
Term Project

Graph properties of a telecommunication
network

Autumn Term 2022

Version: December 22, 2022

Authors: Lukas Ribi
Pascal Christen

Advisors: Prof. Laurent Metzger
Severin Dellsperger

Project Partner: Cisco Systems Belgium - François Clad

Department of Computer Science
OST Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Abstract

Objective

Every telecommunication network has a different topology. Additionally, the topology
is often complex and unstructured. In the current telecommunications industry, graph
properties are not broadly used for network capacity planning or network comparisons.
The goal of this thesis is to create a system that conveys the structure of a graph in
an understandable way. This is achieved through the visualization of a multitude of
graph properties. Included explanations provide context and link to additional sources.
Furthermore, it should be possible to obtain network topology data from the Jalapeño
API Gateway, which is an ongoing project by the INS.

Approach

The system is composed of three separate applications that interact with each other. The
Data Collector is responsible for reading network topology data, be it from the Jalapeño
API Gateway via gRPC or from an alternative source. The read data is persisted in
a graph database. Calculations of the graph properties are triggered by requests to
the API. These calculations are performed based on the graph that is kept in the graph
database, the results are exposed via a REST API. The Frontend consumes data from the
API and displays the various graph properties. In order to provide context, explanations
are provided for each property.

Conclusion

A system composed of multiple applications was created that allows network adminis-
trators to analyze a provided network based on graph properties. Additional features
like querying for cut edges and vertices have also been implemented. The system is
developed in a cloud-native way in order to achieve a high scalability and availability. It
currently supports the import of network topology data from the Jalapeño API Gateway
and files in the GEXF format. The system is designed in an extensible way so that other
data sources can be added in the future. It also acts as a platform for future works in
the area of network topology analysis.

i

Management Summary

Initial Situation

Telecommunication networks have diverse topologies which are frequently complex and
unstructured. In the telecommunications industry, graph properties are currently not
widely utilized for network capacity planning or comparisons.

This lack of utilization of graph properties should be addressed by creating a software
system that analyzes a provided graph. Network resilience regarding failures can be
increased through gained information. It can also serve as a debugging tool and support
the planning of network topologies. It assists in planning and maintaining a robust,
efficient and highly available network.

Procedure and Technology

Initially, it was necessary to understand the concepts found in graph theory. Specific
graph properties can be complex, and the time for their calculation increases exponen-
tially based on the size of the graph. Thus, technologies that could handle these demands
needed to be utilized. Functional and non-functional requirements were defined as part
of the conception phase in collaboration with the advisors. The use cases were extended
to incorporate new ideas like querying functionality and an import function.

Before the implementation started, technologies and chosen approaches were validated
with various prototypes and test scenarios. Risks were mitigated through this approach,
and it clarified encountered issues in advance.

During the implementation, three applications were built as part of the system, the
API, Data Collector and Frontend. The API is responsible for the graph property calcu-
lation and provides the results to the Frontend. Importing the graph from a data source
is handled by the Data Collector. A graph database holds the to-be-analyzed graph and
provides additional functionality, such as querying capabilities. The Frontend retrieves
data from the API and displays it.

ii

Results

The result of this term thesis is the Graph Analyzer system. It is capable of analyz-
ing networks composed of more than 10’000 nodes. Each graph property is explained
and contextualized using a computer network as an example. Additional resources are
provided for further information. An overview of the dashboard and query view can be
found in figures 1 and 2.

Figure 1: Dashboard

iii

Figure 2: Query View

Outlook

The current version of the Graph Analyzer offers a solid foundation for future works
in the area of network topology analysis. Its structure allows the easy addition of new
graph properties and is designed to support additional data sources. A follow-up bachelor
thesis will utilize the gained knowledge to research network model generation.

iv

Contents

Abstract i

Management Summary ii

Glossary x

List of Figures xiii

List of Tables xv

I Technical Report 1

1 Introduction 2
1.1 Thesis Structure . 2

1.1.1 Technical Report . 2
1.1.2 Project Documentation . 2

1.2 Graph Property Introduction . 3
1.2.1 Connectedness . 3
1.2.2 Diameter . 3
1.2.3 Degree Distribution . 3
1.2.4 Density . 3
1.2.5 Assortativity Coefficient . 3
1.2.6 Degree Correlation . 4
1.2.7 Average Clustering Coefficient . 4
1.2.8 Cut Edge . 4
1.2.9 Articulation Point . 4

1.3 Aims and Objectives . 5
1.3.1 Problem . 5
1.3.2 Solution . 5

2 Requirements 6
2.1 Functional Requirements . 6

2.1.1 Actor - User . 6
2.1.2 Use Cases . 6

2.2 Non-Functional Requirements . 12
2.2.1 Validating NFRs . 13

3 Design Decisions 14
3.1 Basic System Structure . 14

v

3.1.1 Frontend . 14
3.1.2 API . 14
3.1.3 Data Collector . 15
3.1.4 Graph Database . 15

3.2 Backend Programming Language . 15
3.2.1 Analyzed Libraries . 15
3.2.2 Performance Test Setup . 16
3.2.3 Performance Test . 16
3.2.4 Conclusion . 17

3.3 API Communication . 18
3.3.1 Technology Comparison . 18
3.3.2 Conclusion . 18

3.4 API Framework . 19
3.4.1 Framework Comparison . 19
3.4.2 Conclusion . 19

3.5 API Specification . 20
3.5.1 Specification Definition . 20

3.6 Graph Database . 20
3.6.1 Analyzed Graph Databases . 21
3.6.2 Software Licensing . 21
3.6.3 Test Setup . 21
3.6.4 Graph Databases Test . 22
3.6.5 Conclusion . 22

3.7 Graph Visualization . 23
3.7.1 Previous Work . 23
3.7.2 Chosen Library . 23

3.8 State Container . 23
3.9 UI Library . 24

3.9.1 Colors . 24

4 Architecture 25
4.1 Architecture Model . 25

4.1.1 System Context Diagram . 26
4.1.2 Container Diagram . 27
4.1.3 Component Diagram - Single-Page Application 29
4.1.4 Component Diagram - API Application 31
4.1.5 Component Diagram - Data Collector Application 33

4.2 UI and UX . 35
4.3 Technologies . 39

4.3.1 API . 39
4.3.2 Data Collector . 39
4.3.3 Frontend . 39

5 Implementation 40
5.1 API . 40

vi

5.1.1 GDS Access . 40
5.1.2 General Information Retrieval . 41
5.1.3 Density Calculation . 41
5.1.4 Average Clustering Coefficient Calculation 41
5.1.5 Connectedness Calculation . 41
5.1.6 Degree Distribution Calculation . 42
5.1.7 Full Graph Retrieval . 42
5.1.8 Degree Assortativity Coefficient Calculation 43
5.1.9 Degree Correlation Calculation . 44
5.1.10 Diameter Calculation . 45
5.1.11 Cut Edge Calculation . 46
5.1.12 Cut Vertex Calculation . 48
5.1.13 Query Endpoint . 49
5.1.14 Infrastructure Endpoints . 49
5.1.15 Testing . 49
5.1.16 Usage . 50

5.2 Data Collector . 51
5.2.1 Implementation . 51
5.2.2 Jalapeño / JAGW . 51
5.2.3 GEXF . 52
5.2.4 Data Structure . 52
5.2.5 GDS Graph . 54
5.2.6 Testing . 54
5.2.7 Usage . 54

5.3 Frontend . 55
5.3.1 API Generation . 55
5.3.2 Dashboard - Page . 55
5.3.3 Query View - Page . 55
5.3.4 Components . 55
5.3.5 Navigation - Component . 56
5.3.6 Refresh - Component . 56
5.3.7 Export - Component . 56
5.3.8 Import - Component . 57
5.3.9 Graph - Component . 57
5.3.10 Graph property - Component . 58

5.4 Neo4j Image . 59
5.4.1 Implementation . 59
5.4.2 Usage . 59

5.5 Helm Chart . 60
5.5.1 Implementation . 60
5.5.2 Usage . 60

6 Results 61
6.1 Deployment . 61

vii

6.2 Use Cases . 63
6.3 NFR Validation . 64
6.4 API . 67
6.5 Frontend . 68

6.5.1 Dashboard . 68
6.5.2 Query View . 69
6.5.3 Graph Visualization . 70
6.5.4 Average Clustering Coefficient . 71
6.5.5 Connected . 72
6.5.6 Degree Assortativity Coefficient . 73
6.5.7 Degree Correlation . 74
6.5.8 Degree Distribution . 75
6.5.9 Density . 76
6.5.10 Diameter . 77
6.5.11 General Information Description 78
6.5.12 No Cut Edges . 79
6.5.13 No Cut Vertex . 80

7 Quality Measures 81
7.1 Git Process . 81

7.1.1 Workflow . 81
7.1.2 Code Review . 81

7.2 CI/CD . 82
7.2.1 API and Data Collector . 82
7.2.2 Frontend . 84

7.3 Metric Tools . 85
7.3.1 Test Coverage . 85
7.3.2 SonarQube . 85

8 Conclusion 86
8.1 Outlook . 86
8.2 Limitations . 86

II Project Documentation 87

9 Project Plan 88
9.1 Project Plan . 88

9.1.1 Development Process . 88
9.1.2 Phases . 88
9.1.3 Project Milestones . 89
9.1.4 Application Milestones . 89
9.1.5 Roadmap . 90
9.1.6 Key Dates and Numbers . 91

9.2 Meetings . 91
9.2.1 Status Meetings . 91
9.2.2 Scrum Meetings . 91

viii

9.3 Roles . 92
9.3.1 Details About The Assigned Roles 92

9.4 Risk Management . 93
9.4.1 Risks . 93
9.4.2 Risk Matrix . 95
9.4.3 Risk Management and Mitigation 95

9.5 Planning Tools . 96
9.5.1 Issue Tracker . 96
9.5.2 Time Tracker . 96

III Appendix 97

Personal Reports 98
9.6 Lukas Ribi . 98
9.7 Pascal Christen . 98

Time Tracking Report 99

Meeting Minutes 100

Bibliography 113

ix

Glossary

API Application Programming Interface - A set of rules and protocols that allow dif-
ferent software applications to communicate with each other.

APOC Awesome Procedures on Cypher - An add-on library for Neo4j that offers numer-
ous procedures and functions, significantly expanding the functionality of Neo4j.

AQL ArangoDB Query Language - A querying language for ArangoDB.

BSL Business Source License - A non-open-source software license.

Central Frontend A collection of Micro Frontends hosted in a central location.

CLI Command-line Interface - A type of user interface that allows users to interact
with a computer by typing commands into a text-based console.

Cypher A declarative graph querying language used to perform complex data manip-
ulation operations on a graph database such as Neo4j.

GDS Graph Data Science Library - A Neo4j graph database plugin that implements
common graph algorithms.

Gin A web framework written in Golang that features a minimalist design and conve-
nient middleware support.

GPL GNU General Public License - An open-source software license.

Graph database A graph database is a type of database that stores and organizes data
in the form of interconnected nodes. This allows efficient querying and analysis of
complex relationships between data.

Graphology A robust and versatile graph object implemented in JavaScript and Type-
Script.

gRPC Google Remote Procedure Calls - A remote procedure call framework.

IDE Integrated Development Environment - A program that provides a range of tools
and features to facilitate software development.

x

INS Institute for Network and Security - An institute at the Eastern Switzerland Uni-
versity of Applied Sciences.

k8s Short form of Kubernetes.

Kubernetes An open-source container orchestration system that automates the de-
ployment, scaling, and management of containerized applications.

MUI Material UI - A comprehensive library that offers an implementation of Google’s
Material Design system through a variety of components for React.

Neo4j A popular graph database.

npm A package manager for the JavaScript and TypeScript programming language that
allows developers to install and manage packages.

OpenAPI OpenAPI (formerly known as Swagger) is a specification for building APIs
that allows developers to describe the structure and behavior of APIs in a stan-
dardized way, enabling automated documentation and code generation.

React An open-source JavaScript library designed for the development of user inter-
faces.

Redux An open-source JavaScript library that helps the management of application
states.

REST Representational State Transfer - A software architecture style popular with
APIs.

RSAL Redis Source Available License - A non-open-source software license.

RTK Redux Toolkit - A set of tools that integrates with Redux.

RTK Query A tool that facilitates the fetching and caching of data in a web applica-
tion. It is designed to simplify the process of loading data, reducing the need for
manual coding of data fetching and caching logic.

Swagger Swagger has since been rebranded as OpenAPI and is now often referred to
as OpenAPI 2.0.

Swagger UI A web-based interface for visualizing and interacting with the API end-
points of a web application, allowing developers to easily test and debug their
APIs. It is part of the Swagger/OpenAPI toolset for building and documenting
APIs.

xi

Testcontainers A library that allows developers to easily run tests against ephemeral
instances of software (in Docker Containers), such as databases, within a test
environment, providing a consistent and reliable way to test code that depends on
these external instances.

WebGL Web Graphics Library - A JavaScript API that enables the rendering of high-
performance interactive 3D and 2D graphics within any compatible web browser.

xii

List of Figures

1 Dashboard . iii
2 Query View . iv

2.1 Use Case Diagram . 7

3.1 Default Color Palette . 24

4.1 C4 Model Level 1 - System Context Diagram 26
4.2 C4 Model Level 2 - Container Diagram . 28
4.3 C4 Model Level 3 - Component Diagram - Single-Page Application 30
4.4 C4 Model Level 3 - Component Diagram - API Application 32
4.5 C4 Model Level 3 - Component Diagram - Data Collector Application . . 34
4.6 Dashboard (Live) Wireframe . 35
4.7 Dashboard (Offline) Wireframe . 36
4.8 Property Tile Number Wireframe (Variant 1) 36
4.9 Property Tile Number Wireframe (Variant 2) 37
4.10 Property Tile Statistics Wireframe . 37
4.11 Property Tile Description Wireframe . 37
4.12 Query View Wireframe . 38

5.1 Neo4j Graph Of The Provided INS network 52
5.2 Neo4j Node Of The Provided INS network 53
5.3 Neo4j Edge Of The Provided INS network 54
5.4 Graph Analyzer Frontend - Navigation - Dashboard 56
5.5 Graph Analyzer Frontend - Navigation - Query View 56
5.6 Available Neo4j Image Tags . 59

6.1 Current Deployment . 62
6.2 Responsive Frontend On A Smaller Viewport 66
6.3 Swagger UI . 67
6.4 Graph Analyzer Frontend - Dashboard . 68
6.5 Graph Analyzer Frontend - Query View 69
6.6 Graph Analyzer Frontend - Graph Visualization 70
6.7 Graph Analyzer Frontend - Graph Visualization With Selected Node . . . 70
6.8 Graph Analyzer Frontend - Average Clustering Coefficient Tile 71

xiii

6.9 Graph Analyzer Frontend - Average Clustering Coefficient Description . . 71
6.10 Graph Analyzer Frontend - Connected Tile 72
6.11 Graph Analyzer Frontend - Connected Description 72
6.12 Graph Analyzer Frontend - Degree Assortativity Coefficient Tile 73
6.13 Graph Analyzer Frontend - Degree Assortativity Coefficient Description . 73
6.14 Graph Analyzer Frontend - Degree Correlation Tile 74
6.15 Graph Analyzer Frontend - Degree Correlation Description 74
6.16 Graph Analyzer Frontend - Degree Distribution Tile 75
6.17 Graph Analyzer Frontend - Degree Distribution Description 75
6.18 Graph Analyzer Frontend - Density Tile 76
6.19 Graph Analyzer Frontend - Density Description 76
6.20 Graph Analyzer Frontend - Diameter Tile 77
6.21 Graph Analyzer Frontend - Diameter Description 77
6.22 Graph Analyzer Frontend - General Information Tile 78
6.23 Graph Analyzer Frontend - No Cut Edges Tile 79
6.24 Graph Analyzer Frontend - No Cut Edges Description 79
6.25 Graph Analyzer Frontend - No Cut Vertex Tile 80
6.26 Graph Analyzer Frontend - No Cut Vertex Description 80

7.1 API Pipeline For Main Branch Tags . 82
7.2 API Merge Request With Artifacts . 83
7.3 Frontend Pipeline For Main Branch Tags 84
7.4 SonarQube Report For The Data Collector And API 85

9.1 Roadmap . 90
9.2 RUP Phases With Project Milestones And Sprints 90
9.3 Risk Matrix . 95

9.4 Time Tracking Report . 99

xiv

List of Tables

2.1 How NFRs Are Validated . 13

3.1 Performance Test With 100 Nodes . 16
3.2 Performance Test With 1’000 Nodes . 17
3.3 Performance Test With 10’000 Nodes . 17
3.4 Technology Comparison . 18
3.5 Framework Comparison . 19
3.6 Graph Databases Test . 22

6.1 Fulfillment Of Use Cases . 63
6.2 NFR Validation . 64

9.1 Project Milestoness . 89
9.2 Application Milestones . 89
9.3 Scrum Meetings . 91
9.4 Scrum Roles . 92
9.5 Risk Management . 94
9.6 Risk Mitigation . 96

xv

Listings

5.1 GDS Latest Graph Name Retrieval . 40
5.2 GDS General Information Retrieval . 41
5.3 GDS Density Retrieval . 41
5.4 GDS Average Clustering Coefficient Retrieval 41
5.5 GDS Component Count Retrieval . 41
5.6 GDS Degree Distribution Retrieval . 42
5.7 Cypher Full Graph Retrieval . 42
5.8 Go Degree Assortativity Coefficient Calculation 43
5.9 Go Degree Correlation Calculation . 44
5.10 Go Diameter Calculation . 45
5.11 Go Bridge Detection . 46
5.12 Go Articulation Points Detection . 48
5.13 GEXF Structure . 52
5.14 Invalidating RTK Query Tags . 56
5.15 Helm Deployment Output . 60
6.1 Apache Bench Output . 65
6.2 Data Collector 10’000 Nodes Import Output 65
6.3 Self Healing Test Output . 65

xvi

Part I

Technical Report

1

Chapter 1

Introduction

In this chapter, an introduction to the thesis is given.

The thesis is written under the assumption that the reader has existing knowledge
of basic computer science topics such as computer networks, algorithms, application
architecture and distributed systems.

1.1 Thesis Structure

The following two sections will describe how the thesis is structured. Essential concepts
and terminology are also introduced. Sources are given if necessary to provide additional
information.

1.1.1 Technical Report

The Technical Report is divided into eight chapters. In the Introduction, the given
problem description and goal of the thesis are described. The Requirements chapter lists
the capabilities and criteria that the final result of the thesis must fulfill. Decisions that
were made before and during the implementation can be found in the Design Decisions
chapter. The chosen architecture is located in the following Architecture chapter. The
Implementation chapter contains details about how the final result was realized. The
final three Results, Quality Measures and Conclusions chapters analyze the final result in
retroperspective and how code quality is ensured. Additionally, they contain an outlook
and thoughts about continuative works that could result from this thesis.

1.1.2 Project Documentation

The Project Documentation provides details on how the results of the thesis were
achieved. Project management-related information can be found in this part of the
thesis.

2

1.2 Graph Property Introduction

Each implemented graph property will get a short introduction in this section. Graphs
in this thesis are undirected and unweighted if not specified otherwise. A graph consists
of the following properties:

• Graph

• Node

• Edge

To avoid confusion about the various terminologies used in graph theory, these terms
will be used hence.
Nodes that connect to a node via an edge are called the neighbors of the node. The
number of edges that connect to a node represents the degree that a node has [1].

1.2.1 Connectedness

A connected graph describes if there is a path, with which a node can reach every other
node of the graph. If this is not the case, the graph is disconnected [1].

1.2.2 Diameter

The diameter is the longest shortest path in a network. All shortest paths between
all pairs of nodes need to be calculated and the longest of them will be the so-called
diameter. The number of edges that compose the diameter act as its value [1].

1.2.3 Degree Distribution

The degree distribution shows the number of nodes that have a certain degree.

1.2.4 Density

Density is the ratio between the present edges and the maximum possible edges in a
graph. Therefore, a complete graph (every node connects to every other node) has a
value of 1, whereas the value for a large graph with only a few edges tends to be closer
to zero. Most large real-world networks often have a very low density [1].

1.2.5 Assortativity Coefficient

The degree assortativity coefficient is defined by the Pearson correlation between the
degrees of pairs of connected nodes. How nodes of one degree connect to nodes of
another degree is known as assortativity. It represents the Degree-degree correlation. A
positive value indicates that high degree nodes tend to connect to nodes with high degree
and low degree nodes to nodes with low degree. If the value is negative, it indicates that

3

high degree nodes tend to connect to nodes with low degree and low degree nodes to
nodes with high degree. A value near zero indicates that there is no tendency on how
nodes connect, they connect randomly. Computer networks tend to have a negative
degree assortativity coefficient [1].

1.2.6 Degree Correlation

The average degree connectivity correlation is the average nearest neighbor degree of
nodes with degree k. It represents the same information as the degree assortativity
coefficient but in a function form. An increasing function indicates the same as a negative
degree assortativity coefficient, and a decreasing function a positive one. If the function
is constant, it can be interpreted similarly to a degree assortativity coefficient near zero
[1].

1.2.7 Average Clustering Coefficient

The local clustering coefficient of a node represents how close its neighboring nodes are
to being a complete graph. It represents the average probability that two neighbors of
a node are themselves, neighbors. The average clustering coefficient is the average of all
local clustering coefficients in the graph. In practice, a high average clustering coefficient
indicates that nodes tend to form clusters [1].

1.2.8 Cut Edge

A cut edge is a single edge in the graph whose removal would split the graph [2].

1.2.9 Articulation Point

An articulation point is a single node in the graph whose removal would split the graph
[2], [3].

4

1.3 Aims and Objectives

This section introduces the given problem description of the thesis and the solution to
it.

1.3.1 Problem

Every telecommunication network has a different topology. In addition, the topology is
often complex and unstructured. In the telecommunication industry, graph properties
so far are not broadly used for network capacity planning or network comparisons.

As a first step, these graph properties need to be calculated and visualized.

1.3.2 Solution

Cisco has developed a software called Jalapeño. It is an infrastructure platform for
network services. The collected network data is stored in a time series database (for
telemetry data) or graph database. To access the data collected by Jalapeño, the INS
developed the Jalapeño API Gateway. It provides a unified interface that supports API
requests or subscriptions via gRPC to access the underlying data.

This thesis aims to develop a system that can analyze a provided network and calculate
various graph properties, which will be visually represented with accompanying expla-
nations. The system consists of two parts. A backend processes the data received from
the Jalapeño API Gateway and calculates the graph properties, while a frontend dis-
plays and explains the calculated properties. The network data should be automatically
updated via gRPC subscriptions. In addition, the system should stay performant even
when analyzing large networks. As an optional feature, the system should also have
the ability to search for specific nodes or edges based on particular graph properties,
allowing for more detailed analysis and debugging of the network.

5

Chapter 2

Requirements

This chapter describes the various requirements that the final system of the thesis needs
to fulfill.

2.1 Functional Requirements

2.1.1 Actor - User

The final system has only one actor, a regular user. His goal is to get insights about a
network via its graph properties. They should be displayed on a website, understandably
and with useful explanations.

2.1.2 Use Cases

The use cases shown in figure 2.1 are specified in a brief form.

6

Figure 2.1: Use Case Diagram

7

FR-01

Use case: Show dashboard
Brief: User accesses the application directly or via the Central Frontend and is shown

a dashboard that shows various graph properties of the network. This can be
seen as the entry point of the application.

Electivity: Required

FR-01.a

Use case: Dashboard - Show number of nodes
Brief: The number of nodes should be shown on the dashboard.
Electivity: Required

FR-01.b

Use case: Dashboard - Show number of edges
Brief: The number of edges should be shown on the dashboard.
Electivity: Required

FR-01.c

Use case: Dashboard - Show degree correlation
Brief: The degree correlation should be shown on the dashboard.
Electivity: Required

FR-01.d

Use case: Dashboard - Show assortativity coefficient
Brief: The assortativity coefficient should be shown on the dashboard.
Electivity: Required

FR-01.e

Use case: Dashboard - Show degree distribution
Brief: The degree distribution should be shown on the dashboard.
Electivity: Required

8

FR-01.f

Use case: Dashboard - Show cut edge status
Brief: The existence of cut edges should be shown on the dashboard.
Electivity: Required

FR-01.g

Use case: Dashboard - Show network diameter
Brief: The network diameter should be shown on the dashboard.
Electivity: Required

FR-01.h

Use case: Dashboard - Show average clustering coefficient
Brief: The average clustering coefficient should be shown on the dashboard.
Electivity: Required

FR-01.i

Use case: Dashboard - Show articulation point status
Brief: The existence of articulation points should be shown on the dashboard.
Electivity: Optional

FR-01.j

Use case: Dashboard - Show density
Brief: The density of the graph should be shown on the dashboard.
Electivity: Optional

FR-01.k

Use case: Dashboard - Show graph connectivity
Brief: The connectedness of the graph (connected, disconnected) should be shown

on the dashboard.
Electivity: Optional

FR-01.l

Use case: Dashboard - Show graph communities
Brief: The communities of the graph should be shown on the dashboard.
Electivity: Optional

9

FR-01.m

Use case: Dashboard - Current state of network
Brief: The various shown graph properties on the dashboard reflect the current state

of the network. The graph properties get updated based on network changes.
Electivity: Required

FR-01.n

Use case: Dashboard - Export graph properties
Brief: The current state of the dashboard can be exported into a file.
Electivity: Optional

FR-01.o

Use case: Dashboard - File-based state of the network
Brief: The various shown graph properties on the dashboard reflect the data con-

tained in a previously exported file when imported.
Electivity: Optional

FR-01.p

Use case: Dashboard - Get background information
Brief: For each graph property on the dashboard an option should be present to

get more information about it. It should explain what the graph property
represents and give context to its relevance using a computer network as an
example.

Electivity: Required

FR-01.q

Use case: Dashboard - Graph visualization
Brief: The underlying network on which all graph properties on the dashboard are

based should be visualized. Its intended use is not as a detailed tool for further
analysis, but to give the user some visual context for graph properties that
are only represented as numbers or text.

Electivity: Optional

FR-02

Use case: Show query view
Brief: The user should be able to switch to a second page from the dashboard, this

separate page provides the user with options to query the network for specific
graph properties.

Electivity: Optional

10

FR-02.a

Use case: Query view - Filter for properties
Brief: Preselected query options are provided to the user with which he can execute

a query. Only graph properties that are not based on the network as a whole
can be queried. The goal is to have some simple options that can be used as
the base for future extensions.

Electivity: Optional

FR-02.b

Use case: Query view - Show nodes/edges
Brief: The nodes and edges that match the query are listed as the result of the query.

The user can read more details from this listing. For example, to identify the
affected nodes in another tool.

Electivity: Optional

FR-02.c

Use case: Query view - Export query result
Brief: The result list of the query can be exported by the user into a common file

format like CSV.
Electivity: Optional

11

2.2 Non-Functional Requirements

These are the eight defined non-functional requirements.

NFR-01

Category: Performance
Brief: The solution must be able to support 100 active users.
Electivity: Required

NFR-02

Category: Performance
Brief: The solution must be able to handle at least 10’000 nodes in a sparse network.
Electivity: Required

NFR-03

Category: Availability
Brief: In case of a software fault the system is self-healing without manual interaction

within 30 seconds.
Electivity: Required

NFR-04

Category: Usability
Brief: The solution must validate the input data of the user.
Electivity: Required

NFR-05

Category: Maintainability
Brief: The solution must be developed cloud-natively.
Electivity: Required

NFR-06

Category: Maintainability
Brief: The solution must be tested and built through CI/CD.
Electivity: Required

12

NFR-07

Category: Usability
Brief: The solution should be responsive (Mobile/Web).
Electivity: Optional

NFR-08

Category: Maintainability
Brief: The chosen graph visualization library should be exchangeable.
Electivity: Optional

2.2.1 Validating NFRs

Table 2.1 shows how and when the NFRs are validated.

ID How When

NFR-01 Perform a load test on the API with at least 100
concurrent connections.

Before releasing the Alpha
version.

NFR-02 Mocking a large graph with 10’000 nodes, which has
the properties of a sparse graph.

Before releasing the Alpha
version.

NFR-03 Kill a container and measure the time until a new
container has been spun up.

Before releasing the Alpha
version.

NFR-04 Test the system’s resistance to invalid user input and
ensure that it displays helpful error messages.

Before releasing the Beta
version.

NFR-05 With the help of available cloud-native concepts, it is
checked whether the architecture meets the require-
ments.

Before releasing the Alpha
version.

NFR-06 It is checked whether a sufficient CI/CD pipeline ex-
ists for each part of the system.

Before releasing the Alpha
version.

NFR-07 Browser tools are used to check whether the website
is responsive and can be used on devices with differ-
ent screen sizes.

Before releasing the Beta
version.

NFR-08 Check if the library has been encapsulated and if it
would be possible to replace it.

Before releasing the Beta
version.

Table 2.1: How NFRs Are Validated

13

Chapter 3

Design Decisions

This chapter contains design decisions that were made before and during the implemen-
tation.

3.1 Basic System Structure

The rough structure of the backend and frontend that compose the system was already
included in the thesis description. Based on optional requirements like the query view,
the backend was split into further components to achieve higher flexibility. Importing
graphs from data sources other than Jalapeño into the system should be possible. To
achieve this, two additional components were introduced, the graph database and Data
Collector.

3.1.1 Frontend

The role of the Frontend did not change compared to how it was initially envisioned.
It interacts with the backend, specifically the API, and displays the retrieved data for
the user. In the beginning, the requirement was to embed the Frontend in the Central
Frontend of the INS as a Micro Frontend. The Central Frontend is based on React
1, so it made sense to use React as a Frontend framework as there was already some
experience present regarding React. This requirement was later abandoned because it
was determined that the current version of the Central Frontend is not suitable for
production usage.

3.1.2 API

The API encapsulates a lot of the ideas that were initially referred to as just the backend.
Graph property calculations and delivering the results to the Frontend are the core
responsibilities of the API.

1https://reactjs.org

14

https://reactjs.org

3.1.3 Data Collector

The Data Collector is an independent application of the backend, that is solely respon-
sible for retrieving graphs from different data sources. All logic concerning the import
from various data sources is contained within it. The graph data is transformed into a
defined structure and saved in the graph database.

3.1.4 Graph Database

The graph database acts as the connecting component between the API and Data Col-
lector. It contains the graph data that the Data Collector has collected. The API can
retrieve the graph from it to calculate graph properties. Additionally, it provides certain
graph property calculations out of the box and supports querying the graph.

3.2 Backend Programming Language

The initial thesis description required that the backend would be programmed with
either Python or Go.
To determine the to-be-used programming language, performance comparisons between
popular graph libraries were conducted for each language. While many of the algorithms
in the final system can be executed directly on a graph database, the results of this
analysis are still important as they indicate the performance that can be expected from
the language itself. In addition, the results serve as a backup option if the implementation
in the graph database is insufficient for a particular use case and needs to be implemented
in a customized manner.

3.2.1 Analyzed Libraries

The analysis included the following libraries:

• Python

– NetworkX (Python Module) 2

– graph-tool (C++ Module) 3

• Go

– Gonum 4

– thcyron/graphs 5

The thcyron/graphs library had too few algorithms implemented, so it was not analyzed
further.

2https://networkx.org
3https://graph-tool.skewed.de
4https://www.gonum.org
5https://pkg.go.dev/github.com/thcyron/graphs

15

https://networkx.org
https://graph-tool.skewed.de
https://www.gonum.org
https://pkg.go.dev/github.com/thcyron/graphs

3.2.2 Performance Test Setup

Three graphs using the NetworkX Internet Autonomous System Network generator 6

were generated and used for the performance measurements.

• 100 nodes and 141 Edges

• 1’000 nodes and 1’501 Edges

• 10’000 nodes and 26’361 Edges

The time for the following graph properties was measured for the following calculations.

• All shortest paths from Node 0

• BFS from Node 0

• All shortest paths in the graph

• Betweenness

• Minimum spanning tree

3.2.3 Performance Test

The test setup was a MacBook with an Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz
processor.

100 Nodes:

Property NetworkX graph-tool gonum

node shortest path 0.0001 s 0.0019 s 0.0001 s

bfs 0.0002 s 0.0013 s 0.0001 s

all shortest paths 0.0149 s no support 0.0124 s

betweenness 0.0294 s 0.0023 s 0.0102 s

min span tree 0.0013 s 0.0007 s no support

Table 3.1: Performance Test With 100 Nodes

6https://networkx.org/documentation/stable/reference/generated/networkx.generators.

internet_as_graphs.random_internet_as_graph.html

16

https://networkx.org/documentation/stable/reference/generated/networkx.generators.internet_as_graphs.random_internet_as_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.internet_as_graphs.random_internet_as_graph.html

1’000 Nodes:

Property NetworkX graph-tool gonum

node shortest path 0.0021 s 0.0006 s 0.0009 s

bfs 0.0048 s 0.0014 s 0.0013 s

all shortest paths 1.5610 s no support 0.9815 s

betweenness 2.2551 s 0.0560 s 0.9100 s

min span tree 0.0099 s 0.0005 s no support

Table 3.2: Performance Test With 1’000 Nodes

10’000 Nodes:

Property NetworkX graph-tool gonum

node shortest path 0.0207 s 0.0028 s 0.0171 s

bfs 0.0341 s 0.0113 s 0.0088 s

all shortest paths 425.9755 s no support 238.7183 s

betweenness 520.0862 s 10.4052 s 182.4155 s

min span tree 0.1823 s 0.0017 s no support

Table 3.3: Performance Test With 10’000 Nodes

3.2.4 Conclusion

Based on the results in tables 3.1 to 3.3, it was decided to use Golang because of the
following reasons:

• NetworkX is too slow to handle the performance requirements.

• graph-tool is fast enough (sometimes even the fastest) but the developer experience
of the library was not great. The installation and integration are not straightfor-
ward (manual compilation on some platforms). The IDE integration is also not as
good as expected.

• Golang combined with Gonum combines the best parts of both Python libraries.
Speed, IDE integration, code integration and library functionality were overall the
best.

17

3.3 API Communication

To handle incoming requests from the Frontend to the API, two technologies were eval-
uated:

• REST

• GraphQL

gRPC was not considered because grpc-web had several limitations, such as experimen-
tal TypeScript support, which prevented its use in the Frontend [4]. In addition, an
additional proxy service would be required to facilitate the communication.

3.3.1 Technology Comparison

Property REST GraphQL

Architecture Server-driven Client-driven

State Stateless Stateless

HTTP Methods GET, POST, UPDATE,
PUT, DELETE

POST

Organization Multiple Endpoints Single Endpoint (Schema)

Fetching Often under/over-fetching Exact response

Subscription Not possible WebSocket

Table 3.4: Technology Comparison

3.3.2 Conclusion

Both technologies have their advantages and disadvantages. Based on the results in
table 3.4, REST was chosen for the backend API for the following reasons:

• Simple and easily understandable

• Future maintenance (Currently, the INS does not use GraphQL)

• Prior experience with REST

18

3.4 API Framework

To implement the REST API the following Golang REST API frameworks were analyzed:

• Echo 7

• Gin 8

• Beego 9

• Fiber 10

3.4.1 Framework Comparison

Echo Gin Beego Fiber

Github Stars 24’000 63’700 29’000 22’800

License MIT MIT Apache Li-
cense 2.0

MIT

Maintained Active Active Active Active

Hot Code Reload With Air Yes Yes Yes

Based on net/http net/http net/http fasthttp

Limitations Integrated
MVC - may
not be suitable
for us

Not possible to
use net/http
interfaces (go-
swagger, ...)
and the use
of unsafe can
conflict with
new Golang
versions [5]

Table 3.5: Framework Comparison

3.4.2 Conclusion

Gin was chosen as the backend REST API framework because of the following reasons
based on the results in table 3.5:

• Well regarded in the Golang community

• Many middlewares available

• Existing experience with Gin from previous projects
7https://github.com/labstack/echo
8https://github.com/gin-gonic/gin
9https://github.com/beego/beego

10https://github.com/gofiber/fiber

19

https://github.com/labstack/echo
https://github.com/gin-gonic/gin
https://github.com/beego/beego
https://github.com/gofiber/fiber

3.5 API Specification

Since Gin was chosen for the REST API in section 3.4, a descriptive API specification
was needed. An API specification can be defined through OpenAPI 11. The OpenAPI
specification allows for the description of the structure of an API in a manner that
is easily comprehensible to both humans and machines. OpenAPI makes it easier to
create, maintain, and use the API. Additionally, OpenAPI can be used to generate
client libraries and other artifacts that can be used to easily integrate an API.

3.5.1 Specification Definition

The swag 12 CLI combined with the gin-swagger 13 middleware is suitable for Gin. It
automatically generates the OpenAPI 2.0 specification by working with the Declarative
Comments Format during development [6]. The latest version would be version 3.1 of
the OpenAPI specification, but since there is no easily implementable package for Gin,
it was chosen regardless.

3.6 Graph Database

As one of the optional requirements of the system is a query view, a simple graph anal-
ysis to calculate graph properties is not enough. A query engine is needed to support
this use case. Jalapeño already keeps the network in a graph database (ArangoDB), and
the Jalapeño API gateway keeps a cached version of it, which is accessed.

It was decided to implement a separate graph database as part of the system based
on the following reasons:

• Using the already existing ArangoDB, which is part of Jalapeño, is not an option
as system boundaries would be crossed and a dependency on Jalapeño be created.

• The storage of the graph by the system enables it to connect to other data sources.

• The goal was not to create a graph query engine, existing solutions in form of
graph databases can be used.

11https://www.openapis.org
12https://github.com/swaggo/swag
13https://github.com/swaggo/gin-swagger

20

https://www.openapis.org
https://github.com/swaggo/swag
https://github.com/swaggo/gin-swagger

3.6.1 Analyzed Graph Databases

The analysis included the following graph databases:

• ArangoDB 14

• Memgraph 15

• Neo4j 16

• RedisGraph 17

3.6.2 Software Licensing

Memgraph and RedisGraph were eliminated due to their problematic licenses. The BSL
1.1 and RSAL licenses are too restrictive with their field of use restrictions [7], [8].
ArangoDB uses the Apache 2.0 license, which is the least problematic in the selection
[9]. Neo4j uses the often controversial GPLv3 license 18. After looking into it, Neo4j
was chosen in the end. The license should not interfere as long as Neo4j is not bundled
into one of the container images [10].

3.6.3 Test Setup

Two tests were run for the selected graph databases and the time measured.

• Betweenness centrality

– Calculating the betweenness centrality gives us an indication on how well the
graph database supports graph analysis internally.

• Get all nodes and edges

– Querying the entirety of the graph shows us the expected impact of handling
graph analysis externally. The whole graph needs to be extracted if the
internal graph analysis capabilities do not cover certain graph properties or
are not performant enough.

The tests were done based on the previously used 1’000 node NetworkX AS graph in
section 3.2.2.

14https://github.com/arangodb/arangodb
15https://github.com/memgraph/memgraph
16https://github.com/neo4j/neo4j
17https://github.com/RedisGraph/RedisGraph
18https://github.com/neo4j/neo4j/blob/5.1/LICENSE.txt

21

https://github.com/arangodb/arangodb
https://github.com/memgraph/memgraph
https://github.com/neo4j/neo4j
https://github.com/RedisGraph/RedisGraph
https://github.com/neo4j/neo4j/blob/5.1/LICENSE.txt

3.6.4 Graph Databases Test

The test setup was a MacBook with an Apple M1 Max 10 core processor.

Property ArangoDB Neo4j

Betweenness centrality 23.780 s 19 0.154 s 20

Get all nodes and edges 3.901 s 21 0.007 s

Table 3.6: Graph Databases Test

3.6.5 Conclusion

Based on the results in table 3.6, Neo4j was chosen due to the following reasons:

• Better overall performance in general.

• Easier query language because of familiarity with Cypher compared to AQL.

• Better internal graph analysis capabilities through the GDS 22 library.

19The ArangoDB general graph https://www.arangodb.com/docs/stable/graphs-general-graphs.

html module was used.
20The Neo4j GDS library was used.
21The collections for nodes and edges were individually retrieved.
22https://github.com/neo4j/graph-data-science

22

https://www.arangodb.com/docs/stable/graphs-general-graphs.html
https://www.arangodb.com/docs/stable/graphs-general-graphs.html
https://github.com/neo4j/graph-data-science

3.7 Graph Visualization

To visualize the graph in the Frontend, a graph visualization library that had the fol-
lowing properties was needed:

• Performant

– The graphs, that need to be rendered out, can be composed out of thousands
of nodes and edges.

• Allow different layouts e.g. force layout.

• Allow highlighting of nodes and edges.

3.7.1 Previous Work

No extensive comparisons between different libraries were made, as such research has
already been done in the ”Central Frontend for Segment Routing Applications” bachelor
thesis [11]. The results of their work already form the basis of the Frontend, and the
technical decisions they made are still relevant as it was done in the Spring Term 2022.

3.7.2 Chosen Library

Sigma.js 23 was chosen in combination with React Sigma 24. Reagraph 25 was another
library that was tested but did not get chosen as the performance was not acceptable
when tested with the test graphs. Sigma.js was able to render and allow interaction
with the test graph in a fast and responsive way, through the usage of WebGL. The
customization options cover the intended use case of node and edge highlighting. Ad-
ditionally, through the usage of Graphology 26 to manage the graph, a wide range of
layouts and helper functions are available.

3.8 State Container

As an optional requirement is the ability to export and import the current state of the
dashboard, it was decided to implement a state container in the Frontend. Having the
state of the application managed in a central location enables easier implementation
of the required data export. Redux 27 was chosen to implement this based on the
extensive documentation and available community resources. Redux has also several
helper libraries 28 like RTK Query that provide useful functionality.

23https://github.com/jacomyal/sigma.js
24https://github.com/sim51/react-sigma
25https://github.com/reaviz/reagraph
26https://github.com/graphology/graphology
27https://redux.js.org
28https://redux-toolkit.js.org

23

https://github.com/jacomyal/sigma.js
https://github.com/sim51/react-sigma
https://github.com/reaviz/reagraph
https://github.com/graphology/graphology
https://redux.js.org
https://redux-toolkit.js.org

3.9 UI Library

It was decided to use Material UI 29 in the Frontend. The reasons were the huge
amount of available components, customization options, detailed documentation and
most importantly native integration into React. MUI allows the creation of visually
pleasing and responsive web applications, without the need to write a lot of individual
CSS.

3.9.1 Colors

The default color palette is provided by MUI. The predefined colors offer good contrast
and are very well-matched for various purposes, such as a dark mode or light mode as
seen in figure 3.1.

Figure 3.1: Default Color Palette

29https://mui.com

24

https://mui.com

Chapter 4

Architecture

In this chapter, the detailed architecture of the system is detailed and analyzed. Deci-
sions stated in chapter 3 are incorporated as part of it.

4.1 Architecture Model

The C4 model was used to visualize the system and application architecture [12]. It was
decided to only implement the first three levels as the fourth level is not necessary because
it is too detailed. If it is required at some point, it can be generated automatically by
modern IDEs after the implementation.

25

4.1.1 System Context Diagram

Figure 4.1 shows the System Context diagram. The user of the system can be seen
interacting with the Graph Analyzer system. Dependencies on other systems are also
visualized, the Graph Analyzer system depends on their provided network topology
information.

Figure 4.1: C4 Model Level 1 - System Context Diagram

26

4.1.2 Container Diagram

Based on the previous design decisions in section 3.1, the figure 4.2 shows the Container
diagram of the Graph Analyzer system. The user mainly interacts with the Single-Page
Application, which is the Frontend and responsible for data visualization. The Single-
Page Application gets its data from the API Application. As explained in section 3.1 the
backend is split into three components. The API Application retrieves and calculates
graph properties, which are then exposed to the Single-Page Application. The intro-
duced Graph Database holds the graph for the API Application and already provides
some included graph properties. Retrieval of network topology data is handled by the
Data Collector Application, data is written into the Graph Database so that the API
Application can further process it. The retrieval can be initiated automatically through
a Container Orchestrator or manually through the user, the second option is mainly
possible for development reasons.

27

Figure 4.2: C4 Model Level 2 - Container Diagram

28

4.1.3 Component Diagram - Single-Page Application

The Component diagram of the Single-Page Application can be found in figure 4.3. As
the name implies it is a React TypeScript Single-Page Application, additionally Redux is
used as the state container to manage a global state. RTK Query is used to communicate
with the API Application.

29

Figure 4.3: C4 Model Level 3 - Component Diagram - Single-Page Application

30

4.1.4 Component Diagram - API Application

Figure 4.4 shows the Component diagram of the API Application. It is designed to use
the ADR pattern [13]. The goal is to have a high separation of concerns and to adhere
to the single responsibility principle. Interaction with the Graph Database is handled
by the Repository component.

31

Figure 4.4: C4 Model Level 3 - Component Diagram - API Application

32

4.1.5 Component Diagram - Data Collector Application

To provide the flexibility to read the graph from different sources, a CLI application
is used. As a result, the Data Collector can be easily expanded and supports the user
when importing a graph with the available input formats.
The Component diagram of the Data Collector Application can be found in figure 4.5. It
is implemented as a CLI with different commands that originate from a root command.
Each command implements the data import from a separate topology provider. The
structure originates from the used Cobra library that is used to create the CLI [14]. The
Graph Database interaction is handled by the Repository component.

33

Figure 4.5: C4 Model Level 3 - Component Diagram - Data Collector Application

34

4.2 UI and UX

The UI and UX were not the primary goals of the thesis, despite that some basic wire-
frames were created. The goal was to have an initial idea of how the Frontend could look
and provide some orientation during the latter implementation. Figure 4.6 shows the
main dashboard embedded into the Central Frontend. A graph visualization and tiles
for various graph properties dominate the space. The navigation bar with file import
and export buttons can also be found. Figure 4.7 shows the dashboard in the offline
state, data from an imported file would be used. The query view and download function
are not available anymore. Various variants for the graph property tiles and their de-
scription can be found in figures 4.8 to 4.11. The query view can be seen in figure 4.12.
A column of different filters, a result list with an export function and another graph
visualization can be found.

Figure 4.6: Dashboard (Live) Wireframe

35

Figure 4.7: Dashboard (Offline) Wireframe

Figure 4.8: Property Tile Number Wireframe (Variant 1)

36

Figure 4.9: Property Tile Number Wireframe (Variant 2)

Figure 4.10: Property Tile Statistics Wireframe

Figure 4.11: Property Tile Description Wireframe

37

Figure 4.12: Query View Wireframe

38

4.3 Technologies

All libraries and frameworks used in this thesis are published under an open-source
license. The list below shows the most important technologies used in individual appli-
cations. They will be discussed in more detail in later chapters.

4.3.1 API

• Programming language: Golang

• Framework: Gin

• Libraries

– Gonum

– Viper

– Swag

4.3.2 Data Collector

• Programming language: Golang

• Libraries

– Cobra

– Viper

– Logrus

– Testcontainers

4.3.3 Frontend

• Programming language: TypeScript

• Framework: React

• Libraries

– Sigma.js

– Chart.js

– MUI (Material UI)

– RTK Query

– Redux Toolkit

39

Chapter 5

Implementation

The next few sections deal with the implementation of the various applications of the
Graph Analyzer system.

5.1 API

The API is responsible for the calculation of the graph properties and providing them
to the Frontend. These calculations can be requested directly from the graph database
or are alternatively implemented as part of the API.

5.1.1 GDS Access

Before the API can interact with the GDS graph in Neo4j, it needs to know the name
of the graph so that it can be referenced in the following procedure call. Before a
GDS procedure call is done via the repository, the latest graph name is retrieved by a
procedure call to gds.graph.list [15]. An example can be found in listing 5.1.

1 CALL gds.graph.list()

2 YIELD graphName , creationTime

3 RETURN graphName

4 ORDER BY creationTime DESC

5 LIMIT 1

Listing 5.1: GDS Latest Graph Name Retrieval

40

5.1.2 General Information Retrieval

gds.graph.list is also used to retrieve information about the underlying graph [15].
By calling the procedure with the graph name, the node and edge count can be retrieved.
Additionally, the creation time is returned. See listing 5.2.

1 CALL gds.graph.list($graphName)
2 YIELD graphName , nodeCount , relationshipCount , creationTime

3 RETURN graphName AS name , nodeCount AS nodes , relationshipCount AS edges ,

creationTime AS createdAt

Listing 5.2: GDS General Information Retrieval

5.1.3 Density Calculation

The density of the graph is also contained as a result of the gds.graph.list procedure
when called with a graph name [15]. Listing 5.3 shows how it is returned.

1 CALL gds.graph.list($graphName)
2 YIELD density

3 RETURN density

Listing 5.3: GDS Density Retrieval

5.1.4 Average Clustering Coefficient Calculation

The average clustering coefficient is retrieved by calling the gds.localClusteringCoefficient
.stats procedure and extracting the value from averageClusteringCoefficient in the
result [16]. Listing 5.4 contains an example.

1 CALL gds.localClusteringCoefficient.stats($graphName)
2 YIELD averageClusteringCoefficient

3 RETURN averageClusteringCoefficient

Listing 5.4: GDS Average Clustering Coefficient Retrieval

5.1.5 Connectedness Calculation

Another graph property that can directly be retrieved via GDS is the connectedness
of the graph. A call to gds.wcc.stats is made and the returned componentCount is
checked [17]. See listing 5.5 for an example of getting the components of a graph.

1 CALL gds.wcc.stats($graphName)
2 YIELD componentCount

3 RETURN componentCount

Listing 5.5: GDS Component Count Retrieval

41

5.1.6 Degree Distribution Calculation

The degree distribution of the graph is retrieved by calling the gds.degree.stream

procedure [18]. Listing 5.6 contains further details.

1 CALL gds.degree.stream($graphName)
2 YIELD score

3 RETURN score AS degree , COUNT (*) AS amount

4 ORDER BY degree ASC

Listing 5.6: GDS Degree Distribution Retrieval

5.1.7 Full Graph Retrieval

Retrieving the full graph from the graph database is done in two cases. Firstly to provide
the Frontend with data to render a visualization of it. Secondly internally when graph
property calculations in the API are required, the full graph needs to be extracted for
further processing. Two simple Cypher queries to retrieve the nodes and edges are used.
Listing 5.7 shows the respective Cypher queries.

1 MATCH (n:Router)-[r:CONNECTS_TO_HIGHER|CONNECTS_TO_LOWER]->(:Router)

2 RETURN id(n), n.RouterID , n.Label , COUNT(r)

3

4 MATCH (from:Router)-[r:CONNECTS_TO_HIGHER|CONNECTS_TO_LOWER]->(to:Router)

5 RETURN r.EdgeID , id(from), from.RouterID , id(to), to.RouterID

Listing 5.7: Cypher Full Graph Retrieval

42

5.1.8 Degree Assortativity Coefficient Calculation

GDS currently does not support the calculation of the degree assortativity coefficient,
thus it was implemented in the API. First, the full graph is extracted from the graph
database and then a Gonum undirected graph gets created based on it [19]. Every node
degree and the degrees of its neighbors are retrieved by iterating through the graph.
Finally, the collected degrees are used to calculate the correlation [20]. Listing 5.8
contains a simplified version of this calculation.

1 x := make ([] float64 , 0)

2 y := make ([] float64 , 0)

3

4 nodes := graph.Nodes()

5

6 for nodes.Next() {

7 neighbors := graph.From(nodes.Node().ID())

8 nodeDegree := neighbors.Len()

9

10 for neighbors.Next() {

11 neighbor := neighbors.Node()

12 neighborDegree := graph.From(neighbor.ID()).Len()

13

14 x = append(x, float64(nodeDegree))

15 y = append(y, float64(neighborDegree))

16 }

17 }

18

19 correlation := stat.Correlation(x, y, nil)

Listing 5.8: Go Degree Assortativity Coefficient Calculation

43

5.1.9 Degree Correlation Calculation

To calculate the degree correlation, again a Gonum undirected graph is created. By
iterating through the graph a map is built, containing the degree of a node and the
respective neighbor degrees. In the end, an array containing items with the node degree
and the respective mean of its neighbor degrees is returned [21]. See listing 5.9.

1 var nodeNeighborDegrees = make(map[int64][] float64)

2 nodes := graph.Nodes()

3

4 for nodes.Next() {

5 neighbors := graph.From(nodes.Node().ID())

6 nodeDegree := int64(neighbors.Len())

7

8 for neighbors.Next() {

9 neighbor := neighbors.Node()

10 neighborDegree := float64(graph.From(neighbor.ID()).Len())

11

12 nodeNeighborDegrees[nodeDegree] = append(nodeNeighborDegrees[

nodeDegree], neighborDegree)

13 }

14 }

15

16 nodeDegrees := make ([]int64 , 0, len(nodeNeighborDegrees))

17

18 for nodeDegree := range nodeNeighborDegrees {

19 nodeDegrees = append(nodeDegrees , nodeDegree)

20 }

21

22 values := make ([] degreeCorrelationValue , 0, len(nodeDegrees))

23

24 for _, nodeDegree := range nodeDegrees {

25 values = append(values , degreeCorrelationValue{

26 Degree: nodeDegree ,

27 Average: stat.Mean(nodeNeighborDegrees[nodeDegree], nil),

28 })

29 }

Listing 5.9: Go Degree Correlation Calculation

44

5.1.10 Diameter Calculation

To calculate the diameter of a graph, the shortest path between all pairs of nodes in
a graph needs to be calculated. This is an expensive calculation and can run for up
to a few minutes for a graph with a few thousand nodes and edges. GDS provides the
gds.alpha.allShortestPaths procedure for this [22]. This procedure is classified as
alpha and is not considered ready for production usage. Important functionality like
memory estimation is not available yet, a huge graph could thus lead to the graph
database running out of memory [23]. The diameter calculation is done in the API.
Using Dijkstra’s algorithm, all shortest paths get calculated and the longest of them is
the diameter. The time complexity of the Gonum DijkstraAllPaths function is O(|V | ∗
|E|+ |V |2 ∗ log|V |) [24]. A simplified implementation can be found in listing 5.10.

1 shortestPaths := path.DijkstraAllPaths(graph)

2

3 nodesDone := make(map[int64]bool , 0)

4 nodesFrom := graph.Nodes()

5 nodesTo := graph.Nodes()

6 distance := int64 (0)

7

8 for nodesFrom.Next() {

9 nodeFrom := nodesFrom.Node()

10

11 for nodesTo.Next() {

12 nodeTo := nodesTo.Node()

13

14 if _, ok := nodesDone[nodeTo.ID()]; !ok {

15 weight := shortestPaths.Weight(nodeFrom.ID(), nodeTo.ID())

16

17 distance = int64(

18 math.Max(float64(distance), weight),

19)

20 }

21 }

22

23 nodesDone[nodeFrom.ID()] = true

24 nodesTo.Reset()

25 }

Listing 5.10: Go Diameter Calculation

45

5.1.11 Cut Edge Calculation

Finding cut edges or bridges is implemented in the API based on Tarjan’s bridge-finding
algorithm [25]. It has a time complexity of O(|V |+ |E|). Listing 5.11 shows the imple-
mentation.

1 type bridgeDetectionCalculation struct {

2 id float64

3 ids map[int64]float64

4 low map[int64]float64

5 }

6

7 type bridge struct {

8 From int64

9 To int64

10 }

11

12 func DetectBridgesInGraph(graph *simple.UndirectedGraph) [] bridge {

13 bdc := &bridgeDetectionCalculation{

14 id: 0,

15 ids: make(map[int64]float64),

16 low: make(map[int64]float64),

17 }

18

19 visited := make(map[int64]bool)

20 bridges := make ([] bridge , 0)

21

22 nodes := graph.Nodes()

23

24 for nodes.Next() {

25 node := nodes.Node()

26

27 if !visited[node.ID()] {

28 bridges = detectBridgesInGraphRecursive(bdc , graph , node.ID(),

visited , -1, bridges)

29 }

30 }

31

32 return bridges

33 }

34

35 func detectBridgesInGraphRecursive(

36 bdc *bridgeDetectionCalculation ,

37 graph *simple.UndirectedGraph ,

38 at int64 ,

39 visited map[int64]bool ,

40 parent int64 ,

41 bridges []bridge ,

42) [] bridge {

43 visited[at] = true

44 bdc.id++

45 bdc.low[at] = bdc.id

46 bdc.ids[at] = bdc.id

47

46

48 neighbours := graph.From(at)

49

50 for neighbours.Next() {

51 to := neighbours.Node().ID()

52

53 if to == parent {

54 continue

55 }

56

57 if visited[to] {

58 bdc.low[at] = math.Min(bdc.low[at], bdc.ids[to])

59 } else {

60 bridges = detectBridgesInGraphRecursive(bdc , graph , to, visited , at

, bridges)

61 bdc.low[at] = math.Min(bdc.low[at], bdc.low[to])

62

63 if bdc.ids[at] < bdc.low[to] {

64 if at < to {

65 bridges = append(bridges , bridge{

66 From: at,

67 To: to,

68 })

69 } else {

70 bridges = append(bridges , bridge{

71 From: to,

72 To: at,

73 })

74 }

75 }

76 }

77 }

78

79 return bridges

80 }

Listing 5.11: Go Bridge Detection

47

5.1.12 Cut Vertex Calculation

Finding cut vertices or articulation points is implemented in the API based on Tarjan’s
strongly connected components algorithm [26]. It also has a time complexity of O(|V |+
|E|). The implementation can be found in listing 5.12.

1 type articulationPointDetectionCalculation struct {

2 id float64

3 ids map[int64]float64

4 low map[int64]float64

5 articulationPoints map[int64]int64

6 }

7

8 func DetectArticulationPointsInGraph(graph *simple.UndirectedGraph) map[

int64]int64 {

9 apd := &articulationPointDetectionCalculation{

10 id: 0,

11 ids: make(map[int64]float64),

12 low: make(map[int64]float64),

13 articulationPoints: make(map[int64]int64),

14 }

15

16 visited := make(map[int64]bool)

17

18 nodes := graph.Nodes()

19

20 for nodes.Next() {

21 node := nodes.Node()

22

23 if !visited[node.ID()] {

24 detectArticulationPointsInGraphRecursive(apd , graph , node.ID(),

visited , node.ID(), -1)

25 }

26 }

27

28 return apd.articulationPoints

29 }

30

31 func detectArticulationPointsInGraphRecursive(

32 apd *articulationPointDetectionCalculation ,

33 graph *simple.UndirectedGraph ,

34 root int64 ,

35 visited map[int64]bool ,

36 at int64 ,

37 parent int64 ,

38) {

39 visited[at] = true

40 apd.id++

41 apd.low[at] = apd.id

42 apd.ids[at] = apd.id

43

44 children := 0

45

46 neighbours := graph.From(at)

48

47

48 for neighbours.Next() {

49 to := neighbours.Node().ID()

50

51 if to == parent {

52 continue

53 }

54

55 if visited[to] {

56 apd.low[at] = math.Min(apd.low[at], apd.ids[to])

57 } else {

58 detectArticulationPointsInGraphRecursive(apd , graph , root , visited ,

to, at)

59 apd.low[at] = math.Min(apd.low[at], apd.low[to])

60

61 if apd.ids[at] <= apd.low[to] && parent != -1 {

62 apd.articulationPoints[at] = at

63 }

64

65 children ++

66 }

67 }

68

69 if parent == -1 && children > 1 {

70 apd.articulationPoints[at] = at

71 }

72 }

Listing 5.12: Go Articulation Points Detection

5.1.13 Query Endpoint

As the querying function was defined as an optional requirement, it was decided to
implement the query endpoint as an early-stage proof of concept. Only the two basic
query options for cut edges and cut vertices are implemented. The previously described
algorithms for bridge and articulation point detection are reused. Instead of checking
for existence, the detected nodes and edges are returned and can thus be identified.

5.1.14 Infrastructure Endpoints

The API implements two additional endpoints for liveness and readiness. These are used
to monitor the status of the deployed application in Kubernetes.

5.1.15 Testing

Each endpoint is covered by an integration test. Because of the limited time, it was
decided to create a mocked repository to simulate access to the graph database. The
other option would have been to start a real graph database in the background on
each test run via Testcontainers. In addition, specific logic and calculations that are
implemented by the API itself are covered with unit tests.

49

5.1.16 Usage

All the endpoints contain annotations to generate an OpenAPI 2.0 specification. Using
Swagger UI the specification is rendered in an understandable and interactive form.
Additionally, the raw specification can be accessed directly by API consumers, to enable
them to generate API clients automatically based on it.

50

5.2 Data Collector

The main task of the Data Collector is to consume a graph data source and persist it in
the graph database. Depending on the source, the graph is imported once or continually.

5.2.1 Implementation

The application is implemented as a CLI and is controlled by provided parameters and
flags. The CLI is implemented with the Cobra library. Handling configurations is done by
Viper. Configurations can be provided via flags, referenced configuration files or through
set environment variables. The Data Collector supports two types of data sources when
importing a graph. JAGW is an example of an interaction with an external system and
GEXF files for a one-time file-based import. Since other data sources and formats should
be supported in the future, the import logic was implemented using the strategy pattern
[27]. The core logic of the import can stay generic, while other data source formats can
be added on top.

5.2.2 Jalapeño / JAGW

The JAGW offers two options for obtaining the network topology:

1. The JAGW Request Service has several endpoints to get the required data from
Jalapeño [28]. It is currently enough to call the GetLsNodes() and GetLsNodeEdges
() gRPC endpoints to receive the needed information.

2. To satisfy the live update requirement, the JAGW Subscription Service is used
to receive direct updates via gRPC [29]. Same as with the Request Service, the
base methods SubscribeToLsNodes()and SubscribeToLsNodeEdges() are used
to continuously receive the needed information.

Since the subscription endpoints are used, it needs to be ensured that the data is writ-
ten consistently to the database when the application is initializing. This is achieved by
subscribing to events first and writing them into a queue for later consumption. The
request endpoint is then called to retrieve the full topology at the time of the call. The
consumption of events kept in the queue can then begin.

Go offers an elegant solution in the form of channels [30]. They can be used to im-
plement a queue as previously described. Subscription events are continuously written
into channels, their processing only starts when the data returned by the request service
has been completely processed. The processing is handled by two separate go routines
that are concurrently running and are being kept alive.

51

5.2.3 GEXF

GEXF (Graph Exchange XML Format) is an XML-based language format that is used
to describe graphs [31]. Files in this format are able to be parsed and imported by the
Data Collector. Listing 5.13 contains a minimal example of how the structure of such a
file looks.

1 <?xml version=’1.0’ encoding=’utf -8’?>

2 <gexf xmlns="http: //gexf.net /1.2" version="1.2">

3 <graph defaultedgetype="undirected" mode="static">

4 <nodes >

5 <node id="1" label="XR -1">

6 </node>

7 <node id="2" label="XR -2">

8 </nodes >

9 <edges >

10 <edge source="1" target="2" id="0">

11 </edge>

12 </edges >

13 </graph >

14 </gexf>

Listing 5.13: GEXF Structure

5.2.4 Data Structure

The Neo4j graph database holds two types of data. Nodes and edges, which can both be
enriched with metadata. Edges are also referred to as relationships in Neo4j. Figure 5.1
shows how a graph is stored in the graph database.

Figure 5.1: Neo4j Graph Of The Provided INS network

Nodes
A node has the following properties:

• <id>: Internal Neo4j identifier

• Label: Display name of the node

52

• RouterID: ID of the associated router

• RouterKey: Key of the associated router

It was required to store both the RouterID and RouterKey due to how the JAGW is
designed. The RouterID is used to correlate nodes to edges when the edges are retrieved.
Nodes need to be added to the graph before edges can. While RouterID is used mainly
by the JAGW Request Service, RouterKey is used by the JAGW Subscription Service.
Due to this behavior, it is required to store both identifiers. An example of how a node
is stored can be found in figure 5.2.

Figure 5.2: Neo4j Node Of The Provided INS network

Edges
An edge has the following properties:

• relationshipType: CONNECTS_TO_HIGHER | CONNECTS_TO_LOWER

• <id>: Internal Neo4j identifier

• EdgeID: ID of the associated link

• EdgeKey: Key of the associated link

• FromRouterID: Start node of the edge

• ToRouterID: End node of the edge

It was required to use two types of relationships between nodes because Neo4j does
not natively support undirected relationships. Due to the reason that GDS just du-
plicates existing relationships when creating a projection of an undirected graph, a
solution was required that enables the consistent extraction of just one relationship
direction. Otherwise, the GDS graph would contain duplicated edges. The relationship
type CONNECTS_TO_LOWER indicates whether the directed edge connects from a node with
a higher RouterID to a lower one. CONNECTS_TO_HIGHER indicates the opposite. The
structure of how an edge is stored can be found in figure 5.3.

53

Figure 5.3: Neo4j Edge Of The Provided INS network

5.2.5 GDS Graph

To use the Neo4j GDS algorithms that are called via procedures in the API, a projection
of the existing graph in Neo4j needs to be created. The state of the graph at the moment
of creation is then kept in memory. The Data Collector is responsible for the creation
of these projections. This is done during the initial import of a graph. If a change
event from JAGW is received while an active subscription exists, the Data Collector
also regularly recreates the projection.

5.2.6 Testing

It was decided to only write some basic integration tests for the Data Collector. Using
Testcontainers a Neo4j database is started, and it is validated that both types of imports
still work. The GEXF import is tested using an example file and the JAGW is tested
via a Camouflage 1 gRPC server that provides mock responses.

5.2.7 Usage

How the Data Collector can be used is documented as part of the implementation via a
help command [14]. It is started as part of the deployment by a container orchestrator
or locally for development purposes.

1https://github.com/testinggospels/camouflage

54

https://github.com/testinggospels/camouflage

5.3 Frontend

The Frontend has the goal of displaying the calculated properties from the API and
displaying them visually and with explanations. It is based on React and written in
Typescript. For the state store, Redux toolkit as well as RTK Query for fetching and
caching API requests are used.

5.3.1 API Generation

With the help of RTK Query Code Generator for OpenAPI, a typed API client from an
OpenAPI schema defined in the API application is generated [32].

5.3.2 Dashboard - Page

The Dashboard is the main page in the current version. All required graph properties
are displayed and explained on this page.

5.3.3 Query View - Page

The Query View was introduced as an optional requirement to understand the network
even better and to use it as a debugging tool. Two pieces of information are currently
available. Which nodes are cut vertices and which links are cut edges.

5.3.4 Components

All properties are split into components to keep the React application reusable, modular,
and easier to understand.

55

5.3.5 Navigation - Component

Depending on the functionality of the page, the navigation bar contains additional fea-
tures as shown in figures 5.4 and 5.5.

• Refresh

• Export

• Import

Figure 5.4: Graph Analyzer Frontend - Navigation - Dashboard

Figure 5.5: Graph Analyzer Frontend - Navigation - Query View

5.3.6 Refresh - Component

The refresh button invalidates the RTK Query API cache and re-requests the data from
the API on click to get the latest graph information and properties.

1 onClick ={() => {

2 dispatch(graphAnalyzerAPI.util.invalidateTags ([’graph -properties ’]));

3 }}

Listing 5.14: Invalidating RTK Query Tags

5.3.7 Export - Component

The export function makes it possible to export the current status of the network to a
JSON file and later read it back in using the import function described in section 5.3.8.
The name of the JSON file is based on the network name that may have been specified
in the Data Collector. The values are extracted from the Redux Store, converted to
JSON and downloaded to the user’s download folder with the help of file-saver 2.

2https://www.npmjs.com/package/file-saver

56

https://www.npmjs.com/package/file-saver

5.3.8 Import - Component

The import function lets the user select the previously exported JSON file and display
the information it contains. The function was developed to compare different networks
as simply as possible without changing the underlying network via Data Collector. It is
important to know that the import function does not have any interaction with the API
and everything is processed locally.

5.3.9 Graph - Component

The graph component displays the network graph using Sigma.JS, which is using WebGL
under the hood. Graphology in combination with forceatlas2 is used to handle the graph
data model and algorithm [33]. For performance reasons, the layout computation has
been encapsulated inside a web worker to not block the render process. The nodes are
given different sizes, depending on the degree of the respective node. They also get
random colors assigned to improve visibility on high-degree nodes. It is also possible to
click on an individual node and thus see what other connections it has to other nodes.

57

5.3.10 Graph property - Component

For the graph properties, strict attention was paid to keeping the components as modular
as possible and making them reusable. The properties have been split according to the
function it is supposed to represent. A total of 6 components were created to cover all
use cases.

• Base component

– Correlation component

– Distribution component

– MultiValue component

– Value component

• InformationDialog component

Base component

All graph properties are using this component. It defines the basic look and allows
further specifying the children using React props.

Correlation component

The correlation component is about displaying a line chart using Chart.js [34].

Distribution component

The distribution component is about displaying a bar chart using Chart.js [35].

MultiValue component

This component is used to render multiple lines of text in a card.

Value component

The most used component is the value component. It represents a single value.

58

5.4 Neo4j Image

A custom Neo4j image is needed because of the reliance on the APOC 3 and GDS plugins.
For deployment on Kubernetes using the official Helm chart, Neo4j recommends building
a custom image [36].

5.4.1 Implementation

The image is built by the Gitlab CI/CD pipeline. It is a so-called multi-stage build
[37]. The build process is divided into two steps. In the first step, the required sources
(in this case plugins) are downloaded using an Alpine image and then integrated into a
productive Neo4j image. This has the advantage that the required image size remains
relatively small.

5.4.2 Usage

The pipeline runs on normal commits as well as on tags. The images can then be
obtained from the Container Registry of the GitLab repository as seen in figure 5.6.

Figure 5.6: Available Neo4j Image Tags

3https://neo4j.com/labs/apoc

59

https://neo4j.com/labs/apoc

5.5 Helm Chart

In order to carry out the deployment quickly and without much effort, a helm chart was
created for the different components. The Helm chart consists out of 5 parts:

1. Neo4j helm dependency

2. API

3. Data Collector

4. Standalone Frontend

5. Micro-Frontend (for the Central Frontend)

5.5.1 Implementation

The last four components mentioned each have their sub-folder in the ”templates” folder,
while the Neo4j helm dependency can be found in the ”charts” folder. To adapt the
deployment, the values.yaml file can be easily configured so that it meets the needs of
another infrastructure.

5.5.2 Usage

The usage of the Helm Chart is well documented in the README of the repository. After
running the Helm Chart, the output displays the deployed URLs as seen in listing 5.15.

1 Release "graph -analyzer" has been upgraded. Happy Helming!

2 NAME: graph -analyzer

3 LAST DEPLOYED: Wed Dec 7 17:51:48 2022

4 NAMESPACE: graph -analyzer

5 STATUS: deployed

6 REVISION: 61

7 TEST SUITE: None

8 NOTES:

9 Access your graph -analyzer:

10

11 API:

12 https ://api -sa -graph -properties.stu.network.garden

13

14 Standalone Frontend:

15 https :// frontend -sa -graph -properties.stu.network.garden

16

17 Micro Frontend (Central Frontend):

18 https :// frontend -micro -sa -graph -properties.stu.network.garden

Listing 5.15: Helm Deployment Output

60

Chapter 6

Results

6.1 Deployment

The Graph Analyzer system is currently deployed to a Kubernetes cluster using the
Helm Chart in section 5.5. The cluster is provided by the INS and can only be accessed
from the INS network or via VPN.

• Frontend: https://frontend-sa-graph-properties.stu.network.garden

• API: https://api-sa-graph-properties.stu.network.garden

An overview of the deployment in Kubernetes can be found in figure 6.1.

61

https://frontend-sa-graph-properties.stu.network.garden
https://api-sa-graph-properties.stu.network.garden

Figure 6.1: Current Deployment

62

6.2 Use Cases

Table 6.1 lists all defined use cases and indicates via traffic light colors if they have been
fulfilled.

ID Use case

FR-01 Required: Show dashboard

FR-01.a Required: Dashboard - Show number of nodes

FR-01.b Required: Dashboard - Show number of edges

FR-01.c Required: Dashboard - Show degree correlation

FR-01.d Required: Dashboard - Show assortativity coefficient

FR-01.e Required: Dashboard - Show degree distribution

FR-01.f Required: Dashboard - Show cut edge status

FR-01.g Required: Dashboard - Show network diameter

FR-01.h Required: Dashboard - Show average clustering coefficient

FR-01.i Optional: Dashboard - Show articulation point status

FR-01.j Optional: Dashboard - Show density

FR-01.k Optional: Dashboard - Show graph connectivity

FR-01.l Optional: Dashboard - Show graph communities

FR-01.m Required: Dashboard - Current state of network

FR-01.n Optional: Dashboard - Export graph properties

FR-01.o Optional: Dashboard - File-based state of the network

FR-01.p Required: Dashboard - Get background information

FR-01.q Optional: Dashboard - Graph visualization

FR-02 Optional: Show query view

FR-02.a Optional: Query view - Filter for properties

FR-02.b Optional: Query view - Show nodes / edges

Table 6.1: Fulfillment Of Use Cases

63

6.3 NFR Validation

Table 6.2 contains the results of the NFR validation process defined in table 2.1. Traffic
light colors indicate if an NFR has been met.

ID Result

NFR-01 The API response time is logged by using Apache Bench 1. 100 concurrent
requests and 1’000 requests were sent, and the output can be found in list-
ing 6.1. The output shows that the API can handle 100 concurrent users and
that the NFR is therefore met.

NFR-02 Importing a large graph composed of 10’000 nodes only takes a few seconds
as can be seen in listing 6.2. The API and Frontend are also able to handle
it in all but one case. The calculation of the diameter graph property can
take up to a few minutes to complete. This is due to the underlying nature
of this property, as all shortest paths in the graph need to be calculated.

NFR-03 To test the self-healing capability of the applications, it was tested if the API
restarts after it has been killed. As can be seen in listing 6.3, the API was up
and running again after about 7 seconds without any manual intervention.

NFR-04 It was tried to cover most cases where a user can enter invalid data. The Data
Collector checks if all necessary or optional flags have been set correctly. The
GEXF input is checked to see whether it is a valid XML and if the required
GEXF types are present in the file. In the Frontend the only user input is the
importable Graph Analyzer file that has been previously exported. Only a
very rudimentary check of the imported data takes place. The API validates
input data when handling a request and throws an error if not successful.

NFR-05 All applications were created cloud-native right from the start. Thus, all
applications run in containers and are created and validated by pipelines.
Logging takes place directly after stdout/stderr and the logic of the import
and the backend is divided into its services.

NFR-06 Each part of the system has its pipeline that performs linting, testing, build-
ing and tagging of the container images.

NFR-07 Despite the likely usage of the Graph Analyzer system on desktop-sized de-
vices, the Frontend has been programmed in a responsive way that adapts to
smaller devices and viewports. Figure 6.2 shows the dashboard on a mobile
device.

NFR-08 The graph visualization component in the Frontend is isolated in its compo-
nent. In addition, the full graph provided by the API is not in a graphology-
specific format and is converted to the correct format when used in the com-
ponent itself.

Table 6.2: NFR Validation

1https://httpd.apache.org/docs/2.4/programs/ab.html

64

https://httpd.apache.org/docs/2.4/programs/ab.html

ab -n 1000 -c 100

https ://api -sa-graph -properties.stu.network.garden/api/

graph -property/degree -correlation

...

Concurrency Level: 100

Time taken for tests: 1.807 seconds

Complete requests: 1000

Failed requests: 0

Total transferred: 314000 bytes

HTML transferred: 107000 bytes

Requests per second: 553.39 [#/sec] (mean)

Time per request: 180.706 [ms] (mean)

Time per request: 1.807 [ms]

(mean , across all concurrent requests)

Transfer rate: 169.69 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 36 68 21.1 62 156

Processing: 37 97 93.8 64 411

Waiting: 37 97 93.8 64 411

Total: 84 166 104.8 128 493

Percentage of the requests served within a certain time (ms)

50% 128

66% 142

75% 158

80% 169

90% 260

95% 476

98% 484

99% 488

100% 493 (longest request)

Listing 6.1: Apache Bench Output

./data -collector gexf -f testgraph/graph_10000.gexf

INFO [2022 -12 -14 T08 :31:08+01:00] Database connection established

INFO [2022 -12 -14 T08 :31:10+01:00] Using gexf file testgraph/graph_10000.

gexf

INFO [2022 -12 -14 T08 :31:11+01:00] Parsed 10000 nodes from input file

INFO [2022 -12 -14 T08 :31:13+01:00] Parsed 52722 edges from input file

INFO [2022 -12 -14 T08 :31:22+01:00] Finished importing gexf file

Listing 6.2: Data Collector 10’000 Nodes Import Output

while true; do date; curl -s -o /dev/null -w "%{ http_code }" "https ://

api -sa -graph -properties.stu.network.garden/api/graph -property/degree -

correlation "; sleep 1; echo; done

Wed Dec 14 08:40:43 CET 2022

200

Wed Dec 14 08:40:44 CET 2022

200

Wed Dec 14 08:40:45 CET 2022

65

404

Wed Dec 14 08:40:46 CET 2022

404

Wed Dec 14 08:40:47 CET 2022

404

Wed Dec 14 08:40:49 CET 2022

404

Wed Dec 14 08:40:50 CET 2022

404

Wed Dec 14 08:40:51 CET 2022

404

Wed Dec 14 08:40:52 CET 2022

404

Wed Dec 14 08:40:53 CET 2022

200

Wed Dec 14 08:40:54 CET 2022

200

Listing 6.3: Self Healing Test Output

Figure 6.2: Responsive Frontend On A Smaller Viewport

66

6.4 API

Figure 6.3 shows an excerpt of the final OpenAPI specification displayed in Swagger-
UI. All implemented graph properties with their respective endpoints can be seen. The
query endpoint is also present in addition to the liveness and readiness endpoints.

Figure 6.3: Swagger UI

67

6.5 Frontend

In this section, the final implementation of the Frontend is illustrated with the help of
screenshots.

6.5.1 Dashboard

The dashboard can be seen in figure 6.4. It contains the graph visualization and indi-
vidual graph property tiles. In addition, the navigation containing the refresh, import
and export buttons can be seen.

Figure 6.4: Graph Analyzer Frontend - Dashboard

68

6.5.2 Query View

The query view can be found in figure 6.5. On the left, the two current query options
can be seen. The current graph is visualized above the two result tables for nodes and
edges.

Figure 6.5: Graph Analyzer Frontend - Query View

69

6.5.3 Graph Visualization

Figures 6.6 and 6.7 show the graph visualization component in the Frontend.

Figure 6.6: Graph Analyzer Frontend - Graph Visualization

Figure 6.7: Graph Analyzer Frontend - Graph Visualization With Selected Node

70

6.5.4 Average Clustering Coefficient

Figures 6.8 and 6.9 display the mandatory average clustering coefficient property and
its description.

Figure 6.8: Graph Analyzer Frontend - Average Clustering Coefficient Tile

Figure 6.9: Graph Analyzer Frontend - Average Clustering Coefficient Description

71

6.5.5 Connected

Figures 6.10 and 6.11 display the optional connected property and its description.

Figure 6.10: Graph Analyzer Frontend - Connected Tile

Figure 6.11: Graph Analyzer Frontend - Connected Description

72

6.5.6 Degree Assortativity Coefficient

Figures 6.12 and 6.13 display the mandatory degree assortativity coefficient property
and its description.

Figure 6.12: Graph Analyzer Frontend - Degree Assortativity Coefficient Tile

Figure 6.13: Graph Analyzer Frontend - Degree Assortativity Coefficient Description

73

6.5.7 Degree Correlation

Figures 6.14 and 6.15 display the mandatory degree correlation property and its descrip-
tion.

Figure 6.14: Graph Analyzer Frontend - Degree Correlation Tile

Figure 6.15: Graph Analyzer Frontend - Degree Correlation Description

74

6.5.8 Degree Distribution

Figures 6.16 and 6.17 display the mandatory degree distribution property and its de-
scription.

Figure 6.16: Graph Analyzer Frontend - Degree Distribution Tile

Figure 6.17: Graph Analyzer Frontend - Degree Distribution Description

75

6.5.9 Density

Figures 6.18 and 6.19 display the optional density property and its description.

Figure 6.18: Graph Analyzer Frontend - Density Tile

Figure 6.19: Graph Analyzer Frontend - Density Description

76

6.5.10 Diameter

Figures 6.20 and 6.21 display the mandatory diameter property and its description.

Figure 6.20: Graph Analyzer Frontend - Diameter Tile

Figure 6.21: Graph Analyzer Frontend - Diameter Description

77

6.5.11 General Information Description

Figure 6.22 displays the optional general information of the analyzed graph.

Figure 6.22: Graph Analyzer Frontend - General Information Tile

78

6.5.12 No Cut Edges

Figures 6.23 and 6.24 display the mandatory cut edges property and its description.

Figure 6.23: Graph Analyzer Frontend - No Cut Edges Tile

Figure 6.24: Graph Analyzer Frontend - No Cut Edges Description

79

6.5.13 No Cut Vertex

Figures 6.25 and 6.26 display the optional cut vertex property and its description.

Figure 6.25: Graph Analyzer Frontend - No Cut Vertex Tile

Figure 6.26: Graph Analyzer Frontend - No Cut Vertex Description

80

Chapter 7

Quality Measures

7.1 Git Process

It was decided to use a multi-repo approach, which involves splitting the system’s source
code across multiple repositories.

7.1.1 Workflow

Every task is present as an issue in Jira. The issue is attached to a corresponding
application milestone. Every issue is equal to a branch, meaning that a separate branch
is created for every task. When a task is completed, the feature branch is merged into
the main branch. Before a review is requested, the assigned person should make sure
that the feature branch incorporates the latest changes from the main branch and is
therefore considered mergeable. If that has been done, a merge request is created and a
reviewer is assigned. If the review passes, the reviewer approves the merge request and
the feature branch is merged into the main branch. The feature branch is deleted as
soon as the merge request has been merged.

7.1.2 Code Review

As already described in section 7.1.1, merge requests are used in GitLab. To do this, a
merge request is created and the other person (since the team is currently only composed
of two people) is assigned as a reviewer. The reviewing person is then responsible for
conducting the review and making suggestions for improvements. In the end, the merge
request is approved and merged. GitLab features that support code reviews like threads
and suggestions are used.

81

7.2 CI/CD

GitLab’s CI/CD pipeline is used to keep code quality standards high and simplify pro-
cesses.

7.2.1 API and Data Collector

The same pipeline is used for the Data Collector and API, as both are Golang-based
applications. The following 4 stages are used for the API and Data Collector pipeline:

• lint

• test

• build

• release

Depending on whether the commit is in the main branch or not, other checks run in the
pipeline. Execution of the API pipeline triggered by a tag is shown in figure 7.1.

Figure 7.1: API Pipeline For Main Branch Tags

lint

During the lint stage, it is checked whether the code is correctly formatted and if there
are any obvious flaws or bugs that can be discovered using static code analysis.

test

During the test stage, various checks are performed. GitLab-specific tests like secret
detection and code quality are used. Other checks including the test suite, test coverage
and verifying license compliance are also executed.

82

build

During the build stage, the container image is built and pushed to the container reposi-
tory.

release

Depending on whether it is a commit in the main branch or a tag, the correct image
tag is set during the release stage so that a release tag like api:1.0.0 can be set during
deployment.

Artifacts

To support the reviewer, some artifacts created in the pipeline are displayed directly in
the merge request. Thus, an initial assessment of the quality of the merge request is
directly possible. An example of the displayed artifacts can be seen in figure 7.2.

Figure 7.2: API Merge Request With Artifacts

83

7.2.2 Frontend

The following 5 stages are used for the Frontend pipeline:

• install

• lint

• test

• build

• release

Depending on whether the commit is in the main branch or not, other checks run in the
pipeline. Execution of the Frontend pipeline triggered by a tag is shown in figure 7.3.

Figure 7.3: Frontend Pipeline For Main Branch Tags

install

In this stage, the required npm modules are installed and cached for 30 minutes so that
they do not need to be reinstalled for each stage.

lint

During the lint stage, eslint 1 statically analyzes the code to find obvious problems.

test

During the test stage, GitLab-specific checks like secret detection and code quality are
executed.

build

During the build stage, the container image is built and pushed to the container repos-
itory. There are two different builds for the Frontend. A standalone React app and a
Micro Frontend app, which can be used for the Central Frontend.

1https://eslint.org

84

https://eslint.org

release

Depending on whether it is a commit in the main branch or a tag, the correct image
tag is set during the release stage so that a release tag like frontend:1.0.0 can be set
during deployment.

7.3 Metric Tools

7.3.1 Test Coverage

As already mentioned, the test coverage is displayed in a merge request and is an impor-
tant indicator during the review. The test-coverage visualization feature from GitLab
also shows whether new lines of code are covered by a test case or not [38]. For Git-
Lab to understand the code coverage report, the output from the gotestsum 2 library is
converted to the required Cobertura format using gocover-cobertura 3.

7.3.2 SonarQube

Since the SonarQube community edition has limited functionality, no continuous checks
are done. The checks are done on a manual basis. An A grade was received for both the
API and the Data Collector as seen in figure 7.4.

Figure 7.4: SonarQube Report For The Data Collector And API

2https://github.com/gotestyourself/gotestsum
3https://github.com/t-yuki/gocover-cobertura

85

https://github.com/gotestyourself/gotestsum
https://github.com/t-yuki/gocover-cobertura

Chapter 8

Conclusion

8.1 Outlook

The current implementation of the Graph Analyzer provides a solid foundation for future
works in the area of network topology research. The system is designed in a way that
allows for the integration of new properties with minimal effort. The Data Collector is
also easily extendable to accommodate additional data sources. Additionally, the query
view is constructed in a manner that facilitates easy extension. A follow-up bachelor
thesis will use the developed system to research network model generation.

8.2 Limitations

Currently, the system is designed to handle undirected and unweighted graphs. This
has consequences on the calculation of certain properties like the diameter. Weights are
currently not considered when it is calculated. Adjusting the system for this use case is
however possible with a reasonable amount of effort.

An optional use case involving the detection of graph communities was not pursued
due to time constraints. A graph community is defined as a subset of nodes that have a
high level of connectivity within the subset and a lower level of connectivity with nodes
in other communities within the same graph. To effectively convey this information, it
would be necessary to expand the graph visualization.

The current validation of user input is basic. There are opportunities to enhance this
process, such as validating the GEXF schema in the Data Collector or comparing the
provided JSON file with the desired structure during the import in the Frontend.

The current Helm chart only supports Jalapeño as a data source. This limitation is
due to the primary focus on the internal operation of the system using Jalapeño.

86

Part II

Project Documentation

87

Chapter 9

Project Plan

9.1 Project Plan

9.1.1 Development Process

For the project, the Rational Unified Process (RUP) is used for planning in the long
term. For short-term planning within iterations, Scrum will be used. RUP splits the
project into the following 4 phases:

9.1.2 Phases

1. Inception: Vision, Initial risk assessment, Project description

2. Elaboration: Use-case model, Description of software architecture

3. Construction: Building the software

4. Transition: Rollout, Quality checks

88

9.1.3 Project Milestones

Progress is tracked via two milestone types, project and application. Project milestones
are based on the project phases and show the progress of the project as a whole. Appli-
cation milestones are more geared toward the actual development of the system. They
track specific parts or features of the to-be-developed system. Seven project milestones
are defined for the project, these are present as epics in the issue tracker. Epics are
not exclusive to these milestones and can also contain issues that span multiple project
phases. Project milestones are present as epics in the issue tracker, but no issues will
be assigned to them. They are mainly there to give a better context to the roadmap.
Table 9.1 lists all project milestones.

Milestone Planned

M1 - Project Plan Semester week 2 (27.09.2022)

M2 - Requirements & Research Semester week 4 (11.10.2022)

M3 - End of Elaboration Phase Semester week 6 (25.10.2022)

M4 - Architecture Semester week 7 (01.11.2022)

M5 - Alpha Semester week 10 (22.11.2022)

M6 - Beta Semester week 12 (06.12.2022)

M7 - Final Submission End of semester week 14 (23.12.2022)

Table 9.1: Project Milestoness

9.1.4 Application Milestones

There are six application milestones defined. These application milestones also act as
epics in the issue tracker and can be mapped to parts of the system. Table 9.2 lists all
application milestones.

Milestone Planned

AM1 - Proof of Concept 18.10.2022

AM2 - Prototype 08.11.2022

AM3 - Dashboard MVP 29.11.2022

AM4 - Dashboard Graph Visualization 29.11.2022

AM5 - Dashboard File-Based View 06.12.2022

AM6 - Query View 06.12.2022

Table 9.2: Application Milestones

89

9.1.5 Roadmap

The roadmap and schedule, which includes planned sprints and milestones, are presented
in figures 9.1 and 9.2.

Figure 9.1: Roadmap

Figure 9.2: RUP Phases With Project Milestones And Sprints

90

9.1.6 Key Dates and Numbers

• Project start: 19.09.2022

• Project end: 23.12.2022 17:00

• Time budget: 480 hours (1 ECTS = 30 hours)

• Working days: Tuesday, Saturday, Sunday

9.2 Meetings

9.2.1 Status Meetings

It is planned that there will be weekly meetings with the advisors. They are scheduled
for each Tuesday afternoon but can be skipped if there is no need for one (for example
in the Construction phase). Physical presence at the meetings is preferred, but remote
participation is possible if needed.

9.2.2 Scrum Meetings

A weekly scrum is done instead of a daily one. The reason is the part-time work sched-
ule of the team members and that a big part of the work is planned to happen on the
weekends.
In addition, there are previously documented status meetings with the advisors. Ta-
ble 9.3 lists the planned Scrum meetings.

Meeting Frequency When Where

Sprint Plan-
ning

Every two weeks (before
every sprint)

Tuesday, 15:00 - 18:00 Rapperswil

Sprint Review Every two weeks (after
every sprint)

Tuesday, 15:00 - 18:00 Rapperswil

Sprint Retro-
spective

Every two weeks (after
every sprint)

Tuesday, 15:00 - 18:00 Rapperswil

Weekly Scrum Every week Saturday, 15:00 - 16:00
(Backup: Sunday: 15:00 -
16:00)

Online

Backlog Re-
finement

Every other week (with
Weekly Scrum)

Saturday, 15:00 - 16:00
(Backup: Sunday: 15:00 -
16:00)

Online

Table 9.3: Scrum Meetings

91

9.3 Roles

The role assignment can be seen in table 9.4.

Role Member(s)

Minute Keeper Pascal Christen

Scrum Master Lukas Ribi

Product Owner Pascal Christen

Developer Lukas Ribi, Pascal Christen

Advisors Laurent Metzger, Severin Dellsperger

Table 9.4: Scrum Roles

9.3.1 Details About The Assigned Roles

• Scrum roles (Scrum Master, Product Owner, Developer) as defined in Scrum

– Managing the product backlog is the main responsibility of the product owner,
however, the actual work concerning it is done collaboratively anyway.

• Minute keeper: Takes notes during the status and team meetings.

92

9.4 Risk Management

9.4.1 Risks

Legend:

• Likelihood: Rare, Unlikely, Possible, Likely, Certain

• Severity: Negligible, Marginal, Critical, Catastrophic

• Impact: Low, Medium, High, Very High

ID Topic Description Likelihood Severity Impact

R01 Knowledge The team members lack knowledge
concerning the technical or theoret-
ical aspects of the project. This can
delay phases of the project and lead
to missed milestones. Missing theo-
retical knowledge hugely influences
the project as understanding is a
key requirement for displaying the
graph properties correctly.

Rare Critical Medium

R02 Performance It turns out that calculating certain
graph properties of the network re-
quires a lot of processing power or
time. The calculation of other graph
properties could be affected by this
and the displayed graph properties
are a mix of current and outdated
data.

Possible Marginal Medium

R03 Health and
Safety

A team member gets sick or is in-
volved in an accident. The mem-
ber is unable to work for a cer-
tain period and the pressure on the
other team member increases signif-
icantly. This can lead to project de-
lays and not implemented features.

Possible Critical High

R04 Communi-
cation

There is no or insufficient communi-
cation inside the team or with the
advisors. A misconception could be
the result of the lack of communica-
tion. Therefore, the final result may
not have the desired outcome.

Rare Marginal Low

93

R05 Scope There are too many mandatory re-
quirements that can not be fulfilled,
or the existing ones are too big for
the scope of this thesis. This can
lead to not implemented features

Unlikely Critical Medium

R06 Technology In the middle of the construction
phase, the used technology stack
needs to be changed because of tech-
nical or personal limitations. The fi-
nal result is at high risk because of
this huge conceptional change.

Rare Critical Medium

R07 External
Hazards

There is a non-influenceable outside
event happening that prevents work
on the project as is. This could be
a winter storm, energy blackout or
even war for example. Work on the
project is not possible as done pre-
viously and the final form of the
project will vary greatly from the
planned goals.

Possible Critical High

Table 9.5: Risk Management

94

9.4.2 Risk Matrix

Figure 9.3: Risk Matrix

9.4.3 Risk Management and Mitigation

Besides the external hazard risk, every mentioned risk in table 9.5, especially those with
”medium” and ”high” impact according to the risk matrix in figure 9.3, can be mitigated
to a certain degree by engaging via direct communication, frequent meetings and status
updates. The mitigations are listed in table 9.6.

ID Mitigation / Action

R01 During the elaboration phase, the research (book) was able to be done and the
prototype with all mandatory graph properties was implemented.

R02 During the elaboration phase benchmark were done. Neither the backend nor
the graph database showed very slow performance under real data conditions.
With the project advisors, it was agreed upon that the system is for ”educational
research” and not a live monitoring system, where the properties needed to be
calculated instantly. It can thus be concluded that the likelihood and severity
decrease to Unlikely and Negligible.

R03 There is nothing one can do about external hazard risks (besides good planning).

R04 After 5 weeks of working together, no obvious lack of communication or misun-
derstandings occurred. Therefore, the severity is decreased to Negligible.

95

R05 During the elaboration phase, research was performed and a prototype with all
mandatory graph properties was implemented. In this case, the severity decreased
to marginal.

R06 Technologies were evaluated with appropriate detail and it is not expected any-
thing breaks or does not fulfill defined requirements. Considering that, the sever-
ity decreases to marginal.

R07 As mentioned before, there is nothing one can do about external hazard risks
(besides good planning).

Table 9.6: Risk Mitigation

9.5 Planning Tools

9.5.1 Issue Tracker

Jira is used to track issues and handle project management as a whole. From experience,
it was known that GitLab’s issue tracker needs a lot of workarounds for a Scrum workflow.
Thus, it was decided to use a tool that supports it natively, namely Jira.

9.5.2 Time Tracker

Time tracking is done directly in Jira on tickets. Every team member is responsible for
tracking his spent time on the correct ticket.

96

Part III

Appendix

97

Personal Reports

9.6 Lukas Ribi

I am pretty happy with how this thesis turned out. Collaboration with Pascal went
without a hitch, this was already the case in previous projects. The topic that we chose,
turned out to be the right choice. We wanted to do our thesis about a topic that we
were not familiar with yet but still interested us. As we both already work professionally,
we wanted to do something that included a research part on an unfamiliar topic. The
initially given requirements were reasonable and left us a lot of room for our ideas. It was
great that the advisors gave us a lot of freedom over how we implemented the system.
They were responsive and helpful when we had questions or needed some advice. I was
also able to use some tools in the implementation that I had on my bucket list. Graph
databases, Redux, gRPC and Go channels were new tools that I was able to use as part
of this thesis. Not continuing work on the documentation during the implementation
phase is something that I would classify as a mistake that we made. In the bachelor
thesis, I will aim to improve on this.

9.7 Pascal Christen

Overall, I believe our thesis was a complete success due to the strong communication
and teamwork between Lukas and me. We were able to utilize each other’s strengths
effectively and had productive discussions with our advisors. The topic of our thesis was
engaging and I enjoyed the challenge of balancing scientific research with implementing
our solution. The tools we used helped streamline our work and make it more efficient.
If I had to change one thing, I would have utilized the ”Toogle Track” tool for more
extensive time tracking earlier on in the process. During this time, I had the opportunity
to learn about a diverse range of new technologies or further expand my understanding
of those I was already familiar with.
I want to express my gratitude to Lukas for the excellent collaboration and to Laurent
Metzger and Severin Dellsperger for their valuable support.

98

Time Tracking Report

Figure 9.4 shows the time evaluation for the project. Practically all of the available 480
hours were used. The time was divided equally between the two team members.

Figure 9.4: Time Tracking Report

99

Meeting Minutes

100

Weekly Meeting SW1 - 20.09.2022 / 16:00

Participants

• Laurent Metzger

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Introduction to SA

Notes

• Integration into Central Frontend

• Goal is a working system

• Mocking a large network is out of scope for this SA

• Multiple graph properties needed:

– Degree distributions

– Degree correlations

– Cut edges

– Assortativity coefficient

– Clustering coefficient

– Network diameter

– ...

• Book: A First Course in Network Science

• No RBAC needed

• Filtering (e.g. Router with only 2 edges, ...) (maybe optional)

To-Do

• Create a project plan

• Start research on graph properties

• Start work on use cases

• Grant GitLab permissions to supervisors

101

Weekly Meeting SW2 - 27.09.2022 / 16:00

Participants

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Demonstration of ArangoDB, Central Frontend, Grafana (optional)

• Show current status

Notes

• No need to use an existing CI (Corporate Identity) & CD (Corporate Design)

• Use cases:

– Split graph properties into separate use cases

– Visualization of the graph is mandatory (no need to map the location)

– No need to add the Central Frontend to the use case diagram

• NFR:

– Possibility to have 10’000 nodes in a sparse network

– Frontend is accessible on mobile and desktop browsers

To-Do

• VPN access for INS (Severin)

• Deploy Jalapeño API Gateway (Severin)

• Network screenshot (Severin)

• Create a use case diagram and add a brief description

• Add alpha milestone (SW10)

• Ask Laurent Metzger about documents we need to sign

102

Weekly Meeting SW3 - 04.10.2022 / 16:00

Participants

• Lukas Ribi (Remote)

• Pascal Christen (Remote)

• Laurent Metzger (Remote)

Agenda

• Show current status (Jira, Documentation)

• Question about documents we have to sign

Notes

• Idea: Compare different networks (Sunrise, Swisscom, UPC) - Export/Import. No
need to be implemented but keep it in mind

• Milestone 1 reached (FR/NFR) and approved

• There is no need to sign a document right now (the license will be open source)

To-Do

• -

103

Weekly Meeting SW4 - 12.10.2022 / 09:00

Participants

• Laurent Metzger

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Current status

• Architecture Q&A

• Bug in Jalapeño

Notes

• Architecture:

– Query view will be a fundamental component of this system (BA/INS/another
thesis)

– Therefore a Jalapeño independent GraphDB is ok

– No need to have ”live updates” in the Frontend. It is an analysis tool, not a
monitoring system

– Calculating the properties on demand is ok in the beginning. Outlook: Tasks
like caching or auto-updates can be implemented in another thesis

– No need to store link properties (ASN, Area id, ...) in the GraphDB for now

– Links can be seen as undirected in this SA

– Both advisors like our architectural approach

To-Do

• Severin will debug Jalapeño

104

Weekly Meeting SW5 - 18.10.2022 / 16:00

Participants

• Laurent Metzger

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Current status

– Wireframes

– GraphDB

– API

• Open bugs

Notes

• Query-view - accordion may be needed

• GraphDB (Licenses): Neo4j - ok

• API: Rest - ok

To-Do

• Severin will provide network logins to test gRPC subscriptions

• Severin will update us regarding the Jalapeño link bug

105

Weekly Meeting SW6 - 25.10.2022 / 16:00

Participants

• Laurent Metzger

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Current status

– Neo4j - OK

– JS graph library - OK

– Architecture - OK

– API - OK

• Deployment

– Single Helm chart

– No need to deploy it with CI/CD

• Open bugs

– gRPC subscription for LsNodeEdges will be implemented in 3 weeks by the
INS

• Next week?

– No meeting due to Allerheiligen

Notes

• Degree correlations vs Assortativity coefficient - Slides from Laurent

• General Project: On track and looks good to the supervisors

To-Do

• Deploy k8s Cluster - Severin

• Send the graph properties document to us - Laurent

106

Weekly Meeting SW8 - 09.11.2022 / 15:00

Participants

• Laurent Metzger (Remote)

• Severin Dellsperger (Remote)

• Lukas Ribi (Remote)

• Pascal Christen (Remote)

Agenda

• Current status

– C4 Model - ok

– Data Collector - ok

– deployment (helm) - ok

– API - ok

• Open bugs

– gRPC subscription for LsNodeEdges - PR open. Should be done in 1 week

• BA - Follow-up thesis possible. We will discuss it in the next meeting.

Notes

• Pagination - Use it if needed and when it makes sense

To-Do

• -

107

Weekly Meeting SW9 - 15.11.2022 / 16:00

Participants

• Laurent Metzger

• Severin Dellsperger

• Lukas Ribi

• Pascal Christen

Agenda

• Current status

– Frontend - ok

• gRPC subscriptions

– Severin demonstrated the gRPC subscription by taking up/down router-
s/links

• BA - Follow-up thesis possible. We will discuss it in the next meeting.

Notes

• Presentation in the last week (in English)

To-Do

• -

108

Weekly Meeting SW11 - 29.11.2022 / 16:00

Participants

• Severin Dellsperger

• Lukas Ribi

• Pascal Christen

Agenda

• Show Current status to Severin

Notes

• -

To-Do

• -

109

Weekly Meeting SW12 - 06.12.2022 / 16:00

Participants

• Laurent Metzger

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Show Current status

– All good

• Follow-up thesis (BA)

– Not ready now. Laurent Metzger will have a meeting with Cisco later this
week

• Central Frontend (CSS)

– Because of some problems (CSS integration, Variables, ...) the Central Fron-
tend is not mandatory for the final project.

Notes

• Presentation will be held in the last week (INS & Cisco)

To-Do

• Laurent Metzger will send us a brief description of the BA thesis until Monday
morning.

110

Weekly Meeting SW13 - 13.12.2022 / 16:00

Participants

• Laurent Metzger (Remote)

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

Agenda

• Feedback Graph properties

• Question about last week (presentation)

Notes

• Maybe public deployment in January (for Cisco, Swisscom, ...)

To-Do

• Sign document (Laurent)

• Provide feedback for Graph properties (Laurent)

111

Weekly Meeting SW14 - 20.12.2022 / 16:00

Participants

• Laurent Metzger (Remote)

• Severin Dellsperger (Remote)

• Lukas Ribi

• Pascal Christen

• Viewers from the INS (Presentation)

Agenda

• Presentation

• Feedback

Notes

• Cooperation was good from both sides. And it was fun working with us. The
supervisors are very satisfied with what has been achieved.

• A date for the discussion of the bachelor thesis was agreed on

To-Do

• -

112

Bibliography

[1] F. Menczer, S. Fortunato, and C. A. Davis, A First Course in Network Science.
Cambridge: Cambridge university press, 2020, isbn: 978-1-108-47113-8.

[2] J. W. ESSAM and M. E. FISHER, “Some Basic Definitions in Graph Theory,”
Reviews of Modern Physics, vol. 42, no. 2, pp. 271–288, 1970-04-01. doi: 10.1103/
RevModPhys.42.271. [Online]. Available: https://link.aps.org/doi/10.1103/
RevModPhys.42.271 (visited on 2022-11-21).

[3] L. Tian, A. Bashan, D.-N. Shi, and Y.-Y. Liu, “Articulation points in complex net-
works,” Nature Communications, vol. 8, no. 1, p. 14 223, 1 2017-01-31, issn: 2041-
1723. doi: 10.1038/ncomms14223. [Online]. Available: https://www.nature.
com/articles/ncomms14223 (visited on 2022-10-15).

[4] “gRPC Web Roadmap.” (2022-10-21), [Online]. Available: https://github.com/
grpc/grpc-web (visited on 2022-10-21).

[5] “Gofiber/fiber.” (2022-10-21), [Online]. Available: https://github.com/gofiber/
fiber#readme (visited on 2022-10-21).

[6] “Swag Declarative Comments Format.” (2022-10-21), [Online]. Available: https:
//github.com/swaggo/swag (visited on 2022-10-21).

[7] “Adopting and Developing BSL Software,” MariaDB. (2022-10-21), [Online]. Avail-
able: https://mariadb.com/bsl-faq-adopting/ (visited on 2022-10-21).

[8] “Redis Licensing Overview,” Redis. (2022-10-21), [Online]. Available: https://
redis.com/legal/licenses/ (visited on 2022-10-21).

[9] “ArangoDB License.” (2022-10-21), [Online]. Available: https://github.com/
arangodb/arangodb (visited on 2022-10-21).

[10] “Containers, the GPL, and copyleft: No reason for concern — Opensource.com.”
(2022-10-21), [Online]. Available: https://opensource.com/article/18/1/
containers-gpl-and-copyleft (visited on 2022-10-21).

[11] L. Obernhuber and D. Gajic, “Central Frontend for Segment Routing Applications
(Folgearbeit),” other, OST Ostschweizer Fachhochschule, 2022. [Online]. Available:
https://eprints.ost.ch/id/eprint/1053/ (visited on 2022-10-21).

[12] “The C4 model for visualising software architecture.” (2022-10-22), [Online]. Avail-
able: https://c4model.com/ (visited on 2022-10-21).

113

https://doi.org/10.1103/RevModPhys.42.271
https://doi.org/10.1103/RevModPhys.42.271
https://link.aps.org/doi/10.1103/RevModPhys.42.271
https://link.aps.org/doi/10.1103/RevModPhys.42.271
https://doi.org/10.1038/ncomms14223
https://www.nature.com/articles/ncomms14223
https://www.nature.com/articles/ncomms14223
https://github.com/grpc/grpc-web
https://github.com/grpc/grpc-web
https://github.com/gofiber/fiber#readme
https://github.com/gofiber/fiber#readme
https://github.com/swaggo/swag
https://github.com/swaggo/swag
https://mariadb.com/bsl-faq-adopting/
https://redis.com/legal/licenses/
https://redis.com/legal/licenses/
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://opensource.com/article/18/1/containers-gpl-and-copyleft
https://opensource.com/article/18/1/containers-gpl-and-copyleft
https://eprints.ost.ch/id/eprint/1053/
https://c4model.com/

[13] “Paul M. Jones — Action Domain Responder.” (2022-10-22), [Online]. Available:
http://pmjones.io/adr/ (visited on 2022-10-21).

[14] “Cobra.Dev,” Cobra.Dev. (2022-10-22), [Online]. Available: https://cobra.dev/
(visited on 2022-10-21).

[15] “Listing graphs - Neo4j Graph Data Science,” Neo4j Graph Data Platform. (2022-
11-15), [Online]. Available: https://neo4j.com/docs/graph-data-science/2.
2/graph-list/ (visited on 2022-11-14).

[16] “Local Clustering Coefficient - Neo4j Graph Data Science,” Neo4j Graph Data
Platform. (2022-11-22), [Online]. Available: https://neo4j.com/docs/graph-
data-science/2.2/algorithms/local-clustering-coefficient/ (visited on
2022-11-21).

[17] “Weakly Connected Components - Neo4j Graph Data Science,” Neo4j Graph Data
Platform. (2022-11-25), [Online]. Available: https://neo4j.com/docs/graph-
data-science/2.2/algorithms/wcc/ (visited on 2022-11-24).

[18] “Degree Centrality - Neo4j Graph Data Science,” Neo4j Graph Data Platform.
(2022-11-25), [Online]. Available: https : / / neo4j . com / docs / graph - data -

science/2.2/algorithms/degree-centrality/ (visited on 2022-11-24).

[19] “Undirected Graph - gonum.org/v1/gonum/graph/simple - Go Packages.” (2022-
11-25), [Online]. Available: https://pkg.go.dev/gonum.org/v1/gonum/graph/
simple#UndirectedGraph (visited on 2022-11-24).

[20] “Correlation - gonum.org/v1/gonum/stat - Go Packages.” (2022-11-25), [Online].
Available: https://pkg.go.dev/gonum.org/v1/gonum/stat#Correlation
(visited on 2022-11-24).

[21] “Mean - gonum.org/v1/gonum/stat - Go Packages.” (2022-11-25), [Online]. Avail-
able: https://pkg.go.dev/gonum.org/v1/gonum/stat#Mean (visited on
2022-11-24).

[22] “All Pairs Shortest Path - Neo4j Graph Data Science,” Neo4j Graph Data Plat-
form. (2022-11-25), [Online]. Available: https://neo4j.com/docs/graph-data-
science/2.2/alpha- algorithms/all- pairs- shortest- path/ (visited on
2022-11-24).

[23] “Memory Estimation - Neo4j Graph Data Science,” Neo4j Graph Data Platform.
(2022-11-25), [Online]. Available: https : / / neo4j . com / docs / graph - data -

science/2.2/common-usage/memory-estimation/ (visited on 2022-11-24).

[24] “DijkstraAllPaths - gonum.org/v1/gonum/graph/path - Go Packages.” (2022-11-
25), [Online]. Available: https://pkg.go.dev/gonum.org/v1/gonum/graph/
path#DijkstraAllPaths (visited on 2022-11-24).

[25] R. E. Tarjan, “A note on finding the bridges of a graph,” Information Processing
Letters, vol. 2, no. 6, pp. 160–161, 1974-04-01, issn: 0020-0190. doi: 10.1016/
0020-0190(74)90003-9. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0020019074900039 (visited on 2022-11-24).

114

http://pmjones.io/adr/
https://cobra.dev/
https://neo4j.com/docs/graph-data-science/2.2/graph-list/
https://neo4j.com/docs/graph-data-science/2.2/graph-list/
https://neo4j.com/docs/graph-data-science/2.2/algorithms/local-clustering-coefficient/
https://neo4j.com/docs/graph-data-science/2.2/algorithms/local-clustering-coefficient/
https://neo4j.com/docs/graph-data-science/2.2/algorithms/wcc/
https://neo4j.com/docs/graph-data-science/2.2/algorithms/wcc/
https://neo4j.com/docs/graph-data-science/2.2/algorithms/degree-centrality/
https://neo4j.com/docs/graph-data-science/2.2/algorithms/degree-centrality/
https://pkg.go.dev/gonum.org/v1/gonum/graph/simple#UndirectedGraph
https://pkg.go.dev/gonum.org/v1/gonum/graph/simple#UndirectedGraph
https://pkg.go.dev/gonum.org/v1/gonum/stat#Correlation
https://pkg.go.dev/gonum.org/v1/gonum/stat#Mean
https://neo4j.com/docs/graph-data-science/2.2/alpha-algorithms/all-pairs-shortest-path/
https://neo4j.com/docs/graph-data-science/2.2/alpha-algorithms/all-pairs-shortest-path/
https://neo4j.com/docs/graph-data-science/2.2/common-usage/memory-estimation/
https://neo4j.com/docs/graph-data-science/2.2/common-usage/memory-estimation/
https://pkg.go.dev/gonum.org/v1/gonum/graph/path#DijkstraAllPaths
https://pkg.go.dev/gonum.org/v1/gonum/graph/path#DijkstraAllPaths
https://doi.org/10.1016/0020-0190(74)90003-9
https://doi.org/10.1016/0020-0190(74)90003-9
https://www.sciencedirect.com/science/article/pii/0020019074900039
https://www.sciencedirect.com/science/article/pii/0020019074900039

[26] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM Journal
on Computing, 2006-07-13. doi: 10.1137/0201010. [Online]. Available: https:
//epubs.siam.org/doi/10.1137/0201010 (visited on 2022-11-24).

[27] M. R. Bala and M. K. K. Kaswan, “Strategy Design Pattern,” Global Journal of
Computer Science and Technology: C Software & Data Engineering, vol. 14, no. 6,
2014, issn: 0975-4172.

[28] “Request Service — Jalapeño API Gateway.” (2022-11-25), [Online]. Available:
https : / / jalapeno - api - gateway . github . io / jagw / docs / api / request -

service/ (visited on 2022-11-24).

[29] “Subscription Service — Jalapeño API Gateway.” (2022-11-25), [Online]. Avail-
able: https://jalapeno-api-gateway.github.io/jagw/docs/api/subscription-
service/ (visited on 2022-11-24).

[30] “Effective Go - The Go Programming Language.” (2022-11-25), [Online]. Available:
https://go.dev/doc/effective_go (visited on 2022-11-24).

[31] “GEXF File Format.” (2022-11-25), [Online]. Available: https : / / gexf . net/
(visited on 2022-11-24).

[32] “Code Generation — Redux Toolkit.” (2022-11-25), [Online]. Available: https:
//redux-toolkit.js.org/rtk-query/usage/code-generation (visited on
2022-11-24).

[33] “Layout-forceatlas2,” Graphology. (2022-11-22), [Online]. Available: https : / /
graphology.github.io/standard-library/layout-forceatlas2.html (visited
on 2022-11-21).

[34] “Line Chart — Chart.js.” (2022-11-22), [Online]. Available: https://www.chartjs.
org/docs/latest/charts/line.html (visited on 2022-11-21).

[35] “Bar Chart — Chart.js.” (2022-11-22), [Online]. Available: https://www.chartjs.
org/docs/latest/charts/bar.html (visited on 2022-11-21).

[36] “Configure a Neo4j Helm deployment - Operations Manual,” Neo4j Graph Data
Platform. (2022-11-15), [Online]. Available: https://neo4j.com/docs/operations-
manual/5/kubernetes/configuration/ (visited on 2022-11-15).

[37] “Docker Multi-stage builds,” Docker Documentation. (2022-12-20), [Online]. Avail-
able: https://docs.docker.com/build/building/multi-stage/ (visited on
2022-10-10).

[38] “Test coverage visualization — GitLab.” (2022-12-22), [Online]. Available: https:
//docs.gitlab.com/ee/ci/testing/test_coverage_visualization.html

(visited on 2022-12-22).

115

https://doi.org/10.1137/0201010
https://epubs.siam.org/doi/10.1137/0201010
https://epubs.siam.org/doi/10.1137/0201010
https://jalapeno-api-gateway.github.io/jagw/docs/api/request-service/
https://jalapeno-api-gateway.github.io/jagw/docs/api/request-service/
https://jalapeno-api-gateway.github.io/jagw/docs/api/subscription-service/
https://jalapeno-api-gateway.github.io/jagw/docs/api/subscription-service/
https://go.dev/doc/effective_go
https://gexf.net/
https://redux-toolkit.js.org/rtk-query/usage/code-generation
https://redux-toolkit.js.org/rtk-query/usage/code-generation
https://graphology.github.io/standard-library/layout-forceatlas2.html
https://graphology.github.io/standard-library/layout-forceatlas2.html
https://www.chartjs.org/docs/latest/charts/line.html
https://www.chartjs.org/docs/latest/charts/line.html
https://www.chartjs.org/docs/latest/charts/bar.html
https://www.chartjs.org/docs/latest/charts/bar.html
https://neo4j.com/docs/operations-manual/5/kubernetes/configuration/
https://neo4j.com/docs/operations-manual/5/kubernetes/configuration/
https://docs.docker.com/build/building/multi-stage/
https://docs.gitlab.com/ee/ci/testing/test_coverage_visualization.html
https://docs.gitlab.com/ee/ci/testing/test_coverage_visualization.html

	Abstract
	Management Summary
	Glossary
	List of Figures
	List of Tables
	I Technical Report
	Introduction
	Thesis Structure
	Technical Report
	Project Documentation

	Graph Property Introduction
	Connectedness
	Diameter
	Degree Distribution
	Density
	Assortativity Coefficient
	Degree Correlation
	Average Clustering Coefficient
	Cut Edge
	Articulation Point

	Aims and Objectives
	Problem
	Solution

	Requirements
	Functional Requirements
	Actor - User
	Use Cases

	Non-Functional Requirements
	Validating NFRs

	Design Decisions
	Basic System Structure
	Frontend
	API
	Data Collector
	Graph Database

	Backend Programming Language
	Analyzed Libraries
	Performance Test Setup
	Performance Test
	Conclusion

	API Communication
	Technology Comparison
	Conclusion

	API Framework
	Framework Comparison
	Conclusion

	API Specification
	Specification Definition

	Graph Database
	Analyzed Graph Databases
	Software Licensing
	Test Setup
	Graph Databases Test
	Conclusion

	Graph Visualization
	Previous Work
	Chosen Library

	State Container
	UI Library
	Colors

	Architecture
	Architecture Model
	System Context Diagram
	Container Diagram
	Component Diagram - Single-Page Application
	Component Diagram - API Application
	Component Diagram - Data Collector Application

	UI and UX
	Technologies
	API
	Data Collector
	Frontend

	Implementation
	API
	GDS Access
	General Information Retrieval
	Density Calculation
	Average Clustering Coefficient Calculation
	Connectedness Calculation
	Degree Distribution Calculation
	Full Graph Retrieval
	Degree Assortativity Coefficient Calculation
	Degree Correlation Calculation
	Diameter Calculation
	Cut Edge Calculation
	Cut Vertex Calculation
	Query Endpoint
	Infrastructure Endpoints
	Testing
	Usage

	Data Collector
	Implementation
	Jalapeño / JAGW
	GEXF
	Data Structure
	GDS Graph
	Testing
	Usage

	Frontend
	API Generation
	Dashboard - Page
	Query View - Page
	Components
	Navigation - Component
	Refresh - Component
	Export - Component
	Import - Component
	Graph - Component
	Graph property - Component

	Neo4j Image
	Implementation
	Usage

	Helm Chart
	Implementation
	Usage

	Results
	Deployment
	Use Cases
	NFR Validation
	API
	Frontend
	Dashboard
	Query View
	Graph Visualization
	Average Clustering Coefficient
	Connected
	Degree Assortativity Coefficient
	Degree Correlation
	Degree Distribution
	Density
	Diameter
	General Information Description
	No Cut Edges
	No Cut Vertex

	Quality Measures
	Git Process
	Workflow
	Code Review

	CI/CD
	API and Data Collector
	Frontend

	Metric Tools
	Test Coverage
	SonarQube

	Conclusion
	Outlook
	Limitations

	II Project Documentation
	Project Plan
	Project Plan
	Development Process
	Phases
	Project Milestones
	Application Milestones
	Roadmap
	Key Dates and Numbers

	Meetings
	Status Meetings
	Scrum Meetings

	Roles
	Details About The Assigned Roles

	Risk Management
	Risks
	Risk Matrix
	Risk Management and Mitigation

	Planning Tools
	Issue Tracker
	Time Tracker

	III Appendix
	Personal Reports
	Lukas Ribi
	Pascal Christen

	Time Tracking Report
	Meeting Minutes

	Bibliography

