Microservices in a DevOps Context

A Review of “A Systematic Mapping Study on Microservices Architecture in DevOps”

Christoph Biihler
University of Applied Science of Eastern Switzerland OST
MSE Seminar “Design Science and Empirical Software Engineering”
Supervisor: Olaf Zimmermann
Semester: Fall 2020

Abstract

A systematic mapping study conducts a broad search for publi-
cations in a research topic and maps the results into a condensed
form. It gives an overview over the topic, the problems and cor-
responding solutions [PFMMO08, FD15]. This paper is a review
of such a study on the topic of “Microservice in a DevOps con-
text”. First, the reader is introduced into the various techniques
and terms used in design science and empirical software engi-
neering, then we provide a summary of the paper and a critical
review. The study did an excellent job in finding results from
the academia but the categorical exclusion of gray literature
lead to missed solutions for given problems.

Keywords: Design Science, Empirical Software Engineering,
Microservices, DevOps, Systematic Mapping Study, Review

1 Introduction

This paper is a review of the systematic mapping study “A
Systematic Mapping Study on Microservices Architecture
in DevOps” [WLS20]. The goal is to introduce the reader to
the topic, explain the used methods in empirical software
engineering and give a critical review of the conducted study
and the results.

The study used a broad search over several well-known
publication databases and searched for research material on
the topic of microservice architectures in the DevOps con-
text. After the first search additional material was searched
by using the cited and referenced material in the found pub-
lications. All this material was then screened and analyzed
and after an initial selection was made, the studies were
fully read and information extracted. The results are then
mapped and categorized according to the research questions
and guidelines stated in the study.

The study shows various problems and their correspond-
ing solutions along with some challenges (problems without
any proposed solution). Some of the problems do not have a
solution because gray literature is not allowed in the search.

The remainder of the paper will introduce terms and prin-
ciples that are used in the reviewed study. In addition, the
paper introduces certain topics that a reader needs to un-
derstand the study and this review. Furthermore, this paper
creates an objective summary, a critical review and a derived
conclusion of the reviewed paper [WLS20].

2021-02-25 12:17. Page 1 of 1-11.

1.1 Design Science

Design Science has the main purpose of achieving knowledge
and a general understanding about a domain. Design Science
contains several guidelines according to Alan R. Hevner
(among other authors). These guidelines are [HMPR04]:

e Design as an artifact: Design Science must produce an
artifact

e Problem relevance: The objective is to develop solutions
to relevant business problems

o Design evaluation: The usefulness of an artifact must
be demonstrated with evaluation methods

e Research contributions: It must provide clear and veri-
fiable contributions to the topic

e Research rigor: The research relies on rigorous methods
in construction and evaluation of the model

o Design as a search process: The search for artifacts re-
quires satisfying laws to be in place

e Communication of research: The targeted audience should
be technology based as well as management based

With this guidelines, it is possible to model a domain of
interest and acquire specific knowledge about it.

1.2 Empirical Software Engineering

Empirical Software Engineering (ESE) provides a base for
discussion and methods for empirical research regarding
software engineering topics. Empirical means in the context
of software engineering that various results are taken into
consideration. The results of the methods are proven by
existing publications.

1.2.1 Systematic Mapping Study (SMS). A SMS is a de-
fined method to gather, analyze, classify and structure a field
of interest. The analysis focuses on frequency and topics for
a field. It is a defined process in which the following steps
take place [PFMMO08]:

1. Define research questions (RQs) and topic

2. Define search query and parameter

3. Search for articles and publications in given databases

4. Analyze and screen the results (i.e. quality assessment
and data analysing)

5. Classify and map the given articles

The result of an SMS allows readers and researchers to de-
termine the coverage of the given field of interest [PFMMO08].

In the reviewed paper, the search yielded 47 publications as
“relevant” for investigation.

1.2.2 Systematic Literature Review (SLR). An SLR is a
method of ESE to systematically analyze and review a given
topic. It uses methods to collect secondary data and critically
reviews the given research study. The search for additional
data can involve published as well as unpublished work on
the subject [SWH19]. SLR and SMS both enable researcher
to acquire knowledge about a topic. Whereas the SMS does
this on a wide scale, the SLR goes into depth of a domain
of interest. Babak Farshchian and Yngve Dahl described the
difference as: “An SMS uses the same basic methodology for
searching and analyzing literature as in a SLR. An SMS, on
the other hand, aims at creating a map of a wide research
field. ... The knowledge created by an SMS can be used as
the basis for further research (Kitchenham et al 2011), for
instance, as a pre-study for one or several SLRs in specific
areas.” [FD15].

1.2.3 Systematic Gray Literature Review (SGLR). In
contrast to an SLR, the SGLR differs from an SLR in one
essential way: It does not only consider published and un-
published peer reviewed work, but also “Gray Literature”.
Gray literature is evidence and material that is not published
in commercial and peer reviewed publications [Pael7]. In
the context of computer science, gray literature can provide
important statements and evidence towards topics that are
more driven by businesses than by academia. Commercial
companies drive the innovation around computer science
nowadays. Those companies need solutions for acute prob-
lems and therefore do not wait on papers and evidence to be
peer-reviewed until they move on.

1.3 Microservices and DevOps

Since the topic of the reviewed paper does conduct an SMS
over “Microservices in DevOps”, it is utterly important to
define those terms so that any reader of this paper under-
stands the base of the terms on which the conclusions are
built upon.

1.3.1 Microservices. Microservices (sometimes referred
to as “Microservice Architecture”) is an application structural
style. The style focuses on building several small services that
cooperate together to create an application. Those services
are often deployed on distributed systems. Microservices
adhere to the following tenets [Zim17b]:

e Fine-grained interfaces: The work unit encapsulates
logic around a single topic of work and exposes the
interface remotely.

e Domain-Driven Design (DDD): The services are con-
ceptional created around business-driven development
patterns.

o IDEAL:Isolated State, Distribution, Elasticity, Automated

Management and Loose Coupling.

Christoph Biihler

o Polyglot Persistence: Multiple programming paradigms
(e.g. object-oriented and functional) and storage pa-
radigms (e.g. NoSQL and relational database systems)
are used in a polyglot programming and persistence
strategy.

o Lightweight Containers: The work units are container-
ized and deployed via corresponding channels (e.g.
Docker).

o Automated Continuous Delivery: During service devel-
opment, a high degree of automation is used to deploy
the work unit.

e Lean Holistic Management (DevOps): Largely automa-
ted practices are used to tackle configuration, perfor-
mance, monitoring and fault management.

These tenets define the work units of a microservice ar-
chitecture. This makes a MSA a highly flexible and dynamic
approach to develop software [Zim17b].

1.3.2 DevOps. The term “DevOps” is a mash-up between
“Development” and “Operations” which are two strong and
important terms in modern software engineering. DevOps
provides a set of practices with the intend to reduce the time
of a change to the code to the production environment while
maintaining a high quality of the software [BWZ15]. As an
example, when a change is committed to the version control
system (VCS), like GitHub, the build pipeline will test and
build the container automatically. Afterwards, the container
is deployed to a test environment and on acknowledgement,
the container is then shipped to production.

2 The Reviewed Study

The general topic of the reviewed paper is to conduct an
SMS over the topic of “Microservices in DevOps”. We should
take into consideration, that the context is specifically set
to “DevOps”. Recent years and recent developments raised
the attention to the topic significantly. Furthermore, at the
time of writing of the paper, no comprehensive review of
the research was available. The study asks several research
questions (RQs) and conducts a systematic mapping study
(SMS) upon two defined search queries. Then, after screening
and analyzing the results, the authors created a mapping to
certain categories and several problems and their solutions.
After a presentation of the results, Waseem et al. provide a
broad discussion of the found results shows some differences
between the theory and effective results [WLS20].

2.1 Motivation

The purpose of the reviewed paper is to create an SMS to
understand how Microservice Architecture (MSA) is used
in conjunction with DevOps. Furthermore the objective is
to identify, analyze and categorize the existing literature
and research around the given topic. In addition to that,
problems and their corresponding solutions - if any - should
be identified. The contribution of the paper to the academia

2021-02-25 12:17. Page 2 of 1-11.

Microservices in a DevOps Context

is a classification of the research, a classification of problems
and their solution, a list of identified research challenges, a
classification of used tools and a list of formal or informal
description tools for MSA [WLS20].

2.2 Methodology

With the goal to not limit the results of such an empirical
software engineering method to one specific research ques-
tion, the authors conducted an SMS instead of an SLR, which
provides insight and secondary data for a particular question.
The SMS contained three essential steps [WLS20]:

1. Planning the mapping study

2. Collection and analyzing the data

3. Mapping and documenting the results

The authors built the conducted SMS upon the guidelines
proposed by Kai Petersen [PFMMO08].

2.3 Research Questions

Ten different RQs in four categories were derived according
to the goal of the paper [WLS20]:

Category 1: Demography, classification,
and mapping of research

RQ1.1 | What is the frequency and type of published
research on MSA in DevOps?

RQ1.2 | What are the existing research themes on MSA
in DevOps and how can they be classified and
mapped?

Category 2: Problems, solutions, and chal-

lenges

RQ2.1 | What problems have been reported when imple-
menting MSA in DevOps?

RQ2.2 | What solutions have been employed to address
the problems?

RQ2.3 | What challenges have been reported when im-

plementing MSA in DevOps?
Category 3: MSA description methods, pat-
terns, and quality attributes

RQ3.1 | What methods are used to describe MSA in Dev-
Ops?

RQ3.2 | What MSA design patterns are used in DevOps?

RQ3.3 | What quality attributes are affected when em-

ploying MSA in DevOps?
Category 4: Tool support and application
domains

RQ4.1 | What tools are available to support MSA in Dev-
Ops?

RQ4.2 | What are the application domains that employ
MSA in DevOps?

Table 1. Given research questions

2021-02-25 12:17. Page 3 of 1-11.

Table 1 shows the research questions that the authors tried
to solve with the systematic mapping study.

2.4 Search

To collect data, Waseem et al. used a two-phase-search. The
first search was applied to the selected databases with the
created search-query. The secondary search used a tech-
nique called “snowballing”. “Forward snowballing” includes
studies that cite the found studies, while “backward snow-
balling” follows the references of the found research material
[Woh14].

The study limited the search to peer-reviewed studies
from January 2009 until July 2018. They chose this particular
starting point because the term “DevOps” was introduced in
the year 2009 [WLS20].

Since MSA has multiple synonyms and can be in context
with DevOps or without the said context, the following two
search-strings were compiled [WLS20]:

1. ((microservi* OR micro-servi*) AND (architectx
OR design OR structur*) AND DevOps)
2. (microservice AND DevOps)

It is worth noting that the contextual part “DevOps” is
not optional nor is it a construct like “microservi*”. This
limits the results to publications that must contain the term
“DevOps” in their title.

The search was executed on the following seven databases
[WLS20]:

e ACM Digital Library (https://dl.acm.org)

e Springer Link (https://link.springer.com)

e Wiley InterScience (https://onlinelibrary.wiley.com)
o EI Compendex (https://www.engineeringvillage.com)
o IEEE Xplore (https://ieeexplore.ieee.org)

e Science Direct (https://www.sciencedirect.com)

e ISI Web of Science (https://webofknowledge.com)

The search for the first four databases (ACM until EI Com-
pendex) was executed on the title of the publication, as well
as their abstract. The other three databases also included
“keywords” in the search targets.

The execution of the provided search queries on the given
databases yielded a total of 494 studies. After the initial
search, the authors screened and categorized the found stud-
ies into relevant and irrelevant publications. Of the original
494 studies, only 285 were flagged as “relevant”. Waseem et
al. then analyzed the studies according to six generic screen-
ing and one specific screening aspect. An example of such a
generic aspect is: “Is the study written in English?”. Whereas
the specific one states: “Does the study present problems,
solutions, challenges, description methods, patterns, QAs,
and tools in the context of MSA and DevOps combination?”
[WLS20].

After the screening, 117 remained flagged as relevant.
Those 117 studies were fully read and scored by the authors
according to inclusion and exclusion criteria. At the point

https://dl.acm.org
https://link.springer.com
https://onlinelibrary.wiley.com
https://www.engineeringvillage.com
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://webofknowledge.com

when the authors read and assessed all 117 studies, only 45
studies remained in the relevant category.

In addition to the conducted search, the snowballing tech-
nique yielded additional two studies that were included in
the study. The authors compared the results of the snowball
with the found results of the initial search and then the same
practices were applied to those publications found with the
snowball search.

After the search, a total count of 47 different studies re-
mained relevant for the SMS [WLS20].

2.5 Results

After the conducted search and the thorough analytical read-
ings and classification of the 47 studies, the collected results
were separated in multiple sections to answer the RQs given
in Table 1:

e Demography and classification

e Problems, solutions and challenges

o Description methods, patterns and quality attributes
e Tools and application domain

The following sections will summarize the found results
to the specific research questions.

2.5.1 Demography and Classification. This subsection
shall tackle RQ1.1 and RQ1.2 from Table 1.

The conducted search had a year span from 2009 to 2018
[WLS20]. Despite the broad search parameters of nearly
considering a decade worth of publications, all of the relevant
publications were published between 2015 and 2018. The
following graph (Figure 1) should give some insight into the
yearly publication rate and the type of publication:

The distribution of publications over the years gives a
detailed intuition about the general interest of researchers in
the specified topic. As seen in the diagram above, the topic
grew more important over the years 2017 and 2018. Since
the first publications in 2015 there is an upward trend to the
number of publications [WLS20].

As for the publication types, over those four years, 23
studies were published in conference proceedings, twelve in
journals, eight in book chapters and merely four as workshop
papers [WLS20].

The 47 considered papers were all published in 41 venues.
The venues themselves can be divided into four different
categories. 17 of the 41 venues count towards the topic In-
ternet, Cloud, and Services Computing. Another 16 are
categorized as Software Engineering venues. The remain-
ing eight are split evenly between Telecommunications
and Networks with four venues and Multi-Disciplinary
computing also with four venues [WLS20].

As for RQ1.2, the result shows, that top two subtopics of
the publications are Approaches (13 studies) and Tools (twelve
studies). The least discussed topic, with only four studies, is
Monitoring of microservices [WLS20].

Christoph Biihler

O Book Chapters
[Conference and Symposium Papers
O Journals Articles
| Workshop Papers
15 | 1] —
3 5
= -
£ 10} [1] I
©
-2
_'—g 4
: = 2
w 2 |
5
5 — -
ol I 2] 2l
| | | |
2015 2016 2017 2018
Year

Figure 1. Publication activity

2.5.2 Problems, Solutions, and Challenges. During the
SMS, with the aid of a thematic analysis on the extracted data,
a total of 24 problems could be identified. There exist sev-
eral problems that could not be mapped with a documented
solution so they represent challenges that need further in-
vestigation to provide the community with possibilities to
resolve the problem.

The following lists should give a brief overview of the
identified problems with an associated problem category.
Inside the problem domain, the problems are not specifically
ordered [WLS20].

Requirements of MSA-based Systems in DevOps

e Performance Issue due to Lack of Dedicated Access to
the Host’s Hardware
e Empowering Developers through Intelligent Software
e Performance Overhead due to Fine Grain Decomposi-
tion
e Scaling MSA-based Systems
Design of MSA-based Systems in DevOps

e Security and Privacy Across Cloud-Native Applica-
tions

e Providing Flexible Authentication to Each DevOps
Team

e Application Decomposition into Microservices

e Reducing the Uncertainty in MSA

Implementation of MSA-based Systems in DevOps

e Managing and Migration Legacy Databases
2021-02-25 12:17. Page 4 of 1-11.

Microservices in a DevOps Context

e Modification and Integration of New Functionality in
Existing Microservices
e Operational and Configuration Complexity

Testing of MSA-based Systems in DevOps
e Testing of MSA-based Systems in DevOps
Deployment of MSA-based Systems in DevOps

e Frequent Deployment in Different Environments

e Complexity in the Dynamic Deployment

e Deployment of MSA-based SaaS at Fine Granular Level

e Automatic Optimal Deployment of MSA-based Sys-
tems

Monitoring of MSA-based Systems in DevOps

e Logging and Post-Deployment Monitoring

e Monitoring and Execution of the Adaptive Actions

e Establishing and Maintaining Monitoring Infrastruc-
ture

e Monitoring Microservices at Run Time

Organizational Problems

e Introducing DevOps and MSA Culture

e People Resistance to Adopting DevOps and Microser-
vices

e Less Familiarity with Implementing DevOps

Resource Management Problems

e Resource management for Development, Deployment,
and Maintenance of the Cloud-Native Systems

For each of the problems in the shown lists, the consid-
ered publications provide at least one solution which can
be viewed in “Figure 6” of the reviewed study. In general,
a proposed idea to tackle multiple of the problems is to try
not to decompose microservice applications too fine-grain
[WLS20]. As for the general problem category “designing
MSA based systems”, multiple solutions are provided. A va-
riety of architectures are promoted and evaluated [WLS20].

To implement MSA based systems in a DevOps context,
many studies suggest automated pipelines as well as auto-
matic testing libraries. For communicating with other ser-
vices, agnostic (i.e. independent and non-proprietary) tech-
nologies should be used (like REST over HTTP) to negate
the need of knowledge of a specific programming language
[WLS20].

Testing MSA based applications and systems should, ac-
cording to the considered papers, be tackled with the given
testing strategies that are in place right now. Which means
“unit testing”, “integration testing”, “regression testing”, among
others [WLS20].

The topic of deploying MSA based systems is covered
mostly by containerization and tools like “Docker Compose”
and “Kubernetes” [WLS20].

2021-02-25 12:17. Page 5 of 1-11.

Monitoring is proposed to be addressed with frameworks
like “Unicorn” and patter-based approaches like OmniaZ.
The general goal should be, that each team that owns the mi-
croservice should be enabled to monitor their responsibilities
[WLS20].

Problems that relate to culture, people, cost, and other
organizational topics are proposed to be dealt with guide-
lines for adopting to new structures in organizations. Cross-
functional teams should be introduced and they should re-
ceive training to spread the acceptance of the new technology
[WLS20].

As for the topic of resource management problems, some
considered studies proclaim to use virtualized or container-
ized approaches and well established platforms to share the
workspace among the developers [WLS20].

On the contrary, three challenges were identified which re-
mained unresolved by the papers that were accounted for
[WLS20]:

e Performance issues due to frequent communication
e Providing security at runtime
e Generating runtime architectural models

Performance issues can emerge when using too fine-grain
microservices or when using synchronous communication
channels to other services.

Studies found that security tends to be neglected in general
which leads to severe vulnerabilities at runtime for microser-
vice based architectures.

Generating models for MSA systems at runtime seems to
be an unresearched topic but could be needed to help with
decision-making processes in adaptive system development.

2.5.3 MSA Description Methods, Patterns, and Qual-
ity Attributes. The topic of the third category of RQs orbits
around descriptive methods of MSA systems. What meth-
ods and patterns are used and which quality attributes they
should suffice. The regarded studies provided different pat-
terns and methodologies to describe their architectures and
systems. To summarize the found description methods, five
categories emerged [WLS20]:

1. Boxes and Lines (without any "framework")

. Unified Modeling Language (UML)

. Formal method (e.g. 7-Calculus or equivalent)

. Architecture Description Language (ADL)

. Entity Relationship Diagrams (ERD) or Business Pro-
cess Modeling Notations (BPMN)

Out of the 47 studies, 46 used some kind of description.
The distribution is shown in Figure 2.

To achieve microservice architecture in complex systems,
a multitude of patterns are proposed over all studies. The

G s W N

https://www.technative.io/unicorn-framework-the-rise-of-devops-as-a-
service/
2Elaborated in [MT17]

https://www.technative.io/unicorn-framework-the-rise-of-devops-as-a-service/
https://www.technative.io/unicorn-framework-the-rise-of-devops-as-a-service/

UML

Formal method

ADL

Others

Boxes and Lines

Figure 2. Distribution of descriptive methods

SMS identified 38 different design patterns across all regarded
papers. Waseem et al. organized the mentioned patterns in
the following three categories [WLS20]:

1. Circuit Breaker (five studies)
2. “Migration pattern” (four studies) [WLS20] *
3. Observer pattern (two studies)

The circuit breaker pattern enables an MSA-based sys-
tem to “fail fast”. The pattern aims to prevent parts of a mi-
croservice architecture to cascade a failure beyond its own
boundaries, which in turn could lead to a total system failure.
Instead of waiting for unresponsive services, after some time
the circuit breaker assumes the worst and deals with the fact
that the work unit has become unavailable [MW16].

The observer pattern is a software design pattern in which
some object (i.e. the “subject”) maintains a list of observers.
Whenever the subject changes its state, it automatically no-
tifies all observers [GHJ*95].

Regarding affected quality attributes when using MSA in
the DevOps context, the presence of said quality attributes
(QA) was confirmed by the SMS. The QAs were split into
two sections, one for positively influenced QAs when us-
ing microservices and one for the negative influenced ones
[WLS20].

Positive The studies listed the following QAs as being
positively influenced:

e Deployability (42 studies)
e Scalability (32 studies)

e Performance (26 studies)

e Maintainability (27 studies)
e Monitoring (23 studies)

o Testability (22 studies)

o Flexibility (20 studies)

3The reviewed SMS does not disclose which specific patterns or languages
refers to here

Christoph Biihler

e Availability (19 studies)

o Efficiency (19 studies)

e Security (ten studies)

e Portability (six studies)

o Compatibility (five studies)
e Modifiability (five studies)
e Usability (one study)

Negative Some studies listed the following QAs as being
negatively influenced:

e Security (eleven studies)

e Performance (nine studies)

e Scalability (two studies)

e Reliability (two studies)

e Availability (one study)

e Compatibility (one study)

e Maintainability (one study)

o Modifiability (one study)

o Usability (one study)

To have a view from positively mentioned against neg-

atively mentioned, consider the following chart which is
adapted from the data in the study:

UBPpositive | I Negative
R T I N IO N N N B R
42
40 |- R
32
§30* 26 27 B
E - 232220
EZO* 19 19 N
3
18!
10 - R
655
2
o [Il 12 o fo o[t Jo Hoﬂlﬂlll
0, o - - o - o 0o oo |
T T T T T T T T T T T T T
>->\-8>~.b0>->->->\>->-§>->->-
EESESEEETEEEES
v e <= PR~~~ sn-—t e e
EEREEREEN-EE bl
28 o4 8 v g vy aAa=ED
EECEEEREET RS
14 o OE
@) Q"<§U O

Figure 3. Influenced Quality Attributes

2.5.4 ToolSupportand Application Domains. The fourth
category of research questions regards tooling support and
given application domains. The SMS identified 50 different
tools and 11 application domains.
The various tools can be seen in Fig. 7 in the SMS [WLS20].
The authors categorized them in the following list:
2021-02-25 12:17. Page 6 of 1-11.

Microservices in a DevOps Context

e Security Services and Tools (14 tools)

e Monitoring Tools (eleven tools)

e Continuous Integration Tools (seven tools)

e Testing Tools (six tools)

e Configuration Management Tools (five tools)
e Build Tools (five tools)

e Version Control Tools (two tools)

The last RQ that is to be answered, is which application
domains exploit the combination of MSA with DevOps. The
SMS pinpointed nine application domains with analyzation
of the systems and topics in the regarded studies. Waseem
et al. identified the following application domains in their
study [WLS20]:

e Not Mentioned (15 studies) *

e Software Development Tools and Framework (eleven
studies)

e Telecommunication (six studies)

e Mobile Software (four studies)

e E-Commerce system (three studies)

e Embedded system (three studies)

e Financial software (three studies)

e Healthcare software (one study)

e Webserver (one study)

e Distributed system (one study)

e Autonomic Management System (one study)

e Betting and Gaming (one study)

e Web Blog (one study)

e eServices Developments (one study)

o Container Management System (one study)

e Content Management (one study)

e Software for non-profit (one study)

As this list shows, beside studies that did not mention
their concrete application domain, “Software Development
Tools and Framework” has gained the most attention of all
identified application domains in the study [WLS20].

2.6 Discussion

The following sections summarizes the “Discussion” of the
SMS. The study analyzed the found results and explained
certain trends.

2.6.1 Research Status and Themes. The limitation of
the search to peer-reviewed literature from January 2009 to
July 2018 is based on the “creation” of the terms MSA and
DevOps. But the rise of papers and studies followed seven
years later, around January 2016. The study noticed, that 41
papers were published from January 2016 until July 2018
[WLS20].

As seen in the systematic classification of the research
themes, the most recurring topics are “Tools” with 13 studies,
“Approaches” with twelve studies and “Development and

4Those 15 studies did not mention any specific information regarding appli-
cation domains

2021-02-25 12:17. Page 7 of 1-11.

Deployment” with twelve studies. This indicates, that the
research is not only centered around new tools, but also
regards development life-cycles as well. On the other hand,
there were no publications found that focus on the topic
of “Requirements Engineering”, be it practices or any other
activities [WLS20].

2.6.2 Problems and Solutions. The given solutions in
the regarded publications consist of design patterns, guide-
lines, frameworks, etc. For example, Domain Driven Design
(DDD) and Model View Controller (MVC) patterns are recom-
mended for decomposing an application into a microservice
oriented system. The SMS also states that there are no studies
found that address testing strategies for MSA based systems.
As for optimal deployment of MSA, a very popular solution
is the usage of containerization and Kubernetes [WLS20].

2.6.3 Challenges. A big concern in several papers is per-
formance of such MSA based systems. The impact can be
due to frequent communication between microservices. Also,
poorly engineered architectures can lead to wide spread re-
quests across the whole system. Also, when containers are
used, the hardware underneath has a high impact on per-
formance. The study shows that Amazon EC2 containers
are worse than applications deployed on Amazon EC2 VMs
[WLS20].

The second topic that gets addressed with high frequency,
is security. When just “translating” applications to MSA,
most of the time, security concerns arise. MSA based systems
create complex access control scenarios without any matured
patterns to harden the systems against attackers [WLS20].

2.6.4 Description Methods and MSA Design Patterns.
Most studies use just plain, informal boxes and lines as well as
UML to describe microservice architectures. Other methods,
like formal 7-Calculator among others, are used rarely. The
SMS argues, that this could be adressed with the creation of
a standard description method for describing MSA [WLS20].
The used design patterns are shown in the corresponding
table in the SMS. The most observed pattern is the “Circuit
Breaker” [MW16] pattern which indicates, that cascading
failures are a major concern. Next in line is the “Migration
Pattern” [WLS20] that recommends various best practices
for the transition from a monolytic application to a MSA
based system. A not so well covered topic are patterns and
recommendations that support CI/CD in MSA [WLS20].

2.6.5 Application Domains. The SMS observed, that a
third of the studies did not provide a specific application
domain, nor any information to which domain they may
count. The rest of the publications could be categorized into
different application domains. The most referenced domain is
“Software Development Tools and Framework”. This results
indicate, that MSA in the DevOps context is not bound to
a specific application domain but rather is an improvement

to a broad range of application domains such as healthcare,
finance sector and embedded systems [WLS20].

3 Critical Review of the Paper

The following section critically reviews the conducted study.
The review contains statements about the used empirical
engineering methods as well as the found results and the
followed discussion about the results.

As a general critique, the layout of the study should help
the reader through the paper smoothly. There are many
tables and figures which explain the results quite efficient
and to the point, but the layout of the study forces the reader
to jump around when going through it. It may improve the
readability if all figures and tables are moved to an appendix
and have the text reference them.

3.1 Definitions

Some abbreviation (like “SLR”) are introduced in the later
stage of the study and leave the reader without knowledge
about their meaning in the first few sections.

The general definition of microservice architecture (MSA)
and DevOps are accurate to the literature and are well de-
scribed. There are many references which allow the reader
to further read into the topic of MSA and DevOps.

3.2 Empirical Research Methods

The study used the proposed guidelines of peer-reviewed
publications to conduct the SMS. The authors did adjust and
combine some of the guidelines according to the peculiarities
of the topic.

3.2.1 Research Questions. The research questions are
well structured into categories. However, the RQs in cat-
egories two to four appear too broad in my opinion. The
following questions should be split up into finer definitions
or should be more specific.

RQ2.1 “What problems have been reported when imple-
menting MSA in DevOps?” [WLS20]: The problems that have
been reported should be split into categories. Are the prob-
lems centered around general understanding of MSA, is it
troubling to deploy and maintain a MSA based system or is
the development (migration or new solution) process prob-
lematic?

RQ3.2 “What MSA design patterns are used in DevOps?”
[WLS20]: The stated question about design patterns does
cover all possible pattern-topics. So the question addresses
patterns that are used for developing microservice applica-
tions and other patterns that recommend a way to migrate a
monolith to a MSA. A categorization between the patterns
would help the reader to grasp the results in the correct con-
text. As an example this could be done with a 4+1 viewpoint
model (Logical view, Development view, Process view, Physical
view, and Scenarios) from P.B. Kruchten [Kru95].

Christoph Biihler

RQ4.1 “What tools are available to support MSA in Dev-
Ops?” [WLS20]: A similar categorization should be used for
the research question about available tooling. Currently, this
question ranges from planning tools (e.g. Jira) to tools for
version control (e.g. GitHub).

3.2.2 Search Strategy and Snowballing. The search for
publications is conducted thoroughly. Many results are found
which is a good sign for the search itself. It is an excellent
idea to use two search queries to search for “microservices”
and “architecture” in conjunction with the DevOps context.

On the topic of the search boundaries, it can be said that
“January 2009” does include all the results that are found.
Since the term “microservice” was defined by Martin Fowler
in 2014 [FL14] the lower bound of the search could be set
to “January 2014”. According to Fowler, the term “MSA” was
not precisely defined until then. The upper bound on the
other hand is set to “July 2018” which is most likely the
date when the search was executed. While the SMS does
explain why January 2009 was selected as the lower bound,
it is not stated at all why July 2018 is the upper bound. The
reviewed study was published in the year 2020, but since the
searched publications were limited to the year 2018, many
new techniques and publications were ignored.

The limitation to only allow peer-reviewed publications to
be relevant does filter out some solutions to given problems
and even challenges. In computer science, one big driving
force of innovation are companies that need solutions and
tools for the current problems at hand. Companies tend to
have shorter innovation-cycles than the academia. With this
matter in mind, many solutions are only described in blog
posts or as showcases. It would have been a good approach to
search for the problems along the peer-reviewed papers and
allow some gray literature in the discussion to give advice
to certain challenges and/or problems.

The search queries “((microservi* OR micro-servix)
AND (architect* OR design OR structurx*) AND DevOps)”
and “(microservice AND DevOps)” [WLS20] also exclude
a relatively large portion of potential publications since the
term “DevOps” is mandatory and without variants. While
different writing styles and variants were used for the term
“Microservice”, the term “DevOps” is just plainly searched.
There could also be material, that does not contain the term
in the title at all. Those papers are excluded as well.

3.2.3 Quality Assessment. The given screening criteria
are well defined and create an exact baseline for the found
papers such as the language of the publication or if it is
peer-reviewed.

The stated qualitative criteria are nicely balanced and
provide a good assessment of the found publications. It does
make sense to search for clearly stated motivations, problems,
and solutions in the found studies. Furthermore, it is eminent
to know the limitations of the studies. The increased weight
of the specific criteria versus the generic ones does help

2021-02-25 12:17. Page 8 of 1-11.

Microservices in a DevOps Context

to search for the targeted publications that are relevant for
the topic of the SMS. To give an example of such a quality
assessment criteria, consider the following from Waseem et
al.: “Does the study focus on MSA in DevOps?”.

3.3 Results and Discussion

Waseem et al. extensively describe the derived results and
the subsequent discussion. Some findings and argumentation
spark questions, however.

3.3.1 Problems and Solutions. One of the stated prob-
lems in the SMS is that it did not find any studies about
testing of MSA based systems in DevOps [WLS20]. Since
gray literature was excluded from the search, some relevant
publications from the industry were ignored. In the specific
topic of testing MSA based and cloud-ready systems, Netflix
provided a detailed description about an approach in their
blog®.

Among other established testing techniques (Unit testing,
Integration testing, etc.) Netflix uses something they call
“Chaos testing”. The goal of this so called “Chaos Monkey”®
is to test whole systems for resiliency by shutting down ser-
vices, nodes, and entire clusters at random times. This is a
specific testing use-case for MSA and cloud-ready systems.
Since no system can guarantee 100% up-time, the chaos mon-
key introduces interruptions that the system must handle.
The system should depend on some services not being avail-
able. With that in mind, a resilient system can be created
[IT11, BBd*16].

3.3.2 Research Challenges. The first research challenge
Performance issues due to frequent communication does state
that too fine-grain MSA introduce complexity. I would like
to argue, that nearly all fine-grain systems introduce com-
plexity. The biggest issue, in terms of performance, with
fine-grain MSA is the direction of the call-flow. Each level
in this “service depth” does add to the total amount of time
needed to compute the request of the user.

The problem with “service depth” is not the performance
impact of computation itself in a work unit, but the general
impact on the overall system when chaining subsequent
units together. Figure 4 shows such a scenario. For the sake
of simplicity, let us assume that each call in Figure 4 (i.e.
Client to API, API to IAM’, Service to Service, and Service
to Datastore) takes 100ms.

The assumed time contains computation, transformation
from and to the transport protocol and the round trip. The
basic idea is to show the performance impact when chaining
services into a “deep system”. With the given description, let
us consider the following two scenarios:

Shttps://netflixtechblog.com/
Shttps://github.com/Netflix/chaosmonkey
"Identity and Access Management

2021-02-25 12:17. Page 9 of 1-11.

Datastore

Figure 4. Deep MSA problem

1. Client sends a SMS: Client — Api — SMS Service. Api
and SMS Service make a credentials check at the IAM’.
The successful response to the client is delivered after:
4 % 100ms = 400ms

2. Client requests a document: Client — Api — Document
Service — Reader Service — Data Service — Data
Store. All services check the credentials with the IAM’.
The successful response to the client is delivered after:
100ms(Client) + 4 * 100ms(IAM) + 3 = 100ms(Services) +
100ms(DB) = 900ms

A possible solution to this particular problem is to plan
the microservices and the corresponding architecture ac-
cordingly. Frequent review of the current architecture and
refactoring [Zim17a] if needed are key to prevent too deep
services. This can happen in a very agile way since one of
the basic goals of MSA is to have fast deployable artifacts.

The usage of synchronous HTTP calls will definitely re-
sult in a performance penalty. Systems like “Google PubSub”
could help mitigate this bottleneck and create the possibility
to scale instances of microservices on the horizontal scale.
Furthermore, Kubernetes, among other orchestration plat-
forms, provide developers with battle-proof tools to scale
services with load-balancing features.

The statement about hardware is accurate. Depending
on the hardware, the performance of the whole MSA based
system will vary. For example, let us consider a microser-
vice that was developed with PHP®. Depending on the used
framework, PHP loads the *.php script files for each and

8https://www.php.net/

https://netflixtechblog.com/
https://github.com/Netflix/chaosmonkey
https://www.php.net/

every call that is made to the application. Since those script
files are not cached in memory or any compiled form, when
the underlying hardware contains storage with normal hard
disk drives instead of solid state disks, the performance im-
pact is huge. On the other hand, a compiled application like
a C# Web-Application does load itself into the memory of
the container and does not have the need to load some files
for each request.

The second challenge Providing security at runtime does
describe some of the current problems. Security is a hard
topic on itself and in conjunction with MSA, it does not
get any easier. Several patterns exist that can provide some
mechanism of security, but as always there is no silver bullet.
A good strategy to authenticate and authorize calls made
from a source would be the usage of OpenID Connect (OIDC)
[Sir20]. OIDC enables a system to have a centralized user and
access management. The calls are authenticated with a token
and each microservice can check if the call is authenticated
and valid or not. As for authorization, the central identity
server can provide endpoints to fetch roles or other means
of authorization logic to check if the call is allowed in the
given microservice with the provided token.

3.3.3 Quality Attributes. The SMS does a good job at
showing the positive and negative statements of the relevant
studies. The comparison and categorization is well done and
gives an overview which topics contain solutions for non-
MSA-problems and which problems are newly introduced
by MSA and DevOps itself. The most important statement
here is the security concern. Security is and will be a part of
any public application and therefore is a central topic.

3.3.4 Tool Support. The validity of this part of the results
is questionable. The listed and found tools over all the re-
garded publications mix use-cases of various tools. As an
example, “Jira” is listed as monitoring tool, but I would argue,
that “Jira” is definitely not a tool for monitoring, regardless
of the topic or the context. The results show the provide
tools in the stated topics, but the discussion could have criti-
cally analyzed the tools and their positions in the categories.
Another example is “Filebeat”, which is listed under “Secu-
rity Services and Tools”. But Filebeat should be listed under
monitoring or logging tools since it reads files produced by a
service and sends them to an ELK” stack. Filebeat itself does
nothing in terms of security, it is a log analyzer.

Furthermore, the vast majority of the listed tools are “En-
terprise Tools”. This does not necessarily mean they are not
worth a try, but they tend to age.

There are many open-source industry driven tools missing.
Many modern companies use newer and more state-of-the-
art tools. A few examples:

o Clair Security: A security scanner for containerized
software that can statically analyze built containers for

“https://www.elastic.co/elastic-stack

Christoph Biihler

issues (https://blogs.vmware.com/opensource/2019/10/
31/clair-container-security/)

e Jaeger Monitoring: Open-Source tracing tool that en-
ables the developers to trace calls trough a complex
system from end to end (https://www.jaegertracing.io/)

e GitHub Actions CI: The automated continuous inte-
gration platform from github

e Gitlab CI CI: The automated continuous intregration
platform from gitlab

e ArgoCD Configuration Management: ArgoCD is an
application that manages applications declaratively
(GitOps pattern). Instead of using a CI pipeline to de-
ploy an application to a cluster, the CI pipeline only
creates the artifact (e.g. a Docker image) and pub-
lishes it somewhere. Then the pipeline can update
the declarative description of the application with the
new version of the image and Argo will be aware of
the change and therefore will deploy the new image
(https://argoproj.github.io/argo-cd/)

The industry has produced many more tools that solve
some of the stated problems during the past years. Most of
them were only mentioned or described in gray literature.

4 Conclusion

With this paper, we created a critical review of the systematic
mapping study “A Systematic Mapping Study on Microser-
vices Architecture in DevOps” by Waseem et al. [WLS20].

In Section 1 the reader was introduced into the topic and
various prerequisites were specified. We introduced terms
like “Microservice”, “DevOps” and methodologies from de-
sign science and empirical software engineering like “SMS”,
“SLR”, and “SGLR”.

Within Section 2 the paper gave a brief objective summary
for the reviewed SMS. The methods used are described with
the conducted search and the found results. Afterwards the
reader got an overview of the held discussion in the paper
and the derived research challenges.

The critical review in Section 3 then gives the reader a
subjective review with critics to certain topics. In general
the study covers a broad area of research and did sum up its
results in a clean way.

The reviewed SMS yielded good results in the specific
context of “DevOps”. However the search terms that were
used did limit the results to publications what contain the
word “DevOps” in their title. This excluded results which may
have opinions and solutions to found problems. Furthermore,
the categorical exclusion of gray literature did limit the result
to problems, solutions and tools from the academia without
the results of the industry. The industry is a key driver for
this topic in computer science and should be included in
such a study. One possible outcome could have been that
more research should be conducted based on statements and
findings from the industry.

2021-02-25 12:17. Page 10 of 1-11.

https://www.elastic.co/elastic-stack
https://blogs.vmware.com/opensource/2019/10/31/clair-container-security/
https://blogs.vmware.com/opensource/2019/10/31/clair-container-security/
https://www.jaegertracing.io/
https://argoproj.github.io/argo-cd/

Microservices in a DevOps Context

As a result of this review, a conclusion could be to conduct
another study with regard to the problems stated in [WLS20]
and map solutions from gray literature to their problems.
Another possibility is to create further research to topics
presented as possible solutions in Section 3 and create peer-
reviewed publications that include gray literature.

References

[BBd*16]

[BWZ15]

[FD15]

[FL14]

[GHJ*95]

[HMPRO4]

[IT11]

[Kru9s]

[MT17]

[MW16]

[Pael7]

[PFMMO08]

[Sir20]

[SWH19]

[WLS20]

[Woh14]

A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal. Chaos engineering. IEEE Software,
33(3):35-41, 2016.

L. Bass, LM. Weber, and L. Zhu. DevOps: A Software Architect’s
Perspective. Always learning. Addison-Wesley, 2015.

Babak Farshchian and Yngve Dahl. The role of ICT in addressing
the challenges of age-related falls: A research agenda based on
a systematic mapping of the literature. Personal and Ubiquitous
Computing, 19, 06 2015.

Martin Fowler and James Lewis. Microservices, a definition of
this new architectural term. https://martinfowler.com/articles/
microservices.html, 2014. Accessed: 2020-11-21.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and
Design Patterns. Elements of reusable object-oriented software.
Reading: Addison-Wesley, 1995.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. Design science in information systems research. MIS
Quarterly, 28(1):75-105, 2004.

Yury Izrailevsky and Ariel Tseitlin. The netflix simian
army. https://netflixtechblog.com/the-netflix-simian-army-
16e57fbab116, 2011. Accessed: 2020-11-22.

P. B. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6):42-50, 1995.

Marco Miglierina and Damian A. Tamburri. Towards omnia: A
monitoring factory for quality-aware devops. In Proceedings of
the 8th ACM/SPEC on International Conference on Performance
Engineering Companion, ICPE *17 Companion, page 145-150,
New York, NY, USA, 2017. Association for Computing Machin-
ery.

Fabrizio Montesi and Janine Weber. Circuit breakers, discovery,
and API gateways in microservices. CoRR, abs/1609.05830, 2016.
Arsenio Paez. Gray literature: An important resource in system-
atic reviews. Journal of Evidence-Based Medicine, 10(3):233-240,
2017.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Matts-
son. Systematic mapping studies in software engineering. 12th
International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE), 12:1-10, 2008.

Prabath Siriwardena. OpenID Connect (OIDC), pages 129-155.
Apress, Berkeley, CA, 2020.

Andy P. Siddaway, Alex M. Wood, and Larry V. Hedges. How
to do a systematic review: A best practice guide for conduct-
ing and reporting narrative reviews, meta-analyses, and meta-
syntheses. Annual Review of Psychology, 70(1):747-770, 2019.
PMID: 30089228.

Muhammad Waseem, Peng Liang, and Mojtaba Shahin. A sys-
tematic mapping study on microservices architecture in DevOps.
Journal of Systems and Software, 170:110798, 08 2020.

Claes Wohlin. Guidelines for snowballing in systematic lit-
erature studies and a replication in software engineering. In
Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

2021-02-25 12:17. Page 11 of 1-11.

[Zim17a] Olaf Zimmermann. Architectural refactoring for the cloud: a

decision-centric view on cloud migration. Computing, 99(2):129—
145, Feb 2017.

[Zim17b] Olaf Zimmermann. Microservices tenets. Computer Science -

Research and Development, 32(3):301-310, Jul 2017.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

	Abstract
	1 Introduction
	1.1 Design Science
	1.2 Empirical Software Engineering
	1.3 Microservices and DevOps

	2 The Reviewed Study
	2.1 Motivation
	2.2 Methodology
	2.3 Research Questions
	2.4 Search
	2.5 Results
	2.6 Discussion

	3 Critical Review of the Paper
	3.1 Definitions
	3.2 Empirical Research Methods
	3.3 Results and Discussion

	4 Conclusion
	References

