
School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Bachelor Thesis
CUTE Extension for VS Code

Spring Term 2022

Authors:
Christian Bisig, Dominic Klinger

Advisor:
Thomas Corbat

External Examiner:
Guido Zgraggen

Co-Examiner:
Frieder Loch

June 17, 2022

Abstract
Background: CUTE is a lightweight testing framework that offers the possibility to write

automated C++ tests. To offer the best possible user experience, a plug-in
for the Cevelop IDE exists. This plug-in provides functionality such as a test
navigation, green/red bar test outcome visualizations, and difference viewers
for assertion failures. Furthermore, it offers convenience features that make
C++ testing as easily accessible. The CUTE framework is used in the C++
modules offered at OST Eastern Switzerland University of Applied Sciences.

Purpose: To offer a wider range of tooling choices in the C++ modules, it would be
desirable to have the CUTE testing framework integrated into Visual Studio
Code. This integration should be implemented in the form of a testing exten-
sion, which offers similar functionalities as the Cevelop plug-in and makes sure
that C++ testing can be done as easy as possible. Through the integration
into a widely known development environment such as Visual Studio Code,
CUTE becomes accessible by a larger group of C++ developers.

Methods: In a first step the possibilities to integrate CUTE into Visual Studio Code had
to be evaluated. This evaluation primarily focused on the different approaches
to create a testing extension for VS Code. In a second step the evaluation
focused on the possibilities to elaborate the required information from the test
executables and from the test code itself. During this elaboration, prototypes
were created for each key functionality. In a second phase of the project, the
functionality was implemented based on the findings from this analysis. To
make sure that the required functionality is working and can be used during
the C++ modules, the newly created extension had to be tested on multiple
different levels.

Results: The Visual Studio Code extension created in the scope of this thesis provides
all mandatory functionalities to make the CUTE framework usable in VS Code.
These functionalities include test discovery, navigation within the test code,
creation of test runs that include a single or multiple test cases, and debug-
ging of such test runs. In addition to these minimal required functionalities,
convenience features were implemented with the aim to make the usage of the
CUTE testing framework for C++ testing as easy as possible. These conve-
nience tools simplify the creation of new test projects, new test suites and new
test cases. The extension analyzes the test code and warns the users about
potential problems such as unregistered tests.

Conclusion: The Visual Studio Code extension created in the scope of this thesis provides
an additional choice of IDE for C++ students or generally while using the
CUTE framework. The user interface is familiar to many developers that have
worked with VS Code before. This makes using the extension easy right from
the beginning and the powerful convenience tools further simplify C++ testing
using the CUTE framework.

3

Management Summary
This chapter contains the management summary of the CUTE extension for VS Code thesis.
It should provide an overview of the whole project and the thereby elaborated results. The
overview is provided in the form of a summary of the whole project documentation.

Background
CUTE is a testing framework for C++ code, that allows it to write automated tests and arrange
them in test suites. CUTE is used in the practical exercise lessons of the C++ modules at the
OST Eastern Switzerland University of Applied Sciences. As the CUTE testing framework’s
only integration is a plug-in for the Cevelop IDE, it is strongly recommended to use Cevelop
for the exercises. The Cevelop plug-in offers a set of functionalities such as support to initialize
and set up new tests, options to navigate throughout the test code, a green/red bar view, a
difference viewer for failing tests and a rerun possibility for single tests.

Figure 1: Cevelop CUTE Plug-In

Objective
To provide a larger tooling choice, an integration of the CUTE testing framework into Visual
Studio Code should be planned and developed in the scope of this thesis. The integration
should be made available in the form of a VS Code extension that can simply be installed
from the VS Code Marketplace. The CUTE extension for Visual Studio Code should provide
similar functionalities as the Cevelop plug-in and make C++ testing as easy as possible. The
integration of the CUTE framework into a well-known and widely used code editor such as VS
Code, enlarges the group of developers that potentially use CUTE for C++ testing massively
even outside the OST Eastern Switzerland University of Applied Sciences.

4

Proceeding
In the scope of this thesis an extension for Visual Studio Code was implemented to integrate the
CUTE testing functionality and make it available to a larger developer community. Multiple
different approaches to implement the extension were analyzed in the course of this project. For
each key functionality a prototype was developed and later used for a more detailed evaluation
of the different options available. The minimal required functionality that is needed to make the
CUTE framework usable in VS Code includes the test discovery, the start of test runs containing
a single or a selection of tests, and the visualization of the test results. Additional features that
were evaluated during the project include support to set up new CMake based test projects and
an option to easily create new test suites and test cases. In addition, the possibilities of offering
test code analysis that finds potential problems within the test code were investigated.

Evaluation
The evaluation has shown that the best approach to set up the new CUTE extension for Visual
Studio Code is to base it on the newly offered VS Code Testing API. This Testing API is a
native interface offered by VS Code directly, that allows the registration of test items such as
test cases and test suites. Further it offers endpoints that handle the start and management
of test runs. The Testing API is available since July 2021 and replaced the before widely used
Test Explorer UI third party extension. The native Testing API comes with a user-friendly user
interface for the test explorer that is familiar to many developers. Further, a neat integration
into the code editor window, that provides further functionalities from directly within the code,
is available.

Figure 2: VS Code CUTE Editor Integration

5

Result
The final version of the CUTE extension for VS Code contains multiple implementations of
the test discovery logic. The most performant and reliable information is based on the newly
introduced TEST(…) macro, that should be used to define tests. This macro allows it to
query all tests and their location directly from the test executable, by starting it with the
‘–display-tests’ arguments. The second implementation is based on information from the test
code itself. The names and locations of CUTE tests are thereby extracted from the code using
language server providers and regex matching of the test code. The reliability and performance
of this second implementation heavily depends on the underlying language server provider. The
CUTE extension supports the C/C++ for VS Code (CppTools) extension by Microsoft and the
Clangd extension as language server providers. To achieve the best possible performance, it is
recommended to use the Clangd extension as language server provider.

Figure 3: VS Code CUTE Extension UI

Code Generation

The CMake based project generation was implemented in the form of a project template that
consists of a library, an executable and a test executable. The template project gets is configured
in the CMake file according to its structure.
The final CUTE extension for VS Code provides a command to set up new test suites in separate
cpp files. The developers can configure the test suite during the setup process. The CMake
configuration file is updated based on the newly created test suite file. The CUTE extension
further offers a Snippet to create new tests that are declared using the newly created TEST(…)
macro.

6

Unregistered Tests

The information from the supported language server providers are used in the released version
of the CUTE extension to analyze the test code for potential problems. Thereby, the code is
specifically analyzed for tests that are never registered to a test suite or directly to a test runner
(unregistered tests) and therefore will never be executed. The CUTE extension does not just
warn the users about these unregistered tests, it also provides quick fixes to register the test to
an existing test suite or to create a new suite and register the test to that.

Figure 4: VS Code CUTE Unregistered Test

Unregistered Suites

The test code is analyzed for test suites that are never called. All tests registered to a suite
that is not passed to a test runner, will never be executed. The developer gets a warning about
this problem and a quick fix to register the test suite to a test runner in the main function is
available.

Figure 5: VS Code CUTE Unregistered Suite

Legacy Syntax

The CUTE extension analyzes the code for test declarations which are not based on the new
TEST(…) macro. For these test declarations, no implementation location can be provided, when
using the executable based test discovery implementation. A quick fix is available to update
the legacy test declarations to the new TEST syntax. The developer has the choice of updating
all legacy tests at once or rather test by test.

Figure 6: VS Code CUTE Legacy Syntax

7

Configuration Options

The released version of the CUTE extension for Visual Studio Code offers multiple configura-
tion options, such as the test discovery mode or the legacy code handling. When the default
configuration is used, the extension automatically decides which mode to use based on installed
language server provider extensions and the used CUTE framework version.

Conclusion
The CUTE extension for Visual Studio Code is available in the VS Code Marketplace and is
supported on Windows and Linux. It provides the CUTE testing framework’s functionality to
the VS Code community. The extension offers all features that are also offered by the Cevelop
plug-in. In addition, the VS Code extension offers even more powerful convenience tools based
on the language server information. These convenience tools make C++ testing, using the
CUTE framework, even easier.
Installation instructions, tutorials and demonstrations are available here.

Figure 7: VS Code CUTE YouTube Instructions

8

https://www.youtube.com/channel/UCx-sWK8pqdoQ4QRTUWrX2pw

Contents
1 Introduction 10

1.1 Initial position . 10
1.1.1 CUTE . 10
1.1.2 Cevelop . 10
1.1.3 Visual Studio Code . 11

1.2 Objective . 11
1.3 Team . 11
1.4 Supervisor and Examiner . 11

2 Requirements Analysis 12
2.1 General Description . 12

2.1.1 Product Perspective . 12
2.1.2 Product Functionality . 12
2.1.3 User Characteristics . 12
2.1.4 Dependencies . 13

2.2 Use Cases . 13
2.2.1 Use Case Diagram . 13

2.3 Additional Requirements . 18
2.3.1 Reliability . 19
2.3.2 Performance and Efficiency . 20
2.3.3 Usability . 21
2.3.4 Maintainability and Adaptability . 21

2.4 System context . 23
2.5 Interfaces . 23
2.6 Additional Constraints . 24

3 Domain Analysis 25
3.1 Structure Diagram - CUTE testing . 26
3.2 System Sequence Diagram . 27

3.2.1 UC-1: Navigate To Test Case . 27
3.2.2 UC-2: Run Tests & UC-4: Analyze TestResult 28

4 Decisions 29
4.1 Fundamental Architecture Decision . 29

4.1.1 Build the extension from scratch . 29
4.1.2 Test Explorer UI Extension . 29
4.1.3 VS Code Testing API . 30
4.1.4 C++ TestMate Extesnsion . 31
4.1.5 Decision . 31

4.2 Test Discovery . 31
4.2.1 Executable Based . 31
4.2.2 Code Based . 34
4.2.3 Decision . 34

4.3 Result Format . 35
4.3.1 Executable StdOut Result . 35
4.3.2 File Based XML Result . 36
4.3.3 Decision . 36

4.4 Language Server Provider . 37
4.4.1 CppTools - C/C++ for Visual Studio Code 37
4.4.2 Clangd . 38

9

4.4.3 Decision . 38
4.5 Language Server Integration . 39

4.5.1 Custom Language Server Client . 39
4.5.2 Use Built-in Visual Studio Code Commands 40
4.5.3 Use Propretary Language Server Provider Commands 41
4.5.4 Decision . 41

4.6 Debugging Libraries . 41
4.7 MSYS2 . 42
4.8 User Guide . 42

5 Design 43
5.1 Architecture overview . 43

5.1.1 CUTE Extension . 43
5.1.2 Supported Extensions . 45

5.2 CUTE Extension Components . 47
5.3 Class Level Overview . 51

5.3.1 Testing Component . 51
5.3.2 Tools Component . 53
5.3.3 Utilities Component . 57
5.3.4 Environment Component . 58

5.4 CUTE . 60

6 Implementation 62
6.1 Used technologies . 62

6.1.1 Extension Folder Structure . 62
6.1.2 Extension Manifest . 63
6.1.3 Extension Entry File . 65

6.2 Quality measures . 66
6.2.1 Automated Tests . 66
6.2.2 Manual Tests . 66
6.2.3 Continuous Integration (CI) . 66

6.3 General Extension Logic . 67
6.3.1 TEST(...) macro available . 67
6.3.2 TEST(...) macro not available . 67
6.3.3 Clangd Installed . 67
6.3.4 C/C++ for VS Code Installed . 68
6.3.5 Clangd & C/C++ for VS Code Installed 68
6.3.6 No Language Server Provider (LSP) Installed 68

6.4 RunHandler Implementation . 69
6.4.1 TestRunHandler . 69
6.4.2 TestDebugHandler . 71

6.5 TestFinder Implementation . 72
6.5.1 ExecutableTestFinder . 72
6.5.2 CodeTestFinder . 74

6.6 CodeAnalyzer Implementation . 76
6.6.1 Find Test Runners . 76
6.6.2 Find Test Suites . 78
6.6.3 Find New Tests . 80
6.6.4 Find Legacy Tests . 82

6.7 CMakeParser Implementation . 84

10

7 Results 85
7.1 Feature set . 85

7.1.1 Test Explorer . 85
7.1.2 Code Editor Integration . 86
7.1.3 Project Generation . 87
7.1.4 Legacy Syntax Converter . 88
7.1.5 Assert Failure Analysis . 88
7.1.6 Quick Fixes . 89

7.2 Feature comparison . 94
7.3 Metrics . 95

8 Testing 97
8.1 Functionality Testing . 97

8.1.1 Test Protocol . 113
8.2 Nonfunctional Requirements (NFR) Testing . 114

8.2.1 Test Protocol . 115

9 Conclusion 116
9.1 Summary . 116
9.2 Result evaluation . 116
9.3 Reached goals / open work . 117
9.4 Future view . 117

10 Project Management 118
10.1 Organization . 118

10.1.1 Project Contributors . 118
10.1.2 Initiator / Supervisor . 118
10.1.3 Expert / Examiner . 118

10.2 Work Breakdown Structure . 119
10.3 Cost Estimate . 120
10.4 Time Planning . 120

10.4.1 Project Phases . 120
10.4.2 Milestones . 121
10.4.3 Timeline . 123
10.4.4 Epic Estimate . 124
10.4.5 Workitems . 124

10.5 Risk analysis . 125
10.5.1 R1: CUTE does not fulfil requirements for VS Code test environment . . 125
10.5.2 R2: VS Code Testing API does not fulfil the requirements 125
10.5.3 R3: Incorrect handling of the requirements 126
10.5.4 R4: Wrong architectural deciscions . 126
10.5.5 Risk Matrix . 127

10.6 Quality Management . 128
10.6.1 Tools . 128

10.7 Development Tools . 129
10.7.1 Documentation . 129
10.7.2 Extension . 129
10.7.3 Development Server . 131
10.7.4 Code Style Guidelines . 131

11 Glossary 132

11

12 Bibliography 136

13 Content Lists 140

A General Testimonial 142
A.1 Team / Organization / Communication . 142
A.2 Meetings . 142
A.3 Challenges . 142

A.3.1 Personal Experience . 143
A.3.2 Dominic Klinger . 143
A.3.3 Christian Bisig . 143

A.4 Conclusion . 143

B Time report 144
B.1 Time stats . 144
B.2 Issues . 144

C Meeting protocols 146
C.1 Week1 . 146
C.2 Week2 . 147
C.3 Week3 . 148
C.4 Week4 . 149
C.5 Week5 . 150
C.6 Week6 . 151
C.7 Week8 . 152
C.8 Week9 . 153
C.9 Week10 . 154
C.10 Week11 . 155
C.11 Week12 . 156
C.12 Week13 . 157
C.13 Week14 . 158

12

1 Introduction
This chapter contains a general overview of this project’s background and purpose. To provide
such an overview, the situation as it is before the project was started and the prerequisites are
explained. This section is followed by an overview of the objectives that are set for the project.
The last part of this chapter contains a listing of all project members from the team to the
supervisors and experts.

1.1 Initial position
As the practical lessons of the OST Eastern Switzerland University of Applied Sciences’ [1]
C++ modules are heavily based on CUTE [2] unit tests. Cevelop [3] offers a plug-in for the
CUTE testing framework [10] and therefore, it is currently strongly recommended for students
to use Cevelop as Integrated Development Environment (IDE) to do their exercises. In order
to offer more flexibility in tooling, the decision was taken to develop an extension for Visual
Studio Code [4] that offers basic CUTE testing functionality. This additional CUTE extension
allows it to future students who attempt the C++ modules to choose between Cevelop and
Visual Studio Code as their desired development environment.

1.1.1 CUTE

CUTE [2] is short for C++ Unit Testing Easier. As the name supposes it is a unit testing
framework by Peter Sommerlad [10] that aims to make its usability as simple as possible.
Amongst others, the OST Eastern Switzerland University of Applied Sciences [1] is using the
CUTE testing framework for its C++ classes. CUTE can basically be used as a standalone
framework without any IDE integration. But to get the best CUTE testing experience, it is
recommended to use CUTE [2] in combination with Cevelop [3], a C++ Development IDE built
with Eclipse CDT [6]. Cevelop offers a CUTE Plug-in [5] that allows test navigation, green/red
bar results, diff-viewer for failing tests and wizards to create test frames. The listing below
contains all available features offered by the Cevelop plug-in. A more detailed description of
the Cevelop plug-in’s functionality can be found here [5].

• Wizards to initialize and set up new tests

• Test navigator with green/red bar

• Diff-viewer for failing tests

• Rerun functionality for single test (e.g. a failed one)

1.1.2 Cevelop

Cevelop [3] is a free and platform independent Integrated Development Environment (IDE) that
can be used for C++ development. Cevelop extends Eclipse CDT [6] (C/C++ Development
Tooling) and offers many additional features such as the already mentioned CUTE testing
support or additional quick fixes and refactoring options. Cevelop is maintained by the OST
Institute for Software [7]. As the CUTE testing framework [10] is neatly integrated into Cevelop
it is recommended that students who take the C++ classes at the OST Eastern Switzerland
University of Applied Sciences [1] use it to do their exercises.

13

https://cute-test.com/guides/cute-eclipse-plugin-guide/

1.1.3 Visual Studio Code

Visual Studio Code [4] is a free, open source and platform independent source-code editor by
Microsoft. Visual Studio Code offers many extensions that provide features such as syntax
highlighting, code completion, snippets and tools that allow efficient code refactoring. VS
Code was released in 2015 and quickly gained popularity with developers. One of the major
advantages of Visual Studio Code is its easy extensibility and customizability. There are many
extensions for various languages and applications available. If some use case should not be
covered by an existing extension there is a well-documented framework available to write and
publish own extensions. These extensions can be easily installed from the marketplace [8].
After the installation each extension will run in its own process, what should minimize the
performance impact on the IDE.

1.2 Objective
The goal of this bachelor thesis is to develop an extension for Visual Studio Code [4] which
provides basic support for the CUTE testing framework [10]. The feature set should be similar
to the features offered by the CUTE plug-in for Cevelop [5]. In a first step it should be analyzed
whether the whole functionality needs to be implemented from scratch or whether the CUTE
extension can be built on an existing Visual Studio Code extension that provides some baseline
functionality. To take this fundamental architectural decision the different possibilities need to
be analyzed at the beginning of the project. The final decision should be taken in collaboration
with the project’s supervisor.
A minimal feature set should include the possibility of compiling a CUTE test project from
within the IDE, run test cases and get the test results in some visualized form like a green/red
bar. Changes on the CUTE framework [10] itself are allowed if some features require such an
adaptation or extension of the framework logic.
A further objective of this project is to setup portable and IDE-agnostic build environments
for the module’s exercises based on CMake [9]. It should be as easy as possible for students to
set up a new project that includes CUTE tests. Cevelop offers the possibility to create CUTE
executables, C++ executables and library projects in separate steps. To offer a more convenient
way to set up new projects in just one step it would be an option to provide a template project
containing all the required files and the corresponding CMake configuration.
The CUTE plug-in for Cevelop offers some additional convenience features such as automatic
test registration, creation of new test suites, rerunning of specific tests or suites, comparison
of expected and actual values for failed assertions, navigating to specific test cases and further
test code analysis. Some of these features heavily rely on C++ code information that might
not be available in Visual Studio Code, others might be feasible as optional project goals.

1.3 Team
• Dominic Klinger, dominc.klinger@ost.ch

• Christian Bisig, christian.bisig@ost.ch

1.4 Supervisor and Examiner
• Guido Zgraggen - Examiner, zgraggen@gmail.com

• Thomas Corbat - Supervisor, thomas.corbat@ost.ch

• Frieder Loch - Co-Examiner, frieder.loch@ost.ch

14

2 Requirements Analysis
This chapter should provide an overview of the requirements for the CUTE extension. Thereby
the requirements should be split according to the different use cases of the product and af-
terwards be analyzed in a more detailed manner. Based on the requirements defined in this
chapter, test cases will be designed. This should ensure that all required features are present in
an acceptable form. Following this introduction, this chapter will contain a general description
of the Visual Studio Code CUTE extension and a detailed explanation of all functional and
nonfunctional requirements. An overview of the defined use cases can be found in the form
of a use case diagram. After the use case diagram, a brief description of each underlying use
case can be found. In the last section of this chapter the nonfunctional requirements regarding
reliability, performance, usability, and adaptability will be described.

2.1 General Description
This section contains a general description of all requirements and expectations towards the
CUTE extension for VS Code. These requirements are analyzed from a product perspective,
from a functionality perspective, and from a user characteristics perspective. In addition to the
thereby analyzed requirements the external dependencies are listed and described.

2.1.1 Product Perspective

The CUTE extension for Visual Studio Code is an application that supports the handling of
C++ testing based on the CUTE framework [10]. Currently such an extension, that supports
CUTE testing, is only available for Cevelop [3]. To increase the flexibility of choosing the desired
tooling for the C++ modules at the OST University of Applied Sciences [1], this new extension
should offer a somewhat similar experience and functionality. After this project is finished, an
additional way of using the CUTE testing framework [10], in a way that is as simple as possible,
should be available.

2.1.2 Product Functionality

The CUTE extension should at least be able to compile a C++ solution that contains CUTE
tests and find the there defined test cases and test suites. The extension should then provide
a possibility to run the discovered tests and if possible, also just a selection of the discovered
tests or suites. Test results should be visualized in some form to let the user know which tests
failed and which were successful. Further the extension should provide an easy way of setting
up a new project that contains CUTE tests, preferably in a single step in the form of a template
project. Additional optional features such as the simplified generation of new test suites, user
warnings if test cases should never be called in the code or the debugging of test cases should
also be included into the finished product if the available time allows it. To evaluate further
features the feature set of the existing Cevelop extension [5] should be consulted. The main
goal of the extension is to offer the use of the CUTE test framework [10] in a way that is as
convenient as possible.

2.1.3 User Characteristics

The users of the CUTE extension for Visual Studio Code are predominantly students who visit
the C++ modules at the OST University of Applied Sciences [1]. These students have different
levels of C++ knowledge and experience therefore the complexity of using the CUTE extension
should be kept as small as possible. Besides the students there might be users outside of the
OST who use CUTE [2] as their C++ testing framework of desire.

15

2.1.4 Dependencies

The main dependency of this project is the testing framework CUTE [10]. CUTE stands for
C++ Unit Testing Easier and provides unit testing functionality for C++ in a header only way.
The basic structure of a project being tested is a library, an executable and a test-executable.
Both executables link the library part to build the application. Further dependencies might
arise throughout the project for example to retrieve language information. Additional infor-
mation about the dependencies of the CUTE extension can be found in the chapter Software
Architecture.

2.2 Use Cases
The users need to be able to perform the following actions using the functionality of the CUTE
extension to get the same functionality and user experience as this is the case in the CUTE
extension for Cevelop [5].

2.2.1 Use Case Diagram

Figure 8: Use case diagram

16

Use Case UC-1: Navigate to tests

Scope: CUTE Extension: Code Navigation

Primary Actor: C++ Developer / CUTE Tester

Preconditions: The tests of a project and their implementation locations are discovered

Description: Users should have a possibility to easily navigate to the implementation
location of a test case. The user should have the ability to access a list of
tests, select a specific test out of that list and then automatically be nav-
igated to that test’s location. This feature should simplify the navigation
through the project that is being tested.

Use Case UC-2: Run tests

Scope: CUTE Extension: Test Execution

Primary Actor: C++ Developer / CUTE Tester

Preconditions: The tests of a project and their implementation locations are discovered

Description: Users should be able to execute a project‘s test cases. The user should
get an overview of all tests in a specific project and then run them from
there. The user should have the choice of running all discovered tests or
just a subset of them e.g., tests belonging to a specific test suite. The user
should also be able to run single test cases. It should be possible to start
a test run either from the test explorer or directly from within the code
at the implementation location of a specific test. If multiple tests should
be part of a test run, these should be executed in parallel to improve the
performance.

17

Use Case UC-3: Debug tests

Scope: CUTE Extension: Test Execution

Primary Actor: C++ Developer / CUTE Tester

Preconditions: The tests of a project and their implementation locations are discovered,
debugging extension is installed

Description: Users should be able to debug a project‘s test cases. The user should get
the choice of whether to simply run a test or rather attach a debugger to
the test execution. From the user experience point of view there should
be no big difference on how to start a test run, whether with or without
debugger attached. Therefore, all the above-mentioned locations to start
a normal test run should also be available to start a test debug run. If
multiple tests should be selected at the start of a debug run, these should
be executed serial and not parallel as it should be the case in a normal test
run.

Use Case UC-4: Check test result

Scope: CUTE Extension: Result Analysis

Primary Actor: C++ Developer / CUTE Tester

Preconditions: A test is executed and the test result is available

Description: After a test or a selection of tests was executed, the user should be able to
get a clearly arranged overview of the outcome of each test case. This
overview should be implemented as a red / green bar experience similar to
what the CUTE extension for Cevelop is offering. It should be easily
distinguishable which tests ran through successfully and which failed.

Figure 9: Cevelop Green/Red-Bar View [11]

18

Use Case UC-4.1: Analyze assertion failures

Scope: CUTE Extension: Result Analysis

Primary Actor: C++ Developer / CUTE Tester

Preconditions: A test is executed and the test result is available. The test failed because
of an assertion failure.

Description: Users should be able to quickly determine why a test run failed. If a test
failed because an assertion was wrong, the user should be able to easily
analyze the difference between the actual and the expected result. The
currently available Cevelop extension offers a difference view that allows
the comparison of the expected and the actual result with difference
visualization support. Below the difference viewer of the Cevelop
extension can be seen.

Figure 10: Cevelop Assert Difference Viewer

Use Case UC-5: Create Test Cases

Scope: CUTE Extension: Test development

Primary Actor: C++ Developer / CUTE Tester

Preconditions: A test project is set up and a test file is available.

Description: Users should be able to create additional test cases as easy as possible.
The CUTE extension should provide support when a user wants to create
a new test case. Newly created tests should be listed in the test explorer
after the project was recompiled. Afterwards all other functionalities
should be available for the new test case.

19

Use Case UC-6: Create Test Suites

Scope: CUTE Extension: Test development

Primary Actor: C++ Developer / CUTE Tester

Preconditions: A test project is set up. The CUTE framework is available in the workspace.

Description: Users should have the possibility to easily create additional test suites.
The CUTE extension should provide support when a user wants to create
a new test suite. After the creation of an additional test suite, the user
should have the ability to add tests to this suite. Newly created test suites
should be listed in the test explorer after the project was recompiled.

Use Case UC-7: Create Test Projects

Scope: CUTE Extension: Test development

Primary Actor: C++ Developer / CUTE Tester

Preconditions: An empty workspace is opened in VS Code.

Description: Users should be able to create a new test project without much effort.
The initialization of a new project consisting of a library, an executable
and a CUTE test executable should be simplified by the CUTE extension.
Preferably a solution that just requires a single step to set up such a new
project including a corresponding CMake file should be part of the CUTE
extension.

20

Use Case UC-8: Discover Tests

Scope: CUTE Extension: Test development

Primary Actor: C++ Developer / CUTE Tester

Preconditions: An empty workspace is opened in VS Code.

Description: Many of the above-mentioned use cases depend on a listing of the test
suites and test cases belonging to a project. Therefore, the CUTE
extension should provide the functionality to discover these test suites and
test cases within a workspace. The discovered tests should then be
presented in a clearly arranged manner in the test explorer view.

Figure 11: Test Explorer View

2.3 Additional Requirements
In this section of the chapter requirements analysis an overview of the additional quality re-
quirements that should be fulfilled by the CUTE extension can be found. These additional
requirements include the nonfunctional requirements (NFRs), given interfaces that need to be
used and further surrounding conditions. The functional requirements are split into the cate-
gories of reliability, performance, usability, and adaptability. These nonfunctional requirements
were analyzed based on the ISO 25010 standard [12].

21

2.3.1 Reliability

This section contains the non-functional requirements regarding the product’s reliability. Each
of the below defined non-functional requirements should help with improving the CUTE exten-
sion’s reliability.

NFR-1: Maturity
Business Goal: The users should be notified in an understandable way if an unexpected

error occurs. The problems thereby should become reproducible. With this
information the problems can then in a first step be analyzed and afterwards
be mitigated.

Scenario: During the usage of the CUTE extension for Visual Studio Code an un-
expected error occurs, and the extension stops working without any useful
information. The problem is possibly not reproducible and therefore cannot
be mitigated.

Reaction: Users are informed in an understandable way if a malfunction should occur
during the usage of the CUTE extension. The users get a hint of what might
has gone wrong. The user notifications should contain all the information
needed to fully understand the problem that has occurred.

Measure: The extension should always be able to notify the users if something went
wrong. The messages should always contain a reason for the problem and
the component that has caused the malfunction. The most common problem
sources should be covered with specific exception handlers.

NFR-2: Fault Tolerance
Business Goal: The CUTE extension for Visual Studio Code should be able to handle mal-

formed input such as malformed XML-results from the test executable or
tests missing their implementation location when queried from the test ex-
ecutable. The CUTE extension should also be able to work if none of the
supported debugging extensions is installed.

Scenario: An incomplete response from a test executable or a missing extension on
which some functionality is based crashes the extension whereafter Visual
Studio Code needs to be restarted or the extension needs to be reloaded
manually by the user.

Reaction: Malformed input from any component is checked and errors are captured,
and the user gets notified with an understandable message. If no debug
extension should be available this option should not be made available. If
the test execution does not return the location of a test implementation, the
navigation functionality should be disabled.

Measure: The extension should never crash based on malformed test results or missing
debug extensions. There are safeguards in place to handle missing exten-
sions, for example missing debug extensions or missing language information
provider. The user should always be notified about the currently available
feature set.

22

2.3.2 Performance and Efficiency

This section contains the non-functional requirements regarding the product’s performance and
efficiency. The below defined requirement should ensure that the CUTE extension for VS Code
is usable without lagging. This should help to provide a good user experience.

NFR-3: Time Behavior

Business Goal: The CUTE extension should not have any negative performance impact on
any other part of the development experience using Visual Studio Code.
Test discovery should be possible in a useful time frame. Test run start,
stop and debugging should be possible immediately. This should lead to a
flawless user experience.

Scenario: The CUTE extension slows down the C++ development process using Visual
Studio Code which leads to a bad user experience. Tests are discovered too
slow which makes the testing extension unusable. The test execution is
slowed down by the CUTE extension.

Reaction: The test execution should be parallelized which should lead to an improved
time behavior when running tests. Test discovery should always try to use
the most performant option (direct querying of the test executable) and
notify the user if this option should not be available.

Measure: The test discovery using the most performant option should not take longer
than 10 seconds. The execution of the test executable through the CUTE
extension should not lead to a more than 1.5x increased time behavior com-
pared to directly running the test executable.

23

2.3.3 Usability

This section contains the non-functional requirements regarding the product’s usability. The
below defined requirement should make sure that the extension is easily usable.
NFR-4: Operability
Business Goal: The CUTE extension should provide an easy to learn experience that uses

controls that are familiar to the average developer. Transition from Cevelop
to Visual Studio Code should be possible without any additional learning
required. The project, test suite and test case generation should be possible
without having to write the whole C++ code by hand.

Scenario: The test information is distributed and hidden in some Visual Studio Code
menus. The controls used are different compared to any other test extension
for Visual Studio Code. The user cannot figure out how to run and debug
tests.

Reaction: The user experience should be as similar as possible to other Visual Studio
Code test extensions and also not be far away from the Cevelop extension.
Users can intuitively use the CUTE testing extension in Visual Studio Code.

Measure: The CUTE extension uses familiar controls like the Visual Studio Code
test explorer, which is used by other test extension. There should be no
instructions required for a user to be able to run tests.

2.3.4 Maintainability and Adaptability

This section contains the non-functional requirements regarding the product’s maintainability
and adaptability. The below defined requirements should make sure that the extension is well
maintainable.
NFR-5: Modifiability
Business Goal: The CUTE extension should be designed in a manner that it is easily ex-

tendable and modifiable. After changes or extensions have been made to the
project, there should be a possibility to ensure that everything still works
as intended and none of the existing functionality has been compromised.

Scenario: After a small change in a component, errors occur when using functionality
that was working before. These errors make the CUTE extension unusable.

Reaction: Tests are executed automatically after changes were made to the CUTE
extension project. These tests should guarantee that no breaking changes
were made during the modification. These tests should always be triggered
from the continuous integration pipeline on GitLab [13].

Measure: Automatic tests allow it to check if a modification has broken some existing
functionality before this modification is merged back into the master branch.
No modification that has a negative impact on existing functionality should
be merged into the master branch. The code coverage should be at least 80%.
In addition, code reviews in the form of a pull request should be required
before being able to merge some changes back into the master branch.

24

NFR-6: Modularity

Business Goal: The CUTE extension should be designed and implemented in a modular
way such that single components can be easily exchanged without having
to change any other components. If for example the result format should
be changed from the currently used XML format to something else, then
only the result analyzer component should have to be exchanged without
any further code changes needed. The same principle needs to hold if the
extension should be extended for example by an additional language server
provider.

Scenario: The change from XML based test results to JSON based results requires a
reimplementation of the test execution logic.

Reaction: The components from which the extension is built are clearly separated as
independent as possible. The coupling throughout the project should be kept
as low as possible. There is a clear separation of responsibilities between
the components.

Measure: The modularity of the project should be checked via the Sonarqube [14]
code metrics. This should ensure that each component can be exchanged
without having to change any unrelated code or components. The function-
ality of such a replacement should have no influence on the functioning of
other components in the application. The following Sonarqube metrics were
defined and should be followed:

• Duplicated Lines: Max. 5%

• Maintainability Rating: Min. A

• Reliability Rating: Min. A

• Test-Coverage: Min. 80%

25

2.4 System context
The following listing shows all the parts that the CUTE extension for Visual Studio Code
context consists of.

• Compiler (GCC [15], Clang [16], MSVC [17])

• CMake [9]

• Visual Studio Code [4]

• CUTE Framework [10]

• Language Servers [18] (Clangd [19], CppTools [20])

Even though the assignment allows it to modify the CUTE framework for example for some
additional features, the backwards compatibility needs to be preserved. No changes can be
made that lead to the breaking of already existing and currently working projects.

2.5 Interfaces
As already mentioned in the context section, the main interface, this CUTE extension for
Visual Studio Code has to work against is the CUTE framework [10]. More specifically the
CUTE extension works against compiled executables that contain CUTE tests. To run all
tests contained within an executable, it is sufficient to simply start the executable without any
parameters. If only a specific test from the executable should be executed, this can be specified
via the following arguments:

1 #!if the test does not belong to a test suite
2 Test.exe TestCase
3
4 #!if the test belongs to a test suite
5 Test.exe "TestSuite#TestCase"

Listing 1: CUTE Executable Interface

26

The test results returned by a CUTE executable depend on the configuration of the CUTE
runner within the test project. Either the result can be retrieved over the standard output
of the executable or in an XML file which is written to the current working directory of the
environment that started the CUTE test executable. The format of the standard output result
can be seen in the next listing:

1 #beginning TestSuite 2
2
3 #starting TestCase1
4
5 #success TestCase1 OK
6
7 #starting TestCase2
8
9 #failure TestCase2 /path/test.cpp:28 TestCase2: Error Message

10
11 #ending TestSuite

Listing 2: CUTE Executable StdOut Result

The format of the XML result for the same tests can be found in the listing below. The thereby
produced XML result format has some similar to the JUnit XML [21] result format.

1 <testsuites>
2 <testsuite name="TestSuite" tests="2">
3 <testcase classname="TestSuite" name="TestCase1"/>
4 <testcase classname="TestSuite" name="TestCase2">
5 <failure message="path/test.cpp:28 TestCase2: Error ←↩

Message">
6 TestCase2: Error Message
7 </failure>
8 </testcase>
9 </testsuite>

10 </testsuites>

Listing 3: CUTE Executable XML Result

2.6 Additional Constraints
It is allowed to extend or adapt the CUTE testing framework [10] if necessary. These changes
first have to be discussed with the project supervisor. The main goal is to always keep the
backwards compatibility when implementing such CUTE framework extensions or modifications.
Existing projects should not be broken due to any framework change.

27

3 Domain Analysis
This chapter should provide an overview of the domain model that makes up a CUTE testing
environment. Based on the findings of this analysis in a later step model classes for the CUTE
extension were defined. These model classes later built the foundation of the whole extensions
design, as that design was built around the model classes. This chapter analyzes the domain
of the CUTE extension for VS Code. In the first section the problem domain is analyzed
and described. In the second part the high-level dynamics of selected use cases are explained.
Underneath that domain analysis some system sequence diagrams can be found. These system
sequence diagrams should provide a coarse overview of the systems interaction with the users and
external components. A more detailed description of the single components and the interaction
between them within the extension can be found in the chapter Design.

28

3.1 Structure Diagram - CUTE testing

Figure 12: Structure diagram

The above shown diagram includes the domain classes of the CUTE extension for Visual Studio
Code. More specifically it contains the model classes that the CUTE framework testing logic,
which is required to cover the use cases towards this VS Code extension. The testing logic
is based on the TestTree object, that can contain multiple TestElement objects. From this
TestTree object the visualizations in the test explorer will later be built. All tests of a CUTE
project need to be registered in the TestTree object, either directly or contained in a TestSuite
object. The TestSuite – TestCase relationship was designed using the composite pattern [62].
Both these classes are derived from the abstract TestElement class, what later should simplify
the sharing of common functionality. The TestSuite owns a list of such TestElements as its
children. This allows the nesting of test suites and test cases in an arbitrary depth. Further
each TestCase owns a Location object, that contains the file and line information of the test’s
implementation. Each TestCase can have multiple TestRuns with the corresponding TestResult
of that specific run.

29

3.2 System Sequence Diagram
This section contains an explanation of the dynamics of some selected use cases. Thereby
a sequence diagram was created for each selected use case. For each of these diagrams an
explanation is available.

3.2.1 UC-1: Navigate To Test Case

The below shown sequence diagram visualizes the flow through the system that gets triggered
if a user opens the test explorer and decides to navigate to a specific test case. Before the user
can decide to which test case he wants to jump, the project test cases need to be loaded into the
test explorer. The test loading gets triggered by the test explorer. After the CUTE extension
gets triggered to reload the tests it either does that directly, using the test executable, or via
language server information that it receives from a code analyzer component. After the tests
are loaded into the test explorer, the user can choose to which test implementation he wants
to navigate. This user action in the test explorer notifies Visual Studio Code to open a certain
location within a specific file.

Figure 13: Test discovery sequence diagram

30

3.2.2 UC-2: Run Tests & UC-4: Analyze TestResult

The below shown system sequence diagram visualizes the flow through the system which gets
started when a user chooses to start the execution of some tests. Before he is able to do
that in the test explorer, the tests need to be discovered. This discovery process works in the
same way as described in the system sequence diagram above. Due to reasons of readability
this refreshing of the test explorer is not included in the sequence diagram below. After the
users decided which tests he wants to run, the extension starts the test executable with the
corresponding start arguments. After these test executables have finished a test run, the CUTE
extension analyzes the result and stores that result in a usable way. The user can then get a
diff viewer for assertion failures to get a better understanding of why a test failed.

Figure 14: Test run sequence diagram

31

4 Decisions
In this chapter, the decisions made during this project are documented. These fundamental
decisions set the framework in which the CUTE extension was built and therefore had a big
influence on the architecture and design of the Visual Studio Code extension that was built
in the context of this bachelor thesis. For each decision that was made, the different available
options are explained, and the final decision is justified over the following pages.

4.1 Fundamental Architecture Decision
The first decision that had to be made, was the one whether to build the CUTE extension from
scratch or rather use already existing extensions, which provide some useful basic functionality,
as a baseline for the project. As examined during the risk analysis, this decision states a major
risk to the project’s success. Therefore, many options were evaluated through the analysis of
existing testing extensions for Visual Studio Code.

4.1.1 Build the extension from scratch

Building the CUTE extension from scratch provides full flexibility in terms of technology and
design. On the other hand, this approach involves a bigger amount of UI planning and imple-
mentation which requires a large amount of usability testing. To ensure a user experience that
requires as little learning as possible the controls need to be similar to existing and well-known
testing tools like different Visual Studio Code testing extensions or also the Eclipse JUnit tools
[22]. In the end, the produced solution would have to be close to existing solutions from a
user experience point of view. Therefore, the question whether it would make sense to build on
already existing functionality and especially user interfaces, is justified.

Pros

• Full flexibility

• No constraints regarding architec-
ture and design

Cons

• Additional effort required for usabil-
ity testing

• Higher risk of not achieving the NFR
regarding the usability

4.1.2 Test Explorer UI Extension

The Test Explorer UI [23] provides an extensible user interface for running tests in Visual
Studio Code. This extension offers easy options to add support for a custom testing framework,
such as CUTE in this case. There is an extensible list of existing test adapters [27] available,
which could be used as inspiration for the CUTE test adapter. There are also templates and
instructions available on how to set up such a custom test adapter for the Test Explorer UI
extension. The main benefit of using the Test Explorer UI extension is consistency in the user
interface area, as this extension is widely used and accepted by developers. The implementation
of a test adapter for CUTE tests includes all the logic of discovering tests, running tests, and
analyzing the result for each test run. The further evaluation revealed that this extension is
deprecated since July 2021 and that there is no plan to add further major features.

32

Pros

• Proven user experience

• Neat integration into VS Code

• Wide range of example test adapters
available [24]

• Templates and instructions available
[25]

Cons

• Deprecated since July 2021

For C++ the following test adapters are currently available:

• C++ TestMate [40]

• CMake Test Explorer [28]

• CppUnitTestFramework Explorer
[29]

• Bandit Test Explorer [30]

• catkin-tools [31]

• CppUTest Test Explorer [32]

• Boost.Test Explorer [33]

• Acutest Test Explorer [34]

• CppUnit Test Explorer [35]

4.1.3 VS Code Testing API

With version 1.59 Visual Studio Code [36] introduced the proprietary Testing API [37] in July
2021. This Testing API offers interfaces to publish and run tests and show their run results in a
visualized format. This API offers the users the possibility to run tests from the Test Explorer
view, from decorations within the source code and from commands. Further this Testing API
offers richer displays of outputs and diffs. Testing extensions for specific testing frameworks
now can simply code against the offered API and profit from the offered functionality and user
interfaces. There are official examples and tutorials available on how to create a custom testing
extension that works against the official new Testing API. This API is the reason that the earlier
described Test Explorer UI is deprecated. There are official migration instructions that explain
how to adapt existing Test Adapters for the Test Explorer UI in a way that they can be used
with the new Testing API.

Pros

• Official Testing API [37]

• Rich user experience with low learn-
ing curve

• Example implementations available

• Already adapted by some of the
above-mentioned Test Adapters

Cons

33

https://marketplace.visualstudio.com/items?itemName=matepek.vscode-catch2-test-adapter
https://marketplace.visualstudio.com/items?itemName=fredericbonnet.cmake-test-adapter
https://marketplace.visualstudio.com/items?itemName=drleq.vscode-cpputf-test-adapter
https://marketplace.visualstudio.com/items?itemName=dampsoft.vscode-banditcpp-test-adapter
https://marketplace.visualstudio.com/items?itemName=betwo.b2-catkin-tools
https://marketplace.visualstudio.com/items?itemName=bneumann.cpputest-test-adapter
https://marketplace.visualstudio.com/items?itemName=zcoinofficial.boost-test-adapter
https://marketplace.visualstudio.com/items?itemName=Moosecasa.vscode-acutest-test-adapter
https://marketplace.visualstudio.com/items?itemName=dprog.vscode-cppunit-test-adapter

4.1.4 C++ TestMate Extesnsion

C++ TestMate [39] is a widely used C++ testing extension for Visual Studio Code that provides
support for GoogleTest [42], Catch2 [41] and DOCtests [43]. Further it provides some basic sup-
port for Google Benchmark [44] and there is an open pull request including the implementation
for CppUTest [45] support. C++ TestMate is one of the earlier mentioned testing extensions
that was converted from the Test Explorer UI to the official VS Code Testing API. Using the
open pull request for the CppUTest support a similar functionality could be implemented to
support the CUTE testing framework. In addition to the benefits of using the pure Testing API
as basis, this approach would offer further configuration possibilities and preconfigured parts
such as the test debugging support for multiple debugging extensions. On the other hand, the
CppUTest support pull request is open for a while now and no real progress can be seen what
makes it unclear if and when it will be merged and officially be available.

Pros

• Additional configuration possibilities

• Preconfigured functionality and ex-
tension support

• Example available on how to inte-
grate an additional testing frame-
work

Cons

• No control over the integration

• Unexpected delays and problems
possible

• Depending on third party extension

4.1.5 Decision

Based on the above visible evaluation of the different approaches to implement the CUTE
extension, the decision was made to use the official VS Code Testing API. The functionality that
needs to be implemented using this approach can be in some ways similar to the implementation
of the C++ TestMate extension, that now also directly builds on the Testing API. Further
information on the final implementation can be found in the chapters Design or Implementation.

4.2 Test Discovery
One of the functionalities that need to be implemented when using the official Testing API,
is the test discovery. The CUTE tests need to be discovered somehow and registered in a
vscode.TestController [46] instance afterwards in order to make use of the test explorer func-
tionality. The tests and suites need to be registered as vscode.TestItem [47]. In order to make
the full testing experience available, these vscode.TestItem objects need an id, a file uri and a
range within that file. The different approaches to discover the test cases and test suites with
the required properties are discussed in the following sections.

4.2.1 Executable Based

The analysis of the C++ TestMate extension revealed that it uses the executables to discover
test cases and test suites. All the there supported testing frameworks produce executables that
offer the possibility to query all the contained tests, suites, and their corresponding locations.
The TestMate extension checks which executable in the output directory (configurable setting)
contains what kind of tests by starting the executable with a -h or –help argument. The result
then reveals the executable contains tests and if yes which testing framework they are based on.
After the test executables are found they are started again with the framework dependent flag
to list the contained tests. Below a part the identification logic used int the TestMate extension
can be seen.

34

1 const runWithHelpRes = await this._shared.taskPool.scheduleTask(async () => {
2 if (checkIsNativeExecutable) await c2fs.isNativeExecutableAsync(this.

_execPath);
3 return this._spawner.spawnAsync(this._execPath, ['--help'], this.

_execOptions, this._shared.execParsingTimeout);
4 });
5

6 const frameworkDatas: Record<
7 FrameworkId,
8 Readonly<{
9 priority: number;

10 regex: RegExp;
11 create: (sharedVarOfExec: SharedVarOfExec, match: RegExpMatchArray) =>

AbstractExecutable;
12 }>> = {
13 catch2: {
14 'priority': 10,
15 regex: '/Catch2? v(\d+)\.(\d+)\.(\d+)\s?/',
16 create: (sharedVarOfExec: SharedVarOfExec, match: RegExpMatchArray) =>
17 new Catch2Executable(sharedVarOfExec, parseVersion123(match)),
18 },
19 'gtest:' {
20 priority: 20,
21 regex:
22 '/This program contains tests written using .*--(\w+)list_tests.*List

the names of all tests instead of running them/s',
23 create: (sharedVarOfExec: SharedVarOfExec, match: RegExpMatchArray) =>
24 new GoogleTestExecutable(sharedVarOfExec, match[1] ?? 'gtest_'),
25 },
26 'doctest': {
27 priority: 30,
28 regex: '/doctest version is "(\d+)\.(\d+)\.(\d+)"/',
29 create: (sharedVarOfExec: SharedVarOfExec, match: RegExpMatchArray) =>
30 new DOCExecutable(sharedVarOfExec, parseVersion123(match)),
31 },
32 'gbenchmark': {
33 priority: 40,
34 regex: '/benchmark \[--benchmark_list_tests=\{true\|false\}\]/',
35 create: (sharedVarOfExec: SharedVarOfExec) => new

GoogleBenchmarkExecutable(sharedVarOfExec),
36 },
37 'google-insider': {
38 priority: 50,
39 regex: '/Try --helpfull to get a list of all flags./',
40 create: (sharedVarOfExec: SharedVarOfExec) => new GoogleTestExecutable(

sharedVarOfExec, 'gunit_'),
41 },
42 };

Listing 4: Test Executable Identification [48]

35

The following code snippet shows the discovery of GoogleTest test cases as it is done by C++
TestMate. Thereby the executable is called again with the argument to list the contained tests.
This call produces an XML file containing the tests and suites with their locations within the
project.

1 const args = this.shared.prependTestListingArgs.concat([
2 `--${this._argumentPrefix}list_tests`,
3 `--${this._argumentPrefix}output=xml:${cacheFile}`,
4]);
5

6 this.shared.log.info('discovering tests', this.shared.path, args, this.
shared.options.cwd);

7 const googleTestListProcess = await this.shared.spawner.spawn(this.shared.
path, args, this.shared.options);

8 const loadFromFileIfHas = async (): Promise<boolean> => {
9 const hasXmlFile = await promisify(fs.exists)(cacheFile);

10 if (hasXmlFile) {
11 const xmlStream = fs.createReadStream(cacheFile, 'utf8');
12 await this._reloadFromXml(xmlStream, cancellationToken);

Listing 5: Executable based test discovery [49]

As the CUTE framework does not offer any help flag and no options to list the tests with their
location, this approach requires some changes to the framework itself. Two additional flags have
to added and a solution to find a tests location needs to be discovered as CUTE currently does
not keep the locations information of a test.

Pros

• Most reliable approach as the infos
directly come from the executable

• Most performant approach as no ad-
ditional information is required

• Chosen approach in C++ TestMate
extension

Cons

• Requires changes of the CUTE
framework

• Uncertainty that the location in-
formation can be gathered without
breaking backward compatibility

36

4.2.2 Code Based

A different approach to discover test cases and their location is to use language information
provided by some language server provider. This approach does not require any changes of the
CUTE framework, as it is purely based on the source code. To discover test cases for example,
all the references to the CUTE macro definition in the cute_test.h header file could be searched.
An option to make the discovery more reliable is to also include the constructor calls of the test
struct that is also defined in the cute_test.h header. The code snippet below shows the CUTE
macro and the two constructors for which the references need to be found.

1 #def ine CUTE(name) cute : : t e s t ((&name) , (#name))
2
3
4 template<typename VoidFunctor>
5 test (VoidFunctor const & t , std : : string sname = demangle (typeid (VoidFunctor) . name ()))
6 : name_ (sname)
7 , theTest (t)
8 {
9 }

10
11 // separate overload to allow nicer C++11 i n i t i a l i z e r s with {”name” , lambda}
12 template<typename VoidFunctor>
13 test (std : : string sname , VoidFunctor const & t)
14 : name_ (sname)
15 , theTest (t)
16 {
17 }

Listing 6: cute_test.h test instantiation

Pros

• Does not require any CUTE frame-
work changes

• Definitely keeps backwards compati-
bility and works on existing projects

Cons

• Slower as the information needs to
searched and combined (e.g. refer-
ences)

• Depending on Language Server
Provider implementations

• Uncertainty that all required lan-
guage information is available

4.2.3 Decision

After prototypes for both the above-mentioned approaches showed promising results, the deci-
sion was made to set the executable based approach as preferred option but to also implement
the code-based approach as a backup solution for older CUTE projects and executables. This
decision was made with prior consultation of the project supervisor. The success of both pro-
totypes has minimized the risks R1 and R2 massively as it was clear now, that all the required
functionalities on both the CUTE framework and the Visual Studio Code side can be imple-
mented. Further details on the exact implementation of both approaches can be found in the
chapters Design and Implementation.

37

4.3 Result Format
Besides the test discovery also the test result analysis needs to be implemented, when using the
official Testing API. The CUTE framework offers different result output options. One offered
possibility is to write the test results into the standard output of the process that runs the test
executable. Another option available is the output of the result as XML file. If this second
approach is chosen, the test executable writes the result file to the current working directory.
The desired option can be chosen by configuring the CUTE test runner accordingly. In the next
sections, both approaches will be evaluated, and the final decision will be justified based on the
evaluation results afterwards.

4.3.1 Executable StdOut Result

The writing of the result into the standard output is the simplest approach, as it does not
involve any file system interactions. Using this approach, the CUTE extension could simply
start the executable, then wait for the output and finally parse that to check the test outcome.
This approach could lead to problems when running tests from the same executable in parallel.
The following code listing shows the result format on the console for a successful and for a failed
test run.

1 #beginning TestSuite 1
2
3 #starting TestCase1
4
5 #success TestCase1 OK
6
7 #ending TestSuite

Listing 7: CUTE Executable StdOut Success

1 #beginning TestSuite 1
2
3 #starting TestCase2
4
5 #failure TestCase2 /path/test.cpp:28 TestCase2: Error Message
6
7 #ending TestSuite

Listing 8: CUTE Executable StdOut Failure

Pros

• Easy to implement

• No file system interaction required

Cons

• Possibility of problems when execut-
ing multiple tests in parallel

• Information lost after the process is
finished

38

4.3.2 File Based XML Result

Writing the result into a file in the XML format, that is somewhat similar to the JUnit XML
result format has the advantage, that there are already existing parsers [51] available to extract
the required information from result file. Using this approach, the CUTE extension needs to
do an additional step of reading the result file from the file system. This approach easily allows
multiple test runs happening at the same time, as the results of each run can be stored into
a different file or folder. If a problem should occur during the result parsing, the information
will not be lost, what helps with the nonfunctional requirement regarding maturity. Using the
results from the file, it is possible to reproduce the problem and fix it based on the findings.
The listing below shows results of a successful and a failed test run in the XML format.

1 <testsuites >
2 <testsuite name="TestSuite" tests="1">
3 <testcase classname="TestSuite" name="TestCase1"/>
4 </testsuite>
5 </testsuites>

Listing 9: CUTE Executable XML Result Success

1 <testsuites >
2 <testsuite name="TestSuite" tests="1">
3 <testcase classname="TestSuite" name="TestCase2">
4 <failure message="path/test.cpp:28 TestCase2: Error←↩

Message">
5 TestCase2: Error Message
6 </failure>
7 </testcase>
8 </testsuite>
9 </testsuites>

Listing 10: CUTE Executable XML Result Failure

Pros

• Easily parallelizable

• Existing XML parser available

• No information loss if the result pars-
ing failed

Cons

• Additional steps required to write
and read the result to and from the
file

4.3.3 Decision

Based on the findings from the evaluation, the decision was made to use the file-based approach,
that stores the results in XML format in the file system. This approach allows easier paral-
lelization of test runs and better stability in the case of a parsing problem, as the information
stay available, and the problem could be reproduced.

39

4.4 Language Server Provider
To implement the code-based test discovery and some further convenience tools such as warn-
ings of unregistered tests, a language information provider is needed. Visual Studio Code offers
multiple such language information provider for C++ [52] in the form of extensions, that contain
language servers and their matching client. The language servers should provide the functional-
ity to find document symbols, find references throughout a workspace for a specific symbol and
find the definition of a method in order to be able to support the CUTE extension use cases.
The evaluation of the most popular language server providers for C++ [52] can be found in the
next sections.

4.4.1 CppTools - C/C++ for Visual Studio Code

The CppTools extension is maintained by Microsoft and adds language support for C and C++
to Visual Studio Code. Besides the IntelliSense [53] features, that are mostly based on language
server information, this extension offers additional features such as debugging support. The
extension comes with a language server implementation that supports all before mentioned use
cases. Besides the language server, that runs in a separate process, the extension also includes
a client that communicates with the server via the language server protocol (LSP). The client
registers the server’s capabilities to the built in Visual Studio Commands, which can be called
from within a workspace.
The evaluation in the form of a prototype has shown that it takes some time for the extension to
find references. The known problem of a never terminating request if references for a symbol are
searched and the file containing the symbol is not opened in the editor, could also be observed.
This language server does not offer the possibility to find the references of an operator overload.

Pros

• Probably most widely used language
server provider for C++

• Easy to install and configure

• Well documented and supported

• Supports all required features (Doc-
ument Symbols, Reference, Defini-
tions)

Cons

• Moderate performance when search-
ing references

• No support for operator references

• Can get stuck if source files are not
opened in editor

40

4.4.2 Clangd

The clangd extension [19] is maintained by the LLVM-Project [56] and provides language sup-
port for C++ code. The clangd language server can be easily integrated into a variety of source
code editors. Clangd offers features such as cross-reference finding, that is also used for the
definition and declaration discovery, navigation and symbol hover information providing and
much more. Event though it is not well documented, clangd also supports Document Symbol
discovery. The communication between the clangd language server and the client contained in
the clangd extension is based on the language server protocol (LSP) as well. The features are
also registered to the built in Visual Studio Code commands.
The evaluation using a prototype has shown that clangd is much faster in providing reference
information than the CppTool language server. The discovered Document Symbols do not
include macros as they are used for the CUTE test definition. Apart from that all required
features are supported.

Pros

• Widely used language server
provider for C++ not just in VS
Code

• Easy to install and configure

• Supports all required features (Doc-
ument Symbols, Reference, Defini-
tions)

• Good performance for all operations
(References, Symbols and Defini-
tions)

Cons

• Does not list macro definitions in the
document Symbols

4.4.3 Decision

Both evaluated options offer the required functionality and each of them has some advantages.
For this reason, the decision has been made to support both of them in the CUTE extension.
Setting the extension up to support multiple language server also supports the nonfunctional
requirement regarding modifiability and extendibility, as with the required design also further
language server provider could be supported in the future without having to change any non-
related components. This decision was taken after a consultation with the project supervisor.

41

4.5 Language Server Integration
To integrate the earlier evaluated language servers there are different approaches available. It
needs to be kept in mind, that the decision was made to support multiple different language
server provider and that the solution should be built in a way that in the future even more
language server provider could be supported. All the supported language servers should com-
municate using the language server protocol (LSP) [18] over JSON-RPC [57]. The LSP was
designed to unify the communication between a source code editor and the different implemen-
tations. In the following sections the different options are evaluated, whereafter a decision for
an approach was made.

Figure 15: LSP Comparison [54]

4.5.1 Custom Language Server Client

The first approach that was evaluated in the form of a prototype was the implementation of a
custom language server client implementation. There are examples and tutorials available that
explain how to implement a client for Visual Studio Code that communicates with a language
server using the LSP. The objective of this approach was to write a client that can be used for
both supported language servers.
The implementation of the prototype revealed that such a client can’t be implemented that
easily, as the messages differ from provider to provider. A further difficulty that occurred was
the nature of the protocol itself. As the LSP is based on JSON-RPC [57] calls adding a client to
a running server turned out to be quite difficult. The tutorials, which are available, all include
a custom language server implementation. For each client such a language server instance will
be started and at the startup the communication channel is configured. No working client, that
allowed communication with either a running clangd server or a running CppTools server, could
be implemented.

Pros

• Full control over the communication

• Only has to support the required fea-
tures

Cons

• Difficult configuration

• No working solution found

42

4.5.2 Use Built-in Visual Studio Code Commands

The second approach, for which the prototype was adapted, is based on the built-in Visual Studio
Code commands [55]. VS Code offers some built-in commands that aggregate the functionality
of different implementations. These built-in commands also include some commands, which
are targeted towards language server providers. Using this approach most of the code used
can be shared between the different language server implementations. Only cases where they
return the results in slightly different formats need to be addressed individually. The evaluation
showed that all required features can be addressed using these built in VS Code commands.
The following listing shows the used commands that are offered by Visual Studio Code together
with their corresponding parameters.

vscode.executeReferenceProvider - Execute all reference providers.
• uri - Uri of a text document
• position - A position in a text document
• returns - A promise that resolves to an array of Location-instances.

vscode.executeImplementationProvider - Execute all implementation providers.
• uri - Uri of a text document
• position - A position in a text document
• returns - A promise that resolves to an array of Location or LocationLink instances.

vscode.executeDefinitionProvider - Execute all definition providers.
• uri - Uri of a text document
• position - A position in a text document
• returns - A promise that resolves to an array of Location or LocationLink instances.

vscode.executeDocumentSymbolProvider - Execute document symbol provider.
• uri - Uri of a text document
• returns -A promise that resolves to an array of SymbolInformation and DocumentSymbol

instances.

Pros

• Access to all required language
server functionalities

• A lot of shared code between used
language servers

• Easy to use and configure

• Supports the nonfunctional require-
ments regarding maintainability and
modifiability / extensibility

Cons

• Some specific functionalities not di-
rectly available

43

4.5.3 Use Propretary Language Server Provider Commands

The third approach, that was evaluated using a prototype, was using proprietary commands
and the corresponding language server client implementations of each language server provider.
This approach quickly delivered some promising results as it allowed it to communicate with the
language servers for the first time. The prototypes were able to get the references for specific
symbols and also their definition and declaration positions. The downside of this approach
was that almost no logic could be shared between the different supported language server
providers. Choosing this approach would have compromised the nonfunctional requirement of
maintainability as this option would have led to a lot of very provider specific code and probably
also some duplications.

Pros

• Access to the full functionality of
each language server implementation

• Delivered the expected results

Cons

• Difficult to maintain

• A lot of very specific code for each
implementation

• Code sharing between the compo-
nents very difficult

4.5.4 Decision

The evaluation clearly shows that the second approach using the built-in Visual Studio Code
commands is the only reasonable. The first approach is technically only very difficult or not
viable at all and the third option leads to very much provider specific code which decreases
the maintainability of the CUTE extension drastically. If the implementation shows that some
more specific functionalities are needed, which are not offered through the built-in commands,
these can be included the third approach. The main functionality can easily be covered by the
built-in VS Code commands in a very elegant way.

4.6 Debugging Libraries
The decision for the supported debugging libraries is based on the analysis of the TestMate test-
ing extension. During the analysis of that C++ testing extension, it turned out that TestMate
supports the following three debugging extensions:

• CppTools - C/C++ for Visual Studio Code [20]

• Native Debug [58]

• CodeLLDB [59]

A further analysis of these three debugging extensions revealed that they all support a somewhat
similar functionality with only minor differences. Therefore, the decision was made to support
the same debugging extensions as well in the CUTE testing extension. This decision also
supports the nonfunctional requirement regarding modifiability and extendibility as the design
required to support all three debugging extensions, will automatically be extensible for further
debugging extensions.

44

https://github.com/microsoft/vscode-cpptools
https://github.com/WebFreak001/code-debug
https://github.com/vadimcn/vscode-lldb

4.7 MSYS2
During the development it was noticed that the handling with the clangd extension needs the
compile_commands.json. But the JSON file is not created by CMake in connection with MSVC
[17]. Only the generators ”Unix Makefile” and ”Ninja” [88] are able to create this file and write
it back into the file system. As the Clangd extension offers remarkable performance a way
should be found that allows it to use Clangd with a compatible compiler under windows. The
decision was made to set up a Windows build system with Clang [16] and Make for Windows. So
far this worked well for development. However, when installing on a freshly installed Windows,
it turned out that Clang does not easily work without MSVC [17]. Although a generation of
the required JSON with Make is possible, the underlying MSVC components are still needed
as Clang does not provide a required standard library. This last dependency should also be
removed in order to allow a simple installation and usage of the CUTE plugin. The decision
was based on the fact that to use CUTE in connection with Cevelop no MSVC installation
is required either. In combination with the CUTE plug-in for Cevelop MinGW [89] is used.
MinGW provides the includes, libraries and the runtime. MSYS2 was chosen to configure
MinGW for the CUTE extension for VS Code’s needs. The configuration needs to make sure
that the build process works correctly and the required compile_commands.json is generated.
With the help of MSYS2 the MinGW environment can be configured in a way that the compiler
(Gcc [15]), CMake [9] and Clangd [19] are available and can be used by the extension. It is
important here that the binary directory of the MinGW environment is contained in the PATH
variable of the system.

4.8 User Guide
For the user guides and tutorials, the decision was made to base them in an audio-visual format.
Therefore the installation process and demonstrations of features are captured on video. The
videos cover the entire installation and demonstrate the usage of the entire feature set. A video
brings the content in a more understandable way to the user and visually represents what needs
to be done. In an instruction text many pictures would be needed to achieve the same results,
which at a certain size is equivalent to a video. The videos are uploaded on the ”CUTE Test”
channel on YouTube [90].

Figure 16: CUTE testing on YouTube [90]

45

https://www.youtube.com/channel/UCx-sWK8pqdoQ4QRTUWrX2pw

5 Design
In this chapter the design of the CUTE extension is going to be described and explained. For
this design and architecture documentation the c4model [60] will be loosely implemented. At
first there will be a general context overview of the extension with its external dependencies and
integration possibilities into Visual Studio Code. Afterwards there is going to be a high-level
overview of the containers used for the implementation of this extension. This is followed by a
more detailed description of the single components and their interactions. At the end of this
chapter a detailed code overview on class level can be found. To further clarify the complex
flows through the CUTE extension some sequence diagrams will be available. These sequence
diagrams should improve the understanding of the more complex workflows by visualizing them.

5.1 Architecture overview
In this section of the design documentation chapter a general overview of the context in which
the CUTE extension is acting will be provided.

5.1.1 CUTE Extension

The diagram below shows the external dependencies of the CUTE extension.

Figure 17: Extension context diagram

46

The CUTE extension has three sorts of dependencies.

(i) Language Feature Provider
The first kind of dependency includes extensions that provide language feature support
for C++ code. This language feature support is used to discover test cases, test suites
and test runners amongst providing further features that allow it to support users while
writing CUTE tests. The first kind of dependency includes the CppTools and clangd
[19] extensions which will be described later in this chapter. It is recommended that
the clangd extension is used as language feature provider as it offers better performance
compared to the CppTools [20] extension. If both extensions should be installed on the
system, the clangd extension is preferred. In such an environment clangd shows a warning
and recommends disabling the IntelliSense features provided by the CppTools extension
to prevent interference.

(ii) Debug Logic Provider
The second kind of dependency includes extensions that provide debugging capabilities
which can be used to debug CUTE test cases. The second category of dependencies
includes the CppTools [20], the CodeLLDB [59] and the Native Debug [58] extensions,
which will be described later in this chapter. The CUTE extension decides on which
extension to use for debugging based on the system environment. If none of the above-
mentioned extensions should be installed, the test debugging feature will be disabled. If
multiple of these extensions should be installed, the default order of choice is:

(1) CppTools [20] - C/C++ for Visual Studio Code - Microsoft
(2) CodeLLDB [59] - Vadim Chugunov
(3) Native Debug [58] - WebFreak

(iii) CUTE Test Executables
The third kind of dependency includes the actual CUTE test executables. These are
built from the solution and, when using the newest CUTE [2] version, can be used to
discover test cases and their location within the solution. These executables are started
and queried by the CUTE extension to retrieve the desired information. This way of
discovering test cases and test suites is more performant and reliable than using language
server information. Therefore, this is the preferred way of test discovery if the right
version of CUTE is used.

47

5.1.2 Supported Extensions

In this section of the chapter Architecture overview the earlier mentioned extensions which can
be used in the context of the CUTE extension will be described. For each of the supported
extensions a brief description and its use case in the context of the CUTE extension can be
found.

(i) Clangd [19]
Clangd is a Visual Studio Code extension that, according to the extension description,
helps developers to write, understand and improve C/C++ code by providing the follow-
ing features via a language server implementation:

(a) code completion
(b) compile errors and warnings
(c) go-to-definition and cross references
(d) hover information and inlay hints
(e) include management
(f) code formatting
(g) simple refactorings

In the context of the CUTE extension the information provided by the clangd language
server is used to discover test cases, test suites and test runners. Further the language
server information is used to discover potential problems in the test code like unregistered
test cases, uncalled test suites or test declarations using the legacy syntax. The language
server information is also used to enable quick fix refactoring options to mitigate the
before mentioned test code problems.
The language server information is accessed via built-in Visual Studio Code commands
which can be executed via the vscode.commands.executeCommand API [61]. The strat-
egy of not directly interacting with the language server or the clangd extension over
custom commands allows it to exchange the language server provider without any code
changes. The only requirement for the language server provider extension is, that it
registers its functionality to the built-in Visual Studio Commands.

48

(ii) CppTools - C/C++ for Visual Studio Code [20]
C/C++ for Visual Studio Code is an extension by Microsoft, that provides language
support for C and C++. This support includes features such as debugging capabilities
and IntelliSense. For the later there is a language server implementation available. The
CppTools extension registers its language server capabilities to the built-in Visual Stu-
dio Code commands, which allows it to exchange the earlier mentioned clangd language
server implementation by the CppTools language server implementation without any code
changes. When both, the clangd extension and the CppTools extension are installed in
parallel IntelliSense should be disabled in order to prevent problematic interferences.
It is recommended that the clangd extension with its language server implementation is
used together with the CUTE extension as the usage of the CppTools extension with its
language server leads to a performance penalty.
Beside its language server features, the CppTools extension offers C++ debugging capa-
bilities, which can used as an option to debug test cases. The CUTE extension offers the
choice between three different extensions which all allow C++ debugging.

(iii) CodeLLDB [59]
The CodeLLDB Visual Studio Code extension is a native debugger powered by LLDB
[86], that offers the functionality to debug C++ code amongst other languages. The
CodeLLDB extension offers features such as:

(a) Conditional breakpoints, function breakpoints, logpoints
(b) Hardware data access breakpoints (watchpoints)
(c) Launch debuggee in integrated or external terminal

CodeLLDB is the second option available to debug CUTE test cases beside the earlier
mentioned CppTools extension functionalities. Depending on the extensions installed in
a specific Visual Studio Code instance, the CUTE extension selects an available debug
provider and configures it accordingly. If none of the supported debugging extensions is
installed, the test case debugging feature gets disabled.

(iv) Native Debug [58]
The Native Debug Visual Studio Code extension by WebFreak is another native VSCode
debugger that supports both GDB [85] and LLDB [86]. This extension offers a wide range
of features somewhat similar to the features described in the CodeLLDB or CppTools
extension sections. Native Debug is the third option to debug CUTE test cases beside the
earlier mentioned extensions that also provide debug functionality. The CUTE extension
chooses the debug functionality provider based on the installed extensions in a specific
environment.

49

5.2 CUTE Extension Components
In this section an overview of the CUTE extension is provided on component level. Thereby each
of the individual components is described and put in context with its peers within the extension.
In addition to the components built specifically for this application, the major Visual Studio
Code dependencies will also be mentioned.

Figure 18: Component diagram

The diagram above shows the components of the CUTE extension split up into the four packages
Testing, Tools, Utilities and Environment. The Testing package contains all components which
contribute some logic concerning the main testing use cases. This Testing package therefore
contains the business logic of the extension. The Tools package contains components which
provide additional functionality such as warnings and quick fixes. Beside these convenience tools,
this package also contains the logic to generate code parts such as new projects, new test suites
or new test cases. The utilities package contains components that provide base functionality
which is used by components in the earlier mentioned packages. This base functionality covers
the code analysis, the executable spawning, and the configuration of the supported testing
extension. The Environment package contains components that can be used to analyze and
manage a workspaces structure and the corresponding CMake file. These components build the
connection between the workspace and the business logic.

50

CUTEController - Business Logic Provider This component contains the test controller func-
tionality. The responsibilities of this component include tracking the test elements, providing
the run profiles, and triggering test discovery refreshes for CUTE tests. This component con-
tains the main functionality of the business logic and combines all further testing components
based on the systems set up. In this component, a vscode.TestController is set up and made
available for the registration in Visual Studio Code. This vscode.TestController is part of the
official testing API on which this CUTE testing extension is built.

RunHandler - Handle Test Runs The RunHandler component contains the functionality to
setup test runs in a specific configuration. These test runs can contain a selection of test
elements such as test suites or test cases. Each test run can be configured as either a normal
run or a debug run. Each test run is triggered by the CUTEController component and its
testing API implementations.

TestFinder - Discover Test Elements
The TestFinder component contains the functionality to discover test elements such as test
suites and test cases. There are two different implementations of this functionality, for which
a description is available in the chapter Implementation. One implementation bases the test
discovery on the CUTE test executables themselves and therefore requires the functionality
defined in the Spawner component. The other implementation is based on code information,
which is provided by the CodeAnalyzer component.

Model - Domain Classes
The Model component contains the domain classes which were defined during the domain anal-
ysis. The business logic regarding the main testing use cases is based on the classes defined in
this component. This functionality was designed in a domain driven fashion.

ResultAnalyzer - Analyze Test results
This component contains the functionality to analyze the outcome of a test. There are multiple
implementations possible based on the chosen result format. The implementation for the XML
based CUTE results is described in the chapter Implementation.

TestRunner - Run Tests
The TestRunner component contains the functionality to execute individual test cases in a
specific configuration. The execution of CUTE test cases is based on the test executables,
which are started during a test run using the functionality provided by the Spawner component.
The TestRunner component returns an unanalyzed test result which can be passed to the
ResultAnalyzer component afterwards to check the test outcome.

51

QuickFixProvider - Mitigate Code Problems
The QuickFixProvider component contains functionality to mitigate code warnings using quick
fixes. To allow the implementation of more complex quick fix commands that require some code
information, this component has a reference to the CodeAnalyzer component. The quick fix
functionality provided by this component is registered in the extension context by the Entry-
Point component.

CodeActionProvider - Display Code Problems
The CodeActionProvider component contains functionality to analyze the test code and show
potential problems to the users. This component uses the functionality of the CodeAnalyzer
Component to analyze the test code and provide warnings in the following cases:

• Unregistered test cases – this test will never be executed

• Unregistered TestSuite – this suite is not used and will none of its tests will be executed

• Legacy Syntax – the old CUTE macro is used to define a test and therefore the extension
cannot provide the full experience.

These problems can be mitigated using the quick fixes provided by the QuickFixProvider compo-
nent. The CodeActionProvider component creates and configures a vscode.DiagnosticCollection
[64] which is registered to the extension context by the EntryPoint component in order to make
the problems visible in the VS Code editor.

CodeGenerationProvider - Generate Test Code
The CodeGenerationProvider component includes functionality to create test code. The code
that can be generated is either a new test case, a new test suite or a new test project. The
test case generation is snippet based, which means that the editor provides this option as soon
as a user starts to type TEST(…). To generate a new test suite file, a command, which allows
entering a suite name, can be used over the VS Code commands API. The project generation
is template based and can also be triggered using a command over the Visual Studio Code
commands API.

52

Debugging - Configure Debugging Extensions
The Debugging component includes the logic to configure the supported debugging extensions.
The selection of which debugging extension should be used is made by the CUTEController
component based on the available extensions in the environment. Currently there are three
debugging extensions supported, for which the Debugging component contains the correspond-
ing configuration possibilities. These configurations are based on the analysis of the TestMate
testing extension.

Spawner - Start Executables
The Spawner component includes the functionality to start executables. The logic in this
component allows it to pass specific arguments and execution options to an executable file.
Further, there is functionality to read the standard output and standard error of an executable.
This component is mainly used to start CUTE test executables in this application’s context.

CodeAnalyzer - Analyze Code Features
The CodeAnalyzer component contains functionality to analyze code features using information
provided by language server providers. Currently, there are two language server providers
supported. The first and preferred one is the clangd extension [19] which provides language
information performant and reliable. The second supported one is the C/C++ extension for
VS Code by Microsoft [20]. This second option provides similar functionalities but not as
performant as the first option. The main use cases of this component are the code-based test
discovery and the functionalities provided by the CodeActionProvider component.

Workspace - Access Workspace Properties
The Workspace component contains logic to provide access to certain VS Code workspace
and file information. This component builds the connection between the business logic and
the workspace and file-based VS Code editor environment. This component further contains
functionality to check the available third-party extensions and allows access to the VS Code
workspace settings, which are used to configure certain components within this CUTE extension.

CMake - Analyze CMake Files
The CMake component offers parsing possibilities for CMake [9] files. This functionality pro-
vides access to certain properties of a CMake project configuration. The CMake component’s
functionality is used to find potential test executables based on the CMake configuration. This
component’s functionality primarily is accessed over the Workspace component within the other
components.

53

5.3 Class Level Overview
In this section the architecture of each earlier described component will be analyzed on class
level. Each components’ classes are visualized in a class diagram followed by a brief description
of the main concepts and implemented patterns used to create the components design. The di-
agrams are separated by the earlier defined packages Testing, Tools, Utilities and Environment.
The classes of the components within each package will then be visualized in a way that allows
an easy understanding of the used concepts.

5.3.1 Testing Component

This section contains the design of the Testing package classes. The class diagram below shows
the individual classes split up into five independent namespaces. The diagram is followed by a
description of the classes and their relations within the component but also across the whole
project. All the classes, that contain some functionality, are implementations of some interface
in order to achieve maximal extendibility and testability using unit tests.

Figure 19: Testing component diagram

54

The Model component contains the domain classes which implement the domain model that
can be found in chapter Domain Analysis.

The TestFinder component contains an abstract base class and the two implementations
for code and executable based test discovery. The executable based implementation uses an
implementation of the ExecutableSpawner interface, to start the test executables. The Code-
TestFinder on the other hand uses an implementation of the abstract CodeAnalyzer class to
get the required code information.

The RunHandler component contains an abstract RunHandler class and two correspond-
ing implementations. One implementation, the TestRunHandler class, is responsible to start
normal test runs, during which the tests get executed in parallel. The other implementation,
the TestDebugHandler class contains the functionality to handle test runs with a debugger
attached. These debug runs are executed sequentially test by test. The ResultHandler class
uses an implementation of the TestRunner interface to run a test and an implementation of the
ResultAnalyzer interface to analyze the test outcome.

The TestRunner component contains the TestRunner interface and its CUTETestRunner
implementation. The CUTETestRunner uses an implementation of the ExecutableSpawner in-
terface to start a test executable with the corresponding arguments.

The ResultAnalyzer component contains the ResultAnalyzer interface and its XMLResult-
Analyzer implementation, which is used to analyze CUTE test results in the XML format.

55

5.3.2 Tools Component

This section covers the design of the Tools package classes. The diagram shown below, provides
a basic overview of classes and namespaces within the components. As a diagram containing
all classes of the tool package would not fit onto a single page, the decision was made to split
the class diagram into the single components. The class diagrams of each component follow the
below shown overview diagram.

Figure 20: Tools component diagram

The tools package contains a CommandHandler interface which is extended by the MultiCom-
mandHandler interface. This interface is implemented by the EmptyCommandHandler class,
which represents a kind of null object [65]. The EmptyCommandHandler implementation is
set as default command handler when the provider classes are instantiated without passing
any specific command handler implementations. The CodeGenerationProvider component con-
tains command handler implementations for the generate project and the generate new suite
commands. The generate project command handler uses the logic from the ProjectGenerator
namespace to set up a new project. In addition to the command handler implementations, the
code snippet definitions can be found in this component in the form of JSON documents. The
QuickFixProvider component is built in a similar way as the CodeGenerationProvider compo-
nent. It contains command handler implementation for the quick fix commands which will be
described later in this section. This overview is missing the CodeActionProvider component for
readability reasons. The CodeActionProvider class diagram can be found below.

56

CodeActionProvider

The class diagram below reveals the classes and relations within the CodeActionProvider com-
ponent. On the one hand, this component contains the TestCodeDiagnostician class, which
is responsible to analyze the code for potential problems using information from an imple-
mentation of the abstract CodeAnalyzer class. The TestCodeDiagnostician class sets up a
vscode.Diagnostics collection [64] that can be registered in the extension context to make the
contained diagnostics available in the editor an problems view of Visual Studio Code. On the
other hand, this component contains the TestCodeActionProvider class, which contains the
logic to offer certain quick fixes for a problem detected by the TestCodeDiagnostician class.
The TestCodeActionProvider class uses information from a CodeAnalyzer implementation to
provide the potential code actions. The CodeActionProvider class implements the vscode.Code-
ActionProvider [87] class and can therefore be registered in the extension context to offer its
functionality.

Figure 21: CodeActionProvider diagram

57

CodeGenerationProvider

The CodeGenerationProvider component contains two implementations of the CommandHan-
dler interface. The first implementation is the GenerateNewSuiteFileCommandHandler class,
which offers functionality to create a new test suite in a new file. The second implementation is
the GenerateProjectCommandHandler class, which provides the functionality to create new test
projects. The logic to set up a new test project is located in the CUTEProjectGenerator class,
that implements the ProjectGenerator interface. The CodeGenerationProvider class offers the
possibility to register the command handlers to the extension context and make them available
thereby.

Figure 22: CodeGenerationProvider diagram

58

QuickFixProvider

The QuickFixProvider component contains three implementations of the CommandHandler
interface and one implementation of the MultiCommandHandler interface.

The RegisterTestCommandHandler contains the functionality to register a test case to a test
suite. This quick fix is provided by the CodeActionProvider if an unregistered test is detected
by the TestCodeDiagnostician.

The RegisterSuiteCommandHandler contains the implementation of the logic that provides the
functionality to register a test suite in the main method. This quick fix is provided by the
CodeActionProvider if the TestCodeDiagnostician detected a test suite that potentially never
gets called.

The CreateSuiteCommandHandler provides the functionality to register a test case to a newly
created test suite within the current file. This quick fix is provided by the CodeActionProvider
if an unregistered test is detected by the TestCodeDiagnostician. This quick fix constitutes an
additional option to the RegisterTestCommandHandler that allows a registration to existing
test suites.

The UpdateLegacyCodeCommandHandler offers the functionality to update legacy syntax test
declarations to the new syntax using the newly created TEST macro. This quick fix is provided
by the CodeActionProvider if a test declaration using the old syntax should be discovered by
the TestCodeDiagnostician. As this command handler implements the MultiCommandHandler
interface, it is possible to update all legacy syntax test declarations at once.

The QuickFixProvider class is implemented in a similar fashion as the CodeGenerationProvider
and offers the functionality to register the command handlers to the extension context to make
them available.

Figure 23: QuickFixProvider diagram

59

5.3.3 Utilities Component

This section covers the design of the Utilities components classes. For reasons of readability the
classes were split into two parts for the class diagram. The class diagram below, provides an
overview of classes within the CodeAnalyzer component. The classes of the Spawner and the
Debugging components follow in a separate class diagram below.

CodeAnalyzer

The CodeAnalyzer component contains an abstract CodeAnalyzer class, which contains the
template methods for the code analysis. For each of the supported Language Server Provider
extensions an implementation of that abstract CodeAnalyzer class can be found. Within these
implementations the specific functionalities, which are used in the template methods, are im-
plemented. There is an additional abstraction layer for the language server access. The code
analyzer works against the LanguageFeatureClient interface for which there are two implemen-
tations. The first implementation is the CachedLanguageFeatureClient, which uses the VS Code
built in commands to access the language servers and keeps track of the received information
for performance improvements. The second implementation is the CppToolsLanguageFeature
client, which contains some additional safeguards in the form of timeouts and Intellisense refresh
commands to achieve the best possible results. The used implementation is injected into the
CodeAnalyzer implementation by the EntryPoint Component.

Figure 24: CodeAnalyzer diagram

60

Spawner & Debugging

The spawner component consists of the ExecutableSpawner interface with a single implementa-
tion in the form of the ChildProcessSpawner class. This class contains the functionality to start
executables with specific arguments and execution parameters. Further it offers the possibility
to read the standard output and standard error after the execution has finished.
The Debugging component consists of an abstract base class named CppDebugger. There
are three implementations of this abstract class, for each supported debugging extension one.
These implementations provide the possibility to configure the specific debugger in the con-
text of CUTE test debugging. The decision about the implementation used is made by the
DebugHandler based on workspace settings and installed extensions.

Figure 25: Debugger diagram

5.3.4 Environment Component

In this section the class design of the Environment components’ classes is covered. This Envi-
ronment package consists of two components, the Workspace and the CMake component.

The IDEEnvironment class provides functionality that allows to evaluate environment settings
like installed third party extensions. This class plays a major role in the EntryPoint component,
which decides which implementations to use based on information provided by the IDEEnvi-
ronment class.

The constants class contains constant variables such as command names. The benefit of using
this constants class is that the rest of the code does not contain magic numbers or strings, what
improves the maintainability of the extension.

61

The Workspace component contains three classes, that build the connection between the busi-
ness logic and the workspace opened in Visual Studio Code. The Workspace class provides
functionality to find and manage files and configurations within the workspace. Further, the
Workspace class provides access to some CMake properties which are provided by the CMake
parser. The Document handler provides a similar functionality on file level. It abstracts the
logic of reading, writing, and updating files. The WorkspaceWatcher class provides the func-
tionality to trigger events on file changes within the workspace. This logic is used to refresh the
TestTree on which the test explorer is based.

The CMake component contains the CMakeParser class. This class provides the functionality to
extract the CMake commands from a CMake configuration file. These commands can then be
passed to the CMakeList class, which analyzes the commands further and splits them into the
corresponding model classes. The CMakeList then provides the functionality to extract these
discovered properties such as executables, libraries or include directories. This CMake parser
functionality is used to detect potential test executables of a test project.

Figure 26: Environment component diagram

62

5.4 CUTE
In this section of the chapter Architecture overview a description of the changes made to the
CUTE library y [10] itself can be found. These changes were necessary to provide a performant
and reliable way of detecting test cases, test suites and their implementation locations. This
section does not just include the final solution but rather all the different attempts made with
a corresponding description for each attempt. The main goal was it to keep the library in
backward compatible shape such that already existing test projects still work with the updated
CUTE library without having to change any code within the test projects.

(i) Extension of the already existing CUTE marco.
The problem with this attempt was, that with the extension of the already existing CUTE
macro it would only be possible to get the location at which the test function is wrapped
into to a cute test and not the location of the test function itself. Therefore, no solution
to extend the CUTE macro in a way, that that would allow it to receive the required
location of a test function, could be found using this first attempt.

(ii) New macro used for test definition. (V1)
For this second approach global objects, which include the required information, should
be created. This required information includes the test name, the suite name and the
filename and line number of the location where the test function can be found. The main
difficulty of this approach was, that it was not possible to create a connection between the
test, which was being executed, and the global location object during a test run. Using
this approach all the required information could be gathered but the test cases could not
be assigned to its location and vice versa.
In the listing below the macro, which was created during this second approach, can be
seen.

1 #def ine TEST(name) void name() ; \
2 namespace { \
3 cute : : location name ##__LINE__((&name) , __FILE__ , __LINE__) ; \
4 } \
5 void name ()

Listing 11: TEST macro v1

63

(iii) New macro used for test definition. (V2)
In this third approach we tried to move the creation of a cute test to the actual test
function and therefore put a new function in front of the real test function. The storing
away of the location now does not take place during compile time macro replacement
any longer but rather at runtime. The reason for this behavior is, that we now return
the cute test from a wrapper function which is created by the new macro. The newly
created wrapper function can be called, what then puts its location in a global vector
object. In the end the actual cute test is the return value of this new wrapper function.
The main problem with this approach is, that there is no compare operation available
for std::function. This compare operation would be needed to connect a location to the
native test function. Using already existing test projects that still use the old CUTE
macro should also work using this updated CUTE library. The only downside of using
the old CUTE macro is that the CUTE extension for Visual Studio Code could not offer
its full functionality.

1 #def ine TEST(name) \
2 void name ## _IMPL () ; \
3 cute : : test const name () { \
4 globalMap . insert ({ name ## _IMPL , cute : : location { . . . } }) ; \
5 return cute : : test { . . . } ;
6 } \
7 void name ## _IMPL ()

Listing 12: TEST macro v2

(iv) New macro used for test definition. (V3)
During this third approach the given functionality from the second approach was extended
and modified slightly. The logic of a wrapper function introduced by the TEST macro
was carried over from the second approach. This wrapper function still returns a cute test
as it already was the case after the second approach. But this third approach brought
a new location object along which is stored in the cute test object. With this approach
there was no way around editing the cute test class as a new private member containing
the location needed to be added. Even though the backward compatibility could still be
kept as the location constructor parameter is optional and if not provided, as this is the
case when using the old CUTE macro, the location property will simply stay empty. In
the CUTE extension for Visual Studio Code this special case of having an empty location
property in the cute test object will be handled by warning the user about not being able
to enjoy full experience provided by the test extension. (Code navigation for example
will not be available)

1 #def ine TEST(name) namespace { \
2 void name ## _IMPL () ; \
3 } \
4 cute : : test const name () { \
5 return cute : : test (
6 (&name) ,
7 (cute : : location (__FILE__ , __LINE__)) ,
8 (#name)
9) ; \

10 } \
11 void : : name ## _IMPL ()

Listing 13: TEST macro v3

64

6 Implementation
This chapter should provide an overview of the CUTE extension’s implementation. To provide
this overview, a description of the used technologies is available at the beginning of this chapter.
This general description of the technologies used to implement the CUTE extension for VS
Code is followed by a description of the implemented quality measures and an explanation
of the testing infrastructure. Subsequent to these general topics, the logic behind the key
functionalities is described and explained. To clarify the more complex workflows within the
extension, sequence diagrams are available in this chapter.

6.1 Used technologies
In this section the used technologies will be covered. Thereby first of all a general overview will
be provided, whereafter the technologies used in the different components will be explained in
detail. There are some basic constraints for the development of Visual Studio Code extensions
such as the programming language which is Typescript. Each of the used VS Code interfaces
that is used within the CUTE extension will be described later in this section. Further, some
used tools such as linter and prettier will be explained.

6.1.1 Extension Folder Structure

The listing below shows the standard folder structure [66] on which all Visual Studio Code
extensions are based. The CUTE extension is no exception and therefore builds on the same
file structure as the one shown below. The only difference is that the CUTE extension only uses
the extension.ts file as entry point and to set everything up. The business logic is distributed
over different files according to the chosen extension design.

1 .
2 +-- .vscode
3 | +-- launch.json // Launching and debugging config
4 | \-- tasks.json // Build task config to compile TypeScript
5 +-- .gitignore // Ignore build output and node_modules
6 +-- README.md // Extension's functionality description
7 +-- src
8 | \-- extension.ts // Extension source code
9 +-- package.json // Extension manifest

10 \-- tsconfig.json // TypeScript configuration

Listing 14: Extension Standard Folder Structure [66]

65

6.1.2 Extension Manifest

The package.json file builds the extension manifest and contains a mix of Node.js fields and
extension specific properties such as activationEvents and contributes. Every VS Code extension
must have such an extension manifest in the form of a package.json file. In this section the
manifest of the CUTE extension is analyzed and explained.

General Extension Properties
The listing below shows the general extension focused properties defined in the package.json
file. The combination of the publisher and name properties in the form publisher.name builds
the unique identifier of the extension. The CUTE extension is started as soon as the startup has
finished, as its only activation event is onStartupFinished [69]. The entry point of the extension
is the out/extension.js file, which is built from the extension.ts file which will be explained later
in this chapter. The contributes object is covered separately to improve the readability.

1 {
2 "name": "cute-testing",
3 "publisher": "CUTETest",
4 "displayName": "CUTE Testing",
5 "description": "VS Code support for the CUTE testing framework",
6 "version": "0.0.1",
7 "homepage": "https://cute-test.com/",
8 "repository": "https://gitlab.ost.ch/cute-extension -for-vs-code/",
9 "engines": {

10 "vscode": "^1.67.0"
11 },
12 "categories": [
13 "Other"
14],
15 "activationEvents": [
16 "onStartupFinished"
17],
18 "main": "./out/extension.js",
19 "contributes": {
20
21 },

Listing 15: General Extension Properties

66

Contributed Extension Commands
The next listing shows the configured commands [68]. This commands object is a part of the
contributes property, that can be seen in the listing above. The commands object contains
the configuration of the commands that the CUTE extension provides. The three commands
provided can be used to generate new test projects, to add new test suite files and to update
the legacy syntax in the whole workspace.

1 "commands": [
2 {
3 "command": "cute.generateProject",
4 "title": "CUTE: Generate project"
5 },
6 {
7 "command": "cute.createSuiteFile",
8 "title": "CUTE: Create test suite file"
9 },

10 {
11 "command": "cute.updateAllLegacySyntax",
12 "title": "CUTE: Update legacy syntax"
13 }
14]

Listing 16: Extension Commands

Contributed Extension Snippets The listing below shows the configured snippets [67]. This
snippets object is a part of the contributes property, as the already mentioned commands object.
This configurable property contains the snippet definition location and the language identifier
for which the snippet is usable. The CUTE extension offers a snippet to create TEST(name)
tests within a cpp test file.

1 "snippets": [
2 {
3 "language": "cpp",
4 "path":

↪→ "./src/tools/CodeGenerationProvider/Snippets/snippets.json"
5 }
6]

Listing 17: Extension Snippets

67

6.1.3 Extension Entry File

This section contains an explanation of the extension entry file which for the CUTE extension
is the extension.ts file. This entry file exports two functions, the activate and the deactivate
functions. The activate function is called when an activation event occurred, which is defined in
the package.json file. In the case of the CUTE extension, the activate function is called as soon
as the Visual Studio Code startup has finished. Inside the activate function, a CUTEExtension
instance is created, which is responsible to set up the CUTE testing functionality and register
it to the vscode.ExtensionContext. The deactivate function is called when the extension is
disabled or uninstalled and can be used to clean up the environment. The CUTE extension
simply shows a notification when the extension gets deactivated.

1 export async function activate(context: vscode.ExtensionContext) {
2 vscode.window.showInformationMessage('CUTE testing extension is active now

:)');
3

4 try {
5 const cuteExtension = new CUTEExtension();
6 cuteExtension.setup(context);
7 } catch (error) {
8 let errorMessage = 'Something went wrong while activating the CUTE testing

extension';
9 if (error instanceof Error) {

10 errorMessage += `: ${error.message}`;
11 }
12 vscode.window.showErrorMessage(errorMessage);
13 }
14 }
15

16 export function deactivate(): void {
17 vscode.window.showInformationMessage('CUTE testing extension got deactivated

');
18 }

Listing 18: Extension Entry Point

68

6.2 Quality measures
In this section the implemented quality measures are described. Thereby the different tools and
measures will be described individually. All the here described measures should help to keep
the code quality high and allow it to build a well maintainable extension for VS Code.

6.2.1 Automated Tests

There are automated unit-, integration- and system tests available, that cover the most impor-
tant features of the CUTE extension. The automated tests are based on the mocha testing
framework. VS Code offers the test-electron API [82] to simplify extension testing. This API
offers functionalities such as launching VS Code with a specific workspace, downloading a dif-
ferent version of VS Code rather than the latest stable release or launching VS Code with
additional CLI parameters. For the integration and system tests there is a sample CUTE test-
ing project available to simulate a workspace containing a valid testing project. When running
the automated tests, a VS Code extension development host [83] is started to host the CUTE
extension.

6.2.2 Manual Tests

To cover the whole functionality offered by the CUTE extension for VS Code, a set of manual
tests was defined. The instructions for these manual tests can be found in the chapter Test-
ing. Using these manual tests, the usage of the CUTE extension should be simulated to test
the usability and functionality of all features in a way that they will be used in production.
These manual tests provide the possibility to test the flow through the entire functionality also
including the UI.

6.2.3 Continuous Integration (CI)

To ensure a high quality a continuous integration (CI) pipeline was set up. This pipeline
should prevent breaking changes being merged into the master branch. Failing builds need to
be addressed immediately to keep the general quality of the extension high. The continuous
integration pipeline contains the following steps. These steps ensure the code style and the
code functionality. There is also a step to automatically publish the extension. (Continuous
Deployment CD)

1. Linting

2. Building

3. Testing

4. Publishing

The linting should ensure that the style guide that was chosen gets implemented. The decision
was made to use the AirBnB style guide [70] with some adjustments for prettier. Prettier [81]
is an extension to format the project properly. In a final step some metrics are calculated with
SonarQube [14] to get a summary overview about code smells such as bad programming style
or security issues. In the end the package will be published automatically in the VS Code
marketplace [8] when a tag is created.

69

6.3 General Extension Logic
In this section the main setup of the CUTE extension is explained. To provide an overview, the
different configuration options are described for each supported language server provider. For
each combination of workspace settings and installed extensions the available features provided
by the CUTE extension are listed below.

6.3.1 TEST(...) macro available

The CUTE extension checks whether or not the newly defined TEST(…) macro is available
in the CUTE framework [10] files in the currently opened workspace. If the new macro is
available, the preferred way of test discovery is the executable based implementation. There
is a configuration option available to override this preference and to choose the code-based
test discovery implementation. This setting can either be edited in the Settings UI [84] under
Extensions->CUTE testing or the settings.json file. If the code-based implementation should
be chosen without any language server provider extension installed, the user gets notified that
this configuration is not valid in the current setup.

Figure 27: TestFinderMode Setting

6.3.2 TEST(...) macro not available

The CUTE extension checks whether or not the newly defined TEST(…) macro is available in
the CUTE framework [10] files in the currently opened workspace. If an old version of the CUTE
framework should be used in the opened workspace, the executable based implementation of the
test discovery logic is not available. If the executable based implementation should be chosen in
the settings anyhow, an error message is shown to the user that tells him that this configuration
is not valid in the current project.

6.3.3 Clangd Installed

If the Clangd [19] extension is installed, all features are available and work with a decent per-
formance. If an old version of the CUTE framework [10] should be used, that does not support
the new TEST(…) macro, it is advised to use the code-based test discovery implementation
in combination with the Clangd extension. No additional settings are required to use the full
functionality including the convenience tools such as quick fixes and code diagnostics.

70

6.3.4 C/C++ for VS Code Installed

If the C/C++ for VS Code extension (CppTools) [20] should be installed, all features are
available. If an old version of the CUTE framework should be used, that does not support the
new TEST(…) macro, the code-based test discovery implementation can be used in combination
with the CppTools extension. Using this configuration, a worse performance is expected, as the
CppTools cross reference provider does not deliver results as fast as the Clangd provider. On
low performance systems it occurs from time to time, that the CppTools cross reference provider
gets stuck, what then requires a restart of Visual Studio Code. If this behavior can be observed
frequently there is a setting available to use the explicit language client mode. This setting
does only affect the CUTE extension in combination with the CppTools extension. If this
configuration option is set explicit the CUTE extension opens the files from which a reference
request is triggered in the explorer, before querying the language server. Using the explicit mode,
the cross-reference provider gets stuck no longer. As the automatic opening of files leads to a
compromised user experience, the code diagnostics are not available in this configuration. With
the code diagnostics disabled, the requests to the language server get reduced to a minimum.

Figure 28: LanguageClientMode Setting

6.3.5 Clangd & C/C++ for VS Code Installed

If both supported language server provider extensions should be installed, the Clangd function-
ality is preferred for performance reasons. The Clangd [19] extension itself shows a warning
if installed together with the CppTools [20] extension and requests the user to disable the
CppTools IntelliSense functionality.

6.3.6 No Language Server Provider (LSP) Installed

If none of the supported language server provider extensions should be installed, the convenience
tools and code-based test discovery are not available. The CUTE extension informs the users
about the reduced functionality. If only an old version of the CUTE framework that does not
support the new TEST(…) macro is available, no test discovery implementation can be used.
In this case the CUTE testing extension is not usable to run or debug tests.

71

6.4 RunHandler Implementation
In this section an overview of the logic behind the RunHandler can be found. There are two
implementations of the abstract base RunHandler class. One implementation’s responsibility is
to handler normal test runs and the other’s is to handle test runs with a debugger attached.
Both implementations are explained in the following sections using sequence diagrams and a
description of all involved steps. Both RunHanlder implementations are registered as run profiles
in VS Code over the Testing API. When a test run is started over the TestExplorer UI or a
command, these RunHandler implementations are called based on the selected run profile.

6.4.1 TestRunHandler

When a normal test run is triggered over the Testing API, this RunHandler implementation
is called. The following sequence diagram shows all involved elements and their interactions
during a test run. This RunHandler implementation allows it to run tests in parallel.

Figure 29: TestRunHandler sequence diagram

72

1. Filter the TestTree - find test cases included in the test run The first step in a test
run sequence is to filter the discovered test cases based on the user’s selection in the test
explorer. The TestTree implementation allows it to filter test cases over multiple nested
levels of test suites.

2. Prepare temp working directory - create a temporary directory to write the results
to After the tests, that should be included in a test run, are found, a temp folder gets
created. In this temp folder a subfolder for each test will be created during the test run.
This temporary folder is set as current working directory when a test execution is started.
The benefit of this temporary folder structure is the possibility to run tests in parallel
without overwriting the result XML files of other tests in the same test run.

3. Run Test - execute tests in parallel and analyze their results Once the environment
is set up and all tests, that should be part of the run, are found, the run method on
each TestCase instance is called. Each TestCase instance will then start its registered
TestRunner instance with the required parameters. The TestRunner instance itself will
then use the Spawners functionality to start the test executable with the corresponding
arguments for that specific test. The TestRunner instance reads the XML result file from
the temporary folder as soon as the test executable process has finished. The result is then
passed to the result analyzer, which is registered on the TestCase instance. The result
analyzer analyzes the result and notifies the TestCase over the outcome using callbacks.
Inside these callbacks the vscode.TestItem instance that is a part of the TestCase instance
will be updated.

1 %temp%\{TestRun_GUID}
2 +---test1
3 | Test.exe.xml
4 |
5 +---test2
6 | Test.exe.xml
7 |
8 +---test3
9 | Test.exe.xml

10 |
11 \---test4
12 Test.exe.xml

Listing 19: TestRun Folder Structure

73

6.4.2 TestDebugHandler

When a debug test run is triggered over the Testing API [37], this RunHandler implementation is
called. The following sequence diagram shows all involved elements and their interactions during
a debug test run. This RunHandler implementation does not support parallel test executions.
This RunHandler is only registered as run profile if any of the supported debugging extensions
is installed.

Figure 30: TestDebugHandler sequence diagram

1. Filter the TestTree - find test cases included in the test run The first step in a test
debug sequence is similar to the one described under the normal test run sequence. It is
about filtering the discovered test cases based on the user’s selection in the test explorer.
The TestTree implementation allows it to filter test cases over multiple nested levels of
test suites.

2. Start Test Debugging - start a debugging process for each test The second step in
the test debug process starts similar to the normal test run sequence. On each TestCase
instance the debug method is called to start the debugging of that test. This time the
call to the debug method is made test by test and not in parallel. Therefor, no temporary
file structure is required as just one test is executed at a time.

3. Configure Debugger - set up the debugger configuration based on the debugger im-
plementation The TestCase instance’s debug method triggers the debugTest method on
the TestRunner instance. This time the TestRunner instance does not use the Spawner
directly to start the test executable. The TestRunner instance uses a TestDebugger in-
stance, to set up the VS Code debugger. The class of the TestDebugger instance depends
on the installed debugging extensions.

4. Analyze Result - check the tests outcome The result analysis step is equal to the one
described in the normal test run sequence. The ResultAnalyzer analyzes the result, which
is passed as string and uses the callback functions to update the vscode.TestItem [47] on
the TestCase instances.

74

6.5 TestFinder Implementation
In this section the logic behind the TestFinder functionality is explained. This functionality
is used to set up the TestTree instance, which builds the base of the testing user experience.
In order to make tests available in the test explorer they first need to be discovered and then
registered using the VS Code Testing API [37]. The sequence behind the test discovery and
registration will be described in this section using diagrams and explanations of the single steps.

6.5.1 ExecutableTestFinder

This section contains a description of the sequence, that is used to discover tests using the
executable based TestFinder implementation. This is the most reliable and performant imple-
mentation of the TestFinder functionality and therefore the preferred one.

Figure 31: ExecutableTestFinder sequence diagram

75

1. Find potential Test Executables - find executables which include the CUTE frame-
work The first step of the executable based test discovery is to find the potential test
executables in the opened workspace. Therefore, the CMake file is parsed for executables
that link the CUTE framework. All executables declared in the CMake file, which have
a link to a CUTE framework file are returned by this step.

2. Check Executables - check if it is a CUTE executable To be completely sure that a
discovered executable is a CUTE test executable, it is started using the spawner function-
ality with the –help argument. The standard output of the executable process is checked
against the expected CUTE executable help text. Only executables that match the ex-
pected output are analyzed further. The –help flag was added to the CUTE framework
during this project. Therefore, the executable based test discovery cannot be used with
older versions of the CUTE framework [10].

3. Query Tests - find tests and test suites in executable For each test executable that was
discovered using the previous two steps, the contained tests and their corresponding test
suites are evaluated. The executables are started again but this time with the also newly
added –display-tests argument. After the executable process has finished, the standard
output contains the test elements of a specific test executable. If a test should belong
to a test suite the format is ”TestSuite#TestCase \t TestFile \t LineNumber”. If the
test should be registered directly to a runner, the format is ”TestCase \t TestFile \t
LineNumber”.

4. Create TestElements - Create TestElement instances and register them In this next
step, for each of the discovered test cases a TestCase instance is created together with a
TestSuite instance if it did not exist before. When creating a new instance of a TestCase
or TestSuite, a corresponding vscode.TestItem instance is created and added as property.
These vscode.TestItem instances will later be registered to the test explorer using the
VS Code testing API [37] when their containing TestElement instances are added to the
TestTree. After this step, the tests and test suites can be started and included into test
runs using the test explorer.

76

6.5.2 CodeTestFinder

This section contains a description of the sequence, that is used to discover tests using the
code based TestFinder implementation. The performance and reliability of this implementation
depends heavily on the language server provider extension used and the underlying system
performance. Using the Clangd [19] extension, this TestFinder implementation is almost as
performant and reliable as the executable based implementation.

Figure 32: CodeTestFinder sequence diagram

77

1. Get Tests - find tests using the CodeAnalyzer The first step in this sequence is to find the
test cases using the CodeAnalyzers functionality. The CodeAnalyzer offers functionalities
to discover test runners, test suites and test cases based on information provided by the
language server provider extensions. All information is combined in order to get a list of
tests with their corresponding test suite and their implementation location. The exact
logic behind these discovery steps is described in the next section under CodeAnalyzer
implementation.

2. Get Potential Executables - analyze CMake configuration to get the executables The
next step of the code-based test discovery is to find the potential test executables in the
opened workspace. Therefore, the same logic is used as in the executable based TestFinder
implementation. The CMake file is parsed for executables that link the CUTE framework.
All executables declared in the CMake file, which have a link to a CUTE framework file
are returned by this step.

3. Assign Executables To Tests - find the executable behind each test case After the
test cases and the potential test executables were detected, the information needs to be
connected. Based on includes in the CMake configuration of the potential executable,
the executables are assigned to the tests. Primarily this assignment is based on the
runner call location or the runSuite method location of a test case. If no executable can
be found that includes any of these files, the test implementation location is taken into
consideration as well. Only if an executable can be found for a test it will be registered
to the TestTree and therefore made visible in the test explorer.

4. Create TestElements - Create TestElement instances and register them In this last
step, for each of the discovered test cases a TestCase instance is created together with
a TestSuite instance that it did not exist before. When creating a new instance of a
TestCase or TestSuite, a corresponding vscode.TestItem [47] instance is created and added
as property. These vscode.TestItem instances will later be registered to the test explorer
using the VS Code testing API [37] when their containing TestElement instances are
added to the TestTree instance of the CUTEController [46]. After this step, the tests and
test suites can be included into test runs using the test explorer UI.

78

6.6 CodeAnalyzer Implementation
This section contains an overview of the most important CodeAnalyzer features. For each of
these key features an explanation of the logic it is based on, can be found. The CodeAnalyzer
functionality is used for the code-based test discovery and the convenience tools such as code
diagnostics and quick fixes [63].

6.6.1 Find Test Runners

The CodeAnalyzer provides functionality to find CUTE test runner instances throughout the
project. The logic behind this functionality is based on information received from language
server providers and text-based analysis of certain code files or passages within the testing
project. The figure and descriptions below explain that logic in a step-by-step manner.

Figure 33: Find Test Runners sequence diagram

79

1. Get TestRunner URI - find the test runner file
The first step in the test runner discovery sequence is to find the cute_runner.h file within
the workspace. The cute_runner.h file is a part of the CUTE testing framework and
contains the implementation of the CUTE test runner and amongst others a makeRunner
function to set up and instantiate a new test runner. The file is searched using the
vscode.workspace functionality with the global pattern ’**/cute_runner.h’.

2. Get makeRunner Function - find the location of the makeRunner function
The second step in the sequence to discover the CUTE test runners is to find the location
of the makeRunner function within the before found cute_runner.h file. This logic is
based on the document symbols of that file provided by the language server providers.
As there is a difference between document symbols returned by the clangd [19] extension
and the CppTools [20] extension, the specific logic is implemented in the corresponding
specializations of the CodeAnalyzer base class.

• CppTools
If the CppTools extension is used as language server provider, a document symbol
called ”makeRunner<Listener>(Listener &, int, const char * const *)” is searched.
The parent of this document must be called ”cute”.

• Clangd
If the clangd extension is used as language server provider, a document symbol
simply called ”makeRunner” is sufficient if its parent symbol is called ”cute”.

1 template <typename Listener>
2 runner<Listener> makeRunner (Listener &s , int argc = 0 , const char ∗const ∗argv = 0){
3 return runner<Listener>(s , argc , argv) ;
4 }

Listing 20: cute_runner.h makeRunner implementation

3. Get makeRunner References - find all calls of the makeRunner function After the
location of the makeRunner function is found, all references within the project need to
be found, as each call of this function creates a new CUTE test runner. These references
are discovered using the language server providers cross reference detection functionality.
The language server providers return a list of locations at which the makeRunner function
is called.

4. Get the runners name - extract the name of the test runner Fore each earlier detected
reference to the makeRunner function, the corresponding code line is read and evaluated.
The line is split at the ”=” sign and the right-hand side needs to match ”makeRunner”.
If this is the case the last nonempty string on the left-hand side is taken as the name of
the runner. In the following example, name detected is runner1. This name is returned
together with the location of the makeRunner call.

1 auto runner1 = cute : : makeRunner (listener , argc , argv) ;

Listing 21: CUTE Runner Instantiation

80

6.6.2 Find Test Suites

The CodeAnalyzer provides functionality to find CUTE test suites for a set of CUTE runners,
that needs to be provided as parameter. The output of the GetTestRunners functionality, which
is described above, can be used as parameter input. The logic behind this functionality is based
on information received from language server providers over the language server protocol (LSP)
[18] and text-based analysis of certain code files or passages within the testing project. The
diagram below provides an overview of the logic. Subsequent to the diagram, a description of
each step can be found.

Figure 34: Find Test Suite sequence diagram

1. Get Document Symbols - get symbols of test files For each test runner instance, that is
passed into this method, the symbols of the document containing the runner are queried
by the language server provider using the language server protocol (LSP) [18]. Theses
document symbols build the base to discover the test suites that are passed into the
runner instances.

2. Get Runner Calls - get call locations of the test runners The CodeAnalyzer discovers
all locations within a test file where a runner instance is called. The logic behind this
discovery step is different for the CppTools [20] and Clangd [19] implementation, as the
CppTools does not offer the possibility to discover references of operators. The detailed
sequence of this step can be found in the diagram below. The listing below shows the
two different runner call operators for which in this step the references are discovered.

1 bool operator () (const test & t) const
2 bool operator () (suite const &s , const char ∗info = ””) const

Listing 22: CUTE Runner Call Operators

81

3. Get Suites - get test suites passed to runner calls Each previously discovered runner
call is analyzed using regular expressions to split the command into the actual test suite
and the additional parameters. The thereby gained information is used to find the suite
definition and all suite variable references. The listing below shows an example runSuite
function. In this example s is the runner variable for which the definition and references
are discovered.

1 bool runSuite (cute : : runner<cute : : xml_listener<cute : : ide_listener<>>> runner)
2 {
3 cute : : suite s {};
4 s += testEnterHouse () ;
5 s += testHouseRooms () ;
6 s += testFail () ;
7
8 return runner (s , ” TestSuite ”) ;
9 }

Listing 23: RunSuite Function

Get Runner Call Sequence - Find all runner calls

Figure 35: Get Runner Call sequence diagram

82

6.6.3 Find New Tests

The CodeAnalyzer provides functionality to find new CUTE tests that are defined using the
new TEST(…) macro. The logic behind this functionality is based on information received from
language server providers using the language server protocol (LSP) [18] and text-based analysis
of certain code files or passages within the testing project. The diagram below provides an
overview of the logic. Subsequent to the diagram, a description of each step can be found.

Figure 36: Find New Test sequence diagram

83

1. Get cute_test.h uri - find the cute test definition file The first step in the test dis-
covering process is to find the cute_test.h file within the open workspace. This file is
part of the CUTE testing framework and contains the implementation of a tests logic and
amongst others, the newly defined TEST(…) macro, which can be used to define tests.

2. Get TEST macro definition - find the definition of the TEST macro The next step
in this sequence is to find the location of the TEST(…) macro definition within the
cute_test.h file. As the implementations of the supported language server providers
show differences in the handling of macro symbols, this logic had to be implemented
individually.

• CppTools
If the CppTools extension is used as language server provider, a document sym-
bol called ”TEST(name)” is searched. CppTools includes macro definitions in the
document symbol list.

• Clangd
If the Clangd extension is used as language server provider, the document symbols
do not contain macro definitions. A regular expression (RegEx [71]) based approach
is chosen to find the definition of the TEST() macro.

3. Get TEST macro references - find all usage locations of the TEST macro The next
step is to find the references of the previously discovered TEST macro. This functionality
is provided by the language server provider over the language server protocol (LSP). The
listing below shows an example test case that should be discovered during this step.

1 TEST (testHouseRooms)
2 {
3 House house {4};
4 ASSERT_EQUAL (4 , house . getRooms ()) ;
5 }

Listing 24: Sample New CUTE TEST

4. Get test usages - find all locations where a test is called In order to be able to assign
the test definitions to test suites, all references of a test definition need to be discovered.
As the Clangd language server provider does not find the references of an element within
a macro, the logic of this step had to be implemented individually.

• CppTools
If the CppTools extension is used as language server provider, the references can
easily be discovered using the therefore designed language server feature.

• Clangd
If the Clangd extension is used as language server provider, the a regular expression
(RegEx) based approach is chosen to find testName() calls within a test file.

84

6.6.4 Find Legacy Tests

The CodeAnalyzer provides functionality to find legacy CUTE tests that are defined using
either the old CUTE(…) macro or constructor calls directly. The logic behind this functionality
is based on information received from language server providers (LSP) and text-based analysis
of certain code files or passages within the testing project. The diagram below provides an
overview of the logic. Subsequent to the diagram, a description of each step can be found.

Figure 37: Find Legacy Test sequence diagram

85

1. Get cute_test.h uri - find the cute test definition file The first step in the legacy test
discovering process is again to find the cute_test.h file [50] within the open workspace.
This file is part of the CUTE testing framework and contains the implementation of a
tests logic and amongst others, the CUTE(…) macro and the cute test constructors, which
can be used to define tests.

2. Get CUTE macro definition - find the definition of the CUTE macro The next step
in this sequence is to find the location of the CUTE(…) macro definition within the
cute_test.h [50] file. As the implementations of the supported language server providers
show differences in the handling of macro symbols, this logic had to be implemented
individually.

• CppTools
If the CppTools extension is used as language server provider, a document sym-
bol called ”CUTE(name)” is searched. CppTools includes macro definitions in the
document symbol list.

• Clangd
If the Clangd extension is used as language server provider, the document symbols
do not contain macro definitions. A regular expression (RegEx) based approach is
chosen to find the definition of the CUTE() macro.

3. GET CUTE test constructors and references - find test constructor definitions
and references As CUTE tests can also be created using constructor calls directly, the
references to these constructors need to be found as well. To find the definition of the
different constructors, the document symbols for the cute_test.h file are used. Once all
constructor definition locations are found, the language server provider’s cross reference
functionality is used to discover all references of each constructor. The listing below shows
the different cute test constructors available.

1 template<typename VoidFunctor>
2 test (VoidFunctor const & t , std : : string sname = demangle (typeid (VoidFunctor) . name ()))
3 : name_ (sname)
4 , theTest (t)
5 { }
6
7 template<typename VoidFunctor>
8 test (VoidFunctor const & t , location const & testLocation , std : : string sname = ←↩

demangle (typeid (VoidFunctor) . name ()))
9 : name_ (sname)

10 , theTest (t)
11 , testLocation_ (testLocation)
12 { }
13
14 template<typename VoidFunctor>
15 test (std : : string sname , VoidFunctor const & t)
16 : name_ (sname)
17 , theTest (t)
18 { }

Listing 25: CUTE Test Constructors [50]

86

4. Get Test Implementation - find the test implementation location To find a tests
implementation, the line, on which the reference was found, gets read and analyzed using
regular expressions. These RegEx patterns provide the location of the parameter which
references the test implementation method. The language server provider’s definition
finding functionality is used to get the implementation location of a test, that got defined
using the legacy CUTE(TestImplMethod) macro or a direct constructor call. The listing
below shows a legacy test declaration using the CUTE macro. In this step the definition
of the LegacyTest method is discovered.

1
2 void LegacyTest () {
3 House house {4};
4 ASSERT_EQUAL (4 , house . getRooms ()) ;
5 }
6
7 bool runSuite (cute : : runner<cute : : xml_listener<cute : : ide_listener<>>> runner)
8 {
9 cute : : suite s {};

10 S += CUTE (LegacyTest) ;
11
12 return runner (s , ” TestSuite ”) ;
13 }

Listing 26: Sample Legacy Test

6.7 CMakeParser Implementation
The CMakeParser class is not a real parser in every sense. This parser is a one character
lookahead lexer that relates the command and the arguments. No token stream is returned and
no syntax check is done here, only the commands with the respective arguments will be returned.
The return value should then be passed to the CMakeLists class. Since this is not possible with
RegEx [71] and for the bracketing a stack machine would be necessary, the decision was made
to implement the CMakeParser in this form of implementation. The CMakeLists class takes
the values returned by the CMakeParser class and allows querying for executables and makes
assumptions about the test executable. This is possible via the relationships of the include
paths.

87

7 Results
This chapter should provide an overview of the features, implemented in the CUTE extension
for VS Code. Thereby each feature will be described individually regarding its general purpose,
its benefits, and the specific use cases it supports. Subsequent to the description of all supported
features, a comparison between the new extension’s functionality (VS Code [4]) and the existing
extension’s functionality (Cevelop[3]) can be found.

7.1 Feature set
This section contains a description of all implemented features that are supported by the CUTE
extension for Visual Studio Code. This overview should help to understand the possibilities,
that are provided by this new testing extension.

7.1.1 Test Explorer

Every CUTE test that gets discovered by the therefore implemented logic within the extension,
is shown in the Visual Code Test Explorer. This Test Explorer user interface was added to VS
Code together with the official Testing API in version 1.59 [36]. It is available in the sidebar
of Visual Studio Code and becomes visible as soon as a testing extension such as the CUTE
extension is installed. The Test Explorer provides and easy to read and somewhat familiar
overview about a project’s tests. It further provides some useful features to the developers,
such as the starting of test runs, containing all or a selection of tests. The discovery mechanism
is triggered by changes of the executables, as they happen when compiling the project. The
Test Explorer UI can also be refreshed manually. There are multiple different implementations
of the test discovery logic, which will be discussed later in this chapter. Each thereby discovered
test case has some properties such as its location within the project or the suite it belongs to.
Using this information, the Test Explorer is able to offer functionalities such as the navigation
to an individual test.

Figure 38: Test Explorer

88

7.1.2 Code Editor Integration

All discovered test cases are also made visible within the code. On the left side of each test
implementation within a cpp file, a green arrow is shown. This arrow first of all helps a developer
to spot test implementations easier, what massively improves the user experience. On the other
hand, this icon in the code editor allows developers to start test runs directly from within the
code. The user can select whether he would like to start the test normally or with a debugger
attached if a supported debugging extension is available. The user also has the possibility to
show the test within the Test Explorer. All the earlier described functionality of starting. The
arrow icon changes to a symbol that describes the tests’ last outcome. (Green if succeeded, red
if failure etc.) A further feature is the visualization of a tests’ outcomes in earlier runs.

Figure 39: VS Code CUTE inline integration

Figure 40: VS Code CUTE run history

89

7.1.3 Project Generation

The CUTE extension for VS Code offers the functionality to generate empty CMake projects,
which can be used as a starting point for new C++ projects. When a developer chose to generate
a new project, the CUTE extension provides the basic structure, sets up the empty project and
configures it. The only constraint to use this feature is, that a single empty workspace needs to
be opened in VS Code. This feature allows it developers without any knowledge about CMake
[9], to set up a project containing an executable, a library, and a test executable. There is
no need for the developer to configure the project first and therefore he can start developing
C++ code right away. The basic structure of the project contains an executable, a library,
that contains the application logic and the test-executable, which contains the CUTE headers,
which are required to write CUTE framework-based unit tests. The headers themselves are
delivered together with the CUTE extension and therefore no internet connection is required
while generating a new project.

Figure 41: The VS Code CUTE project generator

Figure 42: Structure of a newly generated project

90

7.1.4 Legacy Syntax Converter

The CUTE extension offers the functionality to convert existing test projects, that use the
old CUTE macro for the test definition, to updated projects, which use the new TEST macro
syntax for the test definition. This functionality removes the old CUTE macro from a specific
test definition and wraps that tests’ function header into the new TEST macro. Using the new
TEST macro allows it to get the required location information for a test directly from the test
executable without having to use any language server providers. The CUTE extension offers
multiple ways of dealing with legacy code definitions. The user can choose if all discovered
legacy tests should be converted at once or whether he would like to convert one by one. There
is also an option to ignore these legacy test declaration warnings. If a user chose this option,
he accepts that not all functionality is available (Test navigation and editor integration won’t
be available). The ignoring choice can be undone in the CUTE extension preferences.

Figure 43: Legacy Syntax Settings

Figure 44: Legacy Syntax Update pop-up

7.1.5 Assert Failure Analysis

The CUTE extension offers a visual option to compare failed assertions. Thereby the expected
and the actual values are displayed side by side. The differences between these two values are
then highlighted, what draws a user’s attention directly to the problematic spot within the
values. This simplifies the understanding of why an assertion failed. If a test should have failed
for any reason that is not related to equality comparisons, the failure reason is simply provided
in textual form.

Figure 45: Assertion Failure

91

7.1.6 Quick Fixes

The CUTE extension for VS Code offers some additional quick fixes, which support the users
with writing test projects that work as intended. Each of these provided quick fixes can be used
to mitigate a code problem, that is marked within the code and in the problems view. Below
the different warnings with their corresponding quick fixes are described.

Unregistered Test Case
The CUTE extension for Visual Studio Code analyzes the test project’s code for tests that
are not registered to any test suite and are not called directly. If such an unregistered test
case should be found, its location is marked within the code and entry in the Problems view
is created. When hovering the marked test declaration in the editor, a message shows up and
tells the user that this test will never be called. The CUTE extension provides quick fixes that
are based on the discovered test suites and offers to register this test case in one of these suites.
Further, the extension provides an additional quick fix that allows the creation of a new test
suite within the current file. This quick fix automatically registers the test in the newly created
suite. The figure below shows an unregistered test warning in the editor and the Problems view
with the offered quick fixes.

Figure 46: Unregistered Test Editor Warning

92

Register Test Case to existing suite
The first option to mitigate the unregistered test problem using a quick fix is to register the
test case to an existing test suite. For each discovered test suite in the tests’ file a quick fix
option is provided. If one of those quick fix options is chosen, the extension adds the registration
command of the test to the chosen test suite. The figure below shows the fixed code with the
newly added registration command highlighted in blue. After the file is saved, the unregistered
test warning will disappear.

Figure 47: Unregistered Test Existing Suite Fix

Register Test Case to new suite
The second option to mitigate the unregistered test problem using a quick fix is to register the
test case to a new test suite. If this quick fix option is chosen, the extension creates a new
runSuite function containing the declaration of a new test suite. This function is created using
a code snippet, that allows the users to set a custom suite name. The test case is registered
automatically to this newly created test suite by the CUTE extension. The figure below shows
the newly created runSuite function containing the test suite and the registration command.
All the highlighted sections are updated when the user sets the suite name.

Figure 48: Unregistered Test New Suite Fix

93

Unregistered TestSuite
The CUTE extension for Visual Studio Code analyzes the test project’s code for test suites that
are never called. Thereby the test suites need to be within a method that has a signature similar
to the runTestSuite method in the figure below, in order to be analyzed. If the CUTE extension
discovers such an unregistered test suite, it marks the location of the containing method within
the code and adds an entry to the Problems view. When hovering the marked method, a
message is shown, which tells the users that this test suite is never called and therefore none
of its contained tests will be executed. The CUTE extension provides a quick fix to add a test
suite call in the main function with an existing test runner, which might be defined in that
function. The figure below shows an unregistered suite warning in the editor and the Problems
view together with the available quick fixes.

Figure 49: Unregistered Suite Editor Warning

94

Register Suite in main
The CUTE extension provides a quick fix to mitigate the unregistered suite problem. If this
quick fix is chosen, the extension adds a call of the runSuite function to the main function.
The figure below shows the fixed code after the quick fix was applied. The highlighted code
is created or updated by the extension. Line 31 is newly created and contains a call to the
runSuite function with the existing runner as parameter. If no test runner declaration should
be available in the main function, the parameter of the runSuite function call is undefined
and needs to be set manually by the user. Line 32 contains the return statement of the main
function. The newly added test suite call gets integrated into this return statement to ensure
the correct return value of the test executable. If there should be existing test suite calls in the
main function the newly added call, simply gets added to the return statement with a logical
and && operator in front of the ternary ? operator.

Figure 50: Unregistered Suite Fix

95

CUTE Legacy Syntax
The CUTE extension for Visual Studio Code analyzes the test project’s code for test declarations
that are based on the old CUTE macro. If the extension should find such a test declaration
using the legacy syntax, it marks the test implementation function within the code and adds
and entry to the Problems view. In addition, a warning is shown in the form of a pop-up. This
warning pop-up offers the option to update all legacy syntax test declarations at once or ignore
the legacy syntax and show no more warnings. When hovering the marked test implementation,
a message is shown to tell the users that the TEST(…) macro should be used to declare tests.
The CUTE extension provides a quick fix to update the syntax from the CUTE macro to the
new TEST macro.

Figure 51: Legacy Syntax Editor Warning

Update Legacy Syntax
The CUTE extension provides a quick fix to mitigate the legacy syntax warnings. If the user
choses to update the CUTE macro test declarations, either all at once or test by test, the
cute extension discovers the test implementation and wraps it in the new TEST macro. The
extension also replaces the old CUTE macro test syntax with a simple function call to the newly
wrapped test function. The figure below shows the updated code after the legacy syntax update
quick fix was applied. The highlighted line shows the newly wrapped test function and on line
20, the updated test call can be found.

Figure 52: Legacy Syntax Fix

96

7.2 Feature comparison
In this section the feature sets of the VS Code extension and the existing Cevelop extension
[5] are compared. The table below shows the full set of features, that are available either in
the CUTE extension for Cevelop or in the new CUTE extension for VS Code. This feature
comparison makes it obvious that the new CUTE extension for VS Code offers additional
features to make the usage of CUTE as comfortable as possible. After the following table, there
will be a more detailed comparison of certain key features offered by both extensions.

CUTE Extension for Visual Code CUTE Extension for Cevelop
Functional

View tests in test explorer 3 3

Interactive integration in code editor 3 7

Generation of a template CMake project 3 7

Single and parallel test execution 3 3

Diff-view of different strings 3 3

Analytics
Check for legacy tests 3 Not necessary
Check suite call 3 7

Check test assignment to suite 3 3

Quickfixes
Convert legacy syntax to new syntax 3 Not necessary
Create new testsuite and register test 3 7

Register test to known testsuite 3 3

The images below show a side by side comparison of the comparable features of the Cevelop
plug-in and the new VS Code extension. The comparable features are the Tests Explorer with
included Red/Green bar experience and the difference viewer for failed assertions.

(a) Red/Green Bar Cevelop (b) Red/Green Bar VS Code

(c) Difference viewer Cevelop (d) Difference viewer VS Code

Figure 53: Feature Comparison

97

7.3 Metrics
This section provides an overview of the CUTE extension’s metrics. The code which is used to
implement the functionalities of the CUTE extension for Visual Studio Code is approximately
3000 lines long, contains 47 classes distributed over 57 files. The test coverage that was achieved
lays with 81.6% over the aspired 80% mark.
The figure below provides an overview of the project’s size. All the shown metrics within this
chapter are provided by SonarQube [14] and were captured after the master build that lead to
version 1.0.0 of the CUTE extension for VS Code.

Figure 54: SonarQube Project Size

The figure below provides an overview of the test coverage on component level provided by
SonarQube [14]. The coverage result deviates slightly from the actual coverage value as not all
test can be run in the pipeline due to the fact that not all configurations are possible there.
E.g. the windows focused logic will not be tested in the pipeline even though tests exist for
these code passages.

Figure 55: Component Coverage Result

98

The figure below provides an overview of the general code metrics provided by SonarQube
[14]. Thereby it can be seen, that no bugs have been found which leads to a reliability rating
A. Further no vulnerabilities have been detected, therefore the security metric is also rated
A. SonarQube detected a few code smells, all of them have to do with the chosen code style
guidelines and the linter used in the pipeline. All of the detected code smells were analyzed and
afterwards marked to ignore. The maintainability of the project is rated A as well.

Figure 56: SonarQube Project Metrics

99

8 Testing
This chapter contains a description of the manual system tests of the CUTE extension for VS
Code. The here defined manual tests are split into tests regarding the functional requirements
and tests regarding the nonfunctional requirements (NFR). These tests should further help to
ensure the quality of the CUTE extension. The tests should always be executed before merging
changes back into the master branch to ensure that the existing functionality was not broken
by the changes.

8.1 Functionality Testing
The first section of this chapter contains the functional test case definitions. Each test definition
consists of a general description, a set of preconditions that need to be fulfilled before starting
the test, instructions about all steps that are part of the test and the expected output or
behavior of the extension. Subsequent to the test descriptions, a test protocol can be found,
that covers all defined tests and provides information about each tests’ outcome.

100

Test-1: code-based test discovery Clangd
Description: This test should ensure that the code-based test discovery works

in combination with the Clangd [19] extension as language server
provider. All tests of the test project should be discovered and regis-
tered to the text explorer. The discovered tests should be marked in
the code by the extension.

Preconditions:
• Clangd extension installed and activated
• CUTE extension installed and activated
• TestFinderMode configuration is set to codeBased
• cuteExtensionTestProj folder opened as workspace

Input / Interaction:
1. Build the CMake project in the workspace
2. Open the test explorer on the left
3. Test discovery is started automatically
4. Wait until some tests are displayed in the test explorer

Expected Output: The code-based implementation of the test finder logic discovers four
tests and registers them in the test explorer. The tests need to be
marked as in the image below. A green arrow is expected on line 15,
23, 29, and 40. Make sure that Line 34 is not marked.

Figure 57: Test Explorer Clangd Code-Based Discovery Editor

101

Test-2: code-based test discovery CppTools

Description: This test should ensure that the code-based test discovery works
in combination with the CppTools [20] extension as language server
provider. All tests of the test project should be discovered and regis-
tered to the text explorer. The discovered tests should be marked in
the code by the extension.

Preconditions:
• C/C++ extension for VS Code (CppTools) installed and

activated
• CUTE extension installed and activated
• TestFinderMode configuration is set to codeBased
• Language Client Mode is set to Explicit
• cuteExtensionTestProj folder opened as workspace

Input / Interaction:
1. Build the CMake project in the workspace
2. Open the test explorer on the left
3. Test discovery is started automatically
4. Wait until some tests are displayed in the test explorer

Expected Output: The code-based implementation of the test finder logic discovers four
tests and registers them in the test explorer. The test explorer is
expected to look similar to the one shown in the image below. The
tests are expected to be marked in the same way as described in
Test-1.

Figure 58: Test Explorer CppTools Code-Based Discovery Ex-
plorer

102

Test-3: executable based test discovery
Description: This test should ensure that the executable based implementation of

the test discovery logic works. All tests of the test project should be
discovered and registered to the text explorer. The discovered tests
should be marked in the code by the extension.

Preconditions:
• CUTE extension installed and activated
• TestFinderMode configuration is set to executableBased
• cuteExtensionTestProj folder opened as workspace

Input / Interaction:
1. Build the CMake project in the workspace
2. Open the test explorer on the left
3. Test discovery is started automatically
4. Wait until some tests are displayed in the test explorer

Expected Output: The executable-based implementation of the test finder logic
discovers the same four tests as the code-based variants and registers
them in the test explorer. The test explorer is expected to look
similar to the one shown in the expected output of Test-2. The tests
are expected to be marked as shown in the image below. Important
to note is that neither line 32 is marked, as this test is not registered,
nor line 38 is marked as there is no location information for legacy
tests.

Figure 59: Test Explorer Executable-Based Discovery Editor

103

Test-4: CUTE test debugging test

Description: This test should ensure that the CUTE test debugger functionality is
available through the CUTE extension. The test explorer should pro-
vide an option to start a test run in the debug configuration. Starting
a debug run should also be possible from within the code editor. The
execution of the code should break at breakpoints.

Preconditions:
• C/C++ extension for VS Code (CppTools) installed and

activated
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built
• Tests are discovered and loaded into the test explorer

Input / Interaction:
1. Set a breakpoint in the test.cpp file on line 15
2. Select the testEnterHouse test in the test explorer and select

start debugging
3. Wait until the test run started

Expected Output: The CUTE extension starts a debugging process using the installed
debugging extension. After the view in VS Code is changed to the
debugging view, the test debugging starts. After a while the earlier
set breakpoint is hit and the program waits there. The test duration
shown in the test explorer is as long as the debugging of the test
takes.

Figure 60: Test Debugging Breakpoint

Figure 61: Test Debugging Result

104

Test-5: CUTE test run test

Description: This test should ensure that single tests can be started using the
test explorer. After the test run has finished, the result, for the test
included in the run, should be displayed in the test explorer and in
the code editor.

Preconditions:
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built
• Tests are discovered and loaded into the test explorer

Input / Interaction:
1. Set a breakpoint in the test.cpp file on line 15
2. Select the testEnterHouse test in the test explorer and select

run test
3. Wait until the test run finished

Expected Output: The CUTE extension starts a test run containing a single test. The
test run starts quickly and this time, the program does not wait at
the earlier set breakpoint. The result is visualized in the test
explorer and in the editor window next to the test definition.
(Location where the green arrow was)

Figure 62: Test Run Single Test

105

Test-6: CUTE suite run test

Description: This test should ensure that all tests that belong to a test suite can
be started using the test explorer. All tests should start running in
parallel. After the test run has finished, for all the tests in the test
suite a result should be displayed.

Preconditions:
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built
• Tests are discovered and loaded into the test explorer

Input / Interaction:
1. Select the TestSuite test suite in the test explorer and select

run tests
2. Wait until the test run finished

Expected Output: The CUTE extension starts a test run containing all four tests
belonging to TestSuite1. The test run starts quickly and all tests
start being executed at the same time. The result is visualized in the
test explorer and in the editor window next to the test definition.
(Location where the green arrow was)

Figure 63: Test Run Test Suite Tests

106

Test-7: unregistered test existing suite quick fix

Description: This test should ensure that the quick fix to mitigate the unregistered
test problem works correctly. In this test, an unregistered test case
should be registered to an existing test suite.

Preconditions:
• Clangd extension installed and activated
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built

Input / Interaction:
1. Open test.cpp file in the editor
2. Save the document to immediately trigger the code analysis

for the file
3. Hover the marked TEST(testUnregisteredTest) line and select

quick fixes -> add test to TestSuite
4. Save the document again

Expected Output: The unregistered test is detected and marked correctly as shown in
the image below. The quick fix to register the unregistered test case
to TestSuite2 is available. After the quick fix was applied and the
document saved, the test is no longer marked as unregistered. A
registration call was made in the runSuite2 function.

Figure 64: Unregistered Test Warning

Figure 65: Unregistered Test QuickFix 1

107

Test-8: unregistered test new suite quick fix

Description: This test should ensure that the quick fix to mitigate the unregistered
test problem works correctly. In this test, an unregistered test case
should be registered to a newly created test suite within the tests’ file.

Preconditions:
• Clangd extension installed and activated
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built

Input / Interaction:
1. Open test.cpp file in the editor
2. Save the document to immediately trigger the code analysis

for the file
3. Hover the marked TEST(testUnregisteredTest) line and select

quick fixes -> create new suite and add test
4. Enter suite name
5. Save the document again

Expected Output: The unregistered test is detected and marked correctly as shown in
the image in Test-7. The quick fix to register the unregistered test
case to a new test suite is available. After the quick fix was applied
and the document saved, the test is no longer marked as
unregistered. The runSuite function for the new suite was created
and looks as shown in the image below.

Figure 66: Unregistered Test Quick Fix 2

108

Test-9: unregistered suite quick fix

Description: This test should ensure that the quick fix to mitigate the unregistered
suite problem works as intended. In this test, an unregistered test
suite should be registered to a test runner in the main function of a
test project.

Preconditions:
• Clangd extension installed and activated
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built

Input / Interaction:
1. Open test.cpp file in the editor
2. Save the document to immediately trigger the code analysis

for the file
3. Hover the marked runSuite2 text on line 55 and select quick

fixes -> register suite in main
4. Save the document again

Expected Output: The unregistered test suite is detected and marked correctly as
shown in the image below. The quick fix to register the unregistered
test suite in the main function is available. After the quick fix was
applied and the document was saved, the suite is no longer marked
as unregistered. The registration call looks as shown in the second
figure below.

Figure 67: Unregistered Suite Warning

Figure 68: Unregistered Suite Quick Fix

109

Test-10: single legacy test quick fix
Description: This test should ensure that the quick fix to update a single test, that

was defined using the old CUTE macro, works as intended. This quick
fix should replace the old syntax for the specific test by the new TEST
macro syntax.

Preconditions:
• Clangd extension installed and activated
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built

Input / Interaction:
1. Open test.cpp file in the editor
2. Save the document to immediately trigger the code analysis

for the file
3. Hover the marked LegacyTestCase() command on line 38 and

select quick fixes -> update syntax
4. Save the document again

Expected Output: The legacy test declaration is detected and marked correctly as
shown in the image below. The quick fix to update the legacy syntax
to the new TEST(…) syntax is available. After the quick fix is
applied and the document was saved, the test is no longer marked.
The test definition was wrapped into the TEST(…) macro and the
CUTE(…) macro was removed from the call command.

Figure 69: Legacy Syntax Warning

Figure 70: Legacy Syntax Quick Fix

110

Test-11: multiple legacy test quick fix

Description: This test should ensure that the quick fix to update all detected test,
that were defined using the old CUTE macro, works. This quick fix
should replace the old syntax for all legacy test declarations by the
new TEST macro syntax.

Preconditions:
• Clangd extension installed and activated
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built

Input / Interaction:
1. Open test.cpp file in the editor
2. Save the document to immediately trigger the code analysis

for the file
3. Select the Update button on the warning that pops up in the

lower right hand corner
4. Wait until the update process is completed

Expected Output: The legacy test declaration is detected and marked correctly as
shown in the image in the expected output of Test-11. The quick fix
to update all discovered legacy syntax usages to the new TEST(…)
syntax is available via the warning pop-up in the lower right hand
corner. After the quick fix is applied, the test is no longer marked.
The test definition was wrapped into the TEST(…) macro and the
CUTE(…) macro was removed from the call command. This multi
quick fix saves the documents that were updated automatically.

Figure 71: Legacy Syntax Warning Pop-Up

111

Test-12: generate project test

Description: This test should ensure that the project generation command works.
This functionality allows it to set up new C++ projects including a
CUTE testing project. This project generation is based on a template
project.

Preconditions:
• CUTE extension installed and activated
• An empty folder opened as workspace

Input / Interaction:
1. Open commands execution terminal (CTRL+Shift+P)
2. Type CUTE: Generate project and run the command
3. Wait until the project setup is finished

Expected Output: The command to set up a new CMake based project is available and
can be called using CTRL+Shift+P. If Visual Studio Code has a
single and empty workspace opened the project template gets set up
in that empty workspace. The structure of the template project can
be found in the figure below.

Figure 72: CUTE Project Template

112

Test-13: generate suite file test

Description: This test should ensure that the suite file generation command works.
This functionality allows it to add a new test file to the project. The
new test file contains a test suite definition with all required boilerplate
code.

Preconditions:
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace

Input / Interaction:
1. Open commands execution terminal (CTRL+Shift+P)
2. Type CUTE: Create testsuite file and run the command
3. Enter the suite name into the field that opens up
4. Confirm name and run command
5. Wait until the code generation process finished

Expected Output: The command to set up an additional test suite file is available and
can be called using the CTRL+Shift+P command execution
shortcut. The command requires some user input for the suite name.
After the user has set a name, the file is set up using the boilerplate
template code for new suites. The CMake configuration file is
updated accordingly.

Figure 73: Create New Suite Command

113

Test-14: CUTE TEST snippet test

Description: This test should ensure that the TEST snippet, that can be used to
easily create a new CUTE test, is available and works as intended.
The TEST snippet should be available in all cpp files, and the name
templating should be activated, when selecting the snippet.

Preconditions:
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace

Input / Interaction:
1. Open test.cpp file in the editor
2. Navigate to a location within the file outside of any functions
3. Start typing TEST and press enter as the TEST snippet

shows up in the suggestions

Expected Output: The TEST snippet is available in a cpp file and provides support
with creating new CUTE tests. The snippet offers to set a test name
after its expansion was chosen. The snippet shows up in the VS
Code recommendations after starting to type TEST in a cpp file.

Figure 74: TEST Snippet

114

Test-15: assert failure comparison test

Description: This test should ensure that the assert failure functionality works as
intended. If a CUTE test should fail due to an assertion failure, a
window should show up that allows an easy comparison between the
expected and the actual outcome of that test.

Preconditions:
• CUTE extension installed and activated
• cuteExtensionTestProj folder opened as workspace
• CMake project is built
• Tests are discovered and loaded into the test explorer

Input / Interaction:
1. Select the test Failtest in the test explorer and click the run

test button
2. Wait until the test run finished with errors.

Expected Output: If a test failed because of an assertion failure, a window shows up
inside the code editor underneath the test definition. Inside this
window the value expected by the test and the actual value provided
by the tested functionality are shown. To make the reason for the
assertion failure clearer, a colorized visualization of the differences
available. The image below shows the assertion failure visualization
of the FailTest test.

Figure 75: Assertion Failure Visualization

115

8.1.1 Test Protocol

This section contains the test protocol for the manual tests regarding the functional require-
ments. The test protocol for the CUTE extension covers all outcomes of the final test run, that
was carried out before releasing the CUTE extension in the VS Code marketplace.

Test Status Comment Date
Test-1 Passed The tests get discovered as expected. All four

tests are available through the test explorer and
directly from within the code. The unregistered
tests are not marked as test cases and therefore
cannot be started from anywhere.

2022-06-12

Test-2 Passed The tests get discovered as expected. The reli-
ability of this functionality heavily depends on
the systems performance. Unregistered tests are
not marked as tests and therefore they are not
shown in the test explorer.

2022-06-12

Test-3 Passed The tests get discovered as expected. All four
tests are available through the test explorer.
Only the tests that were defined using the
TEST(…) macro are marked within the code and
can be started from there.

2022-06-12

Test-4 Passed The debugger is started as expected. The execu-
tion pauses at the breakpoint and the execution
time of a test is shown correctly within the test
explorer. The result outcome is visualized in the
test explorer and within the code.

2022-06-12

Test-5 Passed The test is executed as expected. The test run
is started with the single selected test. After
the test run is finished, the test result is shown
in the test explorer and is visualized within the
code. The run duration is shown in the test
explorer.

2022-06-12

Test-6 Passed The tests are started as expected. The test run
contains all tests that belong to the TestSuite
test suite. As soon as a test has finished, its
outcome is shown in the test explorer. The re-
sult is also visualized within the code.

2022-06-12

Test-7 Passed The unregistered test is marked by a yellow line
and within the problems view. The quick fix to
register the test case to an existing test suite is
available and works as expected. After the quick
fix was applied and the document was saved, the
warning disappears.

2022-06-12

116

Test-8 Passed The unregistered test is marked by a yellow line
and within the problems view. The quick fix
to register the test case to a new test suite is
available and works as expected. The name of
the new test suite can be set by the user.

2022-06-12

Test-9 Passed The unregistered RunSuite(…) function is
marked by a yellow line and within the prob-
lems view. The quick fix to register the test
suite to a test runner in the main function is
available and works as expected.

2022-06-12

Test-10 Passed The test that is defined using the CUTE(…)
legacy syntax is marked by a yellow line and
within the problems view. The quick fix to up-
date the syntax and use the TEST(…) macro is
available and works as expected.

2022-06-12

Test-11 Passed The warning pop-up is shown and offers the op-
tion to update all legacy test declarations. Af-
ter the update is finished, all updated files are
saved, and the warnings are no longer shown
within the code and also no longer appear in
the problems view.

2022-06-12

Test-12 Passed The project is set up as expected. It contains
a library, an executable, and a test executable.
The CMake configuration is set up according to
the projects structure and offers an easy way to
compile the solution.

2022-06-12

Test-13 Passed A new cpp file is created and added to the
CMake configuration. The test file contains
the required boiler plate code including a Run-
Suite(…) function. The suite name can be set
by the user.

2022-06-12

Test-14 Passed The TEST(…) snippet is available from within
cpp files. After starting to write TEST, the
snippet appears in the recommendations view.
When the snippet is selected, a test function
gets set up.

2022-06-12

Test-15 Passed The assertion failure is marked as such in the
test result. The difference between the expected
value and the provided value is visualized in the
test result which can be found next to the test’s
implementation location.

2022-06-12

8.2 Nonfunctional Requirements (NFR) Testing
In this section the tests regarding the nonfunctional requirements (NFR) can be found. The
project’s code and design were analyzed for each of the defined nonfunctional requirements. The
definition of the nonfunctional requirements (NFR) can be found in the chapter Requirements
Analysis.

117

8.2.1 Test Protocol

This section contains the protocol for the analysis of the code and design regarding the non-
functional requirements. The protocol covers all analysis results of the final CUTE extension
version. The analysis was carried out on the version of the CUTE extension that was later
released to the VS Code marketplace.

NFR Status Comment Date
NFR-1 Passed A set of useful user notifications is built into the

CUTE extension. If something should go wrong
the user gets notified about that malfunctioning
in an understandable way.

2022-11-06

NFR-2 Passed The CUTE extension can handle misconfigura-
tions such as using code-based test discovery
when no language server provider is available
and notifies the users about the problem. Miss-
ing debug extensions do not lead to the exten-
sion crashing.

2022-11-06

NFR-3 Passed The test discovery using the executable based
approach is pretty much instant and it takes less
than 10 seconds until the discovered tests are
registered in the test explorer. The code-based
approaches’ performance depends heavily on the
used language server provider. Clangd performs
well, and test discovery does not take much
longer than the executable based approach. The
test execution and result visualization logic does
not create a big performance impact.

2022-11-06

NFR-4 Passed The CUTE extensions user interface is based on
the official VS Code test explorer. The controls
are familiar to many developers and therefore do
not require any training. The CUTE extension
configuration possibilities are described under-
standably.

2022-11-06

NFR-5 Passed A CI/CD pipeline [13] is set up and makes sure
that no breaking changes or code style violations
are merged into the master branch or published
to the VS Code marketplace. The test coverage
from unit-, integration- and system tests is over
80% when the tests are executed in all possible
configurations (Clangd/CppTools).

2022-11-06

NFR-6 Passed Sonarqube [14] is set up and integrated into the
CI/CD pipeline on GitLab [13]. The code met-
rics show that the code is well maintainable.
According to the analysis, there are no dupli-
cated lines within the project. The maintain-
ability and reliability are rated A and the tar-
geted 80% of test coverage are achieved. Addi-
tional manual system tests extend the quality
measures and cover all functionalities. This is a
further prevention of breaking changes that get
into productivity.

2022-11-06

118

9 Conclusion
This chapter contains the conclusion of the CUTE extension for VS Code project. To provide
an overview of the whole course of the project, a result evaluation can be found in this chapter.
Further, a comparison of the reached goals and the open work is provided. At the end of
this chapter a foresight will be provided, in which the potential next steps are described and
explained.

9.1 Summary
In the scope of this thesis a project was started with the aim to develop an integration of
the CUTE testing framework into Visual Studio Code. The project was split into four phases
according to the RUP [73] definition. After the project was successfully started and all required
tools were set up during the inception phase, the planning of an extension design was started
in the elaboration phase. During this evaluation phase the key requirements were analyzed and
different approaches to implement the functionality behind them, were evaluated. After the
elaboration phase was finished, it was clear which features can be supported and what their
implementation should look like. The biggest risks could be mitigated during this elaboration
phase, as planned during the project planning. During the development phase the actual CUTE
extension for VS Code was designed and implemented based on the findings from the elaboration
phase. After the development phase was finished, a Visual Studio Code extension was available,
that offers a feature rich and easy to use integration of the CUTE testing framework [10]. During
the final transition phase of the project, the CUTE extension for VS Code was published to
the marketplace from where it could be installed afterwards. Further all required parts were
documented, and the final presentation was prepared.

9.2 Result evaluation
The CUTE extension for Visual Studio Code that was created in the scope of this thesis, offers
a rich set of functionalities. The CUTE integration into VS Code offers all mandatory features
such as the starting of test runs covering one or multiple tests, and the visualization of the
test results using a red/green bar experience. In addition to these minimal requirements, a
large set of addition features is offered by the CUTE extension for VS Code. On the one hand
the CUTE extension provides support with setting up new CMake based test projects, or the
configuration of new test suites in separate cpp files. The comfort of a TEST snippet, that
allows the creation of new tests without having to write the whole boiler plate code, is provided
as well. Beside these test writing support functionalities, the CUTE extension analyzes the test
code and warns the developers about potential code problems. These code problems include
unregistered test cases, unregistered test suites and test declarations using the legacy CUTE(…)
syntax. The extension does not just simply discover the problems, but also offers powerful
quick fixes to mitigate all of them. The extension offers some configuration possibilities, for
example to set the test discovery mode. The CUTE extension supports multiple language
server provider implementations (Clangd [19] / C/C++ for VS Code by Microsoft [20]) and
is tested under Windows and Linux. In comparison to the Cevelop plug-in for CUTE [5] a
larger set of convenience tools is provided and an improved user experience is available as the
CUTE extension builds on familiar user interface controls. All base functionalities offered by
the Cevelop plug-in can be covered using the VS Code extension, where they can be used in an
even user friendlier way.

119

9.3 Reached goals / open work
During this project a VS Code extension could be planned and developed, that offers a rich set
of functionalities that in some points even exceed the ones offered by the Cevelop plug-in [5].
The planned tasks could be finished within their planned time frame. The only open user story
is about a separate tool to convert existing Cevelop based solutions to CMake [9] based projects
that can be opened and used in Visual Studio Code.
Beside the functional requirements which all could be implemented and for which an adequate
test coverage of over 80% exists, the non-functional requirements could be fulfilled. The test
protocol for the manual system tests and the evaluation of the non-functional requirements, can
be found in the chapter Testing of this documentation.

9.4 Future view
The next step is to use the CUTE extension for Visual Studio Code in the scope of a C++module
at OST Eastern Switzerland University of Applied Sciences and get user feedback directly from
students. Based on this feedback the next steps can be defined and areas identified, that might
need changing. In addition to the validation of the CUTE extension in a practical environment,
it should be considered to implement the earlier mentioned converter that should provide the
functionality to convert Cevelop projects to CMake based projects, that can be used in Visual
Studio Code in combination with the CUTE extension.

120

10 Project Management
In this chapter of the documentation an overview about the project management of the project
CUTE extension can be found. This overview should describe the management and planning
tasks of the project. Thereby the main focus is set the project planning, the organization and
further topics of the project structuring. The planning, which is described in this chapter, builds
the baseline for the project CUTE extension.
The scope of this chapter is limited to the project duration of the project CUTE extension,
which is being realize in the context of a bachelor thesis in FS2022 at the OST University of
Applied Sciences. This chapter is updated throughout the whole project.

10.1 Organization
10.1.1 Project Contributors

• Dominic Klinger, dominc.klinger@ost.ch

• Christian Bisig, christian.bisig@ost.ch

10.1.2 Initiator / Supervisor

• Thomas Corbat, thomas.corbat@ost.ch

10.1.3 Expert / Examiner

• Guido Zgraggen - Examiner, zgraggen@gmail.com

• Frieder Loch - Co-Examiner, frieder.loch@ost.ch

121

10.2 Work Breakdown Structure
The graphic below shows the initial work breakdown structure of the CUTE extension project.
At the beginning of the project, during the elaboration phase, the project description was
analyzed and split into distinct components. In a later step, these components were assigned
to a specific project phase according to the Scrum+ (Combination of Scrum [72] and RUP [73])
phases. These components built the baseline for the epics which were defined afterwards. As
shown in the graphic below, each of the components belongs to one out of the three distinct
categories Coordination, Infrastructure or Application.

Figure 76: Work Breakdown Structure Diagram

122

10.3 Cost Estimate
This section contains an overview of the estimated costs in the form of time spent. In addition
to the effort estimation the start and end dates of the project can be found in this section.

Project Duration 15 Weeks

Number of Contributors 2 People

Weekly Workload 24h

Total Workload 720h

Project Start 21.02.2022

Project Deadline 17.06.2022

10.4 Time Planning
The time planning for this project is loosely based on the four phases defined in the Scrum+
process. These four phases are Inception, Elaboration, Construction and Transition. In this
section of the chapter Project Management those four phases will be described and scheduled
throughout the project duration.

10.4.1 Project Phases

The earlier mentioned phases define important deadlines throughout the project duration. Each
of these deadlines therefore states an important milestone. The duration of each phase was
defined based on the guidelines of Scrum+, which combines the RUP [73] phases with the
agility of Scrum [72] (Sprints within each phase). Using this technique, the biggest part of
the time available is assigned to the two phases Elaboration, in which the feasibility of the
features is analyzed, and different approaches are evaluated, and Construction, during which
actual development of the product takes place. In the table below the phases are listed and a
start and end date is assigned to each of them. In a later step further milestones were defined
and assigned to the corresponding phase. The milestone definition can be found in the next
section of this chapter.

Phase Start Date End Date
Inception 21.02.2022 27.02.2022
Elaboration 28.02.2022 03.04.2022
Construction 04.04.2022 05.06.2022
Transition 06.06.2022 17.06.2022

123

10.4.2 Milestones

This section contains the defined milestones of the CUTE extension for VS Code project. Each
milestone has a deadline and a general description. All of the below defined milestones can be
found in the timeline graphic that is following in the section below.

Definition M1 Project Plan
Declaration

• Project plan template is set up
• Basic planning on level Epic is finished
• Project and develop environment is set up
• Time tracking is ready to use

Date 06.03.2022

Definition M2 Requirement Analysis
Declaration

• Requirements analyzed
• Important use cases documented
• User stories created based on earlier defined use cases
• Risk analysis initialized

Date 20.03.2022

Definition M3 End of Elaboration
Declaration

• Prototype for all use cases evaluated
• Bigger risks mitigated
• Plan for construction phase set up based on findings made during the

elaboration phase
Date 03.04.2022

Definition M4 Intermediate Presentation
Declaration

• Presentation of the current project state in front of the supervisor and
expert committee

• Demonstration of the prototype that was created during the elaboration
phase

• Potential additional features integrated into the project planning
• Let feedback flow into the planing of the construction phase

Date 05.04.2022

124

Definition M5 Alpha
Declaration

• First version of the final extension is available
• Tests can be discovered based on information received from the test

executables
• Tests can be executed and debugged
• There is a template project available
• There is a possibility to easily create additional test suites

Date 01.05.2022

Definition M6 Beta
Declaration

• New functioning version of the extension is available
• Includes additional convenience features such as warnings on

unregistered tests or suites
• Includes functionality to discover tests and suites based on language

server information
• Includes potentially added features from the intermediate presentation
• The beta version of the extension is tested and fulfills the quality

requirements
Date 29.05.2022

Definition M7 Project Delivery
Declaration

• Final version of the extension is available
• Includes all features which were evaluated during the elaboration phase
• Bugfixes based on the beta version were implemented
• Documentation about the project and the product is finished and covers

all important points
• The final version of the extension is tested and fulfills the quality

requirements
Date 17.06.2022

Definition M8 Final Presentation
Declaration

• Presentation of the final product in front of the supervisor and expert
committee

• Potential questions regarding the project and final product addressed
Date 21.06.2022

125

10.4.3 Timeline

The graphic below shows the estimated timeline at the beginning of the project. Thereby this timeline provides an overview of the four phases, the
project milestones and the iterations which stretch over two weeks. For each iteration the most important epics are listed within the corresponding
timeframe. This timeline shows which epic has to be finished by when in order to be able to successfully finish the whole CUTE extension project
in the time available.

Figure 77: Project Timeline

126

10.4.4 Epic Estimate

The table below contains the first estimation for the most important epics of the CUTE extension
Project. The epics below will be split into smaller tasks during the corresponding iteration.
These tasks will then build the basis for time tracking and progress tracking. The actual spent
effort for each epic can be found in the appendix in the section time tracking. This appendix
section will further contain a more detailed listing of the spent time for each work item.

Inception 48 hrs
Kickoff 8 hrs
Initialize Project Documentation 20 hrs
Setup Project Infrastructure 20 hrs

Elaboration 252 hrs
Project Planning 24 hrs
Familiarization CUTE 20 hrs
Requirements Analysis 24 hrs
Risk Analysis 20 hrs
Architecture Evaluation 48 hrs
Test Detection 36 hrs
Test Execution 24 hrs
Convenience Features 24 hrs
Intermediate Presentation 8 hrs
Maintain Documentation 24 hrs

Construction 354 hrs
Plan Extension Design 42 hrs
Domain Modeling 12 hrs
Implement Designframe 24 hrs
Implement Test Detection 36 hrs
Setup Template Project 24 hrs
Implement Test Execution 36 hrs
Implement Convenience Features 48 hrs
Setup Manual Tests 24 hrs
Bugfixing 48 hrs
Maintain Documentation 24 hrs
Reserve 36 hrs

Transition 72 hrs
Finish Documentation 48 hrs
Presentation Presentation 16 hrs
Retrospective 8 hrs

Total 726 hrs

10.4.5 Workitems

The management of the work items such as tasks and user stories is handled over GitLab [74].
For each part of the project such work items can be created and assigned to the earlier mentioned
milestones. Time is tracked through the project and always assigned to a task. The further in
the future the implementation of a work item is, the more generic it is. The work items are
refined over time and finally split into small enough tickets. There are also work items for the
project management overhead like meetings, reviews, and documentation of the project.

127

10.5 Risk analysis
This section contains an analysis of the major risks, that could endanger the course of the
project and potentially event the project’s success. The risks were analyzed regarding their
probability of occurrence and their expected maximal damage to the project. Based on this
analysis actions were defined to mitigate the threats.

10.5.1 R1: CUTE does not fulfil requirements for VS Code test environment
Description: There is no possibility to extend or adapt the CUTE framework

in a way to make it fit the needs of the Visual Studio Code
extension. (e.g. return the implementation location of test
cases)

Maximum damage: 120 hours

Probability of occurrence: 25 %

Weighted damage: 30

Prevention: Try different approaches at the beginning of the project during
the elaboration phase. Also plan a fallback solution that is not
based on information returned by the test executable itself.

Behave when entering: Reduce the scope of the project through the cancellation of
optional features such as the convenience tools. Use the already
planned fallback solution to retrieve the needed information.

10.5.2 R2: VS Code Testing API does not fulfil the requirements
Description: Visual Studio Code does not provide functionality that is

needed to implement all required features. (e.g. allow access
to language feature information)

Maximum damage: 60 hours

Probability of occurrence: 30 %

Weighted damage: 18

Prevention: Create prototypes using different approaches early in the
project during the elaboration phase. Find out what is possi-
ble and what isn’t. Plan the features that will be implemented
based on the findings from the elaboration phase.

Behave when entering: Cancel the optional features e.g. convenience tools that depend
on Visual Studio Code features that are not supported. Reduce
the scope of the project. Find solutions that are not based on
unsupported Visual Studio Code features for mandatory CUTE
extension features. Check options with project supervisor.

128

10.5.3 R3: Incorrect handling of the requirements
Description: Important requirements are getting forgotten or are wrong es-

timated in time effort

Maximum damage: 60 hours

Probability of occurrence: 15 %

Weighted damage: 9

Prevention: The first task during the project should be the exact analysis
of the requirements. Uncertainties should be clarified during
the elaboration phase in a timely manner with the project su-
pervisor. Time and effort estimations should be made in the
project team using the four-eye principle.

Behave when entering: Adapt the scope of the project after discussing the situation
with the project supervisor.

10.5.4 R4: Wrong architectural deciscions
Description: There are different options available to implement a Visual

Studio Code testing extension e.g. implement everything from
ground up or take an existing extension as baseline for the
project.

Maximum damage: 100 hours

Probability of occurrence: 20 %

Weighted damage: 20

Prevention: Existing testing extensions for Visual Studio Code should be
analyzed during the elaboration phase of the project. The dif-
ferent possibilities should be evaluated early in the project and
based on the evaluation result a decision should be taken after
a supervisor consultation.

Behave when entering: A change of the project architecture should not lead to the need
of reimplementing the entire functionality. Reuse already ex-
isting functionality in the new architecture. Reduce the scope
to make up the lost time.

129

10.5.5 Risk Matrix

The graphic below shows the risk matrix in which the above analyzed risks can be found.
The graphic clearly shows that risk R1 could become the biggest threat to the project success.
Therefore, the decision was made to try different approaches to extract the required information
from the CUTE testing framework during the elaboration phase. Further the decision was made
to evaluate the possibility of creating a fallback solution that does not depend on the information
from the executables themselves. Besides risk R1 the risks R2 and R4 should also be observed
throughout the project. Both of these risks state an increased threat to negatively impact the
course of the project. The extended prototyping throughout the elaboration phase should help
to minimize these risks as well as the already mentioned risk R1. The extension prototype
should show what is possible and what isn’t and with this information impact the plan and
feature set of the final CUTE extension product. These three risks, that state increased or
sever threats to the project should be taken care of as early as possible in the project. Risk R3
is in the green are of the risk matrix. Therefore, the earlier described precautionary measures
should be sufficient. The risks will be reanalyzed throughout the projects duration and the
measures readjusted if necessary. The objective of the elaboration phase is to mitigate as much
risk as possible to allow a smooth implementation of the final product.

Figure 78: Risk Matrix

130

10.6 Quality Management
To ensure the quality of the Visual Studio Code CUTE extension the following measures have
been defined. The table below contains an overview of the implemented quality measures with
their corresponding scope and objective.

Measure Scope Objective
System Tests
(Checklist)

Whole Project Du-
ration

Ensure the functionality of the extension features. Make
sure that all use cases can be covered by the Visual Studio
Code CUTE extension.

Unit Tests During Implemen-
tation

Guarantee that all components work as intended. This
measure should help to improve the robustness of the
code.

Integration Tests During Implemen-
tation

This measure should ensure that the single components
are able to interact with each other without any malfunc-
tions.

Code Reviews During Implemen-
tation (Merge Re-
quest)

Code reviews lead to an important knowhow exchange.
Further they reduce the risk that the main branch gets
broken through the implementation of the four-eyes prin-
ciple.

Code Metrics Whole Project Du-
ration

From time to time code metrics should be evaluated. This
measure should help to find code smells, security prob-
lems and duplicated code. This problems then will be
mitigated through code refactoring.

10.6.1 Tools

To implement the above defined quality measures the following tools will be used throughout
the project:

• Mocha [75] as testing framework for the implementation of unit and integration tests

• ts-mockito [76] as library for mocking typescript classes and interfaces

• Sonarqube [14] to evaluate the code metrics

131

10.7 Development Tools
For the development itself several tools like development containers and continuous integration
pipelines were used. In this section a description of the used tools and workflows can be found.

10.7.1 Documentation

The documentation is written in LatTeX [78] and needs some packages for the build. To make
writing the documentation as easy as possible, Development Docker Containers [79] are used
in Visual Studio Code. These allow it to configure a Docker container so that the working
environment is always the same and all project members can work with a similar setup. There
is also the possibility to configure VSCode extensions to make the documentation writing easier
and to find typos without any effort using a spell checker plugin [80]. Each push to the GitLab
repository also triggers a pipeline that takes the same Development Container as a template.
With each push,a PDF is offered for download so that the current version of the documentation
is always available.

Figure 79: Development Containers Architecture [77]

10.7.2 Extension

This section contains a description of the CI/CD pipeline [13] that was set up on GitLab. With
every push to the GitLab repository the pipeline gets triggered.

Figure 80: CUTE Extension Pipeline

132

The pipeline consists of the following stages: lint, build, test, analyze and publish. Linting is
about formatting the code and following the style guides. The decision was made to use the
AirBnB style guide, specialized for Typescript. The AirBnB code style is widely used and has
also been used in some of our past projects, which is why we again relied on it. The build stage
builds the project and provides the build output as artifact. If something goes wrong here,
users get notified quite quickly about the fact that the pipeline is broken as the build failed. If
e.g. dependencies are missing or other problems occur, this step fails and the developer who
triggered the pipeline gets a notification. If this build stage passes, the system should be in a
”clean” state and therefore have no influence on the development system. In the test stage all
tests are executed. The project contains a list of unit, integration and system tests, which must
finish successfully. With the execution of the tests, a test report for GitLab and a coverage
report is generated, which is afterwards used in the next analysis step.

Figure 81: GitLab Test Report

The Analyze stage triggers the code analysis process with SonarQube. SonarQube afterwards
provides code coverage information and shows code smells and potential bugs. It also shows
problems with bad programming style, for example, if there are code duplications. The analysis
step is always executed, no matter if one of the previous stages failed. In the last stage, the
publish stage, the extension gest packaged. Here a VSIX-file is generated as result. With the
VSIX file, the extension can then be installed in Visual Studio Code. If the pipeline runs after a
corresponding tag was set on the source branch, the automatic publication to the Marketplace
[8] is also triggered, so that the extension is made available in the published version in the
Marketplace.

133

10.7.3 Development Server

For the this work a virtual machine was used. On the machine there is SonarQube, the GitLab
Runner, and a LoadBalancer for some smaller information websites installed.

Error during latex code generation

Figure 82: Development Server structure

10.7.4 Code Style Guidelines

For the typescript implementation of the Visual Studio Code CUTE extension the decision was
made to follow the extensive Airbnb javascript style guides [70] with some exceptions. There
are some smaller exceptions made by the prettier plugin [81]. these exceptions concerns the
bracketing, spacing and some smaller formatting in function headers.

134

11 Glossary
Assertion Used for comparisons of expected and actual values. Used in soft-

ware testing

Cevelop [3] C++ IDE based on Eclipse CDT[6]

CDT [6] C/C++ Development Tooling based on the Eclipse platform

CD Continuous Deployment, pipeline that automatically publishes the
extension on the marketplace

CI Continuous Integration, pipeline that runs the automated tests and
static code analysis always when a branch is pushed to the reposi-
tory

CMake[9] Is a family of tools to build, test and package software

Clangd [19] Offers language support for C++ code. Can be installed as VS
Code extension

Clang [16] Provides language tooling e.g. compiler infrastructure for the C
language family, to which C++ is assigned

CodeLLDB [59] Is a Visual Studio Code extension that offers debugging capabilities
based on the LLDB debugger

Commands [61] VS Code offers an interface against which instructions, so called
commands can be called. Every extension can provide custom com-
mands.

CppTools [20] Name of the C/C++ for Visual Studio Code extension that pro-
vides C/C++ support in Visual Studio Code

CUTE [2] Stands for C++ Unit Testing Easier. Is a C++ testing framework

C++ General-purpose programing language

c4 Model [60] A standard for the architecture description. Was used in the chap-
ter Design

Debugger Tool that allows it to step through a programs code statement by
statement

DiagnosticCollection [64] Is a collection that keeps track of a certain set of code diagnostics
e.g. CUTE test warnings

Difference Viewer User Interface that simplifies the understanding of assertion failures

135

Docker [79] Offers OS-level virtualization. Allows it to deliver software in so
called Containers

Eclipse Popular integrated development environment (IDE) in the Java
environment

Extension Manifest Contains some definitions of an extension. Is equal to the pack-
age.json file in the extension root directory

Extension Entry Point Contains the activate and deactivate functions that are called when
the extension is activated or deactivated. Per default this is equal
to the extension.ts file in the extension root directory

Epic Larger body of work, that can be broken down into smaller tasks

GCC [15] Offers compiler features for C++

GDB [85] Portable debuggers that supports debugging C++ code amongst
other languages. Runs on many Unix-like systems

Git Distributed version control system on which the project’s reposito-
ries are based

GitLab [74] DevOps software where the project’s work items and code reposi-
tories are hosted

Green/Red-Bar View User Interface that visualizes the test outcomes in an easy graspable
way

IDE Integrated Development Environment that offers basic tools to
write and test code

ISO25010 [12] Standard to discover and define software quality measures

JSON JavaScript Object Notation. Lightweight data format

JSON-RPC [57] Lightweight remote procedure call protocol on which the language
server protocol (LSP) builds

JUnit Unit testing framework for the Java environment

Language
Server Provider

Extension that provides language information for a specific pro-
graming language using the language server protocol (LSP) [18]

LaTeX [78] Is a mark up language on which this documentation was built

Linux Family of Unix-like operating systems based on the linux kernel

Linting Step of the CI pipeline where the code style is analyzed against the
code style guidelines

136

LLDB [86] Is a debugger that supports debugging C++ code. Is the debugger
component of the LLVM project

LSP [18] Stands for Language Server Protocol which is a standardized pro-
tocol used by language server provider extension to communicate
with the underlying language servers

Macro Is a part of the code that gets replaced by a predefined value during
the compile process

Mocha [75] JavaScript test framework that runs on node

MSVC [17] Stands for Microsoft Visual C++ which is a compiler for C++
amongst other languages

NFR Non-functional requirement. All requirements that have nothing
to do with a products functionality

Native Debug [58] Visual Studio Code extension that offers debugging capabilities.
Supports both GDB and LLDB

OST [1] Easter Switzerland University of Applied Sciences

Quick Fix Provide an easy option to mitigate a code problem. Can be accessed
over the lightbulb symbol in VS Code

RUP [73] Rational Unified Process. Software development process framework

Scrum [72] Agile project management framework

Scrum+ OST internally known project management framework. Combina-
tion of Scrum and RUP.

Snippets Are templates of code objects that are frequently used and therefore
don’t need to be typed manually every time. A snippet for CUTE
test cases is offered by the CUTE extension

SonarQube Tool that offers continuous code inspection on which it provides a
set of metrics. Is part of the CI pipeline

StdOut Standard output of an application. The normal output of a pro-
gram gets sent to the standard output.

Testing API [37] Native API that offers the basic testing infrastructure such as the
test explorer view

Test Explorer UI [23] Extension for VSCode that offers basic UI and run handling sup-
port for tests. Many adapters available. Deprecated since July
2021

137

TestMate [39] Extension for VSCode that offers testing functionality for a set of
C++ testing frameworks

TS-Mockito [76] Is a mocking library for TypeScript

TypeScript Programming language that is based on JavaScript with optional
static type support. VS Code extensions have to be implemented
in TypeScript

VS Code [4] Short for Visual Studio Code. Open source and platform indepen-
dent code editor by Microsoft

VS Code Marketplace [8] Offers a large number of Visual Studio Code extensions that can
be installed from there

Windows Popular operating system by Microsoft

XML Extensible Markup Language. File format of the test results

138

12 Bibliography

References
[1] https://www.ost.ch/

[2] https://cute-test.com/

[3] https://www.cevelop.com/

[4] https://code.visualstudio.com/

[5] https://cute-test.com/guides/cute-eclipse-plugin-guide/

[6] https://www.eclipse.org/cdt/

[7] https://www.ost.ch/de/forschung-und-dienstleistungen/informatik/
ifs-institut-fuer-softwares

[8] https://marketplace.visualstudio.com/items?itemName=CUTETest.cute-testing

[9] https://cmake.org/

[10] https://github.com/PeterSommerlad/CUTE

[11] https://cute-test.com/img/cute-diff-view.png

[12] https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[13] https://docs.gitlab.com/ee/ci/pipelines/

[14] https://www.sonarqube.org/

[15] https://gcc.gnu.org/

[16] https://clang.llvm.org/

[17] https://visualstudio.microsoft.com/de/vs/features/cplusplus/

[18] https://microsoft.github.io/language-server-protocol/

[19] https://clangd.llvm.org/

[20] https://github.com/microsoft/vscode-cpptools

[21] https://www.ibm.com/docs/en/developer-for-zos/9.1.1?topic=
formats-junit-xml-format

[22] https://marketplace.eclipse.org/content/junit-tools

[23] https://github.com/hbenl/vscode-test-explorer

[24] https://github.com/hbenl/vscode-test-explorer#test-adapters

[25] https://github.com/hbenl/vscode-example-test-controller

[26] https://github.com/microsoft/vscode-docs/blob/vnext/api/extension-guides/
testing.md#migrating-from-the-test-explorer-ui

[27] https://marketplace.visualstudio.com/items?itemName=matepek.
vscode-catch2-test-adapter

139

https://www.ost.ch/
https://cute-test.com/
https://www.cevelop.com/
https://code.visualstudio.com/
https://cute-test.com/guides/cute-eclipse-plugin-guide/
https://www.eclipse.org/cdt/
https://www.ost.ch/de/forschung-und-dienstleistungen/informatik/ifs-institut-fuer-softwares
https://www.ost.ch/de/forschung-und-dienstleistungen/informatik/ifs-institut-fuer-softwares
https://marketplace.visualstudio.com/items?itemName=CUTETest.cute-testing
https://cmake.org/
https://github.com/PeterSommerlad/CUTE
https://cute-test.com/img/cute-diff-view.png
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://docs.gitlab.com/ee/ci/pipelines/
https://www.sonarqube.org/
https://gcc.gnu.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/de/vs/features/cplusplus/
https://microsoft.github.io/language-server-protocol/
https://clangd.llvm.org/
https://github.com/microsoft/vscode-cpptools
https://www.ibm.com/docs/en/developer-for-zos/9.1.1?topic=formats-junit-xml-format
https://www.ibm.com/docs/en/developer-for-zos/9.1.1?topic=formats-junit-xml-format
https://marketplace.eclipse.org/content/junit-tools
https://github.com/hbenl/vscode-test-explorer
https://github.com/hbenl/vscode-test-explorer#test-adapters
https://github.com/hbenl/vscode-example-test-controller
https://github.com/microsoft/vscode-docs/blob/vnext/api/extension-guides/testing.md#migrating-from-the-test-explorer-ui
https://github.com/microsoft/vscode-docs/blob/vnext/api/extension-guides/testing.md#migrating-from-the-test-explorer-ui
https://marketplace.visualstudio.com/items?itemName=matepek.vscode-catch2-test-adapter
https://marketplace.visualstudio.com/items?itemName=matepek.vscode-catch2-test-adapter

[28] https://marketplace.visualstudio.com/items?itemName=fredericbonnet.
cmake-test-adapter

[29] https://marketplace.visualstudio.com/items?itemName=drleq.
vscode-cpputf-test-adapter

[30] https://marketplace.visualstudio.com/items?itemName=dampsoft.
vscode-banditcpp-test-adapter

[31] https://marketplace.visualstudio.com/items?itemName=betwo.b2-catkin-tools

[32] https://marketplace.visualstudio.com/items?itemName=bneumann.
cpputest-test-adapter

[33] https://marketplace.visualstudio.com/items?itemName=zcoinofficial.
boost-test-adapter

[34] https://marketplace.visualstudio.com/items?itemName=Moosecasa.
vscode-acutest-test-adapter

[35] https://marketplace.visualstudio.com/items?itemName=dprog.
vscode-cppunit-test-adapter

[36] https://code.visualstudio.com/updates/v1_59

[37] https://code.visualstudio.com/api/extension-guides/testing

[38] https://github.com/microsoft/vscode-extension-samples/tree/main/
test-provider-sample

[39] https://github.com/matepek/vscode-catch2-test-adapter

[40] https://github.com/matepek/vscode-catch2-test-adapter/tree/legacy

[41] https://github.com/catchorg/Catch2

[42] https://github.com/google/googletest

[43] https://github.com/onqtam/doctest

[44] https://github.com/google/benchmark

[45] https://github.com/matepek/vscode-catch2-test-adapter/pull/276

[46] https://code.visualstudio.com/api/references/vscode-api#TestController

[47] https://code.visualstudio.com/api/references/vscode-api#TestItem

[48] https://github.com/matepek/vscode-catch2-test-adapter/blob/master/src/
framework/ExecutableFactory.ts

[49] https://github.com/matepek/vscode-catch2-test-adapter/blob/master/src/
framework/GoogleTest/GoogleTestExecutable.ts

[50] https://github.com/PeterSommerlad/CUTE/blob/master/cute/cute_test.h

[51] https://github.com/microsoft/vscode-java-test/blob/main/src/runners/
junitRunner/JUnitRunnerResultAnalyzer.ts

[52] https://microsoft.github.io/language-server-protocol/implementors/servers/

140

https://marketplace.visualstudio.com/items?itemName=fredericbonnet.cmake-test-adapter
https://marketplace.visualstudio.com/items?itemName=fredericbonnet.cmake-test-adapter
https://marketplace.visualstudio.com/items?itemName=drleq.vscode-cpputf-test-adapter
https://marketplace.visualstudio.com/items?itemName=drleq.vscode-cpputf-test-adapter
https://marketplace.visualstudio.com/items?itemName=dampsoft.vscode-banditcpp-test-adapter
https://marketplace.visualstudio.com/items?itemName=dampsoft.vscode-banditcpp-test-adapter
https://marketplace.visualstudio.com/items?itemName=betwo.b2-catkin-tools
https://marketplace.visualstudio.com/items?itemName=bneumann.cpputest-test-adapter
https://marketplace.visualstudio.com/items?itemName=bneumann.cpputest-test-adapter
https://marketplace.visualstudio.com/items?itemName=zcoinofficial.boost-test-adapter
https://marketplace.visualstudio.com/items?itemName=zcoinofficial.boost-test-adapter
https://marketplace.visualstudio.com/items?itemName=Moosecasa.vscode-acutest-test-adapter
https://marketplace.visualstudio.com/items?itemName=Moosecasa.vscode-acutest-test-adapter
https://marketplace.visualstudio.com/items?itemName=dprog.vscode-cppunit-test-adapter
https://marketplace.visualstudio.com/items?itemName=dprog.vscode-cppunit-test-adapter
https://code.visualstudio.com/updates/v1_59
https://code.visualstudio.com/api/extension-guides/testing
https://github.com/microsoft/vscode-extension-samples/tree/main/test-provider-sample
https://github.com/microsoft/vscode-extension-samples/tree/main/test-provider-sample
https://github.com/matepek/vscode-catch2-test-adapter
https://github.com/matepek/vscode-catch2-test-adapter/tree/legacy
https://github.com/catchorg/Catch2
https://github.com/google/googletest
https://github.com/onqtam/doctest
https://github.com/google/benchmark
https://github.com/matepek/vscode-catch2-test-adapter/pull/276
https://code.visualstudio.com/api/references/vscode-api#TestController
https://code.visualstudio.com/api/references/vscode-api#TestItem
https://github.com/matepek/vscode-catch2-test-adapter/blob/master/src/framework/ExecutableFactory.ts
https://github.com/matepek/vscode-catch2-test-adapter/blob/master/src/framework/ExecutableFactory.ts
https://github.com/matepek/vscode-catch2-test-adapter/blob/master/src/framework/GoogleTest/GoogleTestExecutable.ts
https://github.com/matepek/vscode-catch2-test-adapter/blob/master/src/framework/GoogleTest/GoogleTestExecutable.ts
https://github.com/PeterSommerlad/CUTE/blob/master/cute/cute_test.h
https://github.com/microsoft/vscode-java-test/blob/main/src/runners/junitRunner/JUnitRunnerResultAnalyzer.ts
https://github.com/microsoft/vscode-java-test/blob/main/src/runners/junitRunner/JUnitRunnerResultAnalyzer.ts
https://microsoft.github.io/language-server-protocol/implementors/servers/

[53] https://code.visualstudio.com/docs/editor/intellisense#:~:text=
IntelliSense%20is%20a%20general%20term,%2C%20and%20%22code%20hinting.%22

[54] https://code.visualstudio.com/assets/api/language-extensions/
language-server-extension-guide/lsp-languages-editors.png

[55] https://code.visualstudio.com/api/references/commands

[56] https://github.com/llvm/llvm-project

[57] https://www.jsonrpc.org/

[58] https://github.com/WebFreak001/code-debug

[59] https://github.com/vadimcn/vscode-lldb

[60] https://c4model.com/

[61] https://code.visualstudio.com/api/extension-guides/command

[62] https://refactoring.guru/design-patterns/composite

[63] https://code.visualstudio.com/docs/editor/refactoring#
_code-actions-quick-fixes-and-refactorings

[64] https://code.visualstudio.com/api/references/vscode-api#
DiagnosticCollection

[65] https://refactoring.guru/introduce-null-object

[66] https://code.visualstudio.com/api/get-started/extension-anatomy#
extension-file-structure

[67] https://code.visualstudio.com/api/references/contribution-points#
contributes.snippets

[68] https://code.visualstudio.com/api/references/contribution-points#
contributes.commands

[69] https://code.visualstudio.com/api/references/activation-events#
onStartupFinished

[70] https://github.com/airbnb/javascript

[71] https://en.wikipedia.org/wiki/Regular_expression

[72] https://www.scrum.org/resources/what-is-scrum

[73] https://en.wikipedia.org/wiki/Rational_Unified_Process

[74] https://about.gitlab.com/

[75] https://mochajs.org/

[76] https://github.com/NagRock/ts-mockito

[77] https://code.visualstudio.com/docs/remote/containers

[78] https://www.latex-project.org/

[79] https://www.docker.com/

141

https://code.visualstudio.com/docs/editor/intellisense#:~:text=IntelliSense%20is%20a%20general%20term,%2C%20and%20%22code%20hinting.%22
https://code.visualstudio.com/docs/editor/intellisense#:~:text=IntelliSense%20is%20a%20general%20term,%2C%20and%20%22code%20hinting.%22
https://code.visualstudio.com/assets/api/language-extensions/language-server-extension-guide/lsp-languages-editors.png
https://code.visualstudio.com/assets/api/language-extensions/language-server-extension-guide/lsp-languages-editors.png
https://code.visualstudio.com/api/references/commands
https://github.com/llvm/llvm-project
https://www.jsonrpc.org/
https://github.com/WebFreak001/code-debug
https://github.com/vadimcn/vscode-lldb
https://c4model.com/
https://code.visualstudio.com/api/extension-guides/command
https://refactoring.guru/design-patterns/composite
https://code.visualstudio.com/docs/editor/refactoring#_code-actions-quick-fixes-and-refactorings
https://code.visualstudio.com/docs/editor/refactoring#_code-actions-quick-fixes-and-refactorings
https://code.visualstudio.com/api/references/vscode-api#DiagnosticCollection
https://code.visualstudio.com/api/references/vscode-api#DiagnosticCollection
https://refactoring.guru/introduce-null-object
https://code.visualstudio.com/api/get-started/extension-anatomy#extension-file-structure
https://code.visualstudio.com/api/get-started/extension-anatomy#extension-file-structure
https://code.visualstudio.com/api/references/contribution-points#contributes.snippets
https://code.visualstudio.com/api/references/contribution-points#contributes.snippets
https://code.visualstudio.com/api/references/contribution-points#contributes.commands
https://code.visualstudio.com/api/references/contribution-points#contributes.commands
https://code.visualstudio.com/api/references/activation-events#onStartupFinished
https://code.visualstudio.com/api/references/activation-events#onStartupFinished
https://github.com/airbnb/javascript
https://en.wikipedia.org/wiki/Regular_expression
https://www.scrum.org/resources/what-is-scrum
https://en.wikipedia.org/wiki/Rational_Unified_Process
https://about.gitlab.com/
https://mochajs.org/
https://github.com/NagRock/ts-mockito
https://code.visualstudio.com/docs/remote/containers
https://www.latex-project.org/
https://www.docker.com/

[80] https://github.com/streetsidesoftware/vscode-spell-checker

[81] https://prettier.io/docs/en/install.html

[82] https://www.electronjs.org/docs/latest/tutorial/automated-testing

[83] https://code.visualstudio.com/api/advanced-topics/extension-host

[84] https://code.visualstudio.com/docs/getstarted/settings

[85] https://www.sourceware.org/gdb/

[86] https://lldb.llvm.org/

[87] https://code.visualstudio.com/api/references/vscode-api#
CodeActionProvider%3CT%3E

[88] https://cmake.org/cmake/help/latest/variable/CMAKE_EXPORT_COMPILE_
COMMANDS.html

[89] https://www.mingw-w64.org/

[90] https://www.youtube.com/channel/UCx-sWK8pqdoQ4QRTUWrX2pw

142

https://github.com/streetsidesoftware/vscode-spell-checker
https://prettier.io/docs/en/install.html
https://www.electronjs.org/docs/latest/tutorial/automated-testing
https://code.visualstudio.com/api/advanced-topics/extension-host
https://code.visualstudio.com/docs/getstarted/settings
https://www.sourceware.org/gdb/
https://lldb.llvm.org/
https://code.visualstudio.com/api/references/vscode-api#CodeActionProvider%3CT%3E
https://code.visualstudio.com/api/references/vscode-api#CodeActionProvider%3CT%3E
https://cmake.org/cmake/help/latest/variable/CMAKE_EXPORT_COMPILE_COMMANDS.html
https://cmake.org/cmake/help/latest/variable/CMAKE_EXPORT_COMPILE_COMMANDS.html
https://www.mingw-w64.org/
https://www.youtube.com/channel/UCx-sWK8pqdoQ4QRTUWrX2pw

13 Content Lists

List of Figures
1 Cevelop CUTE Plug-In . 4
2 VS Code CUTE Editor Integration . 5
3 VS Code CUTE Extension UI . 6
4 VS Code CUTE Unregistered Test . 7
5 VS Code CUTE Unregistered Suite . 7
6 VS Code CUTE Legacy Syntax . 7
7 VS Code CUTE YouTube Instructions . 8
8 Use case diagram . 13
9 Cevelop Green/Red-Bar View [11] . 15
10 Cevelop Assert Difference Viewer . 16
11 Test Explorer View . 18
12 Structure diagram . 26
13 Test discovery sequence diagram . 27
14 Test run sequence diagram . 28
15 LSP Comparison [54] . 39
16 CUTE testing on YouTube [90] . 42
17 Extension context diagram . 43
18 Component diagram . 47
19 Testing component diagram . 51
20 Tools component diagram . 53
21 CodeActionProvider diagram . 54
22 CodeGenerationProvider diagram . 55
23 QuickFixProvider diagram . 56
24 CodeAnalyzer diagram . 57
25 Debugger diagram . 58
26 Environment component diagram . 59
27 TestFinderMode Setting . 67
28 LanguageClientMode Setting . 68
29 TestRunHandler sequence diagram . 69
30 TestDebugHandler sequence diagram . 71
31 ExecutableTestFinder sequence diagram . 72
32 CodeTestFinder sequence diagram . 74
33 Find Test Runners sequence diagram . 76
34 Find Test Suite sequence diagram . 78
35 Get Runner Call sequence diagram . 79
36 Find New Test sequence diagram . 80
37 Find Legacy Test sequence diagram . 82
38 Test Explorer . 85
39 VS Code CUTE inline integration . 86
40 VS Code CUTE run history . 86
41 The VS Code CUTE project generator . 87
42 Structure of a newly generated project . 87
43 Legacy Syntax Settings . 88
44 Legacy Syntax Update pop-up . 88
45 Assertion Failure . 88
46 Unregistered Test Editor Warning . 89
47 Unregistered Test Existing Suite Fix . 90

143

48 Unregistered Test New Suite Fix . 90
49 Unregistered Suite Editor Warning . 91
50 Unregistered Suite Fix . 92
51 Legacy Syntax Editor Warning . 93
52 Legacy Syntax Fix . 93
53 Feature Comparison . 94
54 SonarQube Project Size . 95
55 Component Coverage Result . 95
56 SonarQube Project Metrics . 96
57 Test Explorer Clangd Code-Based Discovery Editor 98
58 Test Explorer CppTools Code-Based Discovery Explorer 99
59 Test Explorer Executable-Based Discovery Editor 100
60 Test Debugging Breakpoint . 101
61 Test Debugging Result . 101
62 Test Run Single Test . 102
63 Test Run Test Suite Tests . 103
64 Unregistered Test Warning . 104
65 Unregistered Test QuickFix 1 . 104
66 Unregistered Test Quick Fix 2 . 105
67 Unregistered Suite Warning . 106
68 Unregistered Suite Quick Fix . 106
69 Legacy Syntax Warning . 107
70 Legacy Syntax Quick Fix . 107
71 Legacy Syntax Warning Pop-Up . 108
72 CUTE Project Template . 109
73 Create New Suite Command . 110
74 TEST Snippet . 111
75 Assertion Failure Visualization . 112
76 Work Breakdown Structure Diagram . 119
77 Project Timeline . 123
78 Risk Matrix . 127
79 Development Containers Architecture [77] . 129
80 CUTE Extension Pipeline . 129
81 GitLab Test Report . 130
82 Development Server structure . 131

144

Listings
1 CUTE Executable Interface . 23
2 CUTE Executable StdOut Result . 24
3 CUTE Executable XML Result . 24
4 Test Executable Identification [48] . 32
5 Executable based test discovery [49] . 33
6 cute_test.h test instantiation . 34
7 CUTE Executable StdOut Success . 35
8 CUTE Executable StdOut Failure . 35
9 CUTE Executable XML Result Success . 36
10 CUTE Executable XML Result Failure . 36
11 TEST macro v1 . 60
12 TEST macro v2 . 61
13 TEST macro v3 . 61
14 Extension Standard Folder Structure [66] . 62
15 General Extension Properties . 63
16 Extension Commands . 64
17 Extension Snippets . 64
18 Extension Entry Point . 65
19 TestRun Folder Structure . 70
20 cute_runner.h makeRunner implementation . 77
21 CUTE Runner Instantiation . 77
22 CUTE Runner Call Operators . 78
23 RunSuite Function . 79
24 Sample New CUTE TEST . 81
25 CUTE Test Constructors [50] . 83
26 Sample Legacy Test . 84

145

A General Testimonial
This chapter contains an overview of the experiences that were made throughout the course of
the project. The experiences are described separately for the areas Team and Communication,
Meetings, Challenges, and finally from the personal perspective of each project member.

A.1 Team / Organization / Communication
The collaboration within the project team worked without any major difficulties. The therefore
used collaboration tools such as GitLab and Microsoft Teams provided the needed flexibility
to work time and location independently. The communication with the supervisor of this
project always worked without any issues. The intermediate presentation brought up valuable
findings, which were afterwards used for the further development of the product and for the
documentation of the project. Due to health problems and the back then still difficult situation
with the ongoing COVID-19 pandemic, the intermediate presentation had to be hold online.
The final presentation on the other hand will be held in person.

A.2 Meetings
Throughout the project meetings with the project supervisor were held on a weekly basis. The
meetings were scheduled for Monday afternoon from 4:00 until 5:00. During these weekly meet-
ings the project’s progress and potential problems were discussed. Furthermore, the planning
for the upcoming week was discussed and adjusted if needed. After the meeting with the
project supervisor a short meeting was held within the project team to discuss the findings of
the meetings and finalize the weekly planning.

A.3 Challenges
Throughout the course of the project challenging situations from a technical point of view
occurred frequently. Especially during the elaboration phase, while creating prototypes ap-
proaches sometimes turned out not to be working. Thanks to the risk analysis and the thereby
defined mitigation strategies, none of these setbacks could endanger the course of the project
and a successful completion. The biggest technical difficulties had to do with the integration of
the different language server provider. More detailed information about these problems can be
found in the chapter Decisions.

146

A.3.1 Personal Experience

This section contains the experiences, that were made throughout the project, from a personal
point of view. Each of the project members’ views about the project and the experiences made
throughout the project’s duration can be found below.

A.3.2 Dominic Klinger

I was able to gain quite a bit of experience again last semester. The project gave enough
opportunities to try things out again. Afterwards, I was able to implement what I had tried.
I also was able to use my previous experience in Continuous Integration and still learned a lot
of new things again. The projects are very individual, which makes Continuous Integration
always a new challenge. I was also able to successfully apply what I had learned in previous
semesters. For example, the basics of compiler construction. However, the project also showed
where the problems are in such an unknown area. Especially with the tooling and the assembly
of the pipeline it became apparent that some things would have been better suited at an earlier
stage of the project. For example, the linting, which would have been very helpful from the
beginning. So, we refactored parts of the project later because we didn’t integrate the linter
with the coding style guide in an early stage. Testing in general was a difficulty because this
was a bit poorly described on how to best implement this. Especially in the area of testing
coverage with NYC/Istanbul was quite a heavy matter. If JavaScript files were already loaded;
it happens that the coverage is not captured because the instrumentation of the files by Istanbul
has not yet taken place. In the end, I am very satisfied with the result and I am convinced that
we have created a good product.

A.3.3 Christian Bisig

The project that was conducted in the scope of this thesis, was very fascination but from time
to time also quite challenging as I’ve never developed a Visual Studio Code extension before and
was not familiar with the integration possibilities of language information providers. The large
number of technologies and methods which I had no prior experience in, made this assignment
a very interesting task. Existing experience from different areas known from school or from
work had to be combined in order to find an optimal solution. At the end of the project a
solution can be presented, that fulfills all functional and non-functional requirements, which
were defined based on the assignment during the project planning. Executing such projects in
teams always provides the possibility to improve the project management and communication
skills.

A.4 Conclusion
Beside many challenges throughout the course of the project, in the end a working product could
be presented. The developed CUTE extension for Visual Studio Code covers all functional and
non-functional requirements and is ready to use in the scope of the C++ modules offered at
the OST Eastern Switzerland University of Applied Sciences. The next steps are described in
the sections above. One of the most important next steps is to get in the feedback from actual
users, that use the CUTE extension during their C++ exercises.

147

B Time report
This chapter contains an overview of the actually spent time. In the first section of the chapter
an overview of the whole project can be found. Subsequent to this project overview, a more
detailed listing of the time spent can be found. Thereby the time is split into the corresponding
work items, that were created on GitLab. The time tracking was done using the GitLab time
tracking functionality. An up to date overview of the spent time was made available on a
dashboard, that was accessible by all team members and the project’s supervisor.
The time spent is evenly split between the two project members and in total adds up to ap-
proximately 775 hours. In comparison to the 726 hours that resulted from the planning on epic
level, this is an additional effort of approximately 6% which is an acceptable number.

B.1 Time stats
• total spent: 96d 7h 15m

• spent: 96d 7h 15m

• Dominic Klinger: 48d 3h

• Christian Bisig: 48d 4h 15m

B.2 Issues

Issue ID Title Spent
30 Testing 1d 6h
29 Programming 22d 2h
28 Analyzing 2d
27 Publishing 4h
26 Design Refactoring for NFR fulfillment 1d 5h
25 Setup UnitTesting for CUTE Extenison 1d 6h
24 Implement TestDebugging Logic 1d 2h
23 Implement TestExecution Logic 1d
22 Implement TestDetection 2d 2h
21 Plan architecture 2d 2h 30m
20 Evaluate clangd extension as replacement for cpptools 1d 2h
19 Create command to create new TestSuite files 1d 1h
18 Create quickfix to convert legacy test declarations to TEST(...)

declarations
1d 2h

17 Create quickfix to register tests to new testsuites 1d 1h
16 Create quickfix to register unregistered testcases to existing

testsuites
7h

15 Find options to discover legacy test declarations 1d 7h
15 Documentation 8d 4h

148

Issue ID Title Spent
14 Find options to discover unused testsuites 1d 5h
14 Write Abstract & Management Summary 6h
13 Investigate options to warn users about unregistered tests 1d 4h 30m
13 Implementation documentation 1d
12 Decisions Documentation 1d 1h
12 Investigate features that make test development easier 1d 30m
11 Document Project Management 6h
11 Evaluate options to use vs-code snippets for code generation 2h
10 Documentation about prototype
10 Prepare features for alpha version 5h
9 Plan exceptionhandling and fault tolerance 1d 4h 30m
9 Documentation template project
8 Documentation about development environment
8 Videodreh 3d 1h
8 Evaluate options to find test implementations 3d 6h
7 Test code listings
7 Zwischenpräsentation 2h
7 Implement XML-Result parser 1d 2h 30m
6 Implement PlantUML
6 Zwischenpräsentation vorbereiten 1d 4h
6 Investigate possibilities to run tests parallel 4h
6 Create alpha version for presentation 2h 30m
5 Integrate new CUTE Extension
5 Investigate possibilities to debug tests 6h
5 System context (diagram) 4h
5 Meetings 3d 6h 45m
4 Setup unit / integration testing infrastructure for the extension 2h
4 Investigate existing VS Code Test Extensions 3d 6h
4 Non functional requirements 3h
4 Investigate testresult processing 2h
3 Create testextension prototype 1d 7h 30m
3 Familiarize with VS Code Extensions 3d 7h
3 Investigate test execution 2h
3 Functional reuirements
2 Use cases / User stories 4h
2 Setup template project 1d
2 Investigate test registration (vs code testingApi) 4h
2 Setup Pipeline
1 Risk analysis 5h
1 Initialize extension project template 3h
1 Investigate test detection 2d
1 implement –help flag 1h
1 Setup infrastructure 1d 6h

149

C Meeting protocols
This section contains all meeting protocols and within them the weekly planning. The meeting
was held on a weekly basis and scheduled for Monday from 4:00pm to 5:00pm. The project team
and the project supervisor took part in these weekly meetings. The protocols were maintained
in OneNote to simplify collaboration within the project team.

C.1 Week1

150

C.2 Week2

151

C.3 Week3

152

C.4 Week4

153

C.5 Week5

154

C.6 Week6

155

C.7 Week8

156

C.8 Week9

157

C.9 Week10

158

C.10 Week11

159

C.11 Week12

160

C.12 Week13

161

C.13 Week14

162

	Introduction
	Initial position
	CUTE
	Cevelop
	Visual Studio Code

	Objective
	Team
	Supervisor and Examiner

	Requirements Analysis
	General Description
	Product Perspective
	Product Functionality
	User Characteristics
	Dependencies

	Use Cases
	Use Case Diagram

	Additional Requirements
	Reliability
	Performance and Efficiency
	Usability
	Maintainability and Adaptability

	System context
	Interfaces
	Additional Constraints

	Domain Analysis
	Structure Diagram - CUTE testing
	System Sequence Diagram
	UC-1: Navigate To Test Case
	UC-2: Run Tests & UC-4: Analyze TestResult

	Decisions
	Fundamental Architecture Decision
	Build the extension from scratch
	Test Explorer UI Extension
	VS Code Testing API
	C++ TestMate Extesnsion
	Decision

	Test Discovery
	Executable Based
	Code Based
	Decision

	Result Format
	Executable StdOut Result
	File Based XML Result
	Decision

	Language Server Provider
	CppTools - C/C++ for Visual Studio Code
	Clangd
	Decision

	Language Server Integration
	Custom Language Server Client
	Use Built-in Visual Studio Code Commands
	Use Propretary Language Server Provider Commands
	Decision

	Debugging Libraries
	MSYS2
	User Guide

	Design
	Architecture overview
	CUTE Extension
	Supported Extensions

	CUTE Extension Components
	Class Level Overview
	Testing Component
	Tools Component
	Utilities Component
	Environment Component

	CUTE

	Implementation
	Used technologies
	Extension Folder Structure
	Extension Manifest
	Extension Entry File

	Quality measures
	Automated Tests
	Manual Tests
	Continuous Integration (CI)

	General Extension Logic
	TEST(...) macro available
	TEST(...) macro not available
	Clangd Installed
	C/C++ for VS Code Installed
	Clangd & C/C++ for VS Code Installed
	No Language Server Provider (LSP) Installed

	RunHandler Implementation
	TestRunHandler
	TestDebugHandler

	TestFinder Implementation
	ExecutableTestFinder
	CodeTestFinder

	CodeAnalyzer Implementation
	Find Test Runners
	Find Test Suites
	Find New Tests
	Find Legacy Tests

	CMakeParser Implementation

	Results
	Feature set
	Test Explorer
	Code Editor Integration
	Project Generation
	Legacy Syntax Converter
	Assert Failure Analysis
	Quick Fixes

	Feature comparison
	Metrics

	Testing
	Functionality Testing
	Test Protocol

	Nonfunctional Requirements (NFR) Testing
	Test Protocol

	Conclusion
	Summary
	Result evaluation
	Reached goals / open work
	Future view

	Project Management
	Organization
	Project Contributors
	Initiator / Supervisor
	Expert / Examiner

	Work Breakdown Structure
	Cost Estimate
	Time Planning
	Project Phases
	Milestones
	Timeline
	Epic Estimate
	Workitems

	Risk analysis
	R1: CUTE does not fulfil requirements for VS Code test environment
	R2: VS Code Testing API does not fulfil the requirements
	R3: Incorrect handling of the requirements
	R4: Wrong architectural deciscions
	Risk Matrix

	Quality Management
	Tools

	Development Tools
	Documentation
	Extension
	Development Server
	Code Style Guidelines

	Glossary
	Bibliography
	Content Lists
	General Testimonial
	Team / Organization / Communication
	Meetings
	Challenges
	Personal Experience
	Dominic Klinger
	Christian Bisig

	Conclusion

	Time report
	Time stats
	Issues

	Meeting protocols
	Week1
	Week2
	Week3
	Week4
	Week5
	Week6
	Week8
	Week9
	Week10
	Week11
	Week12
	Week13
	Week14

