
Department of Computer Science
OST – University of Applied Sciences

Campus Rapperswil-Jona
Spring Term 2022

SR-App FlexAlgo

Term Project

Authors: Yael Schärer
Myriam Assunção

Advisors: Prof. Laurent Metzger
Urs Baumann

Version: June 3, 2022

Part I.

Abstract

i

Objective Segment Routing is used to engineer traffic on a specific path in the network. The
characteristics of the path are manually written in the configuration of the routers and each path
has to be encoded specifically. This approach doesn’t scale. FlexAlgo configures Algos, which can
be seen as a subset of the network. This gives flexibility to engineer network traffic based on less
general constraints and uses a simplified way of configuration. Flexible algorithms are therefore
much more dynamic and manage the traffic on a network as granular as necessary. Segments
and packet routes become infinitely customizable and independent from each other. But, the
maintenance of flexible algorithms in a network can be complicated, time consuming and needs
intimate knowledge of network configuration. Here the application of this project comes into play.
The SR-App FlexAlgo will make configurations fast and easy and allow not only a graphical view
of the configurations but also show possible inconsistencies in the network. With the proof of
concept built in this project, the application’s feasibility can be determined and any mistakes in
the architecture corrected.

Approach The application will work closely with the external system Jalapeño API Gateway
built by the INS institute. The gateway allows a real time view of the connected network, the
currently configured FlexAlgos and the surrounding networks. The application will have to be
capable of handling large network workloads, as it will be used by service providers that can
have networks with up of thousands of elements. To be able to handle these workloads and fulfill
scaling and availability needs, the architecture was planned with a cloud native approach. A
microservice architecture with serverless computing whenever reasonable and very lightweight
frameworks further support the application’s technical requirements.

Conclusion Studying the FlexAlgo technology in the duration of this project revealed all
necessary data that is needed and where to find it. With this knowledge a prototype was built
that reads and displays all relevant network and FlexAlgo configurations. Thanks to the Cisco
proprietary application Jalapeño the project’s application can retrieve the required configuration
data from the underlaying network devices. The SR-App FlexAlgo prototype provides multiple
views of the relevant data according to different groupings to help understand and work with
the running network. Additionally, it allows a graphical view of the topology and its algos on a
simplified website to show how the finished product may display this data.

This proof of concept shows that an application based on the flex algo technology is a fitting
addition to the SR-App series.

ii

Part II.

Management Summary

iii

Authors Myriam Assunção, Yael Schärer

Advisors Prof. Laurent Metzger, Urs Baumann

Topic Software Engineering, Segment Routing

Project Partner Institute for Netowrk Solutions

Initial Situation

Flexible Algorithm (FlexAlgo) is a Segment Routing technology that improves the static nature
of its parent protocol. FlexAlgo allows a dynamic configuration of network paths that bring high
individuality to package traffic routing. This freedom brings much complexity and configuring
FlexAlgo is a time consuming task that needs to be manually performed on each node of a
network. Additionally it needs intimate knowldege of network configurations and is prone to
human error, as configuration can be highly inconsistent between nodes.

Flexible Algorithm (FlexAlgo) is a Segment Routing technology that improves the static nature
of its parent protocol. FlexAlgo allows a dynamic configuration of network paths and adds
individuality to package routing. This freedom brings complexity. Configuring FlexAlgos is a
time consuming task that needs to be manually performed on each node of a network. It needs
intimate knowldege of network configurations and is prone to human error, as configuration can
be highly inconsistent between nodes.

Here the SR-App FlexAlgo will find its place in todays market for network solutions. It will
handle the FlexAlgo technology on a given network with an easy to use graphical interface that
displays all the relevant data in a neat, understandable format. To change a FlexAlgo the user
will merely have to update the information on any given FlexAlgo displayed in the application and
the application will handle the task of updating and synchronizing all relevant network routers
to ensure a correct and globally consistent configuration.

Figure 0.1.: Flexible Algorithm Topology [30]

iv

Procedure and Technology
In this project a prototype for the SR-App FlexAlgo was built to ensure the SR-App will fit into
and bring additional value to the SR-App series of the Institute for Network Solutions at the
OST University of Applied Science.

To built the prototype all functional and non-functional requirements were defined and reviewed
with the project advisors. This ensured all use cases and production demands of the software
would be met. Additionally, research was conducted on Segment Routing and flexible algorithm
to ensure that the SR-App FlexAlgo would cover all necessary information. This is ensures
the prototype can be used a basis of a future project where configuring FlexAlgos will be the
focus.

Based on the research and requirements an architecture was developed. High attention was paid
to the performance of the application. This because the demands of current networks, that
can grow quite large, have to be met to provide a satisfying user experience. Concurrently the
functionalities of the prototype were chosen to give an overview of how the application would
handle the collection and aggregation of network data.

With requirements, functionalities and architecture defined, the construction phase started. In
the first week of this phase a stripped down draft of the prototype architecture was implemented
to check its feasibility. Upon meeting success the prototype itself was built and extensively tested
in the following weeks.
At first the network read service was constructed that accesses all network data and performs the
necessary business logic to make the data easily consumable by a client. With the transformed
data a server side rendered view was implemented to better determine if all necessary data was
accessed. As time allowed a stripped down graphical frontend was adapted to give a basic view
of how a finished frontend could be constructed.

Results
During this project a functional prototype of a SR-App FlexAlgo application was developed. With
this product a comprehensive review of the software is possible and a decision can be reached
about the feasability of the product SR-App FlexAlgo.

The backend service allows a user to access all relevant FlexAlgo data and provides an Application
Programming Interface (API) to return the information in an easily consumable format for any
given frontend. Additionally server side rendered web pages show an simple overview of the
current configurations.

The additional graphical frontend shows a way to display a subset of the gathered data and how
algorithms can be shown on a network as easily understandable graphs.

The prototype was tested and optimized for the fulfillment of the functional requirements and
shows that handling the large amount of data in a reasonable amount of time is possible. As the
prototype implements the performance heaviest part of the application, a good user experience
for the final software will be achieveable.

v

Figure 0.2.: Basic User Interface

Outlook
The prototype functions as a proof of concept and as such shows the SR-App FlexAlgo will be a
worthwile addition to the SR-App line. The architecture planned for the project can be utilized
for the final application with minimal changes to it. Now the production of the final software can
be started.

vi

Acknowledgements

We offer thanks to the following people that have helped to shape and support this project.

Prof. Laurent Metzger We thank as the main supervisor and initiant of the SR-App project.
He helped us understand the domain and gave patient reviews during the weekly meetings.

Urs Baumann We thank for the support and supervision of this project as the co-advisor. His
input at the weekly meetings improved our project greatly.

Yannick Zwicker We thank for the infrastructure he helped provide and the patient help with
the Kubernetes technologies.

Severin Dellsperger We thank for the kind help with the FlexAlgo protocol and for lending us
the books.

Michel Bongard We thank for the introduction to the Jalapeño API Gateway and the Jalapeño
technologies. We would have struggled without his kind help. We also thank him for the use of
this React demo application.

Michael Zollinger We thank for the support with the development of the architecture of this
project and his valuable input.

Manuel Bauer We thank for his valuable input on the architecture of this project.

Florian Bruhin We thank for his patient help with the python programming language.

Davor Gajic and Leonard Obernhuber We thank for the usage of their mocking tool.

Contents

I. Abstract i

II. Management Summary iii

Glossary 1

Bibliography 6

III. Technical Report 9

1. Introduction 10
1.1. Thesis Composition . 10
1.2. Motivation . 10
1.3. Aims and Objectives . 11

2. Segment Routing Fundamentals 12
2.1. Basics . 12
2.1.1. Segment Routing . 13
2.2. YANG Model . 19
2.3. Project Related Network Technologies . 21
2.3.1. Underlaying Network . 21
2.3.2. Jalapeño . 21
2.3.3. Jalapeño API Gateway . 22

3. Results 24
3.1. Distinction . 24
3.2. Achievements . 24
3.2.1. Functional Requirements . 24
3.2.2. Non-Functional Requirements . 33
3.3. Implementation . 34
3.3.1. Update Functionality . 34
3.3.2. Live Model . 35
3.3.3. Caching . 35
3.3.4. Pipeline . 35

4. Conclusion 37
4.1. Retrospective . 37
4.2. Discussion . 37
4.3. Outlook . 39
4.3.1. Improvements . 39
4.3.2. Innovations . 40
4.3.3. Further Thoughts . 40

viii

Contents

5. Terminology 41

IV. Project Documentation 44

1. Requirements 45
1.1. Use Cases . 45
1.1.1. Actors . 45
1.1.2. Diagram . 46
1.1.3. SA Use Cases . 47
1.1.4. BA Use Cases . 50
1.2. Non-Functional Requirements . 56
1.2.1. Functionality . 56
1.2.2. Reliability . 56
1.2.3. Usability . 57
1.2.4. Performance . 57
1.2.5. Maintainability . 58

2. Domain Analysis 59
2.1. Domain Model . 59
2.2. Administrative Concepts . 60

3. Architecture 62
3.1. Twelve Factor Methodology . 62
3.2. Design Goals . 65
3.3. C4 Diagrams . 66
3.3.1. Context Diagram . 66
3.3.2. Container Diagrams . 67
3.3.3. Package Diagram . 69
3.3.4. Class Diagram . 70
3.4. Sequence Diagrams . 79
3.5. Technology Decisions . 82
3.5.1. Technology Stack . 82
3.5.2. Language . 82
3.5.3. Microservices . 84
3.5.4. Serverless Architecture . 86
3.5.5. Communication . 87
3.5.6. Live Model . 90
3.6. API Definition . 91
3.6.1. Swagger Documentation . 92
3.6.2. HTML . 93
3.6.3. React API . 94
3.6.4. Update . 97
3.7. Logging . 99
3.8. Frontend . 100
3.8.1. Service Side Rendered . 100
3.8.2. SPA . 104
3.9. Deployment . 106
3.9.1. Network Read . 106
3.9.2. React Frontend . 108
3.10. Wireframes . 110

ix

Contents

4. Mocking 112

5. Testing 113
5.1. System Test - Review of Iteration 7 . 114
5.1.1. Tests - SA MVPs . 114
5.2. Acceptance Test - Review of Iteration 7 . 117
5.2.1. Tests . 117

V. Project Management 119

1. Project Plan 120
1.1. Introduction . 120
1.1.1. Purpose . 120
1.1.2. Scope . 120
1.2. References . 120
1.2.1. Glossary . 120
1.2.2. Project Overview . 120
1.2.3. Assumptions and Constraints . 121
1.3. Project Organisation . 121
1.4. Internal Structure . 122
1.5. External Contacts . 122
1.6. Management . 122
1.6.1. Meetings . 122
1.6.2. Organisation Git . 122
1.7. Schedule . 123
1.7.1. Workflow . 123
1.7.2. Milestones . 124
1.8. Risk Management . 124
1.9. Issues . 124
1.10. Infrastructure . 125
1.11. Quality Assurance . 126
1.12. Development . 126
1.12.1. CI/CD . 126
1.12.2. Code Reviews . 126
1.12.3. Code Style Guidelines . 127
1.13. Definition of Done . 127
1.13.1. Documentation . 127
1.14. Tests . 127
1.14.1. Automated Tests . 127
1.14.2. System Tests . 127
1.14.3. Acceptance Tests . 128
1.14.4. Usability Tests . 128

2. Risk Analysis 129
2.1. Purpose . 129
2.2. Risk Matrix . 129
2.3. Risk Management . 130

3. Quality Measures 134
3.1. Coding Guidelines . 134

x

Contents

3.2. Definition of Done . 134
3.3. End of Elaboration Checklist . 134
3.4. Time Tracking . 135
3.5. GitLab Workflow . 135
3.6. Code Reviews . 135
3.7. Sprint Reviews . 135
3.8. Metrics and Code Analysis . 135
3.8.1. SonarQube . 135
3.8.2. Network Read . 137
3.8.3. Frontend . 137
3.9. Testing . 137
3.9.1. Unit Tests . 137
3.9.2. Integration Tests . 137
3.9.3. System and Acceptance Tests . 137
3.9.4. Usability Tests . 138
3.10. Pipeline . 138
3.11. Non-Functional Requirements . 138
3.11.1. Security . 138
3.11.2. Reliability . 138
3.11.3. Usability . 139
3.11.4. Performance . 139
3.11.5. Maintainability . 139

VI. Indexes 140
List of Figures . 142
List of Tables . 143
Listings . 144

VII.Appendix 145

1. Task Definition 147

2. Definition of Done Checklists 151

3. Meeting Protocols 152

4. Time Reports 153

5. Testing Protocols 154
5.1. Acceptance Test - Review of Iteration 7 . 155
5.1.1. Tests . 155
5.2. Acceptance Test - Review of Iteration 6 . 157
5.2.1. Tests . 157
5.3. Acceptance Test - Review of Iteration 5 . 159
5.3.1. Tests . 159
5.4. Acceptance Test - Review of Iteration 4 . 161
5.4.1. Tests . 161
5.5. System Test - Review of Iteration 7 . 163
5.5.1. Tests - SA MVPs . 163

xi

Contents

5.6. System Test - Review of Iteration 6 . 165
5.6.1. Tests - SA MVPs . 166
5.6.2. Tests - SA Optionals . 167
5.7. System Test - Review of Iteration 5 . 167
5.7.1. Tests - SA MVPs . 168
5.7.2. Tests - SA Optionals . 169
5.8. System Test - Review of Iteration 4 . 169
5.8.1. Tests - SA MVPs . 170
5.8.2. Tests - SA Optionals . 171

6. Container Diagram 172

7. YANG model 174

8. Decoding Affinities 175

9. Network Configurations 176

10. Pipeline 177

11. Kubernetes Files 179

xii

Glossary

API Application Programming Interface. Endpoint for requests to an application exposed to the
outside.. 24, 25, 28, 29, 31–35, 69, 72, 73, 79, 80, 84, 86, 89–94, 96, 97, 100, 104, 108, 109

ArangoDB Multi-model, no-sql database with additional functionality for graphs.. 19, 34–36,
38, 63, 64, 66, 69, 72, 73, 77–79, 87, 88, 103, 104, 112, 136, 142, 175

BA Bachelor Thesis. 33, 34, 66, 75, 120, 128, 136

backend Python with Flask will be used.. 28, 35, 121, 122, 124, 125

bash Command line tool.. 112

BGP Border Gateway Protocol. A routing protocol that can be used inside an autonomous
systems as internal protocol. Or it can be used as external routing protocol between multiple
autonomous systems.. 15, 20, 60

Black A Python code formatter. 35, 127, 134, 138

cache A technology that stores data so future requests can be made faster.. 35, 38, 87

CI/CD Continous integration and deployment. 62, 122, 127

Cisco Company that develops software-defined networking, cloud, and security solutions.. 21,
22, 56, 60

Clockify A web tool to track the time teammembers spent on the poject.(https://app.clockify.me/timesheet).
125

cloud native A way to design, construct and operate architectures designed to utilize the cloud
computing model.. 33, 57, 62, 121

Cobertura Java tool to calculate code coverage.. 138

CRUD Create, Read, Update, Delete. 40, 45, 50, 52, 56, 58, 75, 85, 97

database Data persistence technology. For this project PostgreSQL. 121, 122

decorator function Function object that wraps around an input function. It executes the input
functions code with additions around it.. 99

Django A web framework that enables rapid development of secure and maintainable websites
in Python.. 82, 83

Docker A set of platform as a service (PaaS) products that use OS-level virtualization to deliver
software in packages called containers. (by Wikipedia). 35–37, 107, 138

DTO Data Transfer Object. 76

Duckly An IDE plugin or web tool that makes it possible to code remotely together on a single
file (pair programming).. 125

1

Glossary SR-App FlexAlgo

EoE End of Elaboration. 124

etcd Kubernetes Database for cluster information.. 106

FastAPI High performance Python Framework.. 83

Flask Lightweight web framework for Python.. 38, 83–86, 99, 100, 125

framework Premade software that provides generic functionality and can be extended with user-
written, more specific code.. 38, 47, 64, 82–86, 121, 125

frontend A web application with React that extends an already existing application from INS
that illustrates the devices and their connections. 11, 24, 25, 28, 29, 32–36, 74, 75, 110,
121, 122, 124, 128, 138

Git A free and open source distributed version control system designed to handle everything from
small to very large projects with speed and efficiency.. 125

GitLab An open source end-to-end software development platform with built-in version control,
issue tracking, code review, CI/CD, and more. OST version will be utilized in this project..
35, 36, 62, 100, 106–108, 121–127, 138

golang Programming language, fast and easy to understand.. 69, 82, 83, 112

gRPC Google Remote Procedure Call. An open source remote communication technology that
uses HTTPS. It supports the usage of TLS and token-based authentication and is consistent
across platforms and implementation.. 22, 24, 28, 34, 35, 37–39, 62–64, 67, 69, 72, 76–78,
80, 83, 84, 86–91, 97, 121

html Hypertext Markup Language. 24, 28, 69, 73, 80, 91, 93, 94, 100, 137

HTTP Hyptertext Transfer Protocol. 28, 34, 38, 80, 104, 138

IETF Internet Engineering Task Force. 10

IGP Interior Gateway Protocol. This type of protocols let the packets be exchanged inside an
autonomous system. Consider a more detailed site here.. 12, 13, 15, 18, 42, 61, 101

ingress A Kubernetes element that handles access from outside to the elements of a cluster.. 13,
63, 106, 107, 112

INS Institute of Networked Solutions in Rapperswil St.Gallen. 11, 12, 21, 22, 64, 66, 69, 100,
108, 112, 113, 121, 125

interface Physical or virtual points that a device owns over which the data packets get sent or
received.. 121

IOS XR Virtual devices can be built according to the IOS images. This one is called XR and is
used for router devices.. 20, 21, 33, 56, 60, 101

IS-IS Intermediate System to Intermediate System. A routing protocol that can be used in the
control plane.. 13, 15, 18, 20, 61, 141

issue The project will be separated into different issues that have to be worked on. These can
be seen on the repository on GitLab as boards (https://gitlab.ost.ch/ins-stud/flexalgo/sr-
flexalgo/-/boards) or as a list (https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/issues).
122

2

https://networkencyclopedia.com/interior-gateway-protocol-igp/

Glossary SR-App FlexAlgo

Jalapeño Cisco data collection framework.. 11, 19–22, 40, 88, 122

Jalapeño API Gateway A cloud-native infrastructure platform for network services to be used
as an API Gateway between network devices and applications. INS proprietary software.
The documentation can be read here.. 11, 21, 22, 24, 34, 35, 37, 39, 40, 47–50, 52, 54–58,
62–67, 69, 76, 79, 80, 84, 87–90, 97, 112, 120–122, 124, 125, 132

JavaScript Programming language for frontend solutions.. 104

Jinja Template engine that compiles text-based formats like html out of Jinja templates, which
are text files.. 100

json JavaScript Object Notation. 28, 42, 80, 90, 94–98, 112

K8s Kubernetes. 62–64

Knative A way for Kubernetes based application to be build serverless and event driven.. 64, 67,
85, 86

Kubernetes System to manage container applicactions.. 30, 35, 38, 39, 57, 62–64, 67, 72, 84–86,
89, 90, 99, 106, 107, 122, 125, 126, 135

LaTeX A type setting system that can build pdf files out of tex files. 35–37, 121, 125, 138

load balancing Process of balancing workloads on cloud-based application systems.. 63

LTB Lab Topology Builder. A web application of INS to provide virutal networks.. 21, 141

message queue Communication technology that handles and stores messages in a system. They
use a queue for receiving and distributing messages.. 38, 64, 85, 89, 121

MPLS Multiprotocol Label Switching. A network technology to route traffic according to labels.
Usable as data plane protocol.. 12–15, 18, 56, 87

MyPy Static type checker for Python.. 35, 138

namespace A mechanism for isolating groups of resources within a single Kubernetes cluster..
30, 64

orm Object Relation Mapper. 83, 86

OSPF Open Shortest Path First. A routing protocol that can be used in the control plane.. 13

pod Smallest deployable unit of computing in Kubernetes.. 30, 64, 125

Poetry A Dependency management and packag tool written in Python. It installs and updates
the specified libraries of the project. (https://python-poetry.org/). 62, 64, 108, 126

PostgreSQL A relational database management system (RDBMS). 85, 86, 121

Pre-forking A master process creates forked sub processes to handle overwhelming workloads.
These processes do not share variable data.. 38

Prefix-SID Adjacency Segment Identifier. Used to identify a devices interface per defined Flex-
Algo in the segment domain.. 15–17, 141

3

https://jalapeno-api-gateway.github.io/jagw-docs/

Glossary SR-App FlexAlgo

Prefix-SID Prefix Segment Identifier. Used to identify a device per defined FlexAlgo in the
segment domain.. 15, 17, 19, 103

protobuf Protocol Buffers are a mechanism for serializing and deserializing data structures. It is
platform and language neutral, developed by Google.. 76, 77

Pylance An extension for the IDE to provide performant language support.. 127

Pytest The pytest framework makes it easy to write small, readable tests, and can scale to
support complex functional testing for applications and libraries, as it is written on the
official website.. 35

Python An object-oriented programming language for small- and large-scale projects. The used
version for this project is 3.9.. 35, 38, 82–86, 121, 125–127, 134

React.js JavaScript library for building modular single page applications.. 25, 28, 29, 31, 37, 40,
47, 63, 69, 73, 80, 82, 83, 94–97, 104, 108, 121, 136–138, 141

Redis It is a in-memory data structure store, used as a database, cache, streaming engine, and
message broker. Consider official website.. 39

repository Remote repository for versioning. For this project hosted on GitLab.. 35, 37, 62, 100,
106

rolling update A way for Kubernetes to update pod code without losing up time by incrementally
updating pod instances with new ones.. 64

SA Term Thesis. 11, 28, 64, 120, 121, 123, 134, 142

SCRUM+ Agile project management system that will be used as a base for this project. The
method of time estimation was not done in this project.. 121, 122

Segment Routing A source-based routing technique that simplifies traffic engineering and man-
agement across network domains. (by Juniper). 121

SerPro Bachelor Thesis made by Severin Dellsperger and Julian Klaiber.. 40, 75, 110

Sigma.js JavaScript Library for rendering graphs using WebGL.. 83, 104

SonarQube Code review tool that can be integrated into pipelines.. 35–37, 135, 136, 138

SPA Single Page Application. 69, 80, 81, 84, 85, 104, 105, 108, 137

SPF Shortest Path First. It is also called Dijkstra algorithm and is a algorithm to route along
the shortest calculated path according to the metric and avoiding loops in a network.. 18,
101

SPRING Source Packet Routing in Networking. 10

sprint An iteration of 2 weeks duration and is part of the agile project management system.. 122

SR-Apps Segment Routing Applications by INS. 10, 100, 104

SRLG Shared Link Risk Group. 19, 42, 102

SRTE Segment Routing Traffic Engineering. 10

static typing A way to include typing into the untyped python language. This imporves code
readability and maintainability.. 83

4

https://docs.pytest.org/en/7.1.x/
https://redis.io/

Glossary SR-App FlexAlgo

stederr The standard stream for error logging. Prints output message to the console, can be
redirected to a logging service.. 64, 81, 99

stedstr The standard output stream. Prints output message to the console, can be redirected to
a logging service.. 99

Swagger API documentation technology. Used in form of a library in this project.. 31, 69, 91,
92, 125

TE Traffic Engineering. 18, 42, 61, 103

Teams MS Teams or Microsoft Teams, a program for remote communication.. 122, 125

twelve-factor methodology A set of rules to plan and build software-as-a-service that ensures
optimal utilization of cloud resources.. 33, 34, 62, 138

UI User Interface. 128

UNIX Uniplexed Information and Computing Service. 38

url Userfriendly adress to reach a website. (Uniform Resource Identifier). 33, 35, 62, 69, 79, 108,
109

Use Case Intended actions of the user with the application.. 79

Visual Studio Code An IDE from Microsoft that can be extended with plugins, like Duckly..
125, 134

VPN Virtual Private Network. 69, 108

websocket Network protocol based on TCP that allows bidirectional communication.. 63, 89, 90

wireframe Early, conceptual functual design of a website.. 110, 134

WSGI Web Server Gateway Interface. 38

YAML Human-readable data-serialization language. Often used for network configuration and
operation files.. 106, 107

YANG Yet Another Next Generation. 19, 20, 25, 42, 66, 87, 89, 90, 124, 131, 132

5

Bibliography
[1] apache - What exactly is a pre-fork web server model? - Stack Overflow. What exactly

is a pre-fork web server model? 2022-05-28. url: https://stackoverflow.com/questions/
25834333/what-exactly-is-a-pre-fork-web-server-model.

[2] ArangoDB-Community/python-arango: Python Driver for ArangoDB. Mar. 15, 2022. url:
https://github.com/ArangoDB-Community/python-arango.

[3] Axios. AXIOS. May 14, 2022. url: https://axios-http.com/.
[4] Basics tutorial | Python | gRPC. Basics tutorial. Mar. 20, 2022. url: https://medium.com/

@biplav.nep/grpc-using-flask-restful-code-2ed5607ae9a.
[5] Border Gateway Protocol - Link State (BGP-LS) Parameters. Border Gateway Protocol -

Link State (BGP-LS) Parameters. May 31, 2022. url: https://www.iana.org/assignments/
bgp-ls-parameters/bgp-ls-parameters.xhtml.

[6] Checklist End of Elaboration | Thomas Wiki. Checklist End of Elaboration. Mar. 28, 2022.
url: https://elsensohn.ch/en/docs/projectmanagement/checklist-end-of-elaboration/.

[7] cisco-open / jalapeno. May 30, 2022. url: https://github.com/cisco-open/jalapeno.
[8] Creating a Web Application using Python Flask with Server Side Rendering | by Simran-

jit Kamboj | Medium. Creating a Web Application using Python Flask with Server Side
Rendering. Apr. 4, 2022. url: https://medium.com/@simranjitkamboj/creating-a-web-
application-using-python-flask-with-server-side-rendering-9ebea8204193.

[9] Creating Beautiful REST APIs using Python Flask and Swagger UI - YouTube. Creating
Beautiful REST APIs using Python Flask and Swagger UI. Apr. 19, 2022. url: https :
//www.youtube.com/watch?v=k10ILjUyWuQ.

[10] Alberto Donzelli. Introduction to Segment Routing. On slide 19. June 1, 2022. url: https:
//www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/BRKRST-2124.pdf.

[11] Clarence Filsfils, Kris Michielsen, and Ketan Talaulikar. Segment Routing, Part I. Cisco
Systems, Inc., Jan. 2017. Chap. 2.1 What is Segment Routing.

[12] Clarence Filsfils, Kris Michielsen, and Ketan Talaulikar. Segment Routing, Part I. Cisco
Systems, Inc., Jan. 2017. Chap. 3.5 MPLS TTL and TC (or EXP) Treatment.

[13] Clarence Filsfils et al. Segment Routing Part II - Traffic Engineering. Cisco Systems, Inc.,
2019. Chap. 7.2.2.

[14] Flask-Caching – Flask-Caching 1.0.0 documentation. Flask-Caching. Apr. 15, 2022. url:
https://flask-caching.readthedocs.io/en/latest/index.html.

[15] Flask-Caching – Flask-Caching 1.0.0 documentation. Flask-Caching. May 5, 2022. url:
https://flask-caching.readthedocs.io/en/latest/index.html.

[16] flask-swagger · PyPI. flask-swagger 0.2.14. Apr. 19, 2022. url: https://pypi.org/project/
flask-swagger/.

[17] flask-swagger-ui - PyPI. Python Arango ORM Package Documentation. May 31, 2022. url:
https://pypi.org/project/flask-swagger-ui/.

[18] Flask-WTF – Flask-WTF Documentation (1.0.x). FlaskWTF. Apr. 15, 2022. url: https:
//flask-wtf.readthedocs.io/en/1.0.x/.

[19] Flexible Algorithms: Bandwidth, Delay, Metrics and Constraints. draft-ietf-lsr-flex-algo-bw-
con-02. June 1, 2022. url: https://datatracker.ietf.org/doc/html/draft-ietf-lsr-flex-algo-
bw-con.

6

https://stackoverflow.com/questions/25834333/what-exactly-is-a-pre-fork-web-server-model
https://stackoverflow.com/questions/25834333/what-exactly-is-a-pre-fork-web-server-model
https://github.com/ArangoDB-Community/python-arango
https://axios-http.com/
https://medium.com/@biplav.nep/grpc-using-flask-restful-code-2ed5607ae9a
https://medium.com/@biplav.nep/grpc-using-flask-restful-code-2ed5607ae9a
https://www.iana.org/assignments/bgp-ls-parameters/bgp-ls-parameters.xhtml
https://www.iana.org/assignments/bgp-ls-parameters/bgp-ls-parameters.xhtml
https://elsensohn.ch/en/docs/projectmanagement/checklist-end-of-elaboration/
https://github.com/cisco-open/jalapeno
https://medium.com/@simranjitkamboj/creating-a-web-application-using-python-flask-with-server-side-rendering-9ebea8204193
https://medium.com/@simranjitkamboj/creating-a-web-application-using-python-flask-with-server-side-rendering-9ebea8204193
https://www.youtube.com/watch?v=k10ILjUyWuQ
https://www.youtube.com/watch?v=k10ILjUyWuQ
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/BRKRST-2124.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/BRKRST-2124.pdf
https://flask-caching.readthedocs.io/en/latest/index.html
https://flask-caching.readthedocs.io/en/latest/index.html
https://pypi.org/project/flask-swagger/
https://pypi.org/project/flask-swagger/
https://pypi.org/project/flask-swagger-ui/
https://flask-wtf.readthedocs.io/en/1.0.x/
https://flask-wtf.readthedocs.io/en/1.0.x/
https://datatracker.ietf.org/doc/html/draft-ietf-lsr-flex-algo-bw-con
https://datatracker.ietf.org/doc/html/draft-ietf-lsr-flex-algo-bw-con

Bibliography SR-App FlexAlgo

[20] GitHub repository of React SigmaJS Demo of Michel Bongard. May 30, 2022. url: https:
//github.com/mbongard/react-sigmajs-demo.

[21] gRPC using Flask restful code. Last week I was playing with gPRC, so I. . . | by Biplab
Pokhrel | Medium. gRPC using Flask restful code. Mar. 20, 2022. url: https://medium.
com/@biplav.nep/grpc-using-flask-restful-code-2ed5607ae9a.

[22] Gunicorn - Python WSGI HTTP Server for UNIX. Gunicorn. May 10, 2022. url: https:
//axios-http.com/.

[23] Home - Knative. Knative is an Open-Source Enterprise-level solution to build Serverless
and Event Driven Applications. Apr. 22, 2022. url: https://knative.dev/docs/.

[24] How to create a Backend with Ptyhon and Flask - YoutTube. Mar. 12, 2022. url: https:
//www.youtube.com/playlist?list=PLab_if3UBk98jBTmyxShFVirMbgfFYu8W.

[25] Introduction | Documentation | Poetry - Python dependency management and packaging
made easy. Poetry Documentation. Mar. 10, 2022. url: https://python-poetry.org/docs/.

[26] ISO - ISO/IEC 25010:2011 - Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models.
ISO/IEC 25010:2011. Feb. 26, 2022. url: https://www.iso.org/standard/35733.html.

[27] Jalapeño API Gateway. May 30, 2022. url: https://jalapeno-api-gateway.github.io/jagw-
docs/.

[28] Craig Larman. Applying UML and Patterns. Addison Wesley Professional, Oct. 2004.
[29] List of Fastest Frameworks for Python App Development? Fastest Frameworks for Python

App development- Dev Technosys. Mar. 5, 2022. url: https://devtechnosys.com/insights/
fastest-frameworks-for-python-app-development/.

[30] Modern IX Fabric Design. June 2, 2022. url: https://xrdocs.io/design/blogs/2019-02-02-
modernizing-ixp-design/.

[31] python - Flask + gRPC trouble - Stack Overflow. Flask + gRPC trouble. Mar. 5, 2022. url:
https://stackoverflow.com/questions/61387844/flask-grpc-trouble.

[32] python-arango - PyPI. Python Arango Package Documentation. Mar. 15, 2022. url: https:
//pypi.org/project/python-arango/.

[33] python-orm - PyPI. Python Arango ORM Package Documentation. Mar. 15, 2022. url:
https://pypi.org/project/arango-orm/.

[34] Queues — RabbitMQ. Queues. Mar. 17, 2022. url: https://www.rabbitmq.com/queues.
html.

[35] RFC 1142 - OSI IS-IS Intra-domain Routing Protocol. Obsoleted by RFC 7142. May 31,
2022. url: https://datatracker.ietf.org/doc/html/rfc1142.

[36] RFC 5305 - IS-IS Extensions for Traffic Engineering. May 30, 2022. url: https://datatracker.
ietf.org/doc/html/rfc5305.

[37] RFC 7752 - North-Bound Distribution of Link-State and Traffic Engineering (TE) Infor-
mation Using BGP. May 30, 2022. url: https://datatracker.ietf.org/doc/html/rfc7752.

[38] RFC 7752 - North-Bound Distribution of Link-State and Traffic Engineering (TE) Informa-
tion Using BGP. 3.3.2.3 TE Default Metric TLV. May 30, 2022. url: https://datatracker.
ietf.org/doc/html/rfc7752#section-3.3.2.3.

[39] RFC 7752 - North-Bound Distribution of Link-State and Traffic Engineering (TE) In-
formation Using BGP. 3.3.2.5 Shared Risk Link Group TLV. May 30, 2022. url: https:
//datatracker.ietf.org/doc/html/rfc7752#section-3.3.2.5.

[40] RFC 8570 - IS-IS Traffic Engineering (TE) Metric Extensions. May 30, 2022. url: https:
//datatracker.ietf.org/doc/html/rfc8570.

[41] RFC 8660 - Segment Routing with the MPLS Data Plane. June 1, 2022. url: https ://
datatracker.ietf.org/doc/html/rfc8660.

[42] RFC 9104 - Distribution of Traffic Engineering Extended Administrative Groups using the
Border Gateway Protocol - Link State (BGP-LS). 2. Advertising Extended Administrative

7

https://github.com/mbongard/react-sigmajs-demo
https://github.com/mbongard/react-sigmajs-demo
https://medium.com/@biplav.nep/grpc-using-flask-restful-code-2ed5607ae9a
https://medium.com/@biplav.nep/grpc-using-flask-restful-code-2ed5607ae9a
https://axios-http.com/
https://axios-http.com/
https://knative.dev/docs/
https://www.youtube.com/playlist?list=PLab_if3UBk98jBTmyxShFVirMbgfFYu8W
https://www.youtube.com/playlist?list=PLab_if3UBk98jBTmyxShFVirMbgfFYu8W
https://python-poetry.org/docs/
https://www.iso.org/standard/35733.html
https://jalapeno-api-gateway.github.io/jagw-docs/
https://jalapeno-api-gateway.github.io/jagw-docs/
https://devtechnosys.com/insights/fastest-frameworks-for-python-app-development/
https://devtechnosys.com/insights/fastest-frameworks-for-python-app-development/
https://xrdocs.io/design/blogs/2019-02-02-modernizing-ixp-design/
https://xrdocs.io/design/blogs/2019-02-02-modernizing-ixp-design/
https://stackoverflow.com/questions/61387844/flask-grpc-trouble
https://pypi.org/project/python-arango/
https://pypi.org/project/python-arango/
https://pypi.org/project/arango-orm/
https://www.rabbitmq.com/queues.html
https://www.rabbitmq.com/queues.html
https://datatracker.ietf.org/doc/html/rfc1142
https://datatracker.ietf.org/doc/html/rfc5305
https://datatracker.ietf.org/doc/html/rfc5305
https://datatracker.ietf.org/doc/html/rfc7752
https://datatracker.ietf.org/doc/html/rfc7752#section-3.3.2.3
https://datatracker.ietf.org/doc/html/rfc7752#section-3.3.2.3
https://datatracker.ietf.org/doc/html/rfc7752#section-3.3.2.5
https://datatracker.ietf.org/doc/html/rfc7752#section-3.3.2.5
https://datatracker.ietf.org/doc/html/rfc8570
https://datatracker.ietf.org/doc/html/rfc8570
https://datatracker.ietf.org/doc/html/rfc8660
https://datatracker.ietf.org/doc/html/rfc8660

Bibliography SR-App FlexAlgo

Groups in BGP-LS. May 30, 2022. url: https://datatracker.ietf.org/doc/html/rfc9104#
section-2.

[43] Segment Routing - SR IGP Flexible Algorithm. SR IGP Flexible Algorithm. May 24, 2022.
url: https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-
algo/.

[44] Segment routing - Wikipedia. Segment Routing. May 24, 2022. url: https://en.wikipedia.
org/wiki/Segment_routing.

[45] Sigma.js. sigma.js. May 31, 2022. url: https://www.sigmajs.org/.
[46] SR IGP Flexible Algorithm. SR IGP Flex Algo. On slide 3. Feb. 26, 2022. url: https :

//www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/.
[47] Static Typing in Python | Engineering Education (EngEd) Program | Section. Static Typing

in Python. May 25, 2022. url: hhttps://www.section.io/engineering-education/python-
static-typing/.

[48] Template Designer Documentation – Jinja Documentation (3.1.x). Template Designer Doc-
umentation. May 31, 2022. url: https://jinja.palletsprojects.com/en/3.1.x/templates/.

[49] Templates – Flask Documentation (1.1.x). Templates. May 31, 2022. url: https://flask.
palletsprojects.com/en/1.1.x/tutorial/templates/.

[50] The C4 model for visualising software architecture. Mar. 1, 2022. url: https://c4model.
com/.

[51] The Twelve-Factor App. The Twelve-Factor App. Mar. 23, 2022. url: https://12factor.net/.
[52] Unit Testing in Python with pytest - YouTube. Unit Testing in Python with pytest. Apr. 2,

2022. url: https://www.youtube.com/playlist?list=PLyb_C2HpOQSBWGekd7PfhHnb9GnqDgrxS.
[53] WebSocket - Wikipedia. WebSocket. Mar. 12, 2022. url: https://de.wikipedia.org/wiki/

WebSocket.
[54] Welcome to Flask – Flask Documentation (2.1.x). Flask. Mar. 30, 2022. url: https://flask.

palletsprojects.com/en/2.1.x/.
[55] What Is a Flex-Algo? How Is a Flex-Algo Defined and How Does It Work? - Huawei.

What Is a Flex-Algo? Mar. 2, 2022. url: https://info.support.huawei.com/info-finder/
encyclopedia/en/Flex-Algo.html.

[56] What is segment routing? What are its benefits and applications? Author is Sreejith Gs of
the blog. June 2, 2022. url: https://www.quora.com/What-is-segment-routing-What-are-
its-benefits-and-applications.

[57] What is the control plane? | Control plane vs. data plane. May 31, 2022. url: https://www.
cloudflare.com/learning/network-layer/what-is-the-control-plane/.

[58] What’s Segment Routing. Prefix: clns-isis-cfg. June 2, 2022. url: https://www.juniper.net/
us/en/research-topics/what-is-segment-routing.html.

[59] Yang Catalog. June 2, 2022. url: https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo/.

8

https://datatracker.ietf.org/doc/html/rfc9104#section-2
https://datatracker.ietf.org/doc/html/rfc9104#section-2
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
https://en.wikipedia.org/wiki/Segment_routing
https://en.wikipedia.org/wiki/Segment_routing
https://www.sigmajs.org/
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
hhttps://www.section.io/engineering-education/python-static-typing/
hhttps://www.section.io/engineering-education/python-static-typing/
https://jinja.palletsprojects.com/en/3.1.x/templates/
https://flask.palletsprojects.com/en/1.1.x/tutorial/templates/
https://flask.palletsprojects.com/en/1.1.x/tutorial/templates/
https://c4model.com/
https://c4model.com/
https://12factor.net/
https://www.youtube.com/playlist?list=PLyb_C2HpOQSBWGekd7PfhHnb9GnqDgrxS
https://de.wikipedia.org/wiki/WebSocket
https://de.wikipedia.org/wiki/WebSocket
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://info.support.huawei.com/info-finder/encyclopedia/en/Flex-Algo.html
https://info.support.huawei.com/info-finder/encyclopedia/en/Flex-Algo.html
https://www.quora.com/What-is-segment-routing-What-are-its-benefits-and-applications
https://www.quora.com/What-is-segment-routing-What-are-its-benefits-and-applications
https://www.cloudflare.com/learning/network-layer/what-is-the-control-plane/
https://www.cloudflare.com/learning/network-layer/what-is-the-control-plane/
https://www.juniper.net/us/en/research-topics/what-is-segment-routing.html
https://www.juniper.net/us/en/research-topics/what-is-segment-routing.html
https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo/

Part III.

Technical Report

9

1. Introduction

This thesis is written for engineers in the field of computer science. Therefore basic understanding
of the subject matter of software engineering and networking is expected.

1.1. Thesis Composition
This thesis is written in accordance with the regulations of the department of computer science
at OST university of applied science. The following documents are provided in this report.

Technical Report
The technical report gives a description of the outcome of this research project. It provides an
overview of the project, techniques used and the goals and objectives of this research project.
Basic information about the networking technique this project is based on is provided. Finally,
it gives a comprehensive review of the achieved results with a critical eye on problems in the
solution and an outlook on the future of this project.

Project Documentation
The document provides a comprehensive documentation of the software with the requirements
engineering, domain analysis and all information about the architectural design of the software.
Additional notes are given about special software cornerstones of the project.

Project Management
How the project was managed is documented in this document. It provides the project plan and
all further management information like a risk analysis, summary of the quality measures and
test protocols. Additionally the administrative documents of the research project like the taks
formulation and signed documents can be found here.

1.2. Motivation
Segment Routing and it’s child protocol flexible algorithm, are network routing technologies.
Segment Routing is a source-routing network protocol by SPRING and IETF, that manages
traffic by segments, a set of instructions defined on a packet [44]. Flexible algorithm refines this
process by adding flexible, user-defined segments to the SRTE toolbox [43]. As such it allows for
highly customizable network trafficking and covers today’s specialized demands of networks to a
much better degree. As such it is a technology that shows great potential and should be added to
the SR-Apps line. The application prototyped in this research project, SR-App FlexAlgo, slots
neatly into this app series.

For the following documentation the term algorithm will be used as FlexAlgo algorihtm.

10

Chapter 1. Introduction SR-App FlexAlgo

1.3. Aims and Objectives
Problem
FlexAlgo, in contrast to its parent technology, allows for customizable traffic routing on a packet
level. This high level of individualism adds a lot of complexity to the configuration process of
networks. A network engineer has to define and maintain the algorithms on each routing device
on the network manually, which is error prone and requires a significant amount of time and
network knowledge.

A solution to make FlexAlgo configurations easier and uniform over the whole network is to be
found. To achieve this the topology with all FlexAlgos defined on the network and their property
values has to be displayed in a comprehensive way to give an optimal user experience. This
information has to be real-time data to ensure engineers are always up to date with the current
network. It must therefore be constantly updated without user intervention. Further, updating
FlexAlgos and their properties, adding new ones and deleting unnecessary ones has to be possible
with minimal input from the engineer. In other words configurations are to be defined once by
the user and then automatically deployed through the whole network without the user having to
manually do so.
While a configuration deployment is underway the functionality needs to be locked for all users
of the application. No simultanous deployments from multiple users are to be permitted. This
to remove the danger of lost updates and an inconsistent system.

The solution must be able to handle large networks with up to 1’000 objects. The application
must be planned to allow the additional feature of persisting network data for a historical overview
of the FlexAlgo configurations in a future project.

Solution
To solve the problems presented in the last paragraph a SR-App is planned that slots into the
existing application series. As a first step this SA project will implement a prototype of this
software. With this prototype the planned functionality and architecture can be checked.
To achieve this solution, research into the technology of Segment Routing and flexible algorithm is
to be done. The functionality of these protocols needs to be understood and the current structure
of the data on the nodes and in the Jalapeño software is to be determined. Additionally necessary
changes to the INS software Jalapeño API Gateway need to be defined to ensure the Gateway
can provide all FlexAlgo data.
Based on the research an architecture for the SR-App FlexAlgo is to be developed. A first draft
for the whole architecture and a detailed development plan for the prototype is to be developed.
A prototype for the software is to be implemented to check feasibility of the product. The
prototype should read all necessary network data for configuring FlexAlgos and present them
first in a very simple text based frontend as a list. In a further step a graphical frontend may be
implemented to show the algorithms running on the current network.
The prototype is to be tested extensively for performance to ensure the service is able to handle
the performance demands of large networks.

11

2. Segment Routing Fundamentals

This project is built on the basis of a network provided by the INS and implements Segment Rout-
ing, Intermediate System to Intermediate System (IS-IS) 5 and Multiprotocol Label Switching
(MPLS) 5.

For a better understanding of the business domain of the application built in this project, in-
formation about the fundamental structures of networks and the usage of Segment Routing are
provided in this chapter. Specific terminology used in this chapter may be explained in more
detail in chapter Terminology 5.
As this project merely reads FlexAlgo data and not yet manages configurations of such a more ba-
sic overview is given. Detailed information about the protocols handled in the SR-App FlexAlgo
will be provided in a further project.

2.1. Basics
A network, or also called network domain, can range from two devices that communicate with
each other to thousands of devices with a complicated net of links between them.

To let devices of a network communicate properly with each other and for messages to successfully
navigate the often times quite complex net of connections, protocols were created to handle the
flow of traffic. There are different kinds of protocols, each with different benefits and drawbacks.
Some protocols are suited for the communication inside a network (intradomain or IGP) while
others handle connections between netowrk domains (interdomain protocols). Each protocol uses
different criterias and configurations to define a network and its traffic.
These protocols can become quite complex and performance intensive, especially on large net-
works. If there is a destination based routing protocol configured, a network device needs to
calculate the best route according to the protocols properties through the network and find al-
ternatives should there be problems with other devices or links.

As the network increases in size, the construction of the domain with the configurations of the
devices, their redundancies and their maintainance get more challenging. To manage this, tech-
niques were developed which handle traffic in a combination of other protocols that work on the
control and data plane.

Figure 2.1.: Control and Data Planes

While this solves performance issues on the network, the two planes also add complexity to

12

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

network engineering. The routing and forwading technologies of the planes require expertise
and make the maintenance and supervision of all configurations harder. Additionally, adding
new devices and protocol specific configurations to the domain is time consuming and error
prone.

2.1.1. Segment Routing
Attempts at making configurations and maintainace of networks easier has already been made.
Segment Routing, a source-based technique, is one such protocol that has been developed for some
years (RFC [41]). It works thanks to a combination of multiple protocols which are explained
more in the next section 2.1.1.
Segment Routing simplifies traffic engineering and maintainance of network domains. It places
the path information in packet headers, done by ingress nodes, and so removes the network state
infomration from transit routers. This reduces performance loads and complexity from a lot of
the network devices. [56]

Segments
In Segment Routing network devices work with semgents, instructions. Each packet has a list of
these segments in the packet header, which is used for steering the packet. The node that receives
the packet can read the top most entry of the segment list and decides how to handle the packet
accordingly.
The process therefore works with the principle of source routing instead of the more usual desti-
nation routing. Additionally, only the source node decides the traffic steering of the packets, not
as before all traversed nodes. Meaning these nodes don’t have to maintain and store the per-flow
state anymore. This provides more flexible behaviours in the network and increases scalability
[11].

Protocols
A big difference to other protocols is that Segment Routing uses source routing instead of desti-
nation routing. This process changes how routers treat packets on the network.Segment Routing
works with the combination of control and data plane. The IGP, which builds the control plane,
will distribute the required segment information, the link attributes, to all devices that want to
participate in the Segment Routing domain. It will use either the protocol IS-IS or OSPF. The
difference between those two protocols lies in the configurations of the network devices and their
behaviour.
OSPF declares a central backbone area which acts as a controlling sector of the network. Neigh-
bouring network areas have to send their traffic through this area to reach other networks. The
resulting architecture mimiks a star, with multiple OSPF areas spaced around one transfer cen-
tre. IS-IS on the other hand works on OSI layer 2. This can bring problems to the protocol, like
configuration incompatibility between different networks. This has to be solved by the network
engineer. It works with different messages to orchestrate network traffic.

Both IS-IS and OSPF work well with the data plane protocols MPLS and IPv6. The difference
between those two lies in the handling of the segments in the packets. Although IPv6 lies on the
OSI Layer3 it provides the possiblity to be used as the data plane. In contrast to MPLS, IPv6
won’t remove the top segment information from the packets’s extension header after traversing the
corresponding device. To work with this the extension header contains the field Segments Left,
which contains the number of the next segment to send the packet to. This segment information
gets copied into the Destination Address of the IPv6 header.

13

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

Figure 2.2.: IPv6 Extension Heade with List of Segments [10]

MPLS, on the other hand, saves the segment into its MPLS header field Label, viewable in the
following graphic 2.3. The Experimental field is used as traffic class indicating the used class
of service. The S-flag is just 1 bit long and indicates if the MPLS tag stack is at the end or if
another tag is following 2.4. The TTL, time to live, functions in the same way as the one in an
usual IP packet. It tells the devices how many hops the packet is still allowed to do until it’s
considered invalid.

Figure 2.3.: MPLS Header with 20Bit long Label Field [12]

Figure 2.4.: MPLS Tags in a single Packet

After reaching the indicated device with the corresponding Segment ID, derived from the segment
in the list, the label gets popped, making the following segment the new active one.

14

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

For the following chapters the protocol IS-IS in combination with MPLS is used.

Global and Local Segments
Two types of SIDs are used to complete the functionality of Segment Routing:

• 16001 - 23999: Global Segments - Prefix-SID. Defined on Loopback interface.

• 24000 - 1048575: Local Segments - Prefix-SID. Defined per non-Loopback interface.

Each device that belongs to the Segment Routing Domain will have at least one Prefix-SID
configured. A Prefix-SID is significant per algorithm, and therefore a device can have multiple
Prefix-SIDs, one per configured algorithm. These prefixs are not necessary globally unique, they
only have to be unique in the scope of one algorithm.

Segment Routing Example with MPLS

Figure 2.5.: SR Topology Example

For a better understanding of Segment Routing, an example is provided. The graphic 2.5 depicts
two networks, a WAN and a DC (5), which are connected to each other. Both domains use
Segment Routing. The WAN network uses an IGP-SR protocol, such as IS-IS. The DC domain
uses BGP-SR for its paths. These are two different protocols that are combinable with Segment
Routing. This illustrates that Segment Routing can work over different neighbouring network
domains, which is a great advantage.

The network engineer now wants to lead the traffic flow from the neighbouring network B over
certain routers to the device 16110 in the DC domain. This may be the path with lowest cost
in the network, for example. Engineers can choose many different properties and combinations
therefor to plan such a route.
In our example the engineer wants to hit the routers with the Prefix-SIDs 16003, 16005, 16108,
and 16110 for this traffic flow. It does not matter how the traffic reaches these routers as longs
as the flow does through those devices. Such a specific path can be achieved thanks to Segment
Routing and its Prefix-SIDs 2.1.1.

15

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

Figure 2.6.: SR Topology Example - Prefix-SIDs

Although the default cost metric is 10 on each link, the last link between 16108 and 16110 has
the value 50, see graphic 2.6. This does not support the concept of lowest cost path, which would
actually calculate the path to go over the device 16111, as this would result in a cost of 20 to
reach 16110. But nevertheless, the engineer wants to include this direct link to the router 16110
over the interface with Prefix-SID 24810 and not another one.

Thanks to Segment Routing’s Prefix-SID 2.1.1 this decision to take a certain interface of a router
can be implemented.

16

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

Figure 2.7.: SR Topology Example - Packets

The packets that get sent through the network to reach the destination 16110 include all the
relevant information to follow the desired flow of the network engineer. Each router inspects the
packet header to get the information to which device it should send the packet to.

In the graphic 2.7 the orange parts symbolise the Prefix-SIDs of the packet and the blue parts
show the Adjacency-SIDs.
The first router of the segment domain that will process the packet from the neighbouring network
B is the router 16003, the source. Although the device receives all relevant segments for the whole
route, it will look only at the top one to decide where to send the packet. The router knows of
two ways to send traffic on, over 16002 or 16004. It has a basic idea of where these routes can
lead. The Prefix-SID in the top instruction says 16005, telling the router that the packet needs
to be sent to that device over the most suitable route it knows. Router 16003 now checks which
exit works best to reach 16005, which is via 16002 according to its routing table.
The next router, 16002, inspects the packet, compares the top segment with its own Prefix-SID,
which is not the same, and so sends it to 16005 according to its routing table.
16005 checks the packet and sees the top most segment defines itself as a part of the route. It
pops this instruction and reads the next one for further routing. Thanks to this process, the
router sends the packet further to the device with the Prefix-SID 16108 fulfilling the constraint
of the lowest cost path.
The router 16108 that lies in the network DC pops the top segment, its own id, as well and
reads as next instruction the Prefix-SID. The router inspect its own interface configurations and
look for the one that is configured with the Prefix-SID 24810. This interface is now used as the
outgoing route, leading to the destinated router 16110.

Flexible Algorithm
The Flexible Algorithm (FlexAlgo) is a technology to make Segment Routing even more flexible
and steer traffic individually according to packet needs. Thanks to the properties of FlexAlgo,

17

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

Segment Routing can be used to differentiate traffic paths according to diverse use cases such as
customer groups, latency needs, etc. While doing so it still uses the same underlaying infrastruc-
ture. This is handy for larger networks that have to deliver to different customer networks at the
edges. This mechanism is called network slicing, or flexible algorithm (Internet-Draft [19]).

The advantages of Segment Routing with FlexAlgo include smaller configurations on the source
router to allow a more flexible engineering of the network, while retaining the advantages source-
routing brings to network trafficking. Additionally, load balancing of different routes will be
possible, as MPLS remains supported by the Segment Routing. In case a link goes down, the
devices will be able to reroute wihtin 50 milliseconds because of pre-configured backup paths.
This can be calculated so fast because each device of a FlexAlgo already knows the path to all
other devices that participate in this algorithm. Thanks to how Segment Routing is constructed
the FlexAlgo can easily be added to an already existing network domain. [sr-benefits]

Algorithms
The network engineer can define an algorithm by entering the required configuration lines into
the routing table of the device. The device can then participate in this algorithm. Multiple
algorithms per device can be configured. The information for this is transported in the Sub-TLV
part of IS-IS packet.

Figure 2.8.: FlexAlgo Sub-TLV [59] in IS-IS Packet

• Type: 26

• Length: Length of the header, can be variable depending on the Sub-TLVs.

• Flex-Algorithm: Algorithm number.

– 0 to 127: Predefined algorithms. Algorithm 0 uses the Djikstra SPF.

– 128 to 255: Customizable algorithms

• Metric-Type: Calculation metric for path finding. 0 is IGP, 1 is link delay, 2 is TE default
metric.

• Calc-Type:

18

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

• Priority: Specifies the priority of the FlexAlgo advertisement. Value can range between
0 and 255.

• Sub-TLVs: optional sub-TLVs.

Affinities
In Segment Routing the property affinities helps to direct the traffic flow per algorithm even more
granularly. Affinity values, usually color names, are configured on the interfaces of a router. The
FlexAlgos then defines how the different values are to be handled.
There are four different options to define the constraints for the algorithm:

• includ-any <color> - the FlexAlgo can traverse all links with this color

• includ-all <color> - the FlexAlgo must traverse all links with this color

• exclude-any <color> - the FlexAlgo must avoid all links with this color

• exclude-SRLG <risk-group> - the FlexAlgo must avoid all SRLG links with this risk-group

FlexAlgo Example
As an example the graphic 2.9 illustrates two configured algorithms in this network. The source
router is A and the destination of both algorithms is router D. As D participates in both algorithms
it has corresponding Prefix-SIDs configured. For algorithm 128 it has 16001 and for algorithm
129 it is known as 16004.
The FlexAlgo 128 consists of router A, B and D (The yellow colored routers).
The FlexAlgo 129 consists of router A, B, C and D (The blue colored routers). Additionally, this
algorithm is configured to avoid any links that are marked as RED, which in this example is the
link between router C and D.

Now, if a packet is sent from A to D by FlexAlgo 128, it will traverse the path A, B, D. Alterna-
tively, if the packet travels in FlexAlgo 129 it will take the path A, C, B, D.

Figure 2.9.: Algorithms Example

2.2. YANG Model
The network devices send their configuration and traffic data in the format of YANG models to
the Jalapeño’ss topology database (ArangoDB) and telemetry database (Influx). While telemetry
data gets updated approximately every 10 seconds, topology data is event driven and is only
persisted if changes have happpened.

19

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

After some comparisons of already used YANG models from other SR-App projects, the YANG
model Cisco-IOS-XR-clns-isis-cfg with the latest revision 2021-04-02 [58] was used. This
model contains all necessary information for FlexAlgo on IS-IS and the router image IOS XR can
use it. The relevant parts of the model and a link to the full model can be found in the appendix
6.

Decoding
The YANG model sends most data in human-readable format that could easily be utilized in
the application. Others, such as the affinity assignment to the interfaces are not only encoded
in Base64, but are also stored in a certain way on the routers that has to be handled in the
application.

Severin Dellsperger managed to reconstruct the Base64 encoding and how routers persit this data
by analysing single packets in bit and byte format. In the appendix of this document hiss notes
on decoding Affinities can be found 8.

His research notes 8 show that if the network engineer configures an Affinity with the number 10,
the value AAAEAA== gets saved into the Jalapeno’s database.
To understand this encoding, the binary value in the network packet itself had to be analysed
with Wireshark. In it the bit of the 10. place (starting by first position as 0) is set. This binary
string will then be encoded with Base64 which results in the final value of AAAEAA==.

Overview of encoding process, example 1:

1. Affinity "red" with bit-position 10 is defined on an interface

2. Router saves bit-position into binary value of
00000000 00000000 00000100 00000000
(the 1 is at the 10. position counted from the right)

3. Jalapeño encodes received binary with Base64 and stores the result into database as
AAAEAA==

Bit-position values that are bigger than 31 are a bit more complicated, as the new block for the
binaries will be set at the end of the previous blocks of zeroes according to the Little Endian
principle.

Overview of encoding process, example 2:

1. Affinity purple with bit-position 66 is defined on an interface

2. Router saves bit-position into binary value of
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000100

3. Jalapeño encodes received binary with Base64 and stores the result into database as
AAAAAAAAAAAAAAAE

The properties Sub-TlVs of the FlexAlgos are be constructed with these bit-maps. In the trans-
mitted BGP-LS packets it’s viewable that for each of these 4 Sub-TlVs a block of zeroes and ones
get send, which represent the different bit-maps. For example, if the FlexAlgo gets configured
to have two Affinities ino the Sub-TlV Include-Any, like 10 and 13, the glsbgp-LS will look as
follows in the packet’s specific section.

00000000 00000000 00100100 00000000 which is a combination of:

20

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

00000000 00000000 00000100 00000000 = 10

00000000 00000000 00100000 00000000 = 13

As one can see there are two 1s set, which build the information that the Affinity 10 (set 1 on
10.place from left side) and Affinity 13 will be used for the corresponding Sub-TlV.

2.3. Project Related Network Technologies
2.3.1. Underlaying Network
The network that was used during this project is a virtual one provided by INS. It is built in
the application LTB and uses the Cisco IOS XR image to represent the network devices. The
configurations on the P- and PE-routers can be seen in the Appendix 9. This was the basis for
the team to build the SR-App FlexAlgo application.
For this project the network is configured with the protocols IS-IS as control plane protocol and
for the data plane it uses the protocol MPLS.

Figure 2.10.: Network Topology in LTB

2.3.2. Jalapeño
"A cloud-native infrastructure platform to enable development of network services." [7]

Jalapeño is a Cisco proprietary open source software that collects network data into a streaming
event handling platform. From this platform the data is processed and persisted in two databases,
depending on the data type. Jalapeño differs between two data types, telegraf and topology.
Telegraf data is operational data from the network and is saved in a time series database. Telegraf
data is renamed to telemetry data in the Jalapeño API Gateway. Topology data is saved into a
Graph database and represents the static data of the network, ie how the topology of the network
looks like and the configurations. [7]

21

https://github.com/cisco-open/jalapeno

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

Figure 2.11.: Jalapeño architecture

2.3.3. Jalapeño API Gateway
The Jalapeño API Gateway offers an interface for applications in the SR-App series to connect
to via gRPC client. It provides filtered and aggregated data from the Cisco Jalapeño application
that collects network information for Segment Routing. It exposes a request based service that
returns one time responses of selected data. Alternative apps can connect to the subscription
service that builds a bidirectional connection to stream data updates through. The software
is developed and maintained by the INS, which provided a running instance for this project.
[27]

22

Chapter 2. Segment Routing Fundamentals SR-App FlexAlgo

Figure 2.12.: Jalapeño API Gateway architecture

23

3. Results

This chapter will show what was achieved during this research project. The Distinction section
3.1 will provide a short summary of what was expected and which limitations were met during
the project. In Achievements 3.2 an overview of the planned functionality is given and the status
of implementation that were reached during this project. Finally, in the section Implementation
3.3 a deeper explanation of interesting technical aspects of this work is given.

3.1. Distinction
The main core of this project was a prototype for the SR-App FlexAlgo. It was decided by the
team mebers in agreement with the project advisors that this prototype would be a mvp of the
network read microservice. This included a request based call to the Jalapeño API Gateway to
access all FlexAlgo specific data. Should time allow the gRPC streaming service would also be
implemented. As frontend an API with at least one path returning a server side rendered html
template would suffice. Should the time allow the implementation of a graphical interface to show
the network and its containing FlexAlgos would be added. Additionally research of the FlexAlgo
technology and its functionality was expected in order to correctly implement the transition of
all relevant data through the gateway.

During the construction phase it became clear that the Jalapeño API Gateway will need further
adjustments to make it useable for the FlexAlgo technology. As such it was decided together with
the advisors that a direct connection to the gateway’s database will be implemented instead of
a gRPC connection. This has no impact on the functionality of the software but will need to be
kept in mind for further considerations of the project.

As this project was originally planned to continue in a bachelor thesis, where the complete appli-
cation would be developed, the complete planning of requirements, the rough architecture, etc.
was expected. This would ensure a fast elaboration phase and longer construction phase in the
bachelor thesis project. The team members reached the decision not to continue with this project
during the construction phase and thus had no great impact on this.

3.2. Achievements
3.2.1. Functional Requirements
In this section the final product of this project will be discussed. To better illustrate them the
use cases of section 1.1 are briefly addressed.

UC00 See a list of FlexAlgo information
This use case was planned as a simple frontend with server side rendered html to ensure the
finished prototype could be measured for suitability. With this a check could be made that all
necessary FlexAlgo information was accessed during the process.

24

Chapter 3. Results SR-App FlexAlgo

During the study of the YANG models and how FlexAlgo definitions are distributed in the net-
work, it was made clear that collecting all relevant information for FlexAlgos into one place would
be counter productive. Generally FlexAlgos themselves are defined on nodes as a list of which
algorithms are hosted on said object. Affinities on the other hand are configured on interfaces
but are found in the links collection of the gateway’s database.
As such the decision to split this use cases into three API calls was made, to reduce unnecessary
code overhead and ensure an easier transition to the graphical React.js frontend.

Figure 3.1.: HTML View with FlexAlgo Data

The prototype now provides the following API calls for FlexAlgo information:
FlexAlgo Definitions. Here all global FlexAlgo configurations with their origin nodes can be
found.

25

Chapter 3. Results SR-App FlexAlgo

Figure 3.2.: HTML View with Node Data

Here the nodes and their FlexAlgo specific data like prefix values can be found. Additionally
general node data like longitude and latitude is displayed. In a further project more data can
be accessed from the network, for example IP addresses for the use case "UC14 Show Router
Information".

26

Chapter 3. Results SR-App FlexAlgo

Figure 3.3.: HTML View with Link Data - Part 1

Figure 3.4.: HTML View with Link Data - Part 2

Here all links with their conected nodes and their FlexAlgo data, i.e. the affinities assigned, can
be found.

27

Chapter 3. Results SR-App FlexAlgo

Conclusion: IMPLEMENTED with adjustments to the definition

UC01 Live Updates
Before the construction phase it was agreed with the advisors that live updates in the SA prototype
would be implemented as page refreshes. Currently each API call will perform a complete refresh
of the live data in the backend. As this will not be the case in the final version of the app, as it
will work with gRPC subscription functionality, additional API calls were implemented. These
update calls will simulate an updated object being sent to the application. When such an update
arrives the application checks if it has initialized data, checks the global cache 4.2.0.5 and then
performs an update on the current data. Is no data in either cache or application then a full
refresh is performed. In a further step this can be built upon to implement a push notification
functionality that will handle live updates automatically instead of having to manually trigger a
refresh.
Conclusion: IMPLEMENTED with additional functionality simulated.

UC02 Failure to Connect to Network
Multiple failure message systems are implemented in the prototype. As was shown before one
set of API calls returns server side rendered html. This will return a specific html template to
show error messages. Different types of error, like connection to database or gRPC connection
loss versus internal server error are specified in the template. As such a user will have a better
view of what exactly has happened and if further actions are needed.

Figure 3.5.: HTML view Error Message

Additionally to the html, API calls for the React.js frontend were implemented that return json
objects with more standard HTTP codes. If an error occurs here the specific HTTP code is
set and an error message returned specifying the problem to be handled in a more intelligent
frontend. For further information consult the API documentation 3.6
Conclusion: IMPLEMENTED

UC03 Show List of All Running FlexAlgos
As previous shown the API call /flexGetAlgoDefinitions returns a comprehensiv list of the
FlexAlgos and their configurations.

28

Chapter 3. Results SR-App FlexAlgo

Figure 3.6.: HTML view FlexAlgo Configurations

To see a simpler list of all algorithm keys, the /getAlgoNumbers call returns a list of algo numbers
currently configured on the network. ["128", "129", "130"]

Additionally, in consideration of the React.js frontend, an API call with all algorithms with their
nodes and links was implemented.

29

Chapter 3. Results SR-App FlexAlgo

Figure 3.7.: JSON return of FlexAlgo Graphs

Conclusion: IMPLEMENTED

UC04 Logging Application
As the result of this project is a prototype, logging of application errors are merely written to the
standard error stream and can therefore be found in the console if run locally or the Kubernetes
pod if run in the namespace. This can easily be built upon in a further project to properly log
and persist these streams to a wide variety of logging solutions, depending on customer needs.
The current solution also optimally covers integration into Kubernetes and scaling. For further
information see chapter Logging 3.7
Conclusion: IMPLEMENTED

30

Chapter 3. Results SR-App FlexAlgo

UC05 View Topology
The time management of this project was sufficient enough that optional use cases could be
implemented. As such overview of the topology in a graphical representation is possible. This
was done utilizing the demo application of Michel Bongard. This project merely adjusted the
existing solution to call our API and optimally presents our data. An added functionality of seeing
a list of currently running FlexAlgos and being able to select one to see its graph highlighted was
also implemented.

Figure 3.8.: React.js Graph Topology

To be able to utilize this demo multiple API calls were implemented that can be found in the
Swagger documentation under the tag API Paths or in the API documentation 3.6.
Conclusion: IMPLEMENTED

31

Chapter 3. Results SR-App FlexAlgo

UC06 Graphical Representation of One FlexAlgo
With the functionality of the demo frontend already discussed beforehand a representation of one
algorithm is indeed possible. Clicking on the corresponding button will highlight all nodes that
have a particular algorithm definition and their connecting links. Algorithm numbers list and
topology are updated live with a page refresh.

Figure 3.9.: React Graph Topology - FlexAlgo 129 Highlighted

Conclusion: IMPLEMENTED

UC07 Graphical Representation of All FlexAlgos
This use case proved to be troublesome not in the implementation, as this would indeed be doable
with the existing functionality of highlighting paths. But to make this not only visually appealing
but also understandable and bringing additional value to the existing functionalities of UC06 and
UC05 proved to be challenging. It was decided by the team members not to implement this
use case in the short time remaining for the project. Especially on large networks with a lot of
FlexAlgos this could prove very confusing for the user. First developing UC15 could prove to be
illuminating in this regard, as this would allow the user to select only a small subset of all paths
depending on filter value. A corresponding API call with query parameters was prepared and
experimented with.
Conclusion: NOT IMPLEMENTED, FROZEN

UC14 Show Router Information
In a happy coincidence, steps to implement this use case are already under way with the proto-
type. Functionality for getting information of a router is implemented, though at the moment
constrained to names, algorithms, prefixes and geological data. Any aditional data in the objects
nodes and node_coordinates can easily be added and displayed with minimal overhead. Merely

32

Chapter 3. Results SR-App FlexAlgo

the implementation of this functionality in the graphical frontend is not yet present.
Conclusion: PARTLY IMPLEMENTED

UC15 Filter Topology
In the study of the feasibility of UC07 filter functionality was added to the /getAlgoNumbers
API call. With query parameters added to the url a subset of the algorithms can be called.
At the moment functionality is limited to algorithms defined on specified nodes. How such a
call should look like can be found as comment in the code of the flexalgo_route class in the
get_algo_numbers method.
Conclusion: NOT IMPLEMENTED, FIRST STEPS MADE

UC17 Historic Analysis
With the addition of caching to the application, a rudimentary functionality of sending data to
other systems is implemented and proved to be minimally impactful on the performance. This
may be helpful should this use case be implemented.
Conclusion: NOT IMPLEMENTED

3.2.2. Non-Functional Requirements
Functionality
Security: BA specific requirements, not implemented in prototype.

Accuracy: Connection to the gateway is currently not feasible, see Distinction 3.1. All the same,
the application sends the newest status of network back and allows the user to see the most
up-to-date information.
Conclusion: FULFILLED

Interoperability: Connection to the gateway is currently not feasible, see chapter Distinction
3.1. Application works with the gateway’s database directly. Network data is generated from
virtual IOS XR devices. Configuration is a BA requirement.
Conclusion: FULFILLED

Reliability
Fault Tolerance: The software was made fault tolerant by implementing error handling. A
differentiation was made between connection failure, data set problems, missing fields handling
and internal server handling should the application itself have a problem.
Conclusion: FULFILLED

Maturity: The software is developed to run stable and error handling to prevent unexpected
shutdown is implemented.
Conclusion: FULFILLED

Recoverability: The cloud native twelve-factor methodology was used. How it was imple-
mented can be seen in chapter 3.1.
Conclusion: FULFILLED

Usability
These requirements were predefined for the BA project and were not implemented in the proto-
type.

33

Chapter 3. Results SR-App FlexAlgo

Performance
Data Integrity: The newest data from the network is shown with a page refresh, as such users
operate on up to date information.
Conclusion: FULFILLED

Scalability: Twelve-factor methodology was used and as such scalability is guaranteed. A
further analysis for scaling needs in relation to large networks may be advisable, to ensure the
application scales the computation of the graph properly. This will have to be done in conjunction
with the Jalapeño API Gateway. This was agreed upon with the advisors.
Conclusion: FULFILLED AS AGREED

Resource Behaviour: BA specific requirements.

Time Behaviour: The computation of the algorithm paths (/getAlgos path) has the highest
demand on performance and time management. As such there was intensive testing done on this
path and the others. Currently the graphs are calculated in under 3 seconds with a 1’000 nodes
heavy network, with 1’000 links and 100 FlexAlgos defined. See testing protocols for further
information 5. The requirement for telemetry data is no longer needed, as the FlexAlgorithm
data istopology data only, so no telemetry data is required.
Conclusion: FULFILLED

Maintainability
Analysability: Error handling is implemented in the application. If errors are caught in the
application a message is logged to the standard error stream and a descriptive message is sent to
the frontend. It is possible to send HTTP specific codes instead of messages to the frontend too.
For further information about the logging process see section Logging 3.7.
Conclusion: FULFILLED

Testability: All functionality of the software is sufficiently tested in unit and integration tests.
System and acceptance tests were performed in each sprint review and can be found in here 5.
Continuous integration with pipeline with testing functionality is implemented and allows only
succesfully tested code to be merged.
Conclusion: FULFILLED

3.3. Implementation
This section will discuss especially interesting aspects of the prototype.

3.3.1. Update Functionality
As previously discussed the Jalapeño API Gateway could not be implemented in this project. The
request based architecture currently implemented connects to the ArangoDB and calls the whole
dataset upon each /get API call. This does not represent the gRPC functionality of subscription
the gateway would provide. These subscriptions means that a gRPC client can "observe" certain
data structures via the gateway and always get notified if changes to them happen. As such
changed objects get sent to the client application that then can apply its business logic to them.
To still ensure the prototype will provide a significant simulation of the final product, update
functionality was built into the system. With /update API calls a user can simulate updated data,
mocked in the application itself, being fed into the system and receives a full set of the topology
data with the updated object back. Generally the node with the _key "2_0_0_0000.0000.0008"
was mocked. Therefore node data, FlexAlgo configurations and links with that node as either

34

Chapter 3. Results SR-App FlexAlgo

starting or end point can be observed to change certain properties. Which values change can be
seen in the service UpdateData where the function randint was used to simulate changes.
Further information about the API can be seen in the API documentation 3.6.

3.3.2. Live Model
In the future the SR-App will receive updates from the Jalapeño API Gateway and push these
changes to the frontend. The architecture of the protoype was chosen to make migration to
this push architecture easy to implement. To not only accommodate this architectural change
but also ensure performance that will be under an acceptable limit, an instantiated topology
was implemented. This live model of the data on the system is currently initialized at the first
request to the application. In the future this may be initialized at start up. This will ensure that
updates to the topology can be computed fast and will not have to reload the whole network
data. Additionally, in the future an Observer Pattern can be implemented on the live model,
that pushes the updates to the frontend after the gRPC updates are written in the model. This
isolates the backend communication to the gateway completely from the frontend communication
and ensures easily replacable communication functionality.

3.3.3. Caching
As it is not possible to ensure the production application will have global variables syncronized
over the different scaled applications, caching was built into the project. Each production applica-
tion of network read accesses the cache upon receiving an update request and imports the cached
data. As such every application instance will work on the same data set and remain consistent.
Further information about this can be found in the conclusion chapter Caching 4.2.0.5.

3.3.4. Pipeline
There is a single pipeline script which handles all required jobs for this project. To be able to run
the tests of glspytest on the project it was required to deposit the url, username and password to
the ArangoDB into the GitLab repository to follow the basic security aspect of publishing those
credentials into a repository .

The pipeline consists of those stages in this order:

• documentation: builds the LaTeX documentation

• formatting: runs Black to format Python code

• check-static-types: runs MyPy to check for static types in Python code

• test: runs Pytest and check the unit and integration tests

• sonar-scanner: uploads output from previous steps and own checks to SonarQube fron-
tend

• build-image: generates the Docker image file out of the providen application code

• deployment: updates Kubernetes Deployment with the new Docker image

For further insights into the pipeline, one can consider the file in the Appendix 10.1 or directly
the original file .gitlab-ci.yml from the GitLab repository.

35

Chapter 3. Results SR-App FlexAlgo

Credentials
To be able to run the tests of glspytest on the project it was required to deposit the URL,
username and password to the ArangoDB into the GitLab repository. This was done to follow
the basic security guidelines of public accessability of those credentials.

Workflow
If someone wants to create a pdf out of the LaTeX files, one can create branch with the name
that starts with doc_*. This will kick off the pipeline script part with the single job of running
the Makefile in which the required rubber, pdflatex and makeglossaries commands are listed. The
two generated documents thesis.pdf and management_document.pdf can then be retrieved under
the artifacts in GitLab’s pipeline.

In case there is an open merge request and the branch starts with dev_*, which are sub-branches
of the main dev-branch for the final production, the jobs of formatting, static-test, pytest,
sonarqube scanner will be ran before a merge can be completed. If all those jobs succeed, a
team member can visit the SonarQube frontend and check for the code analysis. After inspecting
this, one can merge the desired branch into another and the last part of the pipeline will be
kicked off to build the Docker file, which is based on the merged code. The output file can then
be downloaded under the artifacts of GitLab.

36

4. Conclusion

This section critically discusses the achieved results, the decisions made and illuminates what
could have been handled better. As such it also comments on what will have to be changed
should the project be continued on the basis of this prototype.

4.1. Retrospective
As discussed in the Results section of this paper, while the planned use cases are sufficiently
implemented, there is a heavy limitation on the prototype. A gRPC connection to the Jalapeño
API Gateway could not be established and as such the prototype had to directly access the
database of the Gateway. This means the prototype will have to be refactored to accompany
a gRPC service. While it was build to make the migration as smooth as possible there is still
overhead in a future migration.

4.2. Discussion
4.2.0.1. Pipeline

A larger microservice project usually would be distributed over multiple repositorys with sep-
arate pipelines. This would provide greater felxibility and adjust better to different software
needs.

In this research project the team started with an approach of multiple pipelines per branch, that
would fulfill different tasks. There was for example a pipeline script to build the LaTeX based
documentation and another for the production, which would format, run tests, build input for the
SonarQube and deliver a Docker file for the release at the end. While this method worked well in
the beginning, it became soon obvious that this was not a sustainable solution with the feature
branch system the project worked with. The many branches created, updated and merged made
it impossible to manage the pipelines in an efficient way. To solve the problem the team merged
the different pipeline scripts into one with branch specific rules to run different jobs according to
the branch it currently ran on.

With the implemented React.js frontend the team would have liked to have a pipeline for the
deployment of this code into its own pod, too. Sadly, the time did not allow for this to hap-
pen.

4.2.0.2. Architecture

The class diagram for the network read service was created with a more general request service
approach in mind, contraty to the streaming functionality the final service would implement.
This as both team members did not have much experience in either class diagrams or indeed
different approaches to architecture than the classical request based one. Upon construction of
the prototype it became obvious that this would not be an optimal solution to the problem and

37

Chapter 4. Conclusion SR-App FlexAlgo

changes had to be implemented where needed and doable. The streaming based approach was
not possible to experiment with in the construction. This means that the architecture may need
slight updates when implementing push architecture. But due to the isolation of the packages
this should not be a large undertaking.

In retrospect a stream based push architecture for the prototype with a basic message queue
or something similar as provisional "frontend" (observing and analysing the messages received
by the queue) may have been a better approach to prototype to allow for a more similar archi-
tecture to the final product. Even with no connection possible to the gRPC, with a makeshift
polling mechanism this would have been possible and given a better starting point for a future
project.

4.2.0.3. Live Model

The live instance of the topology, on which observer can be build to push notifications to the
frontend, proved to be a stable system in the request based application. As mentioned before it
may be needed further experimentation for the final architecture. The team still believes it will
be a stable solution for the stream based architecture, even if it makes the backend marginally less
stateless. As the state, i.e. the model, should be globally the same and does not have differences
between scaled instances, i.e. will be updated in the exact same way by each application, this
should not pose a problem.

4.2.0.4. Gunicorn - Global Variables

[Gunicorn][1] A limitation to the previouesly discussed live model proves to be the production
server. The Flask application, when not run locally in development mode, is run on a Gunicorn
server in Kubernetes. Gunicorn is a Python WSGI HTTP server that runs on UNIX. It provides
basic scaling functionality together with Kubernetes and allows easy, save and stable deployment
of the Flask framework.

The scaling is done via Pre-forking. The drawback of this is that previously global variables are
not guaranteed to be global anymore. The scaling of Gunicorn is implemented with a pre-fork
worker model, i.e. the application can be run as multiple instances that handle great workloads
of requests simultaneously. This means the live model could hold different information between
the instances and so leads to an inconsistent system. This proves to be somewhat troublesome
for the live model, as that is supposed to be a globally valid variable.

Flask does not provide a build in mechanic to solve this problem, as all functionalities like context,
etc. are constrained to whithin one Gunicorn Pre-forking at best. To avoid this problem a possible
solution was implemented in the prototype, namely caching.

4.2.0.5. Caching

As discussed in the last two sections, the supposed global live model is not stable in a production
environment due to the mechanics of the Gunicorn server. To mitigate this problem a cache was
implemented. The application now checks the cache if there is an instance of the model and if yes,
loads this model. Then it checks for newest updates and changes the cached model accordingly.
The application runs a normal request to the ArangoDB and gets all topology data it needs,
should there not be a cached value. The application again caches the value of the live model after
completing all necessary calculations. This saves performance time and may be useful especially
on the computation heavy operations like the algo path calculations.

38

Chapter 4. Conclusion SR-App FlexAlgo

In combination with the Guncicorn server it may be recommended to use the file based caching
service. If Kubernetes will add additional scaling an external caching service like Redis may
even be needed. Replacing caching versions is an easy change of the configuration and is easy to
implement.

One last question is if this will even be needed. As all workers, no matter the scaling, will receive
the same model data and updates, there should in theory never be much differences between the
"global" variables of the workers. This will need extensive testing though, as the behaviour can
not be predicted, especially on heavy workloads in the production. Live tests on a bigger network
may be recommendable.

4.3. Outlook
In this chapter we will discuss improvements and insights gleaned from building the prototype
that will help in a further project to improve the application.

4.3.1. Improvements
gRPC Connection
First and foremost the gRPC connection has to be built up. An integration of the functional-
ity already exists on branch feat_add-grpc that succesfully sets a request to the Jalapeño API
Gateway and receives data back that it writes on the console. At the moment only the request
service is utilized as the connection to the gRPC is unstable. As such, especially the streaming
functionality should be implemented and tested once the Gateway is updated.

Caching
Depending on the findings of the application’s behaviour with global handling as discussed previ-
ously, caching may be built upon. In an extreme case a stipped down persistence of the aggregated
data may be the best solution to ensure performance. At the moment this does not seem neces-
sary, as even test data with 1’000 routers, links and up to 10 algorithms is performing well above
the minimal requirements, if only updating functionality is looked at. Complete loads of the data
are also still in the set time. Further testing and experimenting is needed here.

Decoding Affinities
Affinities are predefined in a bit-map on each router to map the string values the engineer config-
ures to numbers. These values are then used in the affinity handling of FlexAlgos and configured
on interfaces. Sadly, the mapping is not sent out of the router with the rest of the FlexAlgo data,
merely the number values. Not only that, but the values are saved as binary strings that are
base64 encoded. How exactly the values are saved can be seen in section 2.2.

The decoding and matching of these values poses a larger problem. As it was only found out in
the last week of the construction phase of this project time, for finding a solution to this could
not be spared. Writing the thesis had to take priority at this time. A beginning of a decoding
can be found on branch fix_decoding-affinity, though, and can be built upon in a future
project.

39

Chapter 4. Conclusion SR-App FlexAlgo

4.3.2. Innovations
Coordinates
The application uses coordinate data on the nodes to place them in a meaningful way on the
graphical representation of the network. This uses Jalapeño functionality that has not been
implemented yet but thought up in other SR-App projects. Is this functionality developed the
application will be able to use it seamlessly.

Frontend
Currently a bachelor thesis for a general SR-App frontend is being done by the students Da-
vor Gajic and Leonard Obernhuber. They have already developed a prototype research project
"Central Frontend for Segment Routing Applications" and are now in the process of finalising a
frontend for SR-Apps that can be implemented and adapted as needed for the applications of
this series. SR-App FlexAlgo will also be able to implement this project upon completion. As
such our basic React.js demo will be replaced and a further project can concentrate on the more
specialized backend services.

4.3.3. Further Thoughts
CRUD Operations
The Jalapeño API Gateway is currently only able to read data.

As the SR-Apps are planned to be build upon and encompass a wide variety of functionality,
a premade gateway to handle deployments of different configurations may be advisable. At the
moment the team is aware of at least one other project, SerPro from Julain Klaiber and Severin
Dellsperger, that deploys configurations. Instead of duplication of the architecture for the different
applications, which may only have minimal differences, a single gateway be of great use for the
bigger scope of the SR-App project.

Mocking Tool and Frontend - Connected Services
Similar to the CRUD operations, the mocking tool used in this project holds very similar re-
quirements between applications. A more general mocking mechanic, perhaps even built into
an application, may be of use for the future. Adapting and expanding the minimal mocking
tool of the project "Central Frontend for Segment Routing Applications" to seamlessly work with
different needs of SR-Apps may be a worthwhile endeavor.

40

5. Terminology

WAN
Wide Area Network consists of multiple networks that can communicate with each other. For a
more detailed explanation one can consider Ciscos definition.

DC
In a Data Center there is a hierarchy of multiple levels built with different kinds of devices to
ensure a high performance while delivering reliability in parallel. This structure is chosen because
the DC usually acts as a distribution center of data that has to be transferred from one (large)
network to another. As a good overview, one can consider the TechTargets explanation.

Source Routing
This network routing principle allows the source device, the starting point of the routing process,
to direct the complete or part of the path that the packet will take over the network to the desti-
nation. For this, the routing steps will be inserted into the packet directly. A short explanation
can be considered on Junipers section or the entry of Wikipedia.

Destination Routing
In contrast to the above described source routing network devices send packets according to the
destination IP address that is written into the packet header. In other words, each router on the
way calculates the path to the destination, instead of merely following a preset routing path to
the next step.

Control Plane
The plane is an abstract separation of processes network devices run to be able to route packets.
The Control Plane describes the processes that provide information about the topology of the
network and all information needed how to forward packets [57]. See Cloudflares site for further
information.

Data Plane or Forwarding Plane
The processes that actually forward the packets in the network according to the Control Plane
[57]. For a fast overview consider Cloudflares site.

Node
A network device capable of participating in a network communication with other devices as an
endpoint or as a transit point.

41

https://www.cisco.com/c/en/us/products/switches/what-is-a-wan-wide-area-network.html
https://www.techtarget.com/searchdatacenter/definition/data-center
https://www.juniper.net/documentation/us/en/software/junos/static-routing/topics/ref/statement/source-routing-edit-routing-options.html#source-routing-statement__d19961e40
https://en.wikipedia.org/wiki/Source_routing
https://www.cloudflare.com/learning/network-layer/what-is-the-control-plane/
https://www.cloudflare.com/learning/network-layer/what-is-the-control-plane/

Chapter 5. Terminology SR-App FlexAlgo

Link
A physical connection between two active Nodes on a network. Usually represented by a cable
or something similar. Links are not intelligent on their own but may be handled as such in this
project.

Interface
Physical or virtual points that a device owns over which the data packets get sent or received.

IS-IS
With this routing protocol, the Intermediate System to Intermediate System (RFC 1142
[35]), different kinds of networks can be built. As it is an IGP it is usable as control plane. A
fast overview can be read on Juniper’s website.

MPLS
The network technology Multiprotocol Label Switching lies on OSI layer 2.5. It is inde-
pendent of the upper layer’s protocol and can encapsulate their packets. It belongs to the data
plane. MPLS works with labels to send the packets to its next destination instead of IP ad-
dresses (see source routing parapragh). A good definition can be read in Palo Alto Network’s
docuement.

YANG model
YANG is a data modeling language derived of json. It is popular to configure and control network
devices. The FlexAlgo information for this project is stored in this language on the network
devices. Please consult the YANG documentation for further information.

Segment Routing
Segment Routing is a source routing protocol that steers packets according to segments, instruc-
tion written into the packet header. The Main infomration is therefore stored not in the devices,
as with other protocols, but in the packets themselves. As such traffic can be adjusted to the
desires of the network enigneer. A good overview of the technique and its different terms can be
read on Juniper’s website.

Segment
Segments are instructions placed in a packet header, called segments. The receiving device will
consult these segments on how to send the packet on to the next Segment Routing device. Please
consult hrefhttps://www.juniper.net/us/en/research-topics/what-is-segment-routing.htmlJuniper’s
website for further information.

Flexible Algorithm (FlexAlgo)
Complemets the Segment Routing solution to traffic engineering by adding new, customizable
prefix-segments with specific optimization objective and constraints. For example, it can minimize
IGP-metric, delay or TE-metric or avoid SRLGs. Where it shines most is avoiding or including
routes based on manually configured values on links, such as SRLGs or affinities [46]. A complete
presentation of this topic can be read Cisco’s page.

42

https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/is-is-routing-overview.html
https://www.paloaltonetworks.com/cyberpedia/mpls-what-is-multiprotocol-label-switching
https://www.paloaltonetworks.com/cyberpedia/mpls-what-is-multiprotocol-label-switching
https://yangcatalog.org/about.html
https://www.juniper.net/us/en/research-topics/what-is-segment-routing.html
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/

Chapter 5. Terminology SR-App FlexAlgo

Affinity
A value given to an interface on a node to customize path handling. Used to calculate routing
paths. Custom is to use color names. Packet paths in FlexAlgos will then be calculated to include
or exclude these values depending on the FlexAlgo configuration.

Prefix-SID
An ID for a node in a flexible algorithm, unique per algorithm.

43

Part IV.

Project Documentation

44

1. Requirements

1.1. Use Cases

Minimal Viable Product SA

Optional Features SA

Minimal Viable Product BA

Optional Features BA

Table 1.1.: Use Case Color Code

1.1.1. Actors

Actor Description

Unauthorized User is not authorized in the system. User has to provide identity to get
access to functionality of system.

User User is authenticated and can use basic features of the system. Basic
features include viewing flex algo related information of the network.

Admin
Admin is authenticated and has additional permissions for suplementary
features of the application. These features include performing CRUD
operations on the network configuration and viewing logged information.

Table 1.2.: Actor Description

45

Chapter 1. Requirements SR-App FlexAlgo

1.1.2. Diagram

Figure 1.1.: Use Case Diagram

46

Chapter 1. Requirements SR-App FlexAlgo

1.1.3. SA Use Cases

UC00 See a list of flex algo information

As User I see a list of all the information of the flex algos currently running on the network
connected to the application.

Actor User

Overview

This UC will be replaced with UC05 as soon as it is implemented. It will
only be used for prototype development. As a User I look for the current
network topology of the to the Gateway connected network. I see a list of
all relevant information of the flex algo.

Preconditions Jalapeño API Gateway is connected to a network and is sending data to
the system.

Main Success Sce-
nario

1. User wants to get an overview over the network and it’s running flex
algos.

2. System provides a text list of the network upon refresh of web page.

Failure Outcome The User sees an error message in place of the list. In it is defined if the
error occured in the application or before the application.

Frequency of Oc-
curence As often as required.

Table 1.3.: UC00: List of Flex Algo - Fully Dressed Description

UC01 Live Updates

As User I see live changes to the network.

Actor User
Overview As User I see updates to the flex algo in real time.

Postconditions
Has UC03 and UC05 been implemented, then the flex algo information
in those will be updated. Is UC17 implemented then all network changes
will be persisted in database.

Main Success Sce-
nario

SA: If a the flex slgo configuration on the network changes the web fron-
tend reflects these changes with a page refresh. BA: The React.js frame-
work will allow the User to see all changes without page refresh via event
handling and data binding.

Failure Outcome User will experience UC02 should application loose connection to Jalapeño
API Gateway.

Necessary UC UC00

Table 1.4.: UC01: Live Updates - Fully Dressed Description

47

Chapter 1. Requirements SR-App FlexAlgo

UC02 Failure to Connect to Network

As User I see a pop-up message if the applicationhas failed to connect to the Jalapeño API
Gateway or the network and live updates are no longerpossible.

UC03 Show List of All Running Flex Algos

As User I see a list of all flex algorithms running on the network connected to the application.

Actor User

Overview As a User I can see all currently configured flex algos on the connected
network.

Assumptions User is logged into the application.

Preconditions Jalapeño API Gateway is connected to a network and is sending data to
the system.

Main Success Sce-
nario

1. User wants to see an overview over all flex algos running on the
connected network.

2. System provides a list of algos.

Failure Outcome The User sees an error message displayed in place of the list.
Frequency of Oc-
curence As often as required.

Necessary UC U00, U01

Table 1.5.: UC03: Show List of All Running Flex Algos - Fully Dressed Description

UC04 Logging Application

As Admin I have an error log for the backend server of the application.

48

Chapter 1. Requirements SR-App FlexAlgo

UC05 View Topology

As User I see a graphical representation of the topology of the network connected to the
application that is updated live.

Actor User

Overview As a User I look at the current flex algo topology of the connected network.
I see this topology as a graphical representation.

Assumptions User is logged into the application via UC12.

Preconditions Jalapeño API Gateway is connected to a network and is sending data to
the system.

Main Success Sce-
nario

1. User wants to get an overview over of the network.
2. System provides a graphic of the network with all to the flex algo

relevant objects.

Failure Outcome The User sees an error message in place of the graphic. In it is defined if
the error occured in or before the application.

Frequency of Oc-
curence As often as required.

Necessary UC UC00, UC01

Table 1.6.: UC05: View Topology - Fully Dressed Description

UC06 See Graphical Representation of One Flex Algo

As User I can choose a flex algo and see the graphical representation with all contained
nodes.

Actor User

Overview
When in graphical view of the network the User can click on a specific
algorithm and filter the visual to show only the relevant nodes and links
to this flex algo.

Necessary UC UC01, UC05

Table 1.7.: UC06: See Graphical Representation of One Flex Algo - Casual Description

49

Chapter 1. Requirements SR-App FlexAlgo

UC07 See Graphical Representation of All Flex Algos

As User I see a global map of the network with all running flex algos graphically represented.

Actor User

Overview
When in the graphical overview of the whole network, User can see all
running flex algos in the graphical interfaces. Meaning links are colored
according to the algorithms running on them.

Necessary UC UC01, UC05

Table 1.8.: UC07: See Graphical Representation of All Flex Algos - Casual Description

1.1.4. BA Use Cases

UC08 CRUD Flex Algos

As Admin I am able to create, update and delete flex algorithms currently running on the
connected network in the web interface. The read part of CRUD is implemented in UC.

Actor Admin

Overview

As an Admin I want to configure the currently running flex algos on the
network. Create: As Admin I create all necessary parameters for a new
flex algo. Update: As Admin I view an existing flex algo in the graphical
User interface. Locating the relevant properties I change configuration
settings on a node or algorithm according to the new policy. Delete: As
Admin I delete an existing flex algo to revoke the existing configuration
on the network in the next UC.

Assumptions Admin is logged into the application.

Preconditions Admin has required permission to alter network configurations. Jalapeño
API Gateway is connected to a network and is sending data to the system.

Postconditions Viable flex algo configuration is prepared for UC09.

50

Chapter 1. Requirements SR-App FlexAlgo

Main Success Sce-
nario

Create:
1.1 Admin wants to create a new flex algo.
1.2 Admin clicks on ’new algorithm’ button.
1.3 System opens flex algo detail view.
1.4 Admin inputs all relevant information about new flex algo.
1.5 System makes a check if all necessary input for a new configuration

file is present and valid (input validation, like no letter in int, etc).
1.6 Admin clicks on ’deploy’ button.
1.7 System provides a new configuration to be deployed in UC09.
1.8 System automatically starts UC09.

Update:
2.1 Admin wants to update an existing flex algo.
2.2 Admin finds desired flex algo in existing algo list.
2.3 Admin clicks on ’edit’ button of flex algo.
2.4 System opens flex algo detail view.
2.5 Admin changes relevant information.
2.6 Items 1.5-1.8 will be stepped through.

Delete:
3.1 Admin wants to delete an existing flex algo.
3.2 Admin finds desired flex algo in existing algo list.
3.3 Admin clicks on ’edit’ button of flex algo.
3.4 System opens flex algo detail view.
3.5 Admin clicks on ’delete algorithm’ button.
3.6 Items 1.5-1.8 will be stepped through.

Other Success
stories

Cancel:
4.1 Admin wants to cancel algo configuration without applying changes.
4.2 In algo detail view Admin clicks on ’cancel’ button.
4.3 System reverts to topology view without providing new config file.

Failure Outcome

• Invalid configuration: User cannot click ’deploy’ button to stop in-
valid network changes.

• Config file creation failed: User gets notified about failure to create
configuration file and returns to algo detail view.

Frequency of Oc-
curence User defined frequency

Necessary UC UC01, UC04, UC05

Table 1.9.: UC08: CRUD Flex Algos - Fully Dressed Description

51

Chapter 1. Requirements SR-App FlexAlgo

UC09 Deploy Flex Algo Changes

As Admin I deploy flex algo changes to the connected network.

Actor Admin
Overview As Admin I want to deploy the new configuration made in UC08.
Assumptions Admin is logged into the application.

Preconditions Admin has required permission to alter network configurations. Network
is connected to the Jalapeño API Gateway. Network data is live.

Main Success Sce-
nario

1. System changes to deployment view.
2. Admin sees old and new version of configuration.
3. Admin clicks on ’deploy’ button.
4. System starts UC10 and UC11 if implemented.
5. System returns to topology view with deploying status displayed.

Other Success
Scenario

Cancel CRUD operation:
1. Admin does not want to deploy changes.
2. Admin clicks on cancel.
3. System reverts to algo detail view with previous changes still logged.
4. Admin clicks on ’cancel’ button to remove all changes to existing

configuration.
5. System reverts to topology view.

Change CRUD operation:
1. Admin finds mistake in new configuration.
2. Admin clicks on ’cancel’ button.
3. System reverts to algo detail view with previous changes still logged

in.
4. Admin repeats UC08.

Failure Outcome New configuration failes to deploy. Admin receives error message with
detailed info about deployment failure.

Frequency of Oc-
curence User defined frequency

Necessary UC UC01, UC04, UC08

Table 1.10.: UC09: Deploy Flex Algo Changes - Fully Dressed Description

52

Chapter 1. Requirements SR-App FlexAlgo

UC10 Logging Flex Algo

As Admin I want to have a log of all network changes done by the application.

Actor Admin

Overview

All User changes to the flex algo configurations on the network will be
logged for the Admin. Information to be logged will be User login, time
of change, type of change, difference to preexisting config file. Logfile will
be viewable in the web application if necessary permissions are given.

Necessary UC UC09

Table 1.11.: UC10: Logging Flex Algo - Casual Description

UC11 Status of Deplyoment

As Admin I see the status of the deployed flex algos.

Actor Admin

Overview
Status of deployment from use case UC09 will be shown in web appli-
cation. Possible values will be "currently deploying", "successful deploy-
ment", "failed deployment".

Necessary UC UC09

Table 1.12.: UC11: Status of Deplyoment - Casual Description

UC12 Login

As Unauthorized I am able to register and login to the application.

UC13 Currently Deploying

As User I get notified if a deployment of an Admin is running.

Actor User

Overview When an Admin is deploying a change to the network all Users will get
notified of this change via pop up.

Necessary UC UC11

Table 1.13.: UC13: Currently Deploying - Casual Description

53

Chapter 1. Requirements SR-App FlexAlgo

UC14 Show Router Information

As User I see relevant information for a link or node.

Actor User

Overview
As User I can click on a node and see detailed information of this ob-
ject. Information includes metrics, algos and algo specific properties, ssh
connection info, etc.

Assumptions User is logged into the application.

Preconditions Jalapeño API Gateway is connected to a network and is sending data to
the system.

Main Success Sce-
nario

1. User wants to get specific information about a node.
2. User clicks on object.
3. System provides all information of chosen object in a separate panel.

Failure Outcome The User sees an error message displayed in place of the information.
Frequency of Oc-
curence User defines frequency.

Necessary UC U01, U04, UC05

Table 1.14.: UC14: Show Router Information - Fully Dressed Description

54

Chapter 1. Requirements SR-App FlexAlgo

UC15 Filter Topology

As User I can filter the currently displayed network.

Actor User

Overview As User I can filter the shown topology by node name and properties.
Filtering is done only in the frontend of the application.

Assumptions User is logged into the application.

Preconditions Jalapeño API Gateway is connected to a network and is sending data to
the system.

Main Success Sce-
nario

1. User wants to only see objects with a certain affinity.
2. User inputs the desired values into GUI.
3. System provides a graphic of the filtered network.

Other Success
Stories

Empty filter:
1. User wants to only see objects with a certain property.
2. User inputs the desired values into GUI.
3. System provides a message ("no objects in this filter") if filter has

no valid entry.

Failure Outcome The User sees an error message in place of the graphic.
Frequency of Oc-
curence User defines frequency.

Necessary UC U01, U04, UC05

Table 1.15.: UC15: Filter Topology - Fully Dressed Description

UC16 Info Pages

As User I see an info page about the application and general information about flex algo-
rithms.

UC17 Historic Analysis

As Admin I see and analyse historic data of flex algorithms of the connected network.

UC18 Snapshots

As User I can make snapshots of the network with currently chosen visual filters.

55

Chapter 1. Requirements SR-App FlexAlgo

UC19 CRUD Roles and Users

As Admin I create, read, update and delete roles and Users on the application.

UC20 Permissions

As User I have access only to operations I am authorized to.

1.2. Non-Functional Requirements
[26]

1.2.1. Functionality
Security (BA)

• Access to application will be secured via authentification.

• Network changes are not allowed via the application by unauthorized users.

• Network changes are logged with user information for non-repudiation.

Accuracy

• Application will work with latest data from the Jalapeño API Gateway. All updates to flex
algo configurations will be done with up-to-date information.

Interoperability

• The application will work with the by INS developed Jalapeño API Gateway. The un-
derlying network data will be generated using Cisco IOS XR devices on which MPLS is
configured. Configurations are written to the same devices in the same topology.

1.2.2. Reliability
Fault Tolerance

• The backend server will remain running, even if the communication with the Jalapeño API
Gateway is down.

Maturity

• In production usage with sufficient network connection 95% of all requests will be completed
successfully.

• The annual uptime of the app will be 95%.

Recoverability

56

Chapter 1. Requirements SR-App FlexAlgo

• The application will be developed according to cloud native standard. As such redeploying
on Kubernetes cluster after failure will be possible without further manual intervention.

1.2.3. Usability
Understandability (BA)

• The design is clear, minimalistic and shows the complex relationship of a flex algorithm as
easy as possible.

• A configurations status is available at a glance.

• Application may provide an info page for app usage if project time allows.

Operability (BA)

• Via info page and icons a user is able to change a flex algo without further assistance.

• All inputs and views are reachable within 5 clicks.

User Error Protection (BA)

• Changes to the network by the user need to be separately confirmed.

• User input will be validated in frontend.

Accessibility (BA)

• The design is clear, minimalistic and shows the complex relationship of a flex algorithm as
easy as possible.

• The app is usable with color weakness.

• The font size is changable by the user.

1.2.4. Performance
Data Integrity

• (BA) Multiple users will be able to work on the same network at the same time.

• The network configurations will be updated real time.

Scalability

• The application will be scalable through the usage of cloud native development.

Resource Behavior

• (BA) Each service provider receives an own instance of the application environment and
can give access to its customers. More detailled analysis for user capacity will be done in
the BA. (The app will support up to 6’000 registered users.)

Time Behavior

• Once Jalapeño API Gateway has processed a topology change the application will take no
longer than 1 minute to fetch and display the new data. (Initial loading is not included in
this estimation.)

• Telemetry data from the Jalapeño API Gateway will be shown in real time in the application.

57

Chapter 1. Requirements SR-App FlexAlgo

• (BA) Time behaviour by CRUD operations on flex algorithmn will be defined in BA.

1.2.5. Maintainability
Analysability

• When an error occurs the user will receive a popup-message that asks them to repeat the
action.

• Errors in the backend and the interface to Jalapeño API Gateway will be logged.

• (BA) Log the actions of each user for forensical reasons.

Testability

• All use cases will be tested automatically with unit and integration tests.

• Performance of the non-functional requirements will be checked with system tests.

• All test cases have to succeed before the new code will be integrated in the productive
software.

58

2. Domain Analysis

A domain analysis was done in order to understand the flexible algorithm Segment Routing
technology. As both participants had little knowledge of FlexAlgo itself, this was an especially
important step. In the following section a visual representation of the domain is shown, in the sec-
tion Administrative Concepts the concepts are further explained in detail. A base understanding
of the FlexAlgo technology is assumed, as can be read in chapter 2.

2.1. Domain Model

Figure 2.1.: Domain Model [28]

59

Chapter 2. Domain Analysis SR-App FlexAlgo

2.2. Administrative Concepts
[55]

Algorithm
The Algorithm domain represents the flexible algorithm of Segment Routing. It is the central
part of the domain. For a clearer explanation of what a flexible algorithm is and how it works
consider the thesis section on Segment Routing 2. An Algorithm can be defined on a Node and the
configuration is then advertised through the Network. Each Node can have multiple Algorithms
with different property values configured on it. Property values for the same algorithm can
differ between the Nodes that have this algorithm configured. As such the domain needs to be
able to handle different, even contradictory, definitions for one algorithm. The network handles
these inconsistencies with the priority property. The propagation of the FlexAlgo information
through the network BGP-LS is used, which distributes sub-tlv packets for this [5].

For this project properties of an Algorithm are moved from the Algorithms domain object and
outsourced in Property to be able to work with priorities and origin node properties.

Node
A Node refers to a device capable of routing network traffic and therefore calculating FlexAlgo
information. Most often this refers to routers, but other devices like servers are capable of handling
these too. In the scope of this project Nodes refer to Cisco IOS XR routers. Each router has a
network wide unique key assigned to differentiate between the Nodes in the domain. Additionally,
it has a name and other properties, which are not yet interesting for this project and therefore
ignored for now. Each Node has at least one Interface connected to it, which is the loopback
interface that is represented and configured with a prefix-sid. This id is a number that marks the
router as unique not only network wide but also whithin each FlexAlgo it is assigned to. Most
routers will have more than one Interface configured.

Interface
This is the point of interconnection between a Node and other Nodes and allows connectivity to
the network. An Interface has an identification unique to it’s Node and the Node it is connected
to.

Each Interface can have interface assigned to it that are valid for all Algorithms defined
on the Node, but doesn’t have to. This provides more granular configuration posibilities for the
algorithms in the segment domain and are where the FlexAlgo technology shines best. Affinities
are meant to be a characteristic of a link, but as a link is not a logical object in a network, they
are defined on the Interface domain element. Is there a mismatch between the Affinities on
both Interfaces connected by a link, the outdoing definition is used.

The Affinity information is saved and porpagated via BGP-LS and saved in sub-tlv lists of type
1088 (Administrative Group - color) and 1173 (Extended Administrative Group).

60

Chapter 2. Domain Analysis SR-App FlexAlgo

Property
Properties are values that are assigned on Node level, in contrast with Affinities, which are
assigned on Interface level. These values are assigned per FlexAlgo, meaning a Node can have
very different properties assigned depending on which Algorithm is observed. There are different
kind of Properties:

• AlgoId algorithm identification number, connects to the Algorithm domain object.

• OriginNode defines which Node this configuration comes from.

• Priority is implemented to handle configuration mismatches of algorithms between nodes.
Has node 1 a different property than node 2 the one with the higher priority will be used
to calculate the routes. Have both nodes the same priority, then the prefix-sid will decide.

• MetricType defines which value is used to calculate paths through the network. Per default
this metric is IGP (Interior Gateway Protocol) which is per default 10 for the protocol IS-IS
and therefore calculates the shortest path. Other metrics are TE, i.e. traffic engineering
which represents a user settable value, or delay, which calculates time spend in the network.
The time tracking functionality needs to be enabled in all nodes first, before this metric can
be used.

• Incl-* represent parts of the Affinity handling for the algorithm. In the incl-* lists values
are defined, that can (incl-any) or need (incl-all) to be traversed. As such, links with these
Affinities are preferred over other links for the path calculation.

• Excl-all these paths are to be strictly avoided. As such traffic can be steared individually
per algorithm. Bottlenecks and overload of links can be avoided.

• Excl-srlg performs similar to the Incl-* and Excl-all lists, but is a more global concept.
Here links are bundled into risk groups that can be avoided by defining it in this list.

Affinity
An Affinity is a value that can be assigned to an Interface for easier algorithm configuration
through the whole segment domain. How the Affinities are handled can be read in section
Property 2.2. Affinities are a key-value pair. Keys are identifying numbers between 0 and 255
and the value is a user defined string. These categories are saved as color names by convention.
The mapping between name and number is scoped on a Node. Generally it is best practice for
these mappings to be globally the same on the whole network, but similar to the Prefix-sid this
is not enforced. Affinity values are defined on Interfaces for each Algorithm on the parent
Node. They are globally assigned, meaning they are valid for all algorithm on configured ont he
Node.

61

3. Architecture

3.1. Twelve Factor Methodology
To ensure the application will be cloud native, the twelve-factor methodology was used to analyse
the application and it’s surroundings. From this analysis the following measures to ensure cloud
nativity were planned and implemented in the application.

I. Codebase
"One codebase tracked in revision control, many deploys."[51]
The INS institute GitLab will be used to for versioning of the project. The prototype will be saved
in one Repository and all additional data like deployment files and documentation. As the SR-App
is planned as a microservices architecture it may be advisable to separate the different services
into their own repositorys, when the project will be implemented. Using the CI/CD mechanics of
GitLab the deployment will be strictly separated into a test and production deployment pipeline.
Evaluation: Fulfilled.

II. Dependencies
"Explicitly declare and isolate dependencies."[51]
All dependencies will be handled with Poetry to ensure the best isolation and dependency man-
agement. Poetry allows depenedency handling via files and provides a virtual environment in
which the defined dependencies are installed. This ensures development, testing and production
remain the same over all environments.

Evaluation: Fulfilled.

III. Config
"Store config in the environment."[51]
Configurations for the application are handled in the isolated .Config class. The class accesses
environment files for the specific values that are used in Kubernetes by utilizing the K8s secrets.
With this the application code does not have to be changed in different environments and sensitive
information is hidden and encrypted. The application loads the files on startup and can then
consume the values specific for the current environment.

Evaluation: Fulfilled.

IV. Backing services
"Treat backing services as attached resources."[51]
At the time of evaluation the planned solution for the prototype has slightly changed from what
is described here, as can be seen under the paragraph evaluation. But the basic functionality of
Backing service is still very much the same. In the prorotype for the application the only backing
service the application will consume is the Jalapeño API Gateway. The prototype is connected
via a gRPC Client to the API Gateway, which merely needs a connection string. The url itself

62

Chapter 3. Architecture SR-App FlexAlgo

will be stored in a configuration file and loaded upon startup of the application. The connecting
client class is itself a derivative of a connection interface and as such isolated from the consum-
ing service of the application. Therefore, should the technology be replaced, for example with
a websocket instead of gRPC, merely the implementation of the interface needs to be changed.
The rest of the application remains the same.

Evaluation: Fulfilled. As gRPC connection could not be implemented yet, the backing service
was the direct connection to the ArangoDB instead. This connection is isolated in the utils
class and can easily be replaced.

V. Build, Release, Run
"Strictly separate build and run stages."[51]
We have a build and deployment stage in the pipeline. The building stage requires previous
stages, like check format, testing, etc., to build the Docker image file. After completing this part
of the pipeline successfully the deployment stage will be kicked off to update the Kubernetes pod
with the previously created Docker imgage.

Evaluation: Fulfilled.

VI. Processes
"Execute the app as one or more stateless processes."[51]
The app will be run as six stateless processes that operate separately from each other. Data will
only be stored as a whole for perfromance optimizing. It can be discarded without any data loss.
For long term persistence and future requests certain data may be stored in connected databases,
such as login, FlexAlgo configurations and historic data. This will not be implemented in the
scope of this prototype. The prototype itself holds two processes, a striped down React.js frontend
and the Network Read service.

Evaluation: Fulfilled.

VII. Port Binding
"Export services via port binding."[51]
Port Binding will be provided by Kubernetes’s methodology.
The application can be reached over the url sa-sr-flexalgo.stu.network.garden/ which will
bind to the exposed port 80 of the ingress object that is the first entry point to the Kubernetes
cluster and its elements. Over the Service in the cluster the application that exposes the Port
5000 can then be accessed.

Evaluation: Fulfilled.

VIII. Concurrency
"Scale out via the process model."[51]
Kubernetes will handle any needed scaling for high user traffic and object heavy network traffic.
All services except Network Read can be handled easily with the K8s scaling and availability
functionality. The scaling needs of the Network Read service will be tested with the prototype
of the application made in this project. Should there be a need to add load balancing for router
heavy networks a solution will be reviewed in combination with the Jalapeño API Gateway in a
further step.

63

Chapter 3. Architecture SR-App FlexAlgo

Evaluation: Fulfilled. Tests of networks of up to 1000 routers and 1000 links with 100 algorithms
configured were tested. Performance was not significantly impacted and still in acceptable range.
See acceptance tests in appendix 5.

IX. Disposability
"Maximize robustness with fast startup and graceful shutdown."[51]
Like with point IV the gRPC connection could not be implemented. See results in evaluation
paragraph. The porotype will be stateless with only the gRPC connection to the Jalapeño API
Gateway needing further handling upon shutdown, for wich the gRPC technology already brings
it’s own functionality. Data loss from network data is minimally damaging, as it is completely
replenished upon next refresh of page. All further microservices in the application beside Network
Read can be build with a serverless architecture via Knative and may be designed to be fast and
lightweight. As such they will provide fast start and shutdown times. Data loss is additionally
mitigated via message queue usage, that provides temporary storage for unprocessed messages
where necessary.

Evaluation: Fulfilled. The ArangoDB connection that replaces the gRPC connection to the
Jalapeño API Gateway handles startup and shutdown without further input needed, as it a
request based connection and not a bidirectional live one. The application starts and shuts down
satisfactory.

X. Dev/prod parity
"Keep development, staging, and production as similar as possible."[51]
The production environment will be the K8s namespaces provided by the INS institute. The
development of the SA prototype will be done locally, which will look as similar to the K8s
namespace as possible. As Poetry is used for all dependencies, it is guaranteed that frameworks,
libraries, etc. are the same over all environments. For a further project the separation of a
development, test and production environment may be recommendable and can be handled via
namespaces in K8s.

Evaluation: Fulfilled.

XI. Logs
"Treat logs as event streams."[51]
The application currently logs error events in the application and sends them to the stederr.
Kubernetes features will be utilized for logging of the stream to the pod console. This will be
sufficient for the prototype architecture of this project. In further construction of the application
logs may be pesisted with a separate logging solution.

Evaluation: Fulfilled.

XII. Admin Processes
"Run admin/management tasks as one-off processes."[51]
Administrative tasks will mostly be handled by Kubernetes and are easily done by redeploying
pods in a rolling update. Should additional administrative tasks be needed, like for example
migration scripts, they will be tested first locally in development, then in the test namespace
which is as similar to production as possible, and only then run in production.

Evaluation: Fulfilled. Not yet needed.

64

Chapter 3. Architecture SR-App FlexAlgo

3.2. Design Goals
The two main design goals of the SR-App FlexAlgo, especially the network-read service pro-
totyped in this project, are scalability and performance. Depending on the connected network
there is a large amount of data that the application will have to compute. The project has to
support networks with up of 1’000 routers. To make sure real live updates with this data load
are performant is therefore the main design goal of the application.

• Highly Scalable: The application will have to support not only the computation of net-
works with thousands of routers in it, but also a sizeable user base. As such all components
will have to be built to be reasonably scalable and therefore be as stateless as possible.

• Performance: As mentioned before, configurations of large networks do not only have to
be read via the Jalapeño API Gateway but also written back to the routers in the network
in a reasonable amount of time.

• Availability: As this application will allow for monitoring of the configurations of a net-
work, availability has to be prioritized to ensure a complete and comprehensive experience.

• Convenience: This design goal will mainly come into play past the prototype implemented
in this project. All the same it still needs to be considered for its impact on the underlying
architecture of the application. The process of deploying and maintaining FlexAlgo con-
figurations on a given network, especially large ones, is time consuming and complicated,
as each algorithm on each node has to be manually set and configured. While a certain
amount of synchronization is handled by the progapation of FlexAlgo definitions and espe-
cially discrepancies are handled with priorisation, this still leaves a large amount of liability
and tedious work. The SR-App FlexAlgo needs to make this process simple and globally
uniform. The complicated structures of the existing FlexAlgo configuration and possible
altercations therefore need to be simplified and made into a good customer experience.

65

Chapter 3. Architecture SR-App FlexAlgo

3.3. C4 Diagrams
[50]

3.3.1. Context Diagram

Figure 3.1.: Context Diagram

As shown in figure 3.1 the User can interact with the SR application to see information of the
network connected via the Jalapeño API Gateway.
In this research paper a prototype of this application is implemented. This prototype will interact
with the Jalapeño API Gateway software system provided by INS to access and display network
data. The final product, originally planned to be created in the BA of the team members, would
implement the functionality of configuring the network itself by accessing the nodes directly.

The application built in this project will provide a view of all currently running network config-
urations. For this, the application was planned to retrieve data over the connection interface of
the Jalapeño API Gateway. Unfortunately, the gateway wasn’t in a stable state and could not
be utilized yet. To circumvent this problem a direct connection to the gateway’s ArangoDB was
implemented, which provides the proper data in YANG model format.

66

Chapter 3. Architecture SR-App FlexAlgo

3.3.2. Container Diagrams

Figure 3.2.: BA - Container Diagram

Container Diagram for BA
The Container Diagram 3.2 shows the architecture planned for the SR-App FlexAlgo with all
necessary components and their relations.

A microservice architecture that runs on separate Kubernetes pods is planned. For better scala-
bility and performance Knative will be used to make certain services serverless.
The spearation into microservices was chosen as it adjusts better to individual perfromance and
scaling needs of use cases and functionalities.

The appplication will differentiate between an unauthorized user, a registered user and an autho-
rized administrator. This provides better security due to separated functionalities and ensures
only those with the right privileges can make network changes. A user that is registered and
logged in can view the provided network data, while an admin can additionly deploy network
configurations and see the logs of all user actions. This ensures traceability of network changes
and non-repudiation of actions.

For further information about the services please check chapter microservices 3.5.3. A larger
diagram can be seen in the Appendix 6.

Access API:
Handles all request based traffic from frontend to the backend services.

Network Read:
Connects to the Jalapeño API Gateway via gRPC. Handles reading and preparing network
data and pushing it into the message queue.

Network Write:
Receives updated network configurations from the frontend via Access API and handles
the coordination of the update on the network nodes.

67

Chapter 3. Architecture SR-App FlexAlgo

Log Service:
Centraized logging system for the SR-App FlexAlgo. Receives and persists logs if neccessary
and is requested by the customer. Third party software solution.

Authorization:
Handles all authorization and authentication functionalities for the whole system. Sensitive
user data is persisted in the UserDB that is only accessible from this service.

Persist Networkdata:
Persists and retrieves information about the network and its configurations for further
analysis purposes. Data is stored in Network DB that only this service accesses.

Analytics:
Retrieves data from Persist Networkdata and aggregates them for historic analysis of
network behaviour.

Only a subset of the functionalities of the planned final product is implemented for this research
project, as shown in the following section.

Container Diagram for SA

Figure 3.3.: SA - Container Diagram

The Container Diagram for the prototype 3.3 shows the elements chosen for a working Proof of
Concept. This includes the service to read the network configurations and a simple frontend. For
further details consider the chapter of Use Cases 1.1.

Rather than constructing a bidirectional communication with a message queue already, the pro-
totype communicates to the frontend over an API that is implemented in the Network Read

68

Chapter 3. Architecture SR-App FlexAlgo

service.
The initial idea was to use gRPC between the Network Read service and the Jalapeño API
Gateway. As the gateway is not ready to be implemented yet, there is a direct connection be-
tween the Network Read service and the gateways ArangoDB without gRPC.

The users can interact with the Network Read either by directly accessing server side rendered
html templates via the API or by a demo SPA application.
To access the html pages the user needs to be in the INS VPN and access the
url sa-sr-flexalgo.stu.network.garden/ with the desired postfix. List of API calls can be
found in the Swagger documentation under the /api postfix or chapter API-Documentation 3.6.
The React.js demo can be run locally and connected either to a locally run instance of Network
Read or the deployed one under the before mentioned url.

The Mocking functionality is a locally run golang script that generates mocked objects which
are manually inserted into the ArangoDB of the gateway. For further information see chapter
mocking 4.

3.3.3. Package Diagram

Figure 3.4.: Package Diagram of Microservice Network Read

As illustrated in the graphic 3.4 above, the application’s code is divided into packages for better
maintainability. Detailed information about the content of the packages can be found in the next
section called Class Diagram 3.3.4.

As mentioned before the gRPC connection could not be implemented in the prototype. As such
the package gRPCClient was only partly implemented in the feature branch feat_add-grpcc.

69

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/feat_add-grpc

Chapter 3. Architecture SR-App FlexAlgo

3.3.4. Class Diagram

Figure 3.5.: Overview of Class Diagram of Microservice Network Read

The class diagram offers an overview of the project’s classes and how they relate to each other.
As the class diagram for this project is quite extensive, the diagram is split into five parts and
explained in more details individually:

(1) Application and Live Model 3.3.4

(2) Routes 3.3.4

(3) Domain 3.3.4

(4) gRPC Client 3.3.4

(5) Service 3.3.4

70

Chapter 3. Architecture SR-App FlexAlgo

Class Diagram - Application and Live Model

Figure 3.6.: Class Diagram of Microservice Network Read - Application and Live Model

app:
The class app lies outside the package application and provides the entry point of the network
read service. This allows the app to be started by the CLI directly and provides a root level
accessing point for the application. The class uses a Factory Method, derived from the Factory
Pattern, provided by the application package, for easy startup of the application and complete

71

Chapter 3. Architecture SR-App FlexAlgo

separation of the configuration into it’s own package.

Package application:

Package config:

config:
This package isolates and provides all configuration values for the application like
database connections, gRPC client initialization and caching information. This iso-
lation is used to fulfill point III and V of the 12-Factor Methodology used for this
project 3.1. Sensitive information can be saved in files in the sub folder secrets, like
ArangoDB connection values. This allows the usage of the Kubernetes secret function-
ality and makes deployment into development, test and production stages very easy in
accordance with point X of 12-factor Methodology 3.1.

create_app:
This class provides a factory method in which the start up of the application is defined.
It loads and initializes all necessary basic components like the Flask application itself, all
Routes of the provided API, resources like the Arango Client, Caching Client and the
gRPC Connection once it will be utilized.

extensions:
This class holds all global variables that need to be accessed system wide, which for the
prototype are the db client, cache and live_model.

Package live_model:

ModelSingleton:
The Live-Model holds an instantiated topology as a global singleton with all FlexAlgo
configurations. This allows for better performance, as the network data is only instantiated
once and subsequently updated with incoming network changes. This significantly reduces
latency with data calculations. Additionally, when push methodology may be implemented
in a further project, the observer pattern can be implemented to trigger sending the updates
to the frontend. The topology data can be accessed via the extensions class.

ObservableInstantiation:
This class is not implemented in the prototype. Here an observer pattern can be developed
that will receive all changes to the live_model and start the push mechanic to calculate
any data updates and push them to the frontend.

72

Chapter 3. Architecture SR-App FlexAlgo

Class Diagram - Routes

Figure 3.7.: Class Diagram of Microservice Network Read - Routes

flexalgo_routes:
To provide all FlexAlgo specific API methods, like html web pages or React.js frontend
calls, this class will use the TranslationServices functionalities of package 3.10:

– routes for fetching current network configurations from ArangoDB

– routes for getting FlexAlgo related data shown as html lists

– routes to artifically update the network configuration data in the ArangoDB

73

Chapter 3. Architecture SR-App FlexAlgo

Class Diagram - Domain

Figure 3.8.: Class Diagram of Microservice Network Read - Domain

The Domain part 3.3.4 of the Class Diagram was constructed to support the frontend tool of
Michel Bongard for a clean adaption. As such it differs slightly from the domain analysis model
of chapter 2.

Algo:
The Algo class represents the graph of a FlexAlgo. It utilizes the base elements of the
domain and calculates all nodes and links this algorithm is defined on. It is used by the
frontend to show the graphical representation of the algorithm.

AlgoDefinition:
The AlgoDefinition represents the algorithms defined on the network. It holds all necessary
information for the FlexAlgo to be configured. As there may be inconsistencies in the
network between configurations on different nodes, the field origin_node was added.This
and the priority can be used to calculate the current active definition, as in chater 2 defined.

74

Chapter 3. Architecture SR-App FlexAlgo

At the moment all definitions are gathered as a first step. This approach was chosen to help
with network configurations once CRUD operations are possible. To have all definitions
may be useful to debug possible problems on the network. Should this not be the case filter
mechanics can easily be added to the calculations to gather only the active configurations.

AffinityHandling:
How each algorithm handles the Affinities (See chapter Segment Routing 2) is represented
with the AffinityHandling class, which each AlgoDefinition holds as a variable.

Prefix:
Similar to the AlgoDefinitions, that are implemented for fault tolerance in the same situa-
tion, the prototype currently reads all algo specific prefixes for the nodes.
In a further project this functionality can be refined to handle these prefixes as globally
unique prefix-sids independent from the FlexAlgo. For easier debugging of the network
configurations an additional check with all active sids to ensure this constraint is advisable.

Node:
The Node class represents all network objects capable of handling Segment Routing and
FlexAlgo. To be compatible with the existing frontend topology graphic tool that was
built by Michel Bongard, the Node class provides the attributes pos_x and pos_y for the
longitude and latitude of a node. As in a normal network with configured FlexAlgo, each
participating node depends on a prefix-sid, which is represented by the Prefix class at-
tribute.
The BA thesis project SerPro mentions difficulties with deleted nodes and links when it
comes to the deployment of new configuration. In accordance with their findings nodes
deleted on the network are set to "deleted" with the is_deleted property. Should imple-
mentation of the CRUD functionality prove this step unnecessary the field can easily be
removed.

Link:
In a standard configuration of a network with FlexAlgo the admin will define all relevant
information on nodes. Link represent only the physical connection between those nodes
and are not intelligent. All the same, FlexAlgo configruation theory often handles Links as
separate objects on which values can be assigned. To make configuration more userfriendly
this way of handling the FlexAlgos is adapted in this project. Links are also necessary for
the utilization of the network topology graphic tool mentioned in the Algo 3.3.4 section.

Affinities in a FlexAlgo are defined on an interface of the corresponding node. As mentioned,
to reduce complexity this defintion was moved to the link as member class Affinity 3.3.4.
Similar to the Node class 3.3.4 a is_deleted field is added to the class to prevent problems
with the CRUD functionalities of FlexAlgos.

Affinity:
Represents the FlexAlgo affinity definitions of the outgoing interface for a given link.

75

Chapter 3. Architecture SR-App FlexAlgo

Class Diagram - gRPC Client

Figure 3.9.: Class Diagram of Microservice Network Read - gRPC Client

As mentioned, it was planned to utilize a gRPC connection to the Jalapeño API Gateway to ac-
cess network data. During the research and early stages of the development it became apparent
that changes had to be made to the Gateway to access the relevant data. As such it was decided
to move the gRPC connection to a later project (For further information, please consider chapter
3.5.5). Instead of this connection, a direct connection to the Gateway’s database is used, which
is further described in package Service 3.10.
All the same, a simple connection to the Gateway was implemented and tested out during con-
struction, which can be found on branch feat_add-grpcc. A migration to utilize the Gateway is
therefore a simple matter without much technical overhead to be done.

IGRPCClient:
Provides an interface for other packages to interact with the gRPC service. This allows for
coding against interface and easy interchangeability.

gRPCClient:
The implementation for the gRPC interface. There will be two clients implemented, one
for requests and one for subscriptions. These clients will hold all logic necessary to connect
to the Gateway, handle data retrievals and updates and implement error handling.

TranslationDTO:
GRPC connections utilize DTOs and the protobuf language for communication. They are
defined by the gRPC service, i.e. the Jalapeño API Gateway. The DTOs are handled and
transformed into objects, consumable by the service package. All necessary logic for this
will be done in this class.

dto:
There are protobuf files predefined by the gRPC service. All data will be handled in DTOs
and need to be synchronized between service and client. These DTOs are stored in this
package. As such they are easily interchangeable should the gateway be updated.

Messages:
These are pre generated files that will be accessed from the client and handle the commu-

76

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/feat_add-grpc

Chapter 3. Architecture SR-App FlexAlgo

nication logic of the gRPC connection. They can be easily replaced should the Gateways’
protobufs be updated.

Class Diagram - Service

Figure 3.10.: Class Diagram of Microservice Network Read - Service

For the Service package a Factory Pattern was chosen. Each main service has to implement
the basic functionality of the interface IServices. This is to ensure callers of this package can
easily switch between connection types like gRPC and ArangoDB. Each class in this package is a
service provider either for the overlaying routes package 3.3.4 or acts as a sub service for another
service class. All business logic is implemented here. Different main services have to be registered
in the Factory Method to be accessible to external packages.

77

Chapter 3. Architecture SR-App FlexAlgo

__init__:
The Factory Pattern Method is implemented here as a connection point to other packages.
Each main service can be accessed via string parameter. This to ensure the consumer
packages do not have to know the technical details of this package. Currently all inputs
return the TranslationService with the ArangoDB connection.
A gRPC request and subscription service are planned for a further project. The request
service will be callable for the initialization of the live_model and then the subscription
for network update handling.
For the prototype only the arangoDBService is implemented in the stable source code.

ServiceInterface:
This class represents the service interface that all services callable from other packages must
implement. It is the blueprint of the service class and allows for programming against an
interface. As such replacing the current arangoDBService with the correct gRPC services
will be easy to implement without having to change the consumer packages.

TranslationService:
The main service to handle the ArangoDB connection and all necessary business logic. It
implements the ServiceInterface interface.
To reduce the complexity of this class and separate the different concerns of the data
handling, sub-services were extracted during the development of this class. As such this
class merely calls sub-services for Node, Link and Definition handling. Only the graph
calculation functionalities still remain in this class.

NodeService:
Within this class the functionality to update or read the nodes’ related database entries are
implemented. Holds all necessary business logic for Nodes.

LinkService:
Within this class the functionality to update or read the links’ related database entries are
implemented. Holds all necessary business logic for Links.

DefinitionService:
Within this class the functionality to update or read the FlexAlgo definitions’ related
database entries are implemented. Holds all necessary business logic for FlexAlgo con-
figurations.

gRPCService:
Originally it was planned to build a serialized service with gRPC in a fitting gRPCService,
which would retrieve the necessary objects from the package gRPCClient in 3.9.
At the moment this service is only implemented in branch feat_add-grpcc as the connection
to the Gateway is not possible yet.

UpdateData:
To simulate the update functionality of the gRPC connection, update methods were im-
plmemented in the Node 3.3.4, Link 3.3.4 and Definition Service classes 3.3.4. The class
UpdateData was implemented to provide this updated data.

78

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/feat_add-grpc

Chapter 3. Architecture SR-App FlexAlgo

3.4. Sequence Diagrams
Sequence diagrams for the main Use Cases (UC) 1.1 are documented in the following section. They
show the workflow of the application while Use Cases are handled. The communication between
frontend and backend will be request based, as this research project does not yet implement a
real-time frontend.

See a List of Flex Algo Information

Figure 3.11.: Sequence Diagram - See a List of Flex Algo Information

A User can open a standard browser and call one of the API urls from the backend. This request
causes the network read service to connect to the ArangoDB of the Jalapeño API Gateway and
retrieves the requested network data. After applying the necessary business logic to the data

79

Chapter 3. Architecture SR-App FlexAlgo

the network read sends a rendered html page or json list back to the browser to display for the
User. Is the connection to the Gateway not possible an error message per html or HTTP code
is returned. Similarly, the browser will display an error code if the network read service is not
reachable.
Originally a gRPC connection was planned to the Gateway, but was not possible for this project.
In a further project this will be remedied.

Additionally, when the SPA frontend is fully developed a message will be shown should an empty
list be returned from the database. This to ensure the User is not confused about an empty
display slot. In this prototype a mere demo SPA was implemented for the optional use cases
UC05-7 1.1. The User will access the network read service via this React.js application instead
of directly. The frontend will then call specific API calls of the backend, which will operate as
shown in the diagram 3.11.

See Live Updates

Figure 3.12.: Sequence Diagram - See Live Updates

If there are any updated configurations on the network devices, the User can simply refresh the
website manually to retrieve the new information from the network read service.
As currently the gRPC connection to the Jalapeño API Gateway is not possible, the loop func-
tionality of the Gateway sending data updates to the server will not be implemented in this
project. When the Gateway receives the necessary updates a subscription architecture can be
implemented that will update the network read service in an automatic loop.

80

Chapter 3. Architecture SR-App FlexAlgo

Logging

Figure 3.13.: Sequence Diagram - See a List of Flex Algos

Logging of the application will happen in the stederr for simplicities’ sake. If an error occurres
during the handling of requests in network read not only will an error message be sent to the
User but a log will be written into the stream. With this design a third party logging service can
be implemented with minimal overhead for the persistence of logs. Errors from browser are only
logged if the User is utilizing the SPA frontend.

81

Chapter 3. Architecture SR-App FlexAlgo

3.5. Technology Decisions
This section shows which languages, framworks and technologies were chosen for the project and
why.

3.5.1. Technology Stack
As performance is an important factor in the application, especially in the Network Read service,
the technology stack was designed to be as lean and fast as possible.

Service/Component Technology

network read

• Flask FW for Python[54]
• gRPCio FW for Python client[4]
• poetry[25]
• Libraries Production

– python-arango[32]
– arango-orm[33]
– Flask-Swagger-Ui[17]
– Flask-Caching[14]
– Flask-WTF[18]
– gunicorn[22]

• Libraries Development
– pytest[52]
– pytest-cov[52]
– black
– mypy
– lxml

• Cache[15]
– simplecache for prototype
– For production environment of the final soft-

ware filesystemcache or external system like
redis.[caching-gunicorn]

mocking tool
• golang
• json

react demo

• JavaScript
• React.js
• Sigma.js[45]
• Axios[3]

Table 3.1.: Technology Stack

3.5.2. Language
The SR-App series applications are to be implemented in golang or Python with a React.js fron-
tend for the graphical user interface. As the team members had more interest and experience
with python than go, it was decided to write the prototype in this language. At first the Django
framework was considered, as other applications had successfully worked with this framework

82

Chapter 3. Architecture SR-App FlexAlgo

already. Django is a substantial technology that brings a lot of features with it that were un-
necessary for the project. On further development of the architecture, especially the decision to
use microservices and a largely serverless architecture, Django was therefore deemed to heavy
weight. FastAPI and Flask were then considered, as they are much more lightweight frameworks
with minimal features out of the box, but with a large library of extensions to supplement the
needed functionalities. Upon further researching the team decided on Flask, as it provides an
easy way to combine it with a gRPC framework. For unifromities and maintainabilities sake all
other microservices are also planned with Flask. But it may be worth the consideration that
FastAPI may be utilized for the other services, as it is faster than Flask and may therefore be
more suitable. Possible extensions for orm will be possible for both frameworks, with libraries
like tortoise-orm.

Python
SR-Apps are to be implemented in either golang or Python, with a React.js frontend for the
graphical user interface. Python was chosen for this project as the team members had more
interest and experience with this language.

Flask
[31][29] At first the Django framework was considered, as other applications had successfully
worked with this framework already. However, Django is a substantial technology that brings
a lot of features with it that were unnecessary for the project. On further development of the
architecture, especially the decision to use microservices and a largely serverless architecture,
Django was therefore deemed too heavy weight. FastAPI and Flask were then considered, as
they are much more lightweight frameworks with minimal features out of the box. Both have
a large library of extensions to supplement the needed functionalities. The team finally decided
on Flask, as it provides an easy way to combine with a gRPC framework. For unifromity and
maintainability, all other microservices are also planned with Flask. But it may be worth the
consideration that FastAPI could be utilized for the other services, as it is faster than Flask and
may therefore be more suitable. Possible extensions for orm will be possible for both frameworks,
with libraries like tortoise-orm.

Other Languages
The mocking tool was adapted from a previous SR-App project and was therefore already
implemented in golang. Similarly the react demo was adapted from an application by Michel
Bongard and was already implemented in React.js and Sigma.js.

Static Types
[47] To ensure code stability, static typing was added where meaningful to the Python code. The
typing is checked in a job in the testing pipeline and will cause a failure if not properly set. Bugs
can be found more easily and unexpected behaviour of the application from mistaken data types
can be prevented with typing. It also increases readability of code and therefore ensures easier
maintenance. This more than makes up of the drawback of making the inherentely very dynamic
Python language more static.

83

Chapter 3. Architecture SR-App FlexAlgo

3.5.3. Microservices
Scalability and performance needs for the different use cases of the application vary widely in
severity. While the process of reading network data has to be able to compute large amounts of
data in real time, seeing the logs of configuration deployments will not only be used much more
rarely and need significantly less computing power. Additionally deployment of configurations
needs to be able to roll out and roll back simultaneous deployment of data over a wide range
of objects. To manage these differing needs, a microservice architecture was chosen for the
application. Different use cases can be handled separately and isolated from each other. This
imporves parallelity, security, isolation of concerns and allows for individual and highly specialized
design considerations.

Figure 3.14.: BA - Container Diagram

A larger Diagram can be seen in the Appendix 6.

Access API
As microservice architecture has a complex adressing system by nature, an uniform entrypoint
was chosen to decouple frontend from the individual services in the backend. The Access API will
provide an extensive API for all user interactions and will then redirect the requests as needed.
Additionally this service will provide the SPA application for new users. Consideration to make
this service serverless may be made. But as this has to handle all user interactions and a wide
variety of requests it was chosen not to.

Technologies: Python framework Flask, Kubernetes

Network Read
The Network Read service handles all data retrieval from the network. It is connected to the
Jalapeño API Gateway via gRPC and manages all incoming network data. It has the highest
demands on scalability and performance, as networks can grow to include more than thousand

84

Chapter 3. Architecture SR-App FlexAlgo

nodes. It’s functionality includes filtering and aggregation of the network data, handling updates
to the existing model data, calculation of the FlexAlgo graphs and pushing data to frontend for
live updates.
To be able to analyse the FlexAlgo data and performances the Service will also send the gathered
data from the network to be persisted by the service Persist Network Data.

Technologies: Python framework Flask, Kubernetes

This microservice was implemented as a prototype of the application during this project.

Network Write
As updating FlexAlgo configurations has vastly different functionality and performance needs, it
was decided to separate Read and Write functionalities into two services. The Network Write
handles all updates to the network configuration and as such communicates directly with the
Network objects. How this communication looks, with paralelization, error handling and rollback
needs, has not yet been determined.
The frontend will send updates to the network via the API Application service. The Network
Write will then handle the deployment of the new configuration on all network devices and send
updates of the deployment status to the frontend via message queue. All user interactions will be
logged for traceablility, which will include user information, CRUD operations, changes, status
of and any possible errors during deployment.

Technologies: Python framework Flask, Kubernetes, Knative

Message Queue
For communication between frontend SPA and the services that provide push updates, ie Network
Read and Network Write, a message queue technology was choosen. For further details about the
communication, see chapter 3.5.5. This message queue will provide network and deployment data
in the form of subscriptions to the frontend. It will be hosted in the same Kubernetes cluster and
have an endpoint outside the system. This and the Access API will provide the only endpoints
outside of the cluster. It may be advisable to utilize this queue also for logging and persistency
of network data and other communication between services, but this decision will need further
research.

Technologies: message queue like RabbitMQ, Kubernetes

Authorization
As the application will need to be secured to prevent tampering with the network, an autho-
rization mechanism is to be implemented. The Authorization service will handle all login and
authorization needs, to prevent unnecessary duplication of this functionality. To make the au-
thorization easily managed in the whole system a token based authentication will be chosen,
which the Flask framework supports. This service will have its own database to handle all per-
sistency needs in user management and cleanly isolate sensitive user data from the rest of the
application.

Technologies: Python framework Flask, Kubernetes, Knative, PostgreSQL

Network DB
How FlexAlgo configurations behave long term on a live network proves interesting to a network
engineer, especially with historic data to compare it to. As such a persistence of the gathered

85

Chapter 3. Architecture SR-App FlexAlgo

network data from Network Read is planned. Basic functionality of this is already tested in the
prototype in form of the caching functionality and proves to be useful not only for persistency
but also synchronization between different instances of Network Read, see chapter 4.2.0.5.

Technologies: PostgreSQL, Kubernetes

Persist Network Data
The microservice Persist Networkdata will handle all accessing of the PostgreSQL database for
network data. This reduces duplication and performance overhead of the complex db connection
functionality and orm code. Other services can call an API to access and persist their specific
data needs. This service may be proven superfluous should the overhead have negligent impact on
the performance of Network Read and other services accessing the database. This will have to be
observed in a more extensive testing system with the impact all services will have on performance
of the application. As an alternative the Analytics service may handle all database connections
for the NetworkDB and provide an API for the other services.

Technologies: Python framework Flask, Kubernetes, Knative

Analytics
An analytics view of the network data and the configurations of FlexAlgos may be interesting and
educational for network engineers. This is an optional functionality if resources are suffiecient for
implementation of this. As such an Analytics services is planned that will handle accessing and
aggregating network data.

Technologies: Python framework Flask, Kubernetes, Knative

3.5.4. Serverless Architecture
[23] The microservice architecture chosen for the application allows not only for high isolation of
functionalities but also an individualized addressing of performance needs. Certainly the highest
demands on performance are put on the Network Read service, who has a 100% uptime demand
to catch all gRPC updates and calculate the computation heavy frontend graphs of the topology
and FlexAlgos.
On the other hand a service like Network Write only has to run sparingly when a configuration
is deployed. Still, while the deployment is running, it has to handle a large workload of managing
the simultanous deployment to the different network devices, handle errors, rollbacks and status
updates. But after a first initial configuration period with many changes to the network, a stable
FlexAlgo configuration will be reached and as such this service will be used much less often. And
other use cases like seeing historic data, login into the application, seeing logs, etc. are also only
used sparingly for specific functionalities.

As such, while the Network Read service will have a more traditional architecture, other ser-
vices can easily be deployed as serverless. They will therefore only run as long as any given
functionality is called. This will largely conserve computing power and impact on other services.
Additionally these applications and their deployments can be kept minimalistic and will bring
improved observability, easier deployments and easier maintenance.

86

Chapter 3. Architecture SR-App FlexAlgo

3.5.5. Communication
gRPC
[4][21] The Jalapeño API Gateway provides a gRPC server with a request and streaming service,
where a SR-App can connect to to receive network data. Initialy it was planned for the prototype
to utilize the request service and in a further step the streaming service to access the network
data.
In contrast to other existing SR-Apps the FlexAlgo technology does not utilize IPv6 but MPLS
protocols. As such there is information missing from the router in the network, more precisely
the fields in the MultiTopologyIdentifier list are not devilered to the Jalapeño API Gateway.
This means the Gateway is not able to consistently send out data at the moment, as this causes
problems with its cache. Additionally, the YANG model that contains the FlexAlgo relevant data
sends configuration data. While operations data are directly fed into the telemetry Service and
can be consumed without changes to the gateway, configuration data is piped to the topology
service. This means adjustments to the gateway are necessary to access the releveant information
of the network. With these restrictions the gRPC communication to the Gateway are not be
implemented in this prototype.

To mitigate the repercussions of this, a direct connection to the ArangoDB of the Jalapeño API
Gateway is implemented, where all topology data of the network is stored. The architecture will
be done such, that a replacement of the ArangoDB connection with a gRPC client can be done
with minimal adjustments to the code. A basic working connection to the gateway is implemented
in the feat_add-grpc branch and can be build upon, too.

The necessary changes to the proto files for the gRPC connection are proposed in a github fork
of the original protorepo of the Jalapeño API Gateway project by the team.

1 message SubTlvNode {
2 repeated uint32 include_any = 1;
3 repeated uint32 include_all = 2;
4 repeated uint32 exclude_any = 3;
5 repeated uint32 exclude_srlg = 4;
6 }
7
8 message FlexAlgoDefinition {
9 required uint32 flex_algo = 1;

10 optional uint32 metric_type = 2;
11 optional uint32 calculation_type = 3;
12 optional uint32 priority = 4;
13 optional SubTlvNode sub_tlv = 5;
14 }
15
16 message LsNode {
17 required string key = 1;
18 optional string id = 2;
19 //further fields omitted for brevity
20 repeated uint32 sr_algorithm = 19;
21 repeated FlexAlgoDefinition flex_algo_definition = 20;
22 }
23
24 message SubTlvsLink {
25 optional uint32 sub_tlv_type = 1;
26 optional string sub_tlv_value = 2;
27 }
28
29 message AppSpecLinkAttr {

87

https://github.com/yaelanjaschaerer/protorepo

Chapter 3. Architecture SR-App FlexAlgo

30 repeated SubTlvsLink sub_tlvs = 1;
31 }
32
33 message LsLink {
34 required string key = 1;
35 optional string id = 2;
36 //further fields omitted for brevity
37 repeated AppSpecLinkAttr app_spec_link_attr = 23;
38 }

Listing 3.1: protobuf class topology.proto

python-arangoDB
[32][2] As previously discussed a gRPC connection to the Jalapeño API Gateway is not possible
for the prototype. A direct connection to the ArangoDB of the gateway was established instead.
As FlexAlgo configurations are handled in the YAND model Cisco-IOS-XR-clns-isis-cfg, the
Jalapeño handles this as topology data and not telemetry data. The information is therefore
stored in the ArangoDB of the gateway. Connection is made via the python-arango and arango-
orm packages of python.
A direct translation via the arango-orm package was not utilized, as it meant added complexity
that would be rendered useless with the replacement by a gRPC connection. The translation of
nested lists and schemas proved to be especially time consuming with the or-mapper.

The translations in the service package are made to be used in gRPC with minimal changes as
demonstrated in listings 3.2 and 3.3.

1 def compute_algo_definition(self, node):
2 if "flex_algo_definition" not in node:
3 return None
4 result = []
5 for defin in node["flex_algo_definition"]:
6 ad = AlgoDefinition(
7 number=defin["flex_algo"],
8 origin_node=node["_key"],
9 metric_type=defin["metric_type"],

10 calculation_type=defin["calculation_type"],
11 priority=defin["priority"],
12)
13 if "sub_tlv" in defin:
14 ad.affinity_handling = self.compute_affinity_handling(defin["sub_tlv"])
15 result.append(ad)
16 return result

Listing 3.2: AlgoDefinitionFunction now

1 def compute_algo_definition(self, node):
2 if node.flex_algo_definition is None:
3 return None
4 result = []
5 for defin in node.flex_algo_definition:
6 ad = AlgoDefinition(
7 number=defin.flex_algo,
8 origin_node=node.key,
9 metric_type=defin.metric_type,

10 calculation_type=defin.calculation_type,
11 priority=defin.priority,

88

Chapter 3. Architecture SR-App FlexAlgo

12)
13 if defin.sub_tlv is not None:
14 ad.affinity_handling = self.compute_affinity_handling(defin.sub_tlv)
15 result.append(ad)
16 return result

Listing 3.3: AlgoDefinitionFunction with grpc models

Only the accessing logic of the fields of the dictionaries has to be changed to work with a class
access syntax, otherwise the translation will remain the same. This means migrating to gRPC
will result in minimal changes to the services. The Jalapeño API Gateway itself can be made to
implement the FlexAlgo definitions as they are on the network without any transformations and
simply return the given structure from the underlying YANG model.

API
[24] In the prototype the communication between backend and frontend is handled via an API.
Changing the prototype to support real time communication with the frontend, either via web-
socket or message queue, will be easily done. The archtiecture was chosen such, that the frontend
communication is isolated behind interfaces. The only additional update that will be needed,
is the implementation of the observer pattern to the live model topology. This will trigger the
communication to the frontend when the network data is updated via the gRPC streaming service
and allow for a push architecture.

Figure 3.15.: Overview of Communication now and planned

Message Queue
[34] The architecture of the SR-App plans a message queue to handle communication with the
frontend. This decouples frontend from the performance intensive network read service and
allows for easier isolation of the microservices. The frontend can handle pushed updates from
the network via subscriptions on the message queue. This can also be used to not only receive
network updates from network read but also configuration status from network write without
having to implement direct communication with both services separately. As such the whole
userbase can be notified for network updates, receive configuration status updates and can be
locked while a deployment is under way. This will make serializing and handling of updates much
easier and circumvent problems like lost updates and contradicting configurations.

Alternatively to the queue a websocket[53] technology was considered. A great amount of users
could be easily handled with the Kubernetes scaling mechanisms but it will bring a much tighter

89

Chapter 3. Architecture SR-App FlexAlgo

coupling between frontend network read and network write.
To keep communication within the application uniform a gRPC connection between frontend and
backend could also be considered. However this technology brings similar limitations to websocket.
The biggest advantage, uniform message formats through the whole application, can not be fully
utilized either. The frontend needs a vastly different message format than the communication
of the backend to the Gateway. Both these solutions were therefore discarded in favor of the
queue.

Message Format
As it was unclear if the utilized YANG model will bring telemetry or topology data from the gate-
way at the beginning, the message format was studied for further optimization. Telemetry data
is sent from the gateway every ten seconds and can therefore, in great networks with thousands
of router, be a large onslaught of data. This could pose a serious performance issue. As such,
a binary message format instead of a textbased one like bson (binary json) could be beneficial
in such a situation. As the FlexAlgo information was in the end found in topology data, which
only sends updates when changes in the network happen, this is not necessary anymore. The
more convenient textbased format can be utilized. All the same, should the situation change in
a further project, this should be kept in mind.

3.5.6. Live Model
An architecture with an instantiated live model of the network was chosen. With this architecture
the complete separation of the communication with the front end and the connection to the gRPC
Server of the Jalapeño API Gateway is possible. This reduces the complexity of the project and
makes the communcation modules easily interchangable. Even more importand, the time spent
computing the graphical representation of the network and it’s flexible algorithms is dramatically
reduced after the intial load of the data. Updates fed into the application from the gateway can
easily be computed and the live model is merely updated, instead of performing a full refresh.
This reduces the work time significantly and ensures updates to the frontend are as real time
as possible. In the push architecture of the application this initial load can be run directly at
startup of the application, so users have the optimal performance experience. With the model
thus instantiated when the Kubernetes pod comes online for users to connect to, all changes to
the network can merely be updated into the existing model.

In the prorotype architecture a request based approach is implemented, which runs complete
instation on each request with the base API calls. To simulate the update functionality, additional
calls were developed that trigger an updated object being handled by the application.

Currently, while in the current prototype the initial load of the nodes in a netowrk with 1000
routers may take up to 3 seconds, any changes to this network will be calculated in less than a
seconds time.

When the push functionality will be implemented in the service, these updat methods can be
called via observation pattern on the live model. This ensures optimal isolation and separation
of concerns.

90

Chapter 3. Architecture SR-App FlexAlgo

3.6. API Definition
[8][9][16]

The API is kept minimal, as it will only be used in the prototype for the application. The API
will be replaced in a further project with live updates to a frontend or queue, which will be done
via push methodology. As such only the methods necessary for the frontend demo application
from Michel Bongard are implemented, with the addition of server side rendered html templates
for all algorithm specific data. To imitate the event driven design of the gRPC service, three data
update calls were also developed.

A Swagger documentation of the API was added to the source code and can be found here. In
this chapter onyl a brief overview of the API is given.

91

https://sa-sr-flexalgo.stu.network.garden/api

Chapter 3. Architecture SR-App FlexAlgo

3.6.1. Swagger Documentation
GET /api

Returns the Swagger documentation of the API.

Figure 3.16.: Swagger Documentation

92

Chapter 3. Architecture SR-App FlexAlgo

3.6.2. HTML
GET /flexGetAlgoDefinitions

This API call returns a server side rendered html template that shows a list of FlexAlgo relevant
data of the network.

Query parameters: none
Body: none
Returns: server side rendered html

1 <!DOCTYPE html>
2
3 <html>
4 <head>
5 <title>FlexAlgo Data</title>
6 ...
7 </head>
8
9 <body>

10 ...
11 {{content}}
12 ...
13 </body>
14 </html>

Listing 3.4: flexGetAlgoDefinitions HTML return

GET /flexGetNodes

This API call returns a server side rendered html template that shows a list of all Nodes on the
network.

Query parameters: none
Body: none
Returns: server side rendered html

1 <!DOCTYPE html>
2
3 <html>
4 <head>
5 <title>FlexAlgo Data - Nodes</title>
6 ...
7 </head>
8
9 <body>

10 ...
11 {{content}}
12 ...
13 </body>
14 </html>

Listing 3.5: flexGetNodes HTML return

93

Chapter 3. Architecture SR-App FlexAlgo

GET /flexGetLinks

This API call returns a server side rendered html template that shows a list of all Links on the
network.

Query parameters: none
Body: none
Returns: server side rendered html

1 <!DOCTYPE html>
2
3 <html>
4 <head>
5 <title>FlexAlgo Data - Links</title>
6 ...
7 </head>
8
9 <body>

10 ...
11 {{content}}
12 ...
13 </body>
14 </html>

Listing 3.6: flexGetLinks HTML return

3.6.3. React API
In this section the API calls utilized by the React.js frontend are defined. This will be the routes
that need to be modified once the push notification functionality is implemented.

GET /getNodes

Used by the React.js frontend to get all nodes in the topology. Returns a list of the nodes of the
network, if they have FlexAlgo configured or not. Mocked geographical data is added to make
positioning in graphical frontend possible.

Query parameters: none
Body: none
Returns: list of nodes as json

1 [
2 {
3 key: string,
4 name: string,
5 prefix-id: number,
6 x: number,
7 y: number,
8 prefixes: [{ algo: number, prefix_sid: number }]
9 }

10]
Listing 3.7: getNodes json return

94

Chapter 3. Architecture SR-App FlexAlgo

GET /getLinks

Used by the React.js frontend to get all links in the topology. Returns a list of links in the
network, no matter if they are included in a FlexAlgo or not. The link is represented via an id, a
from and to node and the affinities assigned to it. As the affinities are defined on interfaces, the
definition of the outgoing interface is chosen for a given link.

Query parameters: none
Body: none
Returns: list of links as json

1 [
2 {
3 key: string,
4 fromNode: string,
5 toNode: string,
6 affinities: [
7 {
8 type: number,
9 value: string

10 }
11]
12 }
13]

Listing 3.8: getEdges json return

GET /getAlgoDefinitions

Returns all algorithm definitions currently on the network with all configured values. In a further
step this method could be parameterized to return only a single algorithms information to display
specific configurations in the front end.

Query parameters: none
Body: none
Returns: list of FlexAlgo definitions as json

1 [
2 {
3 algoKey: number,
4 priority: number,
5 originNode: number,
6 metric: number,
7 incl-all: [
8 {
9 affinities: string

10 }
11],
12 incl-any: [
13 {
14 affinities: string
15 }
16],

95

Chapter 3. Architecture SR-App FlexAlgo

17 excl-all: [
18 {
19 affinities: string
20 }
21],
22 excl-srlg: [
23 {
24 affinities: string
25 }
26]
27 }
28]

Listing 3.9: getAlgos json return

GET /getAlgoNumbers

Used by the React.js frontend to get a list of ids of the algorithms contained in the network. This
is used in the frontend to select a specific algorithm and show the graphical representation of this
FlexAlgo.
To add filter functionality to the algonumbers, query parameters were utilized. At the moment
filtering is only applied to the origin node, as filter settings are not yet defined. But possibilities
like filtering algorithms on metric type, calculation type or how affinities are handled, are easily
implemented with the existing functionality.

Query parameters: origin_node: string

Body: none
Returns: List of FlexAlgo ids as string as json

1 [
2 number: string
3]

Listing 3.10: getOneAlgo json return

GET /getAlgos

Returns all algorithms within the network with their nodes and edges. No additional data save
for the FlexAlgo id is returned with this request. Algorithm configuration values have to be called
with the /getAlgoDefinitions API call.

Query parameters: none
Body: none
Returns: list of FlexAlgo with nodes and edges as json

1 [
2 {
3 algoKey: number,
4 nodes: [
5 {
6 nodeKey: nummer
7 }
8],

96

Chapter 3. Architecture SR-App FlexAlgo

9 edges: [
10 {
11 edgeKey: nummer
12 }
13]
14 }
15]

Listing 3.11: getAlgos json return

GET /getOneAlgo/<id>

Used by the React.js frontend to get all nodes and links contained in the algorithm with the
number given. With this the graphical representation of the algorithm is calculated.

Parameters: id: algorithm number
Query parameters: none
Body: none
Returns: Lists of nodes and edges contained in the specified FlexAlgo as json

1 {
2 algoKey: number,
3 nodes: [
4 {
5 nodeKey: nummer
6 }
7],
8 edges: [
9 {

10 edgeKey: nummer
11 }
12]
13 }

Listing 3.12: getOneAlgo json return

3.6.4. Update
As previously discussed the Jalapeño API Gateway could not yet be utilized in this project. As
such the subscription functionality of the gRPC connection to the gateway and it’s update service
was mocked by update API calls that simulate an input in the form of a changed object (the code
provides the updated source data). The functionality in the code handles all CRUD operations for
the objects but only simulates updates. Extensive tests cover all other possible operations.

GET /updateNodes

Simulates an input of an updated node. Changes can be seen in the node with the key "2_0_0_0000.0000.0008".
The name value changes with each call.

Query parameters: none
Body: none
Returns: Lists of nodes as json

97

Chapter 3. Architecture SR-App FlexAlgo

GET /updateLinks

Simulates an input of an updated link. Changes can be seen in the link with the key "2_0_0_0_0000.0000.0006_100.1.2.10_0000.0000.0002_100.1.2.9".
The value of the affinity type changes with each call.

Query parameters: none
Body: none
Returns: Lists of links as json

GET /updateAlgoDefinitions

Simulates an input of an updated FlexAlgo configuration. Changes can be seen in the definitions
of the origin node with the key "2_0_0_0000.0000.0008". On the first update call the nodes
configuration changes from the algorithms 128 and 129 to the algorithms 128 and 999. On
subsequent calls the priority values of both these algorithms change.

where the value of the affinity type changes with each call.

Query parameters: none
Body: none
Returns: Lists of FlexAlgo definitions as json

98

Chapter 3. Architecture SR-App FlexAlgo

3.7. Logging
Logging of the application process is handled with the standard error stream stederr. Is an error
raised in the application it is caught in a decorator function to turn into a workable error type.
Simultanously the raised error is written out into the stederr. In a further step or another service
this functionality can be extended to write out more general software or user actions for a more
extensive logging experience.

Additionally, as the application is designed to run on Kubernetes and as such can have multiple
instances run simultaneously, a central logging service may be adviseable. Kubernetes already
provides possible implementations for such a system and the stederr and stedstr can easily be
written out onto a logging application for further analysis and persistency.

The Flask application build in this prototype also runs on production servers managed by guni-
corn. Gunicorn also implements a basic scaling service that works by running multiple processes
of the application. This scaling is implemented with a pre-fork worker model, ie the application
can be run as multiple instances that handle the workload of requests. This means a central
logging system may be advisable for production implementation on bigger networks at least. For
this to work seamlessly the process id is added to the standard error stream before the logged
error.[22]

1 SA_FlexAlgo $ python -m newtork_read.app
2 * Serving Flask app 'network_read.application.create_app' (lazy loading)
3 * Environment: development
4 * Debug mode: on
5 * Running on http://127.0.0.1:5000 (Press CTRL+C to quit)
6 * Restarting with stat
7 * Debugger is active!
8 * Debugger PIN: 103-971-713
9 127.0.0.1 - - [30/May/2022 10:06:56] "GET /getNodes HTTP/1.1" 500 -

10 2022-05-30 10:14:53.081089 - Process ID 27772 exception.
11 2022-05-30 10:14:53.082090 - Object did not have field '_key'.

Listing 3.13: Logging Example

99

Chapter 3. Architecture SR-App FlexAlgo

3.8. Frontend
3.8.1. Service Side Rendered
The network information that is retrieved from the database can be displayed in a simple, uniform
html template, callable over three separate API calls:

• /flexGetAlgoDefinitions

• /flexGetNodes

• /flexGetLinks

The html provided by these calls are server side rendered templates [49]. These are static files
predefined in the Flask application, one for each view. They contain placeholders for the network
data that are filled upon rendering of the template into a viable html response. The template
library Jinja is used for this process.[48]

The template’s header provides four buttons for navigation:

• Repository: Leads to the GitLab repository of this project.

• SR-Apps: Will lead the user to information about the other SR-AppsSR-Apps on the INS
website.

• 2x FlexAlgo: Navigates to the other two html templates.

100

Chapter 3. Architecture SR-App FlexAlgo

/flexGetAlgoDefinitions

Figure 3.17.: Frontend of /flexGetAlgoDefinitions

This site provides an aggregated view of all configured algorithms on the underlaying network.
[13]

• Number: The algorithm’s identification number in this network.

• Origin Node: The device on which this definition of the algorithm is configured.

• Priority: The property to specify which definition has to be taken if there is a tie in a
decision of which path should be taken for a route.

• Metric Type: With which metric this algorithm is configured.

0 - IGP metric

1 - Link delay (RFC 8570 [40])

2 - glste metric (RFC 5305 [36])

• Calculation Type:

0 - SPF algorithm

1 - strict-SPF algorithm - does not exist on the IOS XR

101

Chapter 3. Architecture SR-App FlexAlgo

• Affinity Include Any: The link color numbers that can be but don’t have to be included
in the path of the algorithm.

• Affinity Include All: The link colors that have to be included in the configured algo-
rithm.

• Affinity Exclude Any: The link colors the algorithm should avoid.

• Affinity Exclude SRLG: Which SRLGs the algorithm should avoid in calculating the
path.

/flexGetNodes

Figure 3.18.: Frontend of /flexGetNodes

102

Chapter 3. Architecture SR-App FlexAlgo

The most relevant information for the nodes in the network can be examined on this site.

• Name: The device’s hostname.

• Key: The unique device key that identifies the device in the ArangoDB.

• Prefixes: What Prefix-SID this device received according to the specified algorithm.

/flexGetLinks

Figure 3.19.: Frontend of /flexGetLinks

This site provides the relevant information related to links in the network.

• Key: The unique key from the ArangoDB for the corresponding link from the underlaying
network.

• From: The ArangoDB key from the device at the start of the link.

• To: The ArangoDB key from the device at the end of the link.

• Affinities: What customized FlexAlgo properties the link’s interfaces has configured:

– TLV 1088 - Administrative group (color) (RFC 7752 [37])

– TLV 1092 - TE Default Metric (RFC 7752 [38])

– TLV 1096 - Shared Risk Link Group (RFC 7752 [39])

– TLV 1173 - Extended Administrative Group (RFC 9104 [42]) with include-all, include-
any, exclude-any or exclude-srlg of the affinities

103

Chapter 3. Architecture SR-App FlexAlgo

Error Handling
In case an error occurres, the application will differentiate between communication problems with
the database ArangoDB, a key error (i.e. there is an attribute missing in the ArangoDB entry),
a general server exception or a gRPC problem (which is already implemented to simplify the
error handling in production of a further project). Each error will show different information to
inform the user of specific actions that may be required.

Figure 3.20.: Frontend of an occurred ArangoDB Error

3.8.2. SPA
This project offers a basic Single Page Application with extended functionalities of the React.js
project Sigma.js Demohttps://github.com/mbongard/react-sigmajs-demo[20] of Michel Bongard.
The React.js application is fetching the required data from the SR-App FlexAlgo application.
This allows the software to visualize the underlying network with all its devices, links and the
currently running algorithms of the segment domain.

The SPA application has React.js components implemented that Michel Bongard has developed
for the SR-Apps line.Small adaptions were made to the NetworkGraph component to call the
network read service. As these calls can take a few seconds and to prevent freezing of the
application while waiting for the API response async methods were developed. To this end the
library axios was used. Axios provides simple methods for promise based API calls in the form
of a HTTP client [3].
The components Checkbox and Controls were also adapted from the original demo to support
a list of FlexAlgo buttons that each implements the highlight functionality for a path on the
network topology. Each button, when pressed, calls the network read service to get the Algo
object for the FlexAlgo with the provided button.

The demo by Michel Bongard implements Sigma.js functionality for the graph visualization.
Sigma.js is a JavaScript library for graph visualization and can support thousands of nodes and
edges. It renders network graphs and allows many different user interactions with the resulting
visuals out of the box [45].

104

Demo

Chapter 3. Architecture SR-App FlexAlgo

Figure 3.21.: Single Page Application View - No selected FlexAlgo

The placement of the nodes in the graph is handled according to the nodes’ coordinates. For fur-
ther details, the section Domain 3.3.4 of the Network Read class diagram can be consulted.

The page gives the user a navigation bar that shows all active algorithms of the network. The
bar allows the switch between algorithms by clicking on the corresponding buttons.
By activating a button, the nodes and links of the algorithm get highlighted in red. This provides
the user with an immediate overview and the current configurations of the network in a very
intuitive way.

In section deployment 3.9 the instruction of how to run the SPA can be found.

105

Chapter 3. Architecture SR-App FlexAlgo

3.9. Deployment
3.9.1. Network Read
3.9.1.1. Kubernetes

Figure 3.22.: Overview of Kubernetes Deployment

The application is deployed into Kubernetes. For this a cluster named vcluster-sa was created,
with the help of a cluster YAML file with the same name. A namespace is defined, sa-flexalgo,
in which the desired pod for the network read service gets deployed. Inside the cluster a de-
ployment builds a pod named webserver which hosts the network_read.app application. The
property replica will ensure that there will always run at least one pod.

To be able to run the application after deployment, a volume inside the pod receives the necessary
secrets (from the secret service sa-flexalgo-secret). These secrets come from the sa-volume
in the etcd database. Without these, the application will not start and throws an error. The
running network_read.app can be reached from outside the cluster over the Ingress object on
port 80. This ingress will forward the request to the implemented Service on port 8081. The
Service will then reach the application over the port 5000, as the network_read.app exposes
this explicit port.

3.9.1.2. Pipeline

The pipeline runs two jobs sequentially that create the deployment for the network read service.
The first to tun is the job build-image 3.9.1.2, which compiles the Docker image. Second,
the kubernetes-deployment job 3.9.1.2 runs, which updates the running deployment of the
Kubernetes pod with the new image. Further insights into the pipeline can be found in the
pipeline YAML file in the Appendix 10.1 or the original file .gitlab-ci.yml from the GitLab
repository.

Pipeline Job: build-image
The Docker image will be created with the new code that is uploaded to the dev-branch by
running the build-image job. The pipeline will produce an image, with the tag dev. These
images are accessible in the GitLab repository’s container registry.

106

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/container_registry/685

Chapter 3. Architecture SR-App FlexAlgo

Pipeline Job: kubernetes-deployment
A cluster agent in the infrastructure of the GitLab repository provides the required connectivity
between the repository’s container registry with the Docker images and the Kubernetes pod with
the deployment on it.

Figure 3.23.: Cluster Agent on GiLab

To be able to pull the necessary Docker image from the private registry of GitLab, a secret is
provided with the access requests. The secret was created with kubectl command line tool:

1 $ kubectl create secret docker-registry regcred \
2 --docker-server=registry.gitlab.ost.ch:45023 \
3 --docker-username=flexalgo-sa \
4 --docker-password=<token-from-the-personal-access-token>
5
6 # Definition:
7 # kubectl create secret docker-registry <secret-name> \
8 # --docker-server=<registry-of-gitlab> \
9 # --docker-username=<GitLab-username> \

10 # --docker-password=<token-from-the-personal-access-token>
Listing 3.14: Setting the Docker Credentials in Cluster

The Kubernetes deployment YAML file consists of three parts:

• Deployment: The Deployment webserver-deployment itself, which tells Kubernetes to
have exactly 1 running pod with the Docker image from the container registry. The replicas
protperty ensures one pod is always deployed. The SR-FlexAlgo application requires three
secrets to be able to connect to the ArangoDB. They are saved in a separate secrets-file,
encoded with Base64. (see Appendix 11.4). The Deployment retrieves the secrets and saves
them into the volume in the pod. This makes them accessible to the application that runs
in the pod. (see Appendix 11.1)

• Service: The service webserver-svc creates a connection between the ingress and the
Deployment’s container with the running application. (see Appendix 11.2)

• Ingress: A single ingress webserver-ingress is defined, which allows the usage of the url
sa-sr-flexalgo.stu.network.garden to connect to the pods. (see Appendix 11.3)

The pipeline will execute a rollout restart of the Deployment to update the application on
the pod with the newest source code of the SR-App FlexAlgo from GitLab. This behaviour is
chosen as the deployment file itself doesn’t get updated, merely the data that is retrieved from
the container registry if the pod gets restarted. To enable this process, the imagePullPolicy:
Always in the Deployment is set.

107

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/clusters

Chapter 3. Architecture SR-App FlexAlgo

Figure 3.24.: Deployment File Section with imagePullPolicy

The pipeline will then set the environment to the desired url
https://sa-sr-flexalgo.stu.network.garden to make the SR-FlexAlgo reachable.

1 environment:
2 name: dev
3 url: https://sa-sr-flexalgo.stu.network.garden

Listing 3.15: Setting the Environment for the Pipeline

The url is accessible from within the INS VPN network and can be called from a standard browser
over the API calls defined in chapter 3.6.

3.9.2. React Frontend

Figure 3.25.: Overview of Kubernetes Deployment with React Frontend

A part of the prototype is the implementation of the React.js SPA, which shows the network
topology with the configured algorithms. Currently the React.js application is not automatically
deployed via GitLab as it is merely a demo for a possible frontend. The application needs to be
run manually on a local machine. For the application to run correctly one has to be logged into
the VPN of INS.

The application can be started with the help of the package manager Yarn, which will lead the
user automatically to the website localhost:3000. On startup the application will call the
network read service in the cluster for topology data and display it.

1 SA_FlexAlgo $ cd development/react-frontend
2 SA_FlexAlgo $ yarn install # on first run for dependency installation
3 SA_FlexAlgo $ yarn start

Listing 3.16: Starting React Frontend

The network read service can be run with the Poetry shell, should the user wish to run the
application system completely local. If this approach is chosen the API calls in the frontend will

108

Chapter 3. Architecture SR-App FlexAlgo

have to be adabted for http://127.0.0.1:5000 instead of the pod url. To be able to enable
localhost calls, certain browsers need a plugin like CORSE from Mozilla Firefox. Otherwise the
API calls throw a "Same-Origin Policy" error.

1 SA_FlexAlgo $ cd development/network-read/
2 SA_FlexAlgo $ poetry shell
3 Spawning shell within

/Library/Caches/pypoetry/virtualenvs/network-read-wqd3fn0R-py3.9
4 ./Library/Caches/pypoetry/virtualenvs/network-read-wqd3fn0R-py3.9/bin/activate
5 bash-5.1$.

/Library/Caches/pypoetry/virtualenvs/network-read-wqd3fn0R-py3.9/bin/activate
6 (network-read-wqd3fn0R-py3.9) bash-5.1$ poetry install # on first run for

dependency installation
7 (network-read-wqd3fn0R-py3.9) bash-5.1$ python -m newtork_read.app
8 * Serving Flask app 'network_read.application.create_app' (lazy loading)
9 * Environment: production

10 WARNING: This is a development server. Do not use it in a production deployment.
11 Use a production WSGI server instead.
12 * Debug mode: on
13 * Running on http://127.0.0.1:5000 (Press CTRL+C to quit)
14 * Restarting with stat
15 * Debugger is active!
16 * Debugger PIN: 102-475-289
17 127.0.0.1 - - [24/May/2022 18:25:49] "GET / HTTP/1.1" 404 -
18 127.0.0.1 - - [24/May/2022 18:25:55] "GET /flexGetAlgoDefinitions HTTP/1.1" 200 -
19 127.0.0.1 - - [24/May/2022 18:25:55] "GET /static/css/base.css HTTP/1.1" 200 -

Listing 3.17: Starting FlexAlgo application over CLI

109

https://addons.mozilla.org/de/firefox/addon/cors-everywhere/

Chapter 3. Architecture SR-App FlexAlgo

3.10. Wireframes

Figure 3.26.: Wireframes

Only a basic wireframe was developed, as the prototype will merely implement a frontend for
demonstration purposes and not one with the full functionality of the SR-App FlexAlgo software.
It may be build upon in a later project. As such the wireframe is not implemented but merely used
for clarifications of use cases. It may be build upon in a later project. The designed was chosen
similar to the already existing project SerPro, a SR-App constructed by Severin Dellsperger and
Julian Klaiber. This decision was made to better fit the application SR-App FlexAlgo into the
SR-Apps series.

The frontend is designed to be simple and intuitive to provide an optimized user experience. As
such the landing page of a logged-in user is the Overview page. This page shows the topology of
the network connected to the application with it’s devices. A list with the running algorithms is
given to the right side with separate buttons to edit an algorithm individually.

If the user wants to update an existing algorithm or add a new one they can reach the Config
View via the algorithm’s edit option or the New Flex Algo buttons. There, an overview of the
algorithm’s parameters will be shown.
After directly updating the desired values a user can either return to the Overview page by
clicking the Cancel button to abort the changes. Or another way is to go on to the Delete View
by deleting the selected algorithm or reach the Deploy View by hitting the Deploy button.

When the user lands on the Deploy View they can see the already conigured information of this
algorithm on the left side in the old Configs section. On the right site in new Configs, the

110

Chapter 3. Architecture SR-App FlexAlgo

user can see the new configuration designed in the Config View. This comparison will show the
changed values highlighted for convenience for a comperhensive review.
If the new configurations are correct, the user can Deploy the changes to the network. In case the
changes are incorrect the user can Cancel the action and return to the Config View to rework
the values.

The Delete View shows the content of the current configurations of the FlexAlgo from the
underlying network that will be deleted.
This step acts in the same way against changes by mistakes as the Deploy View by showing the
user the subsequent changes of their actions.
The Cancel and Deploy buttons act in the same way as the ones from the Deploy View.

111

4. Mocking

The INS provided a small virtual network of ten routers, two switches and several virtual PCs
for the development of this project. With this, experiments of the FlexAlgo technology could be
performed and it gave a solid basis for the development of the prototype.

All the same, todays networks grow larger and more demanding. The SR-App FlexAlgo software
will have to handle networks of up of 1’000 routers with a complicated link system and up of 100
algorithms configured. To test out the performance of the prototype on such large networks and
find problematic, slow code, a testing network had to be implemented that would simulate such
a large network.

Gladly, the SR-App FlexAlgo is not the only application having to simulate such a workload. One
other SA application, the research project "Central Frontend for Segment Routing Applications"
of the students Davor Gajic and Leonard Obernhuber have created a mocking tool where they
generate basic router and link information and prepare it for uploads into the ArangoDB. It is a
golang script that creates a customizeable amount of objects for the relevant ArangoDB collections
and writes them out into json files. They created a bash script to automatically upload these files
directly into the db. As this script needs certain ingress points into the Cluster of the Jalapeño
API Gateway we decided against adapting it for our porject. Manually uploading the five json
files into the db is easy as the db provides easy to use functionality for bulk upload of a json
list.

To simulate the FlexAlgo data this project needed to get an apporpriate perfromance estimation
for the prototype, adaptions to the mocking tool were made. Mostly these consisted of additional
fields to the generated objects with pseudo random input values. This mocked data was then
uploaded into new collections in the db that where named with the prefix test_ and the original
name of the mocked collection. For example the test_ls_links collection was created to replace
the ls_links one in the simulation.

As such the application could be easily switched to the test collections for performance tests and
back afterwards. Results of these tests on the mocked objects can be found 5.

112

5. Testing

General Information

System and acceptance tests were made at every sprint review after the begin of the construction
phase. This to ensure the prototype performs at a high level and provide a good starting base for
a further project. The use cases of section 1.1 were tested in the system tests, the non-functional
requirements 1.2 in the acceptance tests. The test procedure and templates for the protocol where
written in the elaboration phase to ensure uniform testing.
For the development of the software a small virtual network of 10 routeres, of which 8 act in
the segment domain, was provided by the INS. To test the application’s performance a more
extensive network is mocked, see chapter mocking 4. This provides a basis to make a well-defined
prediction for the progress of the project and the status of the current stable code.

In this chapter the last documented tests are shown, to provide a view of the functionality and
performance of the finished prototype. To see the progress of all system and acceptance tests,
please consider the Appendix 5 of this paper.

113

Chapter 5. Testing SR-App FlexAlgo

5.1. System Test - Review of Iteration 7
This document will provide an overview of the performed System Tests of this project.

Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed System Tests

• System Test of iteration 6 was done on tag Dev-I6.testing.

• This System Test is done on tag Dev-I7-final-submission.

5.1.1. Tests - SA MVPs
UC00 - List of Flex Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC01 - Live Updates

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Live updates work for everything. Additional routes were implemented to simulate gRPC
updates of links, nodes and definitions.

114

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I6-testing
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I7-final-submission

Chapter 5. Testing SR-App FlexAlgo

UC02 - Failure to connect

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings

UC03 - List all Flex Algos

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC04 - Logging Software

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC05 - Graph Topology

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC06 - Graph 1 Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Works, sometimes needs a second try.

115

Chapter 5. Testing SR-App FlexAlgo

UC07 - Graph all Algos

Implemented Process Status
Yes Refresh website. FROZEN
Shortcomings
Not implemented. See results of thesis section for further information.

Pending Improvements
-

116

Chapter 5. Testing SR-App FlexAlgo

5.2. Acceptance Test - Review of Iteration 7
Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.
For the Performance tests the data from the Mocking Tool will be used to simluate a large
network.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed Acceptance Tests

• System Test of iteration 6 was done on tag Dev-I6.testing.

• This System Test is done on tag Dev-I7-final-submission.

5.2.1. Tests
Functionality

Non-Functional
Requirement

Implementation Shortcomings Status

Accuracy Data retrieved from
Jalapeño API Gateway
is up-to-date.

— Implemented

Interoperability The connection to the
Jalapeño API Gateway is
established over gRPC.

Will not be implemented
for this project.

Frozen

Reliability

Non-Functional
Requirement

Implementation Shortcomings Status

Fault Tolerance Server remains running if
connection to API is down.

Instead of API, connection
to ArangoDB was handled
successfully.

Implemented

117

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I6-testing
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I7-final-submission

Chapter 5. Testing SR-App FlexAlgo

Recoverability The integrated Kubernetes
mechanism for failovers han-
dles failed pods.

— Implemented

Performance

Non-Functional
Requirement

Implementation Shortcomings Status

Data Integrity Changes in network are visi-
ble with a browser refresh.

— Implemented

Scalability The application runs with
1’000 routers in the network.

— Implemented

Time Behavior Changes in the network are
visible wihtin 3 seconds after
refreshing the browser.

Works on everything. At
the moment we have 102
flex algorithms.

Implemented

Maintainability

Non-Functional
Requirement

Implementation Shortcomings Status

Analysability The user receives a message
to inform about occuring er-
rors.

The error handling will be
implemented as a HTML
template or react frontend
message.

Implemented

Analysability Error messages will be writ-
ten into stdout.

Is written into stderr. Implemented

Testability All Unit and Integration
Tests run successfully.

— Implemented

Pending Improvements
-

118

Part V.

Project Management

119

1. Project Plan

1.1. Introduction
For this SA project a prototype will be built for a Segment Routing application that configures
the used FlexAlgos in any given network. The work will be done in 14 weeks by Myriam Assunção
and Yael Schärer.

1.1.1. Purpose
This document defines the frame and the process of the SA project SR-Apps FlexAlgo. It will be
used as basis for the project management.

1.1.2. Scope
This document will be valid for the whole time of the SA research project during spring semester
2022. Deviations and additions of the initial planning will be noted and justified directly in the
corresponding part of the project documentation.

1.2. References
Books

• Applying UML and Patterns, Craig Larman, ISBN: 0-13-148906-2

Websites

• Git Feature Branch Workflow

• GitLab Dokumentation

• Segment Routing Projects

1.2.1. Glossary
All abbreviations and technical terms will be defined in the Glossary.

1.2.2. Project Overview
This project has the goal of an application for the complete configuration of the FlexAlgo on any
given network. In the scope of the SA a prototype will be built that can access a test network via
Jalapeño API Gateway and visually displays all relevant data of the FlexAlgo for said network.
Objective of this prototype during the SA is to check the feasability of such an application. If
this is successful, a fully operational application will be built in the following BA project of the
team members.

120

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://docs.gitlab.com/ee/README.html
https://www.segment-routing.ch/projects

Chapter 1. Project Plan SR-App FlexAlgo

This application is part of a wider project of the INS for a series of SR-Apps. Our prototype will
conform to the already existing projects.

1.2.2.1. Scope of Delivery

The product of this project will be a functional prototype of an SR-App that can access an exist-
ing network and display all corresponding information in a website. The prototype will include
a Pythonbackend service, an interface to the Jalapeño API Gateway, a server rendered fron-
tend and all communication between the components of the app. Should time allow, additional
experimentation with a React.js framework (from the INS institute) and a database for data
historization may be added.
Additionally, we will deliver extensive documentations for the software, the research and the
project management.

Technical Details:

• Frontend via server side rendering

• Backend as Source-Code

• Relational database (PostgreSQL) if historization is implemented

• Communication between components (gRPC and/or message queues)

• Interface documentation (Jalapeño API Gateway)

• Software documentation

• Installation instructions if necessary

• Project documentation

The documentation will be written in LaTeX and delivered as pdf files.
The submission of code will be done via GitLab. The final SA documentation will be submitted
digitally via the official AVT website at the end of the project.

1.2.3. Assumptions and Constraints
Important aspects of Segment Routing are the large networks and as such scalability and per-
formance are important factors. To address this the application will be cloud native and the
prototype built accordingly.
The project effort is scheduled to be 240 hours per person, which will result in 480 hours for the
projet. Is the budgeted time consumed without achieving a workable prototype, the team mem-
bers will increase the workload per week accordingly. If the prototype is ready early, additional
features will be implemented.

1.3. Project Organisation
The organsiation will be kept flat with both team members overseeing different parts of the
project. We will use the agil project management of SCRUM+ with a two week sprint inter-
val.

121

avt.i.ost.ch

Chapter 1. Project Plan SR-App FlexAlgo

1.4. Internal Structure
Responsibility Team Member
Frontend Yael Schärer
Backend Yael Schärer
Database Yael Schärer
CI/CD Myriam Assunção
Testing Yael Schärer
Research Myriam Assunção
Documentation Myriam Assunção
SCRUM+ Master Myriam Assunção

1.5. External Contacts
Prof. Laurent Metzger Project Supervisor
Urs Baumann Project Advisor, Jalapeño, CI/CD
Michel Bongard Jalapeño API Gateway
Severin Dellsperger,
Julian Klaiber,
Dominique Illi,
Michel Bongard

SR-Apps

Yannick Zwicker Kubernetes

1.6. Management
1.6.1. Meetings
The review meetings with the advisors are held weekly at Tuesday 10.00 - 11.00 o’clock at
school or remotely per Teams.
sprint plannings and reviews are held every two weeks (per SCRUM+ sprint interval) on Monday
at 9.00 o’clock. Afterwards problems and open questions can be discussed where necessary.
Daily SCRUM+ standups are held on Monday and Tuesday 17.00 o’clock.
The team members will alternate between either leading meetings or writing the protocol. For
each meeting an agenda will be prepared beforhand. The agenda items will be documented in
GitLab together with the protocols of the corresponding meetings. Items can be added by all team
members until 22.00 o’clock the day before. The responsibility of organisation and presentation
lays with the meeting leader.
Results and decisions of meetings will be translated directly into Issues of the GitLab Board or
recorded in the documentation.

1.6.2. Organisation Git
Project management in GitLab

• Organisational matters like meeting notes, etc.

• Documentations like projectplan, time tracking, risk analysis, etc.

Documentation in GitLab

• Use Cases, domain model, etc.

122

https://www.ost.ch/de/person/laurent-metzger-1626
https://www.ost.ch/de/person/urs-baumann-1381
https://www.ost.ch/de/person/michel-bongard-5504
https://www.ost.ch/de/person/severin-dellsperger-1686
https://www.ost.ch/de/person/julian-klaiber-1853
https://www.ost.ch/de/person/dominique-illi-1780
https://www.ost.ch/de/person/michel-bongard-5504
https://www.ost.ch/de/person/yannick-zwicker-1797
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/350f7f43f3c0c31130953cc7538f1b53ceede17d/project_management/meeting
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/boards

Chapter 1. Project Plan SR-App FlexAlgo

• Research

Development in GitLab

• Software Documentationen

• Installation notes

• Source Code

1.7. Schedule
Project starts at 21.02.2022 and ends 03.06.2022 at 17.00 o’clock.

Figure 1.1.: Timeline for SA

1.7.1. Workflow

Phase Description From To Duration
[Week]

Inception Project plan finalisation 21.02.22 27.02.22 1
Elaboration Domain analysis and research 28.02.22 29.03.22 5

Construction Construction and testing of
prototype 30.03.22 20.05.22 7

Transition Submission 21.05.22 29.05.22 1

123

Chapter 1. Project Plan SR-App FlexAlgo

1.7.2. Milestones

Milestone Duration
[Week] Description Assessment Proceed

further
M1: Project
Planning 1 Create project plan and

organisation.
Review Projectplan
with advisors.

Work out require-
ments, use cases, etc.

M2: Require-
ments 2

Requirements, use case
minimal in brief format,
analysis Gateway.

Requirements must be
approved by customer
(advisors). Possible
changes to gateway
must be requested.

Work on items on the
End of Elaboration
List.

M3: End of
Elaboration 3 Define all points on the

EoE list.

End of Elabora-
tion List is finished.
YANG models are
defined.

Construct interface
to Jalapeño API
Gateway. Begin
writing unit and
integration tests.

M4: In-
terface to
Jalapeño
API Gate-
way

2.5
Build interface with all
for prototype necessary
functionalities.

Interface tests are
green.

Begin construction
backend services.

M5: Backend 1.5
Build complete back-
end and begin accep-
tance tests.

Functional backend. Continue building
system tests.

M6: Testing 2
Build all necessary tests
(unit, integration, sys-
tem, acceptance).

Tests run green. Build frontend.

M7: Fron-
tend 1

Build simple frontend
and begin documenta-
tion for final submis-
sion.

Fully functional app. Revice documenta-
tion.

M8: Final
Submission 2

Prepare and submit fi-
nal submission. Ad-
ditionally we have one
week of reserve time.

Drink beer. Sober up.

1.8. Risk Management
The risk management document can be found in the section risk_analysis with a quick overview
of the weighted risks as a graphic.

1.9. Issues
The issues that are remaining, in progress and closed are defined and organised on the GitLab
Boards.

124

https://gitlab.ost.ch/yael.schaerer/sa-sr-flexalgo/-/issues

Chapter 1. Project Plan SR-App FlexAlgo

1.10. Infrastructure

Figure 1.2.: Project Plan Architecture

The architecture of the application will contain Python backend microservices in Kubernetes
pods. In this project the service that reads network data will be implemented and connected
to the Jalapeño API Gateway to query all necessary information of a network. The server will
be built with the Flask framework. The results of this will be shown in a server side rendered
website. For analysis purposes the data managed in the network read backend may be saved in
a later project.

The team will receive a server from Urs Baumann from the INS institute for networked solutions,
to better work with the existing infrastructure.

The team members will be working on their own laptops with following software installed:

• Python 3.9 with Flask framework

• Visual Studio Code with Duckly extension

• Kubernetes

• Git

• Swagger

• LaTeX

Additionally, the team members have accounts on following platforms:

• Clockify

• Teams

• Duckly

• GitLab

125

Chapter 1. Project Plan SR-App FlexAlgo

1.11. Quality Assurance

Method Time Frame Goal Description

Unit Tests Construction
phase min. 80% Code Coverage

All components of the ap-
plication are sufficiently
tested.

Integration
Tests

Construction
phase

Components work effi-
ciently together.

All possible connections
are testet at least once.

System Tests Construction
phase

All use cases are imple-
mented

At least once per iteration
a complete system test is
manually done.

Acceptance
Tests

Construction
phase

Non-functional require-
ments, especially scalabil-
ity are met.

At least once per iteration
a acceptance test is manu-
ally done.

Acceptance
Tests

Construction
phase

Non-functional require-
ments, especially scalabil-
ity are met.

At least once per iteration
a acceptance test is manu-
ally done.

Continuous
integration Whole project Integration is always as-

sured.
Per issue there will be at
least one merge request.

Continuous
deployment

Construction and
transition phase

Deployment is always up-
dated with newest changes

All merges into main
branch will be auto-
matically deployed via
pipeline.

Peer Review Whole project Improvement of quality of
work.

Code is always at least
once reviewed by all team
members.

1.12. Development
The source code will be versioned on GitLab and with regular intergration and reviews checked
for quality. We will use the Git Feature Branch Workflow workflow for this.

1.12.1. CI/CD
Continous integration and deployment will be done via GitLab with the inbuilt pipeline.

For deployment the inbuilt package management of Python will be used with Poetry. Kubernetes
containers will be furnished with new images and started from the pipeline.

1.12.2. Code Reviews
Code reviews will be done via the merge request workflow of GitLab with the Definition of
Done 1.13. Additionally, if problems in code arise they may be discussed after sprint planning
meetings.

126

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/pipelines
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/pipelines

Chapter 1. Project Plan SR-App FlexAlgo

1.12.3. Code Style Guidelines
The guidelines of the Visual Studio extension of Microsoft (IntelliSense Pylance) with Black linter
will be used for all Python code.

1.13. Definition of Done
Merge requests to the main branch will only be granted if all points of Definition of Done are
met:

1. Code works without errors and warnings.

2. Tests are written for all code changes.

3. Tests are green.

4. Defined code guidelines and standards are met.

5. Code was reviewed by team partner.

6. Non functional requirements are met.

7. Integration into master without any merge conflicts.

1.13.1. Documentation
1. Pipeline works without errors.

2. Spelling check done.

3. Content was reviewed by project partner.

4. Integrations into master without any merge conflicts.

1.14. Tests
1.14.1. Automated Tests
Unit and integration tests will be written for all components of the software. They will be updated
and adapted as needed to ensure a quality codebase.

The testing will be integrated into the CI/CD pipeline feature of GitLab for unit and integration
tests. Tests will run with each commit to one of the two main branches mngt or dev and if a
pull request to the main branch is created. Merges into the master will only be possible if all
tests are successful.

1.14.2. System Tests
System tests will check that all (currently implemented) use cases are correctly implemented.
The tests will be done manually at the end of each iteration and the results and measures for
corrections will be documented.

127

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/pipelines

Chapter 1. Project Plan SR-App FlexAlgo

1.14.3. Acceptance Tests
Acceptance tests will check that all [non-functional requirements] are fulfilled. The tests will be
done manually at the end of each iteration and the results and measures for corrections will be
documented.

1.14.4. Usability Tests
The frontend will be kept minimal in the prototype with only a call to synchronize with the
network. As such, usability tests will be done in the BA workload.

Should there be enough time to add more UI functionalities to this prototype will it be integrated
and tested with usability tests as well.

128

2. Risk Analysis

2.1. Purpose
This document shows all risks to this project during the SA and they will be managed. It will be
updated at each sprint review to adapt risk management.

2.2. Risk Matrix

Figure 2.1.: Risk Matrix

129

Chapter 2. Risk Analysis SR-App FlexAlgo

2.3. Risk Management

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R1 Requirements
are insufficient

Incorrect, uncompleted
or missing functional or
non-functional require-
ments lead to insuffi-
cient functionalities in
application.

20 20 4

Prevention Behaviour on occurrence
Intensive review of requirements with ad-
visors and industrial partner.

Revise of all requirements and discus-
sion of any necessary edits with advi-
sors and industrial partner. Replan-
ning of sw architecture if necessary.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R2 Unfitting archi-
tecture design

Chosen design is not
realisable or does not
fulfill non-functional
or functional require-
ments.

30 20 6

Prevention Behaviour on occurrence
Thoroughly plan architecture and review
with advisors. Develop domain analysis
and at least C4 diagrams.

Review of the architecture design
with external experts.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R3 Time manage-
ment failure

The team fails to build
a working prototype in
the allotted time frame.

25 20 5

Prevention Behaviour on occurrence
Make a time table for the project and in-
clude buffer time. In the sprint reveiw
spent hours are evaluated and compared
to the projected time table.

If there is an insurmountable gap to
the time table team members will in-
vest extra hours.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

130

Chapter 2. Risk Analysis SR-App FlexAlgo

R4 Unknown Tech-
nologies

The team does not have
experience in the chosen
technologies.

20 20 4

Prevention Behaviour on occurrence
Team members will research and practice
with unknown technologies.

Replace technology with adequate al-
ternative where possible or reduce sw
complexity if feature is not imple-
mentable as is.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R5
Inadequate
Research of
flex algo and
YANG model

The team does not un-
derstand the network
technologies enough to
build sw properly.

30 20 6

Prevention Behaviour on occurrence
Research flex algo and carefully choose
YANG model. Regularly discuss findings
with advisors.

Consult external expert (Michel Bon-
gard, others).

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R6
Cisco IOS-XR
version insuffi-
cient

Required functionalities
can’t be implemented
with the given image of
the virtual routers.

60 20 12

Prevention Behaviour on occurrence
Check with advisor which version is used
and check for necessary features.

Consult with advisors about chang-
ing image. If not possible adjust sw
features.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R7 Jalapeño fails

Jalapeño or the under-
lying virtual network
fails to be provided or
stops working and there
is no network data to
use in sw.

40 20 8

Prevention Behaviour on occurrence

131

Chapter 2. Risk Analysis SR-App FlexAlgo

Network is requested and will be provided
before start of construction phase. Mock-
ing will be implement directly after suc-
cessfull connection to Jalapeño API Gate-
way is established.

Priorisation of mocking implementa-
tion.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R8
Jalapeño API
Gateway fail-
ure

Jalapeño API Gateway
cannot be migrated to
dev server in useful
timeframe.

10 60 6

Prevention Behaviour on occurrence
Server is requested and Gateway will be
installed as soon as server is provided. Re-
sponsible people are informed.

First consult the corresponding inter-
nal employee (Urs Baumann). Fur-
ther, contact external expert (Michel
Bongard, others).

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R9
Failure to
implement
CI/CD pipeline

Features like automated
testing, metric control
(SonarCube), docker
deployment, etc. are
incomplete or missing.

10 10 1

Prevention Behaviour on occurrence
Both team members attend the module
CloudOps. Pipelines of other projects will
be researched.

Consult corresponding internal ex-
perts.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R10
Failure to
utilise Jalapeño
API Gateway

Failure to properly use
the Jalapeño API Gate-
way to get the network
and YANG model data.

20 60 12

Prevention Behaviour on occurrence
Attended API Gateway demo from Michel
Bongard. YANG model reserached and
chosen. First step in construction phase
is the interface to the gateway.

First consult the corresponding inter-
nal employee (Urs). Further, con-
sult external expert (Michel Bongard,
others).

132

Chapter 2. Risk Analysis SR-App FlexAlgo

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R11 Software bug
Insufficient tests may
lead to undiscovered
bugs in code.

40 25 10

Prevention Behaviour on occurrence
Debug and review code reqularly. Testing
is prioritized in the project.

Write tests that catch bug and fix
software accordingly.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R12 Absence of
team members

Team members miss
working days because
of sickness, accidents,
etc.

30 20 6

Prevention Behaviour on occurrence
Time buffer is planned and in extreme
cases an extension of submission deadline
can be requested. Remote working is pos-
sible with Teams and Duckly.

If possible work remotely over MS
Teams and/or Duckly. If not, adjust
time planning.

NR Title Description max. Dam-
age [%]

Prob.
of oc-
currence
[%]

Weighted
Damage

R13 Pandemic /
War

Because of this cruel
world with it’s even
more cruel events (free
UK!), we have to con-
sider this possibility.

30 20 6

Prevention Behaviour on occurrence
Time buffer is planned and in extreme
cases an extension of submission deadline
can be requested. Remote working is pos-
sible with Teams and Duckly.

If possible work remotely over MS
Teams and/or Duckly. If not, adjust
time planning.

Table 2.1.: List of Project Risks

133

3. Quality Measures

3.1. Coding Guidelines
This project is written in Python following the Black style guide. Both team members have the
Black extension for Visual Studio Code and have auto formatting by saving enabled. Additionally
Black compliance is checked in the pipeline on each merge request.

3.2. Definition of Done
There are "Definition of Done" checklists 2 defined for both documentation and source code.
Before branches can be merged into the main, dev or doc_thesis branches these checklists need
to be ticked off by the other team member. Should there be an issue, the author of the merge
request is notified and the merge is put on hold until sufficiently corrected.

3.3. End of Elaboration Checklist
The Checklist was consulted at the end of the elaboration phase. The following results were
noted.

We have understood the customer. [6]
Both the non-functional and functional requirements are defined and reviewed with the project
advisors. They can be found in chapters 1.2.

We have mastered all tools [6]
Team members have completed research and tutorials on all tools of the project.

The architecture is known to all project members. There is a working product with the core
architecture, large interfaces defined. [6]
The architecture is defined in chapter 3.3. A first prototype of the architecture was tagged at the
start of the construction phase Prototype-EoE.

There are user interface designs (graphics, wireframes) that the customer likes. [6]
There will not be an elaborate frontend in the product of the SA project. As such there is only
a rudimentary wireframe in chapter 3.10 that will not be implemented.

The next two iterations are roughly planned, so many work packages created, and an accurate
time estimate provided to the customer. [6]
Issues for the first two sprints are defined in Gitlab.

All big risks and big question marks are gone. [6]
The risk analysis can be seen in chapter risk analysis of the management document. The history
of the risiko matrix can be viewed in Gitlab.

134

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/blob/main/.gitlab/merge\protect \T1\textunderscore request\protect \T1\textunderscore templates/definitionOfDone.md
https://elsensohn.ch/en/docs/projectmanagement/checklist-end-of-elaboration/
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Prototype-EoE
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/issues
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/commits/main/documentation/src/images/risk\protect \T1\textunderscore matrix.png

Chapter 3. Quality Measures SR-App FlexAlgo

3.4. Time Tracking
Time tracking is done in clockify. In each sprint review a separate report for both team members
and a combined one is exported and saved in gitLab. The reports can be seen in the appendix in
section 4. The time slots are mapped to the issues via their descriptions, to milestone via projects
and to iterations and work categories via tags. Reports are made at each sprint review and can
be viewed here.

3.5. GitLab Workflow
The project uses the GitFeatureBranchWorkflow. The branch graphs can be found here. All
issues are managed in gitlab. All work to be done, including new functionalities, corrections, etc.
are directly translated into issues.

3.6. Code Reviews
Code Review is done by the other team member, if the changes are not worked on in pair
programming. What is to be reviewed is defined in the "definition of done" 2. Any deviations to
the checklist need to be discussed in the team and noted in the comments section of the merge
request.

3.7. Sprint Reviews
At the end of each sprint the team holds a review. In this the team discusses the progress of
the project and time table, adapt the risk analysis, overview the issue board, review the code
and solve any problems. Additionally in the construction phase system and acceptance tests
are performed on the current stable source code 5. There will be releases tagged to track the
progression and noted in the test protocols.

3.8. Metrics and Code Analysis
3.8.1. SonarQube
The SonarQubeDashboard shows the status of the latest code pushed into the dev branch and
its sub-branches. It is updated on each merge request to ensure that the code can be checked
properly before merging into the stable code base. This ensures only checked and tested code
is deployed to Kubernetes. In SonarQube metrics like tests, code coverage, common security
hotspots, vulnerabilities and code smells are covered.

135

https://clockify.me/
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/main/project\protect \T1\textunderscore management/time\protect \T1\textunderscore report
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/main/project\protect \T1\textunderscore management/time\protect \T1\textunderscore report
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/network/main
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/issues
https://sonarqube.stu.network.garden/dashboard?id=SRFlexAlgo

Chapter 3. Quality Measures SR-App FlexAlgo

Figure 3.1.: SonarQube Dashboard - All Code

SonarQube will ignore the folder of the mocking tool for accurate code analysis. The tool will
only be used locally to generate the required mocked data which will be entered manually into
the ArangoDB and does not need to conform to strict coding guidelines.

While the rudimentary React.js frontend is not excempt from SonarQube, it was not made with
clean coding in mind, as it will need to be reworked for a further project. Additionally a BA
project from another group is currently developing an uniform frontend for all SR-Apps that may
be implemented in a following project into the SR-FlexAlgo.

The dashboard of SonarQube shows an overview of the currently deployed code and provides a
ranking from A to F, in which A is the highest and most desired score. Actions need to be taken
before a merge can commence if the rankings on the dashboard page of the SonarQube dip under
"A".
The code smells "duplicated code" for test data are reviewd and set to ignore, as there would
not be much gain for solving them. Additionally security hotspots for the randint function
are similarly ignored, as they are not used for cryptography and therefore don’t impact the
applications security. At the end of the construction phase time is scheduled to remove all
unnecessary comments and code (such as the development routes save for the clearDB one,
etc).

136

Chapter 3. Quality Measures SR-App FlexAlgo

3.8.2. Network Read

Figure 3.2.: SonarQube Dashboard - Code Network Read

• Lines of code 3’156

• Classes 18

• Code coverage 95.8%

• Cognitive Complexity 104

3.8.3. Frontend
The Frontend is not covered separately as we have server generated html templates included
in the Network Read statistics above. The React.js SPA frontend is a prototype developed by
Michel Bongard and we only added minimal functionality to it. Here only code smells of our code
were reviewed and solved where meaningful. Other metrics were largely ignored.

3.9. Testing
3.9.1. Unit Tests

• Each method in the backend is testet at least once with a valid and invalid input, where
possible and meaningful.

• Frontend will not be tested in this project, as we use either server side rendered html (tested
in integration tests) or later the premade project react-sigmajs-demo for our frontend.

• Access to different layers is mocked.

3.9.2. Integration Tests
• Methods that have layer crossing access are tested where unit tests are not sufficient. The

server side rendered html is tested in the integration tests of the routes package.

• For each method there is at least one valid and invalid test.

3.9.3. System and Acceptance Tests
Will be done according to the test templates 5. They are conducted at each sprint review on
a tag of the latest stable source code, protocols are documented in the appendix 5. Results are
directly translated into new issues.

137

https://github.com/mbongard/react-sigmajs-demo/tree/main/src/model/DbModel

Chapter 3. Quality Measures SR-App FlexAlgo

3.9.4. Usability Tests
There will be no usability tests as there is not yet a proper frontend implemented in the proto-
type.

3.10. Pipeline
There are two main parts to the pipeline. The first one is for the construction of the documentation
files. This one will only complete successfully if the LaTeX standards are met and the runner
was able to build the pdfs.

The other part is for the source code of the application. It checks coding guidelines with the
formatter Black, controls the static types of the code with MyPy, runs the Unit- and Integration
tests and generates a coverage report with the help of Pytest and Cobertura (which can be viewed
directly at the GitLab’s pipeline under its Tests tab). To finish it runs the SonarQube scanner
with the provided results from the previous Pytests.

If the jobs of format or static type checking fail the pipeline will be stopped. If any of the other
jobs fail, the pipeline will go on, in order to be able to run the SonarQube scanner which will
provide a better overview of any problems in the code. This is also the reason why the pipeline
will run up to the SonarQube scanner job if there is a merge request of a developer branch.

The SonarQube Job will fail if the code does not correspond to the defined quality gate status
that is set in the background of SonarQube. This is visible in the browser SonarQube in the
overview page.

To ensure good code quality, the creation of the Docker file will only be done if the pipeline
ran through the build container job successfully and there was a successful merge into the dev
branch.

In case the pipeline’s SonarQube job wasn’t 100% successful a team member can still merge
manually at GitLab. This case has to be discussed by both team members to ensure no instable
or unfitting code is deployed.

3.11. Non-Functional Requirements
The state of the non-functional Requirements was extensively tested in each sprint review. Testing
protocols can be found 5.

3.11.1. Security
Not implemented in this project, will be handled in a further project.

3.11.2. Reliability
The code is build with a try catch functionality that handles all exceptions and give appropriate
error messages back. For the API calls used in the React.js frontend HTTP status 5** is returned
if an error occurs. Additionally the twelve-factor methodology was implemented to ensure a high
standard of recoverability was reached.

138

Chapter 3. Quality Measures SR-App FlexAlgo

3.11.3. Usability
Not implemented in this project, will be handled in a further project.

3.11.4. Performance
Performance of the source code can be found in the testing protocols.

3.11.5. Maintainability
Extensive unit and integration tests were written for the software. Results and metrics can be
found in SonarQube. Additionally logs to the standard error stream are implemented in the error
handling of the software and can be viewed and persisted as needed.

139

https://sonarqube.stu.network.garden/dashboard?id=SRFlexAlgo

Part VI.

Indexes

140

List of Figures

0.1. Flexible Algorithm Topology [30] . iv
0.2. Basic User Interface . vi

2.1. Control and Data Planes . 12
2.2. IPv6 Extension Heade with List of Segments [10] 14
2.3. MPLS Header with 20Bit long Label Field [12] . 14
2.4. MPLS Tags in a single Packet . 14
2.5. SR Topology Example . 15
2.6. SR Topology Example - Prefix-SIDs . 16
2.7. SR Topology Example - Packets . 17
2.8. FlexAlgo Sub-TLV [59] in IS-IS Packet . 18
2.9. Algorithms Example . 19
2.10. Network Topology in LTB . 21
2.11. Jalapeño architecture . 22
2.12. Jalapeño API Gateway architecture . 23

3.1. HTML View with FlexAlgo Data . 25
3.2. HTML View with Node Data . 26
3.3. HTML View with Link Data - Part 1 . 27
3.4. HTML View with Link Data - Part 2 . 27
3.5. HTML view Error Message . 28
3.6. HTML view FlexAlgo Configurations . 29
3.7. JSON return of FlexAlgo Graphs . 30
3.8. React.js Graph Topology . 31
3.9. React Graph Topology - FlexAlgo 129 Highlighted 32

1.1. Use Case Diagram . 46

2.1. Domain Model [28] . 59

3.1. Context Diagram . 66
3.2. BA - Container Diagram . 67
3.3. SA - Container Diagram . 68
3.4. Package Diagram of Microservice Network Read 69
3.5. Overview of Class Diagram of Microservice Network Read 70
3.6. Class Diagram of Microservice Network Read - Application and Live Model 71
3.7. Class Diagram of Microservice Network Read - Routes 73
3.8. Class Diagram of Microservice Network Read - Domain 74
3.9. Class Diagram of Microservice Network Read - gRPC Client 76
3.10. Class Diagram of Microservice Network Read - Service 77
3.11. Sequence Diagram - See a List of Flex Algo Information 79
3.12. Sequence Diagram - See Live Updates . 80
3.13. Sequence Diagram - See a List of Flex Algos . 81
3.14. BA - Container Diagram . 84

141

List of Figures SR-App FlexAlgo

3.15. Overview of Communication now and planned . 89
3.16. Swagger Documentation . 92
3.17. Frontend of /flexGetAlgoDefinitions . 101
3.18. Frontend of /flexGetNodes . 102
3.19. Frontend of /flexGetLinks . 103
3.20. Frontend of an occurred ArangoDB Error . 104
3.21. Single Page Application View - No selected FlexAlgo 105
3.22. Overview of Kubernetes Deployment . 106
3.23. Cluster Agent on GiLab . 107
3.24. Deployment File Section with imagePullPolicy . 108
3.25. Overview of Kubernetes Deployment with React Frontend 108
3.26. Wireframes . 110

1.1. Timeline for SA . 123
1.2. Project Plan Architecture . 125

2.1. Risk Matrix . 129

3.1. SonarQube Dashboard - All Code . 136
3.2. SonarQube Dashboard - Code Network Read . 137

6.1. BA - Container Diagram . 173

11.1. Deployment File Section Deployment . 179
11.2. Deployment File Section Service . 180
11.3. Deployment File Section Ingress . 180
11.4. Secrets File . 181

142

List of Tables

1.1. Use Case Color Code . 45
1.2. Actor Description . 45
1.3. UC00: List of Flex Algo - Fully Dressed Description 47
1.4. UC01: Live Updates - Fully Dressed Description 47
1.5. UC03: Show List of All Running Flex Algos - Fully Dressed Description 48
1.6. UC05: View Topology - Fully Dressed Description 49
1.7. UC06: See Graphical Representation of One Flex Algo - Casual Description 49
1.8. UC07: See Graphical Representation of All Flex Algos - Casual Description 50
1.9. UC08: CRUD Flex Algos - Fully Dressed Description 51
1.10. UC09: Deploy Flex Algo Changes - Fully Dressed Description 52
1.11. UC10: Logging Flex Algo - Casual Description . 53
1.12. UC11: Status of Deplyoment - Casual Description 53
1.13. UC13: Currently Deploying - Casual Description 53
1.14. UC14: Show Router Information - Fully Dressed Description 54
1.15. UC15: Filter Topology - Fully Dressed Description 55

3.1. Technology Stack . 82

2.1. List of Project Risks . 133

143

Listings

3.1. protobuf class topology.proto . 87
3.2. AlgoDefinitionFunction now . 88
3.3. AlgoDefinitionFunction with grpc models . 88
3.4. flexGetAlgoDefinitions HTML return . 93
3.5. flexGetNodes HTML return . 93
3.6. flexGetLinks HTML return . 94
3.7. getNodes json return . 94
3.8. getEdges json return . 95
3.9. getAlgos json return . 95
3.10. getOneAlgo json return . 96
3.11. getAlgos json return . 96
3.12. getOneAlgo json return . 97
3.13. Logging Example . 99
3.14. Setting the Docker Credentials in Cluster . 107
3.15. Setting the Environment for the Pipeline . 108
3.16. Starting React Frontend . 108
3.17. Starting FlexAlgo application over CLI . 109

10.1. Pipeline . 177

144

Part VII.

Appendix

145

Listings SR-App FlexAlgo

The project repo can be found on GitLab.

146

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tree/main

1. Task Definition

147

1 Task Formulation

1.1 Institute
The SR-App FlexAlgo project is being conducted in partnership with the Institute for Networked
Solutions (INS) and is a new SR-App that will be part of the SR-App Ecosystem.

1.2 Supervisor
Prof.Laurent Metzger, Institute for Networked Solutions (INS), laurent.metzger@ost.ch

1.3 Co-Supervisor
Urs Baumann, Institute for Networked Solutions (INS), urs.baumann@ost.ch

1.4 Initial Situation
Flexible algorithms (FlexAlgo) is in a draft state at the IETF (https://datatracker.ietf.org/doc/draft-
ietf-lsr-flex-algo/) and in the process of being standardized. It is a dynamic segment routing
technology and manage the traffic on a network in a high granularity. This freedom comes with
additional complexity. Building and maintaining all the flexible algorithms in a network is a man-
ual task, time consuming and needs intimate knowledge of network configurations. The SR-App
FlexAlgo should make configurations fast and easy and allow not only a graphical view of the
configurations but also show possible problems in the network. In this research paper a prototype
for the SR-App is made, to check the feasability of a segment routing application that handles
the configuration of flexible algorithms.

1.5 Expectations and Goals
The goal of this research paper is a proof of concept for a SR-App FlexAlgo application. For this,
research on the segment routing’s flexible algorithm technology is to be done and a prototype is
to be built that displays all relevant information to the technology.

Expected minimum work results:

• Research on where all FlexAlgo information is stored and how to access it via the Jalapeño
API Gateway.

• Application prototype that shows FlexAlgo relevant information in a minimal frontend, i.e.
a json or hmtl list.

• Prototype needs to handle a network of up to 1000 routers in a reasonable amount of time.

1

Chapter 1. Task Formulation

Optional work results:

• Single Page Application frontend with graphical representation of the network topology.

• Graphical representation of the running algorithm configurations.

• Prototype needs to run on Kubernetes and must be developed for cloud native environments.

• Working pipeline for the prototype.

Additional goals for success:

• Code must be written in Python or Go.

• Optional Single Page Application frontend needs to be written in React.

• Research of basic functionality of Flexible Algorithm technology, as far as application pro-
totype needs.

• The relevant YANG models for flex algo need to be researched.

• Jalapeño API Gateway needs to be utilized via gRPC connection. If the chosen YANG
model depends on changes to the Gateway that can not be implemeneted in time, direct
connections to the databases are also possible.

As this is a software project the resulting application code should follow best practices known in
software engineering. As this is a prototype, the application needs to give a representative proof
of concept for the adaption into the final software.

1.6 Definition of Implementation
This task formulation is written by the students and has been reviewed and validated by the
supervisor. As this paper is written within the framework of the "Semesterarbeit" module, the
students have the right of weekly meetings with the supervisors. Additional meetings can be held
at the students’ or supervisors’ requests. The work process should be transparent, continuous
and documented with repository versioning and time tracking. A project plan is to be created
in the first week of the project with a timetable, milestones and basic procedures defined. The
requirements engineering is done by the students and reviewed by the supervisors. It should
define functionality of a minimum viable product and additional features.

1.7 Documentation
Part of this student research project is a documentation based on the regulations of the depart-
ment of computer science at the OST university of applied sciences. All documents need to be
finished at the time of submission. Since this project may be of international interest, it should
be written in english. All additional submissions can be written in english as well, but are not
mandatory so.

1.8 Important Dates
21.02.2022 Start of the project 03.06.2022 Submission

2

Chapter 1. Task Formulation

1.9 Additional Notes
This research paper was developed based on the oral assignment by the supervisor. This task
formulation was written by the students and approved by Prof. Laurent Metzger.

Date:

Signature Prof. Laurent Metzger:

3

26.05.2022

2. Definition of Done Checklists

Code

• Code works without errors and warnings.

• Tests are written for all code changes.

• Tests are green.

• Defined code guidelines and standards are met.

• Code was reviewed by team partner.

• Non functional requirements are met.

• Integration into master without any merge conflicts.

Documentation and Management

• Pipeline works without errors.

• Spelling check done.

• Content was reviewed by project partner.

• Integrations into master without any merge conflicts.

151

3. Meeting Protocols

The folder /project_management/meeting/ of the GitLab repository contains all meeting
protocols of this project.

The files *_AdvisorMeeting.pdf provide protocols of the weekly meetings held with the project
advisors.

The file 02-28_jalapeno_meeting.pdf provides a protocol of the meeting held with Michel
Bongard for the topic of the Jalapeño API Gateway.

The file 03-21_SegmentRouting.pdf provides a protocol of the meeting held with the project
advisors for the topic of Segment Routing.

The file 03-21_Kubernetes.pdf provides a protocol of the meeting held with Yannick Zwicker
for the topic of Kubernetes.

152

4. Time Reports

The files in the folder /poject_management/time_report/ of the GitLab repository are the
time reports for the team members of this project. For each sprint a report was made for each
team member and one for both.

153

5. Testing Protocols

154

Listings SR-App FlexAlgo

5.1. Acceptance Test - Review of Iteration 7
Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.
For the Performance tests the data from the Mocking Tool will be used to simluate a large
network.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed Acceptance Tests

• System Test of iteration 6 was done on tag Dev-I6.testing.

• This System Test is done on tag Dev-I7-final-submission.

5.1.1. Tests
Functionality

Non-Functional
Requirement

Implementation Shortcomings Status

Accuracy Data retrieved from
Jalapeño API Gateway
is up-to-date.

— Implemented

Interoperability The connection to the
Jalapeño API Gateway is
established over gRPC.

Will not be implemented
for this project.

Frozen

Reliability

Non-Functional
Requirement

Implementation Shortcomings Status

Fault Tolerance Server remains running if
connection to API is down.

Instead of API, connection
to ArangoDB was handled
successfully.

Implemented

155

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I6-testing
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I7-final-submission

Listings SR-App FlexAlgo

Recoverability The integrated Kubernetes
mechanism for failovers han-
dles failed pods.

— Implemented

Performance

Non-Functional
Requirement

Implementation Shortcomings Status

Data Integrity Changes in network are visi-
ble with a browser refresh.

— Implemented

Scalability The application runs with
1’000 routers in the network.

— Implemented

Time Behavior Changes in the network are
visible wihtin 3 seconds after
refreshing the browser.

Works on everything. At
the moment we have 102
flex algorithms.

Implemented

Maintainability

Non-Functional
Requirement

Implementation Shortcomings Status

Analysability The user receives a message
to inform about occuring er-
rors.

The error handling will be
implemented as a HTML
template or react frontend
message.

Implemented

Analysability Error messages will be writ-
ten into stdout.

Is written into stderr. Implemented

Testability All Unit and Integration
Tests run successfully.

— Implemented

Pending Improvements
-

156

Listings SR-App FlexAlgo

5.2. Acceptance Test - Review of Iteration 6
Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.
For the Performance tests the data from the Mocking Tool will be used to simluate a large
network.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed Acceptance Tests

• System Test of iteration 5 was done on tag Dev-I5.

• This System Test is done on tag Dev-I6.testing.

5.2.1. Tests
Functionality

Non-Functional
Requirement

Implementation Shortcomings Status

Accuracy Data retrieved from
Jalapeño API Gateway
is up-to-date.

— Implemented

Interoperability The connection to the
Jalapeño API Gateway is
established over gRPC.

Will not be implemented
for this project.

Frozen

Reliability

Non-Functional
Requirement

Implementation Shortcomings Status

Fault Tolerance Server remains running if
connection to API is down.

Instead of API, connection
to ArangoDB was handled
successfully.

Implemented

157

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I5-backend
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I6-testing

Listings SR-App FlexAlgo

Recoverability The integrated Kubernetes
mechanism for failovers han-
dles failed pods.

— Implemented

Performance

Non-Functional
Requirement

Implementation Shortcomings Status

Data Integrity Changes in network are visi-
ble with a browser refresh.

— Implemented

Scalability The application runs with
1’000 routers in the network.

— Implemented

Time Behavior Changes in the network are
visible wihtin 3 seconds after
refreshing the browser.

Works on everything. At
the moment we only have
102 flex algorithms.

Implemented

Maintainability

Non-Functional
Requirement

Implementation Shortcomings Status

Analysability The user receives a message
to inform about occuring er-
rors.

The error handling will be
implemented as a HTML
template. (in process)

Implemented

Analysability Error messages will be writ-
ten into stdout.

— Implemented

Testability All Unit and Integration
Tests run successfully.

— Implemented

Pending Improvements

• Error handling with HTML.

158

Listings SR-App FlexAlgo

5.3. Acceptance Test - Review of Iteration 5
Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.
For the Performance tests the data from the Mocking Tool will be used to simluate a large
network.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed Acceptance Tests

• Acceptance Test of Iteration 4 was done on tag Dev-I4.

• This Acceptance Test is done on tag Dev-I5-backend.

5.3.1. Tests
Functionality

Non-Functional
Requirement

Implementation Shortcomings Status

Accuracy Data retrieved from
Jalapeño API Gateway
is up-to-date.

— Implemented

Interoperability The connection to the
Jalapeño API Gateway is
established over gRPC.

Will not be implemented
for this project.

Frozen

Reliability

Non-Functional
Requirement

Implementation Shortcomings Status

Fault Tolerance Server remains running if
connection to API is down.

Instead of API, connection
to ArangoDB was handled
successfully.

Implemented

159

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I4
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I5-backend

Listings SR-App FlexAlgo

Recoverability The integrated Kubernetes
mechanism for failovers han-
dles failed pods.

— In process

Performance

Non-Functional
Requirement

Implementation Shortcomings Status

Data Integrity Changes in network are visi-
ble with a browser refresh.

— Implemented

Scalability The application runs with
1’000 routers in the network.

— Implemented

Time Behavior Changes in the network are
visible wihtin 3 seconds after
refreshing the browser.

Works on everything. At
the moment we only have
12 flex algorithms.

In process

Maintainability

Non-Functional
Requirement

Implementation Shortcomings Status

Analysability The user receives a message
to inform about occuring er-
rors.

— Implemented

Analysability Error messages will be writ-
ten into stdout.

— Implemented

Testability All Unit and Integration
Tests run successfully.

— Implemented

Pending Improvements

• Adapt mocking tool with more algorithms.

• Html return template.

• Error handling with HTML.

• Implementation of pipeline with Kubernetes integration.

160

Listings SR-App FlexAlgo

5.4. Acceptance Test - Review of Iteration 4
Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.
For the Performance tests the data from the Mocking Tool will be used to simluate a large
network.

Status: Access to Jalapeño API Gateway not possible at the moment, get data via ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed Acceptance Tests
This acceptance test is done on tag Dev-I4.

5.4.1. Tests
Functionality

Non-Functional
Requirement

Implementation Shortcomings Status

Accuracy Data retrieved from
Jalapeño API Gateway
is up-to-date.

Cannot access Gateway
but go over ArangoDb.
This data is live. A
connection to the gateway
is implemented on branch
feat_add-grpc, but there
are cache problems in the
gateway.

Partially
implemented

Interoperability The connection to the
Jalapeño API Gateway is
established over gRPC.

See shortcomings
Accuracy.

Partially
implemented

Reliability

Non-Functional
Requirement

Implementation Shortcomings Status

Fault Tolerance Server remains running if
connection to API is down.

Is not implemented. Began
implementation in branch
feat_error-handling.

Not imple-
mented

161

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I4

Listings SR-App FlexAlgo

Recoverability The integrated Kubernetes
mechanism for failovers han-
dles failed pods.

— Not imple-
mented

Performance

Non-Functional
Requirement

Implementation Shortcomings Status

Data Integrity Changes in network are visi-
ble with a browser refresh.

Momentarily via
ArangoDB connection
and not gRPC.

Implemented

Scalability The application runs with
1’000 routers in the network.

Not tested yet because of
missing error handling and
current construction in the
gateway.

Pending

Time Behavior Changes in the network are
visible wihtin 3 seconds after
refreshing the browser.

Route getAlgos is most
heavy in computation
needs and runs under a
second. Limitation is that
there are only 8 routers in
the network.

Implemented

Maintainability

Non-Functional
Requirement

Implementation Shortcomings Status

Analysability The user receives a message
to inform about occuring er-
rors.

Will be addded with er-
ror handling. Began
implementation in branch
feat_error-handling.

Pending

Analysability Error messages will be writ-
ten into stdout.

Will be addded with er-
ror handling. Began
implementation in branch
feat_error-handling.

Pending

Testability All Unit and Integration
Tests run successfully.

Ok. Implemented

162

Listings SR-App FlexAlgo

Pending Improvements

• Complete implementation of error handling.

• Complete implementation of gRPC connection.

• Implementation of Pipeline with Kubernetes integration.

5.5. System Test - Review of Iteration 7
This document will provide an overview of the performed System Tests of this project.

Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed System Tests

• System Test of iteration 6 was done on tag Dev-I6.testing.

• This System Test is done on tag Dev-I7-final-submission.

5.5.1. Tests - SA MVPs
UC00 - List of Flex Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC01 - Live Updates

Implemented Process Status
Yes Refresh website. PASSED

163

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I6-testing
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I7-final-submission

Listings SR-App FlexAlgo

Shortcomings
Live updates work for everything. Additional routes were implemented to simulate gRPC
updates of links, nodes and definitions.

UC02 - Failure to connect

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings

UC03 - List all Flex Algos

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC04 - Logging Software

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC05 - Graph Topology

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

164

Listings SR-App FlexAlgo

UC06 - Graph 1 Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Works, sometimes needs a second try.

UC07 - Graph all Algos

Implemented Process Status
Yes Refresh website. FROZEN
Shortcomings
Not implemented. See results of thesis section for further information.

Pending Improvements
-

5.6. System Test - Review of Iteration 6
This document will provide an overview of the performed System Tests of this project.

Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed System Tests

• System Test of iteration 5 was done on tag Dev-I5.

• This System Test is done on tag Dev-I6.testing.

165

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I5-backend
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I6-testing

Listings SR-App FlexAlgo

5.6.1. Tests - SA MVPs
UC00 - List of Flex Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC01 - Live Updates

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Live updates work for everything. Nodes has an additional update mechanic implemented,
the others not.

UC02 - Failure to connect

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Not yet as HTML, only string message or HTTPS error.

UC03 - List all Flex Algos

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC04 - Logging Software

Implemented Process Status

166

Listings SR-App FlexAlgo

Yes Refresh website. PASSED
Shortcomings
-

5.6.2. Tests - SA Optionals

Use Case Implemented Shortcomings Status
UC05
Graph Topology

no — In process

UC06
Graph 1 Algo

no — In process

UC07
Graph all Algos

no — In process

Pending Improvements

• HTML return template.

• Error handling with HTML.

• Implementation of pipeline with Kubernetes integration.

5.7. System Test - Review of Iteration 5
This document will provide an overview of the performed System Tests of this project.

Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.

Status: Access to Jalapeño API Gateway not possible for duration of this project, get data via
ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed System Tests

167

Listings SR-App FlexAlgo

• System Test of iteration 4 was done on tag Dev-I4.

• This System Test is done on tag Dev-I5-backend.

5.7.1. Tests - SA MVPs
UC00 - List of Flex Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

UC01 - Live Updates

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Live updates work for everything. Nodes has an additional update mechanic implemented,
the others not.

UC02 - Failure to connect

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Not yet as HTML, only string message or HTTPS error.

UC03 - List all Flex Algos

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

168

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I4
https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I5-backend

Listings SR-App FlexAlgo

UC04 - Logging Software

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
-

5.7.2. Tests - SA Optionals

Use Case Implemented Shortcomings Status
UC05
Graph Topology

no — In process

UC06
Graph 1 Algo

no — In process

UC07
Graph all Algos

no — In process

Pending Improvements

• HTML return template.

• Error handling with HTML.

• Implementation of pipeline with Kubernetes integration.

5.8. System Test - Review of Iteration 4
Preconditions
The Unit and following Integration Tests run successfully.
The Jalapeño API Gateway sends real time data from the virtual network. Should this not be
possible then mocked data from the Mocking Tool will be fed into the ArangoDB of the Gateway
to simluate the network data instead.

Status: Access to Jalapeño API Gateway not possible at the moment, get data via ArangoDB.

Preparation
Enter VPN of INS to access ArangoDB sources. Check ArangoDB collections have data.
ls_node_coordinates does not currently have data. One mocked data set will be inserted.

Information about the performed System Tests

This acceptance test is done on tag Dev-I4.

169

https://gitlab.ost.ch/ins-stud/flexalgo/sr-flexalgo/-/tags/Dev-I4

Listings SR-App FlexAlgo

5.8.1. Tests - SA MVPs
UC00 - List of Flex Algo

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
Logic for affinity mappings not yet adapted to new db schema. Bit-map fields not yet in
db and therefore not implemented in code.
Expected Output Actual Output
Information list of all existing Flex Algos Information list of all existing Flex Algos
Next Steps
Add affinity mappings. Check with Urs Baumann for missing fields in db.

UC01 - Live Updates

Implemented Process Status
Yes Refresh website. PASSED
Shortcomings
None
Expected Output Actual Output
Changed information. Changed information.

UC02 - Failure to connect

Implemented Process Status
Not yet Refresh website. FAILED
Shortcomings
Error handling not implemented yet. Began implementation in branch feat_error-handling.
Expected Output Actual Output
Message about failed connection. HTTP time out message.
Next Steps
Complete implementation of error handling.

UC03 - List all Flex Algos

Implemented Process Status
Yes Refresh website. PASSED

170

Listings SR-App FlexAlgo

Shortcomings
Currently only with direct ArangoDB connection not via gRPC.
Expected Output Actual Output
Calculated list of all algos with their nodes
and links.

Calculated list of all algos with their nodes and
links.

Next Steps
Implement gRPC.

UC04 - Logging Software

Implemented Process Status
Not yet Refresh website. FAILED
Shortcomings
Not yet implemented. Began implementation in branch feat_error-handling.
Expected Output Actual Output
Log information about errors in stderr. Nothing.
Next Steps
Complete implementation of error handling.

5.8.2. Tests - SA Optionals

Use Case Implemented Shortcomings Status
UC05
Graph Topology

no — Planned

UC06
Graph 1 Algo

no — Planned

UC07
Graph all Algos

no — Planned

Pending Improvements

• Complete implementation of error handling.

• Complete implementation of gRPC connection.

171

172

Listings SR-App FlexAlgo

6. Container Diagram

Figure 6.1.: BA - Container Diagram

173

7. YANG model

The YANGmodel chosen is Cisco-IOS-XR-clns-isis-cfg@2021-04-02 which can be seen here.

The relevant FlexAlgo data are as follows:

Cisco-IOS-XR-clns-isis-cfg/isis/instances/instance/interfaces/interface/interface-afs/interface-af/topology-
name/algorithm-prefix-sids/algorithm-prefix-sid/

• algo

• type

• value (prefix-sid)

Cisco-IOS-XR-clns-isis-cfg/isis/instances/instance/

• flex-algos/flex-algo/

– includes

– excludes

– srlg-exclude-anies

– running (active)

– metric-type (metric)

– priority

– advertise-definition

– flex-algo (algo number)

• instance-id (originNode)

Cisco-IOS-XR-clns-isis-cfg/affinity-mappings/affinity-mapping/

• affinity-name

• value

Cisco-IOS-XR-clns-isis-cfg/interfaces/interface/

• interface-name (interface id)

• int-affinity-tyble/flex-algos/

– flex-algo (list Affinities)

174

https://yangcatalog.org/yang-search/yang_tree/Cisco-IOS-XR-clns-isis-cfg@2021-04-02

8. Decoding Affinities

The file /documentation/src/decodings/jalapeno-mapping.txt of the GitLab repository
provides a translation of the Affinity values saved in the objects of the ArangoDB and the binary
values made by Severin Dellsperger.

The file packet-121-trace1.txt provides the analysis notes of Severin Dellsperger of a packet
with the Affinity values on the network.

175

9. Network Configurations

The current configurations of the single devices of the project can be read in the folder /pro-
ject_management/topology_configs of the GitLab repository.

176

10. Pipeline

The complete pipeline can be inspected in the file .gitlab-ci.yml of the repository.
1 workflow:
2 rules:
3 - if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
4 - if: '$CI_COMMIT_BRANCH && $CI_OPEN_MERGE_REQUESTS'
5 when: never
6 - if: '$CI_COMMIT_BRANCH'
7
8
9 .base-python:

10 <-- shortened -->
11
12
13 stages:
14 - documentation
15 - formatting
16 - check_static_types
17 - test
18 - sonar-scanner
19 - build-image
20 - deployment
21
22 latex:
23 <-- shortened -->
24
25 check_format:
26 <-- shortened -->
27
28
29 check_static_types:
30 <-- shortened -->
31
32
33 pytest:
34 <-- shortened -->
35
36 sonarqube-check:
37 <-- shortened -->
38
39
40 build-image:
41 stage: build-image
42 tags:
43 - ins-student
44 variables:
45 IMAGE_TAG: ${CI_COMMIT_REF_SLUG}
46 image:
47 name: gcr.io/kaniko-project/executor:debug

177

Listings SR-App FlexAlgo

48 entrypoint: [""]
49 before_script:
50 - mkdir -p /kaniko/.docker
51 - echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\", \
52 \"password\":\"$CI_REGISTRY_PASSWORD\"}}}" > /kaniko/.docker/config.json
53 script:
54 - /kaniko/executor --context $CI_PROJECT_DIR --dockerfile

$CI_PROJECT_DIR/Dockerfile --destination $CI_REGISTRY_IMAGE:$IMAGE_TAG
--destination $CI_REGISTRY_IMAGE:latest --use-new-run --single-snapshot
--snapshotMode=redo

55 rules:
56 - if: $CI_COMMIT_BRANCH == "dev"
57
58
59 kubernetes-deployment:dev:
60 stage: deployment
61 tags:
62 - ins-student
63 image:
64 name: bitnami/kubectl:latest
65 entrypoint: [""]
66 before_script:
67 - kubectl config use-context ins-stud/flexalgo/sr-flexalgo:cluster-agent
68 script:
69 - cd deployment/k8s/base/
70 - kubectl -n sa-flexalgo apply -f secrets.yaml
71 - kubectl -n sa-flexalgo apply -f deployment.yaml
72 - kubectl -n sa-flexalgo rollout restart deployment webserver-deployment
73 environment:
74 name: dev
75 url: https://sa-sr-flexalgo.stu.network.garden
76 rules:
77 - if: $CI_COMMIT_BRANCH == "dev"

Listing 10.1: Pipeline

178

11. Kubernetes Files

Figure 11.1.: Deployment File Section Deployment

179

Listings SR-App FlexAlgo

Figure 11.2.: Deployment File Section Service

Figure 11.3.: Deployment File Section Ingress

180

Listings SR-App FlexAlgo

Figure 11.4.: Secrets File

181

	Abstract
	Management Summary
	Glossary
	Bibliography

	Technical Report
	Introduction
	Thesis Composition
	Motivation
	Aims and Objectives

	Segment Routing Fundamentals
	Basics
	Segment Routing

	YANG Model
	Project Related Network Technologies
	Underlaying Network
	Jalapeño
	Jalapeño API Gateway

	Results
	Distinction
	Achievements
	Functional Requirements
	Non-Functional Requirements

	Implementation
	Update Functionality
	Live Model
	Caching
	Pipeline

	Conclusion
	Retrospective
	Discussion
	Outlook
	Improvements
	Innovations
	Further Thoughts

	Terminology

	Project Documentation
	Requirements
	Use Cases
	Actors
	Diagram
	SA Use Cases
	BA Use Cases

	Non-Functional Requirements
	Functionality
	Reliability
	Usability
	Performance
	Maintainability

	Domain Analysis
	Domain Model
	Administrative Concepts

	Architecture
	Twelve Factor Methodology
	Design Goals
	C4 Diagrams
	Context Diagram
	Container Diagrams
	Package Diagram
	Class Diagram

	Sequence Diagrams
	Technology Decisions
	Technology Stack
	Language
	Microservices
	Serverless Architecture
	Communication
	Live Model

	API Definition
	Swagger Documentation
	HTML
	React API
	Update

	Logging
	Frontend
	Service Side Rendered
	SPA

	Deployment
	Network Read
	React Frontend

	Wireframes

	Mocking
	Testing
	System Test - Review of Iteration 7
	Tests - SA MVPs

	Acceptance Test - Review of Iteration 7
	Tests

	Project Management
	Project Plan
	Introduction
	Purpose
	Scope

	References
	Glossary
	Project Overview
	Assumptions and Constraints

	Project Organisation
	Internal Structure
	External Contacts
	Management
	Meetings
	Organisation Git

	Schedule
	Workflow
	Milestones

	Risk Management
	Issues
	Infrastructure
	Quality Assurance
	Development
	CI/CD
	Code Reviews
	Code Style Guidelines

	Definition of Done
	Documentation

	Tests
	Automated Tests
	System Tests
	Acceptance Tests
	Usability Tests

	Risk Analysis
	Purpose
	Risk Matrix
	Risk Management

	Quality Measures
	Coding Guidelines
	Definition of Done
	End of Elaboration Checklist
	Time Tracking
	GitLab Workflow
	Code Reviews
	Sprint Reviews
	Metrics and Code Analysis
	SonarQube
	Network Read
	Frontend

	Testing
	Unit Tests
	Integration Tests
	System and Acceptance Tests
	Usability Tests

	Pipeline
	Non-Functional Requirements
	Security
	Reliability
	Usability
	Performance
	Maintainability

	Indexes
	List of Figures
	List of Tables
	Listings

	Appendix
	Task Definition
	Definition of Done Checklists
	Meeting Protocols
	Time Reports
	Testing Protocols
	Acceptance Test - Review of Iteration 7
	Tests

	Acceptance Test - Review of Iteration 6
	Tests

	Acceptance Test - Review of Iteration 5
	Tests

	Acceptance Test - Review of Iteration 4
	Tests

	System Test - Review of Iteration 7
	Tests - SA MVPs

	System Test - Review of Iteration 6
	Tests - SA MVPs
	Tests - SA Optionals

	System Test - Review of Iteration 5
	Tests - SA MVPs
	Tests - SA Optionals

	System Test - Review of Iteration 4
	Tests - SA MVPs
	Tests - SA Optionals

	Container Diagram
	YANG model
	Decoding Affinities
	Network Configurations
	Pipeline
	Kubernetes Files

