audacity

Source: own creation

The frequency analysis proves that the correct audio signal was generated by the AudioConverter. If

tested with a test file containing only one letter (file size equals 1 byte), the output file has the size

of 1120 Bytes.

The output file contains 50ms of tone of the first nibble and another 50ms for the second nibble and

an additional 20ms silence tone after each tone. The silence tone is necessary so, when decoding

the audio again, the individual tones can be made out better.

The output-file contains a total signal duration of 140ms, which equals 1120 Bytes. This size is the

same as the size of normal audio recorded by the microphone of any application, encoded with

G.711. The AudioConverter uses the same frequency and sampling rate as G.711 meaning the

encoding of the generated audio with G.711 inside PJSIP is not necessary anymore.

The data generated from the AudioConverter is valid G.711 encoded audio.

11.3 Decoding

The decoding process is slightly more complex than the encoding. The decoding includes the process

of gathering the frequencies (the lower and the higher frequency) used in a specific tone read from

the input.

102

To get the frequency of an audio signal a Fast Fourier Transformation can be used. In this specific

case it is known, which frequencies could be present in a given tone (exactly those DTMF

frequencies which were used to generate the tones). This makes a Fast Fourier Transformation not

the best solution due to its high CPU (Central Processing Unit) consumption. If a signal gets checked

for known frequencies, a Goertzel filter can be used [73]. The Goertzel filter is a mathematical

algorithm which provides the magnitude of a tested frequency. In general, a magnitude higher than

ten confirms the presence of a specific frequency. The general decoding is displayed in Figure 93.

Figure 93: DTMF decoding

Source: own creation

The decoding process starts by reading 400 samples (corresponding to one encoded nibble, because

a frequency of 8000Hz is used, meaning 400 samples represent 50ms of audio) and filling them into

an array. For each DTMF frequency the Goertzel algorithm is executed and calculates the magnitude.

The magnitude is then used to determine if a given frequency is present in the signal.

The last step is to make a lookup to find the hex number which corresponds to the two frequencies

found (where the magnitude is larger than 10). These steps are repeated until the whole stream is

processed.

Figure 94 shows a part of the method main() which reads from the input stream and calls the

Goertzel function to find the magnitudes of the DTMF frequencies. The frequencies then get

inserted into a lookup method to find the hex number of the nibble. The implementation of the

decoder was done with help of a GitHub repository [74].

103

Figure 94: DTMF decoding main-method code

Source: own creation

Figure 95 shows the Goertzel function used to determine the magnitude. The numSample parameter

is set to 400. The TARGET_FREQUENCY holds the frequency filtered by the function. The sampling-

rate needs to be the same as the one chosen for the encoding of the byte stream (8000Hz). The data

pointer points towards the array holding the 400 sample values.

104

Figure 95: DTMF decoding Goertzel function

Source: own creation

To test the decoding function, an input stream containing the letter 'H' was encoded and written

into a file. The decoding function was then called with the audio test file. Executing the decoding

function prints the filtered frequencies and the hex-number of the first nibble.

Figure 96: DTMF decoding test

Source: own creation

11.4 Performance

The expected performance of a reverse shell using DTMF encoding depends on how it is used. One

byte of actual data results in 140ms audio data which equals 1120 bytes.

105

In case the audio does not pass through the POTS or get played back at any time, the packets can be

sent at maximum speed. If the connection is 100 Mbit/s this results in roughly 11 kB/s throughput

which is certainly fast enough.

However, if the audio does get played back, the speed is limited by the 140ms per byte. This results

in a speed of a little over 7 B/s, which is very low.

11.5 Conclusion

It is possible to use a modified DTMF matrix to encode a byte stream into DTMF tones. From the

frequencies used to display a hex-number two sinus waves are generated and added together. Each

nibble of a byte is encoded as one DTMF tone. By using the Goertzel algorithm an audio test file can

be filtered for those DTMF frequencies, which allows the reconstruction of the encoded hex number.

An encoded byte results in 1120 bytes representing a 140ms signal containing two 50ms tones and

two 20ms silence after each tone. The option of using DTMF to encode data is very slow when

passing through the POTS (7 B/s) but a lot faster when remaining in packet switched networks (11

kB/s).

106

12 Implementation
This section contains implementation details and explanations about the final PoC. Figure 97 displays

the same system archtiecture as used inside the SAD. The figure prvoides an overview of the involed

components which are described in this chapter. A more detailed description of these components

can be found in the software architecture document.

Figure 97: Sequence diagram

Source: own creation

107

12.1 Customizable settings

Currently all SIP registration settings are hardcoded. Here is described how these settings can be

adjusted. Usually these settings can be either handed over to the UA as command line parameters or

via a config file.

However, both these methods do not allow for a single executable to be created without any

external dependencies, which is why the parameters were hard coded in the class

pjsua/psua_app_config.c.

12.1.1 Startup parameters

The application tries to read a config file if one is handed over. Because all custom settings are made

in the code block which is entered if a file is defined, the variable containing the filename was

hardcoded, so it would always enter the if-statement.

Figure 98: hardcoded filename

Source: own creation

Normally, the method read_config_file() is going to read all parameters defined in the file. The string

containing the parameters after reading was altered to use hardcoded parameters.

Figure 99: hardcoded parameters

Source: own creation

Currently the settings for the attacker are the following.

108

• --log-level=0

• --local-port=5070

(Using a different port than the victim, allows it to also work if both run on the same host,

which is needed for testing purposes.)

• --auto-answer=200

• --id=sip:841319772@voiptalk.org

• --registrar=sip:voiptalk.org

• --realm=voiptalk.org

• --username=841319772

• --password=Jbbmd3

The settings for the victim are the following.

• --log-level=0

• --id=sip:841319634@voiptalk.org

• --registrar=sip:voiptalk.org

• --realm=voiptalk.org

• --username=841319634

• --password=9NYTqW

An overview of all startup parameters can be displayed by executing a PJSUA executable with the

parameter argument --help.

12.1.2 Adjusting volume

Because VoIPshell transmits legitimate voice traffic when no shell commands are entered, the

volume of those RTP packets had to have been muted. Otherwise, if the microphone and speakers

are enabled, normal audio would be played. The volume can be adjusted inside the method

legacy_main() method as displayed in Figure 100.

Figure 100: Adjust volume

Source: own creation

12.1.3 Automatic call

Usually the user of the sample UA can initiate a phone call through the command line. For the victim

it was intended to automatically call the attacker as soon as the application gets started. To

implement this functionality the method that initiates phone calls was called manually inside the

class pjsua/pjsua_app_legacy.c as shown in Figure 101.

109

Figure 101: call method

Source: own creation

The string containing the receivers address is hardcoded inside a variable called buf.

Figure 102: call receiver

Source: own creation

12.1.4 Console output

In normal operation the sample UA asks the user for input through the command line. This allows

the user to manually establish calls, register to a SIP registrar and do much more. To disable this

feature the method call to keystroke_help() was commented out in the class

pjsua/pjsua_app_legacy.c.

12.2 shell_io.c

The class shell_io and its header file are located inside the package pjmedia. The class runs in its own

thread, which is created in the class stream.c. The thread runs in a loop and first checks if the

variable received_entire_payload is true as shown in Figure 103.

The value is initially set to false in the class stream.c. It becomes true if the full output of a shell

command has been received from the victim.

Figure 103: shell_io.c - first if-statement

Source: own creation

110

The logical check is done based on the size of the packets. A second if-statement, displayed in Figure

104, checks whether a command has been typed into the console by the attacker and the thread is

still waiting for the answer coming from the victim. During this phase no commands can be sent to

the victim. If payload exists, it is decoded and displayed on standard output.

Figure 104: shell_io.c - second if-statement

Source: own creation

12.3 audio_encoder.c

The class audio_encoder.c is in the package pjmedia. The functionality is described in Chapter 11.

The only difference is, that the output is written into a buffer and not a text file. The output_buffer

can be passed to the method encode_to_audio() as shown in Figure 105.

Figure 105: audio_encoder.c – method: encode_to_audio()

Source: own creation

12.4 audio_decoder.c

The class audio_decoder.c is in the package pjmedia. The functionality is the same as described in

Chapter 11. Like the encoder, the output is written into a char buffer rather than a file as shown in

Figure 106.

Figure 106: audio_decoder.c – method: decode_to_text()

Source: own creation

111

12.5 stream.c

The class stream.c is in the package pjmedia. The class is a native class of PJSIP and was modified to

fit the needs of the reverse shell.

12.5.1 Replacing RTP payload

The application constantly sends RTP packets, which are generated using the client’s microphone as

audio source. Even if the microphone is disabled silence packets are sent.

To replace the payload a check is made which detects if a shell command has been entered in the

thread shell_io_thread (attacker) or if output was generated in the thread shell_process_thread

(victim). This is the case if the size of the buffer command_buffer_audio or the buffer

shell_output_buffer_audio is unequal to 0.

The check is displayed in Figure 107 and Figure 108. If the buffer contains data, the bytes are written

to the frame.

Figure 107: check command_buffer_audio

Source: own creation

Figure 108: check shell_output_buffer_audio

Source: own creation

12.5.2 Extracting custom payload from RTP packets

To check if the RTP packet just received contains custom payload is, its size is checked to match

1120.

Normally, when G.711 is used, the RTP payload is 160 bytes large. If the payload size equals 1120

though, it means that it is VoIPshell custom payload. This procedure is shown in Figure 109.

112

Figure 109: receiving custom payload

Source: own creation

If the check is successful, the RTP is written into the buffer shell_output_buffer_audio.

12.5.3 Starting threads

The method pjmedia_stream_create() is the first method called in the class stream.c, which contains

changes from the standard PJSIP implementation.

On the attackers instance the thread shell_io_thread is created, and on the victims instance the

thread shell_process_thread is started. The mutex are passed to the thread to lock the buffers and

Boolean values as part of the thread parameters.

12.6 shell_process.c

The class shell_process.c belongs to the package pjmedia. It runs as its own thread, which gets

created in the class stream.c. The thread executes a given command inside the buffer

command_buffer and writes the output or the message [No output was generated.] encoded as

audio to the buffer shell_proces_output_buffer_audio.

113

13 Reverse shell over VoIP – Detection

13.1 Overview

This chapter describes different ways of how a reverse shell over VoIP can be detected, in order to

prevent such an attack.

13.2 RTP packet size

A very simple way to detect the current implementation of VoIPshell is by the RTP packet size.

G.711 encoding produces 8’000 B/s due to its sampling rate of 8’000Hz and a sample size of 1 byte.

In PJSIP, this results in 50 packets per second with an RTP payload size of 160 bytes each. The

VoIPshell software, on the other hand, sends 1’120 bytes per packet.

This means, that a network analyzing tool could simply check if the amount of data sent matches the

expected value of the used codec. If it does not, then the connection can be blocked.

If VoIPshell were to be adjusted to also match the correct data rate, this method of detection would

not work anymore, though it would slow down VoIPshells effective data rate.

13.3 Multiple registrations at the SIP registrar

Since VoIPshell is ultimately meant to register with the victims actual SIP registrar, multiple

registrations could be possible. If multiple registrations are detected, the registrations could be

flagged as potentially malicious.

This is not a foolproof approach, however, since the victim might be connected to the SIP registrar

from multiple devices already. He may also not be connected at all, meaning VoIPshell is the only

software registered at that moment.

13.4 Playing the audio data

The audio of all outgoing phone calls could be recorded and played back by an automated process. A

software could then determine if the connection represents a real phone call by using speech

recognition. A VoIPshell connection would always fail this test, because, while it is using real audio, it

does not resemble speech.

13.5 Conclusion

Several ways exist to detect a reverse shell over VoIP, though with varying success rates and cost.

The simplest way is to analyze the RTP packet size, though this method can be fooled. A much more

reliable method is to run the phone call through speech recognition software, though this might be

more expensive.

114

14 Findings

14.1 Overview

This chapter lists the results of this thesis and compares them with the previously defined

requirements. It also discusses missing features and approaches on how to implement them.

14.2 Results

This thesis has proven that a reverse shell over VoIP is possible. The PoC works as expected, allowing

an attacker to send and execute commands on a victim’s computer.

There are a few restrictions, however. The connection does not act as a continuous stream, at the

moment, but rather sends commands and receives the shell output as individual entities. This

means, that navigating on the reverse shell is not possible. Commands are encapsulated.

For example, the commands in Figure 110 would not work. It would have to be sent as a single

command as demonstrated in Figure 111.

Figure 110: Invalid use of VoIPshell

Figure 111: Valid use of VoIPshell

A command cannot be aborted once sent.

Also, there is no UDP packet loss handling implemented, meaning the current implementation of

VoIPshell only works if both attacker and victim are on the same local network.

14.3 Requirements

Table 25, Table 26 and Table 27 show the expected results, the product functionality and the non-

functional requirements respectively and whether they have been fulfilled or not.

14.3.1 Expected results

Result Fulfilled Comment

Runnable toolkit Yes Two executables were created, one for the attacker

and one for the victim.

Table 25: Comparison of expected results

115

14.3.2 Product functionality

Functionality Fulfilled Comment

The possibility to create a

tunnel to an external

server (attacker) over

SIP/Skype

In part A tunnel between two computers is created over SIP.

However, it does only work if both computers are on

the same local network, not over the internet.

Use the channel to

provide a shell to the

outside

Yes A shell process gets started on the victim’s computer

and piped through the RTP connection.

Use the shell to remote

control the host initiating

the connection with

simple shell commands

Yes Shell commands can be sent by the attacker and are

executed on the victim’s computer.

Table 26: Comparison of product functionality

14.3.3 Non-functional requirements

NF-Requirement Fulfilled Comment

The client application

must run on Windows 10.

The server application

can run on either

Windows 10 or Linux

Debian 10.

Yes Both instances (Server and Client) run on Windows.

All input parameters can

be handed over to the

software via command

line.

No The parameters need to be set inside the source code.

The software can

transmit at least 10kbit/s.

In part A connection that passes through the POTS is currently

limited to 56bit/s. Connections that remain packet

switched can have much higher speeds.

The executable that is

run on the victim’s
computer must be small

enough to be sent by

email. Its file size must

not exceed 2 MB.

No The victim's EXE is 3.45 MB.

The RTP payload must be

compressed lossless

because text-based

messages cannot recover

from lossy compression.

Standard RTP CODECs

loose information during

the process of encoding

and decoding.

Yes Though there was no lossless compression used, the

encoding and decoding of text to audio and vice versa

results in the same goal. No data is lost due to

compression.

The modified RTP

payload must use end-to-

No No encryption was implemented.

116

end encryption with PSK

to avoid a Man-In-The-

Middle-Attack.

Table 27: Comparison of non-functional requirements

14.4 UDP packet loss handling

Unfortunately, the sequence numbers in the RTP header cannot be used to handle packet loss in

VoIPshell. In case the connection passes through the POTS at some point, it would change from

being packet switched to being circuit switched and all header information would be lost.

This means any sequence numbers used for VoIPshell would have to reside inside the RTP payload

and also be converted to audio.

There are two possible options to implement this: sliding window and stop-and-wait.

14.4.1 Sliding window11

With the sliding windows approach the receivers define a buffer with a size of N times the size of a

packet. N corresponds to the maximum sequence number. The sender can than send N frames

without waiting for an acknowledgement. As soon as the N frames are sent the sender stops

transmitting and waits for the acknowledgement. Because of the buffer the receiver has the

possibility to reorder packets and request missing packets.

14.4.2 Stop-and-wait12

Stop-and-wait is a solution that does not depend on sequence numbering. A sender simply waits for

an acknowledgement after each transmitted packet. The method is very simple but slows down the

transmission a lot.

14.4.3 The problem with sequence numbering in VoIPshell

The size of an RTP packet is limited to 1460 bytes. With the current implementation of VoIPshell, one

byte of plain text data is represented by 1120 bytes of audio data. This means there is not a lot of

room left for a sequence number.

This means, that to handle UDP packet loss in VoIPshell, either the stop-and-wait approach would

have to be used or else the DTMF mapping would need to be improved so that less audio data is

needed to represent a plain text byte.

14.4.4 Improving DTMF mapping

To decrease the number of audio bytes needed to represent one plain text byte, the 4x4 matrix

could be increased, allowing a larger number of bits to be mapped onto a single tone. However, this

requires exponentially more tones.

11 Wikipedia – Sliding window protocol [81]
12 Wikipedia – Stop-and-wait ARQ [82]

117

Increasing the matrix from 4x4 to 8x8 requires 64 instead of 16 different tones, but it only halves the

number of audio bytes to 560 instead of 1120 per plain text byte.

14.5 Reducing the size of the executable

To decrease the size of the executable and make the VoIPshell faster an own implementation of a

SIP UA would be required. The sample application PJSUA that was used for the PoC would have to be

stripped of all unnecessary code.

This would also allow more control over how often RTP packets are sent which has a direct impact

on the speed (if the POTS is not involved) and the implementation of command line arguments, so

that SIP registration information does not need to be hard coded.

14.6 Conclusion

Evaluating the resulting PoC showed that not all predefined requirements were met. Among those

are the size of the executable, which is 3.5MB instead of only 2MB, and the missing UDP packet loss

handling. For all requirements that were not met, the steps for the implementation were described.

118

15 Conclusion
This thesis proved, that a reverse shell over VoIP can be implemented and that VoIP constitutes a

serious hole in security.

A PoC was implemented that manages to establish a SIP connection between two computers and

allows an attacker to send and execute shell commands on a victim’s computer. The VoIPshell

converts all plain text commands and shell outputs to real audio data and transmits the traffic in the

RTP payload of the previously establish RTP connection. This allows VoIPshell to work even when the

connection passes through the POTS at some point.

VoIPshell is not ready to be shipped as an all-round hacking tool. For one, it does not handle UDP

packet loss, which means, that the reverse shell can only be used if both attacker and victim reside

on the same local network.

VoIPshell is a PoC that shows that the concept of a reverse shell over VoIP is feasible and that

preventative measures need to be taken.

119

16 Glossary
Term Description

API Application Programming Interface

Azure AD Azure Active Directory

CLI Command Line Interface

CMD Command Prompt

CPU Central Processing Unit

DNS Domain Name System

DTMF Dual-tone multi-frequency signaling

FoIP Fax over IP (Internet Protocol)

GUI Graphical User Interface

Hardphone Hardware implementation of a SIP UA/SA

IntelliJ Integrated Development Environment

ITSP Internet Telephony Service Provider

ITU Internet Telecommunication Union

JRE Java Runtime Environment

LOC Lines of Code

MA Message agent

Macros Macroinstructions (specific input sequence)

mjSIP Open source media library written in Java

mjSIP MA MessageAgent wirtten in Java using the mjSIP library

mjSIP UA UserAgent written inJava using the mjSIP library

MTU Maximum Transmission Unit

Nonce Temporary word

OSI model Referencemodel for networkprotocols

P2P Peer-to-Peer

PJSIP Open source media library written in C

PJSUA Sample application using PJSIP

PoC Proof of Concept

POTS Plain Old Telephone System

PSTN Public Switched Telephone Network

PSTN Public Switched Telephone Network

QoS Quality of Service

RFC Request for comments

RTP Real-Time Transport Protocol

SAD Software Architecture Document

SDP Session Description Protocol

SIP Session Initiation Protocol

Softphone Software implementation of a SIP UA/SA

120

Term Description

UA User Agent

UAC User Agent Client

UAS User Agent Server

UCMA Microsoft Unified Communications Managed API

UCWA Microsoft Unified Communications Web API

UI User Interface

URI Uniform Resource Identifier

VoIP Voice over IP (Internet Protocol)

VS (Microsoft) Visual Studio

VS14 (Microsoft) Visual Studio 2014

VS19 (Microsoft) Visual Studio 2019

Wireshark Software to analyze network traffic

121

17 Illustration index
Figure 1: Linphone home screen ... 24

Figure 2: Connection of peering SIP providers ... 25

Figure 3: Connection of non-peering SIP providers .. 26

Figure 4: Connection to non-VOIP end system ... 26

Figure 5: Direct connection UAC to UAS ... 29

Figure 6: Connection via proxy server .. 30

Figure 7: Connection via redirect server ... 31

Figure 8: SIP registration procedure ... 34

Figure 9: Wireshark SIP register 1 ... 35

Figure 10: Wireshark SIP response 1 .. 35

Figure 11: SIP Digest Calculator .. 36

Figure 12: Wireshark SIP register 2 ... 37

Figure 13: Wireshark SIP response 2 .. 38

Figure 14: Option1 Tunneling in RTP .. 40

Figure 15: Skype home screen .. 43

Figure 16: Issue with NAT routers ... 44

Figure 17: Skype's UDP hole punching .. 45

Figure 18: Skype prompt in Google Chrome ... 46

Figure 19: Skype prompt in Firefox ... 47

Figure 20: Skype prompt in Microsoft Edge ... 47

Figure 21: Skype Window, ready to start call ... 47

Figure 22: Skype Window, ready to start typing ... 48

Figure 23: Skype App SDK for Android – ChatService ... 49

Figure 24: Skype App SDK for Android – MessageActivityItem .. 49

Figure 25: Skype App SDK for Android – DevicesManager ... 49

Figure 26: Code extract from application BasicAudioVideoCall ... 50

Figure 27: Setup of a call center using UCMA Source: Microsoft’s documentation on UCMA [37] 50

Figure 28: Skype hardphone Yealink SIP-T41S .. 52

Figure 29: VoIP to PSTN Source: own creation ... 55

Figure 30: mjSIP UA command-line arguments .. 61

Figure 31: CodecType definition mjSIP ... 62

Figure 32: mjSIP UA program arguments ... 63

Figure 33: mjSIP class RtpPacket debugging ... 63

Figure 34: Callstack RtpStreamSender .. 64

Figure 35: RtpPacket instantiation in RtpStreamSender .. 65

Figure 36: Read stream and set payload... 65

Figure 37: Custom input stream ... 66

Figure 38: RTP payload of custom input stream ... 66

Figure 39: RtpSocket receive method debugging ... 67

Figure 40: RtpStreamReceiver output stream .. 67

Figure 41: Custom output stream ... 68

Figure 42: ReverseShell Client-Server ... 68

Figure 43: ReverseShellClient ... 69

Figure 44: Process InputStream .. 70

Figure 45: Server receiving cmd.exe ... 70

Figure 46: Command input ... 71

122

Figure 47: Client: receiving command .. 71

Figure 48: dir command .. 72

Figure 49: mjSIP MA command-line parameters .. 73

Figure 50: SIP MESSAGE Alice to Bob .. 74

Figure 51: mjSIP MA SIP request MESSAGE .. 74

Figure 52: mjSIP MA SIP status 200 .. 75

Figure 53: MA sequence diagram ... 76

Figure 54: PJSIP static libraries .. 79

Figure 55: Visual Studio Installer – Workloads ... 80

Figure 56: Visual Studio Installer – MSVC v140 .. 81

Figure 57: Visual Studio Installer - UWP-Tools v142 ... 81

Figure 58: Error for missing Windows SDK version 8.1 ... 82

Figure 59: PJSUA interface .. 83

Figure 60: Incoming call on PJSUA .. 83

Figure 61: Choosing status response on pjsua UA .. 84

Figure 62: Random comment in PJSIP .. 84

Figure 63: PJSIP sequence diagram ... 85

Figure 64: Declaration of media frame ... 86

Figure 65: Pointer to buffer in media frame ... 86

Figure 66: Interpretation of PJSIP's code concerning WMME streams .. 87

Figure 67: Access of WMME stream in while-loop ... 87

Figure 68: Replacing WMME input stream ... 88

Figure 69: Reading transmitted frame .. 88

Figure 70: PJSIP audio media flow .. 88

Figure 71: Overwriting media frame content ... 89

Figure 72: Declaration of media channel .. 90

Figure 73: Copying the payload to the RTP packet ... 90

Figure 74: PJSIP audio media flow .. 91

Figure 75: PJSIP SIP account Linphone .. 92

Figure 76: PJSIP registration process Linphone .. 93

Figure 77: PJSIP registration Linphone Wireshark .. 93

Figure 78: PJSIP digest algorithm check .. 94

Figure 79: PJSIP registration process linphone without digest check ... 94

Figure 80: PJSIP registration process stale check ... 95

Figure 81: PJSIP resgistration process 403 .. 95

Figure 82: PJSIP final registration process wireshark ... 95

Figure 83: PJSIP registration process digest calculation ... 95

Figure 84: PJSIP registration process UA type .. 96

Figure 85: PJSIP registration Voiptalk ... 97

Figure 86: PJSIP registration success .. 97

Figure 87: PJSIP registration success capture ... 97

Figure 88: Voiptalk online status .. 98

Figure 89: DTMF encoding process ... 99

Figure 90: AudioConverter main methods ... 100

Figure 91: AudioConverter generateDtmfTone function.. 100

Figure 92: Frequency analysis in Audacity .. 101

Figure 93: DTMF decoding .. 102

Figure 94: DTMF decoding main-method code .. 103

123

Figure 95: DTMF decoding Goertzel function ... 104

Figure 96: DTMF decoding test ... 104

Figure 97: Sequence diagram.. 106

Figure 98: hardcoded filename ... 107

Figure 99: hardcoded parameters .. 107

Figure 100: Adjust volume .. 108

Figure 101: call method .. 109

Figure 102: call receiver .. 109

Figure 103: shell_io.c - first if-statement .. 109

Figure 104: shell_io.c - second if-statement ... 110

Figure 105: audio_encoder.c – method: encode_to_audio() ... 110

Figure 106: audio_decoder.c – method: decode_to_text() .. 110

Figure 107: check command_buffer_audio .. 111

Figure 108: check shell_output_buffer_audio .. 111

Figure 109: receiving custom payload .. 112

Figure 110: Invalid use of VoIPshell .. 114

Figure 111: Valid use of VoIPshell ... 114

Studienarbeit Seite 124 von 114

 Project: VoIPshell

124

18 Sources

[1] "An article from 2017 on how widespread VoIP is in American businesses," [Online]. Available:

https://www.itllc.net/it/79-of-american-businesses-use-voip-phones-at-one-location/.

[Accessed 02 10 2019].

[2] "Article on SIP providers and the different connection establishments of SIP," [Online].

Available: https://www.elektronik-kompendium.de/sites/kom/1102011.htm. [Accessed 29 09

2019].

[3] "SIP RFC 3261," [Online]. Available: https://tools.ietf.org/html/rfc3261. [Accessed 05 10 2019].

[4] "An article describing the different SIP connection establishments," [Online]. Available:

https://www.elektronik-kompendium.de/sites/net/1305281.htm. [Accessed 05 10 2019].

[5] "SDP RFC 4566," [Online]. Available: https://tools.ietf.org/html/rfc4566. [Accessed 05 10 2019].

[6] "A Wikipedia article listing all payload formats supported by RTP," [Online]. Available:

https://en.wikipedia.org/wiki/RTP_payload_formats. [Accessed 29 09 2019].

[7] "A Wikipedia article listing all lossless audio codecs," [Online]. Available:

https://en.wikipedia.org/wiki/Category:Lossless_audio_codecs. [Accessed 29 09 2019].

[8] "A Wikipedia article comparing different video codecs," [Online]. Available:

https://en.wikipedia.org/wiki/Comparison_of_video_codecs. [Accessed 29 09 2019].

[9] "IETFs description of SIP authentication," [Online]. Available: https://tools.ietf.org/html/draft-

smith-sipping-auth-examples-01#section-2.2. [Accessed 05 10 2019].

[1

0]

"SIP digest calculator download," [Online]. Available:

https://sourceforge.net/projects/sipdigetcalc/. [Accessed 05 10 2019].

[1

1]

"A PDF discussing covert channels in SIP for VoIP signalling," [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/0805/0805.3538.pdf. [Accessed 05 10 2019].

[1

2]

"RTP RFC 3550," [Online]. Available: https://tools.ietf.org/html/rfc3550. [Accessed 10 2019].

[1

3]

"SIP Authentication Digest - RFC 2617," [Online]. Available: https://tools.ietf.org/html/rfc2617.

[Accessed 05 10 2019].

[1

4]

"SIP Extension Instant Messaging - RFC 3428," [Online]. Available:

https://www.ietf.org/rfc/rfc3428.txt. [Accessed 05 10 2019].

[1

5]

"A Wikipedia article discussing the Skype protocol," [Online]. Available:

https://en.wikipedia.org/wiki/Skype_protocol. [Accessed 29 09 2019].

[1

6]

"An article discussing why Skype switched to the client-server model," [Online]. Available:

https://www.lifewire.com/skype-changes-from-p2p-3426522. [Accessed 29 09 2019].

Studienarbeit Seite 125 von 114

 Project: VoIPshell

125

[1

7]

"The chapter on Skype on the Wireshark Wiki," [Online]. Available:

https://wiki.wireshark.org/Skype. [Accessed 29 09 2019].

[1

8]

"GitHub Repository for Skype reverse engineering attempt project OpenSkype," [Online].

Available: https://github.com/matthiasbock/OpenSkype. [Accessed 05 10 2019].

[1

9]

"GitHub Repository for Skype reverse engineering attempt project SkypeOpenSource2,"

[Online]. Available: https://github.com/Randl/skypeopensource2. [Accessed 05 10 2019].

[2

0]

"GitHub Repository for Skype reverse engineering attempt project JavaSkype," [Online].

Available: https://github.com/delthas/JavaSkype. [Accessed 05 10 2019].

[2

1]

"Article on Skype reverse engineering attempt from oKLabs," [Online]. Available:

http://www.oklabs.net/skype-reverse-engineering-the-long-journey/. [Accessed 05 10 2019].

[2

2]

"Forum thread on microsoft.com on Skype command line options," [Online]. Available:

https://answers.microsoft.com/en-us/skype/forum/all/skypeexe-command-line-options-skype-

for-desktop/e4b00dc1-26d5-4728-901a-f8a4a5fa1cbd. [Accessed 29 09 2019].

[2

3]

"An article on the usage of Skype's deprecated CLI," [Online]. Available:

https://winaero.com/blog/skype-command-line-switches/. [Accessed 29 09 2019].

[2

4]

"A thread on quora.com where Microsoft's discontinuation of the Skype API is discussed,"

[Online]. Available: https://www.quora.com/Does-Skype-have-an-API. [Accessed 29 09 2019].

[2

5]

"Microsoft's documentation for the Skype Developer Platform," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/skypedeveloperplatform. [Accessed 29 09 2019].

[2

6]

"A subchapter on Microsoft's documentation for the Skype Developer Platform giving an

overview on Skype URIs," [Online]. Available: https://docs.microsoft.com/en-us/skype-

sdk/skypeuris/skypeuris. [Accessed 29 09 2019].

[2

7]

"Microsoft's documentation on Skype for Business App SDK," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/appsdk/skypeappsdk. [Accessed 07 10 2019].

[2

8]

"Skype for Business App SDK - Android Package Summary," [Online]. Available:

https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/package

-summary.html. [Accessed 7 10 2019].

[2

9]

"ChatService interface on Skype App SDK documentation for Android," [Online]. Available:

https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/ChatSer

vice.html. [Accessed 7 10 2019].

[3

0]

"MessageActivityItem interface on Skype App SDK documentation for Android," [Online].

Available:

https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/Messag

eActivityItem.html. [Accessed 7 10 2019].

Studienarbeit Seite 126 von 114

 Project: VoIPshell

126

[3

1]

"DevicesManager interface on Skype App SDK documentation for Android," [Online]. Available:

https://ucwa.skype.com/reference/appSDK/Android/com/microsoft/office/sfb/appsdk/Devices

Manager.html. [Accessed 7 10 2019].

[3

2]

"Microsoft documentation on key features of UCMA 5.0," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucma/key-features-of-ucma-5-0. [Accessed 14 10

2019].

[3

3]

"Documentation on Microsofts sample applications for UCMA 5.0," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucma/quickstart-sample-applications. [Accessed

14 10 2019].

[3

4]

"Download page for UCMA 5.0 SDK," [Online]. Available: https://www.microsoft.com/en-

us/download/confirmation.aspx?id=47345. [Accessed 14 10 2019].

[3

5]

"Documentation on UCMA sample application BasicAudioVideoCall," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucma/basicaudiovideocall-quickstart. [Accessed

14 10 2019].

[3

6]

"Microsofts documentation on typical business scenarios for UCMA," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucma/ucma-5-0-business-scenarios. [Accessed 14

10 2019].

[3

7]

"Image on UCMA call center setup," [Online]. Available: https://docs.microsoft.com/en-

us/skype-sdk/ucma/images/dn465936.ucma-contactcenter1%28office.16%29.png. [Accessed

14 10 2019].

[3

8]

"Microsofts documentation on Skype for Business Server requirements," [Online]. Available:

https://docs.microsoft.com/en-us/SkypeForBusiness/plan/system-requirements#OS. [Accessed

14 10 2019].

[3

9]

"Microsofts documentation on installing Skype for Business Server overview," [Online].

Available: https://docs.microsoft.com/en-

us/SkypeForBusiness/deploy/install/install?toc=/SkypeForBusiness/toc.json&bc=/SkypeForBusi

ness/breadcrumb/toc.json. [Accessed 14 10 2019].

[4

0]

"Microsofts documentation on Skype for Business Server homepage," [Online]. Available:

https://docs.microsoft.com/en-us/SkypeForBusiness/skype-for-business-server-2019. [Accessed

14 10 2019].

[4

1]

"Microsoft's documentation on authentication and authorization in Skype for Business,"

[Online]. Available: https://docs.microsoft.com/en-us/skypeforbusiness/plan-your-

deployment/modern-authentication/modern-

authentication?toc=/SkypeForBusiness/toc.json&bc=/SkypeForBusiness/breadcrumb/toc.json.

[Accessed 14 10 2019].

[4

2]

"Microsoft's documentation on activating a UCMA 5.0 trusted application," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucma/activating-a-ucma-5-0-trusted-application.

[Accessed 14 10 2019].

Studienarbeit Seite 127 von 114

 Project: VoIPshell

127

[4

3]

"Microsoft's documentation on UCWA 2.0," [Online]. Available: https://docs.microsoft.com/en-

us/skype-sdk/ucwa/unifiedcommunicationswebapi2_0. [Accessed 14 10 2019].

[4

4]

"Microsoft's documentation on Developing applications with UCWA," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucwa/developingapplicationswithucwa. [Accessed

14 10 2019].

[4

5]

"Microsoft's documentation on UCWA messaging," [Online]. Available:

https://docs.microsoft.com/en-us/skype-sdk/ucwa/messaging_ref. [Accessed 14 10 2019].

[4

6]

"Microsoft's documentation on Developing UCWA applications for Skype for Business Online

(Authentication)," [Online]. Available: https://docs.microsoft.com/en-us/skype-

sdk/ucwa/developingucwaapplicationsforsfbonline. [Accessed 14 10 2019].

[4

7]

"Image of Yealink SIP-T41S Skype Hardphone," [Online]. Available:

https://www.studerus.ch/assets/global/images/products/57/Perspective/Yealink_SIP-T41S-

Skype_5554.jpg. [Accessed 05 10 2019].

[4

8]

"Microsoft's documentation - Getting phones for Skype for Business Online," [Online].

Available: https://docs.microsoft.com/en-us/skypeforbusiness/what-is-phone-system-in-office-

365/getting-phones-for-skype-for-business-online/getting-phones-for-skype-for-business-

online. [Accessed 05 10 2019].

[4

9]

"Microsoft's documentation on network requirements for Skype for Business," [Online].

Available: https://docs.microsoft.com/en-us/skypeforbusiness/plan-your-deployment/network-

requirements/network-requirements. [Accessed 29 09 2019].

[5

0]

"Eventhelix," [Online]. Available:

https://www.eventhelix.com/RealtimeMantra/Telecom/SIP_PSTN_Call_Flow.pdf. [Accessed 10

Nov 2019].

[5

1]

"PJSIP," [Online]. Available: http://lists.pjsip.org/pipermail/pjsip_lists.pjsip.org/2017-

March/040309.html. [Accessed 11 Nov 2019].

[5

2]

"Wiki - T.38 support," [Online]. Available: https://de.wikipedia.org/wiki/T.38 . [Accessed 11 Nov

2019].

[5

3]

"ITU T.140," [Online]. Available: https://www.itu.int/rec/T-REC-T.140-199802-I/en. [Accessed

11 Nov 2019].

[5

4]

"SimpleClient T.140 proposal," [Online]. Available:

http://old.sipsimpleclient.org/projects/sipsimpleclient/wiki/DesignRTT. [Accessed 11 Nov

2019].

[5

5]

"SourceForge T.140," [Online]. Available: https://sourceforge.net/projects/rtp-text-t140/files/.

[Accessed 11 11 2019].

[5

6]

"Wikipedia - DTMF (german)," [Online]. Available:

https://de.wikipedia.org/wiki/Mehrfrequenzwahlverfahren. [Accessed 12 11 2019].

Studienarbeit Seite 128 von 114

 Project: VoIPshell

128

[5

7]

"Homepage of mjSIPs offical website," [Online]. Available: http://www.mjsip.org/. [Accessed 12

10 2019].

[5

8]

"The javadocs page of mjSIP," [Online]. Available: http://www.mjsip.org/doc/1.8/index.html.

[Accessed 05 10 2019].

[5

9]

"Definition of an mjSIP UA," [Online]. Available: http://www.mjsip.org/mjua.html. [Accessed 05

10 2019].

[6

0]

"A Mini Tutorial on mjSIP," [Online]. Available:

http://www.mjsip.org/download/mjsip_minitutorial_01.pdf. [Accessed 05 10 2019].

[6

1]

"The download section of mjSIP," [Online]. Available: http://www.mjsip.org/download.html.

[Accessed 05 10 2019].

[6

2]

"Instructions on how to capture on loopback interface with Wireshark," [Online]. Available:

https://wiki.wireshark.org/CaptureSetup/Loopback. [Accessed 05 10 2019].

[6

3]

"The homepage of PJSIP official website," [Online]. Available: https://www.pjsip.org/. [Accessed

05 10 2019].

[6

4]

"PJSIP documentation," [Online]. Available: https://trac.pjsip.org/repos. [Accessed 05 10 2019].

[6

5]

"The PJSIP datasheet," [Online]. Available: https://trac.pjsip.org/repos/wiki/PJSIP-Datasheet.

[Accessed 05 10 2019].

[6

6]

"Image of PJSIP static libraries overview," [Online]. Available:

https://www.pjsip.org/docs/latest/pjsip/docs/html/pjsip-arch.jpg. [Accessed 12 10 2019].

[6

7]

"PJSIP libraries - An introduction to PJLIB," [Online]. Available:

https://www.pjsip.org/docs/latest/pjsip/docs/html/index.htm. [Accessed 05 10 2019].

[6

8]

"PJSIP Getting Started page for Windows," [Online]. Available:

https://trac.pjsip.org/repos/wiki/Getting-Started/Windows. [Accessed 22 10 2019].

[6

9]

"PJSIP documentation for build preparation," [Online]. Available:

https://trac.pjsip.org/repos/wiki/Getting-Started/Build-Preparation. [Accessed 22 10 2019].

[7

0]

"PJSIP documentation - Understanding Audio Media Flow," [Online]. Available:

https://trac.pjsip.org/repos/wiki/media-flow#IncomingRTPRTCPPackets. [Accessed 18 11 2019].

[7

1]

"SIP digest authentication - SIP registration method," [Online]. Available:

https://allenluker.wordpress.com/2014/07/16/sip-digest-authentication-part-1-sip-registration-

method/. [Accessed 28 11 2019].

[7

2]

"Voiptalk SIP status," [Online]. Available: https://www.voiptalk.org/products/sipstatus.php.

[Accessed 2 12 2019].

[7

3]

"Goertzel Algorithm explained," [Online]. Available: https://www.embedded.com/the-goertzel-

algorithm/. [Accessed 5 11 2019].

Studienarbeit Seite 129 von 114

 Project: VoIPshell

129

[7

4]

"DTMF.C github," [Online]. Available:

https://github.com/Harvie/Programs/blob/master/c/goertzel/goertzel.c. [Accessed 5 11 2019].

[7

5]

„An article describing the process of how Skype penetrates firwalls for Skype calls with UDP
hole punching,“ 28 09 2019. [Online]. Available: https://www.heise.de/security/artikel/Wie-

Skype-Co-Firewalls-umgehen-270856.html?seite=all.

[7

6]

"Wikipedia's full list of codecs," [Online]. Available:

https://en.wikipedia.org/wiki/List_of_codecs. [Accessed 29 09 2019].

[7

7]

"A list of open source voice software," [Online]. Available: https://www.voip-info.org/open-

source-voip-software/#Windowsclients. [Accessed 05 10 2019].

[7

8]

"A list of SIP libraries," [Online]. Available: https://www.pjsip.org/links.htm. [Accessed 05 10

2019].

[7

9]

"Wikipedia DTMF," [Online]. Available:

https://de.wikipedia.org/wiki/Mehrfrequenzwahlverfahren. [Accessed 5 11 2019].

[8

0]

"Wikipedia - DTMF (english)," [Online]. Available: https://en.wikipedia.org/wiki/Dual-

tone_multi-frequency_signaling. [Accessed 12 11 2019].

[8

1]

"Wikipedia - Sliding window protocol," [Online]. Available:

https://en.wikipedia.org/wiki/Sliding_window_protocol. [Accessed 17 12 2019].

[8

2]

"Wikipedia - Stop-and-wait ARQ," [Online]. Available: https://en.wikipedia.org/wiki/Stop-and-

wait_ARQ. [Accessed 17 12 2019].

Project Thesis: Reverse Shell via Voice (SIP, Skype)

130

Reverse Shell via Voice (SIP, Skype)
 G – Attachments

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

131

Reverse Shell via Voice (SIP, Skype)
G-1 – Declaration of Originality

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Project Thesis: Reverse Shell via Voice (SIP, Skype)

133

Reverse Shell via Voice (SIP, Skype)
G-2 – Rights of Use

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Smallpdf User
Rectangle

Smallpdf User
Rectangle

Smallpdf User
Rectangle

Project Thesis: Reverse Shell via Voice (SIP, Skype)

135

Reverse Shell via Voice (SIP, Skype)
G-3 – Requirements Analysis

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

136

1 Content

1 Content .. 136

2 General description ... 137

2.1 Product perspective .. 137

2.2 Product functionality ... 137

2.2.1 Desired functionality ... 137

2.2.2 Optional functionality .. 137

2.3 User characteristics ... 137

2.4 Scope ... 137

3 Use cases ... 138

3.1 Actors & stakeholders ... 138

3.2 Description (brief) ... 138

3.2.1 UC1 – Penetration test .. 138

4 Other requirements ... 139

4.1 Non-functional requirements .. 139

4.1.1 Efficiency ... 139

4.2 Interfaces ... 140

Project Thesis: Reverse Shell via Voice (SIP, Skype)

137

2 General description

2.1 Product perspective

VoIPshell offers a reverse shell over VoIP. It allows an attacker to send commands and execute them

on a victim’s computer through a VoIP connection.

2.2 Product functionality

2.2.1 Desired functionality

• The possibility to create a tunnel to an external server (attacker) over SIP/Skype

• Use the channel to provide a shell to the outside

• Use the shell to remote control the host initiating the connection with simple shell

commands

2.2.2 Optional functionality

• Provide extended remote-control features

o Control over Webcam

o Key Logger

o Control over connected devices

• RTP Payload encryption with PSK

• RTP Payload authenticated with MAC

• Server can accept connections from multiple clients

2.3 User characteristics

The software can be used by security analysts and penetration testers in order to infiltrate a

network.

2.4 Scope

• Finding new vulnerabilities in existing VoIP applications and protocols is not part of this

study.

• How the developed software is yielded and executed on the target system (victim) is not part

of this study.

• The victim’s SIP/Skype credentials do not need to be acquired. It can be assumed that they

are available in plain text.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

138

3 Use cases

3.1 Actors & stakeholders

The VoIPshell software has only one actor, which is the attacker. No other parties are involved in the

running of the software. Other stakeholders are essentially all VoIP providers as well as all parties

worldwide that actively use a VoIP solution, since they would all be affected by a positive outcome of

this thesis.

3.2 Description (brief)

3.2.1 UC1 – Penetration test

A white hat hacker is hired to test a company’s firewall. He knows he can install a malicious piece of

software on the PC of an unsuspecting company employee by sending it to him in an Email. The

hacker knows of the possibility to tunnel traffic over VoIP connections and chooses our VoIPshell

software for the attack. He successfully installs our software on the victim’s computer and can now
open a shell on his own laptop to connect to the PC behind the company’s firewall via VoIP. He now
creates a simple text file on the victim’s computer and leaves it as evidence that he had cracked the

firewall. Then he goes back to the company, explains how he got into their network and suggests

improvements, so this cannot happen anymore.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

139

4 Other requirements

4.1 Non-functional requirements

Category Compatibility

Description The client application must run on Windows 10. The server application can run

on either Windows 10 or Linux Debian 10.

Category Usability

Description All input parameters can be handed over to the software via command line.

Category Efficiency

Description The software can transmit at least 10kbit/s (see chapter “Efficiency” below).

Category Installability

Description The executable that is run on the victim’s computer must be small enough to be

sent by email. Its file size must not exceed 2 MB.

Category Integrity

Description The RTP payload must be compressed lossless because text-based messages

cannot recover from lossy compression.

Standard RTP CODECs loose information during the process of encoding and

decoding.

Category Confidentiality

Description The modified RTP payload must use end-to-end encryption with PSK to avoid a

Man-In-The-Middle-Attack.

4.1.1 Efficiency

To calculate the desired efficiency, the following approach was used:

1. A command on the CLI was chosen that generates a large output. It was found that ipconfig

/displaydns suited this need well.

2. The output was 23.542 KB large and it took 2.02 seconds to display it which is 11.65 KB/s or

roughly 100 Kbit/s. This value was taken as the upper limit. If the connection is faster than

that, it will not improve performance.

3. It was decided objectively, that it would be acceptable, if it took up to 20 seconds to display

this content, without impeding the workflow too much. This means the connection could be

up to ten times slower than the upper limit, giving a lower limit of 10 Kbit/s.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

140

4.2 Interfaces

The VoIPshell software consists of two components, one for sending and one for receiving data to its

counterpart. An interface is needed on both sides to enable connectivity.

There are no other interfaces needed.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

141

Reverse Shell via Voice (SIP, Skype)
G-4 – Project Plan

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

142

1 Content
1 Content .. 142

2 Introduction ... 143

2.1 Purpose .. 143

2.2 Validity scope .. 143

3 Project overview .. 144

3.1 Purpose and aim .. 144

3.2 Delivery .. 144

3.2.1 Results ... 144

3.2.2 Project management ... 144

3.3 Assumptions and limitations ... 144

4 Project organization .. 145

4.1 Organizational structure .. 145

4.2 External persons .. 145

5 Management procedures .. 146

5.1 Time management .. 146

5.2 Milestones ... 146

5.3 Phases / Iterations ... 146

5.3.1 Inception .. 147

5.3.2 Elaboration .. 147

5.3.3 Construction .. 147

5.3.4 Transition ... 147

5.4 Meetings .. 147

6 Risk management .. 148

6.1 Risks ... 148

7 Work packages .. 149

8 Infrastructure .. 150

8.1 General .. 150

8.2 Version SIP ... 150

8.3 Version Skype .. 150

9 Quality measures ... 151

9.1 Documentation .. 151

9.2 Project management ... 151

9.3 Development ... 151

10 Illustration index .. 152

Project Thesis: Reverse Shell via Voice (SIP, Skype)

143

2 Introduction

2.1 Purpose

This document contains all necessary documentation for the thesis “Reverse Shell via Voice (SIP,

Skype)”. It contains the planning of this project and acts as a guideline to comprehend the methods

used. This project plan contains a summary of the project and an overview of the project

organization.

2.2 Validity scope

This document is valid as part of the thesis “Reverse Shell via Voice (SIP, Skype)”. All changes after

the initial delivery of this document will be noted in the changelog at the beginning of the document.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

144

3 Project overview

3.1 Purpose and aim

Modern network infrastructures are specifically designed to deny any attempt of direct access from

the outside (e.g. internet) into an internal network. One possibility to circumvent those restrictions is

the initiation of a data-channel, sourced from the internal network. To disguise those inside-out

channels, common variants include DNS-tunneling and HTTP-tunneling, where the traffic is

encapsulated in the mentioned protocols, to provide some level of stealth. Due to improvement in

filtering mechanisms and intrusion detection systems, those tunneling variants get more and more

ineffective.

The aim of this project is it to create a PoC of a tunneling mechanism which is available in nearly

every company, the telephone channel. On the topic of tunneling via modern telephone connections,

has been made very less research, which has the potential to makes this technique very efficient due

to its unfamiliarity.

3.2 Delivery

3.2.1 Results

• Definition of requirements to establish a VoIP tunnel which is able to carry enough data to

remote control a target host

• PoC answering the feasibility of the tunneling technique and describes different approaches

to create the VoIP tunnel

• Toolkit providing the desired functionality

• Software documentation (Use Cases, Domain model, Sequence diagram)

• Architecture documentation

• Source code

3.2.2 Project management

• Project plan

• Time tracking evaluation

• Project statistics

3.3 Assumptions and limitations

The project is not about finding vulnerabilities in VoIP but using existing mechanisms to establish a

tunnel, which can be used to remote control the target host.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

145

4 Project organization
The project will contain four phases: Inception, Elaboration, Construction and Transition. Within

these phases scrum will be utilized in order to remain agile.

Since this thesis is mainly a research project and the main product is a PoC and not a full-fledged

software, the elaboration phase will be longer than usual. On the other hand, the construction phase

will be rather short.

4.1 Organizational structure

Name Position Email Responsibilities and Tasks

Dominique Illi Developer dilli@hsr.ch - Research

- Development

- Takes times

Michel Bongard Developer mbongard@hsr.ch - Research

- Development

- Redmine / Github
Table 1: Organizational structure

4.2 External persons

Name Position Email Responsibilities and Tasks

Cyrill Brunschwiler Supervisor cyrill.brunschwiler@

compass-security.com

- Supervisor

- Contact Person

Table 2: External Persons

Project Thesis: Reverse Shell via Voice (SIP, Skype)

146

5 Management procedures

5.1 Time management

The following timetable provides an overview of the project phases, iterations and milestones.

Figure 1: Project timetable

Source: own creation

5.2 Milestones

M# Date Description Products

M1 24.09.2019 Inception

- Initial Project plan

- Initial Requirements specification

- First draft of software architecture document

- Definition of scope

- Work environment (Redmine, Jenkins, etc.)

M2 15.10.2019 Research - Documentation of SIP and Skype study

- Requirements for tunneling over SIP / Skype

- Feasibility study of SIP / Skype tunneling

- Document reasons for choosing SIP or Skype

- SIP or Skype infrastructure

M31 19.11.2019 Data Transmission

End of Elaboration

- PoC for data transmission

- Updated requirements document
- Updated SAD

- Elaboration Phase Documentation completed
M4 03.12.2019 End of

Construction

- Software Engineering done

- PoC with integration of all components

M5 10.12.2019 End of Transition - Completed documents

- Project finished for delivery
Table 3: Milestones

5.3 Phases / Iterations

The project will consist of the four phases called “Inception”, “Elaboration”, “Construction” and
“Transition”. A phase consists of iterations. Each iteration lasts one week. At the end of each
iteration the progress is reviewed at a meeting. It will be checked, if all planned tasks were

completed and discuss the difficulties and problems that arose during the iteration. Subsequently,

the next iteration is planned by deciding on which work packages need to be attended to next.

1 Due date of Milestone 3 was changed during project. The milestone report can be found in the meeting

minutes.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

147

5.3.1 Inception

The inception phase lasts one week. In this phase the scope of the project will be defined, and the

work environment will be set up.

5.3.2 Elaboration

The elaboration phase lasts eight weeks. This phase contains the following:

• study the material, technologies, tools and libraries

• decide on whether SIP or Skype will be used for the tunnel

• decide on whether an online SIP service or virtual machines will be used

• make a POC for data transmission over SIP / Skype

• evaluate possible data rates over this channel

• Update the project plan (this document), design necessary diagrams and use cases and

create the software architecture document

5.3.3 Construction

During the construction phase, which will be taking three weeks, the prototype will be developed. All

components of the reverse shell will be put together to create a single executable.

5.3.4 Transition

The last week is reserved for the transition phase. Here the prototype will be finalized, and all

documentation will be finished.

5.4 Meetings

Day of

Week

Time Topic Who Where

Monday 10:00 –

11:00

Sprint review, grooming &

planing

Dominique Illi

Michel Bongard

HSR, Building 1

Tuesday 10:00 –

11:00

Review and planning with

supervisor

Dominique Illi

Michel Bongard

Cyrill Brunschwiler

Room Alice

Werkstrasse 20

8645 Jona

Table 4: Meetings

Project Thesis: Reverse Shell via Voice (SIP, Skype)

148

6 Risk management

6.1 Risks

The result of our risk analysis and its management can be viewed in Figure 2.

Figure 2: Risk analysis

Source: own creation

V
o

ic
e

R
ev

er
se

Sh
el

l

20
.0

9.
20

19

14

N
r

T
it

le
D

e
sc

ri
p

ti
o

n

m
a

x.

D
a

m
a

ge
 [

h
]

P
ro

p
a

b
ili

ty

w
e

ig
h

te
d

d
a

m
a

ge
P

re
ve

n
ti

o
n

b
e

h
a

vi
o

r
if

 r
is

k
o

cc
u

rs
E

lim
in

ia
ti

o
n

 u
n

ti
l

R
1

Pr
o

b
le

m
s

fi
n

d
in

g
lib

ra
ri

es

/
to

o
ls

B
ec

au
se

 o
f

th
e

co
m

p
le

x
p

ro
b

le
m

d
o

m
ai

n
 w

e
w

ill
 r

el
ay

 o
n

to
o

ls
/l

ib
ra

ry
s

p
ro

vi
d

in
g

b
as

ic

so
ft

p
h

o
n

e
ca

p
ab

ili
ti

es
. T

h
o

se

w
h

ic
h

 p
ro

vi
d

e
th

e
n

ee
d

ed

fu
n

ci
to

n
al

it
y

(l
o

w
 le

ve
l

m
o

d
if

ic
at

io
n

 o
f

p
ac

ke
ts

)
co

u
ld

 b
e

h
ar

d
 t

o
 f

in
d

20
10

%
2

In
te

n
se

 r
es

ea
rc

h
, d

is
cu

ss
io

n

in
 o

n
lin

e
fo

ru
m

s

p
ro

ve
 if

 t
h

e
b

as
ic

 s
o

ft
p

h
o

n
e

fu
n

ci
to

n
al

it
y

ca
n

 b
e

im
p

le
m

en
te

d
 b

y
o

u
r

se
lf

s
in

th
e

av
ai

la
b

le
 t

im
e

M
2

R
2

SI
P

re
la

ys
 c

h
an

ge
 m

ed
ia

co
d

ec

Th
e

en
co

d
ed

 R
TP

 p
ay

lo
ad

 is

tr
an

sm
it

te
d

 o
ve

r
a

SI
P

re
la

y
an

d

th
e

co
d

ec
 g

et
s

ch
an

ge
d

 b
y

th
e

re
la

y
re

su
lt

in
g

in
 c

o
m

p
le

te
 d

at
a

lo
ss

40
15

%
6

R
es

ea
rc

h
 s

ta
n

d
ar

d
 b

eh
av

io
r

o
f

SI
P

re
la

ys
 a

n
d

 p
o

ss
ib

le

so
lu

ti
o

n
s

Lo
o

ki
n

g
fo

r
al

te
rn

at
iv

e
fi

el
d

s
in

p
ac

ke
t

h
ea

d
er

s
w

h
ic

h
 c

an
 b

e

u
se

d
 f

o
r

d
at

a
tr

an
sm

is
si

o
n

 a
n

d

d
o

n
t

ge
t

m
o

d
if

ie
d

 b
y

th
e

re
al

y

st
at

io
n

.

M
3

R
3

Im
p

le
m

en
te

d
 t

u
n

n
el

in
g

m
ec

h
an

is
m

s
ar

e
to

sp
ec

if
ic

Th
e

im
p

le
m

en
te

d
 t

u
n

n
el

in
g

m
ec

h
an

is
m

s
ca

n
 o

n
ly

 b
e

u
se

d
 in

ve
ry

 s
p

ec
if

ic
 s

ce
n

ar
io

s
an

d
 t

h
u

s

p
re

ve
n

t
an

 e
ff

ec
ti

ve
 u

sa
ge

 in
 r

ea
l

lif
e

sc
en

ar
io

s

-
-

-
K

ee
p

 t
h

e
fa

ct
 o

f
ge

n
er

al
it

y

an
 p

o
rt

ab
ili

ty
 in

 m
in

d
 o

ve
r

th
e

w
h

o
le

 e
va

lu
at

io
n

 p
h

as
e

R
ed

u
ce

 s
co

p
e

o
f

th
e

p
ro

je
ct

go
al

s

M
3

/
M

4

R
4

D
if

fi
cu

lt
ie

s
in

 c
re

d
en

ti
al

p
ro

cu
re

m
en

t

Th
e

SI
P

u
se

r
ag

en
ts

 /
 s

ky
p

e

ap
p

lic
at

io
n

 (
so

ft
p

h
o

n
es

)
u

se

cr
ed

en
ti

al
s

to
 a

u
th

o
ri

ze
 a

t
th

e

in
te

rn
al

 p
h

o
n

e
se

rv
er

s.
 T

o
 u

se

o
u

r
im

p
le

m
en

ta
ti

o
n

 t
h

o
se

cr
ed

en
ti

al
s

n
ee

d
 t

o
 b

e
av

ai
la

b
le

.

St
ro

n
g

se
cu

ri
ty

 m
ec

h
an

is
m

 c
o

u
ld

p
re

ve
n

t
th

is
 u

sa
ge

 o
f

cr
ed

en
ti

al
s

20
30

%
6

C
o

n
su

lt
at

io
n

 w
it

h

p
ro

fe
ss

io
n

al
 s

ec
u

ri
ty

an
al

ys
ts

.

N
ee

d
 t

o
 im

le
m

en
t

o
u

r
o

w
n

 o
r

ad
ju

st
 a

va
ila

b
le

 c
o

m
p

o
n

en
et

to
 o

u
r

so
ft

w
ar

e
ge

tt
in

g
th

e

cr
ed

en
ti

al
s

fo
r

o
u

r
u

sa
ge

M
2

6
0

1
4

Su
m

m
e

G
ew

ic
h

te
te

r
Sc

h
ad

en
:

R
is

km
an

ag
em

en
t

Pr
o

je
ct

:

C
re

at
io

n
 d

at
e:

A
u

th
o

r:
D

o
m

in
iq

u
e

Ill
i,

M
ic

h
el

 B
o

n
ga

rd

Project Thesis: Reverse Shell via Voice (SIP, Skype)

149

7 Work packages
All work packages can be viewed in Redmine.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

150

8 Infrastructure

8.1 General

Tool Description

Computer Every developer needs a computer for research and development.

IDE Every developer needs an IDE (TBD) for development.

Redmine Redmine is used to create and manage work packages and to log time.

GitHub The repository of our code as well as version control is managed by GitHub.

OneDrive For collaborative editing of our documents we will use OneDrive.

Table 5: General infrastructure

8.2 Version SIP

Tool Description

Softphones Softphones are required to allow us to make VoIP phone calls (TBD).

SIP Server Two SIP servers are required for our softphones to be able to communicate

Telephone

numbers

Two telephone numbers are required for our softphones to be able to address

each other.

Table 6: SIP specific infrastructure

8.3 Version Skype

Tool Description

Skype Accounts Two Skype accounts are required to make Skype phone calls.

Table 7: Skype specific infrastructure

Project Thesis: Reverse Shell via Voice (SIP, Skype)

151

9 Quality measures

9.1 Documentation

The project documentation is located on OneDrive which allows collaborative editing.

9.2 Project management

The work packages are created and managed on Redmine. This tool is also used to log the time spent

on each package. Every week a grooming meeting is held, where packages are defined, estimated

and prioritized.

9.3 Development

The code is located on a repository on GitHub. The implementation of the different components will

follow the pair-programming style.

Project Thesis: Reverse Shell via Voice (SIP, Skype)

152

10 Illustration index
Figure 1: Project timetable .. 146

Figure 2: Risk analysis .. 148

Project Thesis: Reverse Shell via Voice (SIP, Skype)

153

Reverse Shell via Voice (SIP, Skype)
G-5 – Software Architecture Document

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Studienarbeit

Project: VoIPshell

Seite 154 von 14

154

1 Content
1 Content .. 154

2 System overview ... 155

3 Logical Architecture ... 157

3.1 Overview .. 157

3.2 Full path – command to output .. 157

3.3 Default behavior .. 160

3.4 Architectural overview .. 160

3.5 Service layer - pjsua ... 163

3.6 Business layer - pjmedia .. 163

3.7 Libraries - pjmedia ... 164

4 Deployment ... 165

4.1 Deployment with SIP ... 165

5 Illustration index .. 166

Studienarbeit

Project: VoIPshell

Seite 155 von 14

155

2 System overview
Because this project involves a lot of research, testing and trying of different implementations, a lot

of architectural decisions and diagrams are included in the technical report. This document only

contains the architectural information and decisions which concern the final PoC implemented with

the PJSIP library. Figure 1 provides a system overview, Table 1 explains it in more detail.

Figure 1: System Overview PoC

Source: own creation

Studienarbeit

Project: VoIPshell

Seite 156 von 14

156

Component Description

DTMF Encoder/Decoder This is the implementation which translates byte streams to DTMF

tones and vice versa.

PJSIP UA This is the sample implementation of the SIP UA.

PJLIB This is the library which provides all functionality required for the

PJSIP UA.

SIP Component This is the part of the PJLIB which establishes and manages the SIP

connection. It also provides the implementation of SDP to negotiate

media codecs.

RTP Component This is the part of PJLIB which implements the RTP packets and the

read/write operations of the RTP payload.

Reverse shell Process This is the process which is only started on the victim’s client. Its input
and output are sent to the attacker.

Table 1: System overview components

Studienarbeit

Project: VoIPshell

Seite 157 von 14

157

3 Logical Architecture

3.1 Overview

In this section the design decisions for the VoIPshell architecture are explained. Starting with an

overview and explanation of the core functionality.

3.2 Full path – command to output

The core architecture of the application is displayed in Figure 2. Because of its size, it is split into two

parts. Figure 3 represents the attacker’s side, Figure 4 the victim’s side.

Figure 2: Sequence diagram

Source: own creation

Studienarbeit

Project: VoIPshell

Seite 158 von 14

158

Figure 3: Sequence diagram - attacker's side

Source: own creation

Studienarbeit

Project: VoIPshell

Seite 159 von 14

159

Figure 4: Sequence diagram - victim's side

Source: own creation

Studienarbeit

Project: VoIPshell

Seite 160 von 14

160

3.3 Default behavior

Upon starting the attacker’s executable, the software waits for a victim to establish a session. If a SIP

invite is received, the SIP call gets fully established. From that moment on, RTP packets start flowing

between attacker and victim. The packets contain normal audio recorded by both client’s

microphones. However, PJSIP’s volume is muted on both ends.

The RTP connection is established.

The thread shell_io_thread on the attacker’s client prompts the user for a command. Once a

command has been entered it gets encoded by the class audio_encoder.c. Simultaneously the class

stream.c in the main process of PJSIP checks in a loop if encoded audio is present in the buffer

command_buffer_audio.

If there is data present in that buffer, the class stream.c replaces the RTP payload with the data from

the buffer until it is empty. The RTP packets are getting transmitted to the victim’s client.

The plain text data has been encoded to audio and sent to the victim.

By checking the payload size of all incoming packets (custom payload is always 1120 bytes long) on

the victim’s client, all payload from packets containing shell commands are written into the victim’s

buffer command_buffer_audio.

As soon as all payload is received a new thread called run_command_thread is started. The thread

first decodes the audio inside the buffer command_buffer_audio to text and then executes a

Windows shell using the plain text command.

The command has been received, decoded and executed.

Once the Windows shell has terminated, the output is encoded to audio and written into the buffer

shell_output_buffer_audio.

On the victim’s instance, the class stream.c constantly checks if data is present inside the buffer

shell_output_buffer_audio. If this is the case, the data is sent back to the attacker as RTP payload.

The plain text output has been encoded to audio and sent back to the attacker.

The attacker’s class stream.c receives the RTP packets and writes the payload to the buffer

shell_output_buffer_audio. The class shell_io.c then reads the data from this buffer and decodes it

back to text.

The text is printed to the output stream of the console application and a new command can be

entered by the attacker.

The output has been received, decoded and printed to the console.

3.4 Architectural overview

Figure 5 illustrates the architectural layering of the attacker’s client and Figure 6 shows the layering

of the victim’s client. The only differences are the class shell_io, which is only present on the

attacker’s instance, and the class shell_process, which is only present on the victim’s instance.

Since PJSIP is a very large library containing numerous packages, they would not all fit into the

models of Figure 5 and Figure 6. The classes main, stream, g.711 and rtp represent only a small

portion of the entire code. They were chosen because they are the most relevant in understanding

Studienarbeit

Project: VoIPshell

Seite 161 von 14

161

how the reverse shell works, but many more classes are needed to establish an RTP connection on

which the proof of concept relies on.

It is important to notice, that the PJSIP library does strictly adhere to the single responsibility pattern.

There are many classes that perform a variety of different tasks.

Figure 5: Software architecture attacker

Source: own creation

Studienarbeit

Project: VoIPshell

Seite 162 von 14

162

Figure 6: Software architecture victim

Source: own creation

VoIPshell is abstracted into three layers, as described in Table 2.

Layer Description

Service Layer Interface to the user. Used to retrieve shell commands and print output.

Optionally log and status messages can be printed.

Business Layer Contains all the logic mandatory to establish a phone call. Additionally, the logic

handles the creation of media frames containing audio recorded by the

microphone and hands it over to the classes sending and receiving RTP packets.

All the code needed by the reverse shell is also placed inside this layer because

there are a lot of dependencies to other classes inside the business layer.

Libraries Contains the audio codecs used for normal audio communication, when no

shell commands are sent or received.

Table 2: Description of layers

Studienarbeit

Project: VoIPshell

Seite 163 von 14

163

3.5 Service layer - pjsua

The package pjsua contains the method main() which is executed at the start of the application. It in

turn calls other methods to setup the user agent.

The most important classes in the package pjsua are listed in Table 3.

Class Purpose

main.c Starting the application

pjsua_app_config.c Handles configuration settings that have been added manually. They are

reset when the application is restarted.

Pjsua_app_legacy.c Handles to console UI and all interactions with it.

Table 3: Classes in service layer

3.6 Business layer - pjmedia

The package pjmedia contains a lot of business logic such as the handling the SIP connections and

sending and receiving RTP packets.

The most important classes in the package pjmedia are listed in Table 4.

Class Purpose Special characteristics

shell_process.c

(victim only)

This class runs in its own thread called

run_command_thread. The class

decodes the command sent by an

attacker back from audio to text and

executes the command in a windows

shell. The output is then encoded into

audio and written into the

shell_output_buffer_audio.

The class shell_process uses a

mutex called

mutex_shell_output_buffer_audio

to write into the

shell_output_buffer. This is

necessary to avoid race conditions

with the class stream.c.

shell_io.c (attacker

only)

This class run on the attacker only. It

runs in its thread called

shell_io_thread. The thread asks the

attacker for user input, decodes the

input to audio and writes it into the

command_buffer_audio buffer. If the

output of a command is received, the

thread prints the output to the

console.

The shell_io.c class uses three

mutex. They make sure that this

class can perform atomic read and

write operations because the

class stream.c needs to perform

operations to the same buffers

and variables.

audio_encoder.c The audio encoder read bytes from a

buffer and converts that plain text

bytes into audio according to the

defines DTMF matrix.

Studienarbeit

Project: VoIPshell

Seite 164 von 14

164

audio_decoder.c The audio_decoder reads bytes from a

buffer and decoded them back to plain

text.

stream.c The class stream.c performs the

sending and receiving of RTP packets.

In this class output generated by either

the shell_io.c class or the

shell_process.c class is sent as RTP

payload over the network.

In this class all the buffers, mutex

and variables are created which

are used between the

audio_encoder, audio decoder,

shell_io or shell_process.

Furthermore, the threads are

created in this class.

Table 4: Classes in business layer

3.7 Libraries - pjmedia

The package pjmedia also contains a lot of utility code which is commonly put into a layer called

libraries. It contains functionality to encode and decode audio frames with various audio codecs and

the classes representing UDP and RTP packets.

The most important classes in the package pjmedia, that would be considered to be part of a library

layer, are listed in Table 5.

Class Purpose

g.711 Used to encode and decode the frames without modified payload.

rtp Includes the implementation of RTP packets which are used to send

payload across the network.

voip_buffer A custom implementation of a circular buffer. The basic implementation

was taken from a GitHub repository1 and extended by three functions

which allow to push and pop multiple bytes as well as to get the current

size of the buffer.

Table 5: Classes in libraries

1 https://github.com/EmbedJournal/c-utils/tree/master/src

https://github.com/EmbedJournal/c-utils/tree/master/src

Studienarbeit

Project: VoIPshell

Seite 165 von 14

165

4 Deployment

4.1 Deployment with SIP

Figure 7 illustrates the deployment of VoIPshell.

Figure 7: Deployment diagram

Source: own creation

Studienarbeit

Project: VoIPshell

Seite 166 von 14

166

5 Illustration index
Figure 1: System Overview PoC ... 155

Figure 2: Sequence diagram .. 157

Figure 3: Sequence diagram - attacker's side .. 158

Figure 4: Sequence diagram - victim's side ... 159

Figure 5: Software architecture attacker .. 161

Figure 6: Software architecture victim .. 162

Figure 7: Deployment diagram .. 165

Project Thesis: Reverse Shell via Voice (SIP, Skype)

167

Reverse Shell via Voice (SIP, Skype)
G-8 – PJSIP Instructions

Authors: Dominique Illi, Michel Bongard

Fall Term 2019

Project Thesis: Reverse Shell via Voice (SIP, Skype)

168

Copying a PJSIP project

It was discovered that the following steps are required after copying a PJSIP project.

Very important! The same steps need to be taken when cloning the project from the GitHub

repository https://github.com/mbongard/voipshell.

1. Delete the folder .vs in the projects root directory.

2. Open the solution pjproject-vs14.sln.

3. A window appears with the title Review Project And Solution Changes (see Figure 1). Click

OK.

Figure 1: First message

Source: own creation

4. A window appears with the title Review Solution Actions (see Figure 2). Click Cancel.

Figure 2: Second message

Source: own creation

5. A window will open in your default browser. Close it.

6. In the solution, right click the project pjsua and select Set as StartUp project.

