
Student Research Project - Autumn Semester 2022/23

OSMyBiz

Company profile editor for OpenStreetMap

Version 1.0
Date: 2022-12-23

Authors: David Kalchofner
Dominic Ritz

Advisors: Prof. Stefan F. Keller
Joël Schwab

OST Eastern Switzerland University of Applied Sciences Campus Rapperswil-Jona

Contents

I Abstract 1

II Management Summary 3

III Documentation 7

1 Introduction 8
1.1 Vision . 8
1.2 Goals . 8
1.3 Assignment . 8

2 State of the Art 10
2.1 Google Business Profile . 10
2.2 iD-Editor . 10
2.3 onosm.org . 10

3 Evaluation 11
3.1 Upgrading the Frontend to Modern Technologies 11
3.2 Introduction of TypeScript . 11
3.3 Reducing the Load on the Public Overpass API Instance 12

4 Concept 13
4.1 Frontend Upgrade . 13

4.1.1 Analysis . 13
4.1.2 Upgrade . 13
4.1.3 TypeScript . 14

4.2 Reducing the Load on the Overpass API . 14
4.2.1 Own Instance of the Overpass API 14
4.2.2 Caching . 14

5 Results 15
5.1 Goals . 15
5.2 Outlook and Further Development . 15

IV Project Documentation 16

6 Vision 17

i

7 Requirements 18
7.1 Browse Map . 18
7.2 Create Business . 19
7.3 Edit Business . 19
7.4 Show Updates . 19
7.5 Show OSM Messages . 20
7.6 Functional Requirements . 20
7.7 Nonfunctional Requirements . 20

8 Analysis 21
8.1 Architecture . 21
8.2 Components . 23

8.2.1 Frontend . 23
8.2.2 Backend . 24

8.3 Tools & Frameworks . 24

9 Design 27

10 Implementation and Testing 32
10.1 Frontend Upgrade . 32
10.2 Caching . 33
10.3 Testing . 34

11 Results and Further Development 35
11.1 Results . 35

11.1.1 Frontend Upgrade . 35
11.1.2 Caching . 36

11.2 GitLab Issues of OSMyBiz . 36
11.3 Further Develoment . 36

11.3.1 OSMyBiz-Specific Overpass API Instance 36
11.3.2 Opening Hours GUI Interface . 36
11.3.3 Editing Nodes Directly . 36
11.3.4 JSON Responses Instead of XML . 37
11.3.5 Node 18 . 37

12 Project Management 38
12.1 Relevant Links . 38
12.2 Processes . 38
12.3 Collaboration . 38
12.4 Risk Management . 39
12.5 Time and Issue Tracking . 39
12.6 Time Tracking Report . 39

V Appendix 40

Glossary 41

Bibliography 42

Personal Reports 45

Meeting Minutes 46

ii

Part I

Abstract

1

Abstract

OpenStreetMap My Business (OSMyBiz) is an editor for the collaborative, open-mapping
project OpenStreetMap (OSM). It focuses on enabling users to edit businesses on OSM
without requiring knowledge about how OSM organises its data, specifically targeting new
or inexperienced users. OSMyBiz got created in 2018 as a bachelor thesis project. Since
then, it has only gotten minor updates and needs to catch up regarding technologies.

Since its creation, new version changes have been available for nearly all dependencies, and
some are not even maintained. There have also been significant changes in the tooling
used in modern web applications. OSMyBiz did not get optimised for mobile, and therefore,
the usage on mobile devices was suboptimal. One of the external APIs used implemented
rate-limiting, which caused constant error messages when moving around on the map. Ad-
ditionally, the application has a growing list of issues and suggestions.

The application was brought up to date by migrating from Vue 2 to Vue 3, replacing Vuex
with Pinia, switching from webpack to Vite and introducing TypeScript. The existing ap-
plication got reworked to be responsive in a ”mobile-first” approach. A caching mechanism
was added to the application to reduce the load on the public overpass API instances. The
implementation reduces unnecessary load on the shared infrastructure and improves user
experience by reducing issues due to rate-limiting.

There are still multiple open issues, ideas and optimisation potential for OSMyBiz. This
project has created a solid foundation to implement those further development options. All
while ensuring better maintainability and making it simpler to modify the frontend code
base.

2

Part II

Management Summary

3

Management Summary

Introduction

OpenStreetMap My Business (OSMyBiz) is an editor for the collaborative, open mapping
project OpenStreetMap (OSM). It’s focused on enabling users to edit businesses on OSM
without requiring knowledge about how OSM organises its data, specifically targeting new
or inexperienced users.

Figure 2: The desktop view of OSMyBiz. Editable businesses are loaded via Overpass API
and displayed as circles on the map.

Project Goals

OSMyBiz was created in 2018 as a bachelor thesis project. Since then, it has only gotten
minor updates and fallen behind in terms of technologies. Changes in an important external
API lead to the application encountering significant issues due to rate-limiting. Using the
application on mobile phones was out of the original project’s scope, focusing instead on the
classic desktop experience. Addressing this was sorely needed as traditional PCs are getting
replaced more and more by mobile devices. Over the years a few other issues with the
application have been reported, but not addressed so far. This project was an opportunity
to address them.

Project Results

During this project, the application received a substantial overhaul. Technologically the
application was brought up to date, migrating from Vue 2 to Vue 3, replacing Vuex with

4

Pinia, switching from webpack to Vite and many more things. Additionally, OSMyBiz now
uses TypeScript rather than pure JavaScript to facilitate easier maintenance and future
development. During this process a variety of small existing issues were fixed.
While a conscious decision was made not to create a new design from scratch, the existing
application has been reworked to be responsive in a ”mobile-first” approach, where such
changes were needed.
To reduce load on the public overpass API instances, a caching mechanism was added to the
application. This reduces unnecessary load on the shared infrastructure and improves user
experience by reducing issues due to rate-limiting.

Figure 3: The new responsive header bar of OSMyBiz on a mobile device. Unlike before, all
menu items are visible.

Figure 4: Editing a business on a mobile device with of OSMyBiz. Changes were made to
improve the layout on mobile devices.

5

Outlook

The fundamental goals of the project have been achieved successfully. There are still many
ideas for further enhancements, and we have built a solid foundation for further development
that will hopefully happen as part of the follow-up bachelor’s thesis. Features like a GUI
editor for the opening hours format and directly editing a business on OSM rather than just
writing notes for other Mappers would further enhance the application.

6

Part III

Documentation

7

Chapter 1

Introduction

1.1 Vision

The OpenStreetMap project is a project that collects free geographical data, similar to pro-
prietary services like Google Maps, Bing Maps or Apple Maps. Like Wikipedia, every user
can contribute, and the resulting database gets licensed under an open license (The ”Open
Database License”). Most users contributing to the project are volunteers. The distribution
of contributions follows the Pareto principle: A minority of users contributes the majority of
data.

The goal of OSMyBiz is to enable people that are not regular contributors to OpenStreetMap
to contribute data. The most important aspect of this is abstracting the specific schema used
by the OSM community to describe something. Furthermore, OSMyBiz is not intended to
be a general-purpose editor but instead focuses on business owners who want to administer
the data of their businesses or businesses on behalf of others.

Time has taken its toll on OSMyBiz, and problems since its creation have made working
with it difficult and, at times, impossible. Users should be able to work and enter new data
on OSMyBiz without encountering constant error messages. Furthermore, the application
should run on a modern tech stack again without using outdated packages and work methods.

1.2 Goals

The main goals of this project are:

• Upgrade the existing application to use up-to-date versions of tools, frameworks and
libraries.

• Improve the Desktop-focused UI to work on mobile devices

• Resolve the issues with the Overpass API resulting in OSMyBiz being rate-limited and
severely degrading the user experience.

Beyond those 3 main goals of the project, other improvements and features are a secondary
goal.

1.3 Assignment

The web application OSMyBiz is now somewhat outdated and should therefore be renewed.
It was decidedt to improve the old application through refactoring.

8

Refactoring

The refactoring of the old version includes:

• The web application should be responsive. Mobile-First should be used.

• The original application runs with some old dependencies. These should be upgraded
to newest versions.

• As part of the refactoring, the design decisions of the old OSMyBiz should be checked
and changed if necessary. This includes, for example, the architecture decision.

• Several issues have already been recorded in the current version of OSMyBiz. These
should be checked and corrected if necessary.

Functionalities

The new version should continue to provide the following functionalities of the old version:

• As part of the work, a web application is to be developed that enables businesses to
record all data themselves so that they are displayed in the OpenStreetMap. A note
with all the data is created in the background and mapped to the OpenStreetMap.

• In addition, it should be intercepted if the address was not found correctly (e.g. if the
user placed the GEO icon in front of the building instead of on top of the building)
and assigned the correct address by overpass.

• The owner should also be able to manage or update existing information about their
business.

• It should also be possible to log in to OSMyBiz with the OSM login so that you can
display a history of the changes made.

• In addition, it should be checked for spam so that only serious companies are recorded
and protection against bots should be set up. (best effort)

• It should be communicated to the creator as soon as his business is available in the
OpenStreetMap (in the GUI).

9

Chapter 2

State of the Art

There are many editors for OSM, like JOSM, Merkaartor, Potlatch, Streetcomplete, and
Maps.me. We have selected Google Business Profile as it is the original inspiration for
OSMyBiz and the iD-Editor and onosm.org as we believe them to be the most relevant for
our problem statement.

2.1 Google Business Profile

Formerly called ”Google My Business”, Google Business Profile allows verified Businesses to
manage their data on Google Maps. Google Maps is currently one of the largest, if not the
largest, web mapping sites.[5] Therefore, we can assume that most of our potential users
have used this product before. Compared to OSM, the data on Google Maps is generally
unavailable under an open license. For services relying on Google Maps APIs, OSM also has
the advantage that the OpenStreetMap Foundation is located in the UK. In contrast, Google
as a US company might cause issues with the EU’s General Data Protection Regulation.

2.2 iD-Editor

The iD-Editor is a JavaScript-based editor for OpenStreetMap running in the browser, and it
is the default editor on openstreetmap.org. It is a simple editor, allowing users to contribute
without being aware of the agreed-on tagging scheme by the OSM community. The tags are
not hidden away trough, and advanced users can edit them directly, for example, for more
exotic tags that the iD-Editor is not aware of. The iD-Editor also allows editing any node or
shape on OpenStreetMap and is not limited to businesses.

2.3 onosm.org

onosm.org is the tool most similar to OSMyBiz, focusing on businesses and hiding away the
details about the tagging scheme used by the OSM Community. Unlike OSMyBiz, however,
it is intended for creating new businesses on OpenStreetMap. Editing an existing business
is not possible. Depending on the type of business, additional facts can get recorded about
a business. For example, the tag ”cuisine=italian” can describe a restaurant as an Italian
restaurant, and such a key would not make sense in a doctor’s office. onosm.org does not
offer such context-dependent tags. OSMyBiz tries to offer appropriate options based on the
type of business selected. There is also a difference in terms of UX. OSMyBiz has a much
stronger focus on its map, whereas onosm.org requires explicitly searching an address before
allowing a user to select the exact location on the map.

10

Chapter 3

Evaluation

3.1 Upgrading the Frontend to Modern Technologies

The original project has run on Node.js [11] (Node) version 8, which is EOL (End of Life, no
longer supported) since 31.12.2019 [6] and has not had significant changes since its creation
five years ago. As of November 2022, most current Node applications run on version 16 or
higher, as those still receive security updates and are actively developed further. Multiple
security risks of insecure and no longer maintained packages get displayed during its build.
Furthermore, the main framework used, Vue is on version 2, but version 3 has existed for a
while. This project has much extra overhead, with many unnecessary packages that bring
little to the table.

The GitLab repository of the current implementation has a growing list of issues. Some of
which are caused by outdated versions of used packages. The hope is that this upgrade will
solve multiple problems already without having to invest too much time and then be able to
focus on the remaining issues.

To ensure that the application does not have security risks from massively outdated depen-
dencies and ensure better maintainability in the future, a more extensive version upgrade/redo
was due.

3.2 Introduction of TypeScript

Although in the original thesis, a choice got made against TypeScript, it made sense to
implement it in this project. Both Vite and Vue provide excellent support for TypeScript,
and it can get included during the setup of the new application. Generally, using TypeScript
makes sense, but for example, with OSMyBiz using multiple APIs, it is beneficial to be aware
of the types.

Furthermore, some of the key benefits of using TypeScript include the following:

• TypeScript provides static type checking, which can help to catch errors and bugs early
in the development process before the code is run or deployed.

• TypeScript allows developers to use modern JavaScript language features, such as
classes, interfaces, and modules, making the code more organised, maintainable, and
reusable.

Overall, TypeScript provides many benefits for developers who want to improve their projects’
quality, maintainability, and scalability.

11

3.3 Reducing the Load on the Public Overpass API Instance

To find OSM nodes that represent a business that fit within the scope of OSMyBiz, the ap-
plication relies on Overpass API. Overpass is a tool that allows to query the OpenStreetMap
database for specific information. while Overpass can be used as a self-hosted solution, OS-
MyBiz relies on one of the main public instances of Overpass.

So far OSMyBiz has had a rather simple mechanism for loading the data from Overpass.
After a user scrolled to a new area, a query with the current ViewBox was sent to Overpass.
The result was then displayed on the map. This meant that potentially very similar areas
where queried in short succession. This lead to a lot of unnecessary load on the Overpass
servers and also meant that the user had to wait for the query to finish, which can be quite
noticeable in urban areas with a lot of businesses.

The biggest issue with this simple approach is that the used overpass instance has pretty
strict rate limiting to prevent problematic behavior.[1] This rate limiting was hit extremely
quickly and easily by OSMyBiz, as it was sending a lot of queries when some scrolling was
done while zoomed in far enough to display editable businesses. As this point a 15 second
cool-down period is imposed on the client, which results in a error message and no editable
businesses being presented to the user.

As this occurs very quickly, it effectively rendered OSMyBiz unusable in our opinion. Despite
being aware of this limitation we struggled to avoid it ourselves.

Therefore it was pretty clear that reducing the amount of queries sent to Overpass API was
extremely important.

12

Chapter 4

Concept

4.1 Frontend Upgrade

4.1.1 Analysis

An analysis was necessary to determine what packages would support the new Node version
and the Vue dependencies. A lot of the implemented packages turned out to be no longer
maintained and had to be replaced by alternative packages or implement the functionality
itself.

4.1.2 Upgrade

The upgrade was split into multiple steps to have a better plan on how to proceed and get
an overview of the progress:

Base Setup

This included setting up the base with the improved tech stack and Vite as the build tool
instead of webpack.

Static File Migration

Copy all static files (i.e. locales, tags or images) that would not require changes to their new
destination.

Store Replacement and Migration

Replace the Vuex store with the new Pinia store and implement it accordingly in the com-
ponent and view files. Refactor and remove as much not needed code as possible.

Component and View Files

Migrate the existing component and views to the Vue 3 Composition API style and make
changes when necessary.

Dependency Fixes and Replacements

Multiple dependencies have significant version changes, and thus behaviour also has changed.
Therefore, those dependencies needed to be adjusted accordingly. It also included replacing
no longer maintained packages with alternatives.

13

Fixes and Finalisation

The main parts of the system have now been changed and are ready. Now, everything needs
to be pieced together and see where there are still any issues and solve them when they arise.
It also includes fixing build and ESLint errors and warnings, and typing.

There are always obstacles that arise and are not planned for, which also get included in this
step.

4.1.3 TypeScript

Typescript already gets included from the beginning of the setup. At first, the code gets
migrated over from the previous setup in JavaScript and then converted to TypeScript. With
the new store setup, it will need to get typed, and other code should get typed, if possible,
at the moment. If unsure regarding the type, ”any” can be used or create a local type. If a
type gets used multiple times, it should get exported to a general type file. Multiple similar
types can be combined and optimised into one type.

4.2 Reducing the Load on the Overpass API

4.2.1 Own Instance of the Overpass API

Overpass API is designed to run as a self-hosted service. Running an instance specifically
for OSMyBiz would allow adjusting the rate limits based on the specific needs of OSMyBiz.
While this could solve the issues with the public instances once and for all, it has some
significant downsides.

Running our instance is a non-trivial task and would require a significant upfront effort and
continued maintenance, especially after the end of this project. OSMyBiz is not heavily used,
so its Overpass instance would be idle most of the time. Meanwhile, higher latency should
be avoided, so adequately fast hardware would be desirable.

Considering these points, we decided that running our own instance of Overpass API is yet
to be a viable option for OSMyBiz.

4.2.2 Caching

We assume that most users of OSMyBiz will not randomly jump around on the map but will
stay within a specific area (where their business is located). Therefore it is likely that the
same area will be loaded twice (temporal locality) or that areas will be loaded next to each
other (spatial locality).

By keeping track of already loaded areas, we can avoid loading the same area multiple times,
reducing the number of requests to Overpass API. We can also load slightly larger areas than
the current viewport so that small movements on the map do not require a new request to
Overpass API, further reducing the load.

Even if at a later point, the decision gets made to set up an Overpass instance for OSMyBiz,
this would still reduce the load on the custom overpass instance.

14

Chapter 5

Results

5.1 Goals

The main goals defined in the introduction could get achieved.
The frontend has been overhauled and now uses up-to-date technologies and dependencies.
The application works well on smaller screens. The likelihood of issues due to rate limiting
got reduced massively. Additionally, many minor issues got fixed as well.

5.2 Outlook and Further Development

There is much potential in developing this application further. With this thesis, the applica-
tion’s main problems got addressed, ensuring it can be used in production again. Additionally,
it lays the foundation for future development, making the development of new features sim-
pler, and the code generally is more maintainable.

Following the most important points that could get addressed further

• OSMyBiz-specific Overpass API instance (see 11.3.1)

• Opening Hours GUI (see 11.3.2)

• Life Cycle Management - directly edit nodes (see 11.3.3)

• Change OSM API calls from XML to JSON (see 11.3.4)

• Upgrade to Node 18 (see 11.3.5)

Thanks

We want to express our deep gratitude to our advisors, Prof. Stefan Keller and Joël Schwab,
for their invaluable guidance and support during the completion of this thesis. Their expertise
and insights were instrumental in helping us to develop and refine our ideas, and we are truly
grateful for the time and effort they dedicated to our project.

15

Part IV

Project Documentation

16

Chapter 6

Vision

As discussed in Section 1.1

17

Chapter 7

Requirements

Most requirements have stayed the same since the inception of OSMyBiz. Therefore most
requirements have been translated from the original bachelor thesis [9] that created OSMyBiz.
Significant changes are italic.

7.1 Browse Map

Description The user would like to learn more about the application

Actor User (anonymous)

Pre-Condition -

Main Success
Scenario

1. The User enters an address into the search bar
2. The map shows the location of the address
3. The user right clicks the building and reads the information
provided.
4. Steps 1-3 can be repeated
5. User leaves the site

Post-Condition -

Alternative Scenarios

1a. User selects address by zooming
1b. User selects address via his current position
3a. User left-clicks the buisness
5a. User creates a OSM-Account

18

7.2 Create Business

Description The user would like to add his business to OSM

Actor User (logged in)

Pre-Condition User has a OSM account and is logged in

Main Success
Scenario

1. The User enters an address into the search bar
2. The map shows the location of the address
3. The user right clicks the building
4. The user checks the address and clicks ”Create”
5. The user enters the details about the business
6. User saves changes by pressing ”Save”

Post-Condition OSM-Node was created

Alternative Scenarios

1a. User selects address by zooming
1b. User selects address via his current position
3a. The user ”long touches” the building
6a. The user doesn’t want to save his changes and clicks ”Back”

7.3 Edit Business

Description The user would like to edit an existing business

Actor User (logged in)

Pre-Condition
- User has a OSM account and is logged in
- Business has been created

Main Success
Scenario

1. The User enters an address into the search bar
2. The map shows the location of the address
3. The user left clicks the existing business
4. The user checks the address and clicks ”Edit”
5. The user edits the details about the business
6. User saves changes by pressing ”Save”

Post-Condition OSM-Note was created

Alternative Scenarios
1a. User selects address by zooming
1b. User selects address via his current position
6a. The user doesn’t want to save his changes and clicks ”Back”

7.4 Show Updates

Description
The user would like to be informed when someone else edits a
buisness he created or edited.

Actor User (logged in)

Pre-Condition
- The user has a OSM account and is logged in
- Business has been created or edited by the user

Main Success
Scenario

1. The user checks the edits.
2. The user dismisses the notification about the edit

Post-Condition The edit is no longer shown on the watch list

Alternative Scenarios
2a. User selects business by zooming
2b. The users check the edit on osm.org
2c. The user turns off notifications for this business

19

7.5 Show OSM Messages

Description
The user would like to be informed when someone sends him a
direct message on osm.org

Actor User (logged in)

Pre-Condition
- The user has a OSM account and is logged in
- The user has one or more unread messages

Main Success
Scenario

1. The user can see that he has new messages
2. The user clicks on the message button
3. The user is redirected to osm.org where he can read the message.

Post-Condition The unread message counter is set back to 0

Alternative Scenarios -

7.6 Functional Requirements

Handle Newlines

OSM generally discourages the usage of newlines in most fields.
”description” and ”note” fields are sometimes seen as exceptions.
Some tools allow inserting newlines into these fields[23], but not
all tools can actually properly display them. Osmose for example
will mark them as possible errors.[20]
Therefore the application should be able to deal with existing new-
lines, but not insert any tags with newlines in them.

7.7 Nonfunctional Requirements

Responsive Design
The user interface should be responsive, changes to the User Inter-
face should be done with a mobile first approach. The Application
should work on mobile devices as well as on desktop computers.

Maintainability
The source code for the application should be easily extendable for
new features

Usability
The application should be designed to be simple and usable without
extensive documentation

Performance
Fast responses are not required, generally users should get a re-
sponse within 5 seconds. Better reponse times should be aimed for
if possible.

Availability External APIs should not be overloaded to prevent throttling.

Reliability Wrong search results should be avoided.

20

Chapter 8

Analysis

8.1 Architecture

Overall, the architecture of having the Vue frontend connected to the Python backend and
Postgres database was a solid approach. Nevertheless, the frontend technologies needed to
be updated. If the project continued on the previous setup, it would have left many security
vulnerabilities of packages open and made further development difficult, as one has to use
outdated libraries and development methods. The goal is not to change anything in the
backend or the database. Therefore, webpack got replaced by Vite as the foundation and
the build mechanism. This change reduced the build time for the frontend from 17s to 0.5s
on average (average taken from 10 builds) without doing any further optimisations.

The previous state management tool, Vuex, was replaced by Pinia. Compared to Vuex, Pinia
focuses on creating multiple smaller stores for specific application parts. Only the required
store must be loaded when needed, not the entire store. This separation helps reduce the
amount of data loaded for each view or component, as most have to access the store to
some degree.

The application was built on Vue 2, as that was the current version at the time of develop-
ment. Now, Vue 3 exists and has significant benefits and uses the newest versions of Node.
Vue 2 uses the options API style of writing code, whereas the recommendation is to use the
composition API with the setup script for Vue 3. The composition API allows the definition
of component logic using a declarative, function-based syntax. This syntax can make writing
clean, maintainable code easier and improve the readability of large components. Overall,
Vue 3 offers improved performance, full TypeScript support, an improved reactive API, and
better code organisation.

With the setup on Vite, there was the option to include this from the start. The problem
was to migrate all the code to the new application foundation and type it. During this, many
inconsistencies were found and appropriately resolved. Often, more data than needed got
sent and handled, where one could normalise/validate beforehand and then not have to send
so much overhead. Furthermore, typing does not have to happen at runtime, increasing the
performance and guaranteeing that the code is type-safe.

While the original thesis explicitly focused on a web application oriented toward desktop
PCs, the design had no fundamental issues preventing support for mobile devices. The only
component that required significant adjustments was the header bar. Using the component
system and CSS scoping that Vue provides has proven beneficial, as it made refactoring the
design much more straightforward.

21

System Context

The OSMyBiz system uses multiple APIs (external services) and interacts with different
users.

Figure 8.1: C4 system context diagram

Container

The system gets split into three containers. Each container uses its own technology and
could get exchanged if needed.

The frontend is a single-page application (SPA) which provides the user interface. A SPA
provides improved user experience over server-rendered pages, as the entire page does not
need to be updated when something changes. With a SPA, one is also more flexible for
future development.

The backend provides multiple REST-API-Endpoints, which will get used by the frontend.
It is the interface between the frontend and the database.

The database is a simple PostgreSQL database that stores the additional data. The database
is part of the OSMyBiz system, so it gets installed, deployed, and migrated along with the
other system components.

22

Figure 8.2: C4 container diagram

8.2 Components

8.2.1 Frontend

The frontend is a SPA written in Vue 3 and TypeScript. Vue single-file components get
used, keeping all relevant parts of a component in a single file. TypeScript ensures more
issues are caught at compile time, reducing testing overhead.

Store

Pinia gets used as the state store, which is the modern default for Vue 3. Using a central
state ensures a clean separation of concerns. The business logic can be in a central, testable
and re-usable place.

Views

Each route (/, /detail) gets implemented as a view. These views are responsible for tying
together various components and the state store. Relevant data is requested from the store
and provided to components.

Components

Whenever any UI code should get re-used, it gets put inside a component, and these compo-
nents get used across multiple views or inside of other components. A component has simple
input and output making them flexible, and this separation guarantees re-usability without
requiring refactoring first.

Services

Services (api directory in the frontend) provide a small backend abstraction layer. The Axios
[3] dependency allows simple creation and handling of the requests.

23

8.2.2 Backend

Its job is to provide a REST API for the frontend to call, retrieve, and send data. The flask
backend then either gets and returns the data from the database or receives the data and
stores it in the database. It also encapsulates data migration and other database-specific
tasks.

Figure 8.3: C4 component diagram

8.3 Tools & Frameworks

The technologies used got generally chosen with simplicity and maintainability in mind.
Nevertheless, using technologies similar to the ones used in the previous thesis made much
sense.

24

Frontend

Vue

Vue.js [33] is a JavaScript framework for building user interfaces focusing on building modern,
interactive web applications. It is lightweight, easy to learn, and flexible, and it uses a
template-based syntax to render dynamic content in the browser declaratively. Vue.js is
popular for building SPAs and has strong community support and a large ecosystem of
plugins and libraries.

Pinia

Pinia [12] is a store library for Vue. It allows sharing a state across components/views.
Following are the key points of Pinia:

• Stores are as familiar as components. The API got designed to write well-organised
stores.

• Types get inferred, meaning stores provide autocompletion in TypeScript.

• Pinia hooks into Vue dev tools to give an enhanced development experience.

• Build multiple stores and let the bundler code split them automatically.

• Lightweight, only 1.5kb

TypeScript

TypeScript [15] is a programming language that is a superset of JavaScript, with added
features that make it easier to write and maintain large-scale applications. It supports static
typing and the latest JavaScript features, such as classes and modules, to help write better
code.

Vite

Vite [32] (French word for ”quick”, pronounced /vit/, like ”veet”) is a build tool that aims
to provide a faster and leaner development experience for modern web projects. It consists
of two major parts:

• A dev server that provides rich feature enhancements over native ES modules, for
example extremely fast Hot Module Replacement (HMR).

• A build command that bundles your code with Rollup, pre-configured to output highly
optimised static assets for production.

ESLint

ESLint [7] is a tool that identifies and reports patterns in JavaScript code to make it more
consistent and avoid bugs. It can enforce specific coding styles and practices and integrate
them into various development environments. Overall, it is a valuable tool for maintaining
JavaScript code quality [4].

25

Packages

Further (main) dependencies used in OSMyBIZ with a short description.
• fortawesome provides a library of different icons [17]
• deep-equal Node’s assert.deepEqual() algorithm as a standalone module [16]
• jquery is a fast, small, and feature-rich JavaScript library [18]
• leaflet is the leading open-source JavaScript library for mobile-friendly interactive map
[19]

• lodash A modern JavaScript utility library delivering modularity, performance and
extras [21]

• moment Library for manipulating and dislay of dates and times [22]
• osm-auth Easy authentication with OSM over OAuth 2.0 [24]
• stream-browserify the stream module from Node core, for browsers [25]
• tiny-lru Least Recently Used cache for Client or Server [26]
• vue-i18n is the state-of-the-art linter for TypeScript and JavaScript [28]
• vue-router official router for Vue [29]
• vue-select Vue Select is a feature rich select/dropdown/typeahead component [30]
• vue3-cookies A simple Vue.js 3 plugin for handling browser cookies [27]
• xml-js Convert XML text to Javascript object / JSON text (and vice versa) [31]

Backend

Flask

Flask [8] is a Python web framework used for creating web applications and APIs. It is
lightweight and easy to use, with a simple development server and support for template
rendering and custom error pages. Flask is often used for small projects, prototypes, and
quick experiments, as well as for building APIs and microservices.

Database

Postgres

Postgres [13] is an open-source object-relational database management system (ORDBMS)
for storing and managing data. It supports ACID transactions, advanced data types, and a
powerful query language called SQL. Postgres is known for its reliability, performance, and
scalability and gets often used for web, mobile, and big data applications. It also has robust
security features and is widely used in various industries.

26

Chapter 9

Design

Design

From the original bachelor thesis, there was already a design created and implemented. In
this thesis, the overall design got modified as little as possible. The goal was to improve
the mobile usage of the web application without having to create a new UI, as generally,
the website’s design is well thought-through and well-styled. Furthermore, a new design
might confuse the user that already knows and works with OSMyBiz, so there was a decision
against redesigning the webpage.

The most significant design change was the header bar. The original did not scale well on
small screens, and buttons could be offscreen and impossible to tap. We have decided to
go with a so-called ”Hamburger Menu.” It is a typical design pattern on mobile phones. A
button with three horizontal lines expands a vertical menu. This changed menu is only visible
on smaller screens. Larger screens continue to use the old design. A third-party contributor
had already started an implementation, which we finished up.

On small screens, the watch list is now an almost full-screen modal. It gained a close button
as an obvious way to close it. This button is crucial when the watchlist button gets hidden
under the hamburger.
Additionally, various other minor changes got made to fix overlapping elements and similar
things.

27

Figure 9.1: The old design on a small screen. Notice that the watch list and logout buttons
are not visible onscreen.

28

Figure 9.2: The new design on a small screen.

29

Figure 9.3: The old watch list.

30

Figure 9.4: The new watch list.

31

Chapter 10

Implementation and Testing

10.1 Frontend Upgrade

From the beginning, it was clear there was a need for a frontend upgrade. Either lifting the
existing application to new versions or creating the application from scratch / new foundation
and migrating the code. Especially since the application is five years old, the technologies
have evolved far, and for most libraries, many new major versions exist and should get used.
As on the build of the old application, multiple warnings/errors arose regarding security issues
found in older packages and updating is recommended. Node version 8 was used instead of
the current LTS version of Node 16.

There was an analysis conducted on the libraries used in the application. To identify which
are not maintained or compatible with the newer Node version, a replacement must get found
if it is not maintained or compatible with Node 16. With this analysis, multiple packages
could get identified that could get reduced from standard functionalities in newer versions or
from different libraries with the same functionalities.

Also, with the switch to Vite, Node 16, Vue 3 and TypeScript, the number of packages could
be reduced. Also, many of the previous tools needed for development could get dropped.
For example, webpack hot reload and all of the other webpack stuff, as this is all replaced
by the one Vite dependency.

The first try was to update the current application and lift those packages accordingly.
Convert everything to ES6 syntax and bump the packages to the newer versions. After
bumping a few packages, the build was failing; one had to continue this ”blindly” and hope
that, in the end, everything would come together. After investing a day of work into this
approach, it dropped, as it did not bear fruit. The problem is that one would have a new
application with modern technologies. However, the foundation of an application got created
five years ago, which is different from the standard of how applications get created. Also,
packages could not get removed as hoped, as most were still required, just with a higher
version.
Afterwards, the approach was to create an empty application based on the Vite, Vue 3, Pinia,
TypeScript and ESLint tech stack that could be configured accordingly during the setup of
the Vite application. Code had to be moved and rewritten from the old application into the
new one with the ES6 syntax. TypeScript support and Vue files had to get migrated into
the composition API style.

One of the main libraries, vue-leaflet, only had Vue 2 support. The vue3-leaflet gets main-
tained by a private person and is still in progress and does not provide full support and

32

documentation yet. Although the key components were supported, a lot was studying the
implementation and figuring out how to implement it to replace the Vue 2 implementation.

Another issue was the osm-auth library. It claims to have TypeScript support, but ESLint
complained about no named export as described in the documentation. After spending
multiple hours figuring out the problem and reading into the library source code, the issue is
that the TypeScript definition file most likely has an error, and everything works as it should.
Much time got wasted trying out different things until, finally, the authentication worked.

10.2 Caching

The big question from the start is how we can organise our cache to make it easy to check
what is cached and what is not. Typical caches have a straightforward identifier for the
stored data. A cache line is identified on a CPU cache by the address of the data it contains,
and a browser cache can use the unique URL of an image to identify it. In our case, we are
looking for data in a range of latitudes and longitudes. At the same time, we need to be
able to tell whether an area is empty or not cached.

We decided to solve this by dividing the map into ”Tiles”. So instead of loading nodes based
on a range of latitudes and longitudes, we load nodes based on a set of discreet tiles. Each
tile has a size of 0.01 degrees latitude and longitude. The size was determined experimentally
and hits a good trade-off between how often new tiles must be loaded and how much data
gets loaded at once. These tiles get identified by their latitude and longitude; for example,
the tile with the left corner at 51.52, 7.50 would be identified by the string ”51.52/7.50”.
The cached data generally does not get stale very quickly, so we cache the data for a session.
This means the cache gets cleared when the user closes the browser. On the other hand, we
wanted to limit the amount of stored data. If the cache gets too large, we want to evict the
least recently used tile.

We arbitrarily decided to cache 25 tiles simultaneously to prevent high memory usage. This
limit could be increased, but we can assume there will not be thousands of entries. As the
library will be part of the web app, we were looking for a small, simple library rather than a
sizeable specialised library.

Based on this, we decided to use the ”tiny-lru” library. This library is a simple LRU cache
that stores the data in memory, and it has a fixed size and evicts the least recently used
items when the cache is full.

When the map gets moved, we can check which tiles are currently visible and which are al-
ready cached. Because of how Overpass does its rate limiting, it makes more sense to load the
tiles in a single request. Even if there is an overlap between the request and the tiles already
cached, the missing tiles will be combined into one request for a rectangle containing all tiles.

Initially, we then displayed all of the affected tiles on the map, even if they were outside
the browser’s viewport. This meant that the markers could already be loaded when scrolling
around the map. Unfortunately, we found this was not a good idea, as it would cause the
map to be very slow to display, visibly adding them one after another over multiple seconds
in very dense urban areas. Even after adding additional code filtering out the nodes that are
not visible, the performance could have been better. Another issue we encountered was that
when doing multiple small scrolling movements (for example, by navigating using the arrow
keys), it was possible to send multiple requests for the same area. Because the request to

33

Overpass gets sent asynchronously, it is possible that the map was moved multiple times,
the tiles still need to be cached, and therefore additional requests were sent. To solve this,
we had to keep track of requests that were in flight. Instead of sending duplicate requests,
further attempts to load the nodes in an area also await the first request.

10.3 Testing

We have done manual tests based on the requirements defined in Chapter 7. To enable us
to test on actual smartphones, we have set up a test server to run OSMyBiz. In order to
be able to test changes that were not yet integrated into the main development version, we
decided to forgo integration into our CI/CD pipeline. Instead, the test server can access the
git repo and pull changes from there.

The substantial effort to upgrade the frontend has also proven a hindrance to testing. Its
many fundamental changes resulted in many issues with the application. One issue early in
a scenario meant that further issues could only be found after the first issue was solved. It
also simply ate a lot of the time budget.

Another issue we encountered while testing the application was the fact that there was a
mix of live and test data. The map tiles from OpenStreetMap used live data, and Overpass
API used live data. However, we used a development instance of OpenStreetMap to prevent
modifying anything on the ”real” version of OpenStreetMap. This generally required some
workarounds.

There was a sizeable amount of feedback on the original GitLab repository of the project,
which was incorporated where applicable. Some testing with potential users was started, but
it encountered the abovementioned issues. Given the existing feedback from real users and
a few fundamental UI changes, we decided to focus on other areas rather than conducting
exhaustive user testing.

34

Chapter 11

Results and Further Development

11.1 Results

11.1.1 Frontend Upgrade

Due to the state of the OSMyBiz application before, it was clear that an upgrade had to
take place in some form.

Vite Instead of Webpack

Vite and webpack are tools for building web applications, but their focus and features differ.
Vite is fast and lightweight, using native ES modules to avoid the overhead of traditional
bundlers. On the other hand, webpack is more fully-featured and can handle a broader range
of use cases but it is also more complex.

Vite is the foundation of the new frontend and replaces webpack. As it is the current state-
of-the-art way to set up new Vue 3 applications, it was the way to go. With the basic setup
of Vite instead of webpack, around 15 dependencies could get removed. Without further
configurations regarding the build, the build with Vite took 0.5s and with webpack around
17s. This number can be further reduced when more time is invested into optimising the
build.

TypeScript

With the introduction of TypeScript, many issues became visible that before were just swept
under the rug. Many inconsistencies with naming and types arose as well as bugs, precisely
because of it. It makes the code safer as one knows what gets excepted and what gets sent
over, and inherently makes the code more readable and easier to maintain.

Pinia

Allows the store’s modularisation, and only the store and data needed get included and
loaded instead of the complete store. Technological standard store of Vue 3 and users get
advised to switch from Vuex, as it is no longer further developed.

Responsive

Thanks to fixing a few issues with the application’s design on mobile devices, all features
should work well on mobile phones and similar devices, keeping up with the trend towards
replacing classic computers with mobile devices like smartphones.

35

11.1.2 Caching

By splitting the map into tiles and then loading and caching them accordingly, we have
reduced the load on the Overpass API, lowering the likelihood of running into troubles with
the rate limiting. While it is still possible to provoke such situations, most users should now
be able to use OSMyBiz without regular error messages again.

11.2 GitLab Issues of OSMyBiz

The issue section on the GitLab repository https://gitlab.com/geometalab/osmybiz/

was analysed and the following issues were solved:

Title Issue
”Save button obscures part of form” #253

”Add Persian for supported languages” #252

”App doesn’t cache Overpass API results” #251

”Upload translations for Spanish and Catalan” #247

”Help on smartphone is not accurate” #243

”Impossible to save changes” #242

”Impossible to type some characters” #238

”Detail-Dialog: Add field “Opening Hours URL“ (OSM key “opening hours:url“)” #231

”Point out that the user needs to zoom right in (aka zoom level 18) to see markers” #216

”Go to “Own Data“ in map” #189

”White Page after login to “master.apis.dev.openstreetmap.com“” #186

11.3 Further Develoment

As displayed in Chapter 5.2, multiple points can be improved or implemented. The most
important ones are listed below with further information.

11.3.1 OSMyBiz-Specific Overpass API Instance

As mentioned in the concept for ”Reducing load on Overpass API” (Section 4.2.1) the
Overpass API is designed to be run as a self-hosted service. Running an instance specifically
for OSMyBiz would allow adjusting the rate limits based on the specific needs of OSMyBiz,
solving the rate limit issues with the public instances.

11.3.2 Opening Hours GUI Interface

Editing and adding opening hours is complex and not user-friendly at all. It requires a strict
format which is not apparent to the user. A UI would simplify this task by creating the
correct format string in the background to send to OSM.

11.3.3 Editing Nodes Directly

Currently, the application does not directly edit nodes; instead, it leaves notes for other
mappers with the suggested changes. This is not a good workflow for our users or other
mappers. Directly editing nodes would improve this. OSMyBiz could then use lifecycle
prefixs to ”delete” businesses.

36

https://gitlab.com/geometalab/osmybiz/
https://gitlab.com/geometalab/osmybiz/-/issues/253
https://gitlab.com/geometalab/osmybiz/-/issues/252
https://gitlab.com/geometalab/osmybiz/-/issues/251
https://gitlab.com/geometalab/osmybiz/-/issues/247
https://gitlab.com/geometalab/osmybiz/-/issues/243
https://gitlab.com/geometalab/osmybiz/-/issues/242
https://gitlab.com/geometalab/osmybiz/-/issues/238
https://gitlab.com/geometalab/osmybiz/-/issues/231
https://gitlab.com/geometalab/osmybiz/-/issues/216
https://gitlab.com/geometalab/osmybiz/-/issues/189
https://gitlab.com/geometalab/osmybiz/-/issues/186

11.3.4 JSON Responses Instead of XML

Since 2022, multiple OpenStreetMap API endpoints have been able to return data in JSON
instead of only the XML format. Especially the ‘/node/nodeID‘ route, which is used multiple
times in the OSMyBiz application, could benefit from this change alongside the other occur-
rences. The switch to JSON would simplify the parsing of the data into a usable format, as
currently, the XML data gets parsed and formatted into a JSON object. JSON is lightweight
and easy to parse, making it suitable for high-volume applications. XML is more flexible and
allows for custom tags, making it suitable for complex data. Furthermore, two dependencies
required for parsing and reading the XML data could get removed.

11.3.5 Node 18

Node 16 has its End of Life date of 11.09.2023. An upgrade to Node 18, where the EOL
is 30.04.2025, would make sense and ensure security. As this is not a significant version
jump like from 8 to 16, this should be fine. At the start of this thesis, some dependencies
still needed to be compatible with Node 18. Therefore, it only got upgraded to Node 16.
However, it most likely will not take long until all required packages are ready for Node 18.

37

Chapter 12

Project Management

12.1 Relevant Links

Following a list of tools referenced used for version control and issue tracking.

• GitLab Code: https://gitlab.ost.ch/sa-osmybiz/osmybiz

• GitLab Documentation: https://gitlab.ost.ch/sa-osmybiz/documentation

• Jira: https://sa-osmybiz.atlassian.net/browse/MB

12.2 Processes

We used Scrum [14] in our project and held regular planning and weekly meetings. We also
used Jira [2] to create and manage issues and track our time. These processes helped us
stay organised and focused and ensured that we were making progress towards our goals.

Meetings

Meeting Schedule Subject Timebox
Weekly Every Friday Scrum Daily 15m
Planning Every second Monday Scrum Planning 45m
Project Weekly Every other Monday Discuss Progress and what’s next 15-30min
Kick-Off 19.09.2022 Kick-Off - Project Idea 1.5h

12.3 Collaboration

We used Microsoft teams [10] for communication and OST GitLab for version control, al-
lowing us to collaborate effectively and ensure everyone was on the same page.
For each bugfix, change or new feature that we worked on, we created a custom branch in
GitLab. This allowed us to isolate our work and avoid conflicts with other team members.
We reviewed each other’s code before merging it into the main branch. This helped us catch
any errors or bugs before they made it into the main codebase and ensured that our code
was high quality. Here we followed the GitFlow process of collaboration and working with
git.
Using teams and GitLab helped us collaborate effectively and produce high-quality code.
It allowed us to work together efficiently, avoid conflicts, and ensure that our code was
well-organised and maintainable.

38

https://gitlab.ost.ch/sa-osmybiz/osmybiz
https://gitlab.ost.ch/sa-osmybiz/documentation
https://sa-osmybiz.atlassian.net/browse/MB

12.4 Risk Management

In this section, the potential risks in our project get listed, and the plans how to react to
them.

Risk Mitigation Reaction
Inexperience with a technology Plan accordingly Seek assistance as soon as prob-

lems arise
Dependencies have been depre-
cated

Acceptance Replace as early as possible

Existing code has a fundamental
issue

Acceptance Rework existing code when nec-
essary

OSM-API had backwards in-
compatible changes

Acceptance Adjust project accordingly

OSM suffers a outage Acceptance Try to work around outage

12.5 Time and Issue Tracking

We used our Jira Board to track our time on different tasks in our project, which allowed us
to stay organised and on track. Using Jira, we could create tasks and track the time spent
on each. We could also assign tasks to different team members and set deadlines.

12.6 Time Tracking Report

Time tracking is done exclusively in Jira. Following an overview of the total time spend per
person:

Figure 12.1: Time tracking export - David Kalchofner 243.5h, Dominic Ritz 235.25h

39

https://sa-osmybiz.atlassian.net/browse/MB

Part V

Appendix

40

Glossary

GitFlow Gitflow is a branching model for Git that provides a structured approach for man-
aging source code. Gitflow defines rules for how these branches should be used and
merged, helping teams manage their codebase consistently and predictably. .

lifecycle prefix Can be used to mark OSM objects as under construction, disused, demol-
ished, etc..

Mapper Colloquial term for a contributor to the OSM map..

mobile first describes an approach to web design where the mobile version of a website is
the baseline with the desktop version being built on top of that.

node A geographical point in OpenStreetMap that represents a specific location, such as a
building, a street intersection, or a natural feature. .

note A user-generated comment or observation in OpenStreetMap that is associated with
a specific location, and that can be viewed and commented on by other users. .

osmose Osmose is a quality assurance tool for OSM that detects possible issues with data
on OSM.

responsive A website is responsive if it adapts to the screen size of the device it is displayed
on.

tag A tag is a key-value pair that describes an object on OSM. For example, the tag
”amenity=restaurant” describes that an object is a restaurant..

tagging scheme The tagging scheme is the set of tags that are used to describe the data
on OSM. There is no formal definition, rather it’s a set of conventions adopted by the
OSM community. .

41

Bibliography

[1] Overpass API. Commons. https://dev.overpass-api.de/overpass-doc/en/

preface/commons.html. Accessed on 2022-12-09.

[2] Atlassian. Atlassian jira. https://www.atlassian.com/de/software/jira. Ac-
cessed on 2022-12-20.

[3] Axios. Axios. https://axios-http.com/. Accessed on 2022-12-20.

[4] belindamarionk.hashnode.dev. What are eslint rules? https://belindamarionk.

hashnode.dev/what-are-eslint-rules. Accessed on 2022-12-03.

[5] Datanyze. Google maps api market share and competitor report.
https://www.datanyze.com/market-share/mapping-and-gis--121/

google-maps-api-market-share. Accessed on 2022-10-22.

[6] EndOfLife.date. endoflife.date nodejs. https://endoflife.date/nodejs. Accessed
on 2022-12-03.

[7] EsLint. Eslint. https://eslint.org/. Accessed on 2022-12-03.

[8] Flask. Flask. https://flask.palletsprojects.com/en/2.2.x/. Accessed on 2022-
12-03.

[9] Max Lüthi and Simon Heller. Openstreetmap my business. Bachelor’s thesis, Hochschule
für Technik Rapperswil, Rapperswil, December 2017.

[10] Microsoft. Microsoft teams. https://www.microsoft.com/de-ch/

microsoft-teams/log-in. Accessed on 2022-12-20.

[11] Node.js. Node.js. https://nodejs.org/en/. Accessed on 2022-12-20.

[12] Pinia. Pinia. https://pinia.vuejs.org/. Accessed on 2022-12-03.

[13] Postgres. Postgres. https://www.postgresql.org/. Accessed on 2022-12-03.

[14] Scrum. Scrum. https://www.scrum.org/. Accessed on 2022-12-20.

[15] TypeScript. Typescript. https://www.typescriptlang.org/. Accessed on 2022-12-
03.

[16] Various. Deep equal. https://github.com/inspect-js/node-deep-equal. Ac-
cessed on 2022-12-03.

[17] Various. Fortawesome. https://fortawesome.com/. Accessed on 2022-12-03.

[18] Various. jquery. https://jquery.com/. Accessed on 2022-12-03.

[19] Various. Leaflet. https://leafletjs.com/. Accessed on 2022-12-03.

42

https://dev.overpass-api.de/overpass-doc/en/preface/commons.html
https://dev.overpass-api.de/overpass-doc/en/preface/commons.html
https://www.atlassian.com/de/software/jira
https://axios-http.com/
https://belindamarionk.hashnode.dev/what-are-eslint-rules
https://belindamarionk.hashnode.dev/what-are-eslint-rules
https://www.datanyze.com/market-share/mapping-and-gis--121/google-maps-api-market-share
https://www.datanyze.com/market-share/mapping-and-gis--121/google-maps-api-market-share
https://endoflife.date/nodejs
https://eslint.org/
https://flask.palletsprojects.com/en/2.2.x/
https://www.microsoft.com/de-ch/microsoft-teams/log-in
https://www.microsoft.com/de-ch/microsoft-teams/log-in
https://nodejs.org/en/
https://pinia.vuejs.org/
https://www.postgresql.org/
https://www.scrum.org/
https://www.typescriptlang.org/
https://github.com/inspect-js/node-deep-equal
https://fortawesome.com/
https://jquery.com/
https://leafletjs.com/

[20] Various. Line breaks in tag values. https://github.com/osm-fr/osmose-backend/
issues/1336. Accessed on 2022-11-3.

[21] Various. Loadash. https://lodash.com/. Accessed on 2022-12-03.

[22] Various. Moment js. https://momentjs.com/. Accessed on 2022-12-20.

[23] Various. newline in fields. https://github.com/openstreetmap/iD/issues/7249.
Accessed on 2022-11-3.

[24] Various. Osm auth. https://github.com/osmlab/osm-auth. Accessed on 2022-12-
20.

[25] Various. Stream browserify. https://github.com/browserify/

stream-browserify. Accessed on 2022-12-20.

[26] Various. tiny-lru. https://github.com/avoidwork/tiny-lru. Accessed on 2022-
12-20.

[27] Various. Vue 3 cookies. https://github.com/KanHarI/vue3-cookies. Accessed
on 2022-12-20.

[28] Various. Vue i18n. https://kazupon.github.io/vue-i18n/. Accessed on 2022-12-
20.

[29] Various. Vue router. https://router.vuejs.org/. Accessed on 2022-12-20.

[30] Various. Vue select. https://vue-select.org/. Accessed on 2022-12-20.

[31] Various. Xml js. https://github.com/nashwaan/xml-js. Accessed on 2022-12-20.

[32] Vite. Vite. https://vitejs.dev/. Accessed on 2022-12-03.

[33] Vue.js. Vue.js. https://vuejs.org/. Accessed on 2022-12-03.

[34] Vuex. Vuex. https://vuex.vuejs.org/. Accessed on 2022-12-03.

43

https://github.com/osm-fr/osmose-backend/issues/1336
https://github.com/osm-fr/osmose-backend/issues/1336
https://lodash.com/
https://momentjs.com/
https://github.com/openstreetmap/iD/issues/7249
https://github.com/osmlab/osm-auth
https://github.com/browserify/stream-browserify
https://github.com/browserify/stream-browserify
https://github.com/avoidwork/tiny-lru
https://github.com/KanHarI/vue3-cookies
https://kazupon.github.io/vue-i18n/
https://router.vuejs.org/
https://vue-select.org/
https://github.com/nashwaan/xml-js
https://vitejs.dev/
https://vuejs.org/
https://vuex.vuejs.org/

List of Figures

2 The desktop view of OSMyBiz. Editable businesses are loaded via Overpass
API and displayed as circles on the map. 4

3 The new responsive header bar of OSMyBiz on a mobile device. Unlike before,
all menu items are visible. 5

4 Editing a business on a mobile device with of OSMyBiz. Changes were made
to improve the layout on mobile devices. 5

8.1 C4 system context diagram . 22
8.2 C4 container diagram . 23
8.3 C4 component diagram . 24

9.1 The old design on a small screen. Notice that the watch list and logout
buttons are not visible onscreen. 28

9.2 The new design on a small screen. 29
9.3 The old watch list. 30
9.4 The new watch list. 31

12.1 Time tracking export - David Kalchofner 243.5h, Dominic Ritz 235.25h . . . 39

44

Personal Reports

David Kalchofner

In this thesis project, I was excited to have the opportunity to upgrade OSMyBiz using the
latest technologies and best practices. As someone familiar with some of the technologies
to be used, I was looking forward to the challenges and opportunities the project would
present. One of the key challenges I faced during the upgrade was the introduction of
TypeScript to a codebase that had previously not used any type checking. The upgrade
required much more careful analysis and debugging and took longer than I had anticipated.
Despite these challenges, I am proud that the project succeeded. The upgraded frontend of
the web application performed better and provided a better user experience than the previous
version. It was great to see everything come together and work smoothly and to know that
the application will be able to continue to meet the needs of its users in the future. Overall,
this project was a valuable learning experience. It taught me the importance of thorough
planning and preparation and allowed me to improve my knowledge of known and unknown
technologies. I am grateful for the opportunity to work on this project, and I look forward
to applying the lessons I learned to future projects.

Dominic Ritz

So far, my professional experience with software development has been mostly .NET-focused.
Web technologies have been part of my studies at OST, and this project was a great look
at how Vue and related technologies work in a larger project. I learned a lot from David, as
he is very well-versed in this stack.
I anticipated that the dependency upgrade would take a significant amount of time. However,
I still underestimated the effort it took. It continued throughout the project, and because it
was a substantial change, it required quite some effort to prevent or solve conflicting changes.
David mostly took care of the upgrade, whereas I took care of other things. I plan to split
such work in future professional projects. In this case, it probably was impossible since our
jobs and other educational obligations made ”syncing up” somewhat hard.
Working with OSM and some community members has been a great experience, and I am
happy that our work will hopefully help make OSM more accessible to ”non-Mappers,”
keeping data up to date.

45

Meeting Minutes

Kickoff Meeting 19.09.2022

Goals

• Get an idea of SA

• Understand problems

• Understand Open Street Map

• Plan to-dos for the next two weeks

• Define and plan basic meetings

Open Street Map / Problem statement

Bi-Weekly Meeting 3.10.2022

Goals

• Plan further work

Results

• We will try and upgrade the existing Frontend.

• We will make sure that we can clearly show our own contribution.

• For every Bi-Weekly Meeting with our advisors, we should prepare a small statement
describing what we have done, which obstacles we encountered, and what plans we
have for the next iteration. This statement should be provided via teams or mail at
least 24h before the meeting.

• Joël will provide a draft of the problem statement - we should review it afterward.

Bi-Weekly Meeting 17.10.2022

Goals

• Discuss work done with advisors

• Discuss planned work with advisors

46

Results

• We have a plan for upgrading the Frontend and will execute it this sprint

• We have a rough list of issues we want to solve to get a responsive design and will
execute it this sprint

• Due to Dominic’s injury, we are somewhat behind on documentation, but we want to
catch up during this sprint

Bi-Weekly Meeting 31.10.2022

Goals

• Discuss work done with advisors

• Discuss planned work with advisors

Results

• We worked on both the dependency upgrade and the responsive design

• We came to the realisation that the dependency upgrade is one large task that is really
hard to split up into smaller tasks.

• Documentation is a bit behind, we’ll have to catch up on that. Dominic still has to
catch up after his injury.

Bi-Weekly Meeting 14.11.2022

Goals

• Discuss work done with advisors

• Discuss planned work with advisors

Results

• Editing nodes directly rather then going via notes that might be resolved at some
random point in the future would be an interesting feature.

• There is a SOSM-Meetup this week where we could ask Simon for advice about the
node editing feature.

• The dependency upgrade is at a point where we can start merging other changes.

• Caching the Overpass-API results is planned for this Sprint.

• We have collected a bunch of issues that we want to analyse and fix.

Bi-Weekly Meeting 28.11.2022

Goals

• Discuss work done with advisors

• Discuss planned work with advisors

47

Results

• We still had do some work on the dependency upgrade.

• Caching is0 more or less done.

• Dominic was at the last SOSM-Meetup and was able to talk with Simon about the
project.

– Directly editing shouldn’t be a problem as long as we’re reasonably careful. Edit-
ing via notes was done out of historical carefulness.

– Deleting directly isn’t great, as it’s hard to undo. We should rather use lifecycle
prefixes. ”Main” tags get prefixed, and minor tags (e.g. cuisine) get removed.
That change is much easier to undo.

– Some care needs to be taken for nodes that are two things simultaneously, e.g.,
a restaurant and a hotel. The gold-rim solution is to use a heuristic to determine
which tags belong to which part and only operate on those. This is how vespucci
handles this. For a start we should just detect this and fall back to a note or fail.

– Using the review-needed tag on the changeset is probably not that useful. While
the tag itself is a good idea, with how it’s currently used for changesets means
that there is a massive amount of changesets with this tag, but few people
actually looking at them based on that. Therefore using this tag doesn’t really
do anything.

• David had less time than he wanted to work on the project because of a project at
work.

• OSM-API was offline for a few days, which made it hard to test our changes.

• We have done some work on editing the nodes directly (rather than posting the edits
as nodes). We’ll try to do this feature, but if we encounter issues, we’ll have to cut it
relatively soon and rather focus on the core goals of the SA.

• Other than that, we’ll work on the final polish and documentation.

Bi-Weekly Meeting 12.12.2022

Goals

• Discuss work done with advisors

• Discuss planned work with advisors

Results

• We have merged most large changes

• Unfortunately, we had to cut the ”Editing nodes directly” feature due to time constrains

• There were some specific points raised about the documentation: The title page needs
to be restructured. We should ensure that we’re using a sans-serif font. Meeting
minutes should be the last part of the documentation.

48

	I Abstract
	II Management Summary
	III Documentation
	Introduction
	Vision
	Goals
	Assignment

	State of the Art
	Google Business Profile
	iD-Editor
	onosm.org

	Evaluation
	Upgrading the Frontend to Modern Technologies
	Introduction of TypeScript
	Reducing the Load on the Public Overpass API Instance

	Concept
	Frontend Upgrade
	Analysis
	Upgrade
	TypeScript

	Reducing the Load on the Overpass API
	Own Instance of the Overpass API
	Caching

	Results
	Goals
	Outlook and Further Development

	IV Project Documentation
	Vision
	Requirements
	Browse Map
	Create Business
	Edit Business
	Show Updates
	Show OSM Messages
	Functional Requirements
	Nonfunctional Requirements

	Analysis
	Architecture
	Components
	Frontend
	Backend

	Tools & Frameworks

	Design
	Implementation and Testing
	Frontend Upgrade
	Caching
	Testing

	Results and Further Development
	Results
	Frontend Upgrade
	Caching

	GitLab Issues of OSMyBiz
	Further Develoment
	OSMyBiz-Specific Overpass API Instance
	Opening Hours GUI Interface
	Editing Nodes Directly
	JSON Responses Instead of XML
	Node 18

	Project Management
	Relevant Links
	Processes
	Collaboration
	Risk Management
	Time and Issue Tracking
	Time Tracking Report

	V Appendix
	Glossary
	Bibliography
	Personal Reports
	Meeting Minutes

