
Reverse Engineering Labs

Studienarbeit

Department for Computer Science
OST - Ostschweizer Fachhochschule

Campus Rapperswil-Jona

Semester: Autumn 2022

Autors: Gianluca Nenz
Ronny Mueller
Thomas Kleb

Project Advisor: Ivan Buetler
Release: E-Prints
Version: Tuesday 20th December, 2022

Department for Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

Background As it stands today there is no module or learning unit at the OST to
teach the concept of software reverse engineering.

Purpose Because reverse engineering is an important topic in the cybersecurity
space, the goal of this SA is to create challenges in the topic of reverse
engineering. These challenges will or can be used by lecturers of the
OST in Rapperswil-Jona to teach the basics to the students.

Methods To achieve this goal we created challenges in ascending difficulty. At
first the students will get information about the software they will
use and the overall strategies of reverse engineering. After that they
learn about some more advanced concepts. The focus here is creat-
ing the challenges in a manner, which should teach the basics in a
easy to understand fashion. These challenges will be hosted on the
Hacking-Lab platform. To ensure the quality of our challenges we did
organize testing participants, who are cybersecurity students in their
fifth semester as well. These tests should be the indicator if the goal
was reached.

Results The primary goal was to create a total of up to 10 challenges in this SA.
This goal was achieved with a total of 11 created challenges. The test-
ing was also successfully carried out and the feedback overall positive.
If there was some common feedback, we adjusted the corresponding
challenge based on it. The section 4.1.4 covers this in detail.

Conclusions This project was overall very successful, but there has also to be said
that the topic of reverse engineering is huge and only a tiny portion of
it was covered in these challenges. There are many more techniques
and tools which have not been covered yet and this could be a future
work.

i

Contents

Abstract i

Glossary iv

1 Project Idea 1
1.1 Task . 1
1.2 Problem Domain . 1
1.3 Learning Concepts . 2

2 Management Summary 3
2.1 Overview . 3

2.1.1 What is Reverse Engineering . 3
2.1.2 Current Situation . 3

2.2 Approach . 3
2.3 Procedure . 4
2.4 Technologies . 4
2.5 Results . 4

2.5.1 Goals Achieved . 4
2.5.2 Goals Not Achieved . 4

2.6 Future . 4

3 Technical Report 5
3.1 Introduction . 5

3.1.1 Problem . 5
3.1.2 Similar Work . 5
3.1.3 Technologies Used . 5
3.1.4 Goals . 6
3.1.5 Setup . 6

3.2 Requirements for the Labs . 7
3.2.1 Overview . 7
3.2.2 Requirements . 7

3.3 Lab Documentation . 7
3.3.1 Overview . 7
3.3.2 Tools Introduction: GDB . 8
3.3.3 Tools Introduction: x64dbg . 9
3.3.4 Tools Introduction: IDA Freeware 10
3.3.5 Lab 1: Asm-Refresher . 11
3.3.6 Lab 2: Static Debugging . 12
3.3.7 Lab 3: Dynamic Debugging . 13
3.3.8 Lab 4: First Reversing Attempts 14
3.3.9 Lab 5: Remote Login . 15
3.3.10 Lab 6: Pwntools - Introduction . 16

ii

CONTENTS G.Nenz, R. Mueller, T.Kleb

3.3.11 Lab 7: Crypto Lab - AES ECB . 17
3.3.12 Lab 8: Patching Lab . 18

3.4 Results . 19
3.5 Conclusion . 19

4 Project Documentation 20
4.1 Project Plan . 20

4.1.1 Management . 20
4.1.2 Organisation . 21
4.1.3 Planning and Milestones . 21
4.1.4 Testing . 27

4.2 Risk Analysis . 28
4.2.1 Risk Managment . 28
4.2.2 Estimated Risks . 28

4.3 Project Monitoring . 31
4.3.1 Overview . 31
4.3.2 Milestones . 31
4.3.3 Time Tracking . 31

4.4 Personal Rapports . 33
4.4.1 Gianluca Nenz . 33
4.4.2 Ronny Mueller . 33
4.4.3 Thomas Kleb . 34

Acknowledgement 35

List of Figures 36

List of Tables 36

Appendix 38
Meetings . 38
Bibliography . 48
Eigenständigkeitserklärung . 50
Nutzungsrechte . 51

iii

Glossary

Acronyms

Acronym Description

AES Advanced Encryption Standard
ASLR Address space layout randomization
ASM Assembly Language
DEP Data execution prevention
ECB Electronic Code Book version of AES
ECTS European Credit Transfer System
GDB GNU Project Debugger
GUI Graphical user interface
IDA Interactive Disassembler
OST Ostschweizer Fachhochschule
RUP Rational Unified Process
SEP Software Engineering Practices

Terms

Term Description

Binary A pre-compiled, pre-linked program that is ready to run under a
given operating system; a binary for one operating system will not
run on a different operating system

Docker Open source platform for building, deploying, and managing con-
tainerized applications

Domain Everything that is needed for reverse engineering
Flag A flag is a string of text which needs to be entered into the website

to show that you have solved the lab
Ghidra Free to use and developed by the NSA decompiling tool
GitLab A versioning platform similar to GitHub but hosted on an OST

server
Hopper Payed tool which allows disassembling, decompiling and debugging
IDA Freeware Free version of IDA with same base functionalities
Proof of concept Evidence obtained froma a pilot project, that the idea is feasible
Radare2 Framework for reverse engineering usable from the command line

iv

Chapter 1

Project Idea

1.1 Task

The goal of this project is to create a reverse engineering lab. The students who take part
in the labs should learn to reverse step by step and get comfortable with tools like IDA
Freeware, Radare2, Hopper or Ghidra. The labs should primarily be completed on either
a Windows or a Linux system.
After a first analysis, the requirements for the reverse engineering labs and the exercises
should be formulated. Afterwards, the students should create 8 - 10 engineering labs.
It is important that there is a common thread through all the labs. The participating
students should start with easier examples and slowly solve more complex tasks. ASLR
and DEP should be a part of the labs.

1.2 Problem Domain

To have an easy overview of the lab structure, a problem domain was created (see figure
1.1) at the beginning of the project. This ensured the project’s goal is reached at the end.
In addition to that, this mindmap is displayed in each of the labs to show the participating
student which part of reverse engineering is taught.

Figure 1.1: Mindmap of the knowledge a reverse engineer needs.

1

CHAPTER 1. PROJECT IDEA G.Nenz, R. Mueller, T.Kleb

1.3 Learning Concepts

Before each lab is created, a proof of concept (POC) has to be defined. These concepts
contain the information about which part of the problem domain in figure 1.1 is taught,
how the lab is structured and what the teacher has to explain beforehand. The lab names
and content were defined in a way that the student solving them has a clear thread to
follow and goes from easier to harder exercises.
To assure the labs could be completed as planned it is assumed that the students have basic
knowledge in assembly language (ASM), Python and C. Since ASM is the most important
language to understand the fundamental structure of a binary, a lab for refreshing this
knowledge is planned.
The lab titles and content changed over the time of the project and the final scope of the
labs differs from the one at the beginning. The final list is shown in table 1.1.

Topic Description

Tutorial for the tools:
GDB

Introduction into GDB and its tools

Tutorial for the tools:
x64dbg

Introduction into x64dbg and how to navigate the GUI

Tutorial for the tools:
IDA Freeware

Introduction into IDA Freeware and how to navigate the
GUI

Refresher Give the students some little refreshing on the key topics
(Assembly)

Static Debugging Given a simple C file, students analyse it and try to find
a key (Find Main function)

Dynamic Debugging Given a simple C file, students analyse it and try to find
a key (go more into GDB / x64)

First RE attempts Given simple files compiled in different compilers to find
a key

Remote Login Inspecting binary locally and using RE to gain access to
a remote docker-container

Pwntools Exploiting a vulnerability found through RE with pwn-
tools

AES Encryption Not only finding out the password but writing a keygen
for the program

Patching a Binary Introduce new native API funcs / techniques like stack
strings

Table 1.1: Overview of all the Labs.

2

Chapter 2

Management Summary

2.1 Overview

2.1.1 What is Reverse Engineering

Reverse engineering is the process of analyzing a product or system in order to understand
how it works, how it was made, or how it can be improved. It involves taking apart the
product or system, examining its components, and understanding how they fit together
and interact with each other.
In the context of software, reverse engineering is the process of analyzing a computer
program in order to understand how it works and how it was implemented. This may
involve disassembling the program, studying its code and documentation to recreate or
modify it. Reverse engineering can be driven by various motivations: learning about new
technologies, fixing flaws / security vulnerabilities or creating competing products.
Most of the time, reverse engineering is a challenging and time-consuming process, as it
requires a deep understanding of the underlying technologies and systems. It is often used
by experts in fields such as computer science, engineering, and security.

2.1.2 Current Situation

For a computer scientist, it is always useful to have knowledge in cybersecurity sub-
jects. To accomplish the task of showing the students the world of cybersecurity, the
Ostschweizer Fachhochschule (OST) implemented several modules like ”Cyber Security”,
”Secure Software” and the newest one ”Cyber Defense”. In these modules, the profes-
sors explained the different aspects using Hacking-Lab as platform for the exercises. The
plan is to extend the current state with reverse engineering labs and exercises. The goal
of them is to bring the students closer to this subject and explain the fundamentals of
reverse engineering.

2.2 Approach

To achieve these tasks, new exercises will be added to Hacking-Lab OST environment,
which is, as mentioned above, a platform with which students are already accustomed to.
These exercises will be added in the form of challenges for the student to go through and
will be built with the idea of future additions in mind.

3

CHAPTER 2. MANAGEMENT SUMMARY G.Nenz, R. Mueller, T.Kleb

2.3 Procedure

At the start of the project, the scope was defined. The defined scope was the base on
which the labs are created. This scope includes the difficulty increase between each lab,
the know how to be taught to understand the procedure and which tools are used by the
student to finish the tasks. In addition to these points, a platform on which the student
is intended to work on is defined. For the students to solve the given tasks, they needed
a provided infrastructure to follow.

2.4 Technologies

The labs are created using either the Windows or Linux operating system, depending on
the software needed. This allows the solving student to have the option to complete each
lab on one of the two systems using a virtual machine if needed. All the labs are hosted
on a Hacking-Lab tenant provided by the advisor, first on demo to test all the features
and how to set them up, then on the OST tenant for official use.
Hacking-Lab is a website that offers a range of cybersecurity-related services, including
training, simulations, and challenges. It is designed for professionals in the cybersecurity
field, as well as students and enthusiasts who are interested in learning about and improv-
ing their skills in this area. Because of this, the OST uses it to host different exercises to
teach the fundamentals of cybersecurity to its interested students.

2.5 Results

2.5.1 Goals Achieved

The goals were defined by the advisor in section 1.1. It was planned to have 8 - 10 labs
finished until the end of week 12. This goal was reached thanks to a strict plan and
coordination between the students.

2.5.2 Goals Not Achieved

Some goals were redefined during the iterative process of the project, but in the end,
all of them were reached successfully. During the project, 11 concepts were defined and
uploaded to Hacking-Lab.

2.6 Future

The labs created in this project are a base for future labs and should show participating
students the initial steps of reverse engineering. The students plan to further add to the
labs in the bachelor thesis, together with going into more advanced subjects and more
complicated exercises.

4

Chapter 3

Technical Report

3.1 Introduction

3.1.1 Problem

The subject of cybersecurity is constantly growing in importance for the computer scientist
in general. The demand for cybersecurity experts with broad knowledge regarding current
problems and malware is ever growing [1]. The Ostschweizer Fachhochschule (OST) has
recognized this demand and has added more and more lectures for the cybersecurity
interested students [2]. One important aspect is still missing in the curriculum: reverse
engineering.

3.1.2 Similar Work

To this date there is no work done regarding this subject in past projects. In the past,
students have created different labs for the OST but none for reverse engineering. The
infrastructure which is used for this project is already existing and established in the
OST lectures. Hacking-Lab as the platform is known by the targeted student group and
teachers alike.

3.1.3 Technologies Used

To create each of the labs and their documentation, multiple different tools and languages
were used (shown in table 3.1 and 3.2).

Languages

Assembler As the base structure of a binary, it was taught in mul-
tiple courses before this. In the labs, ASM is used to
understand the flow of a function and what it does when
executed.

C All of the binaries were written in C.
Python As an easy-to-understand language, Python is used to

write the exploits after analyzing the binaries.

Table 3.1: Overview of all the languages used to create the labs.

5

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

Tools

VSCode Each of the students of the project used VSCode for
programming and documenting. This allowed for easier
settings and more control of the output.

IDA Freeware Each of the labs were tested before uploading to
Hacking-Lab. All the tests were done in IDA Freeware
since this software is used to show the solutions.

Ghidra Each of the labs were tested before uploading to
Hacking-Lab. Ghidra was used to check the pseudocode.
This ensured that students using Ghidra instead of IDA
Freeware have a solvable problem as well and can follow
the steps given.

HL Demo Tenant To test all of the labs, the demo tenant of Hacking-
Lab was used. This allowed for free testing without
interfering with the OST tenant.

Docker A Docker container can be used on the Hacking-Lab
platform to have a server side component to the chal-
lenges.

OST GitLab To have versioning of the code OSTs GitLab was used.
Clockify This software allowed for time management.

Table 3.2: Overview of all the frameworks and tools used to create the labs.

3.1.4 Goals

The goal for this project has multiple facets:

• The creation of different labs to show the students of the OST the aspects of reverse
engineering

• The students should have the following learning objectives:

– Gain an understanding of what reverse engineering is and what it can be used
for

– Know the basic handling of debuggers and disassemblers

– Understand a binary programs control flow using static debugging

– Understand a binary programs control flow using dynamic debugging

– Be able to locate and exploit simple security flaws in a binary program.

3.1.5 Setup

Since every student uses his own machine with his own configurations, Hacking-Lab as
a platform with its LiveCD was chosen as the foundation. This allows a simple, operat-
ing system independent approach to all excercises thanks to its webinterface and docker
hosting capabilities.

6

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.2 Requirements for the Labs

3.2.1 Overview

This chapter lists the different requirements we have defined in order to successfully create
and solve the reverse engineering labs.

3.2.2 Requirements

Language
The labs and their solutions will be written in English to guarantee each student can
understand it.

Targeted Group of Students
The product of this project is aimed at students in their third year (fifth semester) or
higher because it is an in-depth look at a cybersecurity subject. Students taking this
course should have visited the mandatory subject ”Cyber Security” to have basic infor-
mation and maybe even ”Secure Software” for more advanced knowledge of some exploita-
tion techniques. A rule of thumb is the more security lectures a student has visited and
finished, the better.

Time Requirements
Each of the labs has a different time requirement for the students. One lab should be
solvable in an hour or less.

Grading
Depending on the lab, a student has to hand-in a flag and/or a writeup. These will be
checked by the teacher or an automated system.

3.3 Lab Documentation

3.3.1 Overview

This section is used to list the different labs and their purpose. The project domain
created at the start was utilized as reference throughout the project to decide which parts
of reversing should be targeted for each of the labs. Because of this the domain map is
used by the participating students to dispay the contents of the lab.
Since the labs are created for the purpose of teaching, objectives and grading was defined
in addition ot the explanation why this part of the domain was addressed.

7

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.2 Tools Introduction: GDB

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.1: GDB domain overview

Content

This introduction is used to explain the basic functionalities of the tool used in some of
the labs. In this case GNU Debugger (GDB).

Choice of Topic

The solutions and tips in the labs are given via screenshots or explanations. If a student
wants to use a different tool, he / she is free to do so. It is important that the tools used
in the example solutions are known to the students. This makes it easier for them to
understand each step and, if they are stuck at any point, follow the instructions on how
to solve it.

Objectives

• Learn about GDB and how to use the different commands available

Grading

The labs are not graded since they are only used as a lookup. They have a flag to make
sure the students have read the tools.

8

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.3 Tools Introduction: x64dbg

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.2: x64Intro domain overview

Content

Because most students have probably never touched a debugger on Windows before, this
lab will help getting their feet wet with one of the most widely used ones by professionals.
This lab also acts as the basis for the upcoming labs where x64dbg will be used.

Choice of Topic

Students working with Windows should also be given the opportunity to use a debug-
ger. This lab will guide them through the GUI of the program and explain the basic
functionality of what is coming up in future labs.

Objectives

• Install x64dbg and get a brief overview

• Get to know the functionality of x64dbg and be ready to use it on a binary

Grading

The introduction labs are not graded since they are only used as a lookup. They have a
flag to make sure the students have read the tools.

9

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.4 Tools Introduction: IDA Freeware

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.3: IDAIntro domain overview

Content

This introduction explains all the relevant functionalities of IDA and how to install it.

Choice of Topic

Some of the reverse engineer’s most powerful tools are disassemblers. We purposely
chose IDA Freeware over Ghidra for the beginning. This prevents the students from
just generating pseudocode instead of actually reading and understanding the assembly
instructions in later labs. Because of this, the solutions of future labs are presented using
IDA Freeware.

Objectives

• Install IDA Freeware and get a brief overview

• Learn to orient yourself in IDA and get ready to use it on a binary.

Grading

The introduction labs are not graded since they are only used as a lookup. They have a
flag to make sure the students have read the tools.

10

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.5 Lab 1: Asm-Refresher

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.4: ASM refresher domain overview

Content

This lab is designed to be a refresher for those who have not done anything assembly
related in a while. It covers the basic assembly instructions, explains the general purpose
registers and rounds up with a guide on how to write a ”Hello World” program.

Choice of Topic

A reverse engineer has to understand the basic concepts of assembly. Not only when read-
ing through dissasembled code but also later on when automatic pseudocode generation
fails.

Objectives

• Refresh knowledge about the general-purpose registers.

• Basic understanding of assembly instructions

Grading

This lab will not be graded since it is meant to help the students in later labs if they
struggle with assembly.

11

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.6 Lab 2: Static Debugging

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.5: Static debugging domain overview

Content

In this lab, the student will learn how to use IDA Freeware to statically reverse a given
binary. The goal is to find the main function in a binary with and one without symbols.
This will show the student that seemingly simple things such as finding the main function
can be a real problem if you have insufficient knowledge of the inner workings of a binary
and the automatic detection of IDA fails.

Choice of Topic

Program execution starts from the main() function which is why it is an important skill
of a reverse engineer to find it and start understanding the rest of the binary from there
on.

Objectives

• Find the main function in a normal binary

• Find the main function in a binary with symbols stripped

Grading

The student has to inspect the main functions and find a flag in both of them. The final
hand-in will be the combined flag.

12

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.7 Lab 3: Dynamic Debugging

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.6: Dynamic debugging domain overview

Content

In this lab, the student will learn how to use GDB and x64dbg to dynamically reverse a
given binary. In a first step the lab explains how to dynamically debug the binary given
in lab 2 and then, in a second step, the student will be presented with a new binary
containing a flag.
The goal of this lab is to show the student how this skill is used and then have him do it
on his own to solidify the steps he has completed before.

Choice of Topic

Next to static debugging, dynamic debugging is used in a wide range of reverse engineer-
ing. Because of this it is important to have a student go through the steps and explain
how it is done.

Objectives

• Use GDB or x64dbg to find the flag of the binary

• Find the flag of a new binary using dynamic debugging

Grading

The student has to use the newly aquired skills to find the flag in a new binary using
dynamic debugging skills.

13

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.8 Lab 4: First Reversing Attempts

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.7: RE attempts domain overview

Content

In this lab, the student will deepen his knowledge of reversing binaries to find out how
they work. This challenge contains two binaries having different requirements that have
to be met in order for the student to receive the flags.

Choice of Topic

It is important to give the students simple examples where they can play around and
learn by doing without providing a step by step guide.

Objectives

• Use static or dynamic debugging to find the requirements of the programs

• Find out how program arguments are handled in assembly

Grading

The student has to solve both binaries to get a flag.

14

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.9 Lab 5: Remote Login

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.8: Remote login domain overview

Content

This lab dives deeper into the reverse engineering rabbit hole and introduces a new con-
cept. The student first starts a docker container off a provided resource. This docker
container exposes a web server and a port where an application runs. The application
running on the server can be downloaded from the server’s website by the student.
The student then has to combine dynamic and static reverse engineering to figure out the
password in order to log into the server and expose the flag.

Choice of Topic

Giving the students an idea that reverse engineering can be used to gather information
that you can later exploit on a target system.

Objectives

• Learn to use the tools you got introduced to

• Apply basics of dynamic and static debugging and find a way to exploit remote
target

Grading

The student has to find out the flag and submit a small writeup to answer the security
questions provided.

15

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.10 Lab 6: Pwntools - Introduction

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.9: Pwntools domain overview

Content

In this lab, the student has a first introduction into the pwntool module of python. The
student first has to start a docker container from the provided resource. This docker
exposes both a web server and a port where the application is running on. The student
then downloads the compiled application to analyze it and search for a weakness to exploit.
This weakness can then be exploited through the use of pwntools. Since this is a first
introduction, the whole process of creating the script is guided as a walkthrough.

Choice of Topic

Pwntools is an important module to learn for exploiting. Reverse engineering in general
is widely used to find vulnerabilities to exploit, which means it is important for a student
to not only know how to find the weakness but also how to exploit it.

Objectives

• Use acquired skills to find a vulnerability in a binary

• Create a pwntools script to exploit that vulnerabilty

Grading

The grading is done by sending in the printed out flag when the script is run on the
exposed port and a writeup answering the provided security questions.

16

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.11 Lab 7: Crypto Lab - AES ECB

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.10: AES domain overview

Content

The student is presented a docker container which runs a web server and exposes a port
on which the script for the student to crack is running. The student first inspects and
analyzes the script itself and then follows a walkthrough on how to write a simple script
which exploits a common vulnerability in AES ECB mode.

Choice of Topic

Encryption is a widely used form of obfuscation. Because of this it is important as a
cybersecurity student to be informed about certain weaknesses these ciphers have and
how to exploit them if needed.

Objectives

• Find out how the script works

• Find patterns to exploit

• Create a pwntools script to crack the encryption

Grading

The grading is done by sending in the printed out flag when the script is run on the
exposed port in combination with a writeup answering the provided security questions.

17

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.3.12 Lab 8: Patching Lab

Problem Domain

This lab covers the following aspects of the reverse engineering problem domain shown in
section 1.2:

Figure 3.11: Patching domain overview

Content

The student is presented a binary which does not operate correctly. The student is tasked
to find the location to patch and fix it. In order to check the patch generated by the
user, the provided docker container starts up a web server where the student can upload
the patch file. The web server then tries to apply the patch to a copy of the binary and
checks if the bug is fixed. If fixed, the web server shows the flag to the student. If not
fixed, the student has the possibility to reset the binary and try again.

Choice of Topic

Reverse engineering also comes in handy when encountering bugs in software where the
source code is unreachable. Therefore it is important to locate found bugs in an executable
and know how to apply patches.

Objectives

• Find the mistake of the binary

• Change the ASM code and upload the patched file to the website

Grading

The grading will be done via a writeup and a flag.

18

CHAPTER 3. TECHNICAL REPORT G.Nenz, R. Mueller, T.Kleb

3.4 Results

We have achieved all the iteratively defined goals.
In the original project description, it was mentioned that ASLR and DEP should be a part
of the labs. We have updated these requirements in our continuous process of constructing
the labs with their corresponding learning goals. While ASLR is included, DEP is out of
scope for now and is better suited to be handled in the future continuation of this project,
the bachelor thesis.

3.5 Conclusion

We were able to create the amount of labs wished and even had time to implement one
more. It covers the basics needed for a smooth start into reverse engineering and also
follows a common thread while posing increasingly difficult challenges to the solver.
This also acts as a fundament for future work and can be extended with more advanced
reverse engineering exercises.

19

Chapter 4

Project Documentation

4.1 Project Plan

The goal of this project is to create and organize a lab, which shows and explains future
students of the Ostschweizer Fachhochschule (OST) how reverse engineering is performed
and which tactics are used to get information out of a program. To accomplish this task,
the lab will have several exercises organized in the different domains. These exercises will
be accessible through the Hacking-Lab website.

Hand-In

The finished report will be handed in according to the rules set by the ”Studiengangsleitung
Informatik” and the supervisor:

• The PDF version will be sent to the advisor and to the OST archive.

• The printed version will be handed in to the supervisor for reading and grading.

4.1.1 Management

Time Management

The project started on the first week of the semester (KW 38) and ends in week 51 giving
us around 14 weeks to be done with the Hand-In.
Since the module has a total ECTS of 8 each of the students has to work around 240h
during the semester which can be seen in table 4.1 together with the total planned time
investment. This means, that per week each student should work around 17.1 hours.

Planning and Project Management

In the past modules Software Engineering Practices (SEP) 1 and 2 we were introduced
to different ways to plan and organize a project. The main tools we learned, Rational
Unified Process (RUP) and Scrum, are mainly used in software development but can be

Name ECTS Time spent per Week [h] Total Time spent [h]

Gianluca Nenz 8 17.1 240
Ronny Mueller 8 17.1 240
Thomas Kleb 8 17.1 240

Total 32 52.3 720

Table 4.1: Time Investments

20

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

adapted to other projects aswell. They both use different aspects of time management
and organisation which is why we intend to apply them to our project.
We use RUP to section our project into Inception, where we get a first insight into
the project and how we want it to resolve; Elaboration, to plan our project, define the
workload-distribution and setting up first concepts of the finished labs; The construction
phase is mainly used to plan, build and test the labs while the last phase, the transition
phase, is used as buffer and to finish our product.
To make sure everything works as planned we use Scrum with its sprints to setup mile-
stones and tasks which help structurize the development.

4.1.2 Organisation

Participants

The ”Studienarbeit”-team consists of three students: Gianluca Nenz, Ronny Mueller and
Thomas Kleb. The work on the project and documentation will be evenly distributed
between these three participants. Bigger decisions are made as a team in either the
meetings with or without the advisor (the advisor will be notified on any change made).

Advisor

The teams advisor for the ”Studienarbeit” is Ivan Buetler who is teaching cybersecurity
modules at the OST.

Division of Labor

The project has multiple facets that need to be taken care of. This is why the team has
decided to distribute the work load between the three. This doesn’t mean that the work
is done by only the chosen student but rather that he is the one responsible that it works
as planned.

Gianluca Nenz

Sprint Meetings
Lab 3: x64dbg
Lab 4: ASM - Re-
fresher
Lab 6: Dynamic - de-
bug
Lab 8: UN-PW

Ronny Mueller

Meeting Notes
Lab 1: IDA
Lab 5: Static-debug
Lab 7: First Reversing
Attempts
Lab 11: Patching

Thomas Kleb

Testing
Documentation
Lab 2: GDB
Lab 9: Pwntools
Lab 10: AES

Table 4.2: Work Distribution per Student

4.1.3 Planning and Milestones

Phases and Iterations

The project is comprised of the four steps of RUP. Each of those phases has multiple
iterations which create the different sprints for the project. The meetings with the advisor

21

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

will be on thursdays while the team meetings will be held tuesdays. Each iteration / sprint
will be of a seven day length.
We started the ”Studienarbeit” before we began with the regular school. In the week
before we each made research and plans about the upcoming project. After having a talk
with the advisor it was decided to first find out the level of knowledge each student has
to allow easier planning for the advisor.

Inception

Iteration Start End Description

0 12.09.2022 18.09.2022 Collection of ideas and planning first
meeting

1 19.09.2022 25.09.2022 First meeting and handout of exercises to
assess the knowledge of the students

2 26.09.2022 02.10.2022 Working on the exercises and receiving
solutions for harder ones

Table 4.3: RUP: Inception Phase Planning

The elaboration phase is used to plan and assess the possible risks in this project. This
consists of a documentation structure, the project plan and the risk management to make
sure the construction phase has no major hickups.

Elaboration

Iteration Start End Description

3 03.10.2022 09.10.2022 First big meeting with advisor; Creating
project plan and risk analysis.

4 10.10.2022 13.10.2022 Project plan and documentation is set;
Problem domains and learn concepts are
defined

5 14.10.2022 25.10.2022 Lab concepts are defined

Table 4.4: RUP: Elaboration Phase Planning

22

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

The construction phase is where the labs are primarily built.

Construction

Iteration Start End Description

6 21.10.2022 01.11.2022 POC for static and dynamic challenge;
started testing

7 01.11.2022 08.11.2022 Lab static and dynamic finished; POC
First RE Attempts and UN-PW with
testing

8 08.11.2022 15.11.2022 Finishing lab UN-PW and RE Attempts;
POC Pwntool lab

9 15.11.2022 22.11.2022 Introduction labs, AES and testing
10 22.11.2022 29.11.2022 POC patching lab and assembly lab
11 29.11.2022 06.12.2022 Internal testing of all labs finished; all

labs complete

Table 4.5: RUP: Construction Phase Planning

To make sure enough time is planned a buffer week was added to the transition phase.
This phase is also mainly used to finish up the documentation and implement the dif-
ferent challenges to Hacking-Lab. The last week is used to clean up and hand in the
documentation and abstract to both the OST and the advisor.

Transition

Iteration Start End Description

12 06.12.2022 13.12.2022 Documentation completion
13 13.12.2022 20.12.2022 Finalizing documentation
14 20.12.2022 23.12.2022 Preparing for hand-In

Table 4.6: RUP: Transition Phase Planning

Milestones

To guarantee the success of the project milestones were defined with a deadline.

Milestones Deadline Description

M1 - Solving RE Exercises 05.10.2022 The Team tries to solve the given
exercises to find the level of RE
knowledge.

M2 - Defining problem do-
mains and learn concepts

13.10.2022 Problem domains are defined, first
learn concepts are planned

M3 - Lab Concepts 25.10.2022 Lab Concepts are defined to start
working on the construction.

M4 - Setup Labs 06.12.2022 Labs are setup and tested.
M5 - Hand-In 23.12.2022 Document is handed in to the ad-

visor and OST

Table 4.7: Milestones set for the project

23

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

Time Tracking

For time tracking the team has decided on using a third party application named Clockify
[3]. To have an overview on what the team spents its time on we decided to create different
tags:

• Documentation: Working on the documentation

• GitLab: Maintaining the infrastructure of the repositories

• Meetings: Sprint- and advisormeetings

• Preparation: Research before the start of the project

• RE-Labs: Creating the different labs

• Research: Researching for the labs

• Testing: Testing the labs with different volunteers

Issue Tracking

The issue tracking is done on GitLabs own interface to have as few difficulties as possible.
To have an easier overview of the different issues the team has created tags to differentiate
between the issues and their assigned student.

24

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

GANTT Diagram

Figure 4.1: GANTT chart

25

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

Meetings

The team has meetings each tuesday to elaborate problems and check up on the progress.
These meetings are also used to distribute the work load.
On thursdays the team meets the advisor Ivan Buetler to inform him on the progress
done and the problems that came up. These meetings have different time schedules to fit
everyones calender.
Each meeting will be documented and uploaded to the GIT repository. After each meeting
the participants should know what to do and how to contact each other if any problems
arise.

Project managment

The whole project will use a GitLab repository. To make sure no confusion happens
a multirepo principle is used where one repository is only for the documentation and
protocols and the other one is for code, information gathered, etc. Each student works
on a branch and creates a merge request where the other students check the proposed
changes for errors and when nothing is found, they merge the changes.

26

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

4.1.4 Testing

This chapter describes how the quality of the challenges was determined and the feedback
was evaluated.
The labs were tested by many different participants. This testing was done to ensure the
challenges were solvable and understandable for the intended purpose. The testing can
be divided into two parts.

Internal Tests

After every challenge was completed and uploaded to the Hacking-Lab platform, the
creator checked the challenge again. After the creator finished his testing, he signaled the
other students from the group to test the challenge. Any questions, mistakes or feedback
from these tests were immediately reported to the creator. He then decided which parts he
had to change. Additionally, at the next supervisor meeting the challenge was presented
and the supervisor was also able to give feedback to the challenge.

Testing with third-party students

In order to get realistic feedback from students, we asked cybersecurity students in their
fifth semester to solve the labs and provide feedback. This feedback was collected using
Google Forms. This tool allows creating simple surveys, which can then be analyzed in
graphs automatically.
Only some of the challenges were solved by this group. The feedback received was helpful.
However, since many of these students were also busy with their own projects, it was a
bit difficult for them to find the motivation to solve them thoroughly. Testing the labs
meant a significant amount of work and therefore these tests were only done by a few
individuals for all the challenges.

Feedback

The challenges were perceived as educating and easy to follow by the testing participants.
The main takeaway from these tests were the following points:

• Challenges are clear and interesting

• Challenges teach concepts in a fun way

• The time requirements for each challenge vary by much

Conclusion

The feedback was mostly positive. Most of the feedback mentioned typing errors or some
errors with setting up the challenges on Hacking-Lab.com. Some feedback also mentioned
imprecise steps in the solutions. They were very useful to create the challenges in a way
which should be understood by other students.
But we also think that our testing process could need some refining. We didn’t really
have a broad spectrum of knowledge and motivation in our testing participants because
they had to do it in their leisure time. This way, we only got very motivated students,

27

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

who probably also had way more knowledge than the average one. In future projects, we
should strive to achieve a more normalized testing group by asking to be able to test some
challenges in a security class or similar.

4.2 Risk Analysis

4.2.1 Risk Managment

For this project, the ”Project Management Triangle” is lacking the cost dimension, while
the time dimension is fixed (strict deadlines). As a result, any risks that appear, auto-
matically lead to a reduction of the project scope if there is no spare time. Because of
this, we will prioritize dealing with risks above regular tasks and prioritize essential tasks
over nice-to-haves, but we do not intend on planning in a flat time margin as we have no
way to negotiate for more time.

4.2.2 Estimated Risks

The numbers in the following picture describe the position of the risks on the following
page from top to bottom.

Figure 4.2: Risk matrix

28

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

Risk 1:
Description Finding testing participants
Severity Medium
Probability High
Mitigations Already got participation confirmation from testers
New probability Low

Table 4.8: Testing participants risk

Risk 2:
Description Being able to create reversable programs with additional diffi-

culties
Severity Very High
Probability Medium
Mitigations Assured the advisor is available for consultation
New probability Low

Table 4.9: Create programs risk

Risk 3:
Description Not enough time for the actual challenges because of too much

programming etc.
Severity High
Probability Low
Mitigations Creating challenges in chronological order and in an iterating

fashion
New probability Very Low

Table 4.10: Not enough time risk

29

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

Risk 4:
Description Irreparable corruption of git server
Severity Very High
Probability Low
Mitigations Weekly off-site git server backups
New severity Low

Table 4.11: Corruption of git risk

Risk 5:
Description Lost work due to unpushed work
Severity Low
Probability High
Mitigations Frequent reminders to push changes
New probability Low

Table 4.12: Unpushed work risk

Risk 6:
Description License problems with used software
Severity High
Probability Low
Mitigations Trying to use opensource or public software
New probability Low

Table 4.13: Licence problems risk

30

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

4.3 Project Monitoring

4.3.1 Overview

This section of the documentation is used to overview the different states of our project
in comparison to the goal we set in planning or in the meetings hold with the advisor
protocolled in the meetings chapter found in the appendix.

4.3.2 Milestones

Milestones Deadline Notes

M1 - Solving RE Exercises 05.10.2022 Milestone finished without compli-
cations

M2 - Defining Problem Do-
mains and Learnconcepts

13.10.2022 Milestone finished without compli-
cations

M3 - Lab Concepts 25.10.2022 Updated Milestone to have the
concepts be worked on parallel to
the construction

M4 - Setup Labs 06.12.2022 Milestone was finished on time but
a docker setup error did delay test-
ing

M5 - Hand-In 23.12.2022 Milestone finished without compli-
cations

Table 4.14: Monitoring Notes for the Milestones

4.3.3 Time Tracking

We removed the last week of the project from the time tracking. Because we wanted to
be finished with the documentation the week before.

Time spent per Teammate

Name Average Time spent per Week [h] Total Time spent [h]

Gianluca Nenz 15.1 196.27
Ronny Mueller 15.17 197.2
Thomas Kleb 15.49 201.36

Table 4.15: Recorded Time Investments

31

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

Time spent per week

Figure 4.3: Our time spent per week

Time spent per category

Figure 4.4: Our time spent per category

32

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

4.4 Personal Rapports

4.4.1 Gianluca Nenz

Thanks to Ivan, we had a great start into this topic by solving sample challenges and thus
evaluating our skill level. At first, we had to adjust our workflow since it differs from the
one we have learned in the ”SEProject” previously. Once everything settled we quickly
got a good overview of the problem domain and started iteratively working on our labs
which worked well. I really liked this approach and would love to do it again this way.
For the next time though, I would plan some more ahead or have enough side projects
ready to switch to if I finished the lab faster than anticipated. Thanks to this, I would
always have enough to work on and my working hours would be distributed more evenly
over the time of the project. Finding willing testing participants turned out to be more
difficult than we first thought because most students do not have enough spare time to
test everything.
Thanks to our friends we were able to get everything tested, but maybe we can somehow
integrate testing as part of a lecture at OST or somewhere else in the future.
All in all I am really happy with the outcome of our ”Semesterarbeit”. We have calculated
enough time to finish up our labs and the documentation in time without the need of
several night shifts the days before hand in. This could not have been made this smooth
without the great teamwork we had. Thanks to everyone for putting effort into making
good, beginner-friendly labs.
I am thankful to have had the opportunity to bring reverse engineering into more students
lives and I am looking forward to digging deeper in future projects.

4.4.2 Ronny Mueller

Our process of working on the challenges in an iterating fashion seemed to work great
and I would do it like that again. The hours invested each week varied by too much and
I think we should somehow look for a more well balanced time investment. I also that
even though we got some testing participants we should aim to test the exercises inside
an exercise session at the OST. So the students don’t have to sacrifice their leisure time
to test our challenges.
The first week of the project I was still having one week left of mandatory military service.
Because of this I want to thank everyone involved for their consideration.
I am happy with the final challenges and think that they cover good basics of reverse
engineering and is a good entry point for students in the same position as we were. I am
very grateful towards Gianluca Nenz and Thomas Kleb for their hard work and dedication
they put into this project.

33

CHAPTER 4. PROJECT DOCUMENTATION G.Nenz, R. Mueller, T.Kleb

4.4.3 Thomas Kleb

Reverse Engineering for me was a relatively new subject but as I am highly interested in
all things cybersecurity I was glad, that we got accepted for this project. The start of it
was a bit stressful for me since we never had to do a project this size without many rules
and guidelines, we were totally free.
Once we had our first meetings with Ivan everything got clearer and we knew how to struc-
ture this project. These meetings really helped me organize and I am extremely thankful
that we had such professional guidance from our advisor. Working on the different labs
and finding problems to teach each student was my highlight and i am looking forward
to do it again in my Bachelor Thesis. Our team was well organized and the different
tasks were distributed fairly thanks to multiple meetings. What I didnt plan for was the
downtime between the creation of the labs. Which is why I want to plan more precisely in
the future to have more work done in between. The problems created during the building
of the labs like docker not working as intended, LateX not doing what I want or even
finding different test subjects, were a lesson to be taught at the end. For my next work I
want to take what I have learned from this and improve on it, especially the preparation
since we had to do some prepare work which could have been done beforehand.
At the end I am glad to have had the chance working on such a project and I am thankful
for all the help we got from our advisor. Overall I enjoyed working in this team and on
the project and can’t wait to do it again next semester.

34

Acknowledgement

This work was made possible by OST in Rapperswil-Jona. We thank them for the possi-
bility to be able to work on such a project.

We thank Ivan Bütler for proposing such an interesting topic and for advising us through-
out the process of this work. His insight and expertise greatly helped us to steer the
complex path of reverse engineering. Also we are thankful towards Compass Security
who made it possible to publish our challenges on their platform.

We would also like to show our gratitude towards our testers, who sacrificed their leisure
time to ensure the quality of our challenges. This is no small feat because they also had
to work on their own projects. Their insights and feedback was integral to the quality of
our product.

35

List of Figures

1.1 Mindmap of the knowledge a reverse engineer needs. 1

3.1 GDB domain overview . 8
3.2 x64Intro domain overview . 9
3.3 IDAIntro domain overview . 10
3.4 ASM refresher domain overview . 11
3.5 Static debugging domain overview . 12
3.6 Dynamic debugging domain overview . 13
3.7 RE attempts domain overview . 14
3.8 Remote login domain overview . 15
3.9 Pwntools domain overview . 16
3.10 AES domain overview . 17
3.11 Patching domain overview . 18

4.1 GANTT chart . 25
4.2 Risk matrix . 28
4.3 Our time spent per week . 32
4.4 Our time spent per category . 32

36

List of Tables

1.1 Overview of all the Labs. 2

3.1 Overview of all the languages used to create the labs. 5
3.2 Overview of all the frameworks and tools used to create the labs. 6

4.1 Time Investments . 20
4.2 Work Distribution per Student . 21
4.3 RUP: Inception Phase Planning . 22
4.4 RUP: Elaboration Phase Planning . 22
4.5 RUP: Construction Phase Planning . 23
4.6 RUP: Transition Phase Planning . 23
4.7 Milestones set for the project . 23
4.8 Testing participants risk . 29
4.9 Create programs risk . 29
4.10 Not enough time risk . 29
4.11 Corruption of git risk . 30
4.12 Unpushed work risk . 30
4.13 Licence problems risk . 30
4.14 Monitoring Notes for the Milestones . 31
4.15 Recorded Time Investments . 31

4.16 Meetings held with advisor . 38

37

Appendix

Meetings

Nr Phase Date Description Duration [min]

1 Elaboration 06.10.2022 Coordinate the project, docu-
mentation and ideas

90

2 Elaboration 13.10.2022 Present the problemdomain
with learning concepts and
define the project plan

60

3 Elaboration 20.10.2022 Lab concept drafts, GANTT di-
agram

80

4 Construction 27.10.2022 Think about the exploitation as-
pect and add it to mindmap;
POC for lab 2 and 3 and started
testing

86

5 Construction 03.11.2022 POC for lab running with
docker , finish lab 5

80

6 Construction 10.11.2022 Finish labs and create a POC for
pwntools lab

120

7 Construction 17.11.2022 Fix Pwntools lab, Introduction
labs, testing

60

8 Construction 25.11.2022 Concept for patching Lab, test-
ing, refresher lab

90

9 Construction 01.12.2022 Patching lab fixing, testing, set-
ting up forms for feedback

60

10 Transition 13.12.2022 Discussing documentation 120

Table 4.16: Meetings held with advisor

38

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Elaboration Phase

Meeting 1: 06. Okt.

Deliverables: Draft the problemdomains together with learningconcepts and the pro-
jectplan.
Discussed Topics:

• Documentation

• Goal of the project: Hacking Lab integration for cybersecurity classes.

– Teacher needs required knowhow

– Labs built for a student attending the third year

• Brainstorming for problemdomains

– Learningconcepts need to be defined for teacher and for lab construction

– RE tools

– Required knowhow for a reverse engineer

• Mini projectplan brainstorming:

– Analysis of problemdomains

– Setting up learningconcepts

– What is important?

– Build lab concepts

– Implement with tests

Decisions:

• Idea of the project: Hacking-Lab integration (modulintegration)

Duration: 1h 30min

39

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 2: 13. Okt.

Deliverables: Build some lab concepts (deliverables and overall subject), GANTT dia-
gramm
Discussed Topics:

• Problemdomain mindmap

• Learning concepts

• What a Hacking-Lab course needs

– Deliverables defined

– Show which skills are trained (mindmap / MITRA style table)

– Exercises created as markdown for ease of use

– Get inspiration from already established courses

Decisions:

• Add passive and active labs for networks.

• Write protocol of sprint meetings for own use but not needed in documentation.

• Create Hacking-Lab content on markdown files

Duration: 1h

40

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 3: 20. Okt.

Deliverables:

• Students:

– Think about the exploitation aspect and add it to mindmap.

– POC for lab 2 and 3 and started testing.

– Update GANTT chart.

• Advisor:

– Sample courses for RE.

– Unlock ECSC Hacking-Labs.

Discussed Topics:

• Online GANTT chart instead of excel chart

• Refresher and lab 1 (introduction #1)

– Create at the end to know what is necessary for the labs

– Use binaries from the already created labs

• Server part is important (analyzing and exploiting remote); socat discussed

• Generally try to add exploits at the end

• RE is used to find weaknesses and exploit them

• Markdown for the Hacking-Lab consists of: Main page / step pages and a solution
page

Decisions:

• Timetracking: Only if the used tool (clockify) allows it, add estimated time

• Plan labs while creating others to maximize the efficency

• Start construction phase now (21.10.2022)

• Add exploits to the labs (remote server using docker)

• Start construction with lab 2 and 3 to ensure the refresher and lab 1 are done
correctly

Duration: 1h 20min

41

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Construction Phase

Meeting 4: 27. Okt.

Deliverables:

• Students:

– POC for lab running inside a docker with downloadable binary and generated
flag.

– POC for RE-Lab with different compiler using public code.

• Advisor:

– Update Hacking-Lab CD with packet for IDA.

– Upload introduction labs 2 and 3 to Hacking-Lab.

Discussed Topics:

• S6 Overlay

• Use Hacking-Lab GitHub repo for references

Decisions:

• Windows: bootstrap script for windows (choco)

• Linux: Hacking-Lab CD packet for IDA

• Use source code of example exercises for ideas

Duration: 1h 30min

42

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 5: 03. Nov.

Deliverables:

• Students:

– Finish remote-exploit lab

– Check out sent labs and Links

– Finish RE-attempts lab

– POC für Python PWN lab

– IDA installation guide

• Advisor:

– Upload finished labs to Hacking-Lab

Discussed Topics:

• How a Hacking-Lab lab is built (Sections and Steps) and how the ”Competitive”-
mode works

• Adding security questions as second section

• Add to the labs what the student should hand in (Flag, Writeup, multiple-choice or
a combination of the three)

• Update of the two labs (remote and RE-attempts)

• Hacking-Lab generator (”generator-hl-challenge” on GitHub)

Decisions:

• Add difficulty to RE-attempts lab

• Don’t use pyinstaller for packing since it makes the reversing annoying

• Create a PWN library lab

• Send PDF a day before meeting because of CICD

• Add docker-compose to all docker folders

• Choose mode to run the lab in (Competitive, Training, Optional steps)

• Use section, text and step for markdown

Duration: 1h 20min

43

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 6: 10. Nov.

Deliverables:

• Students:

– Fix pwntool lab

– Introduction labs for IDA, GDB and x64dbg

– Test the newly uploaded labs

• Advisor:

– Migrate challenges from OST to demo tenant

Discussed Topics:

• Demo tenant for easier access and testing

• Hacking-Lab tutorial with editor and resource pages

• Reversing is used to understand code and explotiation is needed too.

• Lab ideas (IDA scripting, virus lab, more client-Server labs)

Decisions:

• Use demo tenant for labs before uploading to OST tenant

Duration: 2h

44

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 7: 17. Nov.

Deliverables:

• Students:

– Testing labs

– GANTT-diagram

– Refresher lab

– Concept for the last labs

• Advisor:

– Fix Modes and settings for labs

Discussed Topics:

• IDA installation on Hacking-Lab CD

• How to structure the Labs to upload it easily

• Other tenant for easier updating

• Pwntools lab problems with docker

• Refresher lab with coding example

• More ideas for last lab: PWN iter (Bruteforcing), DLL virus, patching lab, reverse
shell

Decisions:

• Introduction structure with different steps

• Read mail regarding documentation structure

• Use given structure for the documentation

• Create a crypto lab

• Concepts for the last lab

Duration: 2h

45

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 8: 25. Nov.

Deliverables:

• Students:

– Patching lab

– Testing

– Mail for pwntools lab

• Advisor:

– Upload pwntools lab

Discussed Topics:

• Pwntools lab

• Cryptographic lab works and is uploaded

• Assembly refresher is finished and uploaded

• Patching lab concept as favorite

• Calculator which needs to be patched to works

• Use website to upload patching file and display output

Decisions:

• Patching lab

• Start first testing

• Update documentation

Duration: 2h

46

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Meeting 9: 1.Dez.

Deliverables:

• Students:

– Patching Lab finished

– Feedback Forms setup and integrated

Discussed Topics:

• Patching lab status

• Testing setup and forms

• Overview of all labs

• Documentation status

• Next meetings

Decisions:

• Only one more meeting (13. dez.)

• All labs are ready and can get tested

• Finalizing documentation until next meeting

• Use structure given by OST for the documentation

Duration: 1h

47

CHAPTER 4. APPENDIX G.Nenz, R. Mueller, T.Kleb

Transition Phase

Meeting 10: 13.Dez.

Deliverables:

• Students:

– -

Discussed Topics:

• What belongs into Management-Summary and how to write it

• What to cover in technical report

Decisions:

• Management-Summary should be written in a manner that someone with zero
knowledge would understand our project

• Technical report can be written in a manner that professionals should be able to
understand it

Duration: 30min

48

Bibliography

[1] S. Morgan. “Cybersecurity jobs report: 3.5 million openings in 2025.” (2021), [Online].
Available: https://cybersecurityventures.com/jobs/. (accessed: 04.11.2022).

[2] OST. “Studienschwerpunkte.” (2022), [Online]. Available: https://www.ost.ch/
de/studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/

studienschwerpunkte. (accessed: 04.11.2022).

[3] Clockify. “Time tracking tool.” (2022), [Online]. Available: https://clockify.me/.
(accessed: 09.11.2022).

49

https://cybersecurityventures.com/jobs/
https://www.ost.ch/de/studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/studienschwerpunkte
https://www.ost.ch/de/studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/studienschwerpunkte
https://www.ost.ch/de/studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/studienschwerpunkte
https://clockify.me/

BIBLIOGRAPHY G.Nenz, R. Mueller, T.Kleb

Eigenständigkeitserklärung

Erklärung
Wir erklären hiermit,

• dass wir die vorliegende Arbeit selbst und ohne fremde Hilfe durchgeführt haben,
ausser derjenigen, welche explizit in der Aufgabenstellung erwähnt ist oder mit de
Betreuer schriftlich vereinbart wurde,

• dass wir sämtliche verwendeten Quellen erwähnt und gemäss gängigen wissenschaftlichen
Zitierregeln korrekt angegeben haben.

• dass wir keine duch Copyright geschützten Materialien (z.B. Bilder) in dieser Arbeit
in unerlaubter Weise genutzt haben.

Gianluca Nenz
OST Student

Ronny Mueller
OST Student

Thomas Kleb
OST Student

Dated: Dec. 16, 2022

50

BIBLIOGRAPHY G.Nenz, R. Mueller, T.Kleb

Nutzungsrechte

Vereinbarung

1. Gegenstand der Vereinbarung

Mit dieser Vereinbarung werden die Rechte über die Verwendung und die Weiterentwick-
lung der Ergebnisse der Semesterarbeit ”Reverse Engineering Lab” im HS 2022 der FH
OST von Thomas Kleb, Ronny Müller und Gianluca Nenz unter der Betreuung von Ivan
Bütler geregelt.

2. Urheberrecht

Die Urheberrechte der im Rahmen der Semesterarbeit entwickelten Teile des ”Reverse
Engineering Lab” stehen den Studenten der Semesterarbeit zu.

3. Abgrenzung

Die Urheberrechte der von Compass Security und Hacking-Lab eingebrachten Vorleistun-
gen in Form von Beispielen aus dem Hacking-Lab verbleiben bei Compass Security und
Hacking-Lab.

4. Verwendung

Die Ergebnisse der Arbeit dürfen sowohl von den Studenten der Semesterarbeit, durch den
Betreuer der FH OST wie auch von der Compass Security Holding oder einer ihrer Com-
pass Tochterfirmen (Compass Schweiz, Compass Deutschland, Compass Cyber Defense,
Hacking-Lab AG) uneingeschränkt nach Abschluss der Arbeit verwendet und weiteren-
twickelt werden.

Gianluca Nenz
OST Student

Ronny Mueller
OST Student

Thomas Kleb
OST Student

Ivan Buetler
Advisor

Dated: Dec. 16, 2022

51

	Abstract
	Glossary
	Project Idea
	Task
	Problem Domain
	Learning Concepts

	Management Summary
	Overview
	What is Reverse Engineering
	Current Situation

	Approach
	Procedure
	Technologies
	Results
	Goals Achieved
	Goals Not Achieved

	Future

	Technical Report
	Introduction
	Problem
	Similar Work
	Technologies Used
	Goals
	Setup

	Requirements for the Labs
	Overview
	Requirements

	Lab Documentation
	Overview
	Tools Introduction: GDB
	Tools Introduction: x64dbg
	Tools Introduction: IDA Freeware
	Lab 1: Asm-Refresher
	Lab 2: Static Debugging
	Lab 3: Dynamic Debugging
	Lab 4: First Reversing Attempts
	Lab 5: Remote Login
	Lab 6: Pwntools - Introduction
	Lab 7: Crypto Lab - AES ECB
	Lab 8: Patching Lab

	Results
	Conclusion

	Project Documentation
	Project Plan
	Management
	Organisation
	Planning and Milestones
	Testing

	Risk Analysis
	Risk Managment
	Estimated Risks

	Project Monitoring
	Overview
	Milestones
	Time Tracking

	Personal Rapports
	Gianluca Nenz
	Ronny Mueller
	Thomas Kleb

	Acknowledgement
	List of Figures
	List of Tables
	Appendix
	Meetings
	Bibliography
	Eigenständigkeitserklärung
	Nutzungsrechte

