
SA Documentation

Tama Compiler Overhaul

Date: 2022-12-23 07:24:18+01:00
Semester: HS22

Students: Pascal Honegger
Marcel Joss
Leonard Schütz

Advisor: Philipp Kramer
Industry Client: Christian Marrocco

Table of Contents

I Summary 1

II Product Documentation 4

1 Introduction 5

2 Requirements 6
2.1 Main Requirements . 6
2.2 Optional Requirements . 7

3 Quality Measures 9
3.1 Automated Test Suite . 9
3.2 Continuous Integration . 9
3.3 Code Review . 9
3.4 Semi-Manual Output Testing . 10

4 Evaluation 11
4.1 CCI Alternative . 11

5 Final Result 14
5.1 Abstraction Layer . 14
5.2 CCI Replacement - ILSpy . 18
5.3 Computed Goto . 20
5.4 Conclusion . 27

Glossary 30

List of Figures 31

i

Part I

Summary

1

Abstract

Triamec Motion AG manufactures ultra-precision servo drives that can be programmed
using the C# programming language and the Tama framework. These servo drives run a
virtual machine that executes a proprietary bytecode format, which is generated by the
Tama compiler. The compiler previously relied on Microsoft’s deprecated CCI library
to read C# assembly files and transpile them to the Tama bytecode format. In this
project, our goal was to replace the unmaintained CCI library with a modern, actively
maintained alternative. After evaluating several options, we chose to replace the CCI
library with ILSpy. ILSpy is a modern, actively maintained and well documented .NET
decompiler with an active community.
In addition to ensuring the ability to support newer versions of .NET in the future,
we also implemented a computed goto performance optimization in the servo’s runtime,
resulting in an overall performance increase of approximately 16%.
There is still potential for further performance gains, for example by implementing a
template-based just-in-time (JIT) compiler in the servo’s runtime.

2

Management Summary

Triamec Motion AG has developed ultra-precision servo drives that can be programmed
using the C# programming language and the Tama framework. Recently the company
sought to replace the unmaintained CCI library, which was used by the Tama compiler,
with a modern, actively maintained alternative. Basing the Tama compiler on an un-
maintained library poses several risks, such as not being able to support future versions
of .NET and any bugs or other issues with the library not getting fixed.

After evaluating several options, ILSpy was chosen to replace the CCI library. This
decision was based on several factors, including the client’s prior good experience with
ILSpy, the fact that many other projects depend on it, the strong community support for
ILSpy, and the fact that it is maintained and actively developed. In comparison, every
other alternative that was considered lacked at least one of these important aspects. In
particular, this change ensures that the Tama compiler will be able to support newer
versions of .NET in the future.

In addition to this update, several performance optimizations were implemented in the
servo’s runtime, which resulted in a performance increase of approximately 16%. This
improvement allows customers to run more compute-intensive applications on their servo
drives, or to run existing programs with a lower energy footprint, enhancing the com-
pany’s competitive advantage in the market. There is still potential for further per-
formance gains, such as by implementing a template-based JIT compiler in the servo’s
runtime.

Overall, the project has successfully updated the servo drives to support newer versions
of .NET and has improved their performance.

3

Part II

Product Documentation

4

Chapter 1

Introduction

Triamec Motion AG is a Swiss company based in Baar, founded in 2001. The company
is known for its outstanding knowledge and expertise in the field of mechatronics design
and construction, as well as the regulation and control of highly dynamic systems. They
offer consulting and development services for the implementation of ultra precision, high
speed servo drives. The company’s research and development team consists of engineers
and physicists with decades of experience in the field of drive and control technology.

One of Triamec Motion AG’s key technologies is the Tama ultra precision servo drive,
which offers current and position control at up to 100kHz and real time programmable
control at up to 10kHz cycles. The Tama framework and compiler provide a type-safe
and standard way of programming the drive. The compiler translates the C# code from
its intermediate language into the proprietary Tama bytecode format using Microsoft’s
CCI library.

However, since the CCI library is outdated and unmaintained, the company has recently
taken interest in replacing the library with a modern, maintained alternative. The
goal of this project is to evaluate several replacement candidates and to refactor the
existing codebase to use the new library. Additionally, the project aims to implement
optimizations that will improve the performance of the Tama virtual machine.

5

Chapter 2

Requirements

This section documents the main and optional requirements the team was given by the
industry partner. These came in the form of extracts from their own support ticket
platform, from which we then formulated our own requirements. Where applicable, the
internal Tama issue tracking number is referenced.

2.1 Main Requirements

Requirements which should be prioritized and implemented in full.

Tama Compiler support for dotnet build (Triamec #1121)

The dotnet build pipeline should invoke the Tama Compiler directly as a process. There
should be support for incremental builds. The Tama Compiler should be split into a
.NET Standard 2.0 library and two separate executables.

Support for portable source symbol format (Triamec #442)

CCI does not provide support for the portable source symbol format. Switching to
a modern alternative for CCI will allow customers to use portable PDBs by default.
Support for portable PDBs is a requirement if the client ever wants to support a Tama
library built on top of .NET Core, in order to support Linux.

Replacement of CCI library

The Tama Compiler relies on an unmaintained and deprecated library called CCI, which
was developed by Microsoft. This library does not support modern .NET standards and
newly found bugs won’t be fixed. The library needs to be replaced with a modern
alternative in order to support future .NET standards and to avoid running into bugs
that the clients cannot fix themselves.

6

Compiler output should not change

The generated executables of the refactored compiler should not differ from the executa-
bles generated by the original compiler, other than superficial changes that do not have
any impact on performance or behaviour.

All Unit-Test should pass

The unit-tests provided by the client should all pass successfully (if they passed before).

2.2 Optional Requirements

Requirements that can be prioritized should the time and effort be justifiable.

Virtual Machine Optimizations

To improve the performance of the Virtual Machine executing the Tama programs,
several performance optimizations can be implemented. The main optimization that
should be focused on, is the computed goto dispatch mechanism.

Method Inlining

Implement the method inlining compiler optimization. Method inlining refers to a tech-
nique by which the contents of a function body are copied to the call-site, removing the
function call entirely. It should be determined whether it makes sense to place the re-
quirement that the resulting executable should not be bigger than with the optimization
turned off.

Constant Register Array Optimization (Triamec #472)

Replace occurrences of register element store and load operations with constant indexing
register store and load counterpart operations.

Support instance base classes with fields (Triamec #667)

Support inheriting from base classes that define their own fields. Currently, the fields
of inherited classes overlap the base class fields, resulting in unexpected and incorrect
program behaviour.

Support static constructors in helper classes (Triamec #359)

Support the static constructors C# language feature.

7

Support array initializers (Triamec #1179)

Support the usage of array initializer literals. Will require the ability to store data
blobs in the VM. Needs ldtoken support in the compiler and VM. Needs code for
the System.Runtime.CompilerServices.RuntimeHelpers.InitializeArray function. Needs
investigation for corner cases that cannot be supported.

Show meaningful errors when attempting to use 64-bit integer opcodes
(Triamec #887)

Some integer operations in C# code might result in the generation of 64-bit integer
opcodes. Some of these opcodes aren’t supported by the Tama compiler and currently
result in a cryptic error message. Catch these errors early on and produce a useful error
message that helps in fixing the issue.

8

Chapter 3

Quality Measures

This section documents the measures the team has taken to assure proper quality of the
final product.

3.1 Automated Test Suite

The Tama compiler already has a suite of integration tests which verify the output of
the Tama VM when a program is executed. In addition they also verify the various
compiler errors such as unsupported C# features as well as runtime errors that can be
thrown by the VM.

3.2 Continuous Integration

Every commit pushed to the project repository is checked against our CI pipeline. Merge
requests can only be merged into the main branch if all checks are successful. The
following checks are part of the CI-pipeline:

• Building this LATEXdocument

• Building the compiler

• Running the test suite

Since Tama currently only runs on Windows, the standard docker runners could not be
used. Instead, a GitLab runner had to be set up manually on a Windows VM along
with the necessary build tools and unit test runner.

3.3 Code Review

Using merge requests ensures that code is frequently reviewed by other project members,
improving code quality.

9

3.4 Semi-Manual Output Testing

The integration tests only verify the behavior of the VM, but our goal is to produce the
exact same output byte by byte as the previous version of the compiler. The output
of the compiler consists of .tama and .asm files. The .tama files are the actual binaries
which are executed by the VM, while the .asm files provide plain text output of the
generated op codes. To verify that the generated op codes are identical the following
process was applied:

1. The files generated by the previous version of the compiler are checked into a new
Git repository

2. The files are overwritten by versions generated by the new version of the compiler
and committed again

3. The command git show *.tama is run. If it has an empty output, it means that
the compiler generated identical .tama files

4. If a .tama file differs, check the corresponding .asm file to find out what changed

This process was applied to all Tama executable files generated by the integration tests
and four different projects provided by Triamec and repeated for the initial CCI abstrac-
tion layer and the ILSpy version.

10

Chapter 4

Evaluation

This section documents the evaluation phase. It consisted mainly of figuring out which
library to replace the CCI library with.

4.1 CCI Alternative

The existing implementation of the Tama Compiler heavily relies on the Microsoft Com-
mon Compiler Infrastructure (CCI). Unfortunately, this CCI framework is officially dep-
recated and no longer maintained1. This technical debt is a long term risk for the Tama
Compiler, so multiple ways to resolve this issue were analyzed.

Maintain CCI fork

One could create a fork of the existing CCI repository. This would require a significant
time investment due to the complex implementation of CCI itself. This can be illustrated
by a recent comment from a CCI contributor:

The Microsoft CCI backend needs to be periodically updated to reflect
the latest language changes which is often a time-consuming task requiring
significant expertise.2

In addition to the sheer complexity, the GitHub repository also contains roughly 200k
lines of code, more than the Tama project itself. Based on these factors, it was deter-
mined that maintaining and patching a fork is unsustainable in the long term.

1Microsoft, Microsoft/cci, 2018-07. [Online]. Available: https://github.com/microsoft/cci (visited
on 2022-11-21).

2T. Kapin, Roslyn-based genapi backend · issue #10291 · dotnet/arcade, 2022-08. [Online]. Avail-
able: https://github.com/dotnet/arcade/issues/10291 (visited on 2022-11-21).

11

https://github.com/microsoft/cci
https://github.com/dotnet/arcade/issues/10291

Mono Cecil

Mono Cecil3 doesn’t appear to be in active development, with its last official release
about a year ago. The last update to the developer blog was uploaded about three years
ago. The documentation also seemed a bit lacking, with only five code-snippets to be
found in total. We concluded that switching to Mono Cecil wouldn’t be sustainable, as
it would be out-of-date again within a couple years.

System.Reflection.Metadata

Microsoft provides a built-in .NET toolset to access low-level assembly metadata infor-
mation called System.Reflection.Metadata4. This library can be used to extract type-
information, opcode-listings and other assembly-file metadata information from a com-
piled assembly-file. The functionality provided is pretty abstract, meaning we would
have to implement a lot of the required logic ourselves. Since other libraries, such as IL-
Spy, already implement this logic by using System.Reflection.Metadata under the hood,
we concluded that working with it directly doesn’t make sense for our use-case and would
only provide unnecessary work.

Use Roslyn Compiler

A conceptually different approach could be implemented using the official .NET Compiler
Platform, aka Roslyn5. The Roslyn Compiler provides an API to traverse the Syntax
Tree emitted by the Parser. Since the abstraction-level of the library is higher than
that of the currently used CCI library, we would have to re-implement a lot of logic by
ourselves. We concluded that switching to the Roslyn Compiler would cause too much
work and would needlessly increase project complexity.

3J. Evain, Jbevain/cecil. [Online]. Available: https://github.com/jbevain/cecil (visited on
2022-11-21).

4Microsoft, System.reflection.metadata. [Online]. Available: https://learn.microsoft.com/en-

us/dotnet/api/system.reflection.metadata (visited on 2022-12-08).
5. Platform, Dotnet/roslyn. [Online]. Available: https://github.com/dotnet/roslyn (visited on

2022-11-21).

12

https://github.com/jbevain/cecil
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.metadata
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.metadata
https://github.com/dotnet/roslyn

ILSpy

ILSpy6 is a library that is being actively developed as open-source on GitHub. The
library uses System.Reflection.Metadata under the hood and can be used to decompile
projects to C# source code. There also exists an API to iterate over each IL-Opcode,
which is exactly what we would need to re-implement the functionality of the Tama
Compiler. However, some C# language features aren’t implemented yet, as can be seen
via the projects language support checklist7. This library seems to be the most promising
candidate.

Decision

In discussion with our business partner, it was decided to remove the dependency upon
CCI. The technical risk of keeping CCI as a dependency was deemed unmaintainable.
This drive to remove CCI was further fueled by the fact that many other open source
libraries on GitHub are actively migrating away from CCI. In lieu of this decision, it
was obvious to use ILSpy due to a number of factors:

• Client has prior good experience with ILSpy

• Plenty of other projects depending on it, great community

• Maintained and actively developed

Every other project lacks at least one of these aspects, which are all crucial for the
longevity of the Tama compiler.

6D. G. Siegfried Pammer, Icsharpcode/ilspy. [Online]. Available: https://github.com/icsharpcode/
ILSpy (visited on 2022-12-08).

7D. Grunwald, Icsharpcode/ilspy: Issue #829, 2017-08. [Online]. Available: https://github.com/

icsharpcode/ILSpy/issues/829 (visited on 2022-12-08).

13

https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ILSpy/issues/829
https://github.com/icsharpcode/ILSpy/issues/829

Chapter 5

Final Result

This section documents the final state of all the changes the team made. It documents
the abstraction layer, the replacement of the CCI library and the optimizations done in
the Tama virtual machine.

5.1 Abstraction Layer

Building an abstraction layer was chosen for several reasons. Creating wrapper objects
for library objects decouples the business logic and code generation from the parsing
library. It also provided a great opportunity for the team to become familiar with the
codebase. This separation of responsibilities helps to reduce technical risk in case the
parsing library does not work as expected.
By starting with the CCI implementation and running tests to ensure that the ab-
straction itself works, the library can then easily be replaced with ILSpy with minimal
changes to the code outside of the parsing. This allows for switching between different
parsing libraries without having to make major changes to the rest of the code, which
is especially useful in case any issues were encountered with ILSpy.
Overall, building an abstraction layer provides a number of benefits, including better
code organization, reduced technical risk and the ability to easily switch between different
parsing libraries. This will ultimately save time and effort in the long run and make
the project more maintainable and scalable. If one day the ILSpy library is no longer
maintained, the abstraction layer would make it a lot easier to switch to a different
library.

Class Model

A hierarchy of interface inspired by CCI was created but only using those interfaces and
members which were actually used in the codebase. At the base of the hierarchy is the
IMetadataAcceptor interface which defines the Accept method for use with visitors.
Objects such as types and methods each get a reference and a definition interface. Some
objects such as parameters and local variables only exist as definitions while others like

14

array and pointer types only exist as references. The implementations of those interfaces
typically wrap an object from the library (CCI or ILSpy) and forward their properties
while wrapping them in an abstraction layer object. The following diagram illustrates
the hierarchy with the example of a method definition.

Figure 5.1: Excerpt of the abstraction layer class hierarchy

Visitor Pattern

The existing implementation relied heavily on CCI to parse the input of the Tama
compiler. CCI itself provides a visitor for this task, making it easy to extend for Tama’s
purposes. To keep the impact on existing code minimal, a generalized visitor class was
implemented based on the new abstraction class model. The new visitor implements the
same logic as the one present in CCI, but requires much less code. The end result is
a library-independent and more comprehensible abstraction layer, which helps with the
understanding of its implementation.

15

Null Object Pattern

The CCI library applies the null object pattern1 thoroughly. Instead of simply returning
a null value to indicate that an object is not present, the null object pattern returns a
‘dummy’ object with default values. This can make it more difficult to reason about the
code and to understand what is happening at a given point in the program. Additionally,
implementing the null object pattern would require a significant amount of additional
code, which can make the codebase more complex and difficult to work with. A possible
way of implementing dummy objects in our model can be seen in 5.2

/** Abstraction layer interface */

interface IAsssemby {

string Path { get; }

}

/** Abstraction layer dummy implementation */

class DummyAsssemby : IAsssemby {

string Path => "Dummy Path";

}

/** Library specific implementation */

class AsssembyILSpy : IAsssemby {

string Path => /* ... */;

}

Figure 5.2: Example of possible custom dummy implementation.

In the context of the Tama compiler, using null values is a more straightforward and
less error-prone way of representing the absence of an object. Therefore, the existing
implementation was refactored to use null values instead of ‘dummy’ objects. This
change required significant modifications to the codebase, but we believe that it was
worth it in the long run. The resulting code is easier to understand and maintain, and
it eliminates the need for custom ‘dummy’ objects. An example of how the code was
changed can be seen by comparing figure 5.3 and figure 5.4.

1W. contributors, Null object pattern, 2022. [Online]. Available: https://en.wikipedia.org/w/

index.php?title=Null_object_pattern&oldid=1091628852 (visited on 2022-12-12).

16

https://en.wikipedia.org/w/index.php?title=Null_object_pattern&oldid=1091628852
https://en.wikipedia.org/w/index.php?title=Null_object_pattern&oldid=1091628852

private IAssemblyReference _assemblyReference =

Dummy.AssemblyReference;

void GetAssemblyReference () {

if (_assemblyReference == Dummy.AssemblyReference) {

_assemblyReference = new AssemblyReference(/* ... */);

}

return _assemblyReference;

}

Figure 5.3: Example of code using CCI dummies.

private IAssemblyReference _assemblyReference;

void GetAssemblyReference () {

if (_assemblyReference is null) {

_assemblyReference = new AssemblyReference(/* ... */);

}

return _assemblyReference;

}

Figure 5.4: Example of code using null.

17

5.2 CCI Replacement - ILSpy

As decided in chapter 4.1, the CCI dependency was to be replaced with ILSpy. Thanks to
the previously implemented abstraction layer, there was a clearly defined API contract to
implement for this task. We organized the development in such a way that we proceeded
in a structured way, implementing one use case at a time instead of doing everything
at once. This process ensured that the scope of the new ILSpy-based parser could be
flexibly updated if unexpected issues arose.

Restructuring of provided data

Some object models within ILSpy made no sense for our use-case, so we decided to
map them to our existing abstraction instead of altering the abstraction itself. For
example, a custom type for array type references existed in CCI and is implemented in
our abstraction layer. Contrary to those implementations, ILSpy provided the member
type instead of the array type for certain operation codes like ‘NewArr’.

Iterating over Opcodes

ILSpy provides an ILVisitor class, which can be extended to iterate over the op codes.
However, we found that it’s data model was already too abstract. For example, all binary
numeric operations such as addition, subtraction, multiplication, and division become
a BinaryNumericInstruction object. Figure 5.5 shows an example of the extra work
required to get from ILSpy’s objects to the original op code.

protected override void

VisitBinaryNumericInstruction(BinaryNumericInstruction inst) {

switch (inst.Operator) {

case ICSharpCode.Decompiler.IL.BinaryNumericOperator.Add:

{

ILOpCode op;

if (inst.CheckForOverflow) {

op = inst.Sign.IsSigned () ? ILOpCode.Add_ovf :

ILOpCode.Add_ovf_un;

} else {

op = ILOpCode.Add;

}

AddOp(inst , op);

break;

}

// Rest omitted

}

Figure 5.5: Example of ILSpy ILVisitor

18

This procedure is unnecessarily complicated and prone to errors. There are also cases
in which mapping back to the original op code is virtually impossible without being
extremely coupled to the ILSpy implementation. For these reasons ILVisitor turned
out not to be useful for our use case and the team switched to working directly with the
raw byte stream. ILSpy still proved itself a great help thanks to its utilities for decoding
op codes and their arguments from the raw binary data.

Debug Information

Debug information is needed for the names of local variables and for finding the source
code location of an intermediate language instruction. The ILSpy NuGet package in-
cludes an interface for debug information, but no implementations of it are included in
the package itself. There is another NuGet package called ILSpyX which does provide
this functionality, but it’s only available for .NET 6 and is still in a preview version. We
opened an issue on ILSpy’s repository2 to find a solution and a maintainer recommended
simply copying the needed classes from the GUI version of ILSpy. This approach requires
a dependency on Mono.Cecil as well as allowing unsafe blocks in the project. For these
reasons, we decided not to merge this into the project’s main branch, but to leave the
decision to Triamec.

2P. Honegger, Icsharpcode/ilspy: Issue #2865, 2022-12. [Online]. Available: https://github.com/

icsharpcode/ILSpy/issues/2865 (visited on 2022-12-21).

19

https://github.com/icsharpcode/ILSpy/issues/2865
https://github.com/icsharpcode/ILSpy/issues/2865

5.3 Computed Goto

The basic approach to implementing a bytecode-interpreter is to have a central switch-
statement wrapped inside a while-loop. The case blocks contain the implementation
of each opcode. After an opcode-handler has finished executing, control-flow continues
back at the beginning of the switch-statement, which decides which opcode-handler to
pass control to next. Figure 5.6 shows an example of a bytecode interpreter written in
C, following the while-switch pattern.

int interpreter_switch(int* code , int pc , int accumulator) {

while (true) switch (code[pc++]) {

case OP_HALT: {

return accumulator;

}

case OP_ADD_ARG: {

accumulator += code[pc++];

continue;

}

case OP_MUL_ARG: {

accumulator *= code[pc++];

continue;

}

}

}

Figure 5.6: Example of a bytecode interpreter following the while-switch pattern.

Hardware

Modern microprocessors perform a technique called pipelining, which refers to the CPU
preemptively loading sections of the code it predicts will be executing next. When
combined with another component, called the branch predictor3, this technique can
result in considerable performance gains. This is due to the fact that the CPU can now
load contiguous chunks of code memory at once, as opposed to fetching each opcode
individually.

Shortcomings

In order to understand how the interaction between the branch predictor and the switch
statement wrapped in a while loop leads to performance inefficiencies, one must first
understand how the compiler generates code for it. In unoptimized builds, or for small
switch statements with only a few conditions, the compiler emits a series of if statements,
each checking for a single condition and then jumping to the relevant case block. Some
optimizing compilers might instead emit a jump table, containing the addresses of the

3W. contributors, Branch predictor, 2022-11. [Online]. Available: https://en.wikipedia.org/w/

index.php?title=Branch_predictor&oldid=1119722013 (visited on 2022-11-21).

20

https://en.wikipedia.org/w/index.php?title=Branch_predictor&oldid=1119722013
https://en.wikipedia.org/w/index.php?title=Branch_predictor&oldid=1119722013

case blocks, indexed by the switch’s condition. The branch-predictor builds an internal
cache which stores the frequencies at which each specific jump is taken, in the hopes of
speeding up the transfer to the relevant case block. However, because the same checks
are performed before each opcode, the branch predictor’s cache is quickly saturated and
previous entries are overwritten with newer ones. The ability to determine which opcode
tends to follow another is lost or at least greatly diminished in efficiency. (Note: This is
a simplified explanation of how the branch-predictor operates, however it is sufficient to
understand the problem).

Another minor inefficiency is the need to perform a bounds check during the switch
statement evaluation. Even if the compiler decides to emit the switch statement in the
form of a jump table, the program must still check that the condition value doesn’t exceed
the size of the jump table. Unimplemented or invalid opcodes might get emitted into
the instruction stream, either through a compiler bug or random memory corruption,
which is an event that needs to be handled by the interpreter gracefully.

21

Computed Goto

Computed gotos aim to solve this problem by providing each opcode-handler with it’s
own dispatch mechanism. It is a combination of two lesser-known features in the C
language family. The first is taking the address of a label, and storing it in a variable. The
second is calling goto with a variable expression, instead of a label defined at compile-
time. This allows the creation of a dispatch-table, containing the starting addresses of
each opcode handler. At the end of each opcode-handler, the table is indexed by the
next opcode and control-flow is passed directly to that address. This circumvents the
central switch-statement and allows the hardware branch-predictor to set up a cache for
each individual opcode handler. Because the size and contents of the dispatch-table can
be precisely controlled, the need for a bounds-check falls away. By filling the unused
portions of the table with the addresses of the default-handler, any possible value that
the opcode could take, even invalid ones, are covered by the dispatch-table. Because
all possible opcode values are now handled, the code for the bounds-check can be safely
removed, reducing overall instruction count and improving throughput. Combining these
factors, it is common for this optimization to result in a 15–20% improvement in bytecode
throughput4. Figure 5.7 shows an example of a bytecode interpreter written in C,
following the computed goto pattern.

4E. Bendersky, “Computed goto for efficient dispatch tables,” 2012-07. [Online]. Available: https:

//eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables (visited on
2022-11-21).

22

https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables
https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables

int interpreter_computed_goto(int* code , int pc , int accumulator) {

int opcode = 0;

static void* dispatch_table [] = {

&& opcode_handler_halt ,

&& opcode_handler_add_arg ,

&& opcode_handler_mul_arg

};

#define DISPATCH_NEXT () \

opcode = code[pc++]; \

goto* dispatch_table[opcode]

DISPATCH_NEXT ();

opcode_handler_halt:

return accumulator;

opcode_handler_add_arg:

accumulator += code[pc++];

DISPATCH_NEXT ();

opcode_handler_mul_arg:

accumulator *= code[pc++];

DISPATCH_NEXT ();

}

Figure 5.7: Example of a bytecode interpreter following the computed goto pattern.

23

Implementation

Implementing the computed goto optimization in the Tama VM turned out to be more
complex than initially assumed. Since the VM is compiled with MSVC, we couldn’t
use the computed goto C language-extension. The next approach was to implement the
required dispatch-mechanism manually, using inline assembly snippets. This technique
worked out great for debug builds, which were running in 32-bit mode, but failed to
compile for 64-bit target architectures. This was due to MSVC’s fundamental lack of
inline-assembly support for 64-bit platforms. Because the VM runs on 64-bit hardware,
this approach turned out to be a dead-end.
As a last resort, the dispatch-mechanism was implemented using regular C language con-
trol structures, namely a switch-statement at the end of each opcode handler, mimicking
the mechanism that the computed goto extension would provide. While this implemen-
tation worked on 64-bit targets, the produced binary showed an increase in file size of
over 500%. When compiled in release-mode, the compiler would even crash due to heap
memory exhaustion. The cause of this massive increase in file size was the fact that
the compiler would emit hundreds of identical copies of the dispatch table into the final
executable. During a discussion with the client, this increase in file size was deemed to
be acceptable and a performance test was performed.

Figure 5.8: Average change in opcode execution time, using näıve manual MSVC com-
puted goto implementation, figure provided by client

As shown in figure 5.8, the modifications resulted in a decrease in performance for most
opcodes. Depending on whether the common-subexpression-elimination optimization

24

was activated or not, the execution time for each opcode grew by an average of 18–28%.
Computing time for more complex tests also grew by about 10%.

Switch to GCC

The client initially wanted to scratch these modifications, as the performance test clearly
showed a performance-decrease. After some discussions, our team was made aware of the
fact that the production build of the VM, running on actual hardware, is being compiled
using GCC instead of MSVC. GCC has native support for the computed goto C language-
extensions, which is exactly what’s needed here. This allowed us to maintain two different
versions of the VM, one compiled with MSVC and the other with GCC. The MSVC
version would be used whenever the VM was executed in a simulated environment, as
performance wasn’t of high priority there. The GCC version was to be used on real-world
hardware, since performance mattered the most there. Since the client is maintaining
two different versions of the VM source code already, we did not need to implement the
optimization in a compiler-independent way.

Figure 5.9: Average reduction in opcode execution time, using built in GCC computed
goto extension, figure provided by client

As shown in figure 5.9, this change resulted in the expected performance boost. The
execution time for individual opcodes was decreased in all cases, on average by 16% with

25

a standard deviation of 4%.

Figure 5.10: Average performance gain of tama programs, depending on execution-
time, figure provided by client

Figure 5.10 shows the performance gain for more realistic and complex test-programs.
Programs that ran for longer, had a greater increase in performance than those that
ran for shorter lengths of time. On average, the performance of these programs was
increased by about 16%.

Conclusions

The computed goto optimization has improved runtime-performance in a clear, signifi-
cant and reproducible manner. The client was pleased with these results and informed us
that these modifications will be included in the next release of their production firmware.
This improvement in efficiency will benefit all customers by allowing them to run more
computationally intensive applications on their machine, or run existing programs with
a lower energy-footprint, increasing the company’s competitive edge in the market.

Graphs and Test Results

Graphs showing results of performance-analysis were provided by the client. All perfor-
mance tests were conducted on real, production hardware.

26

5.4 Conclusion

Overall, the main requirements were implemented in the expected scope. Our code
quality efforts, including automated unit tests and semi-manual comparison of compiler
outputs, have confirmed that the refactored implementation is correct and produces the
same Tama executables as the original version.

Abstraction Layer An abstraction layer was built inside the Tama Compiler, leading
to better separation of concerns and easier maintainability in the future. If the ILSpy
library becomes unmaintained as well, it should be an easy task to replace it with a
modern version in the future.

Replacing CCI with ILSpy The dependency on Microsoft’s CCI library was elimi-
nated completely. The unmaintained library was replaced with ILSpy, which covers the
vast majority of the previous’s library features and use cases. There was however a slight
feature regression in regard to the displaying of error information, because the way IL-
Spy handles debug metadata differs from CCI. Reintegrating this feature shouldn’t pose
too big of a technical challenge.

Computed Goto Optimization The switch-elimination (Computed Goto optimiza-
tion) was implemented successfully in the Tama Virtual Machine. On average production
workloads, the optimization has improved performance (opcode throughput) by 16%.
However, the optimization is only implemented for the production build of the Tama
Virtual Machine (compiled by GCC). It is not available for the debug build that is used
for the execution of the runtime’s unit tests. This is due to missing compiler support
from MSVC.

SDK Style Project Support for SDK style projects has been implemented. The
build now relies on VS2022 for much of its functionality. We increased the versions
of the Windows 10 SDK and the MSVC C++ compiler. This was done solely for our
convenience and should the client wish to downgrade to an older version again, they
would still be able to do so.

Portable PDB Support Support for portable PDB files has been implemented by
switching to ILSpy. Since ILSpy supports this functionality natively, this required little
new code to be written. This functionality is verified by automated tests.

27

Tama Compiler support for dotnet build Initially, support for the dotnet build
system was impossible due to the usage of the CCI library. Even after replacing the CCI
library with ILSpy, support for dotnet build is still not fully implemented. The team has
however eliminated most major hurdles within the codebase that would’ve prevented a
switch to target .NET 7 and .NET 4.6.2. Some remaining problems with support for
dotnet build are:

• Limited .NET Standard support within the Triamec.Tam.Core NuGet package.

• DLL version mismatch within ILSpy when targeting .NET 4.6.2 and .NET 7

• Automated unit test projects should be migrated to .NET 7

Some of these outstanding problems were addressed but not verified or tested yet. Fur-
ther investigation into these topics is left to Triamec.

28

29

Glossary

CCI Microsoft Common Compiler Infrastructure library.

CLI The Common Language Infrastructure is a technical standard developed by Mi-
crosoft, describing the runtime environment used to execute C# code.

GCC Optimizing compiler developed by the Free Software Foundation.

IL The C# Intermediate Language is a platform-independent instruction set that can
be executed on any architecture that supports the CLI.

ILSpy ILSpy is a .NET Decompiler with support for PDB generation.

JIT A Just In Time compiler generates architecture specific code on demand.

MSVC Microsoft Visual C++ compiler toolchain.

PDB Program database files used by the Visual Studio debugger to store information
about variables, functions, symbols and types in a program.

VM A Virtual Machine is a simulated machine that runs within a program.

30

List of Figures

5.1 Excerpt of the abstraction layer class hierarchy 15
5.2 Example of possible custom dummy implementation. 16
5.3 Example of code using CCI dummies. 17
5.4 Example of code using null. 17
5.5 Example of ILSpy ILVisitor . 18
5.6 Example of a bytecode interpreter following the while-switch pattern. . . 20
5.7 Example of a bytecode interpreter following the computed goto pattern. . 23
5.8 Average change in opcode execution time, using näıve manual MSVC

computed goto implementation, figure provided by client 24
5.9 Average reduction in opcode execution time, using built in GCC computed

goto extension, figure provided by client 25
5.10 Average performance gain of tama programs, depending on execution-

time, figure provided by client . 26

31

	I Summary
	II Product Documentation
	Introduction
	Requirements
	Main Requirements
	Optional Requirements

	Quality Measures
	Automated Test Suite
	Continuous Integration
	Code Review
	Semi-Manual Output Testing

	Evaluation
	CCI Alternative

	Final Result
	Abstraction Layer
	CCI Replacement - ILSpy
	Computed Goto
	Conclusion

	Glossary
	List of Figures

