
Peer-to-Peer Content Delivery Network

Student Research Project

Project Team: Adrian Locher
Jason Benz

Project Advisor: Dr. Thomas Bocek
Proofreader: AnneMarie O’Neill

Date: 22.12.2022

Peer-to-Peer Content Delivery Network

Abstract
Web applications have historically been centralized in their way of distributing data. Peer-to-peer
protocols such as BitTorrent have only recently been introduced to the web thanks to the increasing
support of WebRTC. This project analyses technologies that already take advantage of this while
proposing improvements to increase decentralization.

After researching available technologies and proposing a new concept, we built our proposed concept
as a prototype. The focus of this prototype is to be as decentralized as possible, while still working
with a web application without the need to install any plugins or external software by a user.

Our concept, backed by the prototype, shows that it is possible to implement a system for delivering
files in a peer-to-peer fashion without centralized services. Arguably, the developed prototype is not
suitable for small, latency sensitive data, because of the latency introduced by the complex nature of
peer-to-peer connection establishment. With current technologies, a sub-second download of any file
is therefore impossible.

Latency can still be improved by prioritizing peers for latency, to reach smaller round-trip times and
therefore faster connection-establishment. This mechanism remains to be solved by future work.

I

Peer-to-Peer Content Delivery Network

Lay Summary
Large companies often provide files over so-called content delivery networks. They are hosted and
managed centrally by the corresponding company. The files are often stored in different locations.
This has disadvantages. Several servers have to be operated for this purpose and a single company
decides which content is available.

This thesis addresses whether a completely decentralized web-based peer-to-peer CDN can be imple-
mented. The goal is that an internet user automatically joins the CDN as soon as they open the
corresponding website. The user should not have to install any programs to participate.

In the first part of the work, it is researched if it is technically possible. In the second part, the
research is proven with a prototype. Modern web technologies are used for the implementation.

II

Peer-to-Peer Content Delivery Network

Acknowledgements
During the student research project, Dr. Thomas Bocek and AnneMarie O’Neill supported us in their
areas of expertise, and we would like to express our sincere thanks to them.

Many thanks to Dr. Thomas Bocek for mentoring us and providing input especially in the domain of
distributed systems.

We very much appreciate AnneMarie O’Neill proofreading the document and providing valuable feed-
back.

III

Peer-to-Peer Content Delivery Network

Glossary

Name Abbr. Description

Content Delivery Network CDN Group of servers which are geographically dis-
tributed to efficiently distribute content.

Distributed Hash Table DHT Distributed data structure that supports a
data lookup based on a key-value pair.

Interactive Connection Establishment ICE A combination of the STUN and TURN pro-
tocols.

Leecher - A peer which is downloading content from a
P2P network (coll. taker).

Network Address Translation NAT A technology used by routers to reduce the
amount of needed public IP-addresses.

Node - Synonym of peer.

Open Systems Interconnection model OSI model Layer model used by systems to communicate
over a network.

Peer - Endpoint for communication in a distributed
computer system. Simultaneously has the
role of a client and a server. Peers are the
total amount of seeders and leechers.

Peer-to-Peer P2P Distributed application architecture in which
participants (peers) communicate ”face-to-
face”.

Piece - Part of a data-unit to share via P2P proto-
cols.

Round Trip Time RTT The time needed from when a request is sent
until a response is received.

Seeder - A peer which is uploading content to a P2P
network (coll. giver)

Session Traversal Utilities for NAT STUN A service for a node to discover its own IP-
address and port while behind NAT.

Swarm - A set of peers seeding the same files.

Torrent - A data-unit, seeded via the BitTorrent pro-
tocol described by a meta-info file (.torrent
file).

Traversal using Relays around NAT TURN A relays service to connect to peers while be-
hind symmetric NAT.

Table 1.: Glossary.

IV

Contents Peer-to-Peer Content Delivery Network

Contents
Abstract I

Lay Summary II

Acknowledgements III

Glossary IV

I. Paper 1

1. Introduction 2

2. Background Information 3
2.1. BitTorrent . 3
2.2. WebRTC . 4
2.3. WebTorrent . 4
2.4. Hypercore . 5
2.5. IPFS . 5
2.6. PeerCDN . 6

3. Concept 7
3.1. Requirements and Decisions . 7
3.2. Components and Considerations . 7

3.2.1. Peer Protocol . 7
3.2.2. Peer Discovery . 8
3.2.3. Signaling . 9
3.2.4. NAT Traversal . 9
3.2.5. Mediation . 9
3.2.6. DHT . 9
3.2.7. Caching . 10

3.3. Architecture . 11
3.3.1. Mediation Protocol . 11
3.3.2. Mediation Protocol Dialog Combinations . 13

3.4. Security Considerations . 14
3.4.1. Sending Malicious Pieces (Tampering) . 14
3.4.2. Hosting Malicious User Content (Tampering) . 14
3.4.3. Sybil Attacks (DoS) . 15
3.4.4. Flooding a Mediator with Malicious or Incorrect Peers (DoS) 15

II. Prototype Documentation 16

4. Requirements 17
4.1. Functional Requirements . 17
4.2. Non-Functional Requirements . 17
4.3. Constraints . 17
4.4. Context and Scope . 18

5. Architecture 19
5.1. Containers and Context . 19
5.2. Components . 20

5.2.1. User Layer . 20

V

Contents Peer-to-Peer Content Delivery Network

5.2.2. File Inclusion Framework . 20
5.2.3. Communication Layer . 20
5.2.4. Torrent Manager . 21
5.2.5. Swarm Manager . 21
5.2.6. Torrent Data . 21
5.2.7. Peer Wire . 21
5.2.8. Mediation Client . 21
5.2.9. Protocol Layer . 21
5.2.10. BitTorrent Protocol . 21
5.2.11. Mediation Protocol . 21
5.2.12. Transport Layer . 21
5.2.13. WebRTC Protocol . 21
5.2.14. WebSocket . 22
5.2.15. Mediation Server . 22
5.2.16. PeerConnector and MediatorConnector . 22
5.2.17. Router . 22
5.2.18. DHT-Node . 22

5.3. Architectural Decisions . 22
5.3.1. Languages and Platform . 22
5.3.2. Libraries Used . 22
5.3.3. Implementation Details . 23

5.4. Project Setup . 23
5.4.1. Mediator Execution . 24

6. Quality Assessment 25
6.1. Testing . 25

6.1.1. End-to-End Tests . 25
6.1.2. Integration Tests . 26

6.2. Requirements Analysis . 27
6.2.1. Functional Requirements . 27
6.2.2. Non-Functional Requirements . 27

6.3. Performance Analysis . 28
6.3.1. Test Setup . 28
6.3.2. Time vs Pieces-Length . 28
6.3.3. Time vs Uploaders-Amount . 29
6.3.4. File-Size vs Throughput . 30

6.4. Technical Debt . 30
6.4.1. Peer Wire Implementation . 30
6.4.2. Peer Prioritization . 31
6.4.3. Info-Dictionary Proofs . 31

7. Final Prototype 32
7.1. Mediator . 32
7.2. Peer . 32
7.3. Preview . 33

III. Conclusion and Outlook 35

8. Conclusion and Outlook 36
8.1. Results . 36
8.2. Production Readiness . 36
8.3. Outlook . 36

8.3.1. Geographical Closeness . 36

VI

Contents Peer-to-Peer Content Delivery Network

8.3.2. Tampering (Security) . 36
8.3.3. True Web-Browser Sockets . 36

IV. Appendix 38

9. Project Plan 39

10.Personal Reports 40
10.1. Adrian Locher . 40
10.2. Jason Benz . 40

11.Bibliography 41

12.List of Figures 43

13.List of Tables 44

VII

Peer-to-Peer Content Delivery Network

Part I.

Paper

1

Chapter 1. Introduction Peer-to-Peer Content Delivery Network

1. Introduction
Nowadays, companies often use a CDN to quickly make large content available to users. CDNs are
servers which are geographically distributed. Many companies use services such as Cloudflare or
operate their own CDN.

The servers are distributed, but not decentralized. Content is provided multiple times in different
CDNs, which are all centrally managed. A prominent example is the distribution of jQuery or Google
Fonts. Often, large content such as images or videos are also distributed this way.

Content distribution could be solved by using a P2P network. Frequently used content is most likely
already available from a nearby peer. The problem when using a P2P network is that the clients either
have to install a torrent client first or have severe limitations in web-based solutions. The goal of this
work is to research existing solutions and propose improvements.

The work will be divided into the following three parts:

1. Determining existing technologies.

2. Creating a concept with a proposal of a solution.

3. Creating a prototype to identify the technical limitations and to prove the concept.

2

Chapter 2. Background Information Peer-to-Peer Content Delivery Network

2. Background Information
There are a lot of different approaches to establish a P2P connection to share files. It is possible
with different technologies and protocols. Technologies such as BitTorrent are often associated with
illegality. The media reports about legal warnings and penalties because someone has downloaded
files over P2P. Especially in the USA and in Germany this is the case. The use of P2P file-sharing
in general is not illegal. However, it is illegal to share certain kinds of content such as malware or
copyright infringing files.
Legally, it is possible to implement a CDN via P2P. What remains is the question regarding practi-
cability. This question will be explored in depth. This document will determine which technologies
exist, which are suitable and what technical limitations are encountered.

2.1. BitTorrent

BitTorrent is a P2P file sharing protocol [1]. The main goal of this protocol is to download large
files in a distributed manner. While a classic download approach using the Hypertext Transfer Pro-
tocol (HTTP) or File Transfer Protocol (FTP) only downloads data from one source after another,
BitTorrent establishes a decentralized network called a swarm for each file. Individual parts of the
desired file are downloaded in parallel from different peers at the same time, which might even increase
bandwidth. At the end, the individual file parts are reassembled. Unless trying to leech, the parts
being downloaded are simultaneously made available (seeded) to other peers so that they can also
benefit from the network.

Figure 2.1.: BitTorrent Connection Establishment.

Advantages Disadvantages

+ Performance (more bandwidth) - NAT problems

+ Decentralized - Possible malware sharing / copyright violation

+ Easily scalable due to swarming - In most cases, a client is required to connect

Table 2.1.: BitTorrent Advantages and Disadvantages.

According to BitTorrent estimates, over 250 million users utilize this technology every month. This
corresponds to about 3.35% of internet traffic [2].

3

2.2. WebRTC Peer-to-Peer Content Delivery Network

2.2. WebRTC

Web Real-Time Communication (WebRTC) is a collection of protocols and APIs that are combined
into an open standard. It enables real-time communication between browsers from other clients (P2P).
To establish a link between the peers, a connection to a signaling server must first be established. This
connection can be made through a conventional way, such as WebSockets. However, any medium can
be used for signaling. For instance, audio transmission could also be used [3].

Figure 2.2.: Basic WebRTC Architecture.

Advantages Disadvantages

+ P2P connection in web browsers - Caching is only possible with restrictions

+ Open web standard - Signaling server is required to establish a con-
nection

+ WebRTC is integrated in all major browsers
and enabled by default

- Security (possibility to get the clients IP ad-
dresses)

+ There is no need to download a specific client

Table 2.2.: WebRTC Advantages and Disadvantages.

2.3. WebTorrent

WebTorrent is the largest web based torrent client. It is written in JavaScript and works in the browser.
The source code is available on GitHub (MIT license) [4]. The GitHub project includes the full client
and the repositories of the different used libraries such as a DHT implementation, a BitTorrent peer
wire protocol implementation, a tracker implementation, a desktop client, etc. WebTorrent is based
on a modified version of the BitTorrent protocol. Therefore, it behaves mostly like BitTorrent, with
the main difference that it uses WebRTC as a transport protocol. Hybrid WebTorrent clients can also
interact with BitTorrent clients.

Figure 2.3.: WebTorrent Peer Interaction Map [5].

4

2.4. Hypercore Peer-to-Peer Content Delivery Network

Advantages Disadvantages

+ P2P connection in web browsers - Details are not well documented

+ Comprehensive implementation is available - Only limited configurability (= adjustments are
time-consuming)

+ Active open source project

+ Hybrid solutions possible (BitTorrent /
WebTorrent)

Table 2.3.: WebTorrent Advantages and Disadvantages.

2.4. Hypercore

The Hypercore Protocol is another P2P approach to file-sharing [6]. It combines a lightweight
blockchain without a consensus algorithm crossed with a BitTorrent like protocol. It consists of
the following subprojects:

• Hypercore: A distributed append-only log, which is like a list where only data can be added. It
is secured by a hash tree using cryptography

• Hyperdrive: A P2P file system built up on Hypercores. Usually the users only download the file
parts needed

• Hyperswarm: A DHT implementation based on Kademlia (including hole punching)

The project was inspired by BitTorrent.

Advantages Disadvantages

+ Active open source project - Not so widely used

+ Very well documented - Limited application (compatibility)

Table 2.4.: Hypercore Advantages and Disadvantages.

2.5. IPFS

Another interesting project is the InterPlanetary File System (IPFS). The self-proclaimed mission of
the project is:

A peer-to-peer hypermedia protocol designed to preserve and grow humanity’s knowledge by
making the web upgradeable, resilient, and more open. [7]

While the ambitions of this project are very high, in its core it is a distributed, P2P file system.
IPFS is structured similarly to a single large BitTorrent swarm, which exchanges objects via a large
repository-like system. The hash of the files acts as a content-ID (CID). The CID changes when
the file content changes. To keep focus on the files, the InterPlanetary Naming System (IPNS) was
developed. IPNS employs asymmetric cryptography to create mutable pointers to CIDs, enabling an
addressing-scheme that allows for files to change while the address stays the same. To be able to
interact with IPFS, downloading a client is required.

Advantages Disadvantages

+ Full implementation available - Not yet mainstream

+ Active open source project - Client download required

+ IPFS nodes can be owned by a company

Table 2.5.: IPFS Advantages and Disadvantages.

5

2.6. PeerCDN Peer-to-Peer Content Delivery Network

2.6. PeerCDN

Feross Aboukhadijeh, the developer of WebTorrent, has already developed a P2P CDN. However, this
was sold to Yahoo many years ago. The goal was to make the project well-known. Nowadays, no more
information can be found about it. Either the project was transferred to closed source or terminated
completely. [8]

6

Chapter 3. Concept Peer-to-Peer Content Delivery Network

3. Concept
This chapter describes the concept of a P2P-CDN, later to be implemented as a prototype. The
concept builds upon existing technologies and proposes improvements upon them.

3.1. Requirements and Decisions

The main goal of this thesis is to develop a concept for a P2P CDN. The team has set itself a number
of requirements that have a significant impact on the decisions it makes:

• No expertise is required for using the CDN (”Grandma should be able to use it”).

• The system is scalable.

• The system is decentralized.

• Modern technologies are in use.

• The latency is as low as possible.

• No client needs to be downloaded.

These requirements limit the determined technologies in Chapter 2. PeerCDN can be excluded directly
as no information is accessible. An existing BitTorrent client, IPFS and Hypercore can be excluded
as well, as a client must be downloaded. In addition, the technologies mentioned require a certain
amount of knowledge in order to work well with them. WebTorrent uses proven technologies with
BitTorrent and modern ones with WebRTC and a browser-based approach. There is also no need to
install a client. At first glance, it looks like the perfect solution. However, a closer analysis reveals that
there are some limitations. WebTorrent has very limited configurability. There are also limitations
in the use and optimization of DHTs as a peer-discovery mechanism. Nevertheless, this technology is
very suitable as a basis. This chapter attempts to describe how to connect the individual open source
libraries with additional libraries and self-developed components. Thus, an adaptation for the specific
use case of a fully decentralized P2P CDN can be developed. In the following sections a concept is
proposed on how to build a P2P CDN by employing modern technologies and libraries while pointing
out their drawbacks and benefits.

3.2. Components and Considerations

In this chapter, the document explains which components are needed to build a fully decentralized, in-
browser P2P-CDN. For each component the considerations that have to be undertaken are summarized.

3.2.1. Peer Protocol

The BitTorrent Peer Protocol can be implemented transport agnostic, as is done by the developer
behind WebTorrent [9]. For our purpose the protocol will be tunneled through a WebRTC connection.
This approach is similar to WebTorrents browser-to-browser connections.

At this time, true sockets cannot be used by web applications natively inside any of the major browsers.
There is a proposal in the Web Incubator Community Group [10], created in 2020. Currently, none
of the major web-browsers seem to be implementing a feature like this. The main reason for this are
security concerns as listed in the discussion about a potential ”Raw Sockets API” [11] of the Mozilla
standards-positions. The request was eventually marked as ”Harmful” by Mozilla. The main concern
seems to be that this would allow a web application to circumvent security mechanisms like the Same
Origin Policy.

Although, as elaborated, there is no support for ”raw” sockets natively, Firefox and Google Chrome
allow for message passing to system-local applications to be used via extensions [12][13]. An approach
to employ this for network-communication was undertaken by a project called Socketify [14]. One
major disadvantage of this approach is that there needs to be a client installed on the system using
the extended browser.

7

3.2. Components and Considerations Peer-to-Peer Content Delivery Network

The only true native P2P mode of transportations remains WebRTC, which is why further in this
text, it is assumed that WebRTC is used to achieve the requirements to the system described in this
document.

A possibility to improve the performance of data-transport is to prioritize peers with low RTT and
high bandwidth. While both RTT and bandwidth can simply be measured during data-transport.
It might be beneficial to pre-prioritize the peer list, before even starting to communicate with a
peer. This can be achieved by introducing a concept of geographical closeness. Approximate two-
dimensional coordinates could be encoded into the peer ID, by mapping them to one-dimensional
space, for example by employing Hilbert’s space-filling curve [15].

3.2.2. Peer Discovery

BitTorrent applies three ways to receive information about peers of a certain swarm.

Trackers [16] are servers that store and serve peer information. Since this is a client-server architecture,
implementing a tracker-client for the web is easy. However, this does not meet our goals on its own,
since trackers are centralized instances and, apart from reliability concerns, could be easily censored.

PEX or Peer-Exchange [17] is a functionality of sharing information between the downloading peers
themselves. While being one of the most effective ways of distributing peer-information, this still relies
on an information source outside the swarm for bootstrapping purposes.

The DHT Protocol [18] is an implementation of the Kademlia DHT [19]. The DHT is used to store
pairs of [info-hash; peer-information] and can be applied as a replacement for trackers.

Since WebRTC based applications cannot establish connections to different in-browser applications
without having a signaling service, it is impossible to integrate DHT based on in-browser clients
only. Even directly querying an external DHT from within browsers is inefficient, since the overhead
of currently enabled transports is too high to route through a DHT with sufficient latency for most
tasks. This is why even sophisticated projects like WebTorrent have not yet implemented it as pointed
out in issue #288 of the WebTorrent repository [20] and by the Hyper Hyper Space project [21].

As an in-browser application, WebTorrent uses trackers as a primary peer-information distribution
mechanism. The tracker server also acts as a signaling server, limiting peer connections between peers
that use at least one common tracker, and between peers that find each other via PEX.

Figure 3.1.: Overview about how an In-Browser DHT Would Work.

As seen in Figure 3.1, an in-browser DHT implementation would still need to rely on external boot-
strapping nodes that could be reached via HTTP or WebSocket. Furthermore, assuming the DHT
would follow a mechanism based on Kademlia, the network would have to endure the overhead of
signaling for each hop during routing.

8

3.2. Components and Considerations Peer-to-Peer Content Delivery Network

3.2.3. Signaling

P2P-applications between browsers are mostly built upon WebRTC [22]. While WebRTC does provide
a means to communicate P2P between two clients running in a browser environment, most applications
still use a centralized signaling service to initiate the connection.

There have been successful attempts to implement signaling mechanisms via DHTs. For instance, the
previous work done at OST [23] proposes an architecture whereby web services provide an additional
DHT service external to the in-browser application.

This seems like a sufficient solution for our case, since there is still enough decentralization. While the
network for the signaling mechanism will not have as many nodes as there are clients, it will be possible
to have the same amount of nodes and web services. Our architecture does not dismiss the idea of
web services altogether, but it focuses on content delivery of big files. Therefore, the decentralization
of the potential system is not limited stronger than the amount of web services taking part in it, as
long as every participating web service hosts a node in a DHT based signaling mechanism as well.

3.2.4. NAT Traversal

To traverse NAT (Network Address Translation), WebRTC uses ICE (Interactive Connection Estab-
lishment), which consists of STUN (Session Traversal Utilities for NAT) and TURN (Traversal using
Relays around NAT).

Asymmetric NAT allows for a node different from the requested node to answer a request. In order to
establish a connection the internal node needs to first send a request to a known node. This STUN-
node also tells the internal node its public IP-address and port which it needs to communicate to the
signal server how it may be reached.

Symmetric NAT only allows external nodes to traverse if they (a node being identified by an IP-
address and port) were the target of a request by an internal node. In this case, connections have
to be established via a relay that forwards traffic to the respective connection partners additional to
using STUN. This mechanism is called TURN.

ICE Candidates are inherently centralized but can be configured by the node offering signaling infor-
mation. To provide maximum reliability, it would make sense to deploy ICE-services for every web
service deployed.

3.2.5. Mediation

We propose an additional service to web services called mediation, which combines signaling- and peer-
discovery. This service is located outside web browsers and has to employ raw-sockets as transport.
Mediation is split into two sublayers: The service layer and the replication layer. The service layer
acts as a tracker, hosting peer information in the form of [info-hash ; signaling-data]. The replication
layer takes part in a DHT, to share tracker- and signaling information between mediators. This
combines the speed of using a tracker, with the reliability of using a distributed system. Web services
with small amounts of concurrent visitors, for instance, can still profit from the network, if different
websites (ideally with more concurrent users) deploy the same files.

3.2.6. DHT

BitTorrent, as well as most P2P file sharing applications, use some form of Kademlia DHTs [19].
While Kademlias proven consistency and efficient lookup algorithms are beneficial, its distance metric
leads to unpredictable latency. Kademlia uses the XOR operation as its measure of distance between
a randomly generated node ID and the DHT-Key to be found in lookups. This effectively means
that two close Kademlia nodes may be on opposite sides of the planet. This causes problems for this
project, whenever peers of latency sensitive files can only be found via the DHT mechanism.

One improvement on this topic was proposed in a paper by Raul Jimenez et al. [24]. The paper
discovered significant latency improvements by adapting different concepts of the original specification.

9

3.2. Components and Considerations Peer-to-Peer Content Delivery Network

The biggest improvements were seen after applying a concept named NR128, where bucket sizes are
changed from a standard size k for all buckets to k1 = 128 for the closest, k2 = 64 for the second
closest to the own ID, etc. Until the rest of the buckets remain at k = 8.

Another way to address latency in DHTs would be to approximate it by the IDs used by nodes that
may be contacted. One approach to this was described by Ratti et. al. in their paper about NL-DHT
[25]. Their concept introduces latency aware node IDs by employing a mapping from three-dimensional
location space to the one-dimensional space that is used by nodes as their ID. This makes it possible
to approximate the latency to nodes and ultimately allowed them to reduce the hop-count for lookup
operations.

While the approach used in NL-DHT [25] certainly reduced the latency by some amount this also
seems to introduce a new problem. In standard Kademlia as described in the original paper [19],
nodes may choose their ID by a uniform distribution function. This means that if a key is stored
on k nodes, some nodes might be geographically far away while others may be very close. Using
location aware IDs on the other hand leads to all nodes storing a key to be geographically close to
each other. Any node contacting the nodes storing the key will receive answers with approximately
the same latency from each node.

Adding predictable latency to the system is still an important step towards less latency. Based on
the suggestions made in the NL-DHT paper [25], we propose a mechanism that might further improve
latency by adding a feature of distribution of keys to the concept. As previously discussed, location
awareness can be reached by mapping the n dimensions of geographical space to single-dimensional ID-
space. We propose adding a dimension for key-space to those n dimensions to still have the advantages
of randomly distributed keys. This n+1 dimensional space would cover all geographical dimensions
plus one uniformly distributed dimension that has the same size as the key-space, assuring that keys
are distributed uniformly across the world, while still ensuring deterministic latency. Formally, this
can be defined as separating the concept of distance between nodes and keys from distance between
nodes and other nodes.

Figure 3.2.: Space of a DHT-Node ID Split into its Dimensions.

3.2.7. Caching

Files downloaded inside the browser via a system like the one described in this document, are not
cached natively by a browser since those files are not downloaded from a single server anymore. Still,
caching could highly improve the performance of the system, not only because the peer that is caching
the file could simply reuse it when needed, but also because mentioned peer could again seed the files
to other peers that need them.

Furthermore, since our P2P-CDN system assumes that different web applications might want to deploy
the same file, it would be helpful if the same browser instance could cache a file for all web applications
using the system making it possible to reuse a file downloaded after instruction by web application X,
again while being instructed to download the same file by web application Y.

10

3.3. Architecture Peer-to-Peer Content Delivery Network

The most sophisticated way at this time is the IndexedDB API [26], provided by most modern web-
browsers. This API provides a means to store large files or ”blobs” on the client-side of a web
application. Unfortunately IndexedDB databases do not allow for cross domain access for security
reasons. This means that files can only be cached per web application instance.

Smaller files could also be cached by the ”localStorage”-API which is usually limited to 10 MB of
storage, but more light-weight and easier to use. In general, the IndexedDB API still seems like the
most reasonable choice for potentially big files.

3.3. Architecture

The following is a conceptual architecture for a fully-decentralized in-browser P2P-CDN.

Figure 3.3.: Architecture Overview of the Concept.

3.3.1. Mediation Protocol

The mediation protocol is used between a peer and its mediator, as well as between mediators to ex-
change information about peers and how to contact them and to transport signaling-data for WebRTC
connection establishment. The protocol allows the following messages:

11

3.3. Architecture Peer-to-Peer Content Delivery Network

Message Parameters Semantics

handshake peer id, connection type Sent from peer to mediator to announce peer-id and
the connection type (mediation or replication)

established - Sent from mediator to peer to announce that the
connection is established

get peers full hash Sent to request peer-IDs of peers that seed the data-
unit fitting the full-hash

peers full hash, peer list Sent as a response to get peers
signal full hash, peer id, signal data Sent to transport signaling information between two

peers
announce full hash Sent from peer to mediator, to announce the start

of seeding
finish full hash Sent from peer to mediator, to announce the end of

seeding

Table 3.1.: Mediation Protocol Definition.

This protocol does not include DHT messages. The DHT will use its own protocol like KRPC (Kadem-
lia). It also does not include the transport of payload-data, this is handled by a peer-wire protocol
like the peer-protocol used in BitTorrent.

The following sequence describes how mediation proceeds in a conceptual manner.

Figure 3.4.: Sequence Diagram of the Mediation Process.

12

3.3. Architecture Peer-to-Peer Content Delivery Network

1. Peer A sends a handshake with its peer-identifier to mediator A.

2. Mediator A confirms connection establishment by sending established.

3. Peer A requests a list of peers from its mediator, by a full-hash of wanted data.

4. Mediator A looks up other mediators on the DHT, by the full-hash.

5. A DHT-Node responds with contact information of mediator B, who knows of peer B.

6. Mediator A sends a handshake with its peer-identifier to mediator B.

7. Mediator B confirms connection establishment by sending established.

8. Mediator A requests a list of peers from mediator B.

9. Mediator B responds with the peer IDs of seeding peers it knows of.

10. Mediator A sends the list of retrieved peer-IDs to peer A.

11. Peer A picks peers it wants to connect to from the received list. It now sends signaling information
for peer B to mediator A.

12. Mediator A forwards the received signaling information to mediator B. He encodes sender and
receiver peer-identifiers by concatenating them.

13. Mediator B forwards the information to peer B. He only sends the senders peer-identifier after
decoding the combined identifier he received before.

14. A P2P connection is now established.

15. Peer A may now announce that it has pieces of a certain data-unit, by its hash.

16. Mediator A announces to the DHT, that it knows of peers seeding pieces of certain data-units.

17. Peer A sends finish if he stops seeding the file.

18. Mediator A sends finish to the DHT to remove the peer-ID from the DHT.

Preceding this, peer B announced its seeding of a data-unit in the same manner as peer A did in steps
11 and 12. If mediator A knows enough peers to serve a peer joining the swarm, it may omit all steps
that communicate with the DHT, mediator B and peer B. It must still announce that it knows of
peers, seeding data, to support other nodes.

As an alternative to this approach, the client A could directly contact mediator B, to reduce latency
while signaling. However, this would require more labor done by the clients. In this scenario, peer A
would directly contact mediator B, after mediator A communicated contact information of mediator
B to it.

3.3.2. Mediation Protocol Dialog Combinations

The dialog combinations below are possible for mediation protocol.

Message Peer-to-Mediation Mediation-to-Peer Mediation-to-Mediation

handshake x - x
established - x x
get peers x - x
peers - x x
signal x x x
announce x - -
finish x - -

Table 3.2.: Mediation Protocol Dialog Combinations.

13

3.4. Security Considerations Peer-to-Peer Content Delivery Network

3.4. Security Considerations

This section acts as a threat model of the most obvious threats to the system described in this chapter.
Seen from the perspective of the STRIDE threat-model, the threats listed below lay in the areas of
tampering and denial of service (DoS). It is important to note that if a web application itself was
malicious, this cannot be prevented by the system described since the web application delivers the
necessary components of the system described to the peers. Therefore, threats of this scenario are not
included in this analysis.

3.4.1. Sending Malicious Pieces (Tampering)

Component Peer

Threat A malicious peer sends incorrect pieces to downloading peers.

Scope The scope of this attack is limited to single-files that the malicious peer is wrongfully
seeding.

Mitigation The meta-information provided must contain a hash of the full-file (can be a merkle-
root) or in a best-case hashes for each piece. Peers must discard files and pieces
of which the hash does not match with the one provided in the meta-information.
Files that are not yet verified must be handled with care under the assumption that
they may contain malicious code.

Table 3.3.: Malicious Piece-Sending Threat Description.

3.4.2. Hosting Malicious User Content (Tampering)

Component Peer

Threat A user uploads malicious content on a site which allows dynamic user content.

Scope This attack is limited to all peers / users downloading malicious files.

Mitigation One mitigation is to use an antivirus scanner. Another one is to use a malware
voting service on which contaminated hashes can be flagged as malware.

Table 3.4.: Hosting of Malicious Files Threat Description.

14

3.4. Security Considerations Peer-to-Peer Content Delivery Network

3.4.3. Sybil Attacks (DoS)

Component DHT

Threat A malicious node operates as many identities as possible to flood the system with
wrong or malicious peer-information.

Scope The scope of this type of attack is limited by the fact that mediators do not have to
rely on other mediators as long as they know enough peers themselves. Mediators
of small-scale web applications might not be able to serve usable peer-information
to its own peers.

Mitigation Since it makes sense to host a mediator per web applications, mediator addresses can
be constrained to second-level DNS-domains. This would not require any additional
resources for legitimate hosts. A malicious node trying to create as many identities
on the DHT as possible would need to buy a DNS-domain for every identity it tries
to sign up, leading to great cost.

Table 3.5.: Sybil Attack Threat Description.

3.4.4. Flooding a Mediator with Malicious or Incorrect Peers (DoS)

Component Peer, Mediator

Threat An attacker creates malicious peers and announces them to a mediator, to prevent
truthful peers from downloading content.

Scope This attack concerns all peers connected to the attacked mediator and all files
provided by the swarms advertised by that mediator.

Mitigation Mediation for this can be implemented by a challenge response mechanism for the
mediator in question to make sure that an announcing peer actually seeds the
pieces it claims to have. To challenge a peer, the mediator would have to act as
a peer himself. This would significantly increase the workload on the mediator.
Alternatively, the mediator could challenge the peer for information that it can
only know from the web application that it claims to use. The web application in-
turn would only provide the challenged information after confirming that the peer
is not bot-operated. While the latter solution seems more effective it could impair
the user-experience for truthful users, depending on the ”anti-bot” mechanism used.
An example for such a mechanism would be a Completely Automated Public Turing
Test (or CAPTCHA).

Table 3.6.: Flooding Malicious Peers Threat Description.

15

Peer-to-Peer Content Delivery Network

Part II.

Prototype Documentation

16

Chapter 4. Requirements Peer-to-Peer Content Delivery Network

4. Requirements

4.1. Functional Requirements

In this section the functional requirements that the system under development must, should or could
meet are described. A user utilizing a web application which is using the system based on this project
is called an end-user. The computer system the end-user is using to visit the web application is referred
to as his system.

No. Level Requirement

1 Must The system must be able to let end-users download shared files to his system.

2 Must The system must be able to let end-users share files.

3 Should The system should be able to allow a web application to embed downloaded media
content in its pages.

4 Could The system could be able to allow a web application to embed downloaded
JavaScript scripts in its pages and run them.

5 Could A list of WebRTC-ICE candidates is configurable by the publisher of the web
application.

6 Could The system lets developers experiment with different strategies to prioritize peers
and mediators.

7 Could Peers cache downloaded files and re-seed them when re-visiting a web application

Table 4.1.: Declaration of Functional Requirements for the Prototype System under Development.

4.2. Non-Functional Requirements

This section describes non-functional requirements that the system under development must, should or
could meet. Please note, since this a prototype, the NFRs do not take performance into consideration
as much as a non-prototype system would likely need.

No. Level Requirement

1 Must All payload transfers are implemented in a P2P manner between web applications.

2 Must WebRTC signaling is implemented in a decentralized manner.

3 Must Peer discovery is implemented in a decentralized manner.

4 Should WebRTC-ICE candidates are mediated between peers.

5 Could Peers are prioritized by lowest-latency and/or geographical closeness

Table 4.2.: Declaration of Non-Functional Requirements for the Prototype System under Development.

4.3. Constraints

The main constraint of the system under development is that the peer is running inside a browser-
environment. These limits used languages to either JavaScript, TypeScript or anything compilable
to WebAssembly. Connections between the peer and the mediator are limited to either WebSockets
or HTTP. Connections between Peers are limited to WebRTC connections as mentioned in preceding
chapters.

17

4.4. Context and Scope Peer-to-Peer Content Delivery Network

4.4. Context and Scope

This project is not meant to implement WebRTC itself. For WebRTC connections, libraries are used.
These libraries also handle all communication with ICE-Services. They are therefore external depen-
dencies to our system. For the DHT, we also use the existing implementation used in WebTorrent.
While the BitTorrent protocol-messages are handled by the WebTorrent/BitTorrent library, the seman-
tics of the protocol is implemented by ourselves. The Mediation protocol is completely implemented
by us and is transported using the Socket.io library [27].

18

Chapter 5. Architecture Peer-to-Peer Content Delivery Network

5. Architecture

5.1. Containers and Context

Below the details about the main containers (separately deployable units in this project) and with
whom they interact within and outside the system under development are provided.

Figure 5.1.: Context of the Peer-Tier.

The peer container runs within a browser environment together with the application using it. An
end-user utilizing the web application interacts with the system via the application either implicitly
by using libraries and media downloaded by the system or explicitly by starting a download. The
application connects to the peer swarm which consists of other peers of the same nature. The peer
also connects to one mediator, which provides peer information (IDs of peers in the swarm) and
WebRTC signaling information needed to establish a connection.

Figure 5.2.: Context of the Mediator-Tier.

The mediator container consists of two groups of functionality. The mediation service connects to
peers to which it provides peer information (IDs of other peers in the swarm) and WebRTC signaling
information. The replication node connects to other mediators, from which and to which it provides
the peer information that is later provided to peers for connection establishment. Other mediators
are located by querying the DHT, which consists of all mediators globally.

19

5.2. Components Peer-to-Peer Content Delivery Network

5.2. Components

The components which the system under development consists of are declared in the following part.
The components shown below do not contain all the classes and modules of the source code exactly
but represent the most important units of functionality and their interactions.

Figure 5.3.: Components Grouped into Tiers and Layers.

For our prototype we chose to group the components into layers and tiers. While the tiers classically
separate the application by its physical deployment location, the layers were chosen so that they
resemble the layered architecture of OSI-layered networks. In short this means that every layer N
provides a service to any layer N + 1, where higher numbered layers appear above lower numbered
ones in the diagram. For simplicity reasons a service of layer N is accessible to any layer above and
not just its direct upper neighbor.

5.2.1. User Layer

The user as seen from this project are web developers who want to use the system built during this
project in an application. The user layer, as its name suggests, provides the functionality needed to
support this.

5.2.2. File Inclusion Framework

This components task is to instruct the torrent manager to download a file, by giving its info dictio-
naries containing meta information about the files it must download. Upon receiving these files it will
provide them to the web application in a manner that is easy for the developers of the application to
include them. The file inclusion framework will also apply caching via a library called ”localforage”
[28] if the developer tells it to do so.

5.2.3. Communication Layer

The communication layer is where semantic meaning is given to the protocols in lower layers.

20

5.2. Components Peer-to-Peer Content Delivery Network

5.2.4. Torrent Manager

The Torrent Manager takes care of all torrents that must be downloaded. It creates Swarm Managers
for each file to download and gives them a means to find new peers by providing access to theMediation
Client. It also generates a single peer ID that is used by all Swarm Managers.

5.2.5. Swarm Manager

There is one Swarm Manager for each file to download. It receives new peers from the Mediation
Client and creates new Peer Wires accordingly. It also initializes a Torrent Data object with meta
information and waits for it to emit a complete event via a callback to forward it to the Torrent
Manager.

5.2.6. Torrent Data

The Torrent Data component keeps track of all pieces of a file. It allows Peer Wires to acquire a piece
to download so that multiple Peer Wires do not download the same piece.

5.2.7. Peer Wire

Peer Wire implements the semantic part of our BitTorrent implementation and encapsulates a single
connection to another peer. It receives an RPC like interface from the BitTorrent Protocol library.
The component receives information about what pieces to download from its assigned Torrent Data
object.

5.2.8. Mediation Client

The Mediation Client is responsible for communicating with a Mediator and providing received peer-
and signaling-information to the Swarm Manager. To communicate to Mediators it uses the Mediation
Protocol described in this document via a WebSocket connection.

5.2.9. Protocol Layer

The protocol layer contains transport agnostic implementations of the BitTorrent Protocol (imple-
mented by the web-torrent/bittorrent) library and the Mediation Protocol (implemented during this
project).

5.2.10. BitTorrent Protocol

The webtorrent-bittorrent library implements all messages required by the BitTorrent protocol stan-
dard [1].

5.2.11. Mediation Protocol

Used in both tiers, theMediation Protocol component encapsulates the functionality (not the semantic-
meaning) of the mediation protocol. It allows other modules to register listeners to certain messages
and send messages.

5.2.12. Transport Layer

The transport layer contains the components needed to transport the protocols of the upper layers to
other peers and mediators.

5.2.13. WebRTC Protocol

This component is implemented by the simple-peer [29] library also used by the WebTorrent project
[4]. WebRTC is used to connect to other peers.

21

5.3. Architectural Decisions Peer-to-Peer Content Delivery Network

5.2.14. WebSocket

WebSockets are used to connect to mediators, since they can be reached in a client-server fashion.
Using the socket.io library for this seems like a reasonable choice, since it is widely used in big projects
and time-tested. This component is used in both tiers.

5.2.15. Mediation Server

The Mediation Server accepts incoming connections, determines if they are initiated by another me-
diator or a peer and forwards further action to either a PeerConnector or a MediatorConnector.

5.2.16. PeerConnector and MediatorConnector

Both, the PeerConnector and the MediatorConnector implement the semantics of the MediationPro-
tocol. An instance of one of these components represents a connection to a peer or a mediator. To
enable them to forward messages to different peers and mediators, all instances of these components
depend on a common router -component.

5.2.17. Router

The Router keeps track of all known peers and is able to forward messages to any peer or connected
mediator.

5.2.18. DHT-Node

Using the ”bittorrent-dht” library provided by the WebTorrent project, the DHT-Node component
allows the mediator to announce that he knows of clients, seeding a certain file.

5.3. Architectural Decisions

This section describes the most important decisions we made during development of the prototype
implementation of our concept. Please note that most of the more technical decisions were already
anticipated in the concept.

5.3.1. Languages and Platform

For the development of the peer application, TypeScript was used. TypeScript was chosen because
it allows type-safe programming. Know-how in the team was also considered in this choice. Another
factor was that most libraries we wanted to use are implemented in JavaScript which is interoperable
with TypeScript.

The mediator application was developed for the Node.js platform in TypeScript as well for the same
reasons.

5.3.2. Libraries Used

The following libraries were used to implement this project:

Simple-Peer [29] Is a WebRTC abstraction layer that makes it easy to establish peer-to-peer con-
nections. For our purposes it was ideal, since it does not take care of signaling but simply returns us
a signaling string that can be transported to the opposite peer however we want to.

BitTorrent-Protocol [9] Is the BitTorrent implementation used by WebTorrent [4]. It was chosen
because it is the most stable implementation of BitTorrent implemented in web-compatible languages.

LocalForage [28] Is a library that simplifies the API of IndexedDB [26]. It has a well-maintained
repository and allows us to implement the caching features in a timely manner.

22

5.4. Project Setup Peer-to-Peer Content Delivery Network

Socket.io [27] Is a well-known standard for JavaScript web-sockets. It is used by this prototype to
connect peers to mediators and mediators to other mediators.

Bittorrent-DHT [30] Is the ”Mainline DHT” implementation of the WebTorrent project. It is well
maintained and easy to use and was therefore chosen for this implementation.

5.3.3. Implementation Details

Peer-ID generation is implemented as a factory-method, to allow for easy testability and for allowing
experiments, since this is a major requirement to optimize latency according to our concept.

All the currently downloaded pieces are stored in a ”TorrentData” object. TorrentData also acts as
a queue for PeerWire instances to reserve and get the next piece-index that needs to be downloaded.
The piece-indexes are reserved for a specific time, after which the TorrentData instance assumes that
the PeerWire which originally reserved the index has failed and starts allowing PeerWires to reserve
it again. Even tough this will lead to multiple PeerWires downloading the same piece in odd cases,
this seemed like the appropriate way to do it because of the asynchronous nature of the whole system.

PeerWires get and reserve piece-ids from the TorrentData instance and download them sequentially.
The whole torrent itself is not necessarily downloaded sequentially, since multiple PeerWire instances
operate in one swarm, managed by a SwarmManager object. Even though torrents are not downloaded
in a perfect sequential manner, the TorrentData object still returns piece-indexes as sequentially as
possible. Although this is not a requirement in our case, it could be useful if video streams were added
to this system in the future.

As proposed in our concept, mediators share peer-information directly instead of putting them onto
the DHT. This makes the DHT more light-weight since it only contains information about mediators.
It also increases performance, since mediators, which once they know each other, can directly request
new peers from each other and share signaling-data.

The mediator does not cache ”PEERS” messages from mediators because the peer-swarms experience
high churn. If we allowed mediators to cache ”PEERS” information from other mediators, this cache
would mostly consist of deprecated information about peers that are already disconnected. This should
not have too much of a performance impact on the system because external peers are a secondary
measure. In most cases the mediator will know at least a few peers personally.

Our implementation does not provide functionality for a fallback HTTP-download from the web-server
if no peers are available. Instead we propose for hosts of web-services to always keep one peer running
on their own. This limitation exists because of time-constraints of the project.

5.4. Project Setup

The project is structured into 4 main folders.

• ”mediator”: contains the implementation of the mediator in the form of an NPM-project.

• ”peer”: contains the implementation of the peer in the form of an NPM-project.

• ”common”: contains source-code common to both ”mediator” and ”peer” projects.

• ”preview”: contains a preview web-site consisting of a single ”index.html” file.

In the root-folder of the project, one can also find the files ”compile.ps1” for PowerShell and ”com-
pile.sh” for Bash to compile all TypeScript code to JavaScript and bundle the peer into a single
browser-ready file. To compile the project TypeScript, Browserify and Esmify have to be installed on
the compiling system. Furthermore, to run the mediator, Node.js has to be installed.

23

5.4. Project Setup Peer-to-Peer Content Delivery Network

5.4.1. Mediator Execution

To run the mediator one can simply run the command:

node mediator/out/mediator/src/index.js MEDIATOR PORT DHT PORT DHT BOOTSTRAPPER

The parameters are:

• MEDIATOR PORT refers to the port that the mediator will listen to requests.

• DHT PORT refers to the port that the DHT-node of the mediator will listen to.

• DHT BOOTSTRAPPER refers to the address and port of the bootstrapping node that is con-
tacted to build the routing-table. It may be omitted if it is assumed that there currently exists
no network using our system.

24

Chapter 6. Quality Assessment Peer-to-Peer Content Delivery Network

6. Quality Assessment

6.1. Testing

To test the implemented system we employed both integration tests and end-to-end tests. Automated
integration tests are only applied to the mediator part of the system, because of the in-browser nature
of the peer-implementation. End-to-end peer testing is done manually.

6.1.1. End-to-End Tests

The following end-to-end tests were performed by uploading and downloading different files through
the developed system and analyzing logs.

Test 1: Single Mediator, same Network

Test setup One mediator and two clients are running in the same network. Both clients
are configured to connect to mentioned mediator.

Success criterion Client 1 is able to generate meta-data for a file and seed it, client 2 is able
to download that file by inputting the meta-data. The mediator answers
peer-requests correctly and forwards signaling-data.

Result Successful

Table 6.1.: Test 1: Single Mediator, same Network Test Description.

Test 2: Two Mediators, same Network

Test setup Two mediators and two clients are running in the same network. Clients
are configured so that both connect to another mediator. One mediator is
configured to connect to the other one as the DHT bootstrap-node.

Success criterion Client 1 is able to generate meta-data for a file and seed it, client 2 is able to
download that file by inputting the meta-data. The mediators exchange peer
information, answer peer-requests and forward signaling-data correctly.

Result Successful

Table 6.2.: Test 2: Two Mediators, same Network Test Description.

Test 3: Single Mediator, different Networks

Test setup One mediator and two clients are all running in different networks. Both
clients run behind NAT firewalls. The mediators’ firewall has port-forwarding
configured to allow for incoming connections.

Success criterion Client 1 is able to generate meta-data for a file and seed it, client 2 is able to
download that file by inputting the meta-data. The WebRTC library cooper-
ates with STUN and TURN servers to solve NAT problems.

Result Successful

Table 6.3.: Test 3: Single Mediator, different Networks Test Description.

25

6.1. Testing Peer-to-Peer Content Delivery Network

Test 4: Two Mediators, different Networks

Test setup Two mediators and two clients are all running in different networks. Both
clients run behind a NAT firewall. The mediators’ firewall have port-
forwarding configured to allow for incoming connections, both for mediation
and for DHT replication purposes.

Success criterion Client 1 is able to generate meta-data for a file and seed it, client 2 is able to
download that file by inputting the meta-data. NAT is traversed successfully
and peer information is handled and forwarded correctly.

Result Successful

Table 6.4.: Test 4: Two Mediators, different Networks Test Description.

6.1.2. Integration Tests

Integration tests are created to test the basic functionalities of the mediator, as well as the communi-
cation between two mediators. The second mentioned test group implicitly verify the functionality of
the DHT, because each mediator provides its own DHT node, which are required to lookup searched
information.

Test Setup

The Mocha test framework [31] is used for the integration tests. It is supported by the Chai assertion
library [32] to enable assertions.

At the beginning of the tests, a new instance of the test infrastructure is created. This includes a
mediator (or two) running on localhost and two mediation protocol instances which are connected
over sockets to a mediator.

All tests are always executed two times. In the first run only one mediator is started, and all com-
munication occurs over it. In the second run another mediator is started, and the communication
between the two mediators will be tested as well.

Figure 6.1.: Test Setup of Integration Tests.

26

6.2. Requirements Analysis Peer-to-Peer Content Delivery Network

Mediator Tests

Due to network transmissions over the mediation protocol, all tests must be performed in the desig-
nated order.

No. Test Title Result one Mediator Result two Mediators

01 sendHandshake noError Successful Successful

02 isEstablished true Successful Successful

03 getPeersBeforeAnnounce noError Successful Successful

04 peers emptyResult Successful Successful

05 peers consoleWarn Successful Successful

06 announce noError Successful Successful

07 getPeersAfterAnnounce noError Successful Successful

08 peers oneEntry Successful Successful

09 signal noError Successful Successful

10 signalBack noError Successful Successful

11 signal receiveResult Successful Successful

12 finish noError Successful Successful

13 getPeersAfterFinish noError Successful Successful

14 peersAfterFinish emptyResult Successful Successful

Table 6.5.: Test Protocol of the Integration Tests.

6.2. Requirements Analysis

6.2.1. Functional Requirements

No. Level of Fulfillment

1 Fulfilled by functionality of the prototype.

2 Fulfilled implicitly. A user shares files whenever he downloads them.

3 Fulfilled by functionality of the prototype.

4 Currently unsupported due to lack of time.

5 Fulfilled by functionality of the prototype.

6 Fulfilled partially. There is no explicit to do so but the modular nature of the prototype
allows for easy modifications of prioritization.

7 Fulfilled by functionality of the prototype.

Table 6.6.: Analysis of Functional Requirements.

6.2.2. Non-Functional Requirements

No. Level of Fulfillment

1 Fulfilled. Payloads are transferred P2P, except for cases when one or both peers reside behind
a symmetric NAT. In this case STUN and TURN services are used additionally.

2 Fulfilled. WebRTC signaling is done decentralized via the mediators, the clients chose to
connect to.

3 Fulfilled. Peer discovery is done decentralized via the mediators as well.

4 Fulfilled. ICE candidates are mediated between peers. This is implemented in the ”Simple-
Peer” library we used.

5 Not fulfilled. Peers are currently not prioritized by any fixed metric.

Table 6.7.: Analysis of Non-Functional Requirements.

27

6.3. Performance Analysis Peer-to-Peer Content Delivery Network

6.3. Performance Analysis

This section contains a qualitative performance analysis of our system. The following tests are per-
formed via the internet. For our tests we used ICE-candidates hosted by the Openrelay-Project [33].

6.3.1. Test Setup

Figure 6.2.: Performance Analysis Test-Setup.

Both the network enclosing the uploaders or seeders and the network enclosing the downloader or
leecher lay behind a firewall/router with symmetric NAT enabled. The clients are configured to use
STUN and/or TURN to establish connections. The mediator is in the same network as the downloader
but is exempt from any firewall/NAT rules. Both firewalls are standard devices meant for private use.

Time measurements given in the following tests include connection-establishment and correctness-
assertions done by the system.

6.3.2. Time vs Pieces-Length

This test analyzes the time needed to download a file with different pieces sizes.

Test Configuration

FW1 Download-Rate: 50 MB/s, Upload-Rate: 30 MB/s, NAT-Type: Symmetric

FW2 Download-Rate: 100 MB/s, Upload-Rate: 30 MB/s, NAT-Type: Symmetric

Uploaders Amount: 1

System Pieces-Length: 1 KB, 10 KB, 100 KB, 150 KB, 200 KB, File-Size: 10 MB

Table 6.8.: Time vs Pieces-Length Test Configuration.

Only one uploader is used to isolate the effect of different pieces lengths on performance.

28

6.3. Performance Analysis Peer-to-Peer Content Delivery Network

Results

Figure 6.3.: Time vs Pieces-Length Test Results.

The results clearly show a logarithmic tendency of the relation between performance and pieces-length.
Any improvements above 200 KB would be insignificant. This also makes the limitation of pieces-
length of about 244 KB laid upon this system by the libraries in use insignificant. The plot shows the
average amount of time from two measurements.

6.3.3. Time vs Uploaders-Amount

This test analyzes the time needed to download a file with different amounts of uploaders.

Test Configuration

FW1 Download-Rate: 50 MB/s, Upload-Rate: 30 MB/s, NAT-Type: Symmetric

FW2 Download-Rate: 100 MB/s, Upload-Rate: 30 MB/s, NAT-Type: Symmetric

Uploaders Amount: 1-8

System Pieces-Length: 200 KB, File-Size: 10 MB

Table 6.9.: Time vs Uploaders-Amount Test Configuration.

Pieces-length and file-size are fixed to their respective values to isolate the effect of different amounts
of seeders.

Results

Figure 6.4.: Time vs Uploaders-Amount Test Results.

29

6.4. Technical Debt Peer-to-Peer Content Delivery Network

Even though times improve from one seeder to two, the relation seems almost constant after that. This
is likely due to the fact that this test was conducted in a stable environment without peers-leaving
during downloads. We estimate that the effect in a more volatile environment would drastically change.

6.3.4. File-Size vs Throughput

This test analyzes the throughput achieved with different file-sizes.

Test Configuration

FW1 Download-Rate: 300 MB/s, Upload-Rate: 65 MB/s, NAT-Type: Symmetric

FW2 Download-Rate: 100 MB/s, Upload-Rate: 30 MB/s, NAT-Type: Symmetric

Uploaders Amount: 1

System Pieces-Length (in KB): 200, File-Size: 10 MB, 100 MB, 1000 MB

Table 6.10.: File-Size vs Throughput Test Configuration.

The amount-of uploaders and pieces length are fixed to isolate the effect of different file-sizes on
throughput.

Results

Figure 6.5.: File-Size vs Throughput Test Results.

The throughput increases with bigger files. This is because connection establishment was included
in the measurement. The time needed for connection-establishment becomes more insignificant with
larger files. Adjusted for the X-axis being exponential the plot above can be interpreted as approxi-
mately linear.

6.4. Technical Debt

This section describes the shortcuts we had to take during development because of time constraints.

6.4.1. Peer Wire Implementation

The peer-wire implementation, responsible for actually downloading and seeding pieces currently an-
swers to any request for pieces and tries to request pieces as fast as possible. In large swarms this
would lead to major performance issues. To resolve this, the messages ”choke”, ”unchoke”, ”inter-
ested” and ”uninterested” would have to be implemented correctly and sent at the right time. This
could be done by gradually analyzing the used bandwidth at runtime and slowing down requests and
responses to avoid congestion.

30

6.4. Technical Debt Peer-to-Peer Content Delivery Network

6.4.2. Peer Prioritization

A peer currently connects to all peers that it receives from its mediator. This leads to a lot of
work being done for connection-establishment. In a production environment peers would need to be
prioritized and the amount of peers connected to would need to be limited to a certain value, to lower
the resources needed for connection-establishment.

6.4.3. Info-Dictionary Proofs

The info-dictionary shared between peers to download files currently contains all pieces-hashes and
the merkle-root to verify the correctness of a file. Since the merkle-root is included, the pieces-hashes
could be omitted. Instead, a merkle-proof could be requested from the mediator when needed to
reduce the info-dictionary to a file-name and the merkle-root or even just a magnet-link format.

31

Chapter 7. Final Prototype Peer-to-Peer Content Delivery Network

7. Final Prototype

7.1. Mediator

The mediator is a Node.js program that both accepts peer-requests, shares them with other mediators
and finds other mediators via a DHT mechanism. The mediator can run on its own on any machine. To
make it available to the public, a provider has to make sure that both the port for mediation-services
and the port for the DHT-mechanism are forwarded to the machine hosting the mediator.

7.2. Peer

The peer is a JavaScript library compiled from Typescript that can be used in any web application to
download and upload files to the network. The generated cdn.js file exposes an object called ”cdn”,
which contains all functions that are available to do so. By default, two STUN-servers and two
TURN-servers are configured to be used, namely:

• stun:openrelay.metered.ca:80

• turn:openrelay.metered.ca:80

• stun:openrelay.metered.ca:443

• turn:openrelay.metered.ca:443

These servers are statically configurable in the ”ICEConfig.ts” file or alternatively using the ”over-
rideIceCandidates” function, described below, at runtime. The listed servers are provided by the
Openrelay-Project [33] for free.

initialize(infoDictionaries, mediatorAddress, mediatorPort, enableCaching) Initializes the library
with the ”InfoDictionaries” that may later be used to download the files described by them.

overrideIceCandidates(candidates) Lets the user specify ICE candidates other than the ones spec-
ified by default. The candidates-array must contain elements of the form {urls:”ice-url”, username:
”my-username”, credential: ”my-password”}. The ”username” and ”credential” field may be omitted
when specifying STUN-servers.

includeDownloads(fileNames, cssStrings, callbacks) Downloads the specified files and allows a user
to save them by clicking on the elements specified by the cssStrings. When the download is complete
and the file is ready to be saved, the callback of the file is called.

includeImages(fileNames, cssStrings, callbacks) Downloads the specified images and sets them as
the source of the HTMLImageElement specified in cssStrings. When the download is complete and
the file is ready to be saved, the callback of the image is called.

seedFile(file, mediatorAddress, mediatorPort, dictionaryCallback) Seeds a file to the network, an-
nouncing to the mediator specified and allowing the user to share the info-dictionary returned to the
dictionaryCallback.

32

7.3. Preview Peer-to-Peer Content Delivery Network

7.3. Preview

The preview web application allows its user to test the system.

Figure 7.1.: Screenshot of the Preview Website.

The user interface shows two boxes. One for seeding files and one for downloading and then seeding
them.

Figure 7.2.: Screenshot of the Preview Website with an Info-Dictionary Displayed after Seeding a File.

33

7.3. Preview Peer-to-Peer Content Delivery Network

In the left box the user can easily start to seed a file to the network. The box below the button to
choose a file will contain the info-dictionary describing the file.

Figure 7.3.: Screenshot of the Preview Website with Performance Measurement after Downloading a
File.

The info-dictionary can be pasted into the right box on the same machine or a remote one to download
the file and save it. The console output shows the time needed to download the file including finding
peers and connection-establishment.

34

Peer-to-Peer Content Delivery Network

Part III.

Conclusion and Outlook

35

Chapter 8. Conclusion and Outlook Peer-to-Peer Content Delivery Network

8. Conclusion and Outlook

8.1. Results

In the first part of the paper it was conceptually researched if a complete decentralized peer-to-peer
CDN can be built without the user having to download a client or to install a browser extension. As a
proof of concept, a web-based prototype was developed which allows us to validate that it is possible.

Our prototype is conceptually an extension of WebTorrent [4]. We used some WebTorrent libraries
as a base. However, instead of relying on central trackers like WebTorrent, we have developed our
own peer discovery mechanism. This is the main difference, respectively the evolution compared to
WebTorrent. Therefore, the solution is fully decentralized.

The prototype has been released under MIT license on GitHub [34].

8.2. Production Readiness

Overall, we are satisfied with the result. We have successfully proven our theory. The prototype can
basically be used in production in its current state. However, in order to be used meaningfully, enough
peers, and ideally, multiple mediators need to utilize the network.

There is one noteworthy limitation. The performance is not comparable to modern CDNs. It is
especially noticeable with small files. This is mostly because of the slow WebRTC connection estab-
lishment, especially when ICE has to be used.

In addition, the prototype could be further optimized (see Section 8.3).

8.3. Outlook

There are different topics, which were considered only conceptually due to time constraints. These
could be implemented in the prototype in the future.

8.3.1. Geographical Closeness

Currently, randomly generated IDs are used. One possible optimization that we have considered in the
research is the concept of geographical closeness (see Subsection 3.2.6), by using Hilbert space-filling
curve [15]. The approach is to map the geographic coordinates (longitude and latitude) together
with a key space to a one-dimensional space. This could possibly reduce latency by prioritizing
geographically close nodes and reducing roundtrip time. However, this needs more research to develop
an ideal mechanism. Approaches to this already exist in the paper about the NL-DHT [25].

8.3.2. Tampering (Security)

In Subsection 3.4.2 we discussed the security concern of tampering by a user hosting malicious content
on a site which allows dynamic user content. One mitigation proposal was to use a malware voting ser-
vice to flag contaminated hashes as malware. In the blockchain module at OST - Eastern Switzerland
University of Applied Sciences, we created a prototype of an on-chain voting service (SmartTorrent)
[35]. There we used the Goerli Testnet [36] to publish the contracts. The voting service prototype
could be moved in further work to the Ethereum Mainnet [37] and could be used in our P2P-CDN to
mitigate the named security concern.

8.3.3. True Web-Browser Sockets

A lot of work in this project was invested in WebRTC and its complicated connection establishment.
It is the only reliable and widely used way of transport for peer-to-peer web applications. For the
web to become a true application platform, a more direct way of communication will have to be
implemented eventually. Today this is only possible by installing client-software outside the browser
and communicating with it via browser plugins [12][13]. This is the case because of security concerns

36

8.3. Outlook Peer-to-Peer Content Delivery Network

that are not solved as of today [11].

In the future, a lot of work will have to be done in this area. If this will ever be implemented, browsers
could eventually take part in DHTs instead of just interacting with them indirectly. Web-peers would
then no longer need any external systems for true peer-to-peer communication. This alternative to
our approach could significantly change the way the internet is used. However, this is out of scope for
a student research project. Further research in this field would be very interesting.

37

Peer-to-Peer Content Delivery Network

Part IV.

Appendix

38

Chapter 9. Project Plan Peer-to-Peer Content Delivery Network

9. Project Plan
This project is planned with the process framework ”Ration Unified Process (RUP)”. There are four
project life-cycle phases:

• Inception phase: Initial research.

• Elaboration phase: Determine existing technologies and create proof of concept for possible
improvements.

• Construction phase: Development of a prototype, based on the research results.

• Transition phase: Submission of the thesis and the prototype.

Rough project plan:

Week Start Phase Details

01 19.09.2022 Inception Project kickoff, initial research.

02 26.09.2022 Elaboration Identify existing technologies and determine fo-
cus of the student research project.

03 03.10.2022 Elaboration Research in the field of (geo)location based
hashes and DHT optimization (for example by
using the Hilbert Curve). Develop the concept.

04 10.10.2022 Elaboration, Construction Finalizing concept draft. Start of prototype de-
velopment.

05 17.10.2022 Elaboration, Construction Further considerations with Hilbert Curve.

06 24.10.2022 Elaboration, Construction Prototype development.

07 31.10.2022 Elaboration, Construction Finalizing the interfaces between peer and me-
diator. Prototype development.

08 07.11.2022 Elaboration, Construction Threat modelling. Prototype development.

09 14.11.2022 Construction Prototype development: File upload and peer to
peer communication over a mediator.

10 21.11.2022 Construction Prototype development: Mediator to mediator
communication.

11 28.11.2022 Construction Prototype development: Overhaul mediator to
mediator communication. Usage of DHT. Ex-
tensive Testing.

12 05.12.2022 Construction Prototype development: Caching. Extensive
Testing.

13 12.12.2022 Construction Finalizing prototype. Expanding documenta-
tion.

14 19.12.2022 Transition Finalizing prototype and documentation.
Abstract submission (19.12.2022)
Report and prototype submission (23.12.2022)

Table 9.1.: Project Plan.

39

Chapter 10. Personal Reports Peer-to-Peer Content Delivery Network

10. Personal Reports

10.1. Adrian Locher

P2P protocols have always fascinated me. This project has given me the chance to learn more about
the algorithms, protocols and mechanisms used to make P2P applications possible. Furthermore, I
have gained new insight in the limitations of the browser and its potential as an application platform.
I believe that browser-applications will eventually have to change the way in which they communicate
to become more efficient and allow for mechanisms that are used in machine-native applications. The
hardest challenge to do so will be to overcome the security issues that come with native networking
in the web-browser.

Together with Jason Benz, working on this project was fun and coordinating the different parts of the
implementation of the prototype was as easy as it can get. We managed to distribute the workload
almost perfectly onto the 14 weeks we were given. The only exception to this was, that it was
unexpectedly challenging to configure NAT-traversal correctly.

10.2. Jason Benz

For the student research project, it was important to me not to develop a standard business application,
because I will probably be doing that often enough in the future. This topic was perfect because we
got the chance to do research on a specific subject, create a concept and validate it with a prototype.
Until the beginning of the project I did not have much contact with P2P applications, or the technical
aspects of it. However, I find decentralized approaches very interesting, which is why I was very excited
when we got the confirmation for the project. In my opinion, it does not make sense to completely
turn the internet upside down and decentralize everything. But in some cases - especially with large
and widely distributed files - it would definitely be worth it. It was a great pleasure to be able to do
research in this field, and I was allowed to learn a lot of new things in the field of P2P, decentralization,
how new protocols are built and so on.

I have already completed several projects together with Adrian Locher. As expected, the collaboration
worked out excellently again, we were able to divide the workload and to supplement each other very
well. During the project, some challenges arose. Together we were able to solve them. I am very
satisfied with the cooperation and the result of this student research project.

40

Chapter 11. Bibliography Peer-to-Peer Content Delivery Network

11. Bibliography
[1] B. Cohen, “The BitTorrent Protocol Specification,” tech. rep., BitTorrent, 2008.

[2] “BitTorrent FAQ.” https://www.bittorrent.com/token/bittorrent-speed/faq#

What-is-torrenting. Accessed: 2022-10-04.

[3] “WebRTC Wave Signaling.” https://github.com/ggerganov/wave-share. Accessed: 2022-11-
01.

[4] “WebTorrent GitHub Project.” https://github.com/webtorrent. Accessed: 2022-10-04.

[5] F. Aboukhadijeh, “Dweb: Building a Resilient Web with WebTorrent,” Mozilla Hacks, 2018.

[6] “Hypercore Website.” https://hypercore-protocol.org/. Accessed: 2022-10-08.

[7] “IPFS Website.” https://ipfs.tech/. Accessed: 2022-10-08.

[8] “PeerCDN Acquired by Yahoo!.” https://web.archive.org/web/20150810065820/https://

peercdn.com/. Accessed: 2022-10-08.

[9] F. Aboukhadijeh, “webtorrent/bittorrent-protocol.” https://github.com/webtorrent/

bittorrent-protocol. Accessed: 2022-11-01.

[10] “Direct Sockets.” https://github.com/WICG/direct-sockets/blob/main/docs/explainer.

md, 2022. Accessed: 2022-11-09.

[11] “Raw Sockets API.” https://github.com/mozilla/standards-positions/issues/431. Ac-
cessed: 2022-11-06.

[12] Mozilla, “Native Messaging.” https://developer.mozilla.org/en-US/docs/Mozilla/

Add-ons/WebExtensions/Native_messaging. Accessed: 2022-11-07.

[13] Google, “Native Messaging.” https://developer.chrome.com/docs/apps/nativeMessaging/.
Accessed: 2022-11-07.

[14] “Socketify.” https://github.com/NetAsmCom/Socketify, 2018. Accessed: 2022-11-07.

[15] D. Hilbert, “Über die stetige Abbildung einer Linie auf ein Flächenstück.,” Mathematische An-
nalen, vol. 38, 1891.

[16] O. van der Spek, “UDP Tracker Protocol for BitTorrent,” tech. rep., BitTorrent, 2008.

[17] Unknown, “Peer Exchange (PEX),” tech. rep., BitTorrent, 2015.

[18] A. N. Andrew Loewenstern, “DHT Protocol,” tech. rep., BitTorrent, 2008.

[19] D. M. Petar Maymounkov, “Kademlia: A Peer-to-Peer Information System Based on the XOR
Metric,” tech. rep., New York University, 2002.

[20] Unkown, “WebTorrent Issue 288.” https://github.com/webtorrent/webtorrent/issues/288,
2015.

[21] S. Bazerque, “Hyper Hyper Space.” https://www.hyperhyperspace.org/whitepaper/, 2021.

[22] Google, “WebRTC.” https://webrtc.org. Accessed: 2022-11-01.

[23] L. R. Demian Thoma, “Distributed WebRTC Signaling,” tech. rep., Ostschweizer Fachhochschule,
2018.

[24] B. K. Raul Jimenez, Flutra Osmani, “Sub-Second Lookups on a Large-Scale Kademlia-Based
Overlay,” tech. rep., KTH Royal Institute of Technology, 2013.

[25] S. S. Saurabh Ratti, Behnoosh Hariri, “NL-DHT: A Non-uniform Locality Sensitive DHT Ar-
chitecture for Massively Multi-user Virtual Environment Applications,” tech. rep., University of
Ottawa, 2008.

[26] M. Contributors, “IndexedDB API MDN.” Accessed: 2022-11-06.

[27] “Socket.io.” https://socket.io/. Accessed: 2022-11-10.

41

https://www.bittorrent.com/token/bittorrent-speed/faq#What-is-torrenting
https://www.bittorrent.com/token/bittorrent-speed/faq#What-is-torrenting
https://github.com/ggerganov/wave-share
https://github.com/webtorrent
https://hypercore-protocol.org/
https://ipfs.tech/
https://web.archive.org/web/20150810065820/https://peercdn.com/
https://web.archive.org/web/20150810065820/https://peercdn.com/
https://github.com/webtorrent/bittorrent-protocol
https://github.com/webtorrent/bittorrent-protocol
https://github.com/WICG/direct-sockets/blob/main/docs/explainer.md
https://github.com/WICG/direct-sockets/blob/main/docs/explainer.md
https://github.com/mozilla/standards-positions/issues/431
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Native_messaging
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Native_messaging
https://developer.chrome.com/docs/apps/nativeMessaging/
https://github.com/NetAsmCom/Socketify
https://github.com/webtorrent/webtorrent/issues/288
https://www.hyperhyperspace.org/whitepaper/
https://webrtc.org
https://socket.io/

Peer-to-Peer Content Delivery Network

[28] “LocalForage.” https://localforage.github.io/localForage/. Accessed: 2022-12-01.

[29] “Simple-Peer.” https://github.com/feross/simple-peer. Accessed: 2022-10-08.

[30] “Bittorrent-DHT.” https://github.com/webtorrent/bittorrent-dht. Accessed: 2022-11-05.

[31] “Mocha Test Framework.” https://mochajs.org. Accessed: 2022-12-05.

[32] “Chai Assertion Library.” https://www.chaijs.com/. Accessed: 2022-12-05.

[33] https://www.metered.ca/tools/openrelay/. Accessed: 2022-12-16.

[34] “P2P-CDN Code Repository.” https://github.com/Peer-to-Peer-CDN/P2P-CDN, Accessed:
2022-12-21.

[35] “SmartTorrent.” https://github.com/Peer-to-Peer-CDN/SmartTorrent. Accessed: 2022-12-
20.

[36] “Goerli Testnet.” https://goerli.net/. Accessed: 2022-12-12.

[37] “Ethereum Mainnet.” https://ethereum.org/en/enterprise/. Accesed: 2022-12-12.

42

https://localforage.github.io/localForage/
https://github.com/feross/simple-peer
https://github.com/webtorrent/bittorrent-dht
https://mochajs.org
https://www.chaijs.com/
https://www.metered.ca/tools/openrelay/
https://github.com/Peer-to-Peer-CDN/P2P-CDN
https://github.com/Peer-to-Peer-CDN/SmartTorrent
https://goerli.net/
https://ethereum.org/en/enterprise/

Chapter 12. List of Figures Peer-to-Peer Content Delivery Network

12. List of Figures
2.1. BitTorrent Connection Establishment. 3
2.2. Basic WebRTC Architecture. 4
2.3. WebTorrent Peer Interaction Map [5]. 4

3.1. Overview about how an In-Browser DHT Would Work. 8
3.2. Space of a DHT-Node ID Split into its Dimensions. 10
3.3. Architecture Overview of the Concept. 11
3.4. Sequence Diagram of the Mediation Process. 12

5.1. Context of the Peer-Tier. 19
5.2. Context of the Mediator-Tier. 19
5.3. Components Grouped into Tiers and Layers. 20

6.1. Test Setup of Integration Tests. 26
6.2. Performance Analysis Test-Setup. 28
6.3. Time vs Pieces-Length Test Results. 29
6.4. Time vs Uploaders-Amount Test Results. 29
6.5. File-Size vs Throughput Test Results. 30

7.1. Screenshot of the Preview Website. 33
7.2. Screenshot of the Preview Website with an Info-Dictionary Displayed after Seeding a

File. 33
7.3. Screenshot of the Preview Website with Performance Measurement after Downloading

a File. 34

43

Chapter 13. List of Tables Peer-to-Peer Content Delivery Network

13. List of Tables
1. Glossary. IV

2.1. BitTorrent Advantages and Disadvantages. 3
2.2. WebRTC Advantages and Disadvantages. 4
2.3. WebTorrent Advantages and Disadvantages. 5
2.4. Hypercore Advantages and Disadvantages. 5
2.5. IPFS Advantages and Disadvantages. 5

3.1. Mediation Protocol Definition. 12
3.2. Mediation Protocol Dialog Combinations. 13
3.3. Malicious Piece-Sending Threat Description. 14
3.4. Hosting of Malicious Files Threat Description. 14
3.5. Sybil Attack Threat Description. 15
3.6. Flooding Malicious Peers Threat Description. 15

4.1. Declaration of Functional Requirements for the Prototype System under Development. 17
4.2. Declaration of Non-Functional Requirements for the Prototype System under Develop-

ment. 17

6.1. Test 1: Single Mediator, same Network Test Description. 25
6.2. Test 2: Two Mediators, same Network Test Description. 25
6.3. Test 3: Single Mediator, different Networks Test Description. 25
6.4. Test 4: Two Mediators, different Networks Test Description. 26
6.5. Test Protocol of the Integration Tests. 27
6.6. Analysis of Functional Requirements. 27
6.7. Analysis of Non-Functional Requirements. 27
6.8. Time vs Pieces-Length Test Configuration. 28
6.9. Time vs Uploaders-Amount Test Configuration. 29
6.10. File-Size vs Throughput Test Configuration. 30

9.1. Project Plan. 39

44

	Abstract
	Lay Summary
	Acknowledgements
	Glossary
	Paper
	Introduction
	Background Information
	BitTorrent
	WebRTC
	WebTorrent
	Hypercore
	IPFS
	PeerCDN

	Concept
	Requirements and Decisions
	Components and Considerations
	Peer Protocol
	Peer Discovery
	Signaling
	NAT Traversal
	Mediation
	DHT
	Caching

	Architecture
	Mediation Protocol
	Mediation Protocol Dialog Combinations

	Security Considerations
	Sending Malicious Pieces (Tampering)
	Hosting Malicious User Content (Tampering)
	Sybil Attacks (DoS)
	Flooding a Mediator with Malicious or Incorrect Peers (DoS)

	Prototype Documentation
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Constraints
	Context and Scope

	Architecture
	Containers and Context
	Components
	User Layer
	File Inclusion Framework
	Communication Layer
	Torrent Manager
	Swarm Manager
	Torrent Data
	Peer Wire
	Mediation Client
	Protocol Layer
	BitTorrent Protocol
	Mediation Protocol
	Transport Layer
	WebRTC Protocol
	WebSocket
	Mediation Server
	PeerConnector and MediatorConnector
	Router
	DHT-Node

	Architectural Decisions
	Languages and Platform
	Libraries Used
	Implementation Details

	Project Setup
	Mediator Execution

	Quality Assessment
	Testing
	End-to-End Tests
	Integration Tests

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	Performance Analysis
	Test Setup
	Time vs Pieces-Length
	Time vs Uploaders-Amount
	File-Size vs Throughput

	Technical Debt
	Peer Wire Implementation
	Peer Prioritization
	Info-Dictionary Proofs

	Final Prototype
	Mediator
	Peer
	Preview

	Conclusion and Outlook
	Conclusion and Outlook
	Results
	Production Readiness
	Outlook
	Geographical Closeness
	Tampering (Security)
	True Web-Browser Sockets

	Appendix
	Project Plan
	Personal Reports
	Adrian Locher
	Jason Benz

	Bibliography
	List of Figures
	List of Tables

